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We theoretically explore nonlinearities of ferromagnets in microwave cavities in the classical and quantum
regimes and assess the resources for quantum information, i.e., fluctuation squeezing and bipartite entanglement.
The (semi)classical analysis of the anharmonic oscillator (Duffing) model for the Kittel mode when including
all other magnon modes, reveals chaotic and limit-cycle phases that do not survive in quantum calculations.
However, magnons with nonzero wave numbers that are driven by the Suhl instability of the Kittel mode, form a
genuine limit cycle. We subsequently compute bounds for the distillable entanglement, as well as entanglement
of formation for the bipartite configurations of the mixed magnon modes. The former vanishes when obtained
from a covariance matrix, but can be recovered by injection locking. The predicted magnon entanglement is
experimentally accessible with yttrium iron garnet samples under realistic conditions.

DOI: 10.1103/PhysRevB.101.054402

I. INTRODUCTION

Cavity optomagnonics is the emergent field devoted to
understand the interaction of magnons—the quanta of the
elementary spin wave excitations of the magnetic order—
with electromagnetic waves confined to cavities [1,2]. While
optomagnonic coupling to (infrared) light is dispersive and,
at least to date, rather weak [3–6], magnons (ultra) strongly
interact with microwave (MW) photons [1,2,7], thereby en-
abling classical and quantum information processing and stor-
age with coherently controlled magnons [8–11]. Up/down-
quantum converters between both communication (optical
fibers) and processing (superconducting qubits) units have
been envisioned and pursued [3,4,12–14].

Strongly coupled MW photons can drive a weakly damped
magnonic system easily into the nonlinear response regime.
Hysteresis [15,16], Bose-Einstein condensation [17–21],
auto-oscillation (and chaos) [22–25], synchronization [26,27],
soliton formation [24,25,28–31], and magnon transistors [32]
are only few examples of nonlinearities in magnetism and
magnonics. The standing waves in cavities form a strongly
peaked density of states that facilitates the strong coupling
of magnons with microwave photons, leading to nonlinear
phenomena such as resonance frequency shifts and bistabil-
ity in an yttrium iron garnet (YIG) sphere [33,34]. These
observations were explained with the Duffing model—the
minimal model of a nonlinear oscillator, with an anharmonic
term in the potential energy ∼x4, where x is the canonical
position. The Duffing model is the main means to describe
nonlinearities in the dynamics of nano- and optomechanical
systems [35–37].

In the linear regime, the dynamics of the fundamental
modes of optomechanics and optomagnonics, such as the
vibrations of a cantilever and the coherent precession of the
magnetic order (Kittel mode) obey basically the same equa-
tions. However, while the Duffing model has been found to be

quite appropriate for most of nonlinear mechanics, it is not ob-
vious that it should work as well for nonlinear magnonics. For
example, in contrast to the phonons in elastic media, the mag-
netic dipolar interaction renders the magnon dispersion in thin
films strongly anisotropic and nonmonotonic; the Kittel mode
at the origin of reciprocal space is not an energetic minimum.
The three-field and four-field magnon scattering processes
caused by dipolar and exchange interactions, as well as crys-
talline anisotropies, can lead to instabilities with finite wave
lengths that cannot be modelled by a single anharmonic oscil-
lator. Indeed, the unique spin wave dispersion is instrumental
to some of the nonlinearity induced phenomena such as the
generation and observation of nonequilibrium Bose-Einstein
(Rayleigh-Jeans) condensation of magnons at nonzero wave
vector [17–20,38], magnonic transistors [32], and instabilities
leading to classical auto-oscillation and chaos [15,22,23].

On the other hand and in contrast to nanomechanics and
Josephson devices, magnonic quantum effects have been elu-
sive with very few possible exceptions [11,39]. Observation of
quantum nonlinearities such as squeezing, generation of non-
classical states, photon blockade, and entanglement [40–45]
have never been reported in magnonics.

Here we argue that transcending the Duffing paradigm
is conditio sine qua non to explore a considerable potential
of optomagnonics for quantum applications. We start with a
strictly classical analysis of the driven steady state Kittel mode
dynamics that already explains the observed bistability [34].
Subsequently, we include other magnon modes, still in a clas-
sical formulation. We recover the second Suhl instability that
occurs when the Kittel mode decays into ±�k �= 0 magnons
and classify the steady state modes as a function of photonic
drive and AC magnetic field frequencies. We observe fixed
points, auto-oscillating limit cycles, and chaos. Subsequently,
we add a quantum Langevin thermal noise to the dynamics
that turns out to transform some fixed point steady states into
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limit cycles with large phase uncertainties. Auto-oscillating
limit cycles and chaotic dynamics do not survive a quan-
tum treatment by the corresponding quantum master equa-
tion, while the fluctuation-induced limit cycles persist. The
“phase diagrams” at different levels of approximation help
to understand the quantum noise and entanglement measures
computed for the driven magnon-photon system.

The fluctuation statistics of the steady states reveal squeez-
ing, which can serve as a quantum information resource, as
well as bounds for distillable entanglement and entanglement
of formation. Finally, we assess the effect of injection locking
of the ±�k �= 0 magnons limit cycle on these entanglement
measures. As few as four copies of steady states can in
principle be transformed into a completely entangled state
equivalent to a spin singlet, which could be of immediate use
in quantum teleportation, simulation, and computation.

In Sec. II, we introduce the details of the model of a
magnet inside a cavity and all the nonlinearities involved.
Then we classify the outcomes of the nonlinear terms in the
anti-crossing region of the magnon Kittel mode and cavity
photon frequencies. The outcomes include bistability, Suhl
instability, fixed point, limit cycle, and chaotic dynamics of
±�k �= 0 magnons. In Sec. III, we include quantum Langevin
noise sources, and show that the solutions of ±�k �= 0 magnons
excited by the Suhl instability of the Kittel mode are always
limit cycles. We also develop an equivalent quantum master
equation, and solve it in the number space of the corre-
sponding harmonic oscillators. The limit cycle of ±�k �= 0
magnons is reproduced in the Wigner function representation
of the steady states. In Sec. IV, we address the first quan-
tum information resource, i.e. fluctuation squeezing, which
is observable by microwave scattering amplitudes. In Sec. V,
we focus on entanglement as an important quantum informa-
tion resource. We find finite distillable entanglement shared
between the Kittel mode and ±�k �= 0 modes. However, it is
not simply accessible via the covariance matrix of the (quan-
tum) noise, and thereby less interesting from an experimental
point of view. In Sec. VI A, we introduce the mechanism
of “injection locking” of the ±�k �= 0 limit cycle solutions
that transforms an arbitrary phase excited state into a fixed
point with Gaussian statistics. In Sec. VI B, we show that the
distillable entanglement then becomes accessible in the co-
variance matrix, allowing for a straightforward experimental
analysis and utilization of the entanglement. In Sec. VI C,
we assess the effect of injection locking on entanglement
calculated from the quantum master equation solution, and
analyze the consistency with the semiclassical approaches
of Secs. VI A and VI B. Finally, in Sec. VII, we propose
concrete setups for experimental realization of the quantum
information resources assessed in this work, addressing the
key parameters, feasibility, challenges, and constraints on,
e.g., magnet dimension and environment temperature. The
results are supported by several Appendices. We summarize
the symbols and abbreviations in Appendix E, Table I.

II. MODEL AND CLASSICAL NONLINEAR ANALYSIS

We focus (but do not limit) attention on a high-quality
magnetic element such as a sphere of yttrium iron garnet in
a microwave cavity. The static magnetization �M0 is saturated

and aligned by an applied static magnetic field �Hext‖ẑ. The
magnet is placed into the antinode of a transverse AC mag-
netic field of a selected cavity mode with angular frequency
ωc. In the total Hamiltonian

H (T ) = H (c) + H (mc) + H (d ) + H (T,m), (1)

H (c) = h̄ωcb†b, where b (b†) is the annihilation (creation)
operator of a bare photon cavity mode (respectively). H (mc) is
the magnon-photon interaction, H (d ) = iB̄(e−iωd t b† − eiωd t b)
is the microwave input drive with frequency ωd and amplitude
B̄. H (T,m) = ∑

�k h̄ω�kc†
�kc�k + H (T,m)

int governs the magnons with

annihilation/creation field operators c�k/c†
�k . The dispersion

relation ω�k and their interactions H (T,m)
int are affected by

dipolar field, exchange interaction, and crystalline anisotropy,
as summarized in Appendix A [22,46,47]. Magnons in the
bulk of a magnet are plane waves with wave vector �k and
frequency ω�k that start from the Kittel mode at �k = 0 and
can be very anisotropic [see Figs. 1(a) and 1(b)] [48–52]. We
treat the finite size effects at wavelengths comparable to the
sample size in the Suhl approximation [53], separating the
uniform mode from those with finite wavelength that we treat
as plane waves. At long wave lengths, we may invoke the
magnetostatic (MS) approximation [48,49] to treat the effects
of the dipolar interaction. We focus on YIG spheres that are
often used in experiments [1,11], but we can handle magnetic
films with minor adjustments.

The magnon interaction in a gas with finite density
is described by the Holstein-Primakoff expansion (see
Appendix A) in terms of crystalline anisotropies, dipolar,
and exchange interactions. The leading three- and four-
particle magnon-magnon scattering processes are conve-
niently treated in a (Suhl) compartmentalized reciprocal
space. The magnon-magnon scattering terms for the Kittel
mode are, e.g., c†

0c−�kc�k and c†
0c†

0c−�kc�k , where c†
0(�k)

/c0(�k) are

the creation/annihilation operators of the Kittel and plane-
wave (�k �= 0) magnon modes, respectively. Energy and mo-
mentum conservation impose constraints on the (�k �= 0, ω�k)
states into which a Kittel mode magnon can be scattered.
We assume an external magnetic field �Hext large enough
(much greater than Ms/3 for a sphere, where Ms is the
saturation magnetization) such that three magnon, as well
as two magnon-one photon scattering processes are non-
resonant, which allow us to focus on the effects of four-
magnon scatterings (4MS). The most important terms in
H (T,m)

int are therefore the four magnon scatterings H (4MS) =∑
�k, �k′ [(D4MS,1

�k,�k′ c†
�kc�kc†

�k′c�k′ + D4MS,2
�k,�k′ c†

�kc†
−�kc�k′c−�k′ ) + H.c.] with

coefficients D4MS,1
�k,�k′ and D4MS,2

�k,�k′ given in Appendix A.
YIG spheres can be fabricated with diameters down to

250 μm with traditional technology [13,54]. By integrat-
ing YIG into nanoscale photonic chips, further downscaling
appears possible [54–56]. Here, for calculations, we chose
a diameter d = 0.1 mm, keeping in mind that for larger
(smaller) spheres, larger (smaller) drive powers are required
to achieve the same results and that the exploited degeneracy
vanishes when d � 1 μm. We adopt a saturation magnetiza-
tion Ms = 1.46 × 105 A/m along the (111) crystalline axis
with uniaxial magnetic anisotropy Kc = −2480 J/m3 [57],
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FIG. 1. Kittel mode instability in the Landau-Lifshitz-Gilbert
equation. (a) The magnon dispersion for a sphere. The magneto-
static (MS) modes are indicated by black (Kittel mode), blue (bulk
modes) and red (surface modes) dots. The MS band matches the
continuum band at certain k, at which the green dashed lines touch
the black full/dashed lines. The ellipsis · · · indicates the region that
separates the continuum from the MS manifold. The cyan-colored
dots represent the phase space region tested for instabilities, of
which the inset is a zoomed-in version. (b) The envelopes of the
magnon dispersion in a thin film on a logarithmic wave number scale.
The red dot indicates the Kittel mode. In (a) and (b), the top and
bottom envelopes correspond to �k‖ �M0‖ẑ and �k ⊥ �M0, respectively.
The green arrows in (a) and (b) schematically depict the four magnon
scattering processes (4MS) responsible for the instability of the Kittel
mode. [(c)–(e)] Steady state solutions for the populated Kittel mode
with “self-Kerr” nonlinearity but without inclusion of �k �= 0 modes.
[(c) and (d)] Magnon number |α0|2 (α0 is Kittel mode mean field)
as a function of Kittel mode and microwave drive frequency, where
(c) depicts the solutions when the system is in either stable state
or the solution with larger magnon population when the system is
bistable, while (d) shows only the solution with smaller magnon
numbers in the bistable regime. (e) plots |α0|2 along the red dashed
lines of (c) and (d). Blue dots are the stable fixed points, and the
cyan dots are unstable saddle points. (f) Instability of the Kittel mode
solutions in (a) when �k �= 0 magnons are allowed to contribute. Here
the color codes the frequency of the ±�k pair that becomes unstable
first.

and gyromagnetic ratio γ = 2.6 × 1010 T−1 s−1 [16]. We
adopt a cavity mode ωc = 1011/(2π ) s−1 and Kittel-cavity
mode coupling constant D0 = 10 MHz. The magnetization
dynamics is damped by a Gilbert constant αG = 10−4 [58]
and the dissipation rate of the cavity mode ζc = 1 MHz. We
chose effective dissipation rates from recent experiments at
cryogenic temperatures and relevant frequencies [2,11]. We
disregard couplings of the cavity mode to other than the Kittel
(Walker) modes, which is allowed when the magnet is at an

antinode of a sufficiently large cavity or, when this is not
the case [59], spectrally separated, i.e., outside the detuning
(ω0 − ωc)/ωc range considered here [2,11]. Alternatives to
YIG are lithium ferrite [59], vanadium tetracyanoethylene
[60], and NiFe [61,62].

