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Abstract—Thermostatically controlled loads such as refriger-
ators are exceptionally suitable as a flexible demand resource.
This paper derives a decentralised load control algorithm for
refrigerators. It is adapted from an existing continuous time
control approach, with the aim to achieve low computational
complexity and an ability to handle discrete time steps of variable
length – desirable features for embedding in appliances and high-
throughput simulations. Simulation results of large populations of
heterogeneous appliances illustrate the accurate aggregate control
of power consumption and high computational efficiency.

Keywords—thermostatically controlled loads, demand response,
decentralized control, aggregate control

I. INTRODUCTION

The physical characteristics of refrigerators and other ther-
mostatically controlled loads (TCLs) make them exceptionally
suitable as a low-cost provider of flexibility to the grid: their
power consumption can be shifted by tens of minutes without
noticeable effects on cooling performance. This flexibility
can then be used for the provision of response and reserve
services, to reduce extreme load levels and to alleviate
ramping constraints [1]. Given the large number of devices
involved, large populations can be effectively controlled in
a decentralised manner using randomised control schemes,
as proposed e.g. in [2]–[4]. Practical implementation must
also consider constraints on implementation, computation and
communication, as discussed e.g. in [5], [6].

A robust decentralised control scheme for heterogeneous
TCLs was introduced in [7], and extended in [8] to allow
for scenarios in which TCLs collectively absorb energy from
the grid. The control strategy has the desirable feature that
it requires only one-way broadcast information, yet achieves
tracking of a reference signal that is exact in expectation (i.e.
exact for large numbers) without violating temperature limits
in individual devices. However, its continuous time formulation
in integral form was not conducive to implementation on
embedded controllers or for rapid simulation of many devices
at once.

This paper addresses that shortcoming by deriving a discrete-
time control algorithm that implements the control strategy
that was presented in [7], [8]. The algorithm is particularly
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suitable for implementation on devices with computational
constraints. Specifically, it avoids numerical integration and
uses greedy time steps of variable size, so that real-time
performance requirements are relaxed. First, a discretisation
procedure is described, for the case of a piecewise-constant
control signal, and the controller is reformulated in natural
coordinates. Then, expressions are derived for each of the
on/off-switching processes governing the behaviour of the
device. Finally, an explicit control algorithm is provided, and
its efficacy is illustrated with Python-based simulations for a
heterogeneous population of refrigerators.

II. PRELIMINARIES

A. Appliance model

Throughout this paper, we consider the first order TCL
model, expressed by the following differential equation for the
temperature T a of the compartment of appliance a:

dT a(t)

dt
= −αa [T a(t)− T aoff + ca(t) · (T aoff − T aon)] (1)

For ease of exposition, we shall refer to refrigerating ap-
plicances throughout, although the same model and control
strategy can be used for other TCLs, e.g. space heaters. Here,
ca(t) ∈ {0, 1} is the state of the compressor, and T aoff and
T aon are the asymptotic temperatures in the off and on
states, respectively. The power consumption P a(t) of the
appliance is assumed to be dominated by the compressor power
consumption P aon, so that

P a(t) = P aonc
a(t). (2)

In the steady state (no control actions), the appliance is
subject to a hysteresis controller that switches to the on state
whenever an upper temperature bound T amax is reached, and to
the off state when T amin is reached. This results in a periodic
cycling of the power consumption, with an average power
level P a0 . Let us consider that each appliance a has a model
Ma = {αa, P aon, , T

a
off , T

a
on, T

a
min, T

a
max} that is known to us,

but an internal state Sa = {T a(t), ca(t)} that is not. We assume
the latter is distributed according to a steady state distribution.
Then, the power consumption is in effect a random process,
with the expectation (at each time t)

ESa [P a(t)] = P a0 . (3)
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B. Aggregate power modulation

The objective of the TCL demand response controller is to
control the aggregate power consumption

P (t) =
∑
a∈A

P a(t) (4)

of a collection of appliances A. In this paper we consider
the control approach introduced in [7], which modulates the
power consumption using a broadcast reference signal Π(t) in
the following way. Each device individually adapts its power
consumption to Π(t) in order to satisfy

ESa [P (t)] = Π(t)P a0 . (5)

Clearly, Π(t) = 1 represents the steady state (3) and changes
in Π(t) are immediately reflected in the expected power
consumption. Moreover, the controller maintains independence
between appliances (conditional on the control signal Π(·)) so
that the central limit theorem can be applied to the total power
consumption (4), resulting in

P (t) = Π(t)
∑
a∈A

P a0 +O(
√
|A|), (6)

where the last term is a random process that decreases in
relative importance to the first term as the set of appliances
increases. We note that this is the case even for heterogeneous
appliances.

