w ¢
&

\\k ‘

Faculty of Aerospace Engineering

Reinforcement Learning Policy
Approximation by Behavior Trees

Y.S. Janssen
August 17, 2016

82N \ 4

0]0
&%

TU Delft Gy

Challenge the future

Reinforcement Learning Policy
Approximation by Behavior Trees

using Genetic Algorithms

MASTER OF SCIENCE THESIS

For obtaining the degree of Master of Science in Aerospace Engineering
at Delft University of Technology

Y.S. Janssen

August 17, 2016

Faculty of Aerospace Engineering - Delft University of Technology

]
TUDelft

Delft University of Technology

Copyright © Y.S. Janssen
All rights reserved.

DELFT UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF
CONTROL AND SIMULATION

The undersigned hereby certify that they have read and recommend to the Faculty of
Aerospace Engineering for acceptance a thesis entitled “Reinforcement Learning Pol-
icy Approximation by Behavior Trees” by Y.S. Janssen in partial fulfillment of the
requirements for the degree of Master of Science.

Dated: August 17, 2016

Readers:

dr. Q.P. Chu

ir. K.Y.W. Scheper

dr.ir. E. van Kampen

dr. G.C.H.E. de Croon

ir. R. Noomen

AE

Al
ANN
BT
C&S
DAG
DP
DTMC
DUT
EA

EL

EO
FSM
GA
GNC
GPS
GUI
HAM
HRL
MAV
MDP
MSc
NPC
POMDP
QL-BT
RL

TD

Aerospace Engineering

Artificial Intelligence

Artificial Neural Network
Behavior Tree

Control & Simulation

Directed Acyclic Graph

Dynamic Programming

Discrete Time Markov Chain
Delft University of Technology
Evolutionary Algorithms
Evolutionary Learning
Evolutionary Optimization

Finite State Machine

Genetic Algorithms

Guidance Navigation and Control
Global Positioning System
Graphical User Interface
Hierarchical Abstract Machine
Hierarchical Reinforcement Learning
Micro Aerial Vehicle

Markov Decision Process

Master of Science

Non-Playable Character

Partially Observable Markov Decision Process
Q-learning Behavior Tree
Reinforcement Learning
Temporal-Difference

Reinforcement Learning Policy Approximation by Behavior Trees

Acronyms

Y.S. Janssen

vi Acronyms

UAV Unmanned Aerial Vehicle
UML Unified Modelling Language
\YAY Verification & Validation

Y.S. Janssen Reinforcement Learning Policy Approximation by Behavior Trees

Preface

This thesis includes my research at the Control & Simulation (C&S) Division of Aerospace
Engineering (AE) at Delft University of Technology (DUT), and is in partial fulfillment of
the Master of Science (MSc) in AE degree.

I would like to express my gratitude to my daily supervisor Kirk Scheper for his feedback
throughout my research during meetings or random coffee breaks. My thanks also goes to my
fellow students in the graduation room for their advice on the C++language, discussions and
group lunches. Finally I would like to thank my family, friends and my girlfriend Claudia for
giving me the motivation that kept me going.

Yannick Sebastian Janssen
August 16, 2016
Delft

2 Acronyms

Y.S. Janssen Reinforcement Learning Policy Approximation by Behavior Trees

Acronyms

1 Introduction

1-1 Research Question

1-2 Thesis Layout

I Paper

Il Literature Study

2-1 Reinforcement Learning the Basics
2-1-1 Markov and Partially Observable Decision Processes
2-1-2 Value Function
2-1-3 Dynamic Programming
2-1-4 From Dynamic Programming to Monte Carlo
2-1-5 Temporal Difference Learning
2-1-6 Advantages
2-1-7 Limitations

2-2 Recent Advances

2-2-1 Hierarchical Reinforcement Learning

2-2-2 Continuous Reinforcement Learning

Reinforcement Learning Policy Approximation by Behavior Trees

Reinforcement Learning

Contents

13

Y.S. Janssen

4 Contents

3 Behavior Trees 43
3-1 Behavior Tree 43
3-1-1 The Emergence 44

3-1-2 Semantics 44

3-1-3 Execution 46

3-1-4 Advantages 47

3-1-5 Limitations. 48

3-2 Recent Advances L 48
3-2-1 Optimizing BT 49

4 Preliminary research 51
4-1 Windy Grid World 51
4-2 Policy Representation using BTs 54

IIl Additional Results 57
5 Additional Results 59
5-1 Fitness Functions 59
5-1-1 Accumulated State-Action Value Fitness Function 59

5-1-2 Problem Specific Fitness Function 65

5-1-3 Evaluation Fitness Function 69

5-2 Acting policy inthe DTMC 69
5-2-1 RL as Active Policy 69

5-2-2 Evaluation Active Policy 72

6 Conclusions 73
7 Recommendations 75
A Pruning 77
B Code structure 79
B-1 Simulation 79
B-2 BT implementation 80

C Reinforcement Learning 81
Bibliography 85

Y.S. Janssen Reinforcement Learning Policy Approximation by Behavior Trees

1-1

2-1

2-2

2.4

44
4-5

5-1

List of Figures

Graphical depiction of a Behavior Tree framework. The different node types are
indicated. 11

General Reinforcement Learning structure. The agent performs action a; in the
environment. The environment responds by presenting the agent a new state sy

and a reward r;41. Adapted from (R. Sutton & Barto, 1998).. 32
a) Action value. b) State-actionvalue. 34
DP structure relating to RL. Adapted from (R. Sutton & Barto, 1998). 36
General Reinforcement Learning Structure. Adopted from (R. Sutton & Barto,

1998). . . L 38
Graphical depiction of a Behavior Tree framework. The different node types are

indicated. L 45
An example BT defined for behavior to open a door. Adapted from Millington &

Funge (2009). 46
BT defined for combat behavior for an UAV. Adapted from (Ogren, 2012). . . . 49
Q-condition node. Adapted from (Dey & Child, 2013). 50
Windy grid world. Adapted from R. Sutton & Barto (1998) 52
Reward per episode for RL controller using Q-learning or SARSA. 53
Delta Q per episode. 53
Manual BT designed based on state-action values. 54

Resulted path for BT designs. Both BT identify the same actions for all states in
the grid world. This results in the same path through the grid world for both trees. 54

Results Genetic Optimization for 50 generations. 60

A motion example of the UAV using the BT that is the evolved for 50 generations.
This BT avoids walls and not reacts to trash. Dark blue indicates walls, light blue
indicates free space, green indicates trash, yellow indicates the UAV's position. . 61

Reinforcement Learning Policy Approximation by Behavior Trees Y.S. Janssen

6 List of Figures
5-3 Results Genetic Optimization for 150 generations. 62
5-4 A motion example of the UAV that observes trash instead of collect it. Only front

facing sensors are indicated. Read from left to right, top to bottom. 63
5-5 Two UAV sensor configurations. Left: A UAV observes trash in s6. Right: A UAV
observes trash at sI and observes a wall on its right on s4 and s5. 63
5-6 Genetic Optimization results. 66
5-7 Graphical depiction of genetically optimized BT. 67
5-8 A motion example of UAV with optimized BT as action selection policy. Agent
shows goal driven behavior when trash is observed. Dark blue indicate walls, light
blue indicate free space, green indicate trash, yellow indicate the UAV's position.
Read from left to right, top to bottom. 68
5-9 A motion example of UAV with the optimized BT as action selection policy. Agent
shows goal driven behavior when trash is observed. Dark blue indicate walls, light
blue indicate free space, green indicate trash, yellow indicates the UAV's position.
Read from left to right, top to bottom. L. 68
5-10 Genetic Optimization results for run with RL policy as active policy. 70
5-11 Graphical depiction of optimized BT using GAs. Transitions in the DTMC for the
optimization based on the action selection of the RL policy. Green box indicates
behavior to turn before a corner. Red box indicates the behavior to collect trash
onitsleft. 70
5-12 A motion example of UAV with the optimized BT as action selection policy. Agent
shows goal driven behavior when trash is observed. Dark blue indicate walls, light
blue indicate free space, green indicate trash, yellow indicates the UAV's position.
Read from left to right, top to bottom. 71
B-1 Static class structure of the modeled UAV simulation. 80
B-2 The class structure of the BT class. 80
C-1 Exploration maps for low reward episodes. 82
C-2 Exploration maps for high reward episodes. 83
Y.S. Janssen Reinforcement Learning Policy Approximation by Behavior Trees

List of Tables

1-1 Conventional way to store a RL policy using a Q-table. Shows a part of the Q-table
for a simple 3 x 5 grid world problem with 4 actions. 10
4-1 Parameter settings for the RL controller. 52

5-1 Results optimized BT with GA for 50 generations using the accumulated Q-values
as fitness function. L 61

5-2 Results optimized BT with GA for 150 generations using the accumulated Q-values
as fitness function. L 62
5-3 State-action pairs for 3 states with 3 actions. 63
5-4 Transition probabilities for moving forward when observing trash in front. 64
5-5 Parameter values for the optimization using Genetic Algorithms. 66

5-6 Results optimized BT with GA for 150 generations using problem specific fitness
function. L 67

5-7 Results optimized BT with GA for 150 generations using the RL policy to transition
through the DTMC. 71
5-8 Reward for 10 runs with the UAV running the evolved tree. 72
Reinforcement Learning Policy Approximation by Behavior Trees Y.S. Janssen

8 List of Tables

Y.S. Janssen Reinforcement Learning Policy Approximation by Behavior Trees

Chapter 1

Introduction

Guidance Navigation and Control (GNC) of Unmanned Aerial Vehicles (UAVs) is an active
research area (Yamasaki et al., 2007). The design of effective control behavior to guidance
tasks for small robotic platforms is a major challenge. So far the main focus has been on
making the UAVs perform the tasks correctly, designing the controllers, rather than on the
high level control of doing the correct tasks, designing the control architecture.

However, with increasing capabilities of UAV systems, this high level control becomes more
important. Some tasks have to be done in the correct order, while the execution of others
depends on certain conditions and a given order of priority, such as collision avoidance and
way-point following (Ogren, 2012).

The next challenge arises when UAVs are operated in unknown indoor environments without
external navigation possibilities, such as Global Positioning System (GPS). This drives the
development of autonomous GNC for a UAV in environments without external localization
and without prior knowledge of the environment. A promising method to design GNC for an
unknown environment is found in Reinforcement Learning (RL). .

RL algorithms can solve nonlinear, stochastic optimal control problems without using a system
model (Busoniu et al., 2010). In a RL problem the agent must learn behavior through trial-
and-error interactions with a dynamic environment. “The simplest RL algorithms make use
of the common sense idea that if an action is followed by a satisfactory state of affairs, or an
improvement in the state of affairs, then the tendency to produce that action is strengthened,
i.e., reinforced. This is the principle articulated by Thorndike in his famous Law of Effect
(Thorndike, 1911.).” (Barto & Dietterich, 2004). The goal of a RL controller is to find an
optimal control policy that maximizes the cumulative long-term reward as a function of the
state and possibly of the control action.

Traditionally the learning of a RL controller is stored in lookup tables, @-tables, which store
the values of state-action pairs. Based on the agent’s policy, which relies on the state-action
values, the controller selects a control action. These state-action values cannot always be
stored due to the large number of state-action pairs that need to be stored for large state-
space environments. In those situations approximations are used to approximate the state-
action value Nedi¢ & Bertsekas (2003). Typically, an Artificial Neural Network (ANN) is used

Reinforcement Learning Policy Approximation by Behavior Trees Y.S. Janssen

10 Introduction

to approximate state-action values, the so-called Q(s,a)-values, in a RL problem Watkins &
Dayan (1992) He & Jagannathan (2007).

Present day controllers for safety critical GNC applications, like for example UAV guidance,
undergo extensive tests to qualify their operation. Although analysis of Q-tables is possi-
ble, the difficulty to provide insight in its behavior causes practical issues to Verification &
Validation (VV) of the controller, especially for large Q-tables Bishop (1994). Furthermore,
Q-tables do not lend themselves well to manual adaptation. This limits the deployment and
wider use of RL in guidance applications and creates the desire to look for a framework that
is able to give clear insight in RL developed guidance behavior which is also easy to verify.

An Q-table for a simple 3 x 5 grid world problem is shown in Table 1-1. The problem is to
navigate from a start state to a goal state with four possible actions, move up, move down,
move left and move right. This simple problem results in a the Q-table from which behavior
logic is difficult to analyze and from which it is difficult to make adjustments to this logic.

Table 1-1: Conventional way to store a RL policy using a Q-table. Shows a part of the Q-table
for a simple 3 x 5 grid world problem with 4 actions.

Action
Up | Down | Left | Right
8.73 | -99.78 | 8.99 9.60
6.47 | -93.85 | 9.15 9.70
9.30 | -89.16 | 9.21 9.80
9.34 | -25.07 | 9.27 9.90
-0.24 9.41 | -0.22 | -0.23
-0.20 | -0.18 | -0.18 8.97
-0.10 9.70 | -0.14 0.47
4.47 9.76 | -0.08 | -0.08
-0.05 | -0.05 | -0.08 | -0.05

PO S W W B W R Wt

State
oo oo o
=~ N = O WwiNn = O

A recently developed method to describe control behavior is the Behavior Tree (BT) frame-
work. Initially developed as a method to formally define system design requirements, the BT
framework was adapted by the computer gaming industry to control Non-Playable Characters
(NPCs) (Lindsay, 2010). BTs contain behavior made up of a hierarchical network of actions
. The rooted tree structure of the BT make the encapsulated behavior readily intelligible for
users. It provides clear insight to the designer. This BT framework was quickly adopted by
game designers who were looking to control for their Artificial Intelligence (AI) in characters.
Where in comparison with conventional Finite State Machines (FSMs), BTs feature better
scalability with the growing numbers of possible capabilities to be integrated. Developers
implemented this BT framework in games such as Halo2 and Spore (Isla, 2005).

BTs applied to GNC tasks have been proven to be manually adjustable after simulations when
used on board a real world UAV Scheper et al. (2016). BT's used for guidance give insight in
the decision process and shows under which condition an action is carried out. This provides
insight into potentially wrong and dangerous decisions of the controller and can be verified
by the designer.

A BT orders a global task into smaller subtask. This hierarchical structure of the BT provides
a level of abstraction. A designer can use this abstraction to identify subtasks in the RL policy

Y.S. Janssen Reinforcement Learning Policy Approximation by Behavior Trees

11

Root
Selector
Sequence
—>||
Condition
Action

Figure 1-1: Graphical depiction of a Behavior Tree framework. The different node types are
indicated.

and structure them in order of priority. Plus, the hierarchy and rules of the BT framework
make it possible for designers to verify these subtasks.

Where conventional RL policies are stored in a Q-table, or approximated with ANNSs, the
hierarchical structure of the BT provides a level of abstraction. This gives the designer the
ability to ignore aspects of the current state of the agent that are irrelevant to its current
decision, and are therefore easier to interpret. The BT will have the ability to show relevant
features that are important to make decisions which will increase the understanding of the
developed behavior.

This paper research investigates a method to evolve a BT using Genetic Algorithms (GA)
to approximate a learned RL policy. GAs are adaptive heuristic search algorithms based
on the evolutionary ideas of natural selection and genetics. A population of BTs is used to
produce a BT to evolve a best individual, where the fitness of each individual is measured by
a user-defined, problem specific, objective function. The more generic this fitness function is
formulated, the more it allows for a easy implementation in a wider range of problems.

However, simulation environments require computationally expensive processing and a dis-
advantage of using GAs is computation time Scheper et al. (2016). Instead of using the
simulation environment to evolve BTs with GAs, a Discrete Time Markov Chain (DTMC)
is constructed. The DTMC does not require the simulation of the simulator physics, which
speeds up the approximation. Using the DTMC, called 'move through’ the DTMC, allows
for the analysis of the action identification over time without the simulation environment. By
involving probabilities, the outcome of each move through the DTMC will vary from time to
time and this variation show the essential variability of each BT in the population.