As discussed in Appendix A, essentially all the dipolar
interaction, exchange, and anisotropy contribute to the 4MS
terms, see, e.g., Eqs. (A10)–(A14). Here, the exchange inter-
action maximizes the coefficient of the 4MS term responsible
for Suhl instability at large |�k|, D4MS,2

0,�k ∼ 10−8, but other
interactions are significant as well and included in the cal-
culations. The shape anisotropy and crystalline anisotropy
contribute a repulsive 4MS interaction. Dipolar interaction
and crystalline anisotropy mix the modes, leading to complex
4MS terms [see Eqs. (A18)–(A20)] such that the label attrac-
tive or repulsive cannot be simply made. While the formalism
is material independent, we focus here on a parameter set for
undoped YIG materials.

The field operators c0 = α0 + δc0, c�k = α�k + δc�k and b =
β + δb fluctuate by {δc0, δc�k, δc0} around the steady state
mean-field amplitudes {α0, α�k, β}. The canonical position and
momentum (quadrature operators) are x0(�k) = (c†

0(�k)
+ c0(�k) )/2

and p0(�k) = i(c†
0(�k)

− c0(�k) )/2 for the magnon modes and X =
(b† + b)/2 and Y = i(b† − b)/2 for the photon mode, respec-
tively, with fluctuations δx0(�k), δp0(�k), δX , and δY , respec-
tively. In this section, we deal only with mean fields and turn
to the fluctuations later.

Most results are in the (ω0, ωd ) parameter space for fixed
microwave intensity B̄ = 3.3 × 1013 s−1, which corresponds
to a field of ∼1 mT when ωd ∼ ωc. B̄ = √

ζc,exPin/(h̄ωd ),
where ζc,ex is the photon dissipation by leakage, and the cavity
input power Pin ≈ 13 mW (11.1 dBm) for the range of ωd we
consider. This power is large enough to access all phenomena
offered in nonlinear phase space. For smaller powers down to
Pin ∼ 1 mW, we observe bistability of the Kittel mode and
the Suhl instability close to the origin of (ω0, ωd ) parameter
space, but no limit cycles and/or chaotic motion. The power
demands scale with the volume of magnet: for a sphere of
1 mm radius, a Pin = 13 W is necessary to achieve the same
results as shown here. Bryant et al. [22] carried out a classical
analysis of the full nonlinear dynamics of the Suhl instability
of the first kind as a function of input power and dc external
magnetic field, at twice the microwave frequency of the Kittel
mode. The nonlinear magnetization dynamics of YIG spheres
with a typical diameter of 1 mm required powers in the range
of 1–20 dB (1–100 W) [22,23]. Here we address the Suhl
instability of the second kind at excitation frequencies close to
the Kittel mode. Experiments that classified the correspond-
ing nonlinear phase space observed limit cycles, and their
doublings, eventually leading to chaos [63]. The microwave
magnetic fields that cause classical chaos in our analysis is
∼2 mT when ω0 ∼ ωd , which agrees with the ∼1–10 mT
(∼10 times critical field of Suhl instability [53,64] of the
second kind) in these experiments and theories [23,63].

The equations of motion (EOM) for the three distinct fields
(and similarly for the Hermitian conjugates), viz. the cavity
mode field, Kittel mode field, and selected �k �= 0 modes fields,
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is obtained from H (T ) [see Eq. (1) and Appendix A], with
dissipation and noise added:

ċ0 = − i

⎛
⎝	0 + 2

∑
�k �=0

Re
[
D4MS,1

0,�k
]
n�k

⎞
⎠c0 − ζm,0

2
c0

− 2ic†
0

∑
�k �=0

D4MS,2
0,�k c−�kc�k

− 2i Re
[
D4MS,1

0,0 + D4MS,2
0,0

]
[c0 + 2c†

0c0c0] + iD0b

+ √
ζmm,0Fmm,0(t ) + √

ζmp,0Fmp,0(t ), (2)

ċ�k �=0 = − i

⎛
⎝	k + 2

∑
�k′ �=�k

Re
[
D4MS,1

�k,�k′

]
n�k′

⎞
⎠c�k − ζm,�k

2
c�k

− i
(
D4MS,2

0,�k
)∗

c0c0c†
−�k − 2i Re

[
D4MS,1

�k,�k
]
[c�k + 2c†

�kc�kc�k]

− ic†
−�k

∑
�k′ �=0

D4MS,2
�k,�k′ c−�k′c�k′

+
√

ζmm,�kFmm,�k (t ) +
√

ζmp,�kFmp,�k (t ), (3)

ḃ = − i	b − ζc

2
b + B + iD0c0

+ √
ζc,0Fc,0(t ) + √

ζc,exFc,ex(t ), (4)

where D4MS,1
�k′,�k′′ and D4MS,2

�k′,�k′′ are the strengths of the 4MS

scatterings of the form c†
�k′c�k′c

†
�k′′c�k′′ and c†

�k′c
†
−�k′c�k′′c−�k′′ , respec-

tively (see Appendix A). We defined detunings 	0 = ω0 −
ωd , 	�k = ω�k − ωd , and 	 = ωc − ωd . The damping param-
eters are ζm,0 = ζmm,0 + ζmp,0, ζm,�k = ζmm,�k + ζmp,�k , and ζc =
ζc,ex + ζc,0. ζmm,0 (ζmp,0) is the dissipation rate of the Kittel
mode field by interaction with the magnon (phonon) bath, and
ζmm,�k (ζmm,�k) the same for the �k mode. ζc,ex (ζc,0) is the photon
dissipation by leakage (interaction). The damping parameters
ζX are connected to the stochastic (Markovian) Langevin
fields FX by the fluctuation dissipation theorem. Details are
given in Appendix B. We formulate the dynamics for real B̄
in the rotating frame of the microwave drive. Therefore the
phases of the steady state fields are relative to the drive phase.

The nonlinearity of the Kittel mode alone is the so-called
self-Kerr term (c†

0c0)2, which corresponds to the nonparabol-
icity in the Duffing model. It leads to a bistability in the
solutions of the classical mean fields when B̄ exceeds a
certain threshold, which happens here in (ω0, ωd ) parameter
space close to the magnon-polariton (ω0 = ωd ) [33,34,65] We
address this reduced problem by the EOM of Eqs. (2)–(4), by
dropping all terms involving the �k �= 0 magnons and replace
the stochastic fields by their mean values, which leads to a
sixth order equation in |α0|2 (α0 is the Kittel mode mean
field). When our choice of B̄ is above the threshold, two stable
and one unstable (saddle point) solutions of |α0|2 manifest
the classical bistability. Figures 1(c)–1(e) show a typical map
of the computed “self-Kerr” solution, i.e., the Kittel magnon
number |α0|2 without mixing with other modes. Figure 1(c)
summarizes the stable solutions and the large amplitude or
number state in the parameter regime in which the system

is bistable, i.e., close to the magnon-polariton (anti)crossing,
while Fig. 1(d) is the other stable solution with smaller
magnon numbers. We explore the nonlinear phase space at
each (ω0, ωd ) independently, hereby disregarding (classical)
hysteretic effects that arise when sweeping the applied mag-
netic field ω0. Figure 1(e) is a plot of the frequencies of
the stable and unstable (saddle points) solutions for the ωd

indicated by red-dashed lines in Figs. 1(c) and 1(d).
Subsequently, we assess the Suhl instability of the solu-

tions in Fig. 1(c) caused by 4MS with �k �= 0 magnons (for the
parameters used here, the lower magnon number solutions in
Fig. 1(d) remain stable). We scan the �k values for which the
4MS is expected to be largest [see Fig. 1(a)] and search for
the ±�k �= 0 pair of modes with largest positive real eigenvalue
of the linearized matrix O (defined in Appendix B) that here
corresponds to the EOM linearized around the Kittel mode
mean field. Results are summarized in Fig. 1(f) in the form of
the frequencies of the most unstable magnon pairs ω±�k .

In order to classify the steady states, we first solve the
EOM, i.e., Eqs. (2)–(4) without Langevin stochastic fields, in
which the field operators become classical amplitudes, similar
to conventional micromagnetics. The solutions of the EOM
with initial condition chosen to be an excited pure Kittel mode
from Fig. 1(c) are shown in Fig. 2. We observe (i) chaotic
behavior with finite positive Lyapunov exponents [66,67], (ii)
auto-oscillation limit cycle (LC), and (iii) fixed point (FP1
and FP2) solutions. The final state in region FP1 is a pure
Kittel mode, which implies that the self-Kerr solution from the
higher magnon number branch relaxes back to the stable lower
magnon number one in Fig. 1(d): the �k �= 0 modes help the
Kittel mode to explore a larger phase space, thereby escaping
a fixed point with a shallow energy well. In region FP2 the
system settles into a hybrid state with significant contributions
from magnons with finite momentum.

III. QUANTUM LANGEVIN AND MASTER EQUATION

Next, we solve the EOMs with random initial conditions
close to those of Fig. 2 and add Langevin quantum stochastic
fields at an ambient temperature Tenv = 1 K [see Eqs. (2)–
(4) and Appendix B 2 for description of baths and their
correlation functions, moderate temperature variations cause
expected and mild changes]. Since the (Markovian) bath ap-
proximation breaks down as Tenv → 0, we cover the ultralow
temperature regime by solving the quantum master equations
for Tenv = 0 K (see also Appendix C). We conclude below
that the features such as entanglement measures (see Sec. VI)
are mathematically (and physically) tolerant with respect to
moderate changes in temperature. We repeat the computations
1600 times for the (ω0, ωd ) points of Fig. 2 indicated by
black and red stars, i.e., for a fixed point of type 2 (FP2)
for which the ±�k �= 0 pair mean field does not vanish, with
results in Fig. 3(a), and of an auto-oscillation limit cycle (LC)
with results in Fig. 3(b), respectively. We plot the proba-
bility distributions of {〈x0(p0)〉, 〈X (Y )〉, 〈x2

±�k + p2
±�k〉}, where

x0 = Re[α0], p0 = Im [α0] for the Kittel mode, X,Y are the
analogues for the photon (for completeness) and |α±�k|2 =
x2
±�k + p2

±�k is the number of ±�k magnons. The phase of α±�k
for FP2 in Fig. 3(a) becomes undetermined. Even though the
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FIG. 2. Steady state classification of the solutions of the Landau-
Lifshitz equation without thermal noise. The darkest blue indicates
the region where there is no instability of the Kittel mode to ±�k �= 0.
Each type of steady state is indicated by a color labeled inside the
main panel, i.e., chaos, limit cycle, FP1, and FP2. For each of the
four types, an example is also shown, and the corresponding point in
the main panel map is indicated by white dashed arrows. Point and
line colors in inside panels corresponding to initial states and final
states are shown in the bottom panel. In FP1 inset, the green point
size is adjusted for clarity, and the blue dot coincides with the green
dot. The trajectory from initial to final state of FP2 is also shown.
The values corresponding to the photonic mode are not shown. The
black and red stars in the figure are the (ω0, ωd ) values used in Fig. 3.

steady state solution of �k �= 0 magnons is a fixed point, the
noise transforms it to a limit cycle. The Kittel and photon
modes, on the other hand, undergo only a coherent precession
with small and elliptical fluctuations while their phases remain
deterministic. Figure 3(b) shows the fate of a LC after the
noise is switched on. The averages of the �k �= 0 magnons are
distributed over a doughnut in phase space [a typical trajectory
is plotted as pink dashed line in Fig. 3(b)]. The dynamics of
the Kittel and photon mode are still the same deterministic LC
closed loops of the noiseless solutions. The inset of Fig. 3(a)
shows the probability distribution P of the fluctuations around
the mean field of the Kittel and ±�k modes. Since the mean-
field Kittel (or photon) mode is a fixed point, the fluctuation
probability distribution in (δx0, δp0) space is expected to be
Gaussian. The radial fluctuations P(δr±�k ) of the ±�k limit
cycle solutions are also Gaussian distributed. On the other
hand, the fluctuations around the Kittel (photon) mode limit
cycles in the inset of Fig. 3(b) are clearly not Gaussian. The

FIG. 3. Steady states of the system with inclusion of Langevin
fields. (a) and (b) correspond to a fixed point of type 2 (FP2,
when a ±�k �= 0 pair mean field is nonzero) and auto-oscillation
limit cycle (LC), at (ω0, ωd ) indicated by black and red stars in
Fig. 2, respectively. (a) Main panel is the final fixed points with and
without inclusion of Langevin fields for the Kittel, ±�k, and photon
modes. The final states for all the 1600 runs with Langevin fields,
plotted. Insets show probability distributions of the fluctuations. In
the panel for P(δx0, δp0), the inset is contour plot, and the red dashed
line indicates the long axis of the fluctuation ellipse. The solutions
without noise are fixed points depicted by hollow circles, while the
solutions with noise are filled dots. The blue and red filled dots
overlap. (b) Main panel shows the trajectory of all the modes in the
last 2 μs of all the 1600 runs with Langevin fields. The trajectories
of steady states without Langevin fields also shown. The inset shows
the probability distribution of photon and Kittel modes. Solutions
without noise are dashed-line trajectories, while the solutions with
noise are solid lines. The blue and red lines overlap; because of
their large number (1600) they appear as a filled. In (a) and (b),
the probability distribution is evaluated over the fluctuations in the
width of the limit cycles, i.e., δr±�k , δr0, and δrp, averaged over

the cycle loop. In each panel, r±�k , r0, and rp indicate ±�k, Kittel,
and photon modes limit cycles with respect to their corresponding
centers. Centers of each limit cycle is crossing of global/local axes
shown.
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FIG. 4. Steady states derived from the quantum master equation. (a) Duffing model: n0, the maximum of the number distribution Pn,0 of
the Kittel mode compared with the classical magnon number (|α0|2) from Fig. 1(e) for the photon frequency ωd , indicated by the red-dashed
line in Figs. 1(c) and 1(d). The right vertical ordinate indicates n0 as solved in the scaled system, whereas the left axis shows the corresponding
values in the physical basis. The different classes of steady states when �k �= 0 modes are included are coded by the background shading colors
(see Fig. 2). Five particular magnetic fields (ω0) are singled out by the numbered vertical thin black lines. [(b)–(f)] Wigner function [Eq. (6)]
for the Kittel and ±�k modes [“w” (“wo”) means with(out) inclusion of ±�k modes].

width of the distribution is larger by a factor of ∼103 than
the Gaussians of Fig. 3(a) that correspond to the environment
temperature Tenv = 1 K. The probability distribution is the
deviation from the trajectory, and in principle independent
of its form. The relatively large width of the distribution
appears nevertheless to be correlated with the complexity of
the deterministic LC, and the increased noise smear out the
structure in phase space. We see below that these LC’s do not
exist in the quantum master equation calculations, indicating
that the quantum fluctuations have more serious effects than
the thermal ones at 1 K.