The ability to closely track a reference signal was first
demonstrated in [7]. In [8], the control signal was generated
using a mixture of off-line scheduling and real-time control, and
in [9] various frequency-sensitive controllers to locally compute
Π(t) (e.g. a simple droop controller) were implemented.

C. Distribution-referred control

The control approach introduced in [7] and extended in [8]
isdistribution-referred approach, because it implements control
via the probability distribution of temperatures for appliances
with a known model Ma and unknown state Sa. It defines
a family of alternative distributions fz(T ;Ma) that varies
continuously in the parameter z, containing as a special case
the steady state temperature distribution [7, Eqs. (31)-(32)]

f0(T ;Ma) =
ka

(T aoff − T )(T − T aon)
(7)

with
ka =

T aoff − T aon

log
(

(Ta
max−Ta

on)(Ta
min−Ta

off )

(Ta
min−Ta

on)(Ta
max−Ta

off )

) (8)

The controller consists of two major elements, which are
evaluated by each appliance in order:

1) Choose the distribution parameter z(t) such that the
power consumption tracks the reference signal Π(t) ac-
cording to (5). Determine the collective device switching
actions required to keep device temperatures aligned with
fz(t)(T ), and identify the temperature limits Tmin(t) ≥
Tmin and Tmax(t) ≤ Tmax.

2) Based on the actual appliance state Sa, compute stochas-
tic control actions, in the form of on/off switching.
Switching events can be initiated in three distinct ways:
• Deterministic switching when temperature limits
Tmin(t) or Tmax(t) are exceeded.

• Continuous-time stochastic switching at intermediate
temperatures in order to shape the temperature
distribution.

• Instantaneous stochastic switching on discrete
changes of power setpoints, or when the controller
switches between energy-provision and energy-
absorption modes [8].

The temperature distribution and appliance switching phases
for the discrete time control strategy are addressed in Sections
III and IV, respectively. We will henceforth drop the appliance
superscript a, because the control steps are executed locally
within each appliance (or independently for each appliance in
a simulation). Note that this implies a single model M is used
in the derivations, but the results remain valid for portfolios
of heterogeneous devices (each with their own model).

D. Discretisation procedure

Moving from a continuous time formulation to a discrete
time formulation, we consider a partitioning of the timeline by
the ordered sequence of times {ti}, indexed by the integer i,
at which the controller is invoked. They define time intervals
(ti+1, ti] with durations ∆ti = ti− ti−1. Note that the duration
∆ti refers to the interval prior to ti, and the intervals may
have variable size. The reference signal Π(t) is assumed to be
piecewise constant, defined by

Π(t) = Πi, for t ∈ (ti−1, ti]. (9)

The controller thus receives at ti a new reference power level
Πi+1 that must be applied for the upcoming interval (ti, ti+1].

Although the discontinuous changes of reference power will
trigger switching events at ti, the other switching events may
occur at any time t. In the discretised approximation of the
continuous time controller, they will be synchronised with
the control execution times ti as follows. It is assumed that
switching is immediate (at ti).
• A violation of the temperature limits will trigger corrective

switching as soon as it is detected.
• Switching due to toggling between energy-provision and

energy-absorption modes is implemented as soon as a
change in regime is detected.

• Continuous time stochastic switching is implemented
by approximating the integrated switching rate (i.e. the
switching probability) over ∆ti using the trapezoidal
method, and executing any switching events at ti (the
end of the interval).

The algorithm is thus implemented in a ‘backward’ fashion,
meaning that at time ti, the algorithm implements switching
actions resulting from reference changes at ti, and those
accumulated over the preceding interval (ti−1, ti]. The ad-
vantage of this approach is that the interval ∆ti can be chosen
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opportunistically: the controller does not need to know in
advance when the next time step will take place. This is
convenient, for example when computational limitations cause a
delay in intended invocation time, or when the time step adapts
to sudden changes in grid frequency. It should be pointed out
that this ‘backward’ integration does not delay the response to
changes in reference power, which is implemented immediately
at ti.