The method is applied to a RL controller on a UAV for a guidance task in a unknown envi-
ronment. The RL controller, which uses the Q-learning algorithm, learns a optimum policy
after which this policy is approximated with a BT using GA. A successful approximation
results the an evolved BT that will aid the user in understanding the developed behavior
of the RL algorithm. Selecting the same control actions but in a reusable, adjustable and
understandable framework. This BT will also provide the possibility for simple verification
of the developed behavior of the controller.

Reinforcement Learning Policy Approximation by Behavior Trees Y.S. Janssen

12 Introduction

1-1 Research Question

The main goal of the thesis is captured in the research question How can the policy of a
Reinforcement Learning controller be made more intelligible by an automatically generated
Behavior Tree?

This research question is answered by answering the following sub-questions.

e How much learning episodes need to run before a RL policy is converged?
e How to formulate the fitness function for the GA?

e How to evaluate the success of the policy approximation with a BT?

1-2 Thesis Layout

The first part of this thesis will cover the research background, problem identification, method-
ology, implementation and results of this work in a standalone scientific paper format in Part I.

Part II contains the research background and preliminary results obtained during this thesis.
This part presents a more detailed background for this work. For readers unfamiliar with the
report structure of a C&S thesis, I advice to start reading with Part II before reading the
scientific paper.

Part III contains additional results not covered in the scientific paper.

Y.S. Janssen Reinforcement Learning Policy Approximation by Behavior Trees

Part |

Paper

Reinforcement Learning Policy Approximation by Behavior Trees Y.S. Janssen

Reinforcement Learning Policy Approximation by
Behavior Trees using Genetic Algorithms

Y.S Janssen, K.Y.W. Scheper, E. van Kampen, G.C.H.E. de Croon

Abstract—Traditionally a Reinforcement Learning (RL) policy
is stored in a lookup table. From such a table it is difficult
to observe the behavioral logic or manually adjust this logic
post-learning is difficult. This paper shows how behavioral logic
of a RL controller is presented in an insightful manner and
can be adjusted using the Behavior Tree (BT) framework. It
shows a method to approximate an RL policy using a Genetic
Algorithms (GA) for BTs for a guidance task carried out by
an UAV navigating in an unknown environment. The method
shows how Discrete Time Markov Chains (DTMCs) can be
used to increase optimization speed. The execution of the RL
controller that interacts with the environment is mapped to
a DTMC, which results in a representation of the one-step
transition matrix. The GA evaluates BTs by transitioning through
this DTMC instead of the simulation environment. Without the
need to simulate a computationally expensive environment, the
optimization is performed faster. The method is demonstrated
on a UAV simulation using a Q-learning algorithm to learn
a guidance task. The guidance task consists of an avoidance
behavior and goal-seek behavior. The evolved BT, containing 6
nodes, successfully identifies 66% of the correct actions of the
RL policy for all states in the Q-table. When this BT is run in the
simulation environment it results in a success rate of 93%. After
adaptation by the experimenter the success rate for all states in
the Q-table increases to 86% and in simulation to 96%. For the
verification of the avoidance behavior with the evolved BT only
3 nodes need to be verified, compared to 1448 state-action pairs
of the Q-table.

Index Terms—Behavior Tree, Reinforcement Learning, Genetic
Programming, Q-learning

I. INTRODUCTION

Guidance Navigation and Control (GNC) of Unmanned
Aerial Vehicles (UAVs) is an active research area [1]. De-
signing effective control behaviors to guide tasks for small
robotic platforms is a major challenge. So far the main focus
has been on making the UAVs perform the tasks correctly,
designing the controllers, rather than on the high level control
of doing the correct fasks, designing the control architecture.

With increasing capabilities of UAV systems, this high level
control becomes more important. Some tasks have to be done
in the correct order, while the execution of others depends
on certain conditions and a given order of priority, such as
collision avoidance and way-point following [2].

The next challenge arises when UAVs are operated in
unknown indoor environments without external navigation
possibilities, such as Global Positioning System (GPS). This
drives the development of autonomous GNC for a UAV in
environments without external localization and without prior

All authors are with the Faculty of Aerospace Engineering, Delft University
of Technology, Netherlands. E-mail: ysjanssen@ gmail.com

knowledge of the environment. A promising method to design
GNC for an unknown environment is found in Reinforcement
Learning (RL).

A RL controller learns to control a task by interacting with
its environment and its immediate performance is measured
by a reward [3]. The goal is to find an optimal control policy
that maximizes the cumulative long-term reward as a function
of the state and possibly of the control action.

Traditionally the learning of a RL controller is stored in
lookup tables, Q-tables, which store state-action values. Based
on the agent’s policy, which relies on the state-action values,
the controller selects a control action. These state-action values
cannot always be stored due to the large number of state-action
pairs that need to be stored for large state-space environments.
In those situations approximations are used to approximate the
state-action value [4]. Typically, an Artificial Neural Network
(ANN) is used in RL to approximate state-action values, the
so-called Q(s,a)-values [5] [6].

Present day controllers for safety critical GNC applications,
like UAV guidance, undergo extensive tests to qualify their
operation. Although analysis of Q-tables is possible, the
difficulty to provide insight in its behavior causes practical
issues to Verification & Validation (V&V) of the controller,
especially for large Q-tables [7]. Furthermore, Q-tables do not
lend themselves well to manual adaptation. This limits the
deployment and wider use of RL in guidance applications and
creates the desire to look for a framework that is able to give
clear insight in RL developed guidance behavior which is also
easy to verify.

A recently developed method to describe GNC tasks is the
Behavior Tree (BT) framework [2]. Initially developed as a
method to formally define system design requirements, the
BT framework was quickly adapted by the computer gaming
industry to control Non-Playable Characters (NPCs) [8, 9].
BTs contain behavior made up of a hierarchical network of
nodes. The hierarchical rooted tree structure of the BT makes
the encapsulated behavior readily intelligible for users. The
framework provides readability, maintainability, scalability and
re-usability. It presents which control action is executed under
which condition.

BTs applied to GNC tasks have been proven to be manu-
ally adjustable after simulations when used on board a real
world UAV [10]. BTs used for guidance give insight in the
decision process and shows under which condition an action
is carried out. This provides insight into potentially wrong and
dangerous decisions of the controller and can be verified by
the designer.

A BT orders a global task into smaller subtask. This

hierarchical structure of the BT provides a level of abstraction.
A designer can use this abstraction to identify subtasks in the
RL policy and structure them in order of priority. Plus, the
hierarchy and rules of the BT framework make it possible for
designers to verify these subtasks.

This paper proposes a method to evolve a BT using Genetic
Algorithm (GA) to approximate a learned RL policy. GAs are
adaptive heuristic search algorithms based on the evolutionary
ideas of natural selection and genetics. A population of BTs
is used to produce a BT to evolve a best individual, where
the fitness of each individual is measured by a user-defined,
problem specific, objective function. The more generic this
fitness function is formulated, the more it allows for a easy
implementation in a wider range of problems.

Simulation environments require computationally expensive
processing and a disadvantage of using GAs is computation
time [10]. Instead of using the simulation environment to
evolve BTs with GAs, a Discrete Time Markov Chain (DTMC)
is constructed. The DTMC does not require the simulation
of the simulator physics, which speeds up the approximation.
Using the DTMC, called 'move through’ the DTMC, allows
for the analysis of the action identification over time without
the simulation environment. By involving probabilities, the
outcome of each move through the DTMC will vary from
time to time and this variation show the essential variability
of each BT in the population.

This research is the first investigation into policy approxi-
mation with the BT framework. This paper aims to express a
developed RL policy, for an UAV that navigates in an unknown
environment using a Q-learning algorithm, in a comprehensive
manner using the BT framework. If the policy of a developed
RL controller can be approximated using a BT, it will aid
the user to understand this developed behavior and allow easy
adjustment.

First the problem background is discussed in detail. Then
the BT framework is explained. Subsequently the combination
of the GA with BT is explained. Followed by an explanation
of the contribution of using the DTMC. Later the success of
the method is showed using RL navigation task for a UAV
trash collector simulation.

II. PROBLEM STATEMENT BACKGROUND

RL is originated from animal behavior research and their
interactions with the environment. If an action is followed by
a satisfactory outcome, the tendency to repeat that action is
strengthened or reinforced [11]. Differing from the traditional
supervised learning, there is no desired behavior or training
examples employed with a RL schemes. Learning is done from
experience, meaning from a sequence of states, actions and re-
wards generated by the agent interacting with its environment.
A graphical representation of the learning cycle is presented
in Figure 1.

A. Markov Decision Processes

RL is based on the formalism of a Markov Decision Process
(MDP). This discrete-time and countable state and action

—— e
state reward action
S, f; a,
r1+1
S Environment

Fig. 1. General reinforcement learning structure. The agent outputs an action
a¢ to the environment. The environment responds by presenting the agent a
new state s¢41 and a reward r¢41.

formalism provides a simple framework in which to study the
basics of RL.

In this framework, a learning agent interacts with an envi-
ronment at a discrete timescale, t = 0,1,2,...,7,,. On each
time step, t, the agent perceives a state of the environment s;,
where s; € S. In response to each action, a;, the environment
produces a numerical reward one time step later, 41, and a
next state, Syyq.

Assumed is that .S and A are finite and that the environ-
ment is completely characterized by on-step state transition
probabilities P(s,a|s’), and one-step expected reward, r, for
all s,s' € S and a € A.

The formalism assumes the Markov property. The Markov
property assumes that if the present state, s, is known, then all
additional knowledge of the events in the past are irrelevant
to select the optimal next action. The current state with
transition probability P(s,a|s’) unambiguously describes the
environment. This is also known as the memoryless property
of a stochastic process.

B. Q-learning

One of the most important breakthrough in RL was the
development of a control algorithm known as Q-learning [3].
Q-learning considers the learning environment as in an MDP
and performs value iteration to find the optimal policy. It
maintains a value of expected total current and future reward,
denoted by Q, for each pair (state, action) in a table. For each
action in a state, a reward will be given and the Q-value is
updated by the following rule defined by Equation (1).

Qur1(s,a) = (1 — o) Qu(s, a)+
afri +7 maz Qu(s' ')} M
a’'€A,

where « is the learning-rate parameter, v is the discounted
reward factor and r is the reward. All other state-action pairs
remain unchanged during the update in Equation (1). In this
case, the learned state-action function, Q, directly approxi-
mates (Q*, the optimal action value function, independent of
the policy being followed.

«a determines the extent of override of newly acquired
knowledge. An a of 0 will not result in any update of the
state-action value, while a factor of 1 will result in an update
with only using the most recent information.

The discount factor, -y, determines the importance of future
rewards. A v of O will result in an agent that only considers
short term reward, while a 7 of 1 will focus more on long
term reward.

When the Q-learning algorithm is used in the MDP for-
malism and all pairs continue to be updated, the solution to
Equation (1) has been shown to converge with probability 1
to Q* [5].

The agent action-selection procedure, a policy, is specified
by a mapping from states to probabilities of taking each action:
m: S x A — [0,1]. Thus, a policy is the mapping from
perceived states of the environment to actions to be taken when
in those states. An agent that follows a greedy policy selects
the action with the highest state-action value for every state.

C. Policy storing using Q-table

Traditionally Q-learning keeps a table of all the state-action
values. Table I shows an example of the conventional structure,
a Q-table, in which Q-learning stores its approximations of the
state-action pairs. This Q-table does not provide insight in the
solution strategy for designers. The designer needs to interpret
all the Q-values in the table and link state transitions before
a behavior becomes clear, if even possible.

TABLE 1
CONVENTIONAL WAY TO STORE A RL POLICY WITH A Q-TABLE. SHOWS A
PART OF THE POLICY FOR A 3 X 5 GRID WORLD PROBLEM WITH 4 ACTIONS

Action

Up Down Left | Right

[1,0] 8.73 | -99.78 8.99 9.60
[1,1] 6.47 | -93.85 9.15 9.70
[1,2] 9.30 | -89.16 9.21 9.80

° [1,3] 9.34 | -25.07 9.27 9.90
s | [0,0] | -0.24 941 | -022 | -0.23
@ | [0,1] | -0.20 -0.18 | -0.18 8.97
[0,2] | -0.10 9.70 | -0.14 0.47

[0,3] 4.47 9.76 | -0.08 | -0.08
[0,4] | -0.05 -0.05 | -0.08 | -0.05

In many cases of practical interest, there are far more
states than could possible be entries in a table. In highly-
dimensional discrete environments, an exponential explosion
of the number of state-action values occurs, the so called curse
of dimensionality. In these cases the value functions must
be approximated using function approximation methods, such
as ANNs. However, ANN or other function approximation
techniques are not a substitute for understanding the behavior
logic. An additionally, the structure of a ANN is highly
interconnected which makes them difficult to troubleshoot
when they do not work as expected.

So for (large) Q-tables or function approximation methods
that store state-action values, a way to present the behavioral
logic of a RL controller is lacking. The goal of this paper is
to approximate the policy of a optimized RL controller such
that it provides the designer with workable tools to identify,
adapt and verify (sub)tasks of the learned behavior of a RL
controller.

III. BEHAVIOR TREE

Dromey [8] developed a system design method to address
the problem of systematically translate large, complex re-

quirement documents into a structured model of the system.
This method is called Behavior Engineering. The method is
centered around a notation to express system behavior called
Behavior Trees.

The BT notation got the attention of computer game design-
ers when they searched for a behavior management system for
NPCs. They needed a framework to control the modularity, re-
usability and complexity of the NPC. The BT, although in a
different form as was anticipated by Dromey [8], proved to be
suited to capture this behavior [12].

Ogren [2] is the first to argue that the modularity, re-
usability and complexity of UAVs GNC systems might be
improve by the BT architecture. Ogren [2] states that this is
mainly due to the fact that BTs make the transitions implicit
in the tree structure. The implicit transitions substantially
increase modularity, which in turn makes design and re-design
much simpler. This makes the BT framework an interesting
framework to approximate the RL policy for UAV guidance.

A. Syntax and Semantics

BTs are formed by hierarchically organizing behavior sub-
trees, which consist of nodes. They can also be defined as
Directed Acyclic Graphs (DAGs). DAGs consist of a number
of nodes that are connected with directed edges. The connec-
tions have a direction, to go from node A to node B is not the
same as from node B to A. And the structure is acyclic, to
move from one node and follow the edges, will ensure that no
node is encountered for the second time. The outgoing node
is called the parent and the incoming node is the child.

Root
Selector

Sequence

— | [—]

Condition

Action

Fig. 2. Graphical depiction of a Behavior Tree with highlighted node types.

The structure of the BT framework provides a hierarchical
way of organizing behaviors. It is represented as a rooted tree
structure which is evaluated from left to right. The BT is made
up of several types of nodes, however all nodes share a core
functionality. This core functionality is that a node informs its
parent node of its status. This return status is generally either
Success or Failure.

Basic BTs are made up of three kinds of nodes: Conditions,
Actions and Composites [9]. Nodes that have no children are
called leaf nodes. The leaf nodes can be either Conditions or
Actions whilst the branches of the BT consist of Composite
nodes. Conditions test a property of the environment. A
Condition node returns Success if the condition is met and

Failure otherwise. The agent acts on its environment through
Action nodes.

Although more types of Composite nodes can be used [9],
this research only considers Sequences and Selectors. The root
node of a BT is typically a Selector node.

Selector nodes will return Success to their parent if one of
its children return success and will not process any further
children. If a Selector node receives Failure from its first
child, it will try its second child until it evaluated all its child
nodes. The Selector node fails if all child nodes return Failure.
Opposite, a Sequence will only return success if all children
succeed. If one of its children fails, a Sequence will not process
any further children and returns Failure to its parent.

