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Abstract

A wet clutch is a device that transfers torque between two shafts via a hydraulic mechanism.
Wet clutch control is key to achieve smooth and fast clutch engagements. Optimal control
of a wet clutch is not trivial because of the complexity of the system due to nonlinearities,
hybrid dynamics and changing dynamics over time due to changing temperatures and wear.
Nowadays simple parametrized feedforward controllers are used in industry. The parameters
of the control signal are tuned by hand and updated over time by an operator to account for
the changing dynamics.

Several solutions to the wet clutch control problem exist in the literature, however the struc-
ture of the solutions is fixed beforehand and they rely on expert knowledge of the system.
Another challenging aspect of wet clutch control is model uncertainty, currently robustness of
performance is considered by running a finite number of experiments, but no hard guarantees
can be given.

In this thesis a method is developed to automatically synthesize controllers for a wet clutch
which are robust to model uncertainties. The method uses Genetic Programming (GP) to
automatically synthesize controllers. Using GP controllers for a wet clutch can synthesize
without fixing the structure beforehand and in a multi-objective way. Robustness is considered
by optimizing the worst case performance.

To be able to give a guarantee on the worst case performance of a controller a method, that
is able to formally guarantee a lower bound on the worst case performance using reachability
analysis, is developed. This method is to costly to incorporate into GP and instead a use
cheap estimation of the worst performance in practice.

This method was able to find robust controllers which outperformed a hand tuned baseline
controller, but in order to compare this method to other methods in literature, real life
experiments are needed.
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Chapter 1

Introduction

1-1 Wet clutch control

The transmission is a crucial part of any vehicle or machine where the power of the engine
must be transferred to the load in a controlled manner. In case of a vehicle, a transmission
is needed to transfer the power from the combustion engine to the wheels. The performance
of the transmission has a significant influence on the fuel consumption and operator comfort
of the system [1]. Wet clutches are mostly used for automatic transmissions in heavy duty
machines like off-highway vehicles and agricultural machines [2]. They are suitable for these
types of machines because of the need of a compact structure, with high efficiency and a
reliable performance [1].
A wet clutch is a device that can engage and disengage two rotating shafts using a hydraulic
mechanism. As can be seen in Figure 1-1, the clutch mechanism has two sets of friction plates.
One set is connected to the input shaft and one set is connected to the output shaft. When
no pressure is applied to these plates, they can slide freely inside each other. When pressure
is applied to them, the friction between the plates will cause the two sets of plates to rotate
together and hence it will cause the input and output shaft to rotate together. Pressure can be
applied to the friction plates via a hydraulic piston. When the piston is extended far enough,
it will start to press the two plates together. The piston can only be controlled indirectly
via oil pressure. The piston is located in an oil chamber, where oil can flow in via the input
valve. The electric current sent to the valve is the control input of the system. When the
oil pressure in the chamber is high enough it will cause the piston to move forward, which
in turn will cause the friction plates to be pressed together and finally the input and output
shaft will be synchronized. When the oil pressure drops after a clutch engagement, the return
spring will bring back the piston to its original position.

1-1-1 A clutch engagement

A clutch engagement starts with an engagement request from the operator during a gear shift.
The engagement itself consists of two phases. The first phase is the filling phase, during this

Master of Science Thesis R. Oskam



2 Introduction

Figure 1-1: Schematic overview of a wet clutch and its main components [2].
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Figure 1-2: Schematic overview of a clutch engagement.

phase the oil chamber fills up with oil, the piston starts moving forward but, is not yet in
contact with the friction plates and there is no torque transfer between the two shafts yet.
Then, when the piston comes in contact with the friction plates and starts to press them
together, the slip phase starts. Slip is defined as the angular speed difference between the
input and the output shaft. When the slip is driven to zero, the shafts are synchronized and
the engagement is complete. Both phases have different dynamics, making it a hybrid system.
During the filling phase only feedforward control is used, while feedback control can be used
in the slipping phase. See Figure 1-2 for a schematic overview of a clutch engagement.

1-1-2 Control objective

In general, the control objective for wet clutch control is to find a valve input that gives
both a smooth and a fast engagement. A smooth engagement is desirable because it is
strongly related to operator comfort [3]. The speed of a clutch engagement is measured by
the engagement time teng, which is the time it takes from the clutch engagement request to
the moment the clutch engagement is completed, i.e. the slip is driven to 0. The smoothness
measure that is commonly used in literature for wet clutch control is the highest peak in the
absolute value of the jerk [2]:

jmax = max
t∈[0,teng]

|j(t)|. (1-1)

Jerk is defined as the derivative of the torque of the output axis, j(t) = τ̇(t, ξ(t)).

R. Oskam Master of Science Thesis



1-2 Prior work and motivation 3

Since this problem has two objectives, it is a multi-objective optimization problem. The two
objectives are conflicting in nature, because there exists no controller that is optimal in both
speed and smoothness. Instead, we can only find controllers which are a trade-off between
the two. Typically there are two ways to tackle a multi-objective optimization problem [4].
The first approach is to convert the multi-objective optimization problem to a single-objective
optimization problem. The most commonly used and most simple way to do this is by taking
a linear combination of the objectives. The second approach is to solve the problem as a true
multi-objective optimization problem and optimize both objectives simultaneously without
expressing a preference for one objective. In this approach the optimal solution is not a
single point, but the set of solutions which are optimal for each different trade-off. In general
the latter option is more desirable because determining the trade-off a priori is not always
trivial. Additionally the solution to the problem formulated as a single-objective optimization
problem can always be reconstructed from the set of Pareto optimal solutions.

1-1-3 Challenges in wet clutch control

Several elements of the wet clutch system make controller design for it a complex task. First
of all, the nonlinear dynamics in the two phases make the system a nonlinear hybrid system,
for which standard control techniques do not suffice. Secondly the dynamics of the system
change over time due to wear and changes in operating conditions, like oil temperature which
are not modelled. Because of this it is not easy to verify that controllers perform well for all
possible operating conditions.

1-2 Prior work and motivation

Nowadays in industry, parametrized feedforward controllers are used for wet clutch control.
See Figure 1-3 for an example of such a control signal. The parameters of the signal are
calibrated experimentally by the operator. The controller has to be recalibrated from time
to time, to compensate for effects due to wear and changing operating conditions [5].

Several controllers for wet clutches have been developed in the literature in order to improve on
the current mechanism of manual calibration. Because of the complexity of the system, most
of them incorporate a learning mechanism in the controller design. The most notable model-
based controllers in the literature are the Two-level Nonlinear Model Predictive Controller
(2l-NMPC) and Two-level Iterative Learning Control (2l-ILC) [6]. They both use a control
scheme consisiting of a high level and a low level controller. In the high level controller an
optimal parametrized reference is learned and the low level controller is a reference tracking
controller. The references are an oil pressure reference for the filling phase and a slip reference
for the slipping phase. In both approaches Iterative Learning Control (ILC) is used in the
high level controller to learn the optimal references. In 2l-NMPC an nonlinear MPC is
used to compute the optimal tracking controller. In 2l-ILC the same learning method as in
the high level controller is used in the low level controller. In [7] a reference-free iterative
learning method for wet clutch control method is presented. This method is different from
the previous two methods in that the controller is directly optimized over the engagement
time and the maximum jerk. To be able to do this, linear models were used. Additionally
other simplifications in the optimization problem were made based on insights in the system.

Master of Science Thesis R. Oskam
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Figure 1-3: Example of a parametrized feedforward control with five tunable parameters [2].

These simplifications allowed to pose the problem as a convex optimization problem. Two
other methods that have been applied to wet clutch control are Genetic Algorithms (GA) [2]
and Reinforcement Learning (RL)[8]. Both of these methods work in a similar way in that they
try to find the optimal parameters of a fixed-structure feedforward control signal like in Figure
1-3. They can be seen as a replacement for the operator who nowadays manually tunes these
parameters. Both methods used scalar cost functions. All of the beforementioned methods
were discussed and compared in [2]. In general the model-based techniques performed better
and converged faster. The model-free techniques performed slightly worse, but also relied less
on expert knowledge.

1-2-1 Current issues and open challenges

All discussed controllers require some form of expert knowledge of the system, for example
in the design of optimal references or in the parametrization of the feedforward control signal.
Furthermore all controllers except the iterative optimization technique (that uses only simple
linear models) use either a reference or control signal with a fixed structure. Synthesizing
controllers beyond these fixed structures could yield better results. The robustness of the
performance of the controllers are verified by performing a finite number of experiments,
however no hard guarantees on the performance for different scenarios can be
given. The controllers discussed in this chapter fix the trade-off of the control objectives a
priori. No true multi-objective optimization was used in these controllers. In [9] multi-
objective GA was used for wet clutch control, however a different control objective (torque
loss instead of maximum jerk) was used. The following open challenges in wet clutch control
can be formulated:

• Synthesizing controllers for a wet clutch without relying expert knowledge,

• beyond fixed structures,

• in a true multi-objective manner,

• while giving guarantees on robustness of performance.

R. Oskam Master of Science Thesis



1-3 Our approach 5

1-3 Our approach

Because we want to automatically synthesize controllers that are robust to model uncertainty,
we will use feedback control in the slipping phase. In contrast to pure feedforward control
which is commonly used in industry and in literature, feedback control can be respond to
disturbances, because the input is computed based on the state of the system. We do not use
feedback control for the filling phase because the piston position cannot be measured.

There exist several methods to automatically synthesize controllers for nonlinear hybrid sys-
tems with respect to a certain property. The two popular approaches are using abstractions
and using Barrier and Lyapunov functions. In the first approach the system is transformed
into a finite abstraction [10]. A drawback of this method is that controllers take the form
of big look-up tables, while we are interested in finding controllers as compact expressions.
Barrier and Lyapunov functions are used to prove safety and stability of systems [11]. Since
the control objective of wet clutch control cannot easily be converted to such specifications,
since no performance bound is known beforehand. Therefore it is not directly applicable for
our purpose. In [12] Genetic Programming (GP) was used to synthesize candidate Control
Lyapunov Functions (CLFs) for a system, from which a switched controller was derived. Sta-
bility and safety of the controller is guaranteed when the CLF properties of the corresponding
candidate CLF are verified using an SMT solver. In this thesis we will also use GP to directly
synthesize controllers for a wet clutch, instead of indirectly via CLFs. In our approach, we will
consider robustness by optimizing over the worst case performance of the controller, which
we will compute using reachability analysis.

GP is an evolutionary algorithm based on the principles of Darwin’s theory of evolution. What
distinguishes GP from other optimization and search methods is that is is able to optimize over
both the function and parameter space, rather than just the parameter space. When applied
to controller synthesis, this means that GP is able to find not only the optimal values of a fixed-
structure controller, it can also optimize controller structures. Therefore GP can synthesize
controllers directly without relying purely on expert knowledge. An additional advantage of
GP is that it can perform true multi-objective optimization [4]. Instead of proving safety
and stability as in [12], we will use formal verification methods to verify the robustness of
performance of a found controller. Existing formal verification tools such as Flow∗ [13] are
able to over-approximate the reachable set of complex uncertain systems. Using these over-
approximations we can determine the worst case teng and jmax over all operating conditions.
If we optimize over these worst case scenarios with GP, we will synthesize controllers that are
robust for all operating conditions.

1-4 Problem formulation

The wet clutch is modeled by a hybrid system of the form:

ξ̇(t) = fi(ξ(t), u(t, ξ(t)), l) for
[

ξ(t)
u(t, ξ(t))

]
∈ Ωi (1-2)

where ξ(t) ∈ X ⊆ Rn denotes the state, u(t, ξ(t)) ∈ U ⊆ Rm denotes the input and l ∈ L ⊆ Rk
denotes the uncertain parameter and L is a bounded set. We assume that l stays constant

Master of Science Thesis R. Oskam



6 Introduction

during a clutch engagement: l̇(t) = 0. The initial state is denoted by ξ0 = ξ(0). For
i ∈ {1, . . . , NΩ}, Ωi ∈ Rn × Rm are disjoint regions (Ωj ∩ Ωk = 0, for all j 6= k), where

fi(ξ(t), u(t, ξ(t)), l) is continuous for
[

ξ(t)
u(t, ξ(t))

]
∈ Ωi.

A trajectory of a wet clutch is defined as follows:

Definition 1. A trajectory of a wet clutch ξ(t) is a function ξ : [0, teng] 7→ X, such that

ξ̇(t) = fi(ξ(t), u(t, ξ(t)), l) for
[

ξ(t)
u(t, ξ(t))

]
∈ Ωi, ξ(0) = ξ0 and ∀t ∈ [0, teng]: l ∈ L and

u(t, ξ(t)) ∈ U .

The slip s(t) is defined as the difference between the input shaft speed ωi(t) and the output
shaft speed ωo(t):

s(t) = ωi(t)− ωo(t). (1-3)

The engagement time teng is defined as the first time instance where the slip is sufficiently
small:

teng = inf{t ∈ R+ | |s(t)| < ε}. (1-4)

We assume that ∀t ≥ teng : |s(t)| < ε. The time instance at which the system switches from
the filling phase to the slip phase and the controller switches from feedforward control to
feedback control is denoted by tswitch. We assume that only one switching instance occurs
during a clutch engagement. The control input u(t, ξ(t)) is a control signal that is composed
of feedforward part for the filling phase and a feedback part for the slip phase:

u(t, ξ(t)) =
{
uff(t), t ∈ [0, tswitch)
ufb(ξ(t)), t ∈ [tswitch, teng]

. (1-5)

We define tu,leng as the engagement time related to a clutch engagement generated by a control
input u(t, ξ(t)) and a realization of l ∈ L. The worst case engagement time related to a
control input u and a parameter set L is defined as:

tu,Leng = max
l∈L

tu,leng. (1-6)

The jerk j is defined as the time derivative of the torque:

j(t) = τ̇(t, ξ(t)), (1-7)

where τ(t, ξ(t)) = T (ξ̇(t), ξ(t)), T : R2 7→ R. The maximum jerk related to a clutch engage-
ment generated by a control input u(t, ξ(t)) and a realization of l ∈ L is denoted by ju,lmax and
is defined as:

ju,lmax = max
t∈[0,tu,l

eng]
|j(t)|. (1-8)

The worst case maximum jerk related to a control input u and a parameter set L is defined
as:

ju,Lmax = max
l∈L

ju,lmax. (1-9)

R. Oskam Master of Science Thesis



1-5 Thesis outline 7

In this way we define the performance criteria as the worst case scenario over all possible
values of the uncertain parameters. We then say that a controller u is Pareto optimal if and
only if @a such that (ja,Lmax < jumax ∧ ta,Leng ≤ tueng) ∨ (ja,Lmax ≤ ju,Lmax ∧ ta,Leng < tu,Leng). Now we define
the robust wet clutch control problem that we intend to solve as:

Problem 1 (Robust wet clutch control problem). Given a system (1-2), ξ0, L, ε and U , find
the set of controllers u(t, ξ(t)) that are Pareto optimal.

Problem 1 can be divided into three subproblems with increasing complexity, so that the
full problem can be solved step-by-step. The first step is to solve Subproblem 1, which does
not consider uncertainty and where the only task is to synthesize feedback controllers for the
slipping phase while fixing the control input for the filling phase. We denote this fixed, given
feedforward input by uff,baseline(t).