III. DISTRIBUTION BEHAVIOUR

This section focuses on the first part of the controller. It
computes the desired evolution of the probability distribution
of temperatures of fridges with model M, when tracking a
piecewise constant reference Πi. The derivation is initially
performed in continuous time. The results are subsequently
expressed in natural coordinates and restated in a form that is
suitable for discrete-time evaluation.

A. Aggregate physics

The average temperature of a TCL population is affected by
the desired power consumption Π(t) according to [7, Eq. (26)].
With the convention that t−1 = −∞ and Π0 = 1 (assuming
an initial steady state), it follows that

T (ti) = Toff − α(Toff − T 0)

i∑
j=0

Πj

∫ tj

tj−1

e−α(ti−t′) dt′,

(10)

where the steady state average temperature T 0 is computed
using [7, Eqs. (23) and (32)-(33)] as

T 0 = Toff − k × log

(
Tmax − Ton

Tmin − Ton

)
(11)

with k defined in (8). We define the dimensionless variable

z(t) =
T 0 − T (t)

Toff − T 0

, (12)

to parameterise the distributions fz(t)(T ), and simplify the
notation in what follows. Note that it is related to the σ variable
used in [8] as z = σ − 1.

B. Controller modes

The algorithm in [7] implicitly generates the family of
temperature distributions fz(t)(T ) by the net heating rate
v(T, t), which is determined by averaging over devices in the
off (heating) and on (cooling) states at time t and temperature
T . The heating rate is controlled by a parameter β(t) through
v(T, t) = αβ(t)(T − Tmax). The effect of this heating rate
profile is a temperature distribution that contracts to the pivot
temperature Tmax in order to provide energy to the grid - and
reverses this process to recover the energy supplied. In [8]
it was coupled to a ‘mirrored’ controller that is capable of
absorbing energy from the grid by contracting to the pivot
temperature Tmin. Switching between the two controller modes
takes place whenever T (t) crosses T 0 (when z(t) crosses 1).

A generalised formulation covering both regimes is ob-
tained by defining a heating rate of the form v(T, t;R) =

αβ(t;R)(T −R(t)), where R ∈ {Tmin, Tmax} is a reference
temperature, which acts as a pivot temperature for the controller,
with the property v(R, t;R) = 0. The reference temperature is
defined as follows:

R(t) =

{
Tmax, if T (t) ≥ T 0

Tmin, if T (t) < T 0

(13)

C. Control parameter

The control parameter β(t;R) is determined by the desired
reference power Π(t) according to [7, Eq. (36)]:

β(t;R) =
Π(t)(Toff − T 0)− (Toff − T (t))

R(t)− T (t)

=
(Π(t)− 1)− z(t)
z(t)− ζ(R(t))

(14)

where

ζ(R) =
T 0 −R
Toff − T 0

. (15)

The denominator in the definition of β reflects, in dimensionless
form, the energy limits of the TCL aggregate. Note also that
β switches sign depending on the value of R(t).

D. Distribution scaling

The controller has the effect of scaling the steady state
temperature distribution f0(T ) around the pivot temperature
R(t), such that the distribution does not exceed the temperature
bounds Tmin and Tmax [7]. The extent of this scaling at time
ti is compactly represented by the scale parameter

s(t) =
R(t)− T (t)

R(t)− T 0

= 1− z(t)/ζ(R(t)). (16)

E. Discretisation

We now consider the restriction of the continuous time
controller to the set of discrete times ti. We replace the
coordinate z(t) by its discretisation zi = z(ti), which is
computed from (10) as

zi =

i∑
j=0

(Πj − 1)
(

e−α(ti−tj) − e−α(ti−tj−1)
)
.