Leaf nodes are problem specific and are developed individ-
ually, but can be reused in the tree where required. Composite
nodes are versatile and are not problem specific. The shared
commonality make it possible to develop a part in the BT
without knowledge of other parts. This results in a modular
and reusable framework. A sample BT with highlights the
different nodes can be seen in Figure 2.

B. Execution of a BT

The Composite nodes determine how the BT is executed.
Simple combinations of Composite nodes are used to develop
complex behavior.

Every time a control action is needed, the tree is executed,
referred to as ticked. A tick starts from the root node and
evaluates down from left to right. An execution is complete
when the root node of the tree returns either Success, or when
all of its branches are evaluated and return Failure.

The behavior nodes are accompanied by a Blackboard
which is developed to share information with the BT. During
the evaluation of the tree, the tree sets a temporary action
to be executed onto the Blackboard until the root node is
finished evaluating its children. This allows for actions to be
overwritten until the root node returns Success or Failure. The
last action that is set on the Blackboard is the action that is
available to the agent.

C. Use BT to Approximate a RL Policy

The BT framework provides several advantages when used
to approximate a developed RL policy. The framework pro-
vides readability, maintainability, scalability and re-usability.
When the BT framework is used it is clear which control action
is selected for which state.

An important advantage is that a BT orders a global task into
smaller subtask. This hierarchical structure of the BT provides
a level of abstraction compared to the representation all state-
action values in a table. A designer can use this abstraction
to identify subtasks in the RL policy and structure them in
order of priority. This provides the designer to make easy
adjustments to the policy.

A second important advantage is that the hierarchical struc-
ture also allows to group state-action pairs. This results in
a BT that can identify the same action with a few nodes
compared to the RL policy that all the states in a large table.
This BT will have the ability to show the relevant features the

agent decides on and allows the designer to ignore the aspects
in the Q-table that are irrelevant for its optimal policy. If a
BT can be constructed with only a few nodes that is able to
identify the same actions the RL policy identifies based on
a Q-table, verification of the task becomes simpler. The tree
only requires checking the Condition nodes compared to all
state-action pairs in the Q-table.

IV. GENETIC ALGORITHMS FOR BEHAVIOR TREES

To evaluate many different BT design on their success of
approximating the RL policy, GAs are used. The Genetic
Algorithm is a probabilistic search algorithm that iteratively
transforms a set (called a population) of mathematical objects
into a new population of offspring objects [13]. It mimics
nature’s mechanisms of evolution like selection and mutation.

The GA for BTs is adapted from Scheper et al. [10],
customized for this research. Scheper et al. demonstrated
successfully how to develop robotic control for a single task
that uses a population of BTs.

BTs are considered as members of a species, where the
fitness of each individual BT is measured according to a
specific fitness function. For each generation, the population
consists of a set of BTs that are under evaluation.

Successful BTs, parents, are selected to share their genes,
which are, represented by the nodes of a BT. The GAs
recombines information of the successful BTs by means of
evolution methods, such as crossover and mutation, to produce
new BTs, children.

This introduces a variation of BTs which results in explo-
ration of the search space that tends towards the best policy
[14].

Genetic Operators

Initialization An 1initial population of M individuals is
generated by means of a grow method. This results in an initial
population of BTs with a diversity of genetic material.

Selection Tournament Selection is used. To select a parent
tree, first a subgroup of the population is selected, sorted
in order of their fitness. Then the best individual from that
subgroup is selected.

(a) Behavior Tree before mutation. (b) Behavior Tree after mutation.

Fig. 3. Example Mutation. Node indicated with green box is selected for
micro mutation.

Mutation Two mutation methods are implemented, micro-
and macro-mutation. Micro-mutation only affects leaf nodes
shown in Figure 3. It reinitializes the node with new operating
parameters. Macro-mutation, also named Headless Chicken

Crossover, replaces a selected node by a randomly generated
BT, taken into account the maximum tree depth. The prob-
ability of mutation is given by the mutation rate P,,. Once
mutation is applied, the probability that macro-mutation is
applied is given by the Headless Chicken Crossover rate, Pp...

Crossover A part of the new population is formed by
crossover. Crossover recombines a randomly selected node
from two parents to produce rwo children. The percentage of
the population formed by crossover is defined by the Crossover
Rate P.. The node is selected at random, independent of type
or location in the BT. Figure 4 shows the procedure, with
Figure 4a presenting the parent BTs and Figure 4b presenting
the resulting children BTs.

(b) Children trees with selected nodes highlighted in green

Fig. 4. Example Crossover.

Stopping rule The evolutionary process repeats itself until
the stopping criteria are met. For a GAs, it is typical to use
a maximum number of generations. Placing a limit helps to
avoid unnecessary long computational time due to the large
number of BTs that is considered per generation.

Fitness Function

The fitness function rates the performance of the individuals
in the population. This is the objective function that the GA
optimizes for. This function is important for the results that
can be expected from the optimization.

BTs are considered as members of a population, where the
fitness of each individual BT in the population is measured
according to Algorithm 1. The main performance metric to
score the individuals in the generation of BTs is the number
of times the tree identifies the same action as the RL policy.
The BT is set as acting policy to step through the DTMC, so
its fitness will be a representation on how successful the BT
identifies the right action compared to the RL policy on its
own run through the DTMC.

Algorithm 1: Fitness function used for Genetic Algorithm.
For every step through the DTMC for the currently evaluated
BT the fitness is increased by 1 if it identifies the same action
as the RL policy identifies, otherwise its fitness remains

unchanged.
if actiony, == actiong,,,,,,,, then

Fitness + 1
else

Fitness + 0
end if

When a tree successfully identifies more than 90% of the
actions, an additional fitness function is added to evaluate the
BTs. This fitness is related to the size of the BT. A BT with
less nodes can be verified more quickly, this results in a tree
which scores better when the number of nodes is less. A tree
is given maximum fitness score if the number of nodes in the
tree is 20 or less. This leads to an optimization that reduces
the size of the tree, but stops reducing the size at 20 nodes.

V. MAP ENVIRONMENT IN A DISCRETE TIME MARKOV
CHAIN

A disadvantage of applying GAs is the long computation
time [15]. To speed up the optimization time, the environment
is mapped into a DTMC. Compared to rendering a simulation
environment the computational requirements of a Markov
model is modest.

The DTMC captures the transition probability of the agent
in the environment. It allows for an optimization to be per-
formed without the simulation environment.

For every action a an |S| x |S| matrix P(s,a|s’) is con-
structed, as shown by in Equation (2). Each element in the
matrix represents the probability of the transition from a
particular state (represented by row i of the matrix) to the
next state (representing the column j of the matrix).

P11 P12 P1j

P21 P22 D2j
P(s,als)=|". . N @)

Pi1 Pi2 .. Dij

In the transition probability matrix all probabilities are non-
negative, with the sum of each row equal to 1.

An example of a DTMC with 8 states and the corresponding
transition probabilities are shown in Figure 5. The execution
of a task is represented as a sequence of probabilistic events.

Fig. 5. Discrete Time Markov Chain with 8 states and corresponding transition
probabilities.

The Markov chain provides the probability transitions from
one state to any other state without the simulation environ-
ment. At each time step, the BT identifies an action given the
state and presents it to the transition matrix, which determines
the state to which the system moves by generating a random
number. This computation is repeated for a fixed number of
steps through the DTMC.

The action selection of the tree is compared to the action
selection of the RL policy in the Markov chain. A fitness
function is constructed using this comparison which enables
to analyze the success of BTs compared the the RL action
selection over time by moving through the DTMC in stead of
the simulation environment.

In addition to speed up computation time, the states that
are encountered in the Markov chain are states with high
probability to transition to. When the BT steps through the
DTMC, these states are encountered more often are more
likely to be approximated correctly. This way the Markov
chain also acts as a guide in the Q-table for the optimization
process.

The transition matrix is constructed using the frequencies
of state transitions by repetitively stepping through the envi-
ronment during the development of the RL controller. This
captures the stochasticity, the physics of the environment and
how the agent transitions through the environment. The DTMC
abstracts away the physics of the simulator that requires com-
putationally expensive processing and reduces computation
time for the optimization.

VI. TRASH COLLECTING UAV TEST-CASE

First an overview of the method is presented before the task
is specified. The method is tested on a simulation of a UAV.
The guidance task is learned using the Q-learning algorithm
to develop a policy that maximizes its reward per run in the
simulation. This developed RL policy is then approximated
using GAs with the BT framework.

A. Method

First 1) a RL controller is developed. This controller will
learn a control policy for the guidance task based on a
Q-learning algorithm. When the RL controller has finished
learning learning, its policy will be analyzed to see how well
the guidance task is performed. This analysis is then used in
the evaluation of the approximation.

Second 2) during the development of the RL controller
the environment is mapped into a DTMC. The DTMC is
constructed during every episode of the UAV in the environ-
ment. To gather as much knowledge on the state transitions as
possible.

Then 3) optimize a BT to approximate the RL policy using
GAs in the DTMC. GAs allows to quickly evaluate many
different BT designs in the DTMC and to find the BT that
approximates the RL the best.

At last, 4) results of the optimization and the evaluation of
the evolved BT are presented. This BT is compared to the RL
policy in the simulation environment to evaluate in the success
of the method.

B. Tuask

The task for the UAV is to collect trash and navigate in
a room without hitting walls. The task can be split up in
two parts, collision avoidance and search trash. The UAV is
equipped with limited amount of sensors which can sense
the presence of a wall, trash or free space. This sensor
configuration results in a partially observable environment
where different physical locations could have identical sensor
input. This results in a challenging task for the UAV to learn
a policy perform well on the two tasks.

C. Environment

Figure 6 shows the environment for the UAV. The walls are
fixed and do not change during learning or after.

When the UAV collects trash, as new piece will appear at
a random location in the room. This keeps the probability
to encounter a piece of trash for the UAV equal throughout
all episodes. There are always 14 pieces of trash in the
environment. The initial distribution of trash is fixed and
shown with the UAV in the environment in Figure 6.

— Wall
Freespace
Agent

s Sensors

s Trash

Fig. 6. Environment that shows the UAV and initial trash distribution.

D. State Representation

The sensor pattern of the UAV is shown in Figure 7. The
UAV is equipped with 8 senses that can sens the contents of
8 cells around the UAV (sO to s7) in Figure 7. Each senses
the presence of a wall [0], free space [1] or trash [3]. The
ith element corresponds to the observation of the s sensor.
Figure 7 shows two UAV sensor configurations. Left shows
that the UAV senses trash on s6. Right shows an UAV that
senses trash at s/ and a wall on its right on s4 and s5.

This state representation allows the UAV to be put into other
unknown environments. The UAV will still be able navigate
around since the states are relative to the UAV.

The state-space of the UAV with the 8 sensors and in 3
different observations possibilities result in 3% = 6561 unique
states. However, the UAV can not sense anything behind a
wall. So not all 6561 states can be observed. In addition to
this sensor constraint, the number of states it can encounter is
also limited by the dimension and geometry of the room, e.g.
it will never senses two walls on either of its sides in Figure 6.

As mentioned in the Section VI-B the limited local infor-
mation available to the UAV, the state of the UAV can only
partially observe the environment around it. The current state
of the environment cannot be fully be determined by the local
state information of the UAV.

— W all
Freespace
Agent

m— Sensors

s Trash

Fig. 7. Two UAV sensor configurations. Left: A UAV observes trash in s6.
Right: A UAV observes trash at s/ and observes a wall on its right on s4 and
s5.

1) Design RL controller:

The UAV can choose from three actions: move forward, turn
left, turn right. To stimulate to move through the environment
a negative reward of -1 is given when it turns left or right and
no reward when it moves forward. A negative reward of -10
is given when the UAV collides with an obstacle. When the
UAV collects trash it receives a reward of +20. This reward
design encourages the UAV to move trough the environment,
search trash and not hit obstacles.

The task starts each episode in a fixed initial state, sy € S.
The UAV maneuvers for 150 steps, following a policy, try to
maximize its total reward for each episode.

All the learning parameters for the UAV are shown in
Table II.

TABLE II
PARAMETER SETTINGS FOR THE RL CONTROLLER.
Parameter Value
Number of episodes 1000k
Number of steps per episodes 150
Learning rate o 0.5
Discount factor 0.8
Exploration factor eg 0.5
Reward move forward 0
Reward turn -1
Reward hit wall -10
Reward collect trash +20

The Q-update is shown in Algorithm 2. The two key steps
in Algorithm 2 for the Q-learning are select an action and
update of the Q-value. There are many ways to choose actions
based on the current Q-value estimates. For the trade-off
between explorations and exploitation an ¢ — greedy policy
is implemented, a variation on the normal greedy selection.
In both cases the UAV identifies the best action based on the
state-action value. But e—greedy selects the greedy action, the
action with the highest state-action value, 1 - ¢, of the time,
where ¢ € [0,1). The policy selects one of the non-greedy
actions a fraction € of the time.

To ensure that during the end of the episodes the UAV ex-

ploits its knowledge instead of still explores the environment,
a decay function for € is implemented. The e decay function
is given in Equation (3). It calculates €, for each episode k.

1
ekzsg*(nd—l—) 3)
Ng * €
where ng is the number of total episodes divided by 100
and ey, the current episode. The trend of the decay of epsilon
from episode 1 until 50000 is visualized in Figure 8.

0.5

0.45
0.4
0.35
0.3 ‘
U025 |
0.2
0415 | |\
041t

0.05

. . ! ;
0 1 2 3 4 5
episode x104

Fig. 8. e-decay shown from episode 1 to 50000 with ¢y = 0.5.

This policy becomes more greedy over time such that during
the last episode during learning only 0.004% of the time the
non-greedy action is selected.

Algorithm 2: Pseudo code Q-learning algorithm and includes
transition matrix, P(s, a|s’), update.
1. Set parameters 7 & o & €
2. Initialize Q — matrix
for each episode do
Initialize sg;
for t < t,,q. do
observe current state s
select and perform action a
observe subsequent state s’
receive immediate reward r
update Q(s,a) according to:
Q(S) a) =
(1—ap)Q(s,a) + afr + Vng:Q(s’, a')}
update P(s'|a, s)
set s’ =s

end

end

Learning results

The total reward for the first 500 episodes of learning is
visualized in Figure 9.

Figure 9 indicates the learning of the UAV on its guidance
task during the first 500 episodes. It can be seen that for the
first 50 episode the UAV collects a lower average reward then
for the episodes after.

O Total reward per episode

400 - ©
(o]
o o 8
350 |- 09 o0 ° o’ o
o° °og o © o ®
300 o0 000 Og 0 0O
- OOO@@? O&Q&o 00 8500& o@&%
= L @00, &0 00
gzso o)

150 5% © 90 & 5000 0@ %8, %g o
o o
o

100 o o © coo

®» O © o
50 - °

0 ,
0 100 200 300 400 500
episode

Fig. 9. Progression of total reward after each episode.

To evaluate the learned behavior in more detail the task is
broken down to three behaviors: collision avoidance,
collect trash and search trash. These three behav-
iors will also be used to evaluate the approximation.

Collision avoidance

Due to the state representation for the UAV, the UAV
does not have to learn the complete environment to acquire
knowledge early on. It learns to identify walls quickly on.
Figure 10 indicate if the UAV observes a wall right in front
and moves forward for the first 100 episodes with the e greedy
action selection.

For a run with 10000 episodes that uses a greedy policy
for 10000 episodes, it takes the UAV 5598 episodes to not
maneuver into a walls. Since in reality maneuver into the
wall will increase the change to break the UAV, the collision
avoidance behavior is seen as critical.

O # of wall states encountered
18 r O #of maneuvers into wall b
16 p (e} 1
o

14 o © oo o B
g [e]e} o0 @ @ 00 oW
€ 12 F@@O @O0 00 O O 000 O @ @ o g
a3 000 ® O O 00 WO O O 00 o
210+ o oo o [SegeNe) o ®@o 1
o o o o oo oo o
T 8 o o B
2 o o
g 6 ® o 4

o
40 o 04
2 o 1
® o o o
0
0 20 40 60 80 100
Episode

Fig. 10. Progression of the UAV learns to avoid the wall. Number of times
states the that the UAV encountered a wall right in front of it is shown in blue.
The number of times the UAV maneuvers forward in those states is shown in
red.