Subproblem 1. Given a a system (1-2), ξ0, U , uff,baseline(t) and L : |L| = 1, find the
set of feedback controllers ufb(ξ(t)) for the slip phase that are Pareto optimal using uff(t) =
uff,baseline(t).

The second step is to add the task of also also finding the feedforward control input for the
filling phase, while still not considering uncertainty. We call this Subproblem 2.

Subproblem 2. Given a system (1-2), ξ0, U and L : |L| = 1, find the set of controllers
u(t, ξ(t)) that are Pareto optimal.

In the final step we add the element of uncertainty by taking L : |L| > 1 and thus try to solve
Problem 1.

1-5 Thesis outline

The thesis is structured in the following way:

• In Chapter 2, the dynamics of the model of the wet clutch that is used throughout this
thesis is introduced and explained.

• In Chapter 3, the topic of Genetic Programming is introduced. Furthermore the appli-
cation of GP to wet clutch controller synthesis is explained.

• In Chapter 4, we explain how reachability analysis is used to find a formal guarantee
on the performance of a controller in our method.

• In Chapter 5, the problem of finding a feedback controller for the slipping phase for a
system without uncertainty is considered.

• In Chapter 6, the problem of synthesizing both a feedforward and a feedback controller
for the system without uncertainty is considered.

• In Chapter 7, the full problem of finding a feedforward and a feedback controller for a
system with uncertainty is considered.

• In Chapter 8, the conclusions of the thesis and the recommendations for future research
are presented.
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Chapter 2

The wet clutch model

In this Chapter we introduce and explain the nonlinear, hybrid model that is used throughout
this thesis to simulate the wet clutch.

2-1 Setup

The model we will use is described in [14]. This model was designed to simulate an exper-
imental clutch setup, which can be seen in Figure 2-1. In the setup a flywheel is driven by
an electric motor via a torque converter and two clutches. Only the first clutch is controlled,
the second one is only used to vary the loads.

Figure 2-1: The experimental setup on which the model is based [2].
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10 The wet clutch model

2-2 Inputs, variables and states

The input to the system is the voltage sent to the oil valve. The minimum and maximum
control input are 0 and 0.2 volts respectively. An unsaturated control input ur(t) is saturated
between 0 and 0.2 volts to obtain u: u(t) = min(0.2,max(ur(t), 0)). Therefore U = [0, 0.2] V
for this model. The state vector of the model is given as:

ξorg(t) =
[
x1(t) x′2(t) x3(t) x4(t) x5(t) x6(t)

]T
. (2-1)

The physical meaning of each state can be found in Table 2-1.

State Meaning Unit
x1(t) Oil pressure [Pa]
x′2(t) ẋ1(t) [Pa/s]
x3(t) Unsaturated piston position divided by kt [-]
x4(t) ωi(t), angular velocity of the clutch input [rad/s]
x5(t) ωo(t)/grl, angular velocity of the load [rad/s]
x6(t) State to model transition between phases of torque transfer [-]

Table 2-1: The physical meaning of the states in ξorg.

The slip in terms of the states of the model is given as:

s(t) = x4(t)− grlx5(t). (2-2)

2-3 Dynamics

The dynamics of the model are hybrid and the continuous dynamics in each region is nonlinear.
In this Section we will go through the dynamics and highlight the hybrid elements of it. The
values and meaning of the constants of the model can be found in Appendix A. The piston
position pos1(t) is obtained by saturating ktx3(t) between a lower bound of 0 and an upper
bound of posc:

pos1(t) = min(posc,max (0, ktx3(t))). (2-3)

This saturation leads to three different cases for the value of pos1(t):

pos1(t) =


0 if ktx3(t) ≤ 0
ktx3(t) if 0 < ktx3(t) ≤ posc

posc if ktx3(t) > posc

(2-4)

In addition to pos1 a variable pos2 is used in the state equations. When x6(t) becomes bigger
or equal than 1, pos2(t) is set to the arbitrary value of 1.

pos2(t) =
{

pos1(t) if x6 < 1
1 if x6 ≥ 1

(2-5)

R. Oskam Master of Science Thesis



2-3 Dynamics 11

Let us introduce posdiff(t) and posfrac(t) which are used in the next equations.

posdiff(t) =pos2(t)− posc (2-6)

posfrac(t) =
pos1(t)

posc
− fracs

1− fracs
(2-7)

The clutch contact pressure p(t), which is used in the dynamics of x4(t) and x5(t) is given as
Equation 2-8, this introduces two different cases.

p(t) =
{

105 if posfrac(t) ≤ 0
posfrac(t)105x1(t) + 105 if posfrac(t) > 0

(2-8)

The first two differential equations model how the input voltage u influences the oil pressure
x1:

ẋ1(t) = x′2(t) (2-9)

ẋ′2(t) = − 6
s2x1(t)− 4

s
x′2(t)− 6ak

s2 + 6k
s2 u(t)− 2k

s
u̇(t) (2-10)

(2-11)

In order to put the system in state space form, we need to get rid of the derivative of the
input u̇(t) on the right hand side of Equation 2-10. If we bring the term containing u̇(t) to
the left hand side, we obtain:

ẋ2(t)′ + 2k
s
u̇(t) = − 6

s2x1(t)− 4
s
x2(t)′ − 6ak

s2 + 6k
s2 u(t). (2-12)

By introducing the variable x2(t) := x2(t)′+ 2k
s u(t) and substituting its derivative into Equa-

tion 2-12, we obtain:

ẋ2(t) = − 6
s2x1(t)− 4

s
x2(t)′ − 6ak

s2 + 6k
s2 u(t). (2-13)

We redefine the state vector as:

ξ(t) :=
[
x1(t) x2(t) x3(t) x4(t) x5(t) x6(t)

]T
. (2-14)

By substituting x2(t)′ by x2(t)− 2k
s u(t), we finally get:

ẋ1(t) = x2(t)− 2k
s
u(t) (2-15)

ẋ2(t) = − 6
s2x1(t)− 4

s

(
x2(t)− 2k

s
u(t)

)
− 6ak

s2 + 6k
s2 u(t). (2-16)

The dynamics of x3(t) are given by:

ẋ3(t) = b2
c2
x1(t) + a2

c2
x2(t)′ − d2

c2
x3(t)− cob2

c2
. (2-17)

Substituting x′2(t) by x2(t)− 2k
s u(t) again gives us:

ẋ3(t) = b2
c2
x1(t) + a2

c2

(
x2(t)− 2k

s
u(t)

)
− d2
c2
x3(t)− cob2

c2
. (2-18)
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12 The wet clutch model

The dynamics of the input and output shaft speeds x4(t) and x5(t) are given below. The
dynamics of x4(t) depend on whether the system is slipping or locking. Locking occurs when
the slip is sufficiently small: |s(t)| < 5 · 10−4.

ẋ4(t) =



− b1v
J1
x4(t)− T1c

J1
− x6(t)ap(t)J1

+
ω2

mfst

(
x4(t)
ωm

)
J1fsk

(
x4(t)
ωm

)2 if |s(t)| ≥ 5 · 10−4

−(1− x6(t)) γ
J1(posfrac)

(
x5(t)− 1

grl
x4(t)

)

− b1v

J1+ J3
g2
rl

x4 − T1c

J1+ J3
g2
rl

+ ω2
mfst

(
x4

ωm

)(
J1+ J3

g2
rl

)
fsk
(

x4
ωm

)2− if |s(t)| < 5 · 10−4

b3v

g2
rlJ1+J3

x4 − T3c

(g2
rlJ1+J3)ωm

x4

(2-19)

The dynamics of x5(t) depend on whether x5(t) is above or below a threshold wth. It is
modeled in this way to avoid the occurrence of non-physical motion caused by numerical
errors. There is an additional case for the dynamics of x5 when locking occurs.

ẋ5(t) =



− b3v
J3
x5(t)− T3c

J3
+ x6(t)grlαp(t)

J3
if |x5(t)| ≥ wth

+(1− x6(t)) grlγ
J3(posfrac)

(
x5(t)− 1

grl
x4(t)

)
∧|s(t)| ≥ 5 · 10−4

1
wth

(
− b3vwth

J3
− T3c

J3

)
x5(t) + x6(t)grlαp(t)

J3
if |x5(t)| < wth

+(1− x6(t)) grlγ
J3(posfrac)(x5(t)− 1

grl
x4(t)) ∧|s(t)| ≥ 5 · 10−4

1/grl

− b1v

J1+ J3
g2
rl

x4(t)− T1c
J1+ J3

g2
rl

+ ω2
mfst( x4(t)

ωm
)

(J1+ J3
g2
rl

)fsk( x4(t)
ωm

)2

 if |s(t)| < 5 · 10−4

−1/grl

(
b3v

g2
rlJ1+J3x4 − T3c

(g2
rlJ1+J3)ωm

x4(t)
)

(2-20)

The state variable x6(t) is used to govern the transition between the first and second phase
of torque transfer in Equations 2-19 and 2-20. The hybrid dynamics of x6(t) are given by:

ẋ6(t) =
{

0 if pos(t) < fracsposc ∨ x6(t) > 1
β(x6(t) + ct) if pos(t) ≥ fracsposc ∧ x6 ≤ 1.

(2-21)

The functions fst : R 7→ R and fsk : R 7→ R are given in Equations 2-22 and 2-23 respectively.

fst(x) = −0.546x2 − 0.605x+ 1.93 (2-22)

fsk(x) = exp(5.72x− 0.377) + 11.8 (2-23)

The torque sensor that is installed on the experimental setup, measures the torque τ(t) =
T (ξ(t), ξ̇(t)) as:

T (ξ̇(t), ξ(t)) =

J3ẋ5(t) + b3vx5(t) + T3cx5(t)
wth

if x5(t) < wth

J3ẋ5(t) + b3vx5(t) + T3c if x5(t) ≥ wth
. (2-24)
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2-4 Simulating the system 13

2-4 Simulating the system

Before the system can be simulated, the parameter pmax, which is used to compute α, must
be computed. It is equal to p(tswitch), the contact pressure at t = tswitch and is computed
using a simulation of the filling phase. Its value only depends on the controller used in the
filling phase. Although its value will vary for different values of l, we only consider the value
generated by simulating the system for the nominal values of l for simplicity.

In this thesis we consider a single scenario where the motor turns constantly at 125.6637 rad/s
(1200 RPM) and we have a low inertia load which starts at a standstill. For this scenario,
the initial state ξ0 is equal to:

ξ0 = ξ(0) =



−1.472
2.2431 · 10−7 + 2k

s u(0)
−1.9306 · 103

120.1139
8.5069 · 10−7

0


(2-25)

2-5 Computing performance criteria

The engagement time is computed from the simulated trajectory by finding the first time
instance where |x4(t)− grlx5(t)| < 0.05 rad/s, so we have:

ε = 0.05 rad/s. (2-26)

The jerk j(t) = τ̇(t) = Ṫ (ξ̇(t), ξ(t)) is a function of ẍ5(t), since ẋ5(t) is not differentiable at

points in time where
[
ξ(t)
u(t)

]
is on the boundary of a region Ωi in general, j(t) is not properly

defined at all times. To overcome this issue, we redefine the time interval of jmax:

λ = [0, teng] \ {t :
[
ξ(t)
u(t)

]
∈ ∂Ωi}, (2-27)

wherein ∂Ωi denotes the boundary of Ωi. jmax is redefined as:

jmax = max
t∈λ
|j(t)|. (2-28)

2-6 Uncertainty model

The mismatch between this model and reality mainly comes from unmodelled dynamics. From
experiments it is known that this uncertainty can be captured by taking the parameters fracs
and co as intervals around their nominal value. fracs is the fraction of posc at which the clutch
plate contact pressure p(t) becomes equal to the oil pressure x1(t) and co is a constant which
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14 The wet clutch model

is used in the dynamics of x3(t). Full uncertainty is considered by taking these variables as
the following intervals respectively:

co ∈ C, C := [1.2cnom
o , 0.8cnom

o ] (2-29)
fracs ∈ F ,F := [0.8fracnom

s , 1.2fracnom
s ]. (2-30)

Therefore, for this model, we have:

l =
[
co

fracs

]
, (2-31)

and when we consider uncertainty we have:

L = C × F . (2-32)
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Chapter 3

Genetic Programming

In this Chapter we give a basic introduction to Evolutionary Algorithms (EAs) in Section 3-1
and explain the elements of GP in Sections 3-2 to 3-6. In Section 3-8 we explain which steps
must be taken before we can use GP to synthesize controllers for a wet clutch.

3-1 Evolutionary Algorithms

EAs are a collection of algorithms which try to solve problems by simulating natural evolution.
This is usually done by generating a random population of solutions or individuals and by
repeatedly forming new generations by applying genetic operators on good solutions from
the previous generations. These genetic operators typically combine elements of multiple
good individuals or apply random mutations on them to create new individuals. This process
of creating generations is repeated until a stopping criterion is met [15]. The general EA
procedure is summarized in Figure 3-1.

The most popular EA is Genetic Algorithm (GA), which was introduced by Holland in the
1970s [16]. GA encodes individuals as (usually fixed-length) character strings, much alike
chromosomes in natural organisms. Genetic Programming was introduced by Koza in the
1990s [17] as an extension of GA. It was developed as a way to automatically generate com-
puter programs. Instead of fixing the structure of the solution beforehand, individuals are
encoded as trees of which both the nodes and the structure are allowed to evolve. This
property is useful when the structure of the optimal solution is not known beforehand.
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16 Genetic Programming

Initialize population

Evaluate fitness

Termination criterion
satisfied?

Select parents

Apply genetic operations

Designate result

Figure 3-1: Schematic overview of the EA procedure.

3-2 Representation of individuals

In classical GP, expressions are represented by trees. In this way the structure of an expression
can be altered by altering the structure of the tree. In GP, individuals consist of a combination
of functions and terminals. Terminals can be either variables or constants and thus take
no arguments. The functions can be any arithmetic, mathematical or logical function and
take terminals or outputs from other functions as arguments. In Figure 3-2 the expression
(ab + sin (b))× (c+ d) is represented as a tree. The set of functions in this tree is equal to
{×,̂ ,+, sin }, the set of terminals is equal to {a, b, c, d}. The leaves of the tree consist of
terminals and the nodes of the tree consist of functions.

An individual that is generated from a set of terminals and a set of functions may not be
syntactically valid. For example when one takes 0 as the denominator in a division, it may
lead to an expression which is not mathematically defined. The problem of constructing
a terminal set and a function set such that any generated individual is valid is called the
problem of closure by Koza [17].
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×1

+2

ˆ4

a

8
b

9

sin5

b

10

+3

c6 d7

Figure 3-2: The expression (ab+sin (b))× (c+ d) represented as a tree, non-terminals are drawn
as double circles and terminals are drawn as single circles.