Updates to zi are efficiently implemented using z0 = 0 (for a
steady state initialisation) and the recursive relation

zi = zi−1e−α∆ti + (Πi − 1)(1− e−α∆ti). (17)

The discretised controller switches modes only at instants
ti, so R(t) is approximated by the delayed function

R̂(t) = Ri, for t ∈ (ti−1, ti].

with

Ri+1 =

{
Tmax, if zi ≤ 0,

Tmin, if zi > 0.
(18)
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Because our analysis focuses on the control time ti, where
R̂(t) and Π(t) are potentially discontinuous, we introduce
±-notation for the left and right limits at ti:

R−i = lim
ε↓0

R̂(t− ε) = Ri, (19a)

R+
i = lim

ε↓0
R̂(t+ ε) = Ri+1. (19b)

Similar definitions using left and right limits naturally apply
to ζ(R), s(t) and β(t;R):

ζ±i =
T 0 −R±i
Toff − T 0

, β−i =
(Πi − 1)− zi
zi − ζ−i

, (20a)

s±i = 1− zi/ζ±i . β+
i =

(Πi+1 − 1)− zi
zi − ζ+

i

, (20b)

F. Energy and power constraints

The ability of the aggregate appliances to sustain a low
or high power level is determined by operating temperature
bounds of the appliance, applied to the distribution-averaged
temperature: T (t) ∈ (Tmin, Tmax) (no feasible solutions for
the distribution fz(T ) exists outside of this domain). However,
because operation near the limits is infeasible in practice, due
to diverging switching rates, we shall use a restricted range
of operating temperatures that is scaled with a fraction w < 1
around the steady state operating temperature T 0:

(1− w)T 0 + wTmin ≤ T (t) ≤ (1− w)T 0 + wTmax.

Rewriting this in terms of z(t) and ζ(·), we get

wζ(Tmax) ≤ z(t) ≤ wζ(Tmin).

Small excursions out of this temperature band will be permitted,
but if this happens, the requested power level Πi+1 will be
restricted to not exacerbate the excursion, using the relation (17).
This leads to the update rule for Πi+1:

Πi+1 :=


max(Πi+1, 1 + wζ(Tmax)), if zi ≤ wζ(Tmax)

min(Πi+1, 1 + wζ(Tmin)), if zi ≥ wζ(Tmin)

Πi+1, otherwise
(21)

In addition to energy constraints related to the distribution-
averaged temperature, the controller is subject to instantaneous
power constraints that result from the maximum rate of change
of the distribution. If the controller is in energy provision mode
(zi ≤ 0), these power constraints are given by [8](

T 0 − Tmin

Tmax − Tmin

)(
Toff − Tmax

Toff − T 0

)
≤ Πi+1 ≤(

Toff − Tmax

Toff − T 0

)
+

(Tmax − T̄0)(Tmax − Ton)

(Tmax − Tmin)(Toff − T̄0)
. (22)

If the controller is in energy absorption mode (zi > 0), the
power constraints are given by(

Tmax − T 0

Tmax − Tmin

)(
Toff − Tmin

Toff − T 0

)
≤ Πi+1 ≤(

Toff − Tmin

Toff − T 0

)
+

(T̄0 − Tmin)(Tmin − Ton)

(Tmax − Tmin)(Toff − T̄0)
. (23)

IV. DEVICE SWITCHING

The desired evolution of the temperature distribution can be
used to compute the necessary control actions of individual
appliances. This section identifies such control actions using
the three types of switching events identified in Section II-C.
These are computed as a function of the time of evaluation ti,
the compressor state ci ∈ {0, 1} during the preceding interval
(ti−1, ti], and the current device temperature Ti (assumed to
be measured in the appliance at time ti).

A. Forced switching

TCLs are forced to switch on or off when their temper-
atures exceed the permitted interval [Tlow(t), Thigh(t)]. From
the linear scaling of the temperature distributions around the
pivot temperature R(t) with a factor s(t), it follows that

Tlow(t) = R(t)− (R(t)− Tmin)s(t),

Thigh(t) = R(t)− (R(t)− Tmax)s(t).

At ti, the refrigerator must act if these bounds are violated at
the start of the next time interval:[

Ti ≤ R+
i − (R+

i − Tmin)s+
i

]
,⇒ ci+1 := 0 (24)[

Ti ≥ R+
i − (R+

i − Tmax)s+
i

]
.⇒ ci+1 := 1 (25)

B. Continuous-time switching

We now consider the continuous-time stochastic switching
rates from on to off states (r1→0(t)) and vice versa (r0→1(t)),
required to maintain the desired shape of the temperature
distribution. The switching rates for the energy provision mode
are defined in [7, Eqs. (48)-(52)]. Here, we generalise these
expressions to cover both energy provision and absorption
modes (R(t) ∈ {Tmin, Tmax}) and simplify them using the z-
coordinate transformation. Finally, we specialise the expressions
for trapezoidal integration with piecewise constant power
references.