A motion example of the UAV maneuver too a wall is shown
in Figure 11. The UAV observes the wall in front, no pieces
of trash are sensed on the other sensors and selects to turn to
the left. After which the UAV continues to follow the wall. To

turn away from the wall will result in two negative rewards
of -1. This results in the UAV that follows the wall until new
information on the environment is sensed.

Fig. 11. A motion example of the UAV that shows a counter clockwise
maneuver through the environment when it encounters a corner and not other
sensor input is available. Dark blue indicates walls, light blue indicates free
space, green indicates trash, yellow indicates the UAV’s position. Read from
left to right, from top to bottom.

Collect trash

Figure 12 shows a motion example of the UAV maneuver
to collect trash when observed on one of its sensors. The UAV
collect trash on either side of the UAV.

Fig. 12. A motion example of the UAV trained with Q-learning that collects
trash as soon as it is sensed by one of its sensors. Dark blue indicate walls,
light blue indicate free space, green indicate trash, yellow indicate the UAV’s
position. Read from left to right, from top to bottom.

The second observation is the choice between two pieces
of trash. When the UAV observes trash in front and on its
left or right, it decides to collect the piece of trash in front of
the UAV. This makes sense since a turn results in a negative
reward of -1 and move forward is not penalized. This behavior
is presented in Figure 13.

Search trash

Fig. 13. A motion example of the UAV that shows to collect trash in front
instead of right next to it. Dark blue indicate walls, light blue indicate free
space, green indicate trash, yellow indicate the UAV’s position.

Due to the partially observable state representation of the
UAV, the UAV did not develop behavior to search for trash.
Since a new piece of trash appears on a random location when
the UAV collects one, the UAV depends on random chance to
encounter it. This results in a fluctuation in the total reward per
episode, as shown in Figure 14 for the first 10000 episodes.

600

O Total reward per episode

reward

o @6
® o
<

4000 6000 8000 10000

episode

Fig. 14. Total reward for the first 100000 of the UAV that maneuvers through
the environment.

Due to this stochasticity of encounter trash, the state-action
values do not converge. The Q-update for every step during the
last episode is shown in Figure 15. It shows large Q-updates
for this last episode. These large updates indicate the UAV
still learns a lot during the last episode. The states were this
learning occur are investigated in more detail.

An example of two states with large Q-updates is presented
in Figure 16. It shows the states of when the UAV observes
nothing on its sensors just before finding a piece of trash in
one of its sensors. An observe trash state has a high state-
action value, but the UAV can transition to this state in more
than one way for this example. These states will keep being
updated on when either action is chosen. For both positions
a different action is the best action which ends up in a high
state-action value state.

Without the possibility to search for trash, the UAV develops
a control policy to increase it chance to encounter trash. In
Figure 17 this behavior is shown. The UAV uses the fact that
walls provide the UAV with information on the environment

o
10 - 1
o
o oD [¢]
. (o] 4
5 o (e} 00 5 o(@ .
e o ® 0% o W &
o L o oo @_ 02 s o o @ |
b 030%3% b O 0 © O3 O%m%oooo
o 0 0o 9570
o o o ©
o
o
5 © oo © 00 [
e}
o [os) %
[¢) o
10F o o © 1
[o
o o
15
0 20 40 60 80 100 120 140 160
Steps

Fig. 15. The delta of the Q¢+1(s, a) with respect to Q¢ (s, a) for every time
step during the last episode. This indicates the stochasticity to encounter trash
in the environment.

—\\all
Freespace

Agent
— Sensors
s Trash

Fig. 16. Same state for the UAV, but different optimal action. This results in
large Q-updates.

when it approaches a corner. When the UAV follows a wall
and approaches a corner, the UAV turns before it reaches the
corner. This results in sensors s4 and s5 to be free to observe
the environment, instead of keep observe the wall.

Fig. 17. A motion example of the UAV that shows a counter clockwise
maneuver through the environment. When the UAV encounters a corner it
turns before the corner to increase observability of the environment. Dark
blue indicate walls, light blue indicate free space, green indicates trash, yellow
indicates the UAV’s position. Read from left to right, from top to bottom.

To summarize, it is observed that the collision avoidance
and collect trash are deterministic. These task are executed
successfully early on. The non-deterministic part, search trash,
is not learned. Since the UAV can only partially observe the
environment due to the UAVs limited amount of sensors, the

UAV does not have enough information to search for trash. To
maximize its reward the RL learns control actions to increase
its possibility to encounter trash and acts if trash is observed.

As a hash-table is used to store the Q-values, only states
visited are stored and updated. At the end of all episodes, the
UAV encountered 1041 states in the final table. This resulted
in 1041 x 3 = 3123 state-action values which are used to
identify the actions on the UAV. Verify all the state-action
value pairs will take time, if even possible.

2) Map learning into DTMC model:

Due to the discrete nature of the simulation, the Markov chain
is setup with the same states that the RL Q-learning algorithm
uses in the Q-table. The number of unique states of the UAV
encountered is 1041, this results in a transition matrix P of
1041 x 1041 per action a.

The frequency from state s, execute action a and end up in
state s’ is updated and stored in P(s, a|s’) every time an action
is performed. This update is incorporated in Equation (1) after
the Q-update. Due to the large number of states and discrete
nature of the environment, many states are not reachable from
other states, this results in a sparse matrix P.

3) Approximating the RL policy with Genetic Algorithms
using the DTMC:

Due to the transition probabilities in the DTMC, a run from
a same initial position can transition through the DTMC
differently. The main performance is the fitness described in
Algorithm 1. To generalize the performance of each BT in
the population, each BT is run k times through the DTMC to
determine its average fitness.

All runs start of with the same initial position, the same
state the UAV stared in the simulation. An action a in s is
executed if P(s,als’) is non-empty. If an action is selected
from a state which did not occur during learning, i.e. P(s,als’)
is empty, the BT gets a random state returned to continue its
run through the Markov chain. This transition will have no
extra effect on the fitness of the BT, other than the formulation
in Algorithm 1. The run through the DTMC continuous until
the maximum number of steps, t,,q., through the DTMC is
reached.

When a tree successfully identifies more than 90% of the
actions, an additional fitness function is added to evaluate the
BTs. This evaluates the BTs on the number of nodes where
less nodes yield in higher fitness.

All the parameters used for the GA are shown in Table III.

Genetic Algorithm Results

The parameter which dictates the evaluation of the optimiza-
tion is the mean fitness of the generation of BTs. Figure 18
show the population mean fitness and the mean fitness of the
best individual in each generation. It can be seen that it takes
145 generations best score of the best individual to evolve.

10

TABLE III
PARAMETER VALUES FOR THE GENETIC ALGORITHM.
Parameter Value
Policy executed in DTMC BT
Max number of generation (G) 400
Population size (M) 100
Tournament selection size (s) 8%
Crossover rate (P.) 50%
Mutation rate (Pp,) 30%
Headless-Chick Crossover rate (P c.) 10%
Maximum tree depth (D) 3
Maximum no. of children (D.) 4
No. of simulation runs per generation (k) 5
No. of steps through DTMC (t) 100

The mean fitness also improves gradually and then settles at
around 0.7 a the normalized fitness axis.

1
; —0- Mean
0.9

—X— Best of Population

|
|
"
|
i
‘ G

0.5

Fitness

0.4

0.3

0.2

SO o 5T — &

0.1
50 100 150 200 250 300 350 400

Generation

o

Fig. 18. Progression of the fitness score of the best individual and the mean
of the population throughout the genetic optimization. The highest fitness of
the best scoring individual is evolved after 145 generations.

Figure 19 indicates the tree size of the best individual and
the tree mean size of the population. As shown in Figure 19
the average tree size begins around 55 nodes. Then drops
immediately to around 20 to steadily increase to around 38
nodes. From there the number of nodes continue to reduce
and eventually drops to around 20 again. The best individual
BT after 150 generations has 21 nodes.

If the nodes from the best individual that have no effect on
the final behavior are removed, called pruning, the final BT
results in a BT with 6 nodes.

The optimized BT from the optimization after pruning is
presented in Figure 20. The condition statements are indicated
with the sensor s; and the check for a wall (0), free of obstacles
(1) or trash (3). s3 checking for a wall in a condition node
is presented as s3 = 0. The actions are indicated with L for
turning left, R for turning right and M for moving forward.

4) Optimized BT results & performance evaluation:

100 T T T
J —G- Mean
90 | —>— Best of Population 1
80 J 4
|
70| 1
| X
60 & |l]
Q |
N l‘
@50 || 1
g N 5
=40 H 1|
|
I
0 50 100 150 200 250 300 350 400
Generation
Fig. 19. Progression of the number of nodes of the best individual of

the population and the mean of the population throughout the genetic
optimization.

Fig. 20. Graphical depiction of genetically optimized BT. Blue box indicate
wall avoidance behavior. Red box indicate trash collect behavior on the left
of the UAV.

For the performance evaluation the results of the evolved BT
are compared to the results of policy from the RL. In addition
to the evolved tree the results of a manually adjusted BT are
shown. An overview of the results is presented in Table IV.

TABLE IV
TABLE SHOWING SCORES OF THE DIFFERENT POLICIES THE UAV USED
DURING A RUN IN THE SIMULATOR.

Q-learning BT BT adjusted
Action-selection for all states 100 66 % 86 %
Action-selection in simulation 100 93 % 96 %
Average reward in simulation 283 248 266
Representation 3123-entries 6 nodes 20 nodes

For every state in the Q-table, the evolved BT is ticked to
see which action it identifies. That action is compared to RL
policy. The evolved BT is able to successfully identify the
right action for 66% of all states in the Q-table.

Then the action selection of the evolved BT is compared
with the RL policy during a run in simulation environment.
The actions executed in the simulation environment are the
actions selected by the evolved BT. In the simulation environ-
ment the evolved BT identifies successfully the right action

11

for 93% of the time.

The evolved BT consists of 6 nodes, compared to the
complete Q-table with 3123 entries. To compare the state-
action pairs to the number of nodes is not straight forward.
One node can check a condition in multiple states in the Q-
table. Depending on the condition node, sensor and value,
the number of states it checks vary. This makes it a difficult
comparison. If the transition from state-action pair to node
scale one-to-one, a reduction is size of 189 is obtained in the
representation of the policy.

Although the evolved BT successfully identified the correct
action in 93% of the states encountered in a simulation run, a
closer look is taken into the behavior to the three characteristic
subtask that are identified for the RL policy.

Collision avoidance

The highlighted blue box around the nodes in Figure 20
indicates the subtask collision avoidances. If a wall sensed by
s3, the tree will not be evaluated further and follow the rules
of the BT framework, the action that is set is furn left. Due to
the rules of the framework, no further evaluation of the tree is
necessary to verify this behavior. It will never select the action
move forward.

Fig. 21. A motion example of the UAV that shows a counter clockwise
maneuvering through the environment when it encounters a corner and not
other sensor input is available when follow the BT policy. Dark blue indicates
walls, light blue indicates free space, green indicates trash, yellow indicates
the UAV’s position. Read from left to right, from top to bottom.

The characteristic behavior that explores the room counter
clockwise follows from turning left when facing a wall. The
motion example of the evolved BT given in Figure 21 also
shows this.

Collect trash

The second characteristic subtask is collect trash when it is
observed. Figure 22 shows that if a piece of trash is sensed on
its left sensor the UAV collects it. This is also verified by a
look at the evolved BT in Figure 20. This behavior is indicated
with the red box.

UAV only reacts to trash sensed on left sensors. This
behavior is verified with Figure 20. It shows that the BT
does not include nodes to act on trash on its right sensors. A
motion example of the UAV that follows the evolved BT action
selection and ignoring the trash is presented in Figure 23. In
Figure 23d and Figure 23e it observes trash on s4 and then

12

Fig. 22. A motion example of the UAV with optimized BT. UAV encounters
trash and a wall and react to trash. Dark blue indicate walls, light blue indicates
free space, green indicates trash, yellow indicates the UAV’s position. Read
from left to right, from top to bottom.

on s5. To not collect trash when it is observed on the right of
the UAV results in a lower total reward.

Fig. 23. UAV ignores trash on its right when it uses the evolved BT as policy.
The UAV encounters trash and does not collect the trash at Figure 23d and
Figure 23e.

When the UAV observes trash left or right and in front,
the evolved tree decides to collect trash on its left. Select the
action to move forward, as demonstrated in Figure 13, is not
captured. Inspect the evolved tree in Figure 20 also shows that
this behavior is not present.

Search trash

The third subtask, search for trash, is not learned by the
UAV, it learned to increase its chance to encounter trash. The
evolved tree does not include this behavior. Figure 24 show no
nodes for when the UAV already follows a wall to turn before
the corner. This leads to that s4 and s5 will still observe the
wall. Since the chance to encounter trash decrease it is more
likely to score a lower total reward.

To summarize, the behaviors are not present in the evolved
BT: collect trash on right, collect trash in front first and
increase the chance of encounter trash. If Figure 17 and
Figure 24 are compared, a clear difference in behavior of the
UAV is observed.

However, an advantage of the BT framework is the ease to
make adjustments to the tree and add behaviors. The optimized
BT is extended with 3 nodes to collect trash on its right. 7
nodes are added to collect trash in front first. 4 nodes are
added to capture the learned strategy to turn before a corner.
Figure 25 shows the adjusted BT.

Fig. 24. A motion example of the UAV with optimized BT with same start
position as UAV in Figure 17 with evolved BT as policy. The UAV follows
wall until the corner and keep follow the wall. Dark blue indicate walls, light
blue indicate free space, green indicate trash, yellow indicates the UAV’s
position. Read from left to right, from top to bottom.

Fig. 25. Graphical depiction of genetically optimized BT with extended
characteristic subtasks. Blue box indicates wall avoidance behavior. Red box
indicates trash collect behavior on the left of the UAV. The green box indicates
collect trash in front first. The dark blue box indicates collect trash on the right
of the UAV. The yellow box indicates the increase trash encounter behavior.

To extend the evolved tree with the subtasks resulted in
significantly better action-selection for all states in the Q-
table. Increasing successful action identification for every time
the tree is ticked with the states in the Q-table to 86%.
The extension resulted in small increase the correct action
identification when the adjusted BT is run in the simulation.
The manually adjusted BT successfully identified the correct
action for 96% of the states encountered.

The adjusted BT is now able to collect trash on its right,
which yield in a higher average reward of 266 compared to
the 248 for the non-adjusted BT.

VII. DISCUSSION

Easy verification
From the 1041 states in the Q-table, for 488 states s3 observes
a wall, meaning a wall in front of the UAV. To verify the
collision-avoidance behavior of the RL policy, the state-action
values for all 488 states have to be checked. This results in
1464 state-action values for which that the state-action value

for move forward must be lower than the state-action values
for turn right or turn left. Compared to Figure 20, the node in
the blue box gives the designer the ability to verify that the
UAV will select the action turn left if a wall is sensed on s3.

Compared to the 1464 state-action values of the Q-table,
the evolved BT provides the designer with 4 nodes to verify
whether the UAV can avoid collisions. This indicates that a
higher level of abstraction is obtained if a BT is used as the
action-selection policy. This higher level of abstraction can
lead to a better understanding of developed behavior.

Reinforcement Learning task
The task for the UAV to collect trash in an unknown environ-
ment and avoid obstacles results in three different subtasks;
collision avoidance,collect trash and search
trash. The RL policy successfully learns to control actions
to avoid collisions and to collect trash. These two parts are
deterministic and can be learned by the UAV.