3-2-1 Grammar-guided Genetic Programming

A popular way to restrict the search space of GP is by using grammar. A grammar is a set of
rules that define which sentences in a language are syntactically correct. Such a mechanism
can also be used to define which expressions are allowed in GP. In this way the problem of
closure reduces to constructing a grammar that always lead to valid individuals. Additionally,
restricting the search space can be used to incorporate expert knowledge of structures of good
solutions. GP combined with a grammar is called Grammar-guided Genetic Programming
(GGGP). The use of a Context-Free Grammar (CFG) in combination with GP was proposed
by Wigham [18]. A CFG is defined by a four-tuple (N,Σ, P, S), where N is the non-terminal
alphabet, Σ is the terminal alphabet, P is the set of production rules and S is the designated
start symbol [18]. Production rules are rules that transform non-terminals into non-terminals
or terminals. We denote a production rule that transforms a into either b or c by: a → b|c.
The characteristic element of a CFG as opposed to other types of grammars is that the left
hand side of the production rules contain only one non-terminal and therefore the context of
the non-terminal in relation to other symbols surrounding it does not influence the derivation
of that non-terminal. A CFG G1 that is able to produce the expression from Figure 3-2 could
be given as G1 = (N1,Σ1, P1, S1), with:

N1 ={Prod, Sum,Expr,Var}
Σ1 ={a, b, c, d,×,+,̂ , sin, (, )}
P1 ={Prod→ Sum× Sum, Sum→ (Expr + Expr),Expr→ VarˆVar| sin (Var)|Var,

Var→ a|b|c|d}
S1 ={Prod}.

(3-1)

An individual is generated from a grammar by starting with a terminal or non-terminal from
S. Then each of the non-terminals that remain in the current expression is transformed by
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Prod

Sum

)Expr

Var

d

+Expr

Var

c

(

×Sum

)Expr

)Var

b

(sin

+Expr

Var

b

ˆVar

a

(

Figure 3-3: The expression (ab +sin (b))× (c+ d) represented as a derivation tree, derived from
G1.

selecting a random production rule from P . The derivation is completed when only terminals
remain in the expression. Figure 3-3 shows the derivation tree for the expression using G1.

3-3 Initialisation

The initial population is formed by deriving np random individuals from the grammar, where
np is the fixed amount of individuals in a population. In order to exclude the possibility of
creating infinitely big trees, a maximum tree depth is often desired. When the used gram-
mar contains recursive production rules, i.e. when a non-terminal can eventually produce an
expression containing the same non-terminal, a derivation tree can become infinitely large.
Wigham [18] proposed to restrict the tree depth by labeling each production rule with min-
imum number of derivation steps to create only terminals. In [19], a maximum tree depth
is ensured by separating the production rules into recursive and non-recursive rules. We can
limit the depth of a generated tree by selecting only non-recursive rules when a certain tree
depth is reached. Using this method we redefine a grammar to be (N,Σ, P, P ∗, S), where P ∗
is the set of non-recursive production rules.

3-4 Fitness

In EAs, fitness is a measure of the optimality of a solution. The fitness function should be
a function which assigns a high fitness to good solutions and a low fitness to bad solutions.
After the initial population is formed, it is assessed by its fitness so that fit individuals
have a higher chance of being selected for reproduction. For single-objective optimization
the selection of a fitness function is usually trivial. For the multi-objective optimization the
fitness function is usually more complex. The most popular technique for multi-objective
optimization is to have a ranking based on Pareto dominance as a fitness measure. This
ranking, in combination with niching techniques to encourage diversity of solutions, is mostly
used to handle multi-objective optimization in GP. A popular multi-objective optimization
algorithm is Non-dominated Sorting in Genetic Algorithm II (NSGA-II) [20]. NSGA-II makes
use of a non-dominated sorting mechanism introduced by Goldberg in [21]. This sorting
mechanism first computes the set of non-dominated individuals in the population and assigns
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3-5 Selection 19

these solutions, which are in the first non-dominated front, rank 1. Then, the next non-
dominated front is computed by repeating this computation, excluding the individuals of
rank 1. The new non-dominated front is assigned rank 2. This process is repeated until all
individuals are ranked. Then, to preserve diversity, a final ranking is computed by sorting the
population first by the non-domination rank and as a tie-breaker a crowding distance is used.
The crowding distance is a measure of area an individual represents in the objective function
space. The higher the crowding distance, the greater the distance to the nearest neighbors
in the population. An individual with equal non-domination rank is assigned a higher final
rank if it has a higher crowding distance.

3-5 Selection

The working principle of GP is the selection of good solutions from the previous generation
(parents) to form new solutions with better solutions (offspring). The two main techniques to
select parents are roulette wheel selection and tournament selection. Roulette wheel selection
assigns to each individual a probability of being selected as a parent that is proportional its
fitness. This is only useful when the fitness is proportional to the optimality of the solution,
which is not the case when we make use of a Pareto ranking, therefore we will use tournament
selection instead.

3-5-1 Tournament selection

In tournament selection, parents are selected by picking nt individuals randomly to participate
in a tournament, where nt is the tournament size. The winner of a tournament is the individual
with the highest fitness, or in the case of multi-objective optimization it is the individual with
(final) rank 1. The winner of a tournament is selected as a parent. The tournament size
determines the selection pressure of the algorithm. The higher the selection the pressure,
the more better individuals are favored. Increasing nt increases the selection pressure. A
high selection pressure improves the speed of convergence of the algorithm by exploiting the
current best solutions, but it also increases the chance of converging prematurely because of
a lack of exploitation [22].

3-5-2 Elitism

Elitism is the practice of preserving the best ne individuals of the previous generation into
the next generation, where ne is called the elitism number. By using elitism it is guaranteed
that the best solution of the next generation is at least as good as the best solution of the
previous generation. Empirical results have shown that elitism is an important factor in the
performance of Multi Objective Evolutionary Algorithms [23].

3-6 Genetic operations

When the parents are selected, genetic operations are applied to them in order to create
offspring. The two most commonly used genetic operations in GP are crossover and mutation.
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20 Genetic Programming

Both of these genetic operations find their inspiration in natural evolution.

3-6-1 Crossover

The crossover operator creates two offspring from two parents by swapping subtrees of each
parent. It is inspired by chromosomal crossover in sexual recombination. In GGGP, the
non-terminal at the root of both subtrees to be swapped must be equal, so that any offspring
is syntactically valid. In Figure 3-4 two individuals generated from the grammar G1 that
act as parents in this example are shown. In Figure 3-5 two offspring generated by applying
crossover to these parents are shown, two Expr subtrees were swapped to create two new
expressions.

Prod

Sum

)Expr

Var

d

+Expr

Var

c

(

×Sum

)Expr

)Var

b

(sin

+Expr

Var

b

ˆVar

a

(

(a) Parent 1: (ab + sin (b))(c+ d).
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)Expr

Var

a

ˆVar

d
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)Var

c

(sin

(
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)Expr

Var

a

+Expr

Var

d

ˆVar

b

(

(b) Parent 2: (bd + a)(sin (c)da).

Figure 3-4: Two example parents generated from G1.
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(a) Offspring 1: (ab + da)(c+ d).

Prod
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)Expr

)Var

b

(sin

+Expr
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c
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(
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)Expr

Var

a

+Expr

Var

d

ˆVar

b

(

(b) Offspring 2: (bd + a)(sin (c) +
sin (b)).

Figure 3-5: Two example offspring generated by applying crossover to the parents in Figure 3-4.
The Expr sin (b) of Parent 1 was swapped with the Expr da of Parent 2.

3-6-2 Mutation

The mutation operator takes one parent, selects a non-terminal to be mutated and randomly
rederives it to create one offspring. The inspiration for this genetic operator comes from the
random mutations that occur in natural genes. Figure 3-6 shows how mutation was used to
generate an offspring from the expression from Figure 3-3.
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)Expr
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)Var
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b
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Figure 3-6: An example of an offspring generated by applying mutation to the expression in
Figure 3-3. The Sum to the right (shown in bold) was rederived randomly, resulting in the
expression (ab + sin (b))(sin (d) + a).

3-7 GP parameters

In GP several parameters need to be defined by the user, generally it is not obvious what the
optimal values are for them.

3-7-1 Population size and amount of generations

The population size np is the most important parameter for controlling a GP run [24]. A
big population size means that a great diversity of solutions can be maintained, so that a
larger part of the Pareto optimal set of solutions can be found. The higher the amount of
generations, the more the population is allowed to evolve. The amount of fitness evaluations
is equal to the product of the population size and the amount of generations. For a given
computation time of the algorithm a trade-off must be made between population size and
amount of generations (assuming computation time of the fitness evaluation is dominant over
the computation time of the other computations in the algorithm).

3-7-2 Genetic operators probabilities

Genetic operators are applied at a user defined rate. It is not entirely clear how to choose
them in order to favor either exploration or exploitation [25]. Both crossover and mutation
have an element of random exploration of the search space. Mutation is able to introduce
expressions which are not present in the initial population. While crossover only combines
existing solutions the selection of nodes is random and can create individuals which have a
completely different fitness than its parents. Traditionally a crossover rate of >90% and a
mutation rate of 0 was suggested [17], but currently a 50-50 mixture of crossover and mutation
is considered to perform well [24].
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3-8 Applying GP to wet clutch controller synthesis

Our approach is to use GP to synthesize pairs of feedforward and feedback controllers for a
wet clutch. To be able to do this, we have to make several design choices.

3-8-1 Grammar

First of all we need to select a grammar from which controller can be generated. Since a
feedforward controller takes different a input than feedback controller, different grammars
are need for each controller type. The feedforward controller takes only time as an input
and the feedback controller takes the states variables which are available for control: the oil
pressure x1(t and the angular velocities of the input and output shafts x4(t) and x5(t).

3-8-2 Fitness evaluation and selection

In wet clutch control the objective is to minimize both jmax and teng, however the fitness
function should be maximized to optimize performance. In order to have an infinite jmax and
teng correspond to a fitness value of

[
0 0

]
and a jmax and teng of 0 correspond to

[
1 1

]
, we

choose the fitness function as in Equation 3-2.

fitness(u) =
[

1
1+tueng

1
1+ju

max

]
(3-2)

Since we are interested in finding the Pareto optimal set of controllers, the obvious choice is
to use non-dominated sorting and tournament selection. To evaluate the fitness function we
use either simulations or reachability analysis. Since fitness evaluation takes a considerable
amount of time compared to all other computations, the amount of fitness evaluations is the
limiting factor of the speed the algorithm.

3-8-3 Termination criterion

The termination criterion is usually chosen so that the algorithm terminates when a certain
fitness is achieved or when a maximum generation count genmax is reached. For multi-objective
optimization it is not straightforward to choose a fitness threshold and we will use only a
genmax termination criterion.

3-8-4 Designate result

After the termination criterion is reached the result of the algorithm must be designated. The
goal of Problem 1 is to find the set of Pareto optimal controllers, therefore we designate the
result of a run of GP as the non-dominated front of all generations combined.
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Chapter 4

Evaluating worst case performance

In order to measure the robustness of the performance of a found controller, we want to
be able to find an upper bound of the maximum jerk and engagement time associated to
them. Since the model we consider has uncertain parameters which lie inside an infinite set,
an infinite amount of simulations would be needed to find a formal guarantee on the lower
bound on the performance. Instead we will use reachability analysis to achieve this.

4-1 Reachability analysis

Reachability analysis tries to compute the set states which are is reachable by a system in
a certain time interval or at a certain point in time. Because every behaviour of the system
is included in it, reachable sets can be used to formally verify properties of the system.
Most research in the field of reachability analysis was motivated by the verification of safety
properties [26], i.e. verifying whether a system avoids a set of unsafe states. Since computing
the exact reachable set is undecidable for hybrid systems in general [27], most techniques for
hybrid systems aim at the computation of over-approximations of the reachable set. Over-
approximations of the reachable set can still be used to verify safety properties on systems.
This principle also applies for the problem of finding a lower bound on the performance of a
controller for a wet clutch. If we find an over-approximation of the reachable set for a clutch
engagement and then compute the worst case performance for that over-approximation, the
performance of all other possible trajectories is guaranteed to be at least as good as the worst
case performance.

4-1-1 Reachable set

The reachable set R(t) of a system ξ̇(t) = f(ξ(t), u(t), l), at a certain point in time r can be
defined similarly as in [28]:

R(r) =
{
ξ(r) =

∫ r

0
f(ξ(t), u(t), l)dt | ξ(0) ∈ X0, l ∈ L, ∀t ∈ [0, r] : u(t) ∈ U ,

}
(4-1)
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24 Evaluating worst case performance

Where X0 is the initial set of states, U is the set of possible inputs and L is the set of possible
parameters. The reachable set for a time interval [0, r] is defined as the union of all reachable
sets of all points in time of that interval [28]:

R([0, r]) =
⋃

t∈[0,r]
R(t) (4-2)

4-1-2 Hybrid reachability

In order to compute R for a hybrid system, it is usually necessary to model the system as a
hybrid automaton. We define a hybrid automaton as in [29]:

Definition 2. A hybrid automaton HA is a 9-tuple (Z, z0, X,X0, inv,Tr, g, jump, f) where

• Z ⊆ N is a finite set of locations with an initial location z0 ∈ Z,

• X ⊆ Rn, ξ(t) ∈ X is the continuous state space,

• X0 ⊆ X, ξ(0) ∈ X0 is the initial continuous set,

• inv is the invariant function inv : Z 7→ 2X that assigns an invariant inv(z) ⊆ X to each
location z ∈ Z,

• Tr is the set of discrete transitions Tr ⊆ Z × Z,

• g is the guard function g : Tr 7→ 2X that assigns a guard set g(tr) ⊆ X to each transition
tr = (z1, z2) ∈ Tr,

• j is the jump function j : Tr × X 7→ 2X that assigns a jump set j(tr, ξ) ⊆ X to each
pair tr ∈ Tr and ξ ∈ g(tr),

• f : Z 7→ (X 7→ Rn) is the flow function that assigns a continuous vector field f(z) to each
location z ∈ Z. The continuous evolution in z is determined by the ODE ξ̇ = f(z, ξ(t)).

The evolution of a hybrid automaton can be described as follows [30]: a hybrid automation
starts at t = 0 at the location z(0) = z0 and an initial state ξ(0) ∈ X0, the evolution of
the continuous state is governed by the flow function assigned to the current location. A
transition can be taken when the continuous state is within the corresponding guard set, it
has to be taken if the state would otherwise leave the invariant. The system state is updated
according to the jump function when a transition is taken from one location to the next. In
[29] the reachable set of a hybrid automaton is given as:

Definition 3. Let S =
⋃
z∈Z

⋃
x∈inv(z)(z,x) denote the set of hybrid states (z, x) of a hybrid

automaton HA. Then, each possible run of HA is a sequence σ = {s0, s1, . . . }, if and only if:

• the initial hybrid state is s0 = (z0, ξ0) with ξ0 ∈ X0,

• each pair of consecutive states (si, si+1) ∈ σ with si = (zi, ξi) and si+1 = (zi+1, ξi+1)
satisfies:
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4-2 Wet clutch model as a hybrid automaton 25

– either (discrete transition) (zi, zi+1) ∈ Tr, xi ∈ g((zi, zi+1)) and
ξi+1 ∈ j((zi, zi+1), xi);

– or (continuous evolution) zi = zi+1 and there exists χ : [0, τ ] 7→ X, τ ∈ R>0 such
that ξi = χ(0), χ̇(t) = f(zi, χ(t)), χ(t) ∈ inv(zi) for t ∈ [0, τ ] and ξi+1 = χ(τ).