Finally, we turn to quantum effects by solving the master
(Lindblad) equation (see Appendix C)

˙̂ρ = −i[H ′(T ), ρ̂] +
∑

�k′∈{0,�k,−�k}
L(T )

�k′ (ρ̂, Tenv), (5)

where in H ′(T ) the photon mode has been adiabatically re-
moved from H (T ), with renormalized Kittel mode detun-
ing 	′

0 = [	0 − (D2
0	)/(	2 + ζ 2

c /4)] and Kittel mode drive
i(B̄′c†

0 − H.c.) with effective field B̄′ = (−i	B̄D0)/(	2 +
ζ 2

c /4), where 	 (	0) is cavity (Kittel mode) detuning with
respect to drive, D0 is the coupling between Kittel and cavity
modes, B̄ is the microwave cavity drive amplitude, and ζc

the cavity damping (see Sec. II). L(T )
�k′ (ρ̂, Tenv) is the total

Lindblad operator for each of the magnon modes. This master
equation is based on the assumption of Markovian baths.
Equation (5) can be rewritten in terms of a superoperator
L as ˙̂ρ = Lρ and the steady state density matrix ρss is the
solution of Lρss = 0. We can compute the eigenvector of
the sparse matrix L corresponding to the lowest eigenvalue
(see Appendix C) for a matrix dimension of up to 106 × 106.
Even at Tenv = 0 this forces us to scale the system down to
a numerically tractable Hilbert space, dividing B̄ by a factor
Q while multiplying the fourth order interactions by Q2. This
scaling preserves the bistability map as well as instability with
respect to ±�k magnon generation in the (ω0, ωd ) parameter
space. The cost-benefit ratio of the scaling is optimized by
Q = 1.1 × 106. Calculations for finite temperatures are pos-
sible but expensive, and for this scaling amplitude, we expect
only weak effects for Tenv � 0.1 K.

We first focus on the quantum mechanical Duffing oscilla-
tor, without mixing in ±�k magnons. Figure 4(a) summarizes
the calculated |α0|2, where α0 is the Kittel mode mean field,
as well as the n0 = c†

0c0 which maximizes the number dis-
tribution for a fixed photon frequency, and ωd corresponding
to Fig. 1(e). The left axis shows |α0|2 and the rescaled n0Q2

to facilitate comparison with the classical results, while the
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right axis is n0 in the downscaled system. The discrete steps
in n0 are an artifact introduced by the small size of the
rescaled system. The colored background encodes the type
of the corresponding classical steady state. The numbered
vertical lines indicate the selected drive frequencies for which
we compute the steady state density matrix ρss including the
�k �= 0 magnon modes. The reduced density matrix for each
mode ρ�q is obtained by tracing out all other modes, i.e.,
ρ�q = Tr �q′ �=�q[ρss], where �q′, �q ∈ {0 (Kittel magnon), ± �k}. We
calculate the Wigner function, a (quasi-)probability distribu-
tion in position-momentum phase space [68,69],

W (x�q, p�q ) =
∫ 〈

x�q − y

2

∣∣∣ρ̂�q
∣∣∣x�q + y

2

〉
eip�qydy, (6)

where |x�q ± y
2 〉 are position eigenstates. Results are sum-

marized in Figs. 4(b)–4(f), representing the distinct classes
(FP1, chaos, LC, FP2, and stable to 4MS, respectively) found
in the (semi)classical calculations. While chaos and limit
cycles of the Kittel and photon modes do not survive in the
quantum regime, the limit cycle in the ±�k �= 0 modes become
conspicuous as rings in Figs. 4(c)–4(e). The maxima of the
Wigner functions should be interpreted as attractors (fixed
point or limit cycle) that are broadened by zero-point (and
in case of Tenv �= 0 thermal) fluctuations. A fixed point with
(squeezed) thermal fluctuations such as the Kittel mode solu-
tion in Fig. 3(a) becomes a Gaussian in the Wigner function
centered on the same point of phase space, e.g.,

W (x0, p0) = 1

π
(
nth + 1

2

) exp

(
−|x0 + ip0 − α0|2

nth + 1
2

)
(7)

for an isotropic coherent state [68,69]. In the present quantum
calculations, we address the zero-point fluctuation with nth →
0. The probability distribution of the position and momen-
tum P(δx0, δy0) [see, e.g., Fig. 3(a) insets] is related to the
Wigner function as P(δx′

0,θ ) = ∫ +∞
−∞ W (δx′

0, δp′
0)dδp′

0, where
(δx′

0,θ , δp′
0,θ ) corresponds to (δx0, δp0) rotated by θ . For a

Gaussian, P(δx0, δp0) = W (δx0, δp0). In general, the Wigner
function can be reconstructed from a measured P by, e.g.,
a maximum likelihood or Radon transform [71]. The limit
cycle of ±�k modes in Fig. 3(a) is a circle with the same
radius and width as the corresponding Wigner function at the
same Tenv. W (x0, p0) in Fig. 4(c) shows two local maxima
pertaining to two classically bistable points [65,70]; the self-
Kerr bistability is a classical phenomenon, while quantum
fluctuations lead to finite distributions around the two fixed
points in phase space.

IV. SQUEEZING OF THE NOISE

Since the quantum analysis rules out limit cycles in the
steady state of the Kittel (photon) mode, we may analyze their
nature by focusing on the phase space in the proximity of
the fixed point solutions FP1 (Kittel mode, ±�k �= 0 magnon
modes only thermally occupied) and FP2 (a ±�k �= 0 magnon
mode with nonzero mean field), which is accessible in terms
of the steady state covariance matrix �∞ (see Appendix B
for details), and experimentally in the cavity output field, e.g.,
by homodyne detection [69,71]. In Figs. 5(a) and 5(b), we
map the angle of the minor axis θsq and ellipticity ξsq of

the calculated variances. Figure 5(c) shows some examples
of the photonic Wigner functions obtained from the covari-
ance matrices calculated by the quantum Langevin equations
(nonscaled system with Tenv = 1 K) [69,72] as

W (δX, δY ) =
∫ +∞

−∞
d3δx0(±�k)d

3δp0(±�k)

1

(2π )
√

det (�∞)

× exp

{
−1

2
v�∞vT

}
, (8)

where v = [δx0, δp0, δx�k, δp�k, δx−�k, δp−�k, δX , δY ]. d3δx0(±�k)

= dδx0dδx�kdδx−�k , and d3δp0(±�k) = dδp0dδp�kdδp−�k (for
definition of fluctuating fields see Sec. II and Table I). Here,
the black contours are the computed variance ellipses, while
the red circles indicate the zero-point fluctuations of the non-
interacting photon. This analysis only holds for fixed points,
otherwise the full Wigner function as in Figs. 4(b)–4(f) should
be computed. For a classical state, the uncertainty in a given
direction in the position-momentum (quadrature) phase space
can not be less than 1, which implies that the black and red
contours may not intersect. The two panels of Fig. 5(c) that
are marked by purple stars are therefore proof-of-principle
that quantum squeezed states can be generated. This magnon-
induced squeezing of light is the first quantum information
resource reported here. It is an essential ingredient for accu-
rate measurements of, e.g., sub-shot-noise phases in a Mach-
Zehnder setup [69]. At certain points in the (ω0, ωd ) plane, the
amount of squeezing can be enhanced by increasing the power
(i.e. |α0,±�k|, see Appendix B 1) as well as reducing Tenv.

V. ENTANGLEMENT

A second resource for quantum information is entangle-
ment. The 4MS term of the form c†

0c0c†
�kc�k + c†

0c0c†
−�kc−�k

leads to a dominant mean-field potential α0α�kδc†
0δc†

�k +
α0α−�kδc†

0δc†
−�k + H.c. [α0(±�k) is the mean field amplitude of

the Kittel (±�k �= 0) magnon], i.e., a “two-mode squeezing”
Hamiltonian for the Kittel and either mode of the ±�k pair
fluctuations, which corresponds to the maximal bipartite en-
tanglement of two continuous variables [72,73]. When the in-
stability mixes Kittel with ±�k modes, i.e., α±�k �= 0, the modes
should therefore be entangled. Correspondingly, a 4MS term
of the form c0c0c†

�kc†
−�k + c†

�kc�kc†
−�kc−�k + H.c. should entangle

the ±�k modes. In order to assess entanglement, we consider
the two distinct bipartite configurations sketched in Fig. 6,
(i) the Kittel magnon-photon polariton as one part and the
±�k pair as the other, and (ii) one of the modes of the ±�k
pair, say �k, considered as one part and −�k plus the Kittel
magnon-photon polariton as the other. The Kittel mode and
the cavity photon form a hybridized polariton by the strong
coupling through the beam splitter interaction ic0b† + H.c.,
and can be considered as one part. For applications such
as quantum teleportation [74,112], the entanglement distilla-
tion ED, i.e., the degree of entanglement (number of perfect
Einstein-Podolsky-Rosen states [73] such as spin singlets),
is an important parameter. It can be extracted from a bipar-
tite state by local operations and classical communication
(the so-called LOCC protocols) [72,75–77]. Here we employ
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FIG. 5. Fluctuation ellipticity from steady state covariance matrix when �k �= 0 modes are included. (a) Fluctuation variance ellipse angle
θsq. (b) Fluctuation variance ellipticity ξsq. In (a) and (b), the hatched area is where the classical steady state is a limit cycle or chaos (see
Fig. 2). (c) The constructed Wigner function of the fluctuation for the cavity mode, W (δX, δY ), from covariance matrix. Each numbered
section in (c) corresponds to ωd indicated by a dashed line with the same number, and ω0 of each panel is indicated by a hollow circle on the
corresponding dashed line (the left most panel of each section: case with smallest ω0). The color map is the same for all panels and normalized
to the maximum value of each panel. Black contours are the variance ellipses, while the red circles are the zero-point fluctuations of the
noninteracting photon for reference. In the panels marked by purple stars, red and black curves cross each other at four points.

the concept of negative partial transposition (NPT) [78,79]:
the existence of negative eigenvalues of a bipartite state den-
sity matrix ρ1 ⊗ ρ2 after partial transposition (ρ1)T ⊗ ρ2 is a
sufficient condition for an entangled state, for bipartite Gaus-
sian states even a necessary one [72]. The degree of negativity
in the partial transposed density matrix can be quantified by
the logarithmic negativity ELN which determines the upper
bound of ED [72,80]. In other words, depending on the LOCC
protocols used for purification of entanglement of a general
mixed state of a bipartite configuration, a maximum number
of ELN × N entanglement bits (number of spin singlets) can

FIG. 6. The two distinct bipartite configurations of the essen-
tially tripartite system, i.e., (i) 0{±�k} and (ii) ±�k{0, ∓�k}.

be distilled, where N is the number of copies of the bipartite
state. We are therefore interested in the logarithmic negativity
ELN [72,75,78–80] of both our semiclassical and quantum
density matrices. The former is calculated from the covariance
matrix and the latter directly from the density matrix in the
number space of involved modes (see Appendix C). Another
measure is the entanglement of formation EF , i.e., the number
of fully entangled bipartite particles (such as a spin singlet)
required to form the state, or in other words the minimum
of the von Neumann entropy of the bipartite state among
different (infinite) realizations of a mixed state. We compute
EF for completeness, but note that in contrast to ED, its value
is not of practical importance. The details of the calculations
for both approaches to the density matrix are deferred to
Appendix D, which also provides a short review of the en-
tanglement measures used here.