But, due to the partial observability of the UAV, the UAV
does not successful learn to search for trash. The UAV only
learns control actions to increase its possibility to encounter
trash. This is either due to the environment being complicated
or the UAV’s ability to sense the environment is too limited.
The environment is based on a simple room, so future research
will use a UAV that is able to get more information about its
environment.

The aim of research is to show that the BT framework
can be a useful tool to provide insight in a RL policy and
make adjustments. This is partial successful and provided
more insight in the policy structure of the RL controller. It
is observed that the characteristic policy behavior for a RL
agent is strongly coupled to successful action identification for
states with low probability to transition to. It suggests that the
success of the approximation of a RL policy depends on action
identification for these states. Based on this observation future
investigation should perform a sensitivity analysis identify and
involve these states in the approximation.

This research focuses on learn the state-action values and
storing them in a table, a fabular case. However, this method
is not reliant on a tabular form for the state-action values.
Approximations of a more compact parameterized function to
represent the state-action values can also be used to provide
the state-action value.

DTMC
For the states with a high probability to transition to the
correct action is successfully identified by the evolved BT.
A disadvantage of optimizing in the DTMC the lack of
transitions to states with a low probability to transition to. The
RL policy learns a counter clock wise wall follow behavior,
thus keeps the wall on its right. This results that states with
trash sensed left of the UAV are more likely to occur in the
DTMC. As such, the probabilities of transition to a state with
a piece of trash on the right of the UAV are low in the DTMC
compared to the transition probabilities to states with trash on
its left sensors.

The observed behavior to free up its sensors is also not
approximated with the BT. The state for which this action
needs to be identified also has a low probability to transi-
tion too. The approximation did not successful identify this

13

behavior, but is viewed as characteristic behavior of the RL
controller. Future research will investigate to involve low
probability states better in the optimization without increasing
computation time significantly.

Another interesting direction for future research is to inves-
tigate the active policy that is followed in the DTMC. The
BT is used to step through the DTMC in this research, but an
argument can be made to transition through the DTMC based
on the RL policy. If an action selected by the evolved BT is
used, then the UAV will end up in a different state compared
to when the RL policy is followed. Subsequently, both policies
will follow an other sequence through the DTMC during the
rest of the evaluation of the BT.

When the BT is selected as active policy, states that are more
likely to be actually encountered by the tree are evaluated.
However, for wrong action identification, the tree moves to
a state that is is less likely to be visited by the RL policy.
It is interesting to see that the optimization has difficulty to
evolve a BT that captures the characteristics of a RL controller.
When the RL policy is followed, the states that are important
to the RL policy might be encountered more often. This might
improve the optimization result.

A disadvantage when the RL policy is selected as active
policy is that the evaluation is most likely done in a subset of
the Q-table and DTMC. If the collision avoidance behavior is
missed, the RL action selection will move on from this state
and this allows the rest of the selected actions of a BT to
obtain high fitness. This BT, with high fitness, will however
not perform well in simulation and would get stuck when
facing a wall.

Future work will also investigate mapping continuous state-
space problems into a DTMC. In addition, the active policy in
the DTMC and how it relates to the optimization is interesting
to investigate to understand for future work. And further
investigation into the optimizing parameters for the GAs used
in this paper can be performed.

Genetic Algorithm
Without task specific knowledge implemented in the fitness
function, the converged solution is not steered by the human
designers. This allows for easy implementation for a wide
range of problems. However, to capture characteristic behavior
of a RL policy, a tailored fitness function might increase the
success of the optimization. Future research will investigate
specifying a fitness function to better capture the characteristic
behavior of the RL policy.

VIII. CONCLUSION

This paper presents a method to automatically evolve a BTs
using GAs to approximate a developed RL policy, normally
captured in a difficult to interpret Q-table. The evolved BT
provides a framework in which potential wrong and dangerous
decisions of the controller can be identified. The graphical
depiction of the evolved BT allows for easy verification for
the collision avoidance subtask with only 4 nodes, compared
to the verification of 1464 state-action values in the Q-table.
This suggests that a BT provides easy verification of subtasks
for the designer of RL learned behavior.

The evolved BT successfully identifies the right action for
66% of all the states in the Q-table. When the evolved BT
selects the actions on the UAV in the simulation environment,
it successfully identifies the right action for 93% of the
encountered states. This suggests that approximation of the
complete Q-table of a RL policy is not necessary to identify
the right actions for a run in the simulation.

The evolved BT is extended with the characteristic subtasks
that are not evolved during the optimization. This increases
successful action identification to 86% for all states in the
Q-table. When the extended BT is run on the UAV in the
simulation environment, the tree identifies the right action for
96% of all states encountered in the simulation.

The approximation is performed using GAs for BTs in a
DTMC. This DTMC is constructed during the learning of the
guidance task by the UAV and allows for evaluation of BT
designs without the need of a simulation environment.

By omitting task specific knowledge in the fitness function,
the converged solution is not steered by the human designers.
This allows for a easy implementation in a wider range of
problems. The fitness function only increased the fitness of a
BT if the same action was identified by the RL policy.

Concluding, the method presented indicates that the BT
framework provides the designer with workable tools to iden-
tify, adapt and verify subtasks presenting the learned behavior
of a RL controller.

REFERENCES

[1] T. Yamasaki, H. Sakaida, K. Enomoto, H. Takano, and
Y. Baba, “Robust trajectory-tracking method for UAV
guidance using proportional navigation,” in 2007 Interna-
tional Conference on Control, Automation and Systems.
Institute of Electrical & Electronics Engineers (IEEE),
2007.
P. Ogren, “Increasing modularity of UAV control systems
using computer game behavior trees,” in AIAA Guidance,
Navigation, and Control Conference. American Institute
of Aeronautics and Astronautics (AIAA), Aug 2012.
R. Sutton and A. Barto, “Reinforcement learning: An
introduction,” IEEE Trans. Neural Netw., vol. 9, no. 5,
p.- 1054, Sep 1998.
[4] A. Nedi¢ and D. P. Bertsekas, Discrete Event Dynamic
Systems, vol. 13, no. 1/2, pp. 79-110, 2003.
[5] C.J. C. H. Watkins and P. Dayan, “Q-learning,” Machine
Learning, vol. 8, no. 3-4, pp. 279-292, May 1992.
[6] P. He and S. Jagannathan, “Reinforcement learning
neural-network-based controller for nonlinear discrete-
time systems with input constraints,” IEEE Trans. Syst.,
Man, Cybern. B, vol. 37, no. 2, pp. 425436, apr 2007.
C. Bishop, “Novelty detection and neural network val-
idation,” IEE Proceedings - Vision, Image, and Signal
Processing, vol. 141, no. 4, p. 217, 1994.
R. Dromey, “From requirements to design: formalizing
the key steps,” in First International Conference onSoft-
ware Engineering and Formal Methods, 2003.Proceed-
ings. Institute of Electrical & Electronics Engineers
(IEEE), 2003.

(2]

(3]

(9]

14

A. J. Champandard, “Behavior trees for next-gen
game ai,” https://aigamedev.com/insider/presentations/
behavior-trees/, 2007, (Accessed on 11/03/2016).

K. Y. W. Scheper, S. Tijmons, C. C. de Visser, and
G. C. H. E. de Croon, “Behaviour trees for evolutionary
robotics,” Artificial Life, vol. 22, pp. 2348, 2016.

E. L. Thorndike, Animal intelligence, experimental stud-
ies, by Edward L. Thorndike. New York,The Macmillan
company,, 1911.

D. Isla, “Handling Complexity in the Halo 2 Al,” in GDC
2005 Proceeding, 2005.

J. Koza, “Genetic programming as a means for pro-
gramming computers by natural selection,” Statistics and
Computing, vol. 4, no. 2, jun 1994.

M. Mitchell, An introduction to genetic algorithms, ser.
Complex adaptive systems. Cambridge (Mass.): MIT
press, 1996, a Bradford book.

V. Ciesielski and P. Scerri, “Real time genetic scheduling
of aircraft landing times,” in 1998 IEEE International
Conference on Evolutionary Computation Proceedings.
IEEE World Congress on Computational Intelligence
(Cat. No.98TH8360). Institute of Electrical & Elec-
tronics Engineers (IEEE).

Part |l

Literature Study

Reinforcement Learning Policy Approximation by Behavior Trees Y.S. Janssen

Chapter 2

Reinforcement Learning

This chapter provides an overview of the RL framework. The majority of the information
presented is adopted from R. Sutton & Barto (1998). The advantages and limitations are
discussed. Followed with the recent advances in RL.

2-1 Reinforcement Learning the Basics

RL is an active area of machine learning research that also recieves attention from the fields
of decision theory and control engineering. To clarify: “The simplest RL algorithms make use
of the common sense idea that if an action is followed by a satisfactory state of affairs, or an
improvement in the state of affairs, then the tendency to produce that action is strengthened,
i.e., reinforced. This is the principle articulated by Thorndike in his famous Law of Effect
(Thorndike, 1911.).” (Barto & Dietterich, 2004).

Lets consider a simple scenario from Barto & Dietterich (2004) to explain the concept.

Consider your holiday in the South of France. You see mobile phone users that wander
around the camping field to obtain good reception since coverage is poor. Move around and
monitor its signal strength indicator. They do this until they found a place with a good
signal, or the best signal under the circumstances. Here, the information they receive do
not directly tell them what to do to obtain a good reception. Nor is each reading telling
them in which direction they should move. Each reading simply allows them to evaluate
how good current situation is.

In RL the agent receives, at each time step ¢, a representation of the state s; of the environment
and performs an action a;. The selection of the action is done according to a policy. This
changes the state of the environment to a new state s;y1. The environment responds and
gives the agent a reward r;41, according to a reward function. The reward function is based
on how good the action was to that particular state. The general RL structure is given in
Figure 2-1.

Reinforcement Learning Policy Approximation by Behavior Trees Y.S. Janssen

32 Reinforcement Learning

Agent

state reward action

t+1

S Environment

Figure 2-1: General Reinforcement Learning structure. The agent performs action a; in the
environment. The environment responds by presenting the agent a new state s;4; and a reward
r++1. Adapted from (R. Sutton & Barto, 1998).

The state state s; € S, where S is the set of possible sates, is defined by a signal from the
environment to the agent, this represents properties of the environment to the agent.

The action a; € A, where A is the set of actions available, is the output of the agent. The
action taken influences the state of the environment and the selection of an action is don
following a certain policy.

A policy (s, a) maps state s to an action a. It defines the agent’s behavior at a given time.
It is written as m(s,a) = P(a; = alsy = s). There are different types of policies. An optimal
policy, denoted by 7*, is the policy that corresponds to the greatest received return.

The environment is defined as everything outside the agent. It receives an action from the
agent and outputs a new state and reward to the agent.

The decision maker is called the agent in the RL framework. It influences the state of the
environment, performs actions and receives rewards based on the state transitions. The agent
is not told which actions to take, but must discover which actions yield the most reward by
experience.

The agent receives a reward from the environment, based on how good or bad an action in
a particular state was.

The goal of the agent is to maximize return, a function of rewards, over a trajectory generated
by a policy. A reward function defines the goal in a RL problem. It maps each perceived
state or state-action pair of the environment to a single number, a reward, indicating the
desirability of that state. A RL agent’s objective is to maximize the total reward it receives
in the long run. The simplest case is just the sum of the rewards: R = r, 4741 +742+...+ 77,
where T is the final time step.

Maximization of the return is done by adapting the policy that the agent is following until
an optimal policy is found. The value of the final state is always zero. This way of calculate
the return is only possible in application where a final time step N can be defined.

An additional concept that is needed is that of discounting. According to this approach, the
agent tries to select actions so that the sum of the discounted rewards it receives over the
future is maximized. In particular, it chooses a; to maximize the expected discounted return:

oo
Re=rer1 72 + 77 Tera + o = D7 ek (2-1)
k=0

Y.S. Janssen Reinforcement Learning Policy Approximation by Behavior Trees

2-1 Reinforcement Learning the Basics 33

where ~ is the discount factor, v € [0, 1).

For maximizing return, the simplest action selection rule is to select the action with highest
estimated action reward, this is called the greedy action. Always choose the action with the
highest value is done following the greedy policy.

A simple alternative is to behave greedy most of the time, but every once in a while, say with
small probability e, is e-greedy. For both policies the agent identifies the best action based on
the highest value. But € — greedy selects the greedy action 1 - ¢, of the time, where € € [0, 1).
The e-greedy policy selects one of the non-greedy actions a fraction e of the time.

2-1-1 Markov and Partially Observable Decision Processes

A state signal that succeeds to retain all relevant information is said to be Markov, or the
have the Markov property. It can be referred to as “independence of path” property because
all that matters is captured in the current state signal; its meaning is independent of the
“path” or history of the signals that have led up to it.

The study of RL agents is greatly facilitated with this convenient mathematical formalism.
This formalism, known as Markov Decision Processs (MDPs) in RL, is well established. It
assumes a simplifying condition on the agent which is, however, largely compensated by the
gained ease of analysis. MDPs are important in RL because decisions and values are assumed
to be functions only of the current state. Although RL is by no means restricted to MDPs ,
this discrete-time, countable state and action formalism provides the simplest framework in
which to study basic algorithms and their properties.

A finite MDP models the following type of problem. At each stage in a sequence, an agent
observes a system’s state s, contained in a finite set S, and executes an action a selected from
a finite, non-empty set, A, of admissible actions. The agent receives an immediate reward
having expected value R(s,a), and the state at the next stage is s” with probability P(s,als’),
s, s € S, a € A, together form what RL researchers often call the one-step model of action
a.

These quantities, P(s,als’) and R(s,als’), completely specify the most important aspects of
the dynamics of a finite MDP . The description of MDPs assumes that the environment is
fully observable. With this assumption, the agent always knows which state it is in. This,
combined with the Markov assumption for the transition model, means that the optimal
policy depends only on the current state.

When the environment is only partially observable, the situation is much less clear. The agent
does not necessarily know the state it is in, so it cannot execute the action 7(a) recommended
for that state. Furthermore, the utility of a state a and the optimal action in ¢ depend not
just on s, but also on how much the agent knows when it is in s. For these reasons, Partially
Observable Markov Decision Processs (POMDPs) are usually viewed as much more difficult
than ordinary MDPs . We cannot avoid POMDPs, however, due to sensor limitations and
noise in the real world.

Reinforcement Learning Policy Approximation by Behavior Trees Y.S. Janssen

34 Reinforcement Learning

2-1-2 Value Function

Almost all RL algorithms are based on estimating value functions. As mentioned previously,
functions of states that estimate how good it is for the agent to be in a given state. The notion
of “how good ” is defined in terms of future rewards that can be expected. Accordingly, value
functions are defined with respect to particular policies. There are two types of functions:
the state function and the state-action value function.

The value function,V™(s;), is the expected return when starting in s; and following policy ,

and is V™ the value function corresponding to policy w. The objective is to find an optimal
policy, 7*.

V™ (s) = Ex{Ri|s; = s} = E{D>_ V*riparalse = s} (2-2)
k=0

where E, denotes the expected value given that the agent follows policy .

In the same way, the state-action value function, Q™ is the action-value function for policy m,
see Equation (2-3).

o.9]
Q"(s,a) = Ex{Ri|s; = 5,01 = a} = EW{Z Vorerrilse = s, ar = a} (2-3)
k=0

The optimal action-value function, Q*, assigns to each admissible state-action pair s,a the
expected infinite-horizon discounted return for executing a and s and thereafter following an
optimal policy. The difference is represented graphical in Figure 2-2.

< g

Figure 2-2: a) Action value. b) State-action value.

Bellman equation A fundamental property of these functions that they satisfy particular
recursive relationships. So, when the environment can be described as an MDP, it is possible
to analytically calculate the optimal policy with this recursive relationship. This recursive

Y.S. Janssen Reinforcement Learning Policy Approximation by Behavior Trees

2-1 Reinforcement Learning the Basics 35

relationship is the bellman equation given in Equation (2-4).