If Σ is the set of all possible runs of HA, the reachable set is defined by R = {s|∃σ ∈ Σ : s ∈
σ} ⊆ S, i.e. R contains all hybrid states that are elements of at least one run σ.

If we are able to find an over-approximation of R for the wet clutch model, an input and an
uncertain parameters set, we have an over-approximation of all behaviours the system and
we can compute the worst case performance of the system.

4-2 Wet clutch model as a hybrid automaton

First, we have to express the model as introduced in Chapter 2 as a hybrid automaton. From
analyzing simulations of the system, 7 modes which were always visited in the same order
can be identified. For completeness, all locations and transitions that could theoretically be
visited should be model, but for simplicity we only implement the locations and the transition
order which was found for these simulations. We name a mode for which z = i, modei and
we have Z = {1, 2, . . . , 7}.
The system starts in mode1 (for which z = 1). In this mode the piston has not start moving
yet and x3(t) < 0, meaning that the piston position pos1(t) = 0. Therefore the invariant
related to this mode is active when x3 < 0. To determine the flow at this mode, we need to
look which case for each of the parts of the dynamics is true at this point. Since x6(t) < 1,
posfrac(t)(t) ≤ 0, |x4(t)−grlx5(t)| ≥ 5 ·10−4, |x5(t)| < wth and pos1(t) < fracsposc∨x6(t) > 1,
the flow of mode1 is given as in Equations 4-3 and 4-4.

ξ̇(t) = f1(ξ(t)) =



ẋ1(t) = x2(t)− 2k
s uff(t)

ẋ2(t) = − 6
s2x1(t)− 4

s (x2(t)− 2k
s uff(t))− 6ak

s2 + 6k
s2 uff(t)

ẋ3(t) = b2
c2
x1(t) + a2

c2
(x2(t)− 2k

s uff(t))− d2
c2
x3(t)− cob2

c2

ẋ4(t) = − b1v
J1
x4(t)− T1c

J1
− γ

J1posdiff(t)

(
x5(t)− 1

grl
x4(t)

)
+ ω2

mfst( x4(t)
ωm

)

J1fsk( x4(t)
ωm

)

ẋ5(t) = 1
wth

(
− b3vwth

J3
− T3c

J3

)
x5(t) + grlγ

J3posdiff(t)

(
x5(t)− 1

grl
x4(t)

)
ẋ6(t) = 0

(4-3)

p(t) = 105

pos1(t) = 0
pos2(t) = pos1

(4-4)

The system transitions to mode2 when x3(t) > 0, so the guard of transition 1: becomes
active when x3 > 0. When this transition is taken, the piston starts moving and we have
pos1 = ktx3(t). The flow of mode2 is given by Equations 4-5 and 4-6.

ξ̇(t) = f2(ξ(t)) = f1(ξ(t)) (4-5)
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26 Evaluating worst case performance

p(t) = 105

pos1(t) = ktx3(t)
pos2(t) = pos1(t)

(4-6)

The system transitions to mode3 when the guard of transition 2: ktx3(t) ≥ posc
fracs

becomes
active, therefore we choose the invariant of mode2 as ktx3(t) < posc

fracs
. When this transition

is taken, the contact pressure p(t) starts to depend on pos1(t) and x1(t), also x6(t) starts to
increase. The flow of mode3 is given by Equations 4-7 and 4-8.

ξ̇(t) = f3(ξ(t)) =



ẋ1(t) = x2(t)− 2k
s uff(t)

ẋ2(t) = − 6
s2x1(t)− 4

s (x2(t)− 2k
s uff(t))− 6ak

s2 + 6k
s2 uff(t)

ẋ3(t) = b2
c2
x1(t) + a2

c2
(x2(t)− 2k

s uff(t))− d2
c2
x3(t)− cob2

c2

ẋ4(t) = − b1v
J1
x4(t)− T1c

J1
− (1− x6(t)) γ

J1posdiff(t)

(
x5(t)− 1

grl
x4(t)

)
−x6(t)αp(t)J1

+ ω2
mfst( x4(t)

ωm
)

J1fsk( x4(t)
ωm

)

ẋ5(t) = 1
wth

(
− b3vwth

J3
− T3c

J3

)
x5(t) + (1− x6(t)) grlγ

J3posdiff(t)

(
x5(t)− 1

grl
x4(t)

)
+x6(t)grlαp(t)

J3

ẋ6(t) = β(x6(t) + ct)
(4-7)

p(t) = posfrac(t)105x1(t) + 105

pos1(t) = ktx3(t)
pos2(t) = pos1(t)

(4-8)

The system transitions to mode4 when the guard of transition 3: x5(t) ≥ wth becomes active,
the invariant of mode3 is active when x5(t) < wth. When this transition is taken the dynamics
of x5 change because the speed of the output axis exceeds the threshold wth. The flow of
mode4 is given by Equations 4-9 and 4-10.

ξ̇(t) = f4(ξ(t)) =



ẋ1(t) = x2(t)− 2k
s uff(t)

ẋ2(t) = − 6
s2x1(t)− 4

s (x2(t)− 2k
s uff(t))− 6ak

s2 + 6k
s2 uff(t)

ẋ3(t) = b2
c2
x1(t) + a2

c2
(x2(t)− 2k

s uff(t))− d2
c2
x3(t)− cob2

c2

ẋ4(t) = − b1v
J1
x4(t)− T1c

J1
− (1− x6(t)) γ

J1posdiff(t)

(
x5(t)− 1

grl
x4(t)

)
−x6(t)αp(t)J1

+ ω2
mfst( x4(t)

ωm
)

J1fsk( x4(t)
ωm

)

ẋ5(t) = − b3v
J3
x5(t)− T3c

J3
+ (1− x6(t)) grlγ

J3posdiff(t)

(
x5(t)− 1

grl
x4(t)

)
+x6(t)grlαp(t)

J3

ẋ6(t) = β(x6(t) + ct)
(4-9)

p(t) = posfrac(t)105x1(t) + 105

pos1(t) = ktx3(t)
pos2(t) = pos1(t)

(4-10)
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4-2 Wet clutch model as a hybrid automaton 27

The system transitions to mode5 when the guard of transition 4: x6(t) ≥ 1 becomes active,
the invariant of mode4 is active when x6(t) < 1. This transition is taken when x6(t) reaches
1 and the transition from the first phase to the second phase of torque transfer is completed.
The flow of mode5 is given by Equations 4-11 and 4-12.

ξ̇(t) = f5(ξ(t)) =



ẋ1(t) = x2(t)− 2k
s uff(t)

ẋ2(t) = − 6
s2x1(t)− 4

s (x2(t)− 2k
s uff(t))− 6ak

s2 + 6k
s2 uff(t)

ẋ3(t) = b2
c2
x1(t) + a2

c2
(x2(t)− 2k

s uff(t))− d2
c2
x3(t)− cob2

c2

ẋ4(t) = − b1v
J1
x4(t)− T1c

J1
− αp(t)

J1
+

ω2
mfst

(
x4(t)
ωm

)
J1fsk

(
x4(t)
ωm

)2

ẋ5(t) = − b3v
J3
x5(t)− T3c

J3
+ grlαp(t)

J3

ẋ6(t) = 0

(4-11)

p(t) = posfrac(t)105x1(t) + 105

pos1(t) = ktx3(t)
pos2(t) = 1

(4-12)

The system transitions to mode6 when the guard of transition 5: ktx3(t) ≥ posc becomes
active, the invariant of mode5 is active when ktx3(t) < posc. From this point the piston is
fully extended and we switch to feedback control. The flow of mode6 is given by Equations
4-13 and 4-14.

ξ̇(t) = f6(ξ(t)) =



ẋ1(t) = x2(t)− 2k
s ufb(ξ(t))

ẋ2(t) = − 6
s2x1(t)− 4

s (x2(t)− 2k
s ufb(ξ(t)))− 6ak

s2 + 6k
s2 ufb(ξ(t))

ẋ3(t) = b2
c2
x1(t) + a2

c2
(x2(t)− 2k

s ufb(ξ(t)))− d2
c2
x3(t)− cob2

c2

ẋ4(t) = − b1v
J1
x4(t)− T1c

J1
− αp(t)

J1
+

ω2
mfst

(
x4(t)
ωm

)
J1fsk

(
x4(t)
ωm

)2

ẋ5(t) = − b3v
J3
x5(t)− T3c

J3
+ grlαp(t)

J3

ẋ6(t) = 0

(4-13)

p = posfrac(t)105x1(t) + 105

pos1(t) = posc

pos2(t) = 1
(4-14)

When the guard of transition 6: x5(t)− x4(t)
grl

>= 5 · 10−4 becomes active, the system enters
the final mode, mode7. In the model, no transition to another mode can be taken because the
behaviour of the system is not of interest for the performance criteria, therefore the invariant
set for mode7 is equal to the state space X. The flow of mode7 is given by Equations 4-15
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28 Evaluating worst case performance

and 4-16.

ξ̇(t) = f7(ξ(t)) =



ẋ1(t) = x2(t)− 2k
s ufb(ξ(t))

ẋ2(t) = − 6
s2x1(t)− 4

s (x2(t)− 2k
s ufb(ξ(t)))− 6ak

s2 + 6k
s2 ufb(ξ(t))

ẋ3(t) = b2
c2
x1 + a2

c2
(x2(t)− 2k

s ufb(ξ(t)))− d2
c2
x3(t)− cob2

c2

ẋ4(t) = − b1v

J1+ J3
g2
rl

x4(t)− T1c
J1+ J3

g2
rl

+ ω2
mfst( x4(t)

ωm
)

(J1+ J3
g2
rl

)fsk( x4(t)
ωm

)2
− b3v

g2
rlJ1+J3x4(t)

− T3c
(g2

rlJ1+J3)ωm
x4(t)

ẋ5(t) = 1
grl

− b1v

J1+ J3
g2
rl

x4(t)− T1c
J1+ J3

g2
rl

+ ω2
mfst( x4(t)

ωm
)

(J1+ J3
g2
rl

)fsk( x4(t)
ωm

)2


− 1
grl

(
b3v

g2
rlJ1+J3x4(t)− T3c

(g2
rlJ1+J3)ωm

x4(t)
)

ẋ6(t) = 0
(4-15)

p(t) = posfrac(t)105x1(t) + 105

pos1(t) = posc

pos2(t) = 1
(4-16)

Since ξ(t) does not jump during any transition, every reset map is the identity map. See
Figure 4-1 for a schematic overview of this hybrid automaton.

mode1

ξ̇ = f1(ξ)
x3 < 0

ξ0

mode2

ξ̇ = f2(ξ)
ktx3 <

posc
fracs

mode3

ξ̇ = f3(ξ)
x5 < wth

mode4

ξ̇ = f4(ξ)
x6 < 1

mode5

ξ̇ = f5(ξ)
x3 <

posc
fracs

mode6

ξ̇ = f6(ξ)
x5 − x4

grl
< 5 · 10−4

mode7

ξ̇ = f7(ξ)
ξ ∈ X

x3 ≥ 0

ktx3 ≥ posc
fracs

x5 ≥ wth
x6 ≥ 1

x3 ≥ posc
kt

x5 − 1/grlx4
>= 5 · 10−4

Figure 4-1: Schematic representation of the wet clutch model as a hybrid automaton. Transitions
from one mode to another are drawn as arrows with the related guard written next to them. Each
circle represents a node, the name of the mode, the dynamics of the mode and the invariant are
listed inside them.
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4-3 Flow∗ implementation 29

Several tools to compute R for this hybrid automaton exist. Most notably CORA [30],
Flow∗ [13] and ARIADNE[31]. We chose to use Flow∗ because we found it to be the most
user-friendly tool.

4-3 Flow∗ implementation

Flow∗ can compute the reachable set for a specified time interval of system modeled by a
hybrid automaton as a finite set of Taylor Models (TMs). The definition of a TM as given in
[32] is:

Definition 4. A Taylor Model (TM) is denoted by a pair (p, I) such that p is a polynomial
over a set of variables x ranging in an interval domain D, and I is the interval remainder.
Given a TM (p, I) and a function f which are over the same domain D, we say that f is
over-approximated by (p, I) if f(x) ∈ p(x) + I, ∀x ∈ D.

Because the uncertainties in our model are non-time-varying and Flow∗ assumes all uncertain
variables to be time-varying, we embed the uncertain variables into the hybrid automaton as
states with derivatives equal to zero. We set the initial set of them equal to the interval their
value may attain. Additionally a clock is needed to compute the feedforward control input.
The augmented state vector ξaug ∈ Xaug = Rnaug we use in Flow∗ is equal to

ξaug(t) =

ξ(t)l
t

 =


ξ(t)
fracs
co
t

 , (4-17)

the dynamics for the augmented state in mode i is equal to

ξ̇aug(t) = faug,i(ξaug(t)) =


fi(ξ(t))

0
0
1

 . (4-18)

Flow∗ takes a model file as an input and outputs an output file containing the set of TMs
and the computation path which indicates the time intervals at which transitions take place.
The parameters in Flow∗ that need to be specified by the user are the time interval [0,∆]
for which the reachable set is computed, the TM order, the time step size, an estimate for
the remainder interval, a cutoff threshold and a precision. The cutoff threshold ε is used
to simplify TMs: each polynomial that is within [−ε, ε] is stored in the remainder interval.
The remainder estimate ϕ is used as an initial estimate for the remainder interval in a TM
computation. In our experience, a choice of a remainder estimate of 10−5, a cutoff threshold
of 10−6, is the best for this specific problem. For these settings we chose an adaptive time
step size of [10−6, 0.01] seconds and a TM order of 4. For our model an adaptive step size
is useful because for some parts of the reachable set computation, a very small step size was
needed, while for other parts a significantly bigger step size could be used.

Master of Science Thesis R. Oskam



30 Evaluating worst case performance

4-4 Extracting teng from the output file

Included in the output file from Flow∗ is a computation path representing the time intervals
at which each transition is taken. A transition from modex to modey is outputted as

1 modex ( ni , [ timin , timax ] ) −> modey ,

with ni denoting the ith transition taken and timin and timax denoting the lower and upper
bound of the time, measured from the previous transition, at which transition i is taken
respectively. Since the engagement time is equal to the first time instance where |x4(t) −
grlx5(t)| < ε, we can extract the worst case engagement time from the computation path
by splitting mode6 into two modes with equal dynamics: mode6,1 and mode6,2. By replacing
mode7 (which is not needed to compute the worst case performance) with mode6,2 and picking
the appropriate invariants and guards for mode as shown in Figure 4-2, the engagement time
is equal to the time at which mode6,2 is reached.

mode1

ξ̇aug = faug,1(ξaug)
x3 < 0

ξaug,0

mode2

ξ̇aug = faug,2(ξaug)
ktx3 <

posc
fracs

mode3

ξ̇aug = faug,3(ξaug)
x5 < wth

mode4

ξ̇aug = faug,4(ξaug)
x6 < 1

mode5

ξ̇aug = faug,5(ξaug)
x3 <

posc
fracs

mode6,1

ξ̇aug = faug,6(ξaug)
x5 − x4

grl
< 5 · 10−4

mode6,2

ξ̇aug = faug,6(ξaug)
ξaug ∈ Xaug

x3 ≥ 0
ktx3 ≥ posc

fracs

x5 ≥ wth
x6 ≥ 1

x3 ≥ posc
kt

x5 − x4
grl

>= −0.05

Figure 4-2: Modified hybrid automaton.