The derivative of β can be simplified by substitution using
(12) and (15), resulting in:

dβ(t;R)

dt
=

1

z(t)− ζ(t)

dΠ(t)

dt
+ αβ(t;R)

1 + ζ(t)−Π(t)

z(t)− ζ(t)

=
1

z(t)− ζ(t)

dΠ(t)

dt
− αβ(t;R)(1 + β(t;R))

This substitution can be used in [7, Eq. (51)] (adjusted
for general R). Further simplification follows from setting
dΠ(t)/dt = 0 (because we consider piecewise constant
sections between ti). We compute the intermediate quantity
Ξ(t), using the identity found in [7, Eq. (38)], again taking
left and right limits due to discontinuity at ti.

Ξ±i = lim
ε↓0

Ξ(Ti, ti ± ε)

=α2

(
P±i +Q±i
P±i Q

±
i

)
(X±i Y

±
i )− α2(1 + β±i )(X±i + Y ±i )

(26a)
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with

P±i = (Ti − Toff) + (Toff −R±i )(1− s±i ) (26b)

Q±i = (Ti − Ton) + (Ton −R±i )(1− s±i ) (26c)

X±i = (Ti − Toff) + (Ti −R±i )β±i (26d)

Y ±i = (Ti − Ton) + (Ti −R±i )β±i (26e)

The stochastic transition rates at the left and right limits to
ti are computed from Ξ±i using [7, Eq. (49)] (adjusted for
general R), resulting in

r1→0
i,± = max

(
0,

−Ξ±i
α(Ti − Toff) + αβ±i (Ti −R±i )

)
(27a)

r0→1
i,± = max

(
0,

−Ξ±i
α(Ti − Ton) + αβ±i (Ti −R±i )

)
(27b)

Midpoint integration between adjacent time instants ti−1 and
ti is used to determine the resulting switching probabilities,
where switching is implemented at t = ti:

Pr1→0
cont,i =

1

2
∆ti(r

1→0
i−1,+ + r1→0

i,− ) (28a)

Pr0→1
cont,i =

1

2
∆ti(r

0→1
i−1,+ + r0→1

i,− ) (28b)

Note that the rates at both ‘inner’ edges of the interval ∆ti
are used: the ‘+’ side at ti−1 and the ‘−’ side at ti.

C. Instantaneous switching
Finally, consider the instantaneous stochastic switching at

time ti due to mode changes (energy absorption, energy
delivery) or changes in Π(t). This results in a discontinuous
change in the net heating rate v(T, t), which can only be
achieved by a fraction of devices switching on or off at ti.
Following [8], we compute the probability of switching from
the on to off state at time ti, for a refrigerator that is currently
on, as

Pr1→0
inst,i = max

(
0, 1− (Ti − Toff) + (Ti −R+

i )β+
i

(Ti − Toff) + (Ti −R−i )β−i

)
(29a)

Note that the switching probability includes both a contribution
from the discrete change in power level at ti as well as
a possible mode transition in the previous interval that is
implemented at ti. The switching probability for fridges in the
off state, ci = 0, is defined analogously as

Pr0→1
inst,i = max

(
0, 1− (Ti − Ton) + (Ti −R+

i )β+
i

(Ti − Ton) + (Ti −R−i )β−i

)
(29b)

D. Combined stochastic switching
Formally, the continuous-time (28) and instantaneous (29)

switching probabilities should be evaluated in sequence, be-
cause the former occurs during the interval (ti−1, ti] and the
latter at time ti. This would account for the possibility that an
appliance switches off and on again within a single interval,
or vice versa. Here, we assume that the switching probability
associated with the continuous-time process is small to allow
us to evaluate both probabilities in a single step.

Pr1→0
i = Pr1→0

cont,i + Pr1→0
inst,i (30a)

Pr0→1
i = Pr0→1

cont,i + Pr0→1
inst,i (30b)

V. ALGORITHM AND RESULTS

The discrete time algorithm for updating the compressor state
derived in sections III and IV, is summarised in pseudocode
in Algorithm 1. The algorithm was implemented in Python
3.7 using the numba package to benefit from just-in-time
compilation for considerable speedups.