Unfortunately, we find that the covariance matrix extracted
from the Langevin formalism leads to EL

LN,0{±�k}(LN,±�k{0,∓�k})
=

0 (superscript L stands for Langevin) all over the (ω0, ωd )
map: The trace over one mode of an imperfect two-mode
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FIG. 7. Injection locking of ±�k modes calculated by (a) the
Langevin formalism and (b) the quantum master equation at the
(ω0, ωd ) of the black star in Fig. 2. (a) The averaged trajectories
from the initial to the final states (filled dots) for all modes. |Bl | =
1012 1/s(<B̄/10). The color code explained in the panel is applicable
also to (c). (Insets) Probability distributions of the fluctuations.
The final states from entirely classical calculations and without
injection locking are also shown. (b) Results from the quantum
master equation, without and with injection locking as indicated.
(c) (Langevin) The averaged final states of all fields as a function
of locking field Bl from 1010 to 2 × 1012 s−1 with fixed φl = 0. The
purple vectors indicate the shift direction with increasing Bl . (Inset)
Mean magnon number n̄0(±�k) in the scaled quantum system as a
function of Bl with φl = 0. (d) Dependence of the averaged |α0(±�k)|2
for the final states from Langevin (right axis) and n̄0±�k from quantum
master equation calculations (left axis), on the phase φl ∈ {−π, π}
for a fixed |Bl | = 1012 s−1. The purple (green) colored background
emphasizes φl values with weak (strong) locking.

squeezed state leads to a (broadened) squeezed coherent state
with an almost deterministic phase. Moreover, the relative
position and total momentum of a two-mode squeezed state is
also (almost) deterministic. For example, when the bipartite
state of the Kittel mode and, say, +�k mode of the ±�k pair is
close to a two-mode squeezed state, x0 − x+�k and p0 + p+�k
should be deterministic. However, since the attractors of the
±�k modes are limit cycles [see Figs. 3(a) and 4(c)–4(e)],
while that of the Kittel mode is a fixed point, x0 − x+�k and
p0 + p+�k are undetermined, no distillable continuous variable
entanglement should be expected. The analysis based on
the covariance matrix is only accurate for Gaussian states
or continuous variable entanglement [72], so EL

LN = 0 does
not contradict the finite distillable bipartite entanglement
found in the quantum solutions of the scaled system, which
indicate that the states are non-Gaussian. For example, at

FIG. 8. Entanglement in an excited magnon system with injec-
tion locking. (a) The logarithmic negativity EL

LN of steady states
from the Langevin formalism as a function of |Bl | for φl = 0. In
the main panel, both axes are on a log scale. The inset contains the
same data on a linear scale. (b) EL

LN as function of φl , at |Bl | =
1012 s−1. (c) and (d) Logarithmic negativities (left axis) Eq

LN,0±�k ,

Eq

LN,±�k,0∓�k , and entanglement of formation (right axis) EF,0±�k , in
the steady state, calculated by the quantum master equation as a
function of |Bl | for φl = 0 and as a function of φl for |Bl | = 1012 s−1,
respectively. Bottom insets of (c) and (d) are Wigner functions of
±�k modes for particular values of |Bl | and φl , respectively, indicated
by black dashed arrows and purple dashed lines. In (b) and (d), the
purple (green) colored bars indicate φl values corresponding to weak
(strong) locking.

(ω0, ωd ) indicated by the black star in Fig. 2 (all the results in
Figs. 7 and 8 correspond to this point), Eq

LN,0{±�k} ∼ 0.3

and Eq

LN,±�k{0,∓�k} ∼ 0.4 (superscript q stands for

quantum), whereas the continuous variable entanglements
EL

LN,0{±�k}(LN,±�k{0,∓�k})
= 0. In other words, entangled states of

continuous variables do not comprise all of the entanglement
conceivable from bosonic modes. For two modes, a state such
as |0, N〉 + |N, 0〉 (0 is the vacuum Fock state in one mode
and N is the N th Fock state in the other mode) is a maximally
entangled state [81,82] but not a two-mode squeezed state.

VI. DISTILLABLE GAUSSIAN ENTANGLEMENT

The finite distillable entanglement by non-Gaussian states
predicted for the driven magnet can be assessed experimen-
tally only by a full reconstruction of the density matrix,
which is technically very challenging. Only very recently
techniques for quantum state tomography of Gaussian states
in microwave frequencies have been developed (see below).
On the other hand, Gaussian states are fully characterized by
the second moment or the auto and cross-correlations which
are more readily measured and sufficient to assess the contin-
uous variable entanglement. However, this requires getting rid
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of the limit cycles. This can be achieved by fixing the phases
of the ±�k modes via “injection locking” [24,40,83,84] by
an AC coherent drive with fixed phase, a standard technique
used, e.g., to improve current-induced spin oscillations [84].

A. Injection locking of ±�k �= 0 magnons

Here we study a spatially modulated injection locking with
Hamiltonian Hl = i(Ble−iωLt c†

±�k − B∗
l eiωLt c±�k ) with drive fre-

quency ωL = ω±�k and amplitude Bl = |Bl | exp(iφl ) and phase

φl , which couples to both modes of the ±�k pair. Large
enough Bl transforms limit cycles into fixed points, in both
the semiclassical [see Fig. 7(a)] and quantum calculations [see
Fig. 7(b)]. Figure 7(c) illustrates the effect of locking as a
function of |Bl | and a fixed phase φl = 0. With increasing
|Bl |, the mean number of ±�k magnons increases, whereas
the numbers of Kittel mode magnons and photons decrease.
The effects are small but establish identical trends in both
Langevin and quantum formalisms. According to Fig. 7(d),
the phase φl modulates the excitations with periodicity of π ,
since the force is proportional to cos(φl + φ0), where φ0 is
a constant shift [24]. Strong (weak) locking implies larger
(smaller) number of ±�k magnons, and smaller (larger) number
of Kittel mode magnons and photons both in Figs. 7(c) and
7(d): the mean magnon numbers n̄0(±�k) in the scaled quantum
system follow the trends of the equivalent |α0(±�k)|2 of the
Langevin formalism.

B. Injection locking and Gaussian distillable entanglement

The beneficial effects of locking on the logarithmic nega-
tivity extracted from the semiclassical covariance matrix for
continuous variable entanglement as a function of |Bl | and
φl are evident in Figs. 8(a) and 8(b). Figure 8(a) shows that
both EL

LN,0{±�k} and EL
LN,±�k{0,∓�k} become nonzero by increasing

|Bl | to values where locking is achieved and reach ∼0.3.
Figure 8(b) shows that EL

LN,0{±�k}(±�k{0,∓�k})
strongly depends on

the phase φl . For the φl with weakest locking, EL
LN = 0. Even

though the value of EL
LN with injection locking approaches

Eq
LN, they are not the same since at different temperatures (1

and 0 K, respectively). EL
LN at 0 K, is larger than Eq

LN. The
quantum Langevin noise approach is strictly valid only when
the Hamiltonian is bilinear and bath is in thermal equilibrium.
In the presence of nonlinear terms the Langevin formalism
may lead to wrong results at infinite times in contrast to
the quantum master equation. For example, the Langevin
approach does not capture non-Gaussian correlations and EL

LN
is not necessarily correct since non-Gaussian correlations
develop due to 4MS terms like D4MS,2

0,±�k c†
0c†

0c�kc−�k , with mean

field contributions D4MS,2
0,±�k α∗

0δc†
0δc�kδc−�k . The time constant for

non-Gaussian correlations is then |D4MS,1(2)

0,±�k α0(±�k)|
−1

. On the
other hand, the time constant for Gaussian correlations due
to terms such as D4MS,2

0,±�k |α0|2δc�kδc−�k is |D4MS,1(2)

0,±�k α2
0(±�k)

|−1
.

Therefore Gaussian correlations develop |α0(±�k)| times faster
than the non-Gaussian ones. Here, any measure based on
Gaussian correlations such as EL

LN is therefore valid up to
∼1 s from the start of the drive. Furthermore, the results of
the Langevin calculations are only reliable when its mean

field steady state class is similar to that from quantum master
equation calculations, i.e only steady state solutions of the
type FP2 and FP1.

C. Effect of injection locking on entanglement

As mentioned earlier, in contrast to the general one,
continuous-variable bipartite entanglement requires injection
locking. We assess the former by studying the density matrix
of the scaled system that solves the quantum master equa-
tion, using the logarithmic negativity and entanglement of
formation EF . The entanglement of formation EF [85,86] in
the bipartite configuration (i) is calculated by the algorithm
[87] explained in Appendix D 2. It should be noted that for
a mixed state EF can be very different from (but always
larger than) the distillable entanglement [86,88]. Figures 8(c)
and 8(d) show the dependence of Eq

LN,0{±�k}, Eq

LN,±�k{0,∓�k},
and EF,0{±�k} on locking field amplitude |Bl | and phase φl .
All entanglement measures are nonzero without the injection
locking, and remain finite when locking is added. However,
a stronger locking somewhat reduces Eq

LN,0{±�k}, Eq

LN,±�k{0,∓�k},

and EF , in contrast to EL
LN,0{±�k}, EL

LN,±�k{0,∓�k}, which are

strongly enhanced by it. The colored background in Figs. 8(b)
and 8(d) codes the regions with stronger (green) and weaker
(purple) effects of locking. In particular, Wigner functions of
the ±�k modes in Figs. 8(c) and 8(d), display more ringlike
(coherent state) features, which explain weaker (stronger)
effects of locking. Phase locking the existing ±�k magnons
induces a fraction of magnons on top of those generated by
the instability of the Kittel mode, since they are driven by both
i(Ble−iωLt c†

±�k − B∗
l eiωLt c±�k ) and the (mean-field) 4MS term

D4MS,2
0,�k α2

0α±�kc∓�k + H.c. (see Appendix A). D4MS,2
0,�k α2

0α±�k ∼
1012 s−1 has the same order of magnitude as B′

l . Stronger
locking reduces the number of magnons paired with the
Kittel mode magnons (i.e., generated from 4MS terms), and
therefore the entanglement measures Eq

LN and EF as observed
in Figs. 8(c) and 8(d). We compare the dependence of EL

LN
and Eq

LN on φl in Figs. 8(b) and 8(d). EL
LN (Eq

LN) is larger
(smaller) for φl corresponding to stronger (weaker) locking,
even vanishes at some phase angles for which the limit cycle
is not significantly suppressed. The inequality EF � ELN is
always obeyed.

VII. EXPERIMENTAL RELEVANCE

The injection locking Hamiltonian and distillation of the
entanglement requires coupling of an ac magnetic field to
the ±�k magnons, i.e., a spatial modulation in the dynamic
magnetization with period ∼λ±�k = 2π/k ∼ 100 nm, which
can be accomplished by gratings such as a periodically mod-
ulated coplanar waveguide close to either sphere or thin
film [Figs. 9(a) and 9(b)], periodic trenches in a YIG thin
film [Fig. 9(c)] [32], or a 2D ferromagnetic nanowire array
deposited on top of a thin film [Fig. 9(d)] [89]. In Fig. 9(d),
nanostructured magnets act as in-phase antenna for the mi-
crowave input at frequency ω±�k [89–91]. For a sphere, a
periodic waveguide [Figs. 9(a) and 9(b)] appears to be the only
viable method, but microwave fields lose their modulation
with distance. The quality of the spatial modulation improves
with reduced size of the sphere to say tens of μm. The k
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FIG. 9. Proposed setups to measure entanglement in magnets. [(a), (c), and (d)] A magnetic sphere or film in a rectangular cavity with
wave guides for injection locking. The black and red arrows indicate the input drive B̄ and output microwave fields (bout), respectively. The
green arrows are the locking field Bl applied by a coplanar waveguide and the blue arrow is the corresponding output signal (b′

out). The
suggested materials for (a), (c), and (d) are indicated at the bottom of (d). (b) (Top) Zoom-in of a section of the staggered waveguide in
(a), and the dimensions WG, λ±�k , Wg, and Ws. (Bottom) Magnetic field distribution along either of the red dashed lines in the top panel, for
Ws = Wg = 10 nm and voltage Vwg = 10−2 V. (e) Equivalent electronic circuit model including beam splitters (BS), phase (±π/2) shifters (PS),
switches, photon number detectors (PD), temporal integrators (indicated by

∫
dt), a subtractor [indicated by (−)], signal and local oscillator

(LO) lines. The color code of the signal lines is given in the bottom of the panel. The dashed black lines are unused signals. The output X ′ is
governed by the LO-phase, while the signal line forms the input to the homodyne detection (the parts enclosed by the dashed black rectangle).

value of interest is not affected by the size of the magnetic
element down to a radius of >1 μm, and therefore the periods
in the proposed structures in Figs. 9(a)–9(d) do not have
to be scaled. The parameters of the staggered waveguide
in Figs. 9(a) and 9(b) are the signal wire width Ws and
the width of the gap between signal and ground lines Wg.
Figure 9(b) also shows a snapshot of the ac magnetic field
�Bwg = Bx

wgx̂ + By
wgŷ [92], for Ws = Wg = 10 nm and input

voltage Vwg = 10 mV, which governs Bl as a function of
the waveguide input power Pin,wg. It is periodic in z with
wave length λ±�k . The integral of Bx

wgmx
±�k vanishes when

mx
±�k (x, y) is the magnetization of a volume mode with �k‖ẑ,

while By
wg has finite overlap with my

±�k (x, y) since modu-
lated by the same wavelength. We can quench an unwanted
coupling to the Kittel mode by a π/2 phase shift of the
input power between the two wave guides. The injection
locking amplitude Bl = γ

√
MsVm/γ h̄B′y

wg, where B′y
wg is the

average of By
wg in the xy plane over the magnet, i.e., B′y

wg =
[
∫ ∞
−∞

∫ ∞
−∞ By

wg f (x, y)dxdy]/ [
∫ ∞
−∞

∫ ∞
−∞ f (x, y)dxdy], where

f (x, y) = 1 if (x, y) part of magnet and zero otherwise. For
a cube with Vm = (100 μm)3, we choose cavity mode drive
amplitude B̄ ∼ 1013 s−1 and Bl = 1012 s−1. The latter is
achieved by B′y

wg ∼ 0.2 mT. Based on the field distribution
By

wg in Fig. 9(b) which is for Vwg = 10 mV, a simple approx-
imation shows that the required B′y

wg is thus obtained using

Vwg = √
2Pin,wgZ0 = 0.1 V or a waveguide input drive power

Pin,wg ∼ 0.1 mW and impedance Z0 ∼ 50 �. For a 10 μm
cube, Vwg = √

2Pin,wgZ0 = 1 mV or a waveguide input drive
power Pin,wg ∼ 10 nW is adequate to provide the required
Bl ∼ 1011 1/s. This is a small perturbation on top of the cavity
drive, which for Vm = (10 μm)3 is Pin = 10 μW correspond-
ing to B̄ ∼ 1012 1/s.