Since, each time interval in the computation path is the time that has passed since the last
transition was taken, the worst case engagement time tu,Leng is obtained by taking the sum of
the maximum value of the time for each transition:

tu,Leng = Σi∈{1,...6}timax (4-19)

These values are outputted in a Flow∗ computation path as shown in Listing 4.1.
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4-5 Computing jmax from the reachable set 31

Listing 4.1: A Flow∗ computation path.
1 mode1 ( n1 , [ t1min , t1max ] ) −> mode2 ( n3 , [ t2min , t2max ] ) −>
2 mode3 ( n3 , [ t3min , t3max ] ) −> mode4 ( n4 , [ t4min , t4max ] ) −>
3 mode5 ( n5 , [ t5min , t5max ] ) −> mode61 ( n6 , [ t6min , t6max ] ) −>

mode62 ;

4-5 Computing jmax from the reachable set

As opposed to the worst case engagement time, the worst case jerk cannot be directly extracted
from the output file and we cannot simply numerically differentiate TMs as we did when
computing the jerk in a MATLAB simulation. Instead we will compute the worst case jerk
by finding a direct mapping from the states to the jerk. The torque is given as in Equation
2-24 and since j(t) = τ̇(t) = Ṫ (ξ̇(t), ξ(t)), we have

j(t) = Ṫ (ξ̇(t), ξ(t))

=

J3ẍ5(t) + b3vẋ5(t) + T3cẋ5(t)
wth

if x5(t) < wth

J3ẍ5(t) + b3vẋ5(t) if x5(t) > wth.

(4-20)

Since x5 < wth for mode1, mode2 and mode3 and x5 > wth for the other modes we have

T1(ξ̇(t), ξ(t)) = T2(ξ̇(t), ξ(t)) = T3(ξ̇(t), ξ(t)) = J3ẍ5(t) + b3vẋ5(t) +
T3cẋ5(t)
wth
(4-21)

T4(ξ̇(t), ξ(t)) = T5(ξ̇(t), ξ(t)) = T6(ξ̇(t), ξ(t)) = T7(ξ̇(t), ξ(t)) = J3ẍ5(t) + b3vẋ5(t), (4-22)

where Ti(ξ̇(t), ξ(t)) is the torque function for mode i. We can then find the jerk map
jz,ξaug(z, ξaug) per mode: jz,ξaug : Z ×Xaug 7→ R, as

ji,ξaug(i, ξaug(t)) = dTi(ξ̇aug(t), ξaug(t))
dt

= dTi
dξaug

dξaug
dt

+ dTi

dξ̇aug

dξ̇aug
dt

= dTi
dξaug

faug,i(ξaug(t)) + dTi

dξ̇aug

(
dfaug,i(ξaug)

dt

)

= dTi
dξaug

faug,i(ξaug(t)) + dTi

dξ̇aug

(
dfaug,i(ξaug)

dξaug

dξaug
dt

)

= dTi
dξaug

faug,i(ξaug(t)) + dTi(ξ̇aug, ξaug)
dξ̇aug

(
dfaug,i(ξaug)

dξaug
faug,i(ξaug(t))

)
.

(4-23)

This function be computed using symbolic differentiation in Mathematica, the resulting
jerk maps can be found in Appendix B.

The over-approximation of the reachable set for an input u, which we will call R̂u, is outputted
by Flow∗ as a list of triples (ζ̂i, νi, zi) for i ∈ {1, . . . , y}. Where ζ̂i is a TM over-approximating
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ξaug(t) for the time interval νi, ∀t ∈ νi : ξaug(t) ∈ ζ̂i. And zi is the mode of the system in νi,
∀t ∈ νi : z = zi. The over-approximation of the reachable set R̂u ⊇ Ru is given as:

R̂u =
⋃

i∈{1,...,y}
ζ̂i.

Using interval arithmetic in Mathematica, we first convert each ζ̂i to state intervals µ̂i ∈ I,
such that ∀t ∈ νi : ξaug(t) ∈ µ̂i ⊇ ζ̂i. By feeding each µ̂i in combination with the corresponding
mode through jz,ξaug , we obtain a jerk interval ψi = jz,ξaug(zi, µ̂i) such that ∀t ∈ νi : j(t) ∈ ψi.
In this case the jerk map jz,ξaug maps state intervals to jerk intervals: jz,ξaug : Z × Inaug 7→ I.

ψi =
{
jz,ξaug(zi, x)|x ∈ µ̂i

}
(4-24)

Using interval arithmetic we can find an over-approximation of this jerk interval: ψ̂i ⊇ ψi.
See Figure 4-3 for a schematic overview of how we compute jerk intervals for an input pair
(uff , ufb). The over-approximation of the worst case jerk is then given by:

ju,Lmax = max
i

max ψ̂i. (4-25)

This result is an over-approximation of the actual worst case jerk because the reachable set
computation as well as the conversion from TM to jerk interval using interval arithmetic is
conservative in nature.

Flow∗

Convert TM
to interval jz,ξaug

ufb

uff
TMs
ζ̂i

State intervals
µ̂i

Jerk intervals
ψ̂i

Figure 4-3: Schematic overview of how we compute jerk intervals for an input pair (uff , ufb).

4-6 Example

As an example we will consider a simple controller u(t), with uff(t) = 0.1 and ufb(ξ(t)) = 0.063.
We use this simple piece-wise linear controller, because more complex controllers gave issues
in the computation of the reachable set. For this controller we will try to compute tu,Leng and
ju,Lmax for L = [1.2cnom

o , 0.8cnom
o ]× [0.985fracnom

s , 1.015fracnom
s ]. The found reachable set as well

using the model file in Appendix C, as the trajectories for a simulation with the nominal
parameters for each state can be seen in Figure 4-4. From the computation path we extract
that tu,leng ∈ [0.9974, 1.1832] seconds, so we find tu,Leng = 1.1832 seconds, the nominal engagement
time for this controller is equal to 1.091 seconds. The worst case maximum jerk that was
found is ju,Lmax = 9.7 · 105, while for the nominal simulation jmax = 5.174 · 103.
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(a) (b)

(c) (d)

(e) (f)

Figure 4-4: The reachable set found in Flow∗ for each state is shown in green, the trajectory
for a single simulation with nominal parameters is shown in black.
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Chapter 5

Synthesizing feedback controllers
without considering uncertainty

In this Chapter we consider Subproblem 1. The task here is to find a feedback controller,
given a fixed feedforward controller for the filling phase. For the filling phase we take
the baseline feedforward controller uff,baseline(t) shown in in Figure 5-1. The performance
(teng,baseline, jmax,baseline) which is achieved by using this controller for both the filling and
the slipping phase is equal to (1.036, 680.979). This feedforward controller is a hand-tuned
controller which was designed for model validation experiments by FlandersMake. It serves
as a baseline controller in this thesis. We chose to use this input because no other controllers
were available to use for this model. The simulation results in this thesis cannot be compared
with the experimental results in [2], because the torque signal was too noisy to directly dif-
ferentiate and therefore a different, filtered, jerk measure was used in practice. We use the
model from Section 2 with the nominal parameters, so there is no uncertainty in the model,
hence we take L to be the singleton:

L =
[

cnom
o

fracs
nom

]
. (5-1)
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u
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Figure 5-1: Baseline feedforward control input uff,baseline(t).

5-1 Implementation

For the implementation of the GP algorithm we use a combination of MATLAB [33] and
Mathematica [34]. A MATLAB m-file to simulate the system was developed by Flanders-
Make. By substituting a feedback controller into the differential equations, we can simulate
the system for a given feedback controller. From the computed trajectories the performance
related to the controller can be computed. We simulate the system for 3 seconds and when
the clutch does not engage within this time or becomes unstable, an engagement time of 5
seconds and a maximum jerk of 107 rad/s3 is assigned to the controller:

fitness(u) =


[

1
1+tengu

1
1+jmaxu

]
if tengu ≤ 3 s[

1
1+5

1
1+107

]
if tengu > 3 s

. (5-2)

GP as described in Chapter 3 was implemented in Mathematica. We use MATLink [35]
to communicate the controllers from Mathematica to MATLAB and to communicate the
obtained teng and jmax from MATLAB to Mathematica. See Figure 5-2 for an overview of
the used architecture.
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Genetic operations

Simulations

Controllers

Fitness

Figure 5-2: General architecture used for controller synthesis using simulations. Controllers are
evolved by applying genetic operations to the previous generation in Mathematica. The new
controllers are used in MATLAB simulations to determine their performance. The performance
is used in turn to generate a new generation of controllers in Mathematica.

5-2 Parameters and grammar

We chose the parameters to generate the results of Section 5-3 as shown in Table 5-1.

Name Value Meaning
genmax 10 Amount of generations
np 40 Population size
dmax 7 Tree depth at which only recursive production rules are used
ne 4 Elitism number
nt 10 Tournament size
Prcrossover 50% Crossover probability
Prmutation 50 % Mutation probability

Table 5-1: The meaning and value of the variables used in the experiment.

These parameters are not optimized in any sort of rigorous fashion and are by no means
optimal. The chosen grammar Gfb = (Nfb,Σfb, Pfb, P

∗
fb, Sfb) is given by:

Nfb = {S,Pol,Mon,Var,Constant} (5-3)
Σfb = {(, ), ·,+,−, x1, x4, x5, uswitch, x1,switch, x4,switch, x5,switch, grl} (5-4)
P ∗fb = {Pol→ Constant ·Mon,Mon→ Var,Var→ {x1 − x1,switch,

(x4 − grrlx5)− (x4,switch − grlx5,switch), x4 − x4,switch, x5 − x5,switch}, (5-5)
Constant→∼ [−0.01, 0.01]} (5-6)

Pfb = {P ∗fb,Pol→ (Pol + Pol),Mon→ Mon ·Var} (5-7)
Sfb = {uswitch + Pol}. (5-8)
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38 Synthesizing feedback controllers without considering uncertainty

Here, uswitch, x1,switch, x4,switch and x5,switch denote u(tswitch), x1(tswitch), x4(tswitch) and x5(tswitch)
respectively. By choosing the grammar in this way, it is guaranteed that u(t) is continuous at
t = tswitch, which is desirable because a discontinuity in the controller leads to spikes in the
jerk. This grammar ensures that the feedback controller will be a polynomial of the available
state variables and s(t) = x4(t)− grlx5(t). s(t) is included in the grammar because the goal is
to drive this quantity to 0 in the slipping phase, therefore it is logical to incorporate this as
expert knowledge in the grammar. A polynomial is a logical initial choice for the resulting
function, because any analytic function can be approximated by a polynomial.

5-3 Results

The result of a run with these settings is shown in Figure 5-3. We observe that the non-
dominated front that was found roughly intersects with the performance of ubaseline. For
individuals that are close to ubaseline in terms of performance, jmax slowly increases for faster
values of teng. But for individuals with a teng < 0.85 s, the maximum jerk deteriorates much
more for an improvement in the engagement time. This could be explained by the fact that
the performance is expected to be closer to the actual Pareto optimum around teng,baseline
and jmax,baseline, because fixed feedforward control input was designed to perform well for an
engagement time of around 1 second.
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FB results

Figure 5-3: Results of the experiment. Each dot represents the performance of the final result.
The standard performance (teng,baseline, jmax,baseline) is shown as the dotted lines.

One found controller ufb,1(ξ(t)) = 0.06338− 0.00015763(x4− 105.8337) was Pareto dominant
with respect to ubaseline, with a performance of (1.034, 679.017). It slightly improved upon
ubaseline in both control objectives. The control input of this controller is compared to the
baseline input in Figure 5-4. It can be seen that the control input is very similar to ubaseline
and managed to outperform it by applying a slightly higher control input. Another controller
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Figure 5-4: The input for ufb,1(ξ) = 0.0633558− 0.000157629(x1 − 10.5.834) is plotted in red
and the ubaseline is plotted in blue. The dotted lines indicate tswitch and teng. For this controller
jmax = rad/s3 and teng =s.

from the resulting non-dominated front is ufb,2(ξ) = 0.0633558− 0.000157629(x1 − 10.5.834).
The control input for this controller is compared in Figure 5-5. This controller smoothly
increases from 0.063 to about 0.12 V to achieve a teng of 0.894 s and a jmax of 1221.68 rad/s3,
significantly improving the speed of the engagement, but also significantly increasing jmax.
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Figure 5-5: The input for ufb,2(ξ) = 0.0633558 + 0.0026824(x5 − 4.03066) is plotted in red
and the ubaseline is plotted in blue. The dotted lines indicate tswitch and teng. For this controller
jmax = 1221.68 rad/s3 and teng = 0.894s.
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Chapter 6

Synthesizing feedforward and feedback
controllers without considering

uncertainty

In this Chapter we consider Subproblem 2 and add the task of synthesizing the feedforward
controller ourselves to Subproblem 1.

6-1 Feedforward control grammar

Since we need to synthesize the full controller u(t), we also need a grammar Gff to synthesize
feedforward controllers. From literature [2] it is known that a high initial input current is
needed in the filling phase to ensure a good performance. The baseline controller in Figure 5-1
starts with the maximum input of 0.2 V for about 0.25 s, followed by a transition to an input
value of about 0.063 V. Because the transition between input values should not be abrupt to
avoid jerk spikes, we will use the logistic function Hs, which is a smooth approximation of
the step signal:

Hs(t, t0, k) = 1
1 + exp(−2k(t− t0)) , (6-1)

wherein t0 is the step time and k is a measure of steepness of the transition: k = 2Ḣs(t0, t0, k).
The shape of the curve of this function for different values of k can be seen in Figure 6-1.
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Figure 6-1: The logistic function Hs(t) for t0 = 1.5 and different values of k.

A simple grammar Gff = (Nff ,Σff , Pff , P
∗
ff ) to synthesize feedforward controllers like the base-

line controller could be chosen as:

Nff = {Sff ,h1,h2, t1, t2, k,Hs} (6-2)
Σff = {(, ),+,−, ·, /, exp, t} (6-3)
Pff = {} (6-4)
P ∗ff = {Sff → h1Hs(t, t1, k)− (h1 − h2)Hs(t, t2, k), h1 →∼ [0.19, 0.2], (6-5)
h2 →∼ [0.04, 0.09], t1 → 0, t2 →∼ [0.2, 0.3], k →∼ [80, 600]}.

This grammar ensures that the feedforward controller is given as

uff(t) = h1Hs(t, t1, k)− (h1 − h2)Hs(t, t2, k),

and is essentially a control input parametrized by h1, t1, h2, t2and k. The control signal starts
with a transition from 0 to h1 at t = 0, and goes down to a value of h2 at t = t1, the steepness
of the transition is determined by k ∈ [80, 600].