V™(s) = Ex{R¢|st = s}

oo
= Ew{z Voreiraalse = s}
k=0

o0
= Ex{riqn + Z Ve kralse = s}
k=0

(o)
= Zﬂ(s,a) ZPS“S, [R2, + 7E7T{Z Yoy eyalsie1 = s’}
a 5’

k=0

(2-4)

=D m(s,0) D0 PY[RY, 4V (s))]

Equation (2-4) is the Bellman equation for V™. The Bellman equation averages over all the
possibilities, weighting each by its probability of occurring. It states that the value of the
start state must equal the (discounted) value of the expected next state, plus the reward
expected along the way.

Analogous equations exist for Q™ as shown in Equation (2-5).

Q(s) =) _m(s,a)) Piy[Riy +V7(s)] (2-5)

a

2-1-3 Dynamic Programming

Dynamic Programming (DP) is a standard method that provides an optimal stationary policy
for the stochastic MDP problem. Dynamic Programming (DP) algorithms exploit the fact
that value functions satisfy the recursive relation of the Bellman equation. It actually encom-
passes a large collection of techniques, all of them based on a simple optimality principle and
on three basic theorems. It can be divided into 1) value iteration 2) policy iteration 3) policy
search.

Policy iteration algorithms evaluate policies by constructing their value functions (instead
of the optimal value function), and use these value functions to find new, improved policies.

E I E I E I E
m =V Sm =V Smg = . =V (2-6)

Value iteration algorithms search for the optimal value function, which consists of the
maximal returns from every state or from every state-action pair. The optimal value function
is used to compute an optimal policy.

Vir1(s) = mng{rtH + YVi(st + 1)|s¢ = s,a; = a} (2-7)

Reinforcement Learning Policy Approximation by Behavior Trees Y.S. Janssen

36 Reinforcement Learning

Policy search algorithms use optimization techniques to directly search for the optimal
policy. Policy iteration consists of two simultaneous, interacting processes, one making the
value function consistent with the current policy, called policy evaluation, and the other
making the policy greedy with respect to the current value function, policy improvement.
The term generalized policy iteration is used to refer to the general idea of letting policy
evaluation and policy improvement processes interact.

Policy iteration, value iteration and generalized policy iteration can be seen as framework for
RL learning techniques. Within each of the three subclasses of RL algorithms, two categories
can be further distinguished, namely off-line and on-line algorithms. Off-line RL algorithms
use data collected in advance, whereas on-line RL algorithms learn a solution by interacting
with the process in real time. A graphical overview is given in Figure 2-3.

Figure 2-3: DP structure relating to RL. Adapted from (R. Sutton & Barto, 1998).

Limitation relating to Dynamic Programming DP methods operate in sweeps through
the state set, performing a full backup operation on each state. Each backup updates the
value of one state based on the values of all possible successor states and their probabilities
of occurring. Therefore, DP requires a complete and accurate model of the environment.

2-1-4 From Dynamic Programming to Monte Carlo

The algorithms for exact value iteration require the storage of distinct return estimates for
every state or state-action pair. When some of the state variables have large or infinite number
of possible values (e.g., continuous), exact storage is not possible, and the value functions is
approximated. Subsequently, large or continuous action spaces make the representation of
Q-functions challenging.

Clearly, the expectation cannot be computed exactly, and must be estimated from a finite
number of samples, e.g., by using Monte Carlo methods. Monte Carlo methods are ways
of solving the RL problem based on averaging sample returns. To ensure that well-defined
returns are available, we define Monte Carlo methods only for episodic tasks. That is, we
assume that the experience can be divided into episodes, and that all episodes eventually
terminate no matter what actions are selected. It is only upon the completion of an episode
that value estimates and policies are changed.

Y.S. Janssen Reinforcement Learning Policy Approximation by Behavior Trees

2-1 Reinforcement Learning the Basics 37

Monte Carlo methods are thus incremental in an episode-by-episode sense, not in a step-
by-step sense. The term ‘Monte Carlo’ is sometimes used more broadly for any estimation
method whose operation involves a significant random component. Here it is used for methods
based on averaging complete returns (as opposed to methods that learn from partial returns,
considered in the next chapter).

Despite the differences between Monte Carlo and DP methods, the most important ideas carry
over from DP to the Monte Carlo case. Not only the same value functions are computed, but
they interact to attain optimality in essentially the same way. By considering Monte Carlo
methods for learning the state-value function V7(s) for a given policy. An obvious way to
estimate it from experience, then, is simply to average the returns observed after visits to
that state. As more returns are observed, the average should converge to the expected value.
This idea underlies all Monte Carlo methods.

The Monte Carlo methods are essentially the same as presented for state values as they are
for the action value estimation Q™ (s, a).

Limitations relating Monte Carlo Method Maintaining sufficient exploration is an issue
in Monte Carlo control methods. It is not enough just to select the actions currently estimated
to be best.

2-1-5 Temporal Difference Learning

As discussed, solving MDP problems through DP requires a model of the process to be
controlled, the value iteration operators explicitly use the transition probabilities. Monte
Carlo methods, on the other hand, use a simulation model that does not require calculation
of transition probabilities, but does require complete runs before updates can be performed.

Temporal-Difference (TD) learning is a combination of Monte Carlo ideas and DP ideas. TD
resembles a Monte Carlo method because it learns by sampling the environment according
to some policy, and is related to dynamic programming techniques as it approximates its
current estimate based on previously learned estimates. For on-line purposes, the Monte
Carlo Methods suffers form a drawback: Vi (zg) can only be updated after Vi (zo;m) is
calculated from a complete simulation run. The TD method provides an elegant solution to
this problem by forcing updates immediately after visits to new states.

With TD learning the value function is updated during the episode. With Monte Carlo
methods we have to wait until the episode is finished before we start updating the value and
policy.

V(s) < V(s)+alr+4V(s) —V(s)] (2-8)

TD learning samples the expected value in 2-8 and it used the current estimate V; instead
of the true V™. Thus the TD methods combine the sampling of Monte Carlo with the
bootstrapping of of DP. That is, they update one estimate based on another estimate. Many
RL methods perform bootstrapping, even those that do not require a complete and accurate
model of the environment.

Reinforcement Learning Policy Approximation by Behavior Trees Y.S. Janssen

38 Reinforcement Learning

Q-learning One of the most important breakthroughs in RL was the development of an off-
policy TD control algorithm know as @-learning (Watkins & Dayan, 1992). The most simple
form, one-step Q-learning, is defined by

Q(st; ar) < Q(st,ar) + afrepr + ymaxQ(si41, a) — Q(st, ar)] (2-9)

The learned action-value function, @, directly approximates Q*, the optimal action-value
function, independent of the policy being followed.

SARSA SARSA is similar to Q-learning except that the maximum action-value for the next
state on the right hand side of Equation (2-9) is replaced by the action-value of the actual
next state-action pair

Q(st,ap) < Q(sp,a) + afripr + YQ(Se41, apy1) — Q(s¢, ar)] (2-10)

This rule uses the element of the events (s¢, at, r¢41, S¢+1, ar+1), given rise to the name SARSA.

Actor-Critic Method The Actor-Critic method is a TD method that has a separate memory
structure to explicitly represent the policy independent of the value function. It is an on-policy
algorithm, like SARSA.

In contrast to Q-learning and SARSA, Actor-Critic methods keep track of two functions; a
Critic that evaluates states and an Actor that maps states to a preference value for each
action. After an experience (s, at, 1, St+1), Actor-Critic methods make a temporal difference
update to the Critic’s value function V. After each action selection, the critic evaluates the
new state to determine whether things have gone better or worse than expected. The general
structure of this Actor-Critic method is presented in Figure 2-4.

AN

Policy

actor

TD
Dif erence

state action

Environment

Figure 2-4: General Reinforcement Learning Structure. Adopted from (R. Sutton & Barto,
1998).

Function Approximation So far the estimates of value functions is represented as a table
with one entry for each state or for each state-action pair. This is a particularly clear and

instructive way to represent the learning, but is limited to tasks with small numbers of states

Y.S. Janssen Reinforcement Learning Policy Approximation by Behavior Trees

2-1 Reinforcement Learning the Basics 39

and actions. The problem is not just the memory needed for large tables, but the time and
data needed to accurately fill them.

Function approximation is an instance of supervised learning, the primary topic studied in
machine learning, artificial neural networks, pattern recognition, and statistical curve fitting.
Function approximation is already widely applied to approximate the state-action values in
a RL problem. One achievement is the combination of ANNs and RL in machine learning
research. This combination is implemented as a backgammon player by Tesauro (1994).

Qiao et al. (2009) presented an automation learning and navigation strategy based on dynam-
ical structure neural network and RL. Results showed that the robot can learn the correct
action and finish the navigation task without external guidance. In their proposal, ANNs
were used as function approximator for the RL policy.

2-1-6 Advantages

RL enables a agent to autonomously discover an optimal behavior through trial-and-error
interactions with its environment. Instead of explicitly detailing the solution to a problem,
in RL the designer of a control task provides feedback in terms of a reward function that
measures the one-step performance of the agent. It is an efficient method to control in
unknown environment. It can learn how to control after its environment has changed beyond
the scope of the original controller.

2-1-7 Limitations

When Bellman explored optimal control in discrete high-dimensional spaces, he faced an
exponential explosion of states and actions for which he used the term curse of dimensionality.
As the number of dimensions grows, exponentially more data and computation are needed to
cover the complete stateaction space.

While often simpler than specifying the behavior itself, in practice, it can be surprisingly
difficult to define a good reward function RL. For challenging tasks, it is often complex and
time-consuming for designers to precisely specify rewards.

Traditionally the learning of a RL controller is stored in lookup tables, Q-tables. Present day
controllers for safety critical applications, like for example UAV guidance, undergo extensive
tests to qualify their operation. Although analysis of QQ-tables is possible, the difficulty to
provide insight in its behavior causes practical issues to VV of such a controller, especially
for large Q-tables Bishop (1994).

Furthermore, Q-tables do not lend themselves well to manual adaptation. This limits the
deployment and wider use of RL in control applications.

To apply RL in robotics, safe exploration becomes a key issue of the learning process. Re-
pairing a robot system is a non-negligible effort associated with cost, physical labor and long
waiting periods. And as the dynamics of a robot can change due to many external factors
ranging from temperature to wear, the learning process may never fully converge.

Reinforcement Learning Policy Approximation by Behavior Trees Y.S. Janssen

40 Reinforcement Learning

2-2 Recent Advances

Recently, combinations with RL have been applied to many problems. Yoshikawa et al. (2008)
introduced a RL algorithm with a hierarchical evolutionary mechanism to evolve adaptive
action value tables. The algorithm evolves several Q-Learning parameters, such as state
discretization data, learning rate «, discount factor v and searching rate (non deterministic
action selection).

2-2-1 Hierarchical Reinforcement Learning

‘Flat” RL works well but on small problems. However for complex problems, scaling the
problem gets very large very quickly, the so called curse of dimensionality.

Recent attempts to combat the curse of dimensionality have turned to principled ways of
exploiting temporal abstraction, where decisions are not required at each step, but rather
invoke the execution of temporally-extended activities which follow their own policies until
termination. This leads naturally to hierarchical control architectures and associated learning
algorithms, Hierarchical Reinforcement Learning (HRL).

(Dietterich, 2000) presented a new approach to HRL. Decomposing MDPs into a hierarchy of
smaller MDPs and decomposing the value function, known as MAXQ. The MAXQ hierarchy
proves formal results on its representational power and establishes five conditions for the
safe use of state abstractions. However it assumes that the programmer can identify useful
subgoals en define subtasks.

Yan et al. (2010) stated that a well designed, heuristic, reward function along with HRL
can decrease the number of impractical acts of exploration which in turn allows the agent to
interact easily and quickly with the environment. Their results show that their method can
overcome the huge state space of the environment. However, if the subtask has more than
one sub-goal, their HRL algorithm can only converge to the recursive optimal.

Also video games provide a rich testbed to apply RL for artificial intelligence methods. For
example, HRL has already been applied to computer games, (Xiaoqin et al., 2009).

Barto & Mahadevan (2003) and Al-emran (2015) have performed good surveys on the cur-
rent HRL knowledge. There are several powerful HRL models such as Hierarchical Abstract
Machines (HAMs) (Parr, 1998), Options (R. S. Sutton et al., 1999), and ALisp (Andre &
Russell, 2001). These models provide a general framework for scaling RL to problems with
large state spaces by using the task or action structure to restrict the space of policies.

Limitations of HRL One of the limitations of HRL is how to define components. When
these components are defined, it is easy to find sub-optimal solutions. And with the predefined
hierarchical structure, it is not possible to escape these local maxima.

And policies are restricted to sequential combinations of activities, predefined by the hierarchy
implemented by the designer.

2-2-2 Continuous Reinforcement Learning

The progress so far has been mostly constrained to the discrete formulation of RL problems.
But some work on Q-learning for continuous time systems has been investigated by Palanisamy

Y.S. Janssen Reinforcement Learning Policy Approximation by Behavior Trees

2-2 Recent Advances 41

et al. (2015), although without any convergence and stability guarantees.

The authors (Palanisamy et al., 2015) propose a Q-learning approach to solve the continuous-
time infinite-horizon optimal control problem by writing the Q-function with respect to the
state, the control input and the derivatives of the control input and without having knowledge
of the system dynamics.

Doya (2000) has presented RL algorithms to deal with continuous-time continuous-state con-
trol tasks without explicit quantization of state and time. He uses the continuous TD(\)-
learning with the actor-critic method to learn the control command sequence. He performed
a experiment with a pendulum swing-up task with limited torque. The swing-up task was
accomplished with a number of trails several times fewer than by the conventional discrete
Actor-Critic.

A continuous Q-learning method was presented in (Millan et al., 2002) by using an incremental
topology preserving map to partition the input space and the incorporation of bias to initialize
the learning process. The resulting continuous action is an average of the discrete actions
of the winning unit weighted by their Q-values. More interesting, the author also showed
the experimental results in robotics indicating that the continuous Q-learning method works
better than the standard discrete action version of Q-learning in terms of both asymptotic
performance and learning speed. This continuous Q-learning method still focus on single-
agent systems.

This approach, although using a finite set of target actions, deals with this problem by
selecting real-valued actions obtained by interpolation of the available discrete actions on
the basis of their utility values. Despite of this capability, the learning performance of these
algorithms relies on strong assumptions about the shape of the value function that are not
always satisfied in highly non-linear control problems (Lazaric et al., 2007).

However, there is still a need to develop methods for high-dimensional function approximation
and for global exploration.

Reinforcement Learning Policy Approximation by Behavior Trees Y.S. Janssen

42 Reinforcement Learning

Y.S. Janssen Reinforcement Learning Policy Approximation by Behavior Trees

Chapter 3

Behavior Trees

This chapter presents an introduction to the BT framework. The basics of the framework are
explained and the advantages of are discussed. Then the recent advances on the research on
BTs is presented.

3-1 Behavior Tree

Digital games and robotics share a common goal: to develop intelligent artificial agents to
interact with the environment and interact with other agents, whether real or virtual. To
develop intelligent agents, it is necessary to build a vast repertoire of behaviors. Behaviors
involve control of various actions over a period of time.

Traditionally, user-defined autonomous behaviors are described with FSMs. Where each state
has transition conditions and the execution logic contained in it. FSMs are computationally
efficient, since all changing conditions are inside the current state and no other state run
simultaneously.

However, FSMs have limitations. To add or remove a behavior, it is necessary to change the
conditions of all other states that can transition to the new or old state. This also makes it
impractical to reuse FSMs. The graphical readability is lost for FSMs with many states.

In 2005, the BT was introduced in the gaming industry to address the problem of control of
NPC in games, in a more efficient way compared to FSMs, and since then, BTs have been
replacing FSMs in various segments, including robotics.