The microwaves that drive magnons out of equilibrium
heat the system by Gilbert damping to temperatures above the
assumed Tenv ∼ 1 K, so we have to assess the conditions at
which our theory remains applicable. Let us assume a lattice
temperature of the magnet is increased to TL. We assume that
the magnet is in contact with an acoustically matched material
such as gadolinium gallium garnet (GGG) with temperature
equal to TL at the contact and TS at the other side, which can be
lower than 1 K if actively cooled. Geometrically, we assume
a small magnet that is attached to a large heat sink via a
contact. In the steady state, the power PG generated by Gilbert
damping must equal the heat current through the substrate
PG = GGGG(TL − TS), where the heat conductance GGGG =
σGGGdGGG, with thermal conductivity σGGG ∼ 7 W K−1 m−1

[93], and dGGG is the thickness over which the temperature
gradient is significant. PG = h̄ω0|α0|2ζm,0, where ζm,0 is the
Kittel magnon dissipation rate [94]. Corresponding to a mag-
net of volume Vm = (100 μm)3, a magnon number |α0|2 less
than 1014 [see, e.g., Fig. 1(c)] causes PG ∼ 10−3 W. The heat
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sink should therefore be kept at TS ∼ TL − (dGGG/1 mm) K.
For a smaller magnet with 10 μm dimension, PG ∼ 10−6 W
and a dGGG ∼ 1 μm, TS ∼ 0.9 K is adequate to keep TL ∼
1 K. A magnetic sphere attached to the cooling system by a
glue faces a higher heat resistance to the heat sink. The worst
case scenario corresponds to a free standing magnetic sphere
(cube) (no heat sink), and PG = GLE (TL − Tenv) is applicable,
where GLE = κLE SM , SM is the surface of the magnet, and
κLE is the thermal boundary conductance of the magnet to
the environment. When Tenv is tens of mK [95,96] and the
magnet dimension is 10 μm (i.e., SM = 10−10 m2), a κLE ∼
104W/Km2 is adequate to keep TL ∼ 1 K. In presence of a
finite heat sink, conditions are less severe.

Finally, we address the observability of the predicted en-
tanglement in the setups of Fig. 9. The input drive to the
cavity and the waveguide should be locked by a tunable
phase shifter for the waveguide input. The output cavity field
contains the information on the amplitude and squeezing of
the Kittel mode (see Fig. 5). The waveguide output reveals
essential information about the statistics of the ±�k pairs, e.g.,
the limit-cycle attractors [see Fig. 3(a)] and in the case of
injection-locking, fixed-point dynamics (see Fig. 7). Both out-
puts are required to detect bipartite entanglement of the Kittel
mode and the ±�k pair. Figure 9(d) illustrates the homodyne
tomography [71] method implemented in Refs. [97,98]. The
balanced homodyne detection (BHD) output X ′ determines
the quadrature statistics of the input signal by varying the
phase of the local oscillator (LO) and measuring X ′ many
times to reveal its first and second moments [69,71]. For ex-
ample, the BHD detection of the cavity field characterizes X ′
as a function of LO phase, which leads to the Wigner functions
of Fig. 5(c). For bipartite entanglement, the corresponding
covariance matrix should be evaluated, which consists of
two diagonal and two off-diagonal blocks. The former are
evaluated by feeding either the output of the cavity bout or
the output of the waveguide b′

out to the BHD. For the off-
diagonal blocks, the feed should be b1 = (bout + ib′

out )/
√

2,
b2 = (bout − b′

out )/
√

2, and b3 = (bout + b′
out )/

√
2 [97], while

both quadrature statistics should be evaluated. The fields b1,
b2, and b3 can be filtered out by phase-shifters and mixing at
beamsplitters, as depicted in Fig. 9(e). From the covariance
matrix elements, EL

LN,0±�k can be extracted.
The sketched quantum state tomography is a mainstream

technique for quantum information studies with light. The
large photon energy renders single photon detection relatively
easy. Similar experiments in the microwave regime have been
carried out only recently [99–101]. Standard microwave com-
ponents such as high electron mobility transistors and linear
detectors, as well as proper design of beam splitters [102,103]
led to development of techniques suitable for microwave
quantum state tomography. These techniques demonstrated
and characterized path entanglement [101], as is required to
test our predictions.

VIII. CONCLUSION

Quantum information and its resources such as squeezing
and entanglement have been pursued for discrete variables
[104], continuous variables in position-momentum phase
space [72], and continuous variables on the Bloch sphere

phase space [105]. Both discrete and continuous variable
systems have been considered for quantum computation
[106,107], while squeezed and entangled photons or magnons
[72,108–110] displayed subshot noise and quantum telepor-
tation [111–113]. Nonclassicalities in continuous variables
[42,114,115] pave the way for future quantum computation
protocols [116]. In contrast to a discrete variable system
with a finite Hilbert space such as a qubit, several quantum
coherences can be stored and manipulated in a position-
momentum (or Bloch sphere) phase space (infinite Hilbert
space) [114]. The measurement and manipulation of con-
tinuous variable statistics in the position-momentum phase
space of harmonic oscillators by electromagnetic fields are
straightforward [71,72].

Here, we uncover continuous-variable quantum informa-
tion resources of a coherently driven magnet in the form
of deterministic entanglement between the uniform magnon
mode and a pair of small wavelength magnons, which is diffult
to achieve in other systems. In optomechanics, for example,
deterministic entanglement of a mechanical resonator with
light can be achieved by pulse sequences of different optical
drive frequencies, leading to a measured logarithmic nega-
tivity of 0.16 at 20 mK [117], or by optically driving the
system into a limit cycle with a predicted periodic logarithmic
negativity maximized at ∼0.5 but vanishing already at few
tens of mK [40,45]. A mechanical oscillator was recently
used to deterministically entangle two photonic modes with
logarithmic negativity ∼1 [118]. However, because of lack
of degeneracy in long-wavelength phonons, two mechanical
resonance modes can be entangled only when they belong to
two distinct resonators and require a photon-mediated interac-
tion [40,119]. Here we demonstrate distillable entanglement
of internal modes due to the unique non-monotonic magnon
dispersion [see Figs. 1(a) and 1(b)]. Magnons have high and
easily tunable natural frequencies in the GHz regime, which
is much more difficult to realize in phononic systems. In
GHz magnons, the continuous variable entanglement may
survive up to relatively high temperatures ∼1 K. This is
achieved by a single magnet and a simple two-channel drive.
We predict distillable entanglement of the Kittel mode (and
cavity photon) and a pair of finite wavenumber magnons (and
staggered waveguide photon) with a logarithmic negativity
measure of up to ∼0.3 (1 corresponding to a perfectly en-
tangled bipartite state such as a spin singlet) at ∼1 K. The
scalability could help profit from the flexibility of artificial
metamaterials, such as arrays of N nanomagnets on top of
a waveguide [see, e.g., Fig. 9(a)], thereby accessing a large
amount of deterministic bipartite entangled states (∼0.3 ×
N). More theoretical and experimental efforts to utilize mag-
nets in quantum information are needed, however. The viscous
damping of the magnetization dynamics is larger than that of
other systems. While this is of little direct concern for co-
herently driven systems, the associated temperature increase
must be controlled by advanced heat management. Nanos-
tructuring of high-quality magnets is required, but still in its
infancy [55,56].

Another direction to be pursued is based on treating the
magnetostatic manifold as atomic levels and assess quantum
information resources on Bloch spheres corresponding to two
such levels. The latter can provide a link to laser induced

054402-12



RESOURCES OF NONLINEAR CAVITY MAGNONICS FOR … PHYSICAL REVIEW B 101, 054402 (2020)

spin-orbit coupling [120,121] of magnons and topology in a
single magnet. Moreover, the inherent chirality of magnon-
photon coupling [122] can be employed to achieve light
induced spin-orbit coupling of magnons in more than one
magnet and magnonic lattices with controllable topology
[121]. These would allow topological quantum information
protocols [123] or unique features such as robustness of edge
states, and conventional quantum information as addressed in
this paper, coexisting in a single magnet or a collection of
them [124].
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APPENDIX A: HAMILTONIAN

This appendix reviews well-known results and defines
our notation [16,22,47,53]. The external magnetic field and
equilibrium magnetization are along ẑ.

Dipolar interaction. The (time-dependent) dipolar (Zee-
man) interaction reads

H (d ) = −μ0

2

∫
�m(�r) · �h(d )(�r)d�r, (A1)

where μ0 is the vacuum permeability, �h(d ) is the dipolar field
and �m is the magnetization texture in real space. H (d ) for a
bulk magnet can be derived from a Heisenberg Hamiltonian
for a lattice of N cells with spin S by the Holstein-Primakoff
(HP) transformation. Internal excitations of large spins in
materials such as YIG with local moment S = 5/2 start to
play a role only when the local spin excitation exceeds h̄ or
n0/(NS) � 0.1. We operate here at ∼1 K, so n0/(NS) � 0.01,
which implies that the simple Holstein-Primakoff expansion is
valid. The magnetization vector �m�k in Fourier space can then
be written in terms of the magnon annihilation (creation) field
operators a�k (a†

�k). To third order in field operators

mx,�k = h̄γ

(
NS

2V

) 1
2

(a�k + a†
−�k ) − h̄γ

(
h̄γ

32MsV 2

) 1
2

×
⎛
⎝∑

�k1,�k2

a†
�k1

a†
�k2

a�k+�k1+�k2
+ a�k1

a�k2
a†

−�k+�k1+�k2

⎞
⎠,

my,�k = − ih̄γ

(
NS

2V

) 1
2

(a�k − a†
−�k ) + ih̄γ

(
h̄γ

32MsV 2

) 1
2

×
⎛
⎝∑

�k1,�k2

a†
�k1

a†
�k2

a�k+�k1+�k2
− a�k1

a�k2
a†

−�k+�k1+�k2

⎞
⎠,

mz,�k = Ms

√
V − γ h̄√

V

∑
�k1

a†
−�k1

a�k−�k1
, (A2)

where Ms = gμBNS/V is the saturation magnetization, V is
the volume of the sample, g is the electron g factor, and μB is
the Bohr magneton.

When k−1, with k = |�k|, approaches the sample dimen-
sions, the spectrum becomes a discrete manifold of magne-
tostatic modes. For the uniform mode,

�h(d ),(0) = ( − Nxmx,�k=0x̂ − Nymy,�k=0ŷ − Nzmz,�k=0ẑ
)
, (A3)

where for a sphere the demagnetizing constants Nx(y,z) = 1/3,
while for a thin film, Nx = Ny = 0 and Nz = 1. For large
enough k, the magnons in a sphere are well described by plane
waves and a continuous spectrum. Their dipolar field reads

�h(d ) = −
∑
�k �=0

k̂(k̂ · �m�k ), (A4)

Following Suhl [53], we use Eq. (A4) for all �k �= 0 when com-
puting magnon interactions. The dipolar interaction Hamilto-
nian Eqs. (A1), (A3), and (A4) can then be written as a sum
of several terms involving the Kittel mode δ�k,0 and plane spin
wave (PW) modes 1 − δ�k,0,

H (d ) =
∑

�k

1

2

⎧⎨
⎩
[ |k+|2

2k2
g2(1 − δ�k,0)

]
a†

�ka�k

+ (N ′
T g

2δ�k,0 − 2Nzg
′′g′′′)a†

�ka�k

+
([

k2
+

4k2
g2(1 − δ�k,0) + NT

2
g2δ�k,0

]
a†

�ka†
−�k + H.c.

)

+
∑

�k′

([−k+kz

2k2
gg′′′(1 − δ�k,0)

]
a†

�k†a�k′
a�k+�k′ + H.c.

)

+
∑
�k′,�k′′

([
k2

z

k2
g′′′2(1 − δ�k,0)

]
a†

�k′a
†
�k′′a�k+�k′a−�k+�k′′

)

−
∑
�k′,�k′′

(NT gg
′δ�k,0a†

0a†
�k′+�k′′a�k′a�k′′ + H.c.)

−
∑
�k′,�k′′

{[
k2
−

k2
gg′(1 − δ�k,0)

]
a†

�k′a
†
�k′′a�ka−�k+�k′+�k′′ + H.c.

}

+ Nzg
′′′2δ�k,0

∑
�k′,�k′′

a†
�k′a

†
�k′′a�k′a�k′′

⎫⎬
⎭, (A5)

where g = √
2h̄μ0γ Ms, g′ = h̄γ

√
h̄μ0γ /(32MsV 2), g′′ =

Ms
√

μ0V , g′′′ = h̄γ
√

μ0/V , k± = kx ± iky, 2NT = Nx − Ny,
and 2N ′

T = Nx + Ny. The gyromagnetic ratio γ is in units of
1/(Ts).

Exchange interaction. The exchange Hamiltonian in
real space H (exc) = μ0E/(2MsV )

∫
(∇ �m(�r))2d�r, where E

is the exchange constant. In momentum space H (exc) =
μ0E/(2Ms)

∑
�k,�k′ k2 �m�k · �m�k′ , which leads to

H (exc)

=
∑
�k �=0

k2 E
2Ms

⎧⎨
⎩g2a†

�ka�k + g′′′2 ∑
�k′,�k′′

(a†
�k′a

†
�k′′a�k+�k′a−�k+�k′′ )

⎫⎬
⎭.