6-2 Simultaneous feedforward and feedback controller synthesis

A simple way to synthesize controllers consisting of a feedforward and a feedback part would
be to synthesize both parts simultaneously. This way we allow the controllers in both phases
to evolve at the same time, hoping that we find combinations of them which lead to good
performance.
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6-2-1 Results

The results of an experiment using the parameters in Table 5-1 and simultaneous feedforward
and feedback controller synthesis are shown in Figure 6-2. It can be observed that much faster
controllers were found than in Section 5-3. However the performance in the neighbourhood
of the performance of ubaseline was worse and no controllers that were Pareto dominant to
ubaseline were found. Therefore the results for this method do not seem satisfying.
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Figure 6-2: The results of the experiment with simultaneous controller synthesis, shown as the
red dots, is compared to the results for pure feedback synthesis, shown as the blue dots. Each dot
represents the performance of the final result. The baseline performance(teng,baseline, jmax,baseline)
is shown as the dotted lines.

6-3 Decoupled feedforward and feedback controller synthesis

Another approach would be to decouple the synthesis of feedforward and feedback controllers.
In that way the feedback controllers are allowed to evolve for a fixed feedforward controller
just as in Suproblem 1. To do this we first need to find good feedforward controllers and then
synthesize feedback controllers for the best ones. The process we will use can be summarized
as:

1. Synthesize pure feedforward controllers for genmax,ff generations and np,ff individuals.

2. Select nffselected feedforward controllers from the resulting non-dominated front.

3. For each selected feedforward controller:

(a) Compute pmax, uswitch, x1,switch, x4,switch and x5,switch.
(b) Synthesisze feedback controllers using the selected feedforward controller for

genmax,fb generations and np,fb individuals.

4. Designate the result as the non-dominated front for the combination of both the pure
feedforward controllers and the combinations of feedforward and feedback controllers.

In order to obtain a diverse set of feedforward controllers we select the nffselected feedforward
controllers by evenly sampling the non-dominated set.
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6-3-1 Results

Name Value Meaning
genmaxff 10 Amount of generations for ff
genmaxfb 6 Amount of generations for fb
nffselected 10 Amount of feedforward controllers selected for fb
np,ff 100 Population size for feedforward synthesis
np,fb 50 Population size for feedback synthesis
dmax 7 Tree depth at which only recursive production rules are used
ne,ff 10 Elitism number for feedforward
ne,fb 5 Elitism number for feedback
nt,ff 25 Tournament size for feedforward
nt,fb 13 Tournament size for feedback
Prcrossover 50% Crossover probability
Prmutation 50 % Mutation probability

Table 6-1: The meaning and value of the variables used in the experiment.

The result of a run using the parameters in Table 6-1 can be found in Figure 6-3. We chose
a higher population size and amount of generations for feedforward controller synthesis than
for feedback controller synthesis, since the feedforward synthesis is done only once.

The red dots indicate the non-dominated set of pure feedforward controllers and the pluses
indicates which ones are chosen for feedback controller synthesis. The non-dominated set
of combination of feedback and feedforward control for each selected feedforward controller
is shown as blue dots. The result for decoupled and simultaneous synthesis is similar for
engagement times less than 0.6 seconds, for slower engagement times decoupled synthesis
dominates the result of simultaneous synthesis, finding controllers which are significantly
better than ubaseline. It must be noted, however, that the result for decoupled controller
synthesis took more fitness function evaluations (and thus more computation time) than the
result for simultaneous synthesis.

It can be seen that the performance for the combinations of feedforward and feedback control
coincides with the performance for pure feedforward control for feedforward controllers that
have teng < 0.7s. This effect is illustrated further in Figures 6-5 and Figure 6-6. In Figure 6-5
the non-dominated front of feedback controllers using the fifth selected feedforward controller
is shown. It can be seen that feedback control had no influence on the performance of the
combination of feedforward and feedback control. In Figure 6-6 the same is plotted for the
eighth feedforward controller. For this controller allowing feedback control in the slipping
phase did improve upon the performance of the pure feedforward controller. Upon further
investigation this effect was due to a too small difference between tswitch and teng for controllers
with teng smaller than about 0.7s. This meant that the feedback control only had a very small
impact on the performance. One controller with a significant performance increase compared
to ubaseline, is udecoupled,1(t, ξ(t)) with uff(t) = 0.199409

1+exp (−1995.89(t)) −
0.136098

1+exp (−504.678(t−0.2693)) and
ufb(ξ(t)) = 0.0633105 + 0.00230891(x5 − 4.0092). This controller achieved a performance of
(0.905, 597.74), compared to a performance of (1.036, 680.979) for ubaseline). The control input
for this controller is plotted in Figure 6-7.
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Figure 6-3: Results for the experiment with decoupled controller synthesis, the result for pure
feedforward control is represented as the red dots, the selected feedforward controllers are shown
as pluses. The results for the combination of feedforward and feedback for each selected feedback
controller is shown as blue dots and the standard performance is shown as dotted lines.
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Figure 6-4: Comparison of the results of simultaneous controller synthesis, shown as the red dots,
and the results for decoupled controller synthesis, shown as the blue dots. Each dot represents
the performance of the final result. The baseline performance(teng,baseline, jmax,baseline) is shown
as the dotted lines.
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Figure 6-5: Feedback controller results for the fifth selected feedforward controller, it can be
seen that the whole non-dominated front is located in one single location.
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Figure 6-6: Feedback controller results for the eighth selected feedforward controller.
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Figure 6-7: Found input of the controller udecoupled,1 with uff(t) = 0.199409
1+exp (−1995.89(t)) −

0.136098
1+exp (−504.678(t−0.2693)) and ufb(ξ) = 0.0633105 + 0.00230891(x5 − 4.0092).
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Chapter 7

Synthesizing feedforward and feedback
controllers considering uncertainty

In this Chapter we consider Problem 1 which concerns designing both a feedforward and
feedback controller for the uncertain system.

7-1 Sampled uncertainty

Because of the long computation time of computing the worst case performance for an indi-
vidual, evaluating the worst case performance for a whole population in GP is not practical.
Instead we will use a finite amount of simulations for different realizations of the uncertain pa-
rameters. Instead of considering all l ∈ L, we approximate this by considering l ∈ Lsampled ⊆ L
where Lsampled is a finite set. A logical choice would be to take Lsampled as the most extreme
points of L. In Figure 7-1a these four extreme (corner) points are shown in red, 49 evenly
sampled other points in L are shown in blue. In Figure 7-1b the trajectories for the blue
points are shown as black lines and the dotted lines represent the extreme values of x4(t) for
the four corner points. It can be seen that most trajectories stay within these approximate
bounds for most of the time, however some trajectories do cross the approximate bounds.
Therefore taking only the four corner points of L as Lsampled covers most of the uncertainty
in the model. To give formal guarantees it is still needed to consider the full uncertain set L
and perform reachability analysis. In this case of choosing the four corner points we have

Lsampled =
{[

0.8cnom
o

0.8fracnom
s

]
,

[
0.8cnom

o

1.2fracnom
s

]
,

[
1.2cnom

o

0.8fracnom
s

] [
1.2cnom

o

1.2fracnom
s

]}
. (7-1)

By computing the approximate worst case performance (teng,apr, jmax,apr) as

tu,Leng,apr = max
l∈Lsampled

tu,leng, (7-2)
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and

ju,Leng,apr = max
l∈Lsampled

ju,lmax, (7-3)

we have a way to compute a cheap indication of the robustness of an individual. Although it
is not a formal guarantee on the performance, it is still useful to select robust individuals in
a population.
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Figure 7-1: Overview of trajectories for different values of l. In Figure 7-1a the blue points
correspond to samples of (co, fracnom

s ) taken from L to generate trajectories of the system of
which the trajectories x4(t) are shown in Figure 7-1b as black lines. The black rectangle in Figure
7-1a represents the border of L. The points in Lsampled are shown as red dots. The upper and
lower bounds of the trajectories of x4(t) generated by the samples in Lsampled are shown as a red
dotted and a blue dotted line in Figure 7-1b respectively. It can be seen that most trajectories,
but not all, stay inside these approximate bounds. For the other states no trajectory crossed the
approximate bound. This experiment was performed using ubaseline and the results be different
for other control inputs.

7-2 Results

The result of a run using the same parameters as in Table 6-1 can be found in Figure 7-2. For
comparison the approximate worst case performance for uff,baseline is plotted. We observe that
some of the found pure feedforward controllers are Pareto dominant with respect to uff,baseline.
Surprisingly the addition of feedback lead to little improvement on the performance of the
pure feedforward controllers. Several controllers using feedback were found that were faster
than any pure feedforward controllers. This may be explained by the fact that we computed
uswitch, x1,switch, x4,switch and x5,switch for only one simulation, as before. And because the
values of these parameters are not known beforehand when we consider uncertainty, the
controller is not guaranteed to be continuous at t = tswitch when using feedback. This effect
could cause a faster teng as well as a higher jmax. This issue could be resolved by implementing
an interpolation between uff(t) and ufb(ξ(t)), instead of the sudden switch we use now.
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Figure 7-2: (teng,apr and jmax,apr) plotted for the result of the experiment.

7-2-1 Comparison with previous results

To determine whether selection based on approximate worst case performance helps selecting
robust controllers, we compare the results in Section 7-2 to the results from Section 5-3. For
the best individuals for the controller synthesis without considering uncertainty, which we
will refer to as nominal controller synthesis, we compute the approximate performance and
compare it to the results for the robust controller synthesis. This comparison can be found in
Figure 7-3. It can be clearly seen that the performance for the robust controller seen is much
better than for the nominal controller synthesis. Especially for controllers with a teng <0.7s
the approximate worst case performance for nominal controller synthesis is much worse than
for the faster controllers generated by robust controller synthesis.
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Figure 7-3: Comparison of the results for nominal and robust controller synthesis. The non-
dominated front for nominal controller synthesis is shown as the red dots, the non-dominated
front for robust controller synthesis is shown as the blue dots. It can be seen that performance of
individuals that are selected based on approximate worst case performance are much more robust
than individuals that were selected based on a single simulation.
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Chapter 8

Conclusions and recommendations

In this Chapter we conclude the thesis and give recommendations for future research.

8-1 Conclusions

In this thesis we have developed a method to automatically synthesize controllers for a wet
clutch, that are robust to model uncertainties, without relying on expert knowledge or a fixed
structure, in a true multi-objective manner.

We are able give formal guarantees on the robustness of performance for a controller, by
modeling the wet clutch system as a hybrid automaton with uncertain parameters and using
reachability analysis in Flow∗. From the reachable set we are able to compute the worst
case performance. We only succeeded in computing the reachable set for simple controllers,
however.

First, we have developed feedback controllers, given a fixed feedforward controller taken
from a baseline controller, not considering uncertainty. Using this method we have found
controllers with satisfying performance, including one controller which was Pareto dominant
to the baseline controller. The performance of controllers with a much faster engagement
time were not very satisfying.

Next, we synthesized both the feedback and the feedforward controller ourselves. We com-
pared two methods of synthesizing pairs of feedforward and feedback controllers: simultaneous
and decoupled controller synthesis. Simultaneous synthesis improved upon the result of using
a single fixed feedforward controller in areas further away from the performance of ubaseline,
but did not find a Pareto dominant controller with respect to the baseline controller. While
decoupled synthesis improved in areas both close and far away, finding controllers which were
Pareto dominant to ubaseline. Therefore, it seems that decoupled synthesis is more suitable
for wet clutch controller synthesis, but for proper conclusions on this, a fairer comparison
between the two methods using experiments is needed.
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We then considered the full uncertain model in the controller synthesis. However, due to the
need for a short computation time of the fitness function and because we were not able to
compute the reachable set for the controller structure we considered, we used an approximate
version of the worst case performance by using sampled uncertainty. Computing the worst case
performance by considering only the four corner points of the uncertain set was found to be a
reasonable approximation of the actual worst case performance. We found that selection based
on this approximate worst case fitness was an appropriate way to automatically synthesize
robust controller as they performed much better in terms of worst case fitness than controllers
that were selected based on one simulation.

8-2 Recommendations

Several elements in the controller synthesis were not optimized rigorously. The results of the
controller synthesis could be improved by optimizing the GP parameters and the controller
grammar. Especially the grammar of the feedforward controller could be improved on because
we used only a simple parametrized signal for it, not utilizing the power of GP to optimize
over the controller structure.

The performance of the controller using feedback and considering uncertainty could be im-
proved on by implementing an interpolation between feedforward and feedback control, in-
stead of the sudden switch between them that we use in this thesis.

A bottleneck in the computation of the formal guarantee on the worst case performance is
the big computation that is needed to compute the reachable set and the complexity of the
feedforward controller. This could be improved upon exploring other methods and other tools
to compute the reachable set or by using different (for example piece-wise affine) structures
for the feedforward controller.

In order to truly assess the controllers that we found and compare them to other controllers
in the literature on robustness of performance, it would be needed to test them on the real
setup.
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Appendix A

Constants

Name Value Meaning
a 0.0198 Current bias
k 72.1 Gain
s 0.05 Time delay
cnom
o -0.884 Nominal value of oil pressure constant
a2 -0.001 Oil pressure to piston position coefficient
b2 2 Oil pressure to piston position coefficient
c2 0.002 Oil pressure to piston position coefficient
d2 5.2 · 10−4 Oil pressure to piston position coefficient
kt 1.797 · 10−6 Gain related to oil temperature
posc 0.005 Maximum piston displacement
fracnom

s 0.65 Nominal value of the fraction of posc
at which p(t) = x1(t) becomes true

ωm 125.6627 Motor speed
α 2.6064196 · 10−4pmax Constant used in dynamics of x4(t) and x5(t)

−7.2091633 · 10−4

pmax - Oil pressure at piston contact
J1 0.1 Input shaft inertia
J3 2.706 Output shaft inertia
T1c 0.0001 Input shaft Coulomb friction torque
T3c 94.5 Output shaft Coulomb friction torque
b1v 0.3764 Input shaft viscous friction coefficient
b3v 0.15 Output shaft viscous friction coefficient
grl 5.036 Gear ratio
γ −10−3 Constant to model

first phase of torque transfer
wth 10−3 Threshold to avoid non-physical motion
ct 0.582 Constant used in dynamics of x6

Table A-1: The meaning and value of the variables in the model described in Chapter 2.
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Appendix B

Jerk maps

B-1 Mode 1

j1,ξ(ξ) = − 1.93γω2
m

J1posc

(
11.8 + e

5.72x4
ωm

−3.77
)2 + 0.546 γx2

4

J1posc

(
11.8 + e

5.72x4
ωm

−3.77
)2

+ 0.605γωmx4

J1posc

(
11.8 + e

5.72x4
ωm

−3.77
)2 + b1vγx4

J1posc
− b3vγgrlx5

J3 posc
+ γ2g2

rlx5
J3posc2

− γ2x4
grlJ1posc2 −

γ2grlx4
J3posc2 + γ2x5

J1posc2 −
γgrlT3cx5
J3 poscwth

+ γT1c
J1posc

(B-1)
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B-2 Mode 2

j2,ξ(ξ) = −

γ

−1138.51ωmx4−1027.48x2
4+3631.93ω2

m(
511.885 +1.e

5.72x4
ωm

)2 − b1vx4 + γ(x4−grlx5)
grl(posc−ktx3) − T1c


J1(posc − ktx3)