The essence of a BT is expressed as a graphical modeling language primarily used in software
engineering which facilitates the representation of organizational elements in a large-scale
system. This chapter discusses its emergence and how it finds it way into the control of Micro

Aerial Vehicles (MAVs).

Reinforcement Learning Policy Approximation by Behavior Trees Y.S. Janssen

44 Behavior Trees

3-1-1 The Emergence

Dromey (2003) developed a new system design method to address the problem of systemati-
cally translate large, complex requirement documents into a structured model of the system.
Over the years he used different names and ultimately settled for Behavior Engineering.
The method is centered around a notation to express system behavior with Behavior Trees.

The BT presents an intuitive, stepwise process to go from functional requirement to a design.
Each requirement translates into its own, small BT, and each node in the tree is tagged with
the number of the requirement from which it was translated, it allows traceability back to
the original informal requirements.

Then the requirements are progressively integrated into a whole-system tree, to find syntac-
tically matching constructs. This process will reveal inconsistencies, redundancies, incom-
pleteness, and ambiguities. The constructed tree serves as the basis for discussion between
developer and client for validation purposes, using the traceability tags on each node to help
understand the problem space and clarify system and software requirements.

The BT notation got the attention of computer game designers when they searched for a
behavior management system for NPCs. They needed a framework to control the modularity,
re-usability and complexity of the NPCs. The BT, although in a different form as was
anticipated by Dromey, proved to be suited to capture this behavior (Isla, 2005).

In computer games, the control architecture of automated opponents if often designed with
FSMs. But unlike a FSMs, a BT is a tree of nodes that are hierarchical structured to control
the flow of decisions of an Al entity. At the extents of the tree, the leaves, are the actual
commands that control the Al entity. Their can be various types of leaf nodes to control the
Al to reach the sequences of commands best suited to the situation.

BTs provide a hierarchical way to organize behaviors in a descending order of complexity;
broad behavioral tasks are at the top of the tree, and are broken down into several sub-tasks.
The trees can be deep, with nodes called sub-trees which perform particular functions, which
allows the developer to create libraries of behaviors that can be chained together to provide
very convincing Al behavior.

This development can be used and reused, a major advantages over FSMs. Start by forming
a basic behavior, then create new branches to deal with alternate methods of achieving goals,
with branches ordered by priority, allowing for the AI to have fall back tactics should a
particular behavior fail. This property and and re-usability have made BTs very popular in
industry and are found in games such as Halo 2 and Spore.

3-1-2 Semantics

BTs provide a hierarchical way of organizing behaviors represented as a rooted tree structure
that is evaluate from left to right. The outgoing node is called the parent and the incoming
node is the child. The BT is made up of several types of nodes, however all nodes share a core
functionality. This core functionality is that they inform their parent node with their status.
This return status is generally either Success of Failure. They inform their parent node that
their operation was a Success or a Failure.

Y.S. Janssen Reinforcement Learning Policy Approximation by Behavior Trees

3-1 Behavior Tree 45

Basic BTs are made up of three kinds of nodes: Conditions, Actions and Composites (Cham-
pandard, 2007). The leaf nodes can be either Conditions or Actions whilst the branches of
the BT consist of Composite nodes. Conditions test a property of the environment returning
and the agent acts on its environment through Action nodes.

Composite A composite node determines how the BT is executed. It is a node that can
have one or more children. They will process their children in either a Sequence or Selector
way. At some stage will consider their processing complete and pass either Success or Failure
to their parent, often determined by the success or failure of the child nodes. This thesis
research only considers Sequences and Selectors although many others are used in practice.

Sequence The Sequence can be seen as an AND operator. A Sequence will visit each child
in order, from left to right. If any child fails a Sequence will immediately return Failure to
the parent. If the last child in the Sequence succeeds, then the Sequence will return Success
to its parent.

It is important to make clear that the node types in BT have quite a wide range of applications.
The most obvious usage of sequences is to define a Sequence of tasks that must be completed
in entirety, and where Failure of one means further processing of that Sequence of tasks
becomes redundant.

Selector Where a Sequence is an AND, a Selector is analogous with an OR statement. It
will return Success if any of its children succeed and not process any further children. It will
process the first child, and if it fails will process the second, and if that fails will process the
third, until a Success is reached, at which point it will instantly return success. It will fail if
all children fail. This means a Selector is analogous with an OR gate, and as a conditional
statement can be used to check multiple conditions to see if any one of them is true.

A example BT highlighting the graphical representation of the different nodes can be seen in
Figure 3-1.

Root
Selector
Sequence
—_— —
Condition \
Action

Figure 3-1: Graphical depiction of a Behavior Tree framework. The different node types are
indicated.

Decorator A decorator node, a sub category of a composite node, can have a child node.
Unlike a composite node, they can specifically only have a single child. Their function is
either to transform the result they receive from their child node’s status, to terminate the
child, or repeat processing of the child, depending on the type of decorator node.

Reinforcement Learning Policy Approximation by Behavior Trees Y.S. Janssen

46 Behavior Trees

Leaf These are the lowest level node type, and are incapable of having any children. Leafs
are the most powerful of node types, as these will be defined and implemented to perform
specific tests or actions required to make the tree actually act in the world. An example of
this would be a move action. A walk leaf node would make a system move to a specific point
on the map, and return Success or Failure depending on the result.

The main power comes from their ability to choose from multiple different courses of action,
in order of priority from most favorable to least favorable, and to return Success if it managed
to succeed at any course of action. The implications can, for example in the gaming industry,
be used to very quickly develop pretty sophisticated Al behaviors through the use of Selectors.

Leaf nodes are developed individually to perform specific tasks but can be reused in the
tree. Composite nodes can also be reused in the current tree, but they are typically not
platform dependent and can be reused in any BT. All the nodes in the BT share the same
core functionality, so that combination of these nodes is possible without knowledge of any
other part of the BT making BTs modular and reusable.

For this research all action nodes return Success when the node is evaluated.

3-1-3 Execution

The root node is typically a Selector node. Figure 3-2 shows a BT example adapted from
(Millington & Funge, 2009), were the goal is to move into the room. This example illustrates
the modularity of the BT, showing a character trying to move into a room in three different
ways.

Root

Selector

Sequence

Condition Action

door open?

Move
(into oom),

Move
(into oom),

Move
(to door)

Condition

door open?

Figure 3-2: An example BT defined for behavior to open a door. Adapted from Millington &
Funge (2009).

When the tree is activated, the root node tries its first child. The first child is a Sequence

Y.S. Janssen Reinforcement Learning Policy Approximation by Behavior Trees

3-1 Behavior Tree 47

for moving through an open door. The Sequence starts with a condition which checks if the
door is open. If the door is open, the character moves through the door and the Sequence
returns Success to its parent. The top Selector receives Success from its first child, so no need
to process the others and will return Success.

If, however, the door is closed, the first child of the Selector will fail for its condition task.
The sequences is stopped immediately. The top Selector receives this Failure, but can select
its second child to move to the door.

Its second sequences starts with a task of move to the door. Its second child is a Selector with
two sequences. Both sequences, if successful, will result in opening the door. First it checks if
the door is unlocked and if so opens the door. The sequences will continue to its third child
and will move into the room.

If the door cannot be opened, the character will try to barge the door. If this this fails, the
Sequence will return fail to the Selector and the character has no more ways to try to open
the door. It will return a Failure to its parent Sequence, and this Sequence then also fails.
This will fail the move into room behavior. This shows the modularity of the BT, since at
this point more room-entering behavior could be implemented to the existing tree. Adding
checks to search for windows to smash through for example.

3-1-4 Advantages

The strength of a BT comes from their ability to create complex tasks composed of simple
tasks, without worrying how the simple tasks are implemented.

The BT evaluates its branches defined by the structure of the tree. It can simply integrate
multiple methods to achieve the same goal. If one branch with behavior is not successful, it
moves to the next branch, different behavior but yielding the same outcome. This results in
goal based behavior and contingency planning.

This is different compared to a FSM. A FSM maps sets of state-actions. When certain
conditions are met, the object changes to another state. The designer has to link all the
states of the agent. A disadvantage of FSMs is that this representation of all state-action sets
can become complex for complex behavior. Large FSM with many states and transitions can
be difficult to manage and maintain, resulting in state-explosion.

To reduce this state-explosion, hierarchy was introduced. This reduces the representational
complexity of the FSM, but it is not a very reusable framework. It still requires explicit
linking from one state to another. This implies that reusing the same particular states in
another area of the behavior still need to be explicitly described. The advantage of a BT is
that it describes its behavior in the structure of the tree instead of state transitions. This
makes the BT modular and reusable resulting in a scalable design framework.

A BT does not require a model of the environment. Because the framework does not consider
the effects of actions, but only observers the current state. This model free approach is
simple and relatively computationally efficient to evaluate. It also restrains state explosion,
a phenomenon which affects FSM. This makes small robotic platforms, where computational
power is low, a well suited platform for using BTs.

(Nolfi, 2002) work shows that agents with a form of reactive architecture can exhibit complex
behaviors without requiring any internal state and demonstrates that this is due to their

Reinforcement Learning Policy Approximation by Behavior Trees Y.S. Janssen

48 Behavior Trees

ability to coordinate perception and action. This type of planning has very low computational
requirements and can be run very quickly to operate in highly dynamic environments.

And finally, the ease of human understanding and readability make BTs less error prone and
very popular in , i.a the game developer community.

3-1-5 Limitations

BTs become reasonably clunky when representing the kind of task that need to respond to
external event-interrupting conditions. When behaviors need to react to changing condi-
tions and has a behavior switch strategies, trees become large. Notice that this can still be
implemented with BTs, but its size increases (Millington & Funge, 2009).

BTs work great if a system needs to switch to between different tasks and corresponding
controllers, based on Success or Failure of certain actions or conditions. However, BTs make it
more difficult to think and design in terms of states since they usually represent a hierarchical
structure.

Discrete events are not explicitly implemented in the structural framework of a BT as is the
case with an event driven FSM. This problem can be addressed by include memory, to store
events for the BT to handle some tick later. Or by building a hybrid system with multiple
BTs and state machines to determine which BT is running.

3-2 Recent Advances

Ogren (2012) was the first to argue that the modularity, re-usability and complexity of UAVs
guidance and control systems might be improved by using a BT architecture. He states that
this is mainly due to the fact that BTs make the transitions implicit in the tree structure.
The implicit transitions substantially increase modularity, which in turn makes design and
re-design much simpler. Section 3-2 shows the proposed BT for combat behavior.

This approach is different than standard currently used in the aerospace industry where FSM
are commonly used to describe UAV behavior. Some of the most popular UAV software
packages such as Paparazzi and ArduPilot both use forms of FSM to implement their mission
management Scheper et al. (2016).

Colledanchise & Ogren (2014) showed how these key properties can be traced back to the
ideas of subsumption and sequential compositions of robot behaviors. They have provided
a theoretical description of how properties such as robustness and safety are preserved in
modular compositions of BTs.

Kléckner (2013) built on the work of Ogren (2012) and describes in his paper the advantages
of BTs for use in mission management. As compared to the state-of-the-art solution using
finite state machines, BTs offer increased scalability due to their tree structure and their
simple, standardized interface. The paper points out research towards their deployment to
on-line use.

Kléckner (2013) presented a mission management system based on BTs. It uses the descrip-
tion logic variant ALC(D) as interface to the world. An implementation of the system is

Y.S. Janssen Reinforcement Learning Policy Approximation by Behavior Trees

3-2 Recent Advances 49

Collision
Warning

Missile
Warning

Figure 3-3: BT defined for combat behavior for an UAV. Adapted from (Ogren, 2012).

shown with a test case. The test case used in this section employs the safety layer of an UAV.
The UAV is meant to return to its base, if the battery state-of-charge reaches a critical level.
This condition will be queried through an abstracted logical interface.

3-2-1 Optimizing BT

Recently, there have been works to improve BT design with the use of several learning tech-
niques, for example, Q-learning (Dey & Child, 2013) and Evolutionary Learning (EL) ap-
proaches (Scheper et al., 2016).

(Dey & Child, 2013) applied off policy Q-learning to BTs. They performed their research
for a predator-prey game scenario and showed that a tree resulted from Q-learning Behavior
Tree (QL-BT) performs on a par with the original BT or outperforms it in all areas. Create a
Q-condition node that assists them in identify the most appropriate moment to execute each

branch of Al logic.

Their method is an algorithm that begins with a BT as input. They analyze the tree to find
the deepest Sequence nodes. These nodes are then identified as actions for the RL approach.
These actions are used in an off-line Q-learning phase to generate a Q-value table.

The table is then divided into sub-tables by action and the highest valued states for the action
are extracted into the, what they call, Q-Condition nodes within the BT. The condition nodes
in the input BT are then replaced with these Q-Condition nodes. Finally, the BTs topology is
reorganized each node child is sorted by their maximum Q-value, which provides Al designers
with a more optimized permutation of the BT. The Q-condition node is shown in Figure 3-4.

This representation does however not use the hierarchy architecture advantage and readability
the BT framework has. The BT suggested by (Dey & Child, 2013) still requires a lot of insight
in the decision process to fully understand under which conditions actions are executed.

Reinforcement Learning Policy Approximation by Behavior Trees Y.S. Janssen

50 Behavior Trees

Q Values Sub Tables Sequence Nodes
State | Action | Q m

State | Action | Q }_3\ 8 1;0 >

A 0 5 T 0 i /

L3 —/

.

b 1 '3

C 2 2

E 2 3

et =

G 2 2 State | Action | Q

B 3 0 D 1 8 —_—_
A 1 7 / <

| —
QCondition

Figure 3-4: Q-condition node. Adapted from (Dey & Child, 2013).

Insight in the decision process is particularly an advantage of the BT framework that is not
used in their work.

An other drawback of the QL-BT algorithm is its reliance on correct Q-values. The validity
of the Q-values relies on an appropriate reward function and an effective learning phase to
provide accurate utility estimates for each state-action pair. Values can be improved by a
longer training period because it is a preprocessing step. The Q-condition node does not
provide the designer with easy verification possibility to check the Q-value. Even though the
above-mentioned works motivates our work, the missed opportunity to use the BT framework
to its full potential causes us to move in an other direction for combining RL and BTs.

de Pontes Pereira & EngeMartinsl (2015) proposed a framework to use RL in behavior-
based agents, which provides adaptiveness to physical or virtual agents while still respect
the constraints modeled by the expert. Based on BTs, they proposed the creation of a new
type of Composite and Action node, called Learning Node, in which we embed a Q-Learning
algorithm to perform a local learning, without effect how other nodes work.

Scheper et al. (2016) applied EL to BTs for a real-world robotic, to an MAV, application.
They showed the first real-world robotic application of evolved BTs. An initial population
of BTs is created and genetic operators are used to evolve a BT. This genetically optimized
BT performed better than human designed BTs. In addition, their BT provide the possi-
bility to tuned manually when the controller transferred to the real world robotic platform.
They conclude that the increased intelligibility of the BT framework does give a designer
increased understanding of the automatically developed behavior and a possibility to adjust
this behavior.

However, evolutionary computing is computationally intensive due to the large number of
simulations required to evaluate the performance of the population of individuals. When the
performance of the genetically evolved BTs is analyzed, every BT is run in simulation. The
basic disadvantage of GA is its unguided mutation. The mutation operator in GA functions
like add a randomly generated number to a parameter of an individual of the population.

Perez et al. (2011) have also applied evolutionary computing to BTs with the use of a genetic
approach based on grammatical evolution. This work was applied to simulated games where
the game world is inherently discrete and certain.

Y.S. Janssen Reinforcement Learning Policy Approximation by Behavior Trees

Chapter 4

Preliminary research

During the preliminary analysis RL agent is designed to choose which RL algorithm to use,
either Q-learning or SARSA. Then the policy for one of the RL algorithms is manually
approximated with a BT. This BT is evaluated on the ability to verify its behavior and
manual adaption capabilities.