(A6)
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Crystalline anisotropy. The crystalline magnetic
anisotropy energy H (A) = −μ0 �m · N̄A �m in terms of the
anisotropy tensor N̄A. We assume here easy-axis or easy-plane
anisotropy with crystal symmetry axis along �M0. N̄A is then
diagonal with elements NA,x(y,z) and can be classified in
terms of symmetric (2NA,s = NA,x + NA,y), antisymmetric
(2NA,as = NA,x − NA,y), and (NA,z) components, leading to

H (A) = −
∑

�k

1

2

⎧⎨
⎩(g2NA,s − 2g′′g′′′NA,z )a†

�ka�k

+ g2

2
NA,as(a

†
�ka†

−�k + a�ka−�k )

−
∑
�k′,�k′′

NA,as(2gg
′a†

�k′a
†
�k′′a�k+�k′+�k′′a−�k + H.c.)

+
∑
�k′,�k′′

NA,z(g′′′2a†
�k′a

†
�k′′a�k+�k′a−�k+�k′′ )

⎫⎬
⎭. (A7)

The first term 1
2 (g2NA,s − 2g′′g′′′NA,z )a†

�ka�k causes only a
small constant shift of the dispersion that may be disregarded.
In a cubic crystal, when �M0‖[001], NA,s �= 0 and NA,as = Nz =
0 [16,57], while for �M0‖[111], NA,s = NA,as = 0 and NA,z �= 0.
When �M0‖[110], NA,as ≈ 3NA,s, and NA,z ≈ 2NA,as, the crystal
anisotropy affects the Kittel mode besides a constant shift by
g2NA,as(a

†
0a†

0 + a0a0)/2, again to lowest (bilinear) order in the
field operators.

Zeeman interaction. The Zeeman energy of an applied
magnetic field �Hext = Hext ẑ‖ �M0

H (Z ) = h̄γμ0Hext

∑
�k

a†
�ka�k (A8)

depends only on the total number of magnons.
Total magnetic Hamiltonian. Collecting Eqs. (A5)–(A8),

the total Hamiltonian becomes H (T,m) = ∑
�k H (T,m)

�k with

H (T,m)
�k = A�ka†

�ka�k + [B�ka†
−�ka†

�k + H.c.]

+
∑

�k′

[C�ka†
�ka†

�k′a�k+�k′ + H.c.]

+
∑
�k′,�k′′

[D�ka†
�k′a

†
�k′′a�ka−�k+�k′+�k′′ + H.c.]

+
∑
�k′,�k′′

[D′
�ka†

�k′a
†
�k′′a�k+�k′a−�k+�k′′ ], (A9)

and matrix elements

A�k = |k+|2g2

4k2
(1 − δk,0) + 1

2
N ′

T g
2δk,0 − Nzg

′′g′′′

+ k2Eg2

2Ms
− g2

2
NA,s + g′′g′′′NA,z + h̄γ Hext, (A10)

B�k =k2
+g2

8k2
(1 − δk,0) + NT g

2

4
δk,0 − g2

4
NA,as, (A11)

C�k = −k+kzgg′′′

4k2
(1 − δk,0), (A12)

D�k = −k2
−gg′

2k2
(1 − δk,0) − 1

2
NT gg′δk,0 + gg′NA,as, (A13)

D′
�k = k2

z g
′′′2

2k2
(1 − δk,0) + 1

2
Nzg

′′′2δk,0

− 1

2
NA,zg

′′′2 + k2Eg′′′2

2Ms
, (A14)

The term B�ka†
−�ka†

�k + H.c. in Eq. (A9) is diagonalized by the
Bogoliubov transformation

a�k = u�kc�k − v�kc†
−�k, a†

�k = u∗
�k c†

�k − v∗
�k c−�k, (A15)

with

u�k =
(A�k + ω�k

2ω�k

) 1
2

; v�k = B�k
|B�k|

(A�k − ω�k
2ω�k

) 1
2

, (A16)

and ω�k =
√
A2

�k − |B�k|2. The quadratic terms in H (T,m) in
Eq. (A9) reduce to the harmonic oscillator ω�kc†

�kc�k .
After some algebra, the three magnon terms in the second

line of Eq. (A9) may be transformed and simplified to

H (3MS) =
∑

�k

(
C (3MS)

�k c0c†
�kc†

−�k + H.c.
)
,

where

C (3MS)
�k = [C�k (u∗

�kv
∗
0v�k + |u�k|2u0) + C∗

�k (−v�ku0u∗
�k − |v�k|2v∗

0 )].

(A17)

The four-magnon scattering terms are transformed into
H (4MS) = ∑

�k,�k′,�k′′ (H (4MS,1)
�k,�k′,�k′′ + H (4MS,2)

�k,�k′,�k′′ ), where H (4MS,1)
�k,�k′,�k′′ cor-

responds to the third line of Eq. (A9), while H (4MS,2)
�k,�k′,�k′′ cor-

responds to the fourth line of Eq. (A9). Keeping only the
combinations that can satisfy resonant conditions leads to the
simplified

H (4MS) =
∑
�k, �k′

[(
D4MS,1

�k,�k′ c†
�kc�kc†

�k′c�k′ + D4MS,2
�k,�k′ c†

�kc†
−�kc�k′c−�k′

)

+ H.c.
]
, (A18)

where

D4MS,1
�k,�k′ = {2[D�k (|u�k|2|u�k′ |2) + D∗

�k (|v�k|2|v�k′ |2)]

+ 2[D�k (|u�k|2|v�k′ |2) + D∗
�k (|v�k|2|u�k′ |2)]

+ 2[D�k (u∗
�k′v

∗
�k′u�kv�k ) + D∗

�k (u�k′v�k′u∗
�kv

∗
�k )]}

+ {[D�k (|u�k|4) + D∗
�k (|v�k|4)]

+ 2[D�k (|u�k|2|v�k|2)+D∗
�k (|u�k|2|v�k|2)]}(δ�k′,�k +2δ�k′,−�k )

+ D′
�k[4u∗

0v
∗
0u�kv�k + |u0|2|u�k|2 + |v0|2|v�k|2

+ |u0|2|v�k|2 + |v0|2|u�k|2]δ�k′,0

+ D′
�k[|u0|2|u�k′ |2 + |v0|2|v�k′ |2 + |u0|2|v�k′ |2

+ |v0|2|u�k′ |2]δ�k,0, (A19)

D4MS,2
�k,�k′ = {

2
[
D�k

(
u∗2

�k′ u2
�k
) + D∗

�k
(
v∗2

�k′ v2
�k
)]

+ 2[D�k (u∗
�k′v

∗
�k u�kv�k′ ) + D∗

�k (v�k′u�kv
∗
�k u∗

�k′ )]
}

+D′
�k
[
u∗2

0 u2
�k + v∗2

0 v2
�k + 2u∗

0v0u�kv
∗
�k
]
δ�k′,0

+D′
�k[2u∗

0v0u�k′v
∗
�k′ ]δ�k,0. (A20)
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The system Hamiltonian can be summarized as
H (T ) = H (c) + H (d ) + H (mc) + H (T,m), (A21)

where H (c) = ωcb†b is the cavity photon Hamiltonian, H (d ) =
iB̄(b† − b) + H.c. is the external drive of the cavity field, B̄ =√

ζc,exPin/(h̄ωd ), coupled to the cavity by ζc,ex via the input
mirror, Pin is the input power, ωd is the input drive frequency,
H (mc) = −iD0(b†c0 − bc†

0), D0 being the coupling constant of
the cavity photon mode and the Kittel mode, and

H (T,m) = H (3MS) + H (4MS) +
∑

�k
ω�kc†

�kc�k . (A22)

APPENDIX B: FLUCTUATIONS

We can write the field operators as c0 = α0 + δc0, c�k =
α�k + δc�k and b = β + δb, where {δc0, δc�k, δc0} are the fluc-
tuations around the steady state characterized by the com-
plex numbers {α0, α�k, β}. We define the operators δx0(±�k) =
[δc†

0(±�k)
+ δc0(±�k)]/2, δy0(±�k) = i[δc†

0(±�k)
− δc0(±�k)]/2, δX =

[δb† + δb]/2, δY = i[δb† − δb]/2, and v = (δx0, δp0, δx�k,
δp�k, δx−�k, δp−�k, δX , δY )T , which obey the linearized equa-
tion of motion (EOM)

v̇ = Ov + c. (B1)

c is the vector of the stochastic sources (discussed in more
detail below)

c = [√
ζmm,0F (x)

mm,0(t ) + √
ζmp,0F (x)

mp,0(t ),√
ζmm,0F (p)

mm,0(t ) + √
ζmp,0F (p)

mp,0(t ),√
ζmm,�kF (x)

mm,�k (t ) +
√

ζmp,�kF (x)

mp,�k (t ),
√

ζmm,�kF (p)

mm,�k (t ) +
√

ζmp,�kF (p)

mp,�k (t ),
√

ζmm,−�kF (x)

mm,−�k (t ) +
√

ζmp,−�kF (x)

mp,−�k (t ),
√

ζmm,−�kF (p)

mm,−�k (t ) +
√

ζmp,−�kF (p)

mp,−�k (t ),
√

ζc,0F (x)
c,0 (t ) + √

ζc,exF (x)
c,ex(t ),√

ζc,0F (p)
c,0 (t ) + √

ζc,exF (p)
c,ex(t )

]
, (B2)

where F (x)

mm(mp),0(±�k)
(t )=[F †

mm(mp),0(±�k)
(t )+Fmm(mp),0(±�k)(t )]/2,

F (p)

mm(mp),0(±�k)
(t ) = i[F †

mm(mp),0(±�k)
(t ) − Fmm(mp),0(±�k)(t )]/2,

F (x)
c,0(ex)(t ) = [F †

c,0(ex)(t ) + Fc,0(ex)(t )]/2, and F (p)
c,0(ex)(t ) =

i[F †
c,0(ex)(t ) − Fc,0(ex)(t )]/2. O is a square matrix that is

governed by Heisenberg’s equation for the Hamiltonian
derived above and serves as well for the stability analysis.
The symmetrized covariance matrix � consists of equal time
correlations 〈viv j + v jvi〉/2, where vi( j) is ith ( jth) element of
v, and contains the essential statistical parameters. Its EOM
�̇ = O� + �OT + �, where � = ccT . Therefore the steady
state covariance matrix �∞ is solution of the linear system of
equation O�∞ + �∞OT + � = 0.

Rotating δX (δY ) by an angle θ to a new variable δXθ =
(δb†eiθ + δbe−iθ )/2 [δYθ = i(δb†eiθ − δbe−iθ )/2] leads to a
steady state covariance matrix �∞,θ . We need the ellipticity
of the total field fluctuation, i.e., the elements [�∞,θ ]7(8),7(8).

Let (α0, α±�k, β ) be the steady-state mean-field solutions
of the EOMs (2)-(4). The matrix O follows by linearizing
these equations without noise terms around the steady state.
For example, a term of the form c†

0c0c0 is linearized as
2|α0|2δc0 + α2

0δc†
0, where α0 is the mean-field solution. The

covariance matrix can then be computed as explained above.
The fluctuation ellipse of the total field is parameterized by

ξsq = min{[�∞,θ ]7(8),7(8)}
max{[�∞,θ ]7(8),7(8)} , (B3)

as well as θsq which is θ where {[�∞,θ ]7,7} is minimum.

1. 4MS effects

In the absence of a microwave drive, the “self-
Kerr” term K1(c†

0c0)2 of the Kittel mode, with K1 =
2 Re [D4MS,1

0,0 + D4MS,2
0,0 ], drives an initially coherent state

through a cycle of periodic collapses and revivals in
phase space, during which squeezed coherent states
[69] and nonclassical superpositions of two or more
coherent states in phase space develop [125]. The
Kittel coherent state |α0〉 can be expanded in number
states |n〉 as |α0〉 = exp(−|α0|2/2)

∑
n αn

0/
√

n!|n〉.
Ignoring dissipation, the temporal evolution of
this state reads |�(t )〉 = exp(−K1(c†

0c0)2t )|α0〉 =
exp(−|α0|2/2)

∑
n(α0 exp(−K1nt ))n/

√
n!|n〉. |�(t )〉 = |α0〉

“revives” at t = mπ/K1, where m � 0 is integer. At
t = π/(mK1) superposition “Schrödinger cat” states develop,
for example, �(π/(2K1)) = 1/

√
2(exp(−iπ/4)|α0〉 +

exp(iπ/4)| − α0〉), where | − α0〉 is a Kittel coherent state
with opposite phase. These processes cannot develop when
the self-Kerr coefficient is small compared to the damping.
However, the steady state in the presence of a constant
coherent microwave drive remains coherent, but is “squeezed”
by the nonlinear terms as explained in the following.

The fluctuation ellipse of the Kittel mode is affected as well
by its instability into a coherent superposition of the �k and −�k
modes via the interaction c†

�kc†
−�kc0c0 + H.c., leading to finite

〈c†
�kc†

−�k〉 and thereby |α�k|2(e−i(φ�k+φ−�k )c0c0 + ei(φ�k+φ−�k )c†
0c†

0),
where φ±�k is the phase of α±�k . With mean-field steady state
of the Kittel mode α0, the effective Hamiltonian (after inte-
grating out the cavity field) up to second order in δc0 (δc†

0),
and ignoring fluctuations δc±�k (δc†

±�k) in �k �= 0, reads

H eff = 	′
0δc†

0δc0 + [(Ks + G)δc†
0δc†

0 + H.c.]