+

γ

−a2ktx4

(
x2−

2kuff(t)
s

)
c2

+ cob2ktx4
c2

− b2ktx1x4
c2


(posc − ktx3)2

+

γ

a2grlktx5

(
x2−

2kuff(t)
s

)
c2

− d2grlktx3x5
c2


(posc − ktx3)2

+
γ
(
− cob2grlktx5

c2
+ b2grlktx1x5

c2
+ d2ktx3x4

c2

)
(posc − ktx3)2

−
γ
(
grlx5(b3vwth+T3c)(posc−ktx3)

J3wth
+ γgrl(grlx5−x4)

J3

)
(posc − ktx3)2

(B-2)

B-3 Mode 3

j3,ξ(ξ) = − x4x
2
6γ

2

grlJ1(posc − ktx3)2 −
grlx4x

2
6γ

2

J3(posc − ktx3)2 + x5x
2
6γ

2

J1(posc − ktx3)2

+ g2
rlx5x

2
6γ

2

J3(posc − ktx3)2 −
x4γ

2

grlJ1(posc − ktx3)2 −
grlx4γ

2

J3(posc − ktx3)2

+ x5γ
2

J1(posc − ktx3)2 + g2
rlx5γ

2

J3(posc − ktx3)2 + 2x4x6γ
2

grlJ1(posc − ktx3)2

+ 2grlx4x6γ
2

J3 (posc − ktx3)2 −
2x5x6γ

2

J1(posc − ktx3)2 −
2g2
rlx5x6γ

2

J3(posc − ktx3)2

+ 1027.48x2
4γ(

511.885 + 1.e
5.72x4

ωm

)2
J1 (posc − ktx3)

− 105αfracsx1x
2
6γ

(fracs − 1)J1(posc − ktx3)

− 105αfracsg
2
rlx1x

2
6γ

(fracs − 1)J3(posc − ktx3) + 105αktx1x3x
2
6γ

(fracs − 1)J1posc(posc − ktx3)

+ 105αg2
rlktx1x3x

2
6γ

(fracs − 1)J3posc(posc − ktx3) −
105αfracsx

2
6γ

(fracs − 1)J1(posc − ktx3)

+ 105αx2
6γ

(fracs − 1)J1(posc − ktx3) −
105αfracsg

2
rlx

2
6γ

(fracs − 1)J3(posc − ktx3)
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+ 105αg2
rlx

2
6γ

(fracs − 1)J3(posc − ktx3) + 1138.51ωmx4γ(
511.885 + 1.e

5.72x4
ωm

)2
J1(posc − ktx3)

+ b1vx4γ

J1(posc − ktx3) −
b3vgrlx5γ

J3(posc − ktx3) −
grlT3cx5γ

J3wth(posc − ktx3)

+ b3v(x4 − grlx5)(x6 − 1)γ
J3(posc − ktx3) + T3c(x4 − grlx5)(x6 − 1)γ

J3wth(posc − ktx3)

+ kt(2a2kuff(t) + s(ob2 − x1b2 − a2x2 + d2x3))(grlx5 − x4)(x6 − 1)γ
c2s(posc − ktx3)2

− 1027.48x2
4x6γ(

511.885 + 1.e
5.72x4

ωm

)2
J1(posc − ktx3)

− 1138.51ωmx4x6γ(
511.885 + 1.e

5.72x4
ωm

)2
J1(posc − ktx3)

− b1vx4x6γ

J1(posc − ktx3) + b3vgrlx5x6γ

J3(posc − ktx3) + grlT3cx5x6γ

J3wth(posc − ktx3)

+ 3631.93ω2
mx6γ(

511.885 + 1.e
5.72x4

ωm

)2
J1(posc − ktx3)

− T1cx6γ

J1(posc − ktx3)

+ 105αfracsx1x6γ

(fracs − 1)J1(posc − ktx3) + 105αfracsg
2
rlx1x6γ

(fracs − 1)J3(posc − ktx3)

− 105αktx1x3x6γ

(fracs − 1)J1posc(posc − ktx3) −
105αg2

rlktx1x3x6γ

(fracs − 1)J3posc(posc − ktx3)

+ 105αfracsx6γ

(fracs − 1)J1(posc − ktx3) −
105αx6γ

(fracs − 1)J1(posc − ktx3)

+ 105αfracsg
2
rlx6γ

(fracs − 1)J3(posc − ktx3) −
105αg2

rlx6γ

(fracs − 1)J3(posc − ktx3)

+ β(x4 − grlx5)(ct + x6)γ
posc − ktx3

− 3631.93ω2
mγ(

511.885 + 1.e
5.72x4

ωm

)2
J1(posc − ktx3)

+ T1cγ

J1(posc − ktx3) −
b3v(T3c + b3vwth)x5

J3wth
− T3c(T3c + b3vwth)x5

J3w2
th

+ 105αb3vgrl((fracs − 1)posc + x1(fracsposc − ktx3))x6
(fracs − 1)J3posc

+ 105αgrlT3c((fracs − 1)posc + x1(fracsposc − ktx3))x6
(fracs − 1)J3poscwth

+ 2 · 105a2αgrlkktuff(t)x1x6
c2(fracs − 1)poscs

− 105a2αgrlktx1x2x6
c2(fracs − 1)posc

+ 105coαb2grlktx1x6
c2(fracs − 1)posc

− 105αb2grlktx
2
1x6

c2(fracs − 1)posc
+ 105αd2grlktx1x3x6

c2(fracs − 1)posc
+ 2 · 105αgrlkktuff(t)x3x6

(fracs − 1)poscs

− 2 · 105αfracsgrlkuff(t)x6
(fracs − 1)s − 105αgrlktx2x3x6

(fracs − 1)posc
+ 105αfracsgrlx2x6

fracs − 1

+ 105αβgrl((fracs − 1)posc + x1(fracsposc − ktx3))(ct + x6)
(fracs − 1)posc
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− 105αb3vgrlktwthx1x3x6
(fracs − 1)posc

+ 105αb3vfracsgrlwthx1x6
fracs − 1 + 105αb3vfracsgrlwthx6

fracs − 1

− 105αb3vgrlwthx6
fracs − 1 − 105αgrlktT3cx1x3x6

(fracs − 1)posc
+ 105αfracsgrlT3cx1x6

fracs − 1

+ 105αfracsgrlT3cx6
fracs − 1 − 105αgrlT3cx6

fracs − 1 + b23v(−wth)x5 −
b3vγgrlwthx5x6

posc − ktx3

+ b3vγgrlwthx5
posc − ktx3

+ b3vγwthx4x6
posc − ktx3

− b3v γwthx4
posc − ktx3

− 2b3vT3cx5

− γgrlT3cx5x6
posc − ktx3

+ γgrlT3cx5
posc − ktx3

+ γT3cx4x6
posc − ktx3

− γT3cx4
posc − ktx3

− T 2
3cx5
wth

(B-3)

B-4 Mode 4

j4,ξ(ξ, uff(t)) = −x5b
2
3v

J3
− T3cb3v

J3
− γ grlx5b3v
J3(posc − ktx3) + γ(x4 − grlx5)(x6 − 1)b3v

J3 (posc − ktx3)

+ 105α fracsgrlx1x6 b3v
(fracs − 1)J3

− 105αgrlkt x1x3x6b3v
(fracs − 1)J3 posc

+ γgrlx5x6 b3v
J3(posc − ktx3)

+ 105α fracsgrlx6b3v
(fracs − 1) J3

− 105αgrlx6 b3v
(fracs − 1)J3

− b3v
J3

(
−T3c − b3v x5 + γ(x4 − grlx5) (x6 − 1)

posc − ktx3

)
(B-4)

+ b3v
J3

(
105α grl((fracs − 1)posc + x1 (fracsposc − ktx3)) x6

(fracs − 1)posc

)

+ 1027.48γx2
4(

511.885 + 1. e
5.72x4

ωm

)2
J1 (posc − ktx3)

− γ2x4 x
2
6

grlJ1(posc − kt x3)2

− γ2grlx4x
2
6

J3 (posc − ktx3)2 + γ2x5 x
2
6

J1(posc − ktx3)2 + γ2 g2
rlx5x

2
6

J3(posc − ktx3)2

− 105αfracsγx1 x
2
6

(fracs − 1)J1(posc − kt x3) −
105αfracsγg

2
rl x1x

2
6

(fracs − 1)J3 (posc − ktx3)

+ 105αγkt x1x3x
2
6

(fracs − 1)J1 posc(posc − kt x3) + 105αγg2
rlktx1x3 x

2
6

(fracs − 1)J3posc (posc − ktx3)

− 105α fracsγx
2
6

(fracs − 1)J1 (posc − ktx3) + 105αγ x2
6

(fracs − 1)J1(posc − kt x3)

− 105αfracsγg
2
rl x

2
6

(fracs − 1)J3(posc − kt x3) + 105αγg2
rl x

2
6

(fracs − 1)J3(posc − kt x3)

+ 1138.51γωmx4(
511.885 + 1. e

5.72x4
ωm

)2
J1 (posc − ktx3)

+ b1vγx4
J1 (posc − ktx3)

+ cob2γkt x4
c2(posc − ktx3)2 + 2a2γ kktuff(t)x4

c2s(posc − kt x3)2 −
b2γktx1x4

c2 (posc − ktx3)2
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− a2γktx2 x4
c2(posc − ktx3)2 + d2γ ktx3x4

c2(posc − kt x3)2 −
γ2x4

grlJ1 (posc − ktx3)2

− γ2grl x4
J3(posc − ktx3)2 −

cob2γ grlktx5
c2(posc − kt x3)2 −

2a2γgrlkktuff(t)x5
c2s( posc − ktx3)2

+ b2γgrlkt x1x5
c2(posc − ktx3)2 + a2 γgrlktx2x5

c2(posc − kt x3)2 −
d2γgrlktx3x5

c2 (posc − ktx3)2

+ γ2x5
J1 (posc − ktx3)2 + γ2g2

rl x5
J3(posc − ktx3)2 −

105α b2grlktx
2
1x6

c2(fracs − 1) posc

− 1027.48γx2
4 x6(

511.885 + 1.e
5.72x4

ωm

)2
J1(posc − ktx3)

− 2 · 105α fracsgrlkuff(t) x6
(fracs − 1)s

+ 2 · 105a2αgrl kktuff(t)x1x6
c2(fracs − 1) poscs

+ 105coαb2grlktx1 x6
c2(fracs − 1) posc

+ 105αfracs grlx2x6
fracs − 1

− 105a2α grlktx1x2x6
c2(fracs − 1) posc

+ 2 · 105αgrlkktuff(t) x3x6
(fracs − 1)posc s

+ 105αd2grlktx1x3x6
c2 (fracs − 1)posc

− 105α grlktx2x3x6
(fracs − 1) posc

− 1138.51γωmx4 x6(
511.885 + 1.e

5.72x4
ωm

)2
J1(posc − ktx3)

− b1vγx4 x6
J1(posc − ktx3) −

cob2γ ktx4x6
c2(posc − ktx3)2 −

2 a2γkktuff(t)x4x6
c2s (posc − ktx3)2

+ b2γktx1 x4x6
c2(posc − ktx3)2 + a2 γktx2x4x6

c2(posc − kt x3)2 −
d2γktx3x4x6

c2 (posc − ktx3)2

+ 2γ2x4 x6
grlJ1(posc − ktx3)2 + 2 γ2grlx4x6

J3(posc − kt x3)2 + cob2γgrlktx5x6
c2 (posc − ktx3)2

+ 2a2γgrlk ktuff(t)x5x6
c2s(posc − kt x3)2 − b2γgrlktx1x5x6

c2 (posc − ktx3)2 −
a2γgrlkt x2x5x6
c2(posc − kt x3)2

+ d2γgrlktx3x5x6
c2 (posc − ktx3)2 −

2γ2x5 x6
J1(posc − ktx3)2 −

2γ2 g2
rlx5x6

J3(posc − kt x3)2

+ 3631.93γω2
mx6(

511.885 + 1.e
5.72x4

ωm

)2
J1 (posc − ktx3)

− γT1cx6
J1 (posc − ktx3)

+ γgrlT3c x6
J3(posc − ktx3) + 105α fracsγx1 x6

(fracs − 1)J1(posc − kt x3) + 105αfracsγg
2
rl x1x6

(fracs − 1)J3 (posc − ktx3)

− 105αγkt x1x3x6
(fracs − 1)J1 posc(posc − kt x3) −

105αγg2
rlktx1x3 x6

(fracs − 1)J3posc (posc − ktx3)

+ 105α fracsγx6
(fracs − 1)J1( posc − ktx3) −

105αγ x6
(fracs − 1)J1(posc − kt x3)

+ 105αfracsγg
2
rl x6

(fracs − 1)J3(posc − kt x3) −
105αγg2

rl x6
(fracs − 1)J3(posc − kt x3)

+ 105αβgrl((fracs − 1) posc + x1(fracs posc − ktx3)) (ct + x6)
(fracs − 1) posc
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+ βγ(x4 − grlx5) (ct + x6)
posc − ktx3

− 3631.93γ ω2
m(

511.885 + 1.e
5.72x4

ωm

)2
J1(posc − ktx3)

+ γT1c
J1(posc − ktx3) −

γgrlT3c
J3(posc − ktx3) (B-5)

B-5 Mode 5

j5,ξ(ξ(y), uff(t)) = −2 · 105a2αgrlkktuff(t)x1
c2 (1− fracs)poscs

+ 105a2αgrlktx1x2
c2(1− fracs)posc

− 105co αb2grlktx1
c2(1− fracs) posc

+ 105αb2grlktx
2
1

c2 (1− fracs)posc
− 105αd2grlktx1x3
c2(1− fracs)posc

− 2 · 105 αgrlkktuff(t)x3
(1− fracs)posc s

+ 2 · 105αfracsgrlk uff(t)
(1− fracs)s

+ 105αgrlktx2x3
(1− fracs)posc

− 105αfracs grlx2
1− fracs

(B-6)

B-6 Mode 6

j6,ξ(ξ) = 105αgrl(sx2 − 2kufb(ξ))
s

(B-7)

B-7 Mode 7

ρ(ξ) =
ω2
m

(
−0.546x2

4
ω2

m
− 0.605x4

ωm
+ 1.93

)
(
J3
g2

rl
+ J1

)(
11.8 + e

5.72x4
ωm

−3.77
)2 −

b1vx4
J3
g2

rl
+ J1

− b3vx4
g2
rlJ1 + J3

− T1c
J3
g2

rl
+ J1

− grlT3c
g2
rlJ1 + J3

j7,ξ(ξ) = J3
grl

 ω2
m

(
−1.092ρ(ξ)x4

ω2
m

− 0.605ρ(ξ)
ωm

)
(
J3
g2

rl
+ J1

)(
11.8 + e

5.72x4
ωm

−3.77
)2



− J3
grl

11.44ρ(ξ)ωme
5.72x4

ωm
−3.77

(
−0.546x2

4
ω2

m
− 0.605x4

ωm
+ 1.93

)
(
J3
g2

rl
+ J1

)(
11.8 + e

5.72x4
ωm

−3.77
)3


− J3
grl

 b1vρ(ξ)
J3
g2

rl
+ J1

− b3vρ(ξ)
g2
rlJ1 + J3

+ b3vρ(ξ)
grl

(B-8)
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Appendix C

Flow∗ model file

1 hybrid reachability
2 {
3 state var x1 , x2 , x3 , x4 , x5 , x6 , t , co , fracstart
4
5 par
6 {
7 uff=0.1 ufb=0.063 k=72.1 kt=1.797e−6 s=0.05 a=0.0198 #co