Algorithm 1 State update algorithm
function UPDATE COMPRESSOR STATE(Πi+1, Ti, ti)

# load previously computed information
load appliance model M and operating range w
load ci,Πi, zi−1, ti−1, r

1→0
i−1,+, r

0→1
i−1,+

5: # implement power and energy limits
compute zi using (17)
if zi ≤ 0 then . energy delivery mode

if zi ≤ wζ(Tmax) then
Πi+1 ← max(Πi+1, 1 + wζ(Tmax))

10: clip Πi+1 to limits in (22)
else . energy absorption mode

if zi ≥ wζ(Tmin) then
Πi+1 ← min(Πi+1, 1 + wζ(Tmin))

clip Πi+1 to limits in (23)
15: # determine distribution and switching variables

compute R±i , ζ
±
i , β

±
i , s

±
i using (18)-(20)

compute r1→0
i,± , r0→1

i,± using (26)-(27)
compute Pr1→0

i ,Pr0→1
i using (28)-(30)

# implement compressor switching
20: if ci = 1 then . currently on

if Ti ≤ R+
i − (R+

i − Tmin)s+
i then ci+1 ← 0

else
U ← uniform random ∈ [0, 1]
if U ≤ Pr1→0

i then ci+1 ← 0
25: else ci+1 ← 1 . remain on

else . currently off
if Ti ≥ R+

i − (R+
i − Tmax)s+

i then ci+1 ← 1
else

U ← uniform random ∈ [0, 1]
30: if U ≤ Pr0→1

i then ci+1 ← 1
else ci+1 ← 0 . remain off

return ci+1 . updated compressor state

For simulations, thermal model parameters were taken from
[8, domestic refrigerator class]: α = 1/7200s; Tmax = 7◦C;
Tmin = 2◦C; Ton = −44◦C; Toff = 20◦C. Heterogeneous
appliances were generated from these parameters by individu-
ally multiplying them with a random factor that was uniformly
distributed between 0.8 and 1.2. All appliances had a maximum
power consumption P aon = 70W and operating range w = 0.9
(not binding for the parameters used). Each appliance was
randomly initialised as follows. The compressor was set to
the on state with a probability equal to the steady state duty
cycle P a0 /P

a
on and the temperature was initialised according

to the steady state probability distributions f0(T |ca0 = 1) ∝
1/(T − Ton) and f0(T |ca0 = 0) ∝ 1/(Toff − T ).
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Fig. 1. Reference signal (top) and response of a single appliance (middle and
bottom).
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Fig. 2. Response of a heterogeneous aggregate of appliances (top) and deviation
from the reference (bottom).

Figure 1 shows a reference signal (top), with a length of 5
hours, that demonstrates a variety of features. The middle and
bottom panels show the compressor state ci and temperature
Ti, respectively, of a single appliance that tracks the reference
signal. These results illustrate the apparently weak relation
between the reference signal and single device dynamics
(middle), and the ability of the controller to strictly respect the
temperature bounds (bottom).

Next, heterogeneous populations of 1,000 and 100,000

appliances were simulated, tracking the same reference signal.
Figure 2 illustrates the convergence of the aggregate response
to the reference signal as the number of independent appliances
increases. The top panel shows absolute power consumption per
appliance; the bottom panel the deviation from the reference.

VI. CONCLUSIONS AND FUTURE WORK

This paper has derived a discrete time TCL controller for
decentralised demand response. The results illustrate the ability
to accurately track a reference signal with a large population
of heterogeneous appliances. Moreover, Algorithm 1 has low
computational complexity, which permits implementation on
embedded hardware with severe computational constraints, or it
can be used to achieve efficient simulations. The simulation of
100,000 devices for 5 hours using 10s time steps took only 36
seconds (using an Intel i5-7360U CPU under macOS 10.14.2).
Moreover, the ability to use variable time steps can further
alleviate real time constraints.

Lab testing of the algorithm in a modified refrigerator is
currently ongoing. Both in the lab and using simulations, it
is of interest to investigate the robustness of the controller
against perturbations from the idealised setting [10]. Initial
simulation experiments suggest that the performance of the
controller is quite robust to misspecification of the thermal
model. Nevertheless, it is interesting to consider how the
controller could be enhanced with a means for an appliance to
learn and test its own thermal model.
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