+ [(	′
0 + K1|α0|2α0 + Gα∗

0 + B′∗)δc†
0 + H.c.], (B4)

where 	′
0 = {	0 − (D2

0	)/(	2 + ζ 2
c /4) + 4 Re[D4MS,1

0,�k ]

|α�k|2}, G = D4MS,2
0,�k |α�k|2 exp[i(φ�k + φ−�k )], B′ =

(−i	ED0)/(	2 + ζ 2
c /4), and Ks = |α0|2e2iφ0 , where φ0

is the phase of α0. Since δc†
0 and δc0 in the last term vanish

when operating on α0, to leading order

H eff = 	′
0δc†

0δc0 + [(Ks + G)δc†
0δc†

0 + H.c.]. (B5)

We may diagonalize Eq. (B5) by the Bogoliubov transfor-
mation δc′

0 = u0δc0 − v∗
0δc†

0, which acts on the vacuum as
a squeezing operator �(ε) = exp [1/2ε∗c2

0 − 1/2εc†2
0 ], i.e.,
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δc′
0 = �(ε)δc0�

†(ε), where ε = −v0 tanh−1(|v0|/u0)/|v0|.
ε = rse2iθs parameterizes the fluctuation ellipse: ers (e−rs ) is
the major (minor) diameter and θs is the angle of the major
axis of the ellipse.

The squeezing parameters rs and θs are functions of Ks

and G. When the Kittel mode is stable, |α�k|2 = G = 0. At the
instability threshold of the Kittel mode, a pair of oppositely
moving magnons with momenta �k and −�k is excited and
|α�k|2 �= 0. G then may grow to become of the same order
of magnitude as Ks, causing substantial changes in rs and
θs. It should be noted that the concept of squeezing was first
introduced in spintronics in the context of squeezed magnon
mediated spin transport [126].

2. Baths

The interaction of the driven state with thermalized
magnons [47] and phonons [38,127] govern the parts of
stochastic force matrix � corresponding to the Kittel mode
and the ±k �= 0 magnon pair. We disregard heating of the
phonon bath which has a much larger specific heat than the
magnon system. For a discussion on heat management of the
phonon bath, see also Sec. VII. According to the fluctuation-
dissipation theorem for thermal equilibrium and assuming
temperatures to be high compared to the mode broadening,
〈Fmp,0(±�k)(t ), F †

mp,0(±�k)
(t ′)〉 = ζmp,0(±�k)(nth,0(±�k) + 1)δ(t − t ′)

and 〈F †
mp,0(±�k)

(t ), Fmp,0(±�k)(t
′)〉 = ζmp,0(±�k)nth,0(±�k)δ(t − t ′),

where ζmp,0(±�k) ≈ αGω0(±�k) is the phonon mediated
dissipation of magnons, αG the Gilbert damping constant,
n−1

th,0(±�k)
= eh̄ω0(±�k)/(kBTL ) − 1 the Planck distribution, TL the

phonon bath temperature, and kB the Boltzmann constant
[68]. The cavity field is assumed to be in contact with
baths that keeps it at ambient temperature Tenv. Therefore
〈Fc,0(ex)(t )F †

c,0(ex)(t
′)〉 = ζc,0(ex)(nth,env + 1)δ(t − t ′) and

〈F †
c,0(ex)(t )Fc,0(ex)(t ′)〉 = ζc,0(ex)nth,envδ(t − t ′) [ζc,0(ex) is the

decay rate of the cavity field by scattering to internal cavity
modes (external leakage), and n−1

th,env = eh̄ωc/kBTenv − 1]. The
noise sources Fmm,0(t ) and Fmm,±�k (t ) are generated by thermal
magnon bath at temperatures discussed in the following.

The 4MS driven modes with momenta 0(±�k) around fre-
quency ω0 can relax to other magnon modes by magnon-
magnon scatterings. We can estimate the temperature of the
associated thermal cloud T ′

0(±�k)
by considering the transition

probability Pp [46,128]

Pp = 2π

h̄

∫
|〈�′|Ht |�〉|2�(E )δ(E ′ − E )dE , (B6)

where the initial state |�〉 = ∏
�k′ |n�k′ 〉 (�k′ = {0, ± �k}) and

the final state |�′〉 = ∏
�k′′ |n�k′′ 〉 (�k′′ corresponds to thermal

magnon bath modes) are expressed in the magnon number
basis with the density of states �(E ). The cross-Kerr term
matrix elements in the transition Hamiltonian Ht vanish and
elastic three-magnon processes are weak under the condition
Hext � Ms/3 (the assumption in our work), which leads to
Ht = ∑

�k′′ D4MS,2
�k′′,�k′ c†

−�k′′c
†
�k′′c−�k′c�k′ + H.c.. The scattering rate of

driven magnons into �k′′ magnon modes

Tsc =
∑
�k′′

∑
�k′

2h̄ω�k′[Pp(n�k′ → n�k′ + δ�k′,±�k + 2δ�k′,0)

− Pp(n�k′ → n�k′ − δ�k′,±�k − 2δ�k′,0)]

=
∑
�k′′

∑
�k′

4πω�k′�(h̄ω�k′′ )
∣∣h̄D4MS,2

�k′′,�k′

∣∣2[n2
�k′ (2n�k′′ + 1)

+ n�k′n�k′′ (6δ�k′,0 + 4δ�k′,±�k ) + n�k′′ (4δ�k′,0 + 2δ�k′,±�k )

+ n�k′ (3δ�k′,0 + 2δ�k′,±�k ) + n2
�k′′ (2n�k′ + 1)

× (2δ�k′,0 + δ�k′,±�k )
]
, (B7)

where Pp(n�k′ → n�k′ ± δ�k′,±�k ± 2δ�k′,0) corresponds to a transi-

tion described by Eq. (B6) that changes magnon number in �k′
sector by two. In the steady state, the scattered magnon flux
into the �k′′ modes equals their dissipation rate to the lattice

Td =
∑
�k′′

h̄ω�k′′ζmp,�k′′ (n�k′′ − nth,�k′′ ), (B8)

where nth,�k′′ is the thermal equilibrium determined by
the phonon bath temperature TL. In order to estimate
n�k′′ of the magnon bath after heating by the driven
magnons, we assume �k′′ close to �k that dominate |D4MS,2

�k′′,0
|,

and assume ω�k′′ = ω0 = ω±�k′ . These assumptions also
lead to T�k′′ = T0, i.e. nth,�k′′ = nth,0, ζmp,�k′′ = ζmp,0, and
�(h̄ω�k′′ ) = 2/(π h̄ζmp,0). For a YIG sphere with 0.1 mm
radius |D4MS,2

�k′′,0
| ∼ 10−8, and for B̄ = 3.3 × 1013 that we

use mainly for the results of this work, the largest steady
states after instabilities n0 ∼ n±�k ∼ 1013 [see, e.g., Figs. 1(c)
and 2]. Therefore we can estimate the maximal heating
of the magnon cloud bath in our calculations by equating
the integrands in Eqs. (B7) and (B8). A phonon bath of
TL = 1 K, ω�k′′ = ω0 = 1011/(2π ) 1/s, i.e., nth,�k′′ = 0.87,

ζmp,0 = 1 MHz, determines the mean �k′′ magnon number
to be n�k′′ = 1.13 or a temperature T ′

0(±�k)
∼ 1.2 K, i.e., the

magnon modes of the thermal cloud are heated by 0.2 degrees.
The correlators of magnon thermal cloud noise source
〈Fmm,0(±�k)(t ), F †

mm,0(±�k)
(t ′)〉 = ζmm,0(±�k)(n

′
th,0(±�k)

+ 1)δ(t −
t ′) and 〈F †

mm,0(±�k)
(t ), Fmm,0(±�k)(t

′)〉 = ζmm,0(±�k)n
′
th,0(±�k)

δ(t −
t ′), where 1/n′

0(±�k)
= e

h̄ω0(±�k)/kBT ′
0(±�k) − 1, and in YIG

ζmm,0(±�k) ∼ 1 MHz [47,129].
Schematically, the driven modes and the baths are linked

as in Fig. 10. At very low temperatures the Markov approx-
imation breaks down and the noise correlation functions can
not be assumed to be a delta function anymore (i.e., the noise
becomes colored) [68]. Moreover, the dominant source of
magnon dissipation at temperatures <1 K is not phononic [2].
Therefore the present approximations hold for temperatures
Tenv � 1 K. In our calculations, we fix Tenv, which determines
TL ≈ Tenv, and consequently T ′

0(±�k)
which is governed by the

rate equations discussed earlier. As discussed in Sec. VII,
TL > Tenv in practice, but with proper heat management the
difference can be kept small.
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FIG. 10. Schematic of the total Hilbert space of photonic cavity
mode, Kittel mode and selected pair of magnons with wave vector
±�k, the baths, and the interactions. The driven magnetic modes relax
by interaction with a bath of thermalized magnons at temperature
T ′

0(±�k)
as depicted by purple lines as well as a (phonon) bath cor-

responding to Gilbert damping at temperature TL (black lines). The
bath of thermalized magnons also is in contact with the phonon bath.
The cavity mode is in contact with a bath at temperature Tenv, isolated
from baths for magnon modes.

APPENDIX C: SCALING AND MASTER EQUATION

The observable consequences of nonclassical behavior
such as entanglement can be assessed via the density matrix
as calculated from the first principles of quantum mechanics,
which for practical reasons requires limiting the Hilbert space
of the total Hamiltonian H (T ). This can be done by scaling
down the drive amplitude B̄ with a coefficient Q as B̄/Q, while
scaling up the fourth order terms by Q2 in order to preserve
the nonlinearities. This scaling compresses but preserves the
details of the phase space, such as the number of fixed points
and their relative positions. The costs of the scaling are loss
of transient states that in the physical system might appear
as steady states. For example, in the scaled system, we never
find the limit cycle solution for the Kittel mode predicted by
the semiclassical method, see Fig. 2, because the effects of
quantum fluctuations are enhanced by the reduced distance
between the attractors in phase space. Actually, quantum
fluctuation always destroy the classical bistability in the self-
Kerr Hamiltonian, but on very long time scales when energy
minima are well separated [65]. In the off-resonant regime
|ωd − ωc| � D0, we may adiabatically remove (integrate out)
the cavity field, which reduces the Hilbert space to the Kittel
mode and connected �k,−�k magnon pairs nF,0 × n2

F,�k , where
nF,0 (nF,�k) is the number of Fock (number) states into which
we expand the steady state density matrix [68,69]. The scal-
ing preserves, for example, the effects of nonlinearity. The
bistable points for the Kittel mode in the absence of 4MS
are at n±

0 = [−2	′
0 ± (	′2

0 − 3ζ 2
m,0)1/2]/(6K1) [65], where n±

0
is the mean number of Kittel mode magnons in the two
bistable points, 	′

0 is the effective detuning of the Kittel mode
from the drive frequency, and K1 = 2 Re[D4MS,1

0,0 + D4MS,2
0,0 ].

n±
0 is too large for direct computation, but may be scaled

down by a factor 1/Q2. We keep dissipation constant during
scaling. When, alternatively, the dissipation is is reduced with
a factor 1/Q, the detunings at which bistability emerges scale
identically, while the 4MS coefficients should be enhanced
like Q rather than Q2.

We chose a Q that shrinks the Hilbert space to the manage-
able nF,0 = 15 and nF,±�k = 7. We then can numerically solve
the master equation for the density matrix ρ̂ :

˙̂ρ = − i[H ′(T ), ρ̂] +
∑

�k′∈{0,�k,−�k}
[ζmp,�k′nth,�k′ + ζmm,�k′n′

th,�k′ ]L�k′ (ρ̂)

+
∑

�k′∈{0,�k,−�k}

[
ζmp,�k′

2
+ ζmm,�k′

2

]
L′

�k′ (ρ̂), (C1)

where L�k′ and L′
�k′ are the Lindblad operators governing the

dissipation in the Born-Markov approximation [68]

L�k′ = c�k′ ρ̂c†
�k′ + c†

�k′ ρ̂c�k′ − ρ̂c�k′c
†
�k′ , (C2)

L′
�k′ = 2c�k′ ρ̂c†

�k′ − c†
�k′c�k′ ρ̂ − ρ̂c†

�k′c�k′ . (C3)

Equation (C1) can be written in terms of a super-operator ma-
trix L as ˙̂ρ = Lρ̂. The steady state of the density matrix, ρss,
satisfies ˙̂ρss = Lρ̂ss = 0. Therefore we search for the eigen-
vector with zero eigenvalue of the superoperator matrix L.
This can be done in two ways. First method: as the steady state
equation Lρ̂ = 0 suggests, the process begins by reforming
the matrix ρ into a vector and reforming L into a correspond-
ing matrix. which reduces the task to computing the eigenvec-
tor corresponding to the smallest (zero) eigenvalue. Second
method: the known matrix M satisfying Mρ = [Tr(ρ) =
1, 0, 0, . . . ]T combined with the conditions Lρ = 0 leads to
(L + M)ρ = Mρ = [1, 0, 0, . . . ]T , which is a linear system
of equations with solution ρss. We use the second method
which is much faster, as well as more scalable and accurate.