=−0.884#−1.0608#−0.7072
8 a2=−1e−3 b2=2 c2=0.002 d2=5.2e−4 wm=125.6637
9 b1v=0.3764 b3v=0.15 J1=0.1 J3=2.706 T1c=1e−4 T3c=94.5

10 grL=5.036 alpha=9.6900e−05 posContact=0.005 #fracstart=0.65
11 wth=1e−3 treg=0.1 beta=10 const=0.5820 gamma= −1e−3 eps= 1e−6
12 invwth = 1000 invJ3 = 0.36955 invposContact = 200 invgrL=0.1985703
13 trans2 = 1.8085718515 e3 trans5 = 2.7824 e3#2.782418233075385e3
14 }
15
16 setting
17 {
18 adaptive steps { min 0.000001 , max 0 .01 }
19 time 1 .5
20 remainder estimation 1e−5
21 QR precondition
22 matlab octagon t , x5
23 fixed orders 4
24 cutoff 1e−6
25 precision 53
26 output clutchbase
27 max jumps 100
28 print on
29 }
30
31 modes
32 {
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64 Flow∗ model file

33 mode1
34 {
35 nonpoly ode
36 {
37 x1 ’ = x2 − 2∗k/s∗uff
38 x2 ’ = −6/s^2∗x1 − 4/s∗(x2 − 2∗k/s∗uff ) − 6∗a∗k/s^2 + 6∗k/s^2∗uff
39 x3 ’ = b2/c2∗x1 + a2/c2 ∗(x2 − 2∗k/s∗uff ) − d2/c2∗x3 − co∗b2/c2
40 x4 ’ = −b1v/J1∗x4 − T1c/J1 − gamma /(J1∗posContact ) ∗(x5 − 1/grL∗x4 ) +

wm^2∗(−0.546∗(x4/wm ) ^2 − 0 .605∗ ( x4/wm ) + 1 . 93 ) /(J1 ∗( exp (5 . 72∗ x4/wm
− 3 . 77 ) + 11 . 8 ) ^2)

41 x5 ’ = 1/wth∗(−b3v/J3∗wth − T3c /(J3 ) ) ∗x5 + grL∗gamma /(J3∗posContact ) ∗(
x5 − 1/grL∗x4 )

42 x6 ’ = 0
43 t ’ = 1
44 fracstart ’=0
45 co ’ = 0
46 }
47 inv
48 {
49 x3 <= 0
50 }
51 }
52 mode2
53 {
54 nonpoly ode
55 {
56 x1 ’ = x2 − 2∗k/s∗uff
57 x2 ’ = −6/s^2∗x1 − 4/s∗(x2 − 2∗k/s∗uff ) − 6∗a∗k/s^2 + 6∗k/s^2∗uff
58 x3 ’ = b2/c2∗x1 + a2/c2 ∗(x2 − 2∗k/s∗uff ) − d2/c2∗x3 − co∗b2/c2
59 x4 ’ = −b1v/J1∗x4 − T1c/J1 − gamma /(J1 ∗( posContact− kt∗x3 ) ) ∗(x5 − 1/

grL∗x4 ) + wm^2∗(−0.546∗(x4/wm ) ^2 − 0 .605∗ ( x4/wm ) + 1 . 93 ) /(J1 ∗( exp
(5 . 72∗ x4/wm − 3 . 77 ) + 11 . 8 ) ^2)

60 x5 ’ = 1/wth∗(−b3v/J3∗wth − T3c /(J3 ) ) ∗x5 + grL∗gamma /(J3 ∗( posContact−
kt∗x3 ) ) ∗(x5 − 1/grL∗x4 )

61 x6 ’ = 0
62 t ’ = 1
63 fracstart ’=0
64 co ’ = 0
65 }
66 inv
67 {
68 x3 <= trans2
69 }
70 }
71 mode3
72 {
73 nonpoly ode
74 {
75 x1 ’ = x2 − 2∗k/s∗uff
76 x2 ’ = −6/s^2∗x1 − 4/s∗(x2 − 2∗k/s∗uff ) − 6∗a∗k/s^2 + 6∗k/s^2∗uff
77 x3 ’ = b2/c2∗x1 + a2/c2 ∗(x2 − 2∗k/s∗uff ) − d2/c2∗x3 − co∗b2/c2
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78 x4 ’ = −b1v/J1∗x4 − T1c/J1 − (1 −x6 ) ∗gamma /(J1 ∗( posContact− kt∗x3 ) ) ∗(
x5 − 1/grL∗x4 ) −x6∗alpha ∗ ( ( ( kt∗x3/posContact−fracstart ) /(1−
fracstart ) ) ∗1e5∗x1+1e5 ) /J1 + wm^2∗(−0.546∗(x4/wm ) ^2 − 0 .605∗ ( x4/
wm ) + 1 . 93 ) /(J1 ∗( exp (5 . 72∗ x4/wm − 3 . 77 ) + 11 . 8 ) ^2)

79 x5 ’ = 1/wth∗(−b3v/J3∗wth − T3c /(J3 ) ) ∗x5 + (1 −x6 ) ∗grL∗gamma /(J3 ∗(
posContact− kt∗x3 ) ) ∗(x5 − 1/grL∗x4 ) + x6∗grL∗alpha ∗ ( ( ( kt∗x3/
posContact−fracstart ) /(1−fracstart ) ) ∗1e5∗x1+1e5 ) /J3

80 x6 ’ = beta ∗(x6 + const )
81 t ’ = 1
82 fracstart ’=0
83 co ’ = 0
84 }
85 inv
86 {
87 x5 <= wth
88 }
89 }
90 mode4
91 {
92 nonpoly ode
93 {
94 x1 ’ = x2 − 2∗k/s∗uff
95 x2 ’ = −6/s^2∗x1 − 4/s∗(x2 − 2∗k/s∗uff ) − 6∗a∗k/s^2 + 6∗k/s^2∗uff
96 x3 ’ = b2/c2∗x1 + a2/c2 ∗(x2 − 2∗k/s∗uff ) − d2/c2∗x3 − co∗b2/c2
97 x4 ’ = −b1v/J1∗x4 − T1c/J1 − (1 −x6 ) ∗gamma /(J1 ∗( posContact− kt∗x3 ) ) ∗(

x5 − 1/grL∗x4 ) −x6∗alpha ∗ ( ( ( kt∗x3/posContact−fracstart ) /(1−
fracstart ) ) ∗1e5∗x1+1e5 ) /J1 + wm^2∗(−0.546∗(x4/wm ) ^2 − 0 .605∗ ( x4/
wm ) + 1 . 93 ) /(J1 ∗( exp (5 . 72∗ x4/wm − 3 . 77 ) + 11 . 8 ) ^2)

98 x5 ’ = −b3v/J3∗x5−T3c/J3+(1 −x6 ) ∗grL∗gamma /(J3 ∗( posContact− kt∗x3 ) ) ∗(
x5 − 1/grL∗x4 ) +x6∗grL∗alpha ∗ ( ( ( kt∗x3/posContact−fracstart ) /(1−
fracstart ) ) ∗1e5∗x1+1e5 ) /J3

99 x6 ’ = beta ∗(x6 + const )
100 t ’ = 1
101 fracstart ’=0
102 co ’ = 0
103 }
104 inv
105 {
106 x6 <= 1
107 }
108 }
109 mode5
110 {
111 nonpoly ode
112 {
113 x1 ’ = x2 − 2∗k/s∗uff
114 x2 ’ = −6/s^2∗x1 − 4/s∗(x2 − 2∗k/s∗uff ) − 6∗a∗k/s^2 + 6∗k/s^2∗uff
115 x3 ’ = b2/c2∗x1 + a2/c2 ∗(x2 − 2∗k/s∗uff ) − d2/c2∗x3 − co∗b2/c2
116 x4 ’ = −b1v/J1∗x4 − T1c/J1 −alpha ∗ ( ( ( kt∗x3/posContact−fracstart ) /(1−

fracstart ) ) ∗1e5∗x1+1e5 ) /J1 + wm^2∗(−0.546∗(x4/wm ) ^2 − 0 .605∗ ( x4/
wm ) + 1 . 93 ) /(J1 ∗( exp (5 . 72∗ x4/wm − 3 . 77 ) + 11 . 8 ) ^2)

117 x5 ’ = −b3v/J3∗x5−T3c/J3 +grL∗alpha ∗ ( ( ( kt∗x3/posContact−fracstart )
/(1−fracstart ) ) ∗1e5∗x1+1e5 ) /J3
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118 x6 ’ = 0
119 t ’ = 1
120 fracstart ’=0
121 co ’ = 0
122 }
123 inv
124 {
125 x3<=trans5
126 }
127 }
128 mode6a
129 {
130 nonpoly ode
131 {
132 x1 ’ = x2 − 2∗k/s∗ufb
133 x2 ’ = −6/s^2∗x1 − 4/s∗(x2 − 2∗k/s∗ufb ) − 6∗a∗k/s^2 + 6∗k/s^2∗ufb
134 x3 ’ = b2/c2∗x1 + a2/c2 ∗(x2 − 2∗k/s∗ufb ) − d2/c2∗x3 − co∗b2/c2
135 x4 ’ = −b1v/J1∗x4 − T1c/J1 −alpha ∗ ( ( ( posContact/posContact−fracstart )

/(1−fracstart ) ) ∗1e5∗x1+1e5 ) /J1 + wm^2∗(−0.546∗(x4/wm ) ^2 − 0 .605∗ (
x4/wm ) + 1 . 93 ) /(J1 ∗( exp (5 . 72∗ x4/wm − 3 . 77 ) + 11 . 8 ) ^2)

136 x5 ’ = −b3v/J3∗x5−T3c/J3 +grL∗alpha ∗ ( ( ( posContact/posContact−fracstart
) /(1−fracstart ) ) ∗1e5∗x1+1e5 ) /J3

137 x6 ’ = 0
138 t ’ = 1
139 fracstart ’=0
140 co ’ = 0
141 }
142 inv
143 {
144 x5− 0.1986∗x4<=−0.05
145 }
146 }
147 mode6b
148 {
149 nonpoly ode
150 {
151 x1 ’ = x2 − 2∗k/s∗ufb
152 x2 ’ = −6/s^2∗x1 − 4/s∗(x2 − 2∗k/s∗ufb ) − 6∗a∗k/s^2 + 6∗k/s^2∗ufb
153 x3 ’ = b2/c2∗x1 + a2/c2 ∗(x2 − 2∗k/s∗ufb ) − d2/c2∗x3 − co∗b2/c2
154 x4 ’ = −b1v/J1∗x4 − T1c/J1 −alpha ∗ ( ( ( posContact/posContact−fracstart )

/(1−fracstart ) ) ∗1e5∗x1+1e5 ) /J1 + wm^2∗(−0.546∗(x4/wm ) ^2 − 0 .605∗ (
x4/wm ) + 1 . 93 ) /(J1 ∗( exp (5 . 72∗ x4/wm − 3 . 77 ) + 11 . 8 ) ^2)

155 x5 ’ = −b3v/J3∗x5−T3c/J3 +grL∗alpha ∗ ( ( ( posContact/posContact−fracstart
) /(1−fracstart ) ) ∗1e5∗x1+1e5 ) /J3

156 x6 ’ = 0
157 t ’ = 1
158 fracstart ’=0
159 co ’ = 0
160 }
161 inv
162 {
163 x5− 0.1986∗x4<=−0.0005
164 }
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165 }
166 mode7
167 {
168 nonpoly ode
169 {
170 x1 ’ = x2 − 2∗k/s∗ufb
171 x2 ’ = −6/s^2∗x1 − 4/s∗(x2 − 2∗k/s∗ufb ) − 6∗a∗k/s^2 + 6∗k/s^2∗ufb
172 x3 ’ = b2/c2∗x1 + a2/c2 ∗(x2 − 2∗k/s∗ufb ) − d2/c2∗x3 − co∗b2/c2
173 x4 ’ = −b1v /(J1+J3/grL^2)∗x4 −T1c /(J1+J3/grL^2) + wm^2∗(−0.546∗(x4/wm )

^2 − 0 .605∗ ( x4/wm ) + 1 . 93 ) / ( ( J1+J3/grL^2) ∗( exp (5 . 72∗ x4/wm − 3 . 77 )
+ 11 . 8 ) ^2) −b3v /(J1∗grL^2+J3 ) ∗x4 −T3c∗grL /( ( J1∗grL^2+J3 ) )

174 x5 ’ = 1/grL∗(−b1v /(J1+J3/grL^2)∗x4 −T1c /(J1+J3/grL^2) + wm
^2∗(−0.546∗(x4/wm ) ^2 − 0 .605∗ ( x4/wm ) + 1 . 93 ) / ( ( J1+J3/grL^2) ∗( exp
(5 . 72∗ x4/wm − 3 . 77 ) + 11 . 8 ) ^2) −b3v /(J1∗grL^2+J3 ) ∗x4 −T3c∗grL /( ( J1
∗grL^2+J3 ) ) )

175 x6 ’ = 0
176 t ’ = 1
177 fracstart ’=0
178 co ’ = 0
179 }
180 inv
181 {
182 #x5 − 0.1986∗x4>=−0.0005
183 }
184 }
185 }
186
187 jumps
188 {
189 mode1 −> mode2
190 guard { x3 >= 0}
191 reset { }
192 parallelotope aggregation { }
193 mode2 −> mode3
194 guard { x3 >= trans2 }
195 reset { }
196 parallelotope aggregation { }
197 mode3 −> mode4
198 guard { x5 >= wth }
199 reset { }
200 parallelotope aggregation { }
201 mode4 −> mode5
202 guard { x6>=1 }
203 reset { }
204 parallelotope aggregation { }
205 mode5 −> mode6a
206 guard { x3 >=trans5 }
207 reset { }
208 parallelotope aggregation { }
209 mode6a −> mode6b
210 guard { x5 − 0.1986∗x4>=−0.04999999 }
211 reset { }
212 parallelotope aggregation { }
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68 Flow∗ model file

213 mode6b −> mode7
214 guard { x5 − 0.1986∗x4>=−0.0005 }
215 reset { }
216 parallelotope aggregation { }
217 }
218
219 init
220 {
221 mode1
222 {
223 x1 in [−1.4272 ,−1.4271]
224 x2 in [ 288 .400000224 ,288 .400000225 ]
225 x3 in [−1.9306e3 ,−1.9e3 ]
226 x4 in [ 1 2 0 . 1 , 1 2 0 . 1 1 3 9 ]
227 x5 in [ 8 . 5 e−7 ,8.5069e−7]
228 x6 in [ 0 , 0 ]
229 t in [ 0 , 0 ]
230 fracstart in [ 0 . 6 4 , 0 . 6 6 ]
231 co in [−1.0608 ,−0.7072]
232 }
233 }
234 }
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