APPENDIX D: ENTANGLEMENT MEASURES

1. Logarithmic negativity

A bipartite system (“Alice and Bob”) is separable when
ρ̂ = ∑

i ηiρ̂i,1 ⊗ ρ̂i,2, where ηi is a coefficient, ρ̂ is the total
density operator of the mixed state of system 1 and 2, ρ̂i,1(2)

is the density operator of system 1 (2) for the state i, and ⊗
denotes the direct product. Here we focus on a pure state ρ̂ =
ρ̂1 ⊗ ρ̂2, but the treatment can be easily extended to mixed
states. (ρ̂1)T = ρ̂∗

1 is well-behaved with positive eigenvalues,
and positive eigenvalues of ρ̂ ′ = (ρ̂1)T ⊗ ρ̂2 imply that the
system is separable into its parts 1 and 2. On the other hand,
negative eigenvalues of ρ̂ ′ = (ρ̂1)T ⊗ ρ̂2 are a guarantee for
an entangled state that is not separable. This negative partial
transpose (NPT) criterion is a necessary and often sufficient
condition for entanglement [72,78,79]. Vidal and Werner [80]
introduced an entanglement measure of the degree with which
ρ̂ ′ fails to be positive. The trace norm ‖ρ ′‖1 = tr

√
ρ ′†ρ ′ =

1 + 2|∑i μi| = 1 + 2n(ρ), where the sum is over all negative
eigenvalues μi < 0 of the partially transposed density matrix,
and n(ρ) is referred to as negativity. The logarithmic nega-
tivity ELN = log2||ρ ′||1 � ED bounds ED, the rate at which
entanglement can be distilled using local operations and clas-
sical communications, the so-called LOCC [72,75–77]. For
example, ED = 0.4 means that ten copies of the state can
in principle produce four perfect Einstein-Podolsky-Rosen
(EPR) states [73]. EPR states are nonlocal entangled states
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shared between two distinct particles (modes). Examples are
spin singlet states and two-mode squeezed states.

When evaluating bipartite entanglement, modes should be
divided into several parts of one or more modes. In our
case the magnon polariton, i.e., the photon hybridized with
the Kittel mode, should be considered as single mode. We
therefore deal with a maximally tripartite system, the magnon
polariton and the two modes of the instability driven ±�k pair.
We wish to evaluate the entanglement between ρ0p (‘0p’ in the
subscript means magnon polariton), ρ−�k , and ρ�k with ρ�k,−�k =
ρ̂�k ⊗ ρ̂−�k , ρ0p,�k , and ρ0p,−�k , i.e., the two distinct configura-
tions in Fig. 6, with logarithmic negativities ELN,±�k{0p,∓�k} and
ELN,0p{±�k}. In the following and in the main text, we drop “p”
in “0p” for simplicity.

EL
LN is the logarithmic negativity calculated from the

covariance matrix � discussed in Appendix B that is accurate
for close to Gaussian states [80]. Transposition corresponds to
time reversal that reverses the sign of linear momentum. The
partially transposed covariance matrix �′ is obtained from
� by negating the elements that connect the momentum
of the mode (modes). For example, for evaluation of
ELN,±�k{0p,∓�k}, [�′]1(3,4,5,6,7,1,3,4,5,6,7),2(2,2,2,2,2,8,8,8,8,8,8) =
−[�]1(3,4,5,6,7,1,3,4,5,6,7),2(2,2,2,2,2,8,8,8,8,8,8), where
[�(′)]1(3,4,··· ),2(2,2,··· ) indicates [�(′)]1,2, [�(′)]3,2, [�(′)]4,2 · · · ,
respectively, and �′T = �′. The logarithmic negativities for
Gaussian distributed states [80] are

EL
LN,i =

8∑
i=1

Y (di ), (D1)

where i is either ±�k{0,∓�k} or 0{±�k}, Y (di ) = −log2(2di ) if
2di < 1 and zero otherwise. di is an eigenvalue of σ−1�′, and
σ is a 8 × 8 block-diagonal matrix with blocks formed by the
Pauli matrix σx.

Eq
LN are the logarithmic negativities obtained from the

density matrix of the steady states ρss of the quantum
master equation of the scaled system as described in
Appendix C. We require only the transpose of the ρss com-
ponents corresponding to the Hilbert space of one of the parts
for the bipartite configurations. The elements of the matrix ρss

correspond to |i, j, k〉〈i′, j′, k′|, where i (i′), j ( j′), and k (k′)
refer to the ith (i′th), jth ( j′th), and kth (k′th) Fock (number,
level) state of the Kittel magnon polariton, �k mode, and −�k
mode, respectively. We obtain, e.g., Eq

LN,0{±�k}, by the partial

transposed density matrix ρPT
ss with entries |i′, j, k〉〈i, j′, k′|

equivalent to |i, j, k〉〈i′, j′, k′| of ρss. Its negative eigenvalues
lead directly to Eq

LN,0{±�k}. Similar partial transposition delivers

Eq

LN,±�k{0,∓�k}.

2. Entanglement of formation

The logarithmic negativity is an upper bound for the dis-
tillable entanglement ED of a bipartite state. ED = 0 for a
general mixed state does not imply absence of entanglement,
however. The reverse process, i.e., the required number of
completely entangled particles needed to build a certain bi-
partite state, has a different measure, viz. entanglement of for-
mation, EF [85,86]. For pure states EF = ED [75], equivalent
to the von Neumann entropy EvN = Tr[ρ1(2) log2 ρ1(2)], where

FIG. 11. The von Neumann entropy of each accepted step (EvN,1)
in the iterative calculation of entanglement of formation EF . The
right panel is a zoom in of the area marked by the red-dashed
rectangle in the left panel. The points between the purple dashed lines
indicate the progress starting from a certain initial random unitary
matrix.

ρ1(2) = Tr2(1)ρ [tracing over the part 2 (1) of the bipartite
state], ρ is the total density matrix of the bipartite system, and
ρ1(2) is the density matrix of part 1 (2). For mixed states, there
is no closed formula for EF , however. For a bipartite mixed
state, EF is the minimum of EvN among different realiza-
tions ρ = ∑

i pi|ϒi〉〈ϒi|, where ϒi is a pure state. Analytical
expressions for mixed state of two qubits [86] as well as
approximate closed form solutions and bounds for two-mode
Gaussian states [88] exist, but evaluating EF for a general
system requires numerical methods. Here, we summarize our
adopted algorithm [87]: (1) Carry out a singular-value decom-
position of the mixed state ρ = Uρ × Sρ × Vρ , where Sρ is a
diagonal matrix containing the singular values in descending
order, Uρ (Vρ) has orthonormal columns (rows). Here, Sρ and
column vector Uρ are eigenvalues and eigenvectors of ρ, and
Vρ = U −1

ρ . The reduced efficiency for large dimensions [87]
required a cutoff similar to the one in density matrix renor-
malization group calculations [130–132]. With Nco the largest
values of Sρ and discarding the rest including the correspond-
ing columns of Uρ and rows of Vρ , leads to S′

ρ , U ′
ρ , and V ′

ρ ,
respectively. We thus decompose the mixed state ρ into pure
states in a space of smaller dimension, ρ = ∑Nco

i pi|ϒi〉〈ϒi|,
where pi are the entries of S′

ρ and |ϒi〉 are rows of V ′
ρ . (2) Form

a random Nco × Nco unitary matrix U [133] and the density
matrix ρ ′ = ∑Nco

i |ϒ ′
i 〉〈ϒ ′

i |, where |ϒ ′
i 〉 = ∑Nco

j U ji|ϒi〉. (3)
Evaluate EvN,0, the von Neumann entropy of ρ ′. (4) Form
a random Hermitian matrix R in which each element of
row (column) i ( j) are Gaussian distributed with variance
(1 ± δi j )/Nco for real and imaginary parts, respectively. (5)
Form the unitary matrix U ′ = U exp [iχR], where χ is a
constant coefficient less than one and U is defined in step (2).
In the first iteration set χ = χ0, otherwise scale χ down by a
factor � < 1. (6) Form ρ ′ corresponding to U ′ as in step (2),
and evaluate its von Neumann entropy EvN,1. (7) If EvN,1 <

EvN,0, accept the move, i.e., set EvN,0 = EvN,1 and U = U ′. (8)
Repeat steps (5)–(7), Nχ times with accepted values of EvN,1.
(9) Repeat steps (4)-(8), NR times. (10) Repeat steps (2)–(9),
NU times. (11) The smallest of EvN,1 is the best estimate for
the entanglement of formation EF .

Here we focus on EF,0{±�k} with Nco = 8, Nχ = 20, NR =
20, NU = 500, χ0 = 0.3, � = 2/3. In Fig. 11, we show EvN

for accepted moves, i.e., the EvN,1, with injection locking
pumping amplitude Bl = 1012 (see Fig. 8). The large spread of
EvN for possible decompositions of the mixed state into pure
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TABLE I. Symbols and abbreviations.

Symbol Definition

±�k magnon wave vector
�Hext external DC magnetic field
�M0 magnetization

h̄ reduced Planck constant
ωc cavity mode angular frequency
ωd microwave drive angular frequency
ω0(�k �=0) Kittel (�k �= 0) magnon mode angular frequency

b (b†) annihilation (creation) operator of cavity field
β mean field of cavity field
δb (δb†) fluctuation part of annihilation (creation) operator of cavity field
X (Y ) position (momentum) of cavity field harmonic oscillator
δX (δY ) fluctuating part of position (momentum) of cavity field
c0(�k �=0) (c†

0(�k �=0)
) annihilation (creation) operator of Kittel (�k �= 0) mode

α0(�k �=0) mean-field Kittel (�k �= 0) mode
δc0(�k �=0)(δc†

0(�k �=0)
) fluctuating part of annihilation (creation) operator of Kittel (�k �= 0) mode

x0(�k �=0) (p0(�k �=0) ) position (momentum) of Kittel (�k �= 0) mode harmonic oscillator
δx0(�k �=0) (δp0(�k �=0) ) fluctuating part of position (momentum) of Kittel (�k �= 0) magnon mode
B̄ drive amplitude of the cavity field
Pin microwave input power
Bl drive amplitude of the instability driven ±�k �= 0 magnon modes
φl phase of Bl

	0(�k �=0) = ω0(�k �=0) − ωd detuning of Kittel (�k �= 0) magnon mode frequency from the drive
	′

0 Detuning of Kittel mode frequency from the drive after adiabatically removing the photon field
	 = ωc − ωd detuning of cavity mode frequency from the drive
D4MS,1

�k,�k′ coefficient of 4MS terms of the form c†
�kc�kc†

�k′ c�k′

D4MS,2
�k,�k′ coefficient of 4MS terms of the form c†

�kc†
−�kc�k′ c−�k′

ζm,0(�k �=0) total dissipation of Kittel (�k �= 0) magnon mode
ζmm,0(�k �=0) dissipation of Kittel (�k �= 0) magnon mode due to magnon bath
Fmm,0(�k �=0) fluctuating field on Kittel (�k �= 0) magnon mode from the magnon bath
ζmp,0(�k �=0) dissipation of Kittel (�k �= 0) magnon mode due to phonon bath
Fmp,0(�k �=0) fluctuating field on Kittel (�k �= 0) magnon mode from the phonon bath
ζc total dissipation of cavity mode
ζc,0 dissipation of cavity mode due to interaction with other modes
Fc,0 fluctuating field on cavity mode from the bath of other cavity modes
ζc,ex dissipation of cavity mode due to input port
Fc,ex fluctuating field on cavity mode from the bath of input port
O matrix of linearized EOM around mean fields
Tenv environment temperature
Ms saturation magnetization
d magnetic particle diameter
Kc uniaxial magnetic anisotropy
γ gyromagnetic ratio
D0 Kittel-cavity mode coupling constant
αG Gilbert constant
ρ̂ density matrix
ρ̂0(�k �=0) steady state density matrix of Kittel (�k �= 0) mode after tracing out the others
L super-operator corresponding to Lindblad master equation
Q scaling constant of the system to an equivalent solvable by quantum master equation
W (x0(�k �=0), p0(�k �=0) ) Wigner function of ρ̂0(�k �=0)

W (δX, δY ) Wigner function of cavity field with its mean field shifted to vacuum
θsq angle of the fluctuation ellipse of the output cavity field
ηsq ratio of minor over major axis of the fluctuation ellipse of the output cavity field
EF entanglement of formation calculated using the result of quantum master equation
Eq

LN,0{±�k} (Eq

LN,±�k{0,∓�k}) logarithmic negativity of 0{±�k} (±�k{0, ∓�k}) bipartite configuration from quantum master equation results

EL
LN,0{±�k} (EL

LN,±�k{0,∓�k}) logarithmic negativity of 0{±�k} (±�k{0, ∓�k}) bipartite configuration from quantum Langevin equation results
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TABLE I. (Continued.)

Symbol Definition

MS magnetostatic
4MS four-magnon scattering
LC limit cycle
FP1 fixed point solution of the Suhl instability when ±�k �= 0 magnon pair is in thermal vacuum state
FP2 fixed point solution of the Suhl instability when the ±�k �= 0 magnon pair is a fixed point (limit cycle) without (with) noise

states indicates the difficulty to find EF for a general mixed
state. The right panel of Fig. 11 is a zoom of the left one.
The data points surrounded by purple dashed lines correspond
to the EvN,1 values in the NR iterations of steps (4)–(8) for a
certain initial random unitary matrix generated in step (2). The
blue line in Fig. 11 indicates the minimum among all values
of accepted EvN,1, i.e., the entanglement of formation EF . For

the parameters in the present calculation the error bar is of the
order of 0.01.

APPENDIX E: SYMBOLS AND ABBREVIATIONS

Table I summarizes the symbols and abbreviations used in
this manuscript.
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