4-1 Windy Grid World

A RL agent with a guidance task in a discrete windy grid world is implemented. The RL
algorithms in this simulation are Q-learning and SARSA. Both methods have small difference
as discussed in Section 2-1-5 and this small example will help chose one of the algorithms to
be used in the rest of this research.

Figure 4-1 shows a standard grid world, with start state and a goal state. In addition to the
start and goal state, a crosswind that blows north through the middle of the grid is present.
The agent has to move from the start state to the goal state in the least amount of steps.
The agents actions are standard: up, down, right, and left.

In wind states, the resultant next states after an action is shifted upward by the ‘wind’. The
upward shift is depended on the strength of the wind which varies from column to column.
The strength of the wind is given below each column, in number of cells shifted upward. For
example, if you are one cell to the right of the goal, then the action left takes you to the cell
just above the goal.

The state the agent observers is its x- and y-position and learns to achieve its goal environment
using the SARSA algorithm in Equation (4-2) and the Q-learning algorithm in Equation (4-1).

Q515 ar) <= Q(s1, a) + afre1 + ymaxQ(si1,) — Q(st, ar)] (4-1)

Q(st,ap) < Q(sp,a) + afripr + YQ(Se41, ary1) — Q(s¢, ar)] (4-2)

Reinforcement Learning Policy Approximation by Behavior Trees Y.S. Janssen

52 Preliminary research

standard
moves

o o0 01 1 1 2 2 1 0
Figure 4-1: Windy grid world. Adapted from R. Sutton & Barto (1998)

The parameters for the learning algorithms are presented in Table 4-1. For the trade-off
between explorations and exploitation an € — greedy policy is implemented, a variation on
the normal greedy selection. In both cases the agent identifies the best action based on the
state-action value. But € — greedy selects the greedy action, the action with the highest
state-action value, 1 - €, of the time, where € € [0,1). The policy selects one of the non-greedy
actions a fraction € of the time.

Both algorithms use a decay e-greedy policy. This policy starts with an € = 0.5, and linearly
reduces every episode until 0 for the last episode.

Table 4-1: Parameter settings for the RL controller.

Parameter Value Q-learning Value SARSA
Number of episodes 200 200

Max number of steps per episodes 25 25
Learning rate « 0.3 0.3
Discount factor ~ 0.8 0.9
Exploration factor €g 0.5 0.5
Reward move (up,down,left,right) -1 -1
Reward hit border of grid wold 0 0
Reward goal state +10 +10
Converged at episode 198 269

The results of the agent trying to maximize its reward for both algorithms are presented in
Figure 4-2.

For both algorithms the agent explores the state-space during its first trails. Due to the
high epsilon, the agent selects more often an exploration action compared to an exploitation
action. To cut of unnecessary long episodes when the agent does not find the goal state, the
episode is terminated when a reward of -25 is collected. The Q-learning algorithm finds the
goal first, around episode 100. From that moments, the algorithm learn and move to the
goal more often. Resulting in a maximum reward of -13, the highest possible reward for each
episode for this task.

Both algorithms are considered converged if 6-Q is less than 1 x 1078, Since very small
updates indicate that the algorithms do not learn anymore. The progression of this learning

Y.S. Janssen Reinforcement Learning Policy Approximation by Behavior Trees

4-1 Windy Grid World 53
12 ¢ A2 ¢
o @@
14 <) 14 o 0o
e] o]
16 o -16 + o}
o o o o o
T 18+ o o -18 ()] (o]
g o o g o o
L 20 ¢ o 20 + o 00
@® QO
-22 + o o O
o o 000
24 |
fuﬂ(«amn«mmammﬂmmmn@nccmmo
50 100 150 200 0 50 100 150 200 250 300
episode episode

(a) Collected Reward per Episode for
Q-learning Algorithm

(b) Collected Reward per Episode for
SARSA Algorithm

Figure 4-2: Reward per episode for RL controller using Q-learning or SARSA.

20

.
15 -
° o
a o
S 10 7%0
[
=}
o
5t o2 (o]
C) %O & @Q
@p @
0 @@@ u amﬁmﬁm:mm
50 200
eplsode episode

(a) Summed Q-value of Q-learning

(b) Summed Q-value of SARSA

Figure 4-3: Delta Q per episode.

for the Q-learning algorithm and SARSA algorithm are shown in Figure 4-3a and Figure 4-3b
respectively.

RL-selection

The test case of the windy-grid world does not provide clear results to select either algorithms.
The Q-learning results indicate a faster convergence for the windy grid problem.

However, research on RL and BT is been applied to computer game environments (Dey &
Child, 2013) where the state is fully known and have deterministic outcomes. Classical RL
approaches often consider a grid-based representation with discrete states and actions, often
referred to as a grid-world (Kober et al., 2013). And, as discussed in Section 2-1-5, it is the
most basic learning algorithm (Yoshikawa et al., 2008). When the state space is sufficiently

explored, Q-learning has proven to always converge to the optimal policy (Watkins & Dayan,
1992).

Based on previous work, the Q-learning algorithm is selected to be used for further research
during this thesis. Since the focus of this thesis work moved towards approximating a de-
veloped optimum RL policy with a BT, HRL is not considered. The learned behavior to be

Reinforcement Learning Policy Approximation by Behavior Trees Y.S. Janssen

54 Preliminary research

approximated with a BT should have no constraints imposed on in advance. BTs already pro-
vide a hierarchical representation and its design should not already be limited to a predefined
HRL structure.

4-2 Policy Representation using BTs

When the Q-learning RL controller converged, two BTs are designed manually based on
the state-action values in the Q-table. The designed BTs are presented in Figure 4-4a and
Figure 4-4b. Figure 4-4a represent the policy using 3 branches and 9 nodes and Figure 4-4b
uses 4 branches and 12 nodes.

The elliptical nodes represent the condition nodes in the tree. These condition nodes contain
a variable, z or y, that the node checks with a limit value. The action nodes are the rectangle
nodes. These nodes contain the action that is executed by the node, either up, down, left or
right.

(a) BT 1 containing 9 nodes (b) BT 2 containing 12 nodes

Figure 4-4: Manual BT designed based on state-action values.

The agent that uses the either one of the BTs follows the same optimal path in the grid world
as the RL policy did as can be seen in Figure 4-5.

- ! - !
- | - !
Start— | — Goal 1 Start— | — Goal l
to to 11 11 11 12 12 12 11 10 t0 10 1t1 11 11 12 12 12 11 10
(a) Path traveled for BT 1 (b) Path traveled for BT 2

Figure 4-5: Resulted path for BT designs. Both BT identify the same actions for all states in
the grid world. This results in the same path through the grid world for both trees.

For this grid-world problem, the Q-learning policy is stored in a Q-table containing 320 state-
action pairs. These are contained in a Q-table. To adjust the action selection for the Q-table

Y.S. Janssen Reinforcement Learning Policy Approximation by Behavior Trees

4-2 Policy Representation using BTs 55

involves change these state-action pairs. This lead to practical issues to be able to see the
resulted behavior.

Both BTs presented in Figure 4-4 identify the same action for all states in the grid world
with only 9 or 12 nodes. As BTs are meant to increase the user understanding of the solution
strategy, for BT with less nodes less information needs to be considered. Although both BTs
result in the same action identification, a lower amount of nodes is considered better.

The manually design BT presents the same action identification is a framework containing 9
nodes in Figure 4-4a. To manually adjust this tree is as simple by changing the nodes. The
tree can also easily be extended, resulting for example in Figure 4-4b. The BT also allows to
extend its behavior for implementation in other environments.

Although comparing the size of a Q-table with the number of nodes in a BT is difficult,
presenting a RL policy with a BT indicates the have promising advantages. If the the number
of nodes can be compared one-to-one with state-action pairs, a reduction in size of a factor
of 35 is achieved.

The manually designed BT also allows for easy verification of the developed behavior, verifying
9 nodes compared to 320 state-action pairs.

For further research a more challenging RL task will be set up. The evolved RL policy will be
approximated with a BT. To manually design these BT will lead to the same practical issues
as verifying the Q-table. So further research will investigate the possibilities to automatically
generate a BT that approximates the developed RL policy.

Reinforcement Learning Policy Approximation by Behavior Trees Y.S. Janssen

56 Preliminary research

Y.S. Janssen Reinforcement Learning Policy Approximation by Behavior Trees

Part 1l

Additional Results

Reinforcement Learning Policy Approximation by Behavior Trees Y.S. Janssen

Chapter 5

Additional Results

To automatically generate BT to approximate a developed RL policy, GAs are used. The GA
optimize for a specific fitness function. The formulation of the fitness function used in Part I
is the result of previous experiences of multiple fitness functions.

5-1 Fitness Functions

This section presents multiple fitness functions that were used for the approximation of the
RL policy. Although these fitness functions did not evolve the most successful BT during this
research, which is presented in the scientific paper, it did provide extra understanding of the
RL policy structure and how the DTMC is used in the optimization.

5-1-1 Accumulated State-Action Value Fitness Function

A RL agent’s objective is to maximize the total reward each episode, the greedy policy does
this by select the action with the highest state-action value. For this reason the formulation
of the first fitness function for the GA is to evaluate BTs based on the the accumulated
state-action value for a walk through the DTMC.

The fitness function is implemented according to Algorithm 1. To observe the progress of the
optimization, first a run is performed for 50 generations.

Fitness = Fitness + Q-table(s,a)

Algorithm 1: Fitness function used for Genetic Optimization. The fitness is the accumulated
Q-score during the run through the DTMC.

Reinforcement Learning Policy Approximation by Behavior Trees Y.S. Janssen

60 Additional Results

50 Generations

Every tree in the population is run 5 times through the DTMC and mean score of the
individual is used for the evaluation of the tree. The results of the optimization using GAs
are shown in Figure 5-1. The normalized fitness score of the best individual and the mean of
the population throughout the genetic optimization is shown in Table 5-1. This optimization
did not include a second fitness function to reduce the size of the tree. This resulted in a
population with more nodes compared to the results presented in Part I. Progression of the
number of nodes of the best individual of the population and the mean of the population
throughout the genetic optimization is shown in Figure 5-1b.

IS
15
5}

; Progression of the fitness score y 0 Mean
“‘ o M 400 ¥ Iy —x— Best of Population | |
| — lean \
/x>@<><—><>e>‘< 350 | X
0.8 | J 4 I oo |
el | |
0.7 1 I
% s00 | [é\
0.6 X BoepPege oo | 8 1 | e
2 | B T @ 250 19 1 e T
® 05| PP 1 8 0o el |
504“‘ W@@eﬁe ool !
4 1 Moy | @oeoe% 1
D
® \ I 200y Poge?
03 1 150 % ‘Q | @gdg@ QOSOQ
@ | | @ |
0.2 — o goQQQ‘ﬁ@
100 X
0.1 {5 1 Jﬁ | |
XX \
0 L 1 1 1 50 f
0 10 20 30 40 50 0 10 20 30 40 50
Generation Generation
(a) Progression of the fitness score of the (b) Progression of tree size of the best
best individual and the mean of the pop- individual and the mean of the population
ulation throughout the genetic optimiza- throughout the genetic optimization using
tion using the accumulative Q-score for the accumulative Q-score for fitness for a
fitness for a run with 50 generations run with 50 generations

Figure 5-1: Results Genetic Optimization for 50 generations.

This fitness function shows good initial results for 50 generations. The results of the evolved
BT is shown in Table 5-1. Compared to the RL policy, the optimized tree accumulates a
higher state-action score compared to a walk through the DTMC following the RL policy.

The evolved BTs are evaluated with the same metric used in the scientific paper with the
score of the fitness function. The action identification of the tree is compared to the action
identification of the RL policy for all states in the Q-table. Then the tree is run in the
simulation environment and the actions identified of the states that are encountered are
compared to the RL policy.

Although the reward of each episode for the RL controller fluctuates, the reward collected by
the evolved BT is presented. However, this score does not directly represent the success of the
approximation as discussed in Part I. Finally the representation of the Q-table is compared
with the tree.

When the evolved BT is run in the simulation environment for 150 steps, wall avoidance

behavior is observed. This wall avoiding behavior is shown in a motion example in Figure 5-
2.

The result of the optimization indicate that the optimization might need more generations to
evolve a BT with the other subtasks of the RL policy.

Y.S. Janssen Reinforcement Learning Policy Approximation by Behavior Trees

5-1 Fitness Functions 61

Table 5-1: Results optimized BT with GA for 50 generations using the accumulated Q-values as
fitness function.

State Q-learning Optimized BT with Q-values
Accumulated Q-score 3237 6324
Action-selection for all states 50% 89%
Action-selection for simulation 100 % 86%

Average reward 283 48
Representation 3123 entries 91 nodes

Figure 5-2: A motion example of the UAV using the BT that is the evolved for 50 generations.
This BT avoids walls and not reacts to trash. Dark blue indicates walls, light blue indicates free
space, green indicates trash, yellow indicates the UAV's position.

150 Generations

So, the optimization is run for 150 generations using the same fitness function, as presented in
Algorithm 1. The approximation results with 150 generations are shown in Figure 5-3. Again
the normalized fitness score of the best individual and the mean of the population throughout
the genetic optimization is shown in Table 5-2. And the progression of the number of nodes of
the best individual of the population and the mean of the population throughout the genetic
optimization is shown in Figure 5-1b.

An overview of the result of the optimization of the evolved BT for 150 generations is shown
in Table 5-1. Notice the high accumulated state-action value for the optimized tree, more
than tree times more than the RL policy collects for a run through the DTMC.

When the evolved BT is run in the simulation environment, unexpected behavior is observed.
A motion example shows this behavior and is presented in Figure 5-4. It shows the UAV
turns to observe trash and then selects the action to turn again. This behavior ensures the

Reinforcement Learning Policy Approximation by Behavior Trees Y.S. Janssen

62 Additional Results

Progression of the fitness score
S 0000

; 500 ; ;
3 —G- Mean —0C- Mean

e ea

09 T —>- Best of Population |] a0 | T Bestof Population | .

400 | |

Fitness
Tree size

0 L 2 100 - -
0 50 100 150 0 50 100 150
Generation Generation
(a) Progression of the fitness score of the (b) Progression of tree size of the best in-
best individual and the mean of the popu- dividual and the mean of the population
lation throughout the genetic optimization throughout the genetic optimization using
using the accumulative Q-score for fitness the accumulative Q-score for fitness for a
for a run with 150 generations run with 150 generations

Figure 5-3: Results Genetic Optimization for 150 generations.

Table 5-2: Results optimized BT with GA for 150 generations using the accumulated Q-values
as fitness function.

State Q-learning Optimized BT with Q-values
Accumulated Q-score 3237 10124
Action-selection for all states 100 % 52 %
Action-selection for simulation 100 % 50%

Average reward 298 -150
Representation 3123 entries 90 nodes

UAV to keep sensing a piece of trash on one of its sensors. The UAV does not move forward
to collect it.

This results however, leads to a very low reward. Although the number of successful action
identifications compared to the RL policy is 50%, the reward is obviously not 50% of the
reward collected by the RL policy in a simulation run.

These results provides insight in how the DTMC relates to the simulation environment. The
lack of actual reward as is provides by the simulation environment is missing in the DTMC
compared to the simulation.

In the DTMC, when noting is observed, transition to a state where trash is senses have low
probability. If trash is sensed in front and the UAV collects it, the UAV moves from a state
with high state-action values to a state with low the state-action values, observing nothing.
The state-action values of observing nothing, observing trash in front and observing trans on
its right are presented in Table 5-3.

The states in Table 5-3 indicate the sensed variable on sensor(0, sensorl , sensor2 , sensors ,
sensory , sensord , sensor6 , sensor7. Where the observations are wall (0), free of obstacles
(1), trash(3). The state representation of the UAV is presented in Figure 5-5.

Y.S. Janssen Reinforcement Learning Policy Approximation by Behavior Trees

5-1 Fitness Functions 63
- -

Figure 5-4: A motion example of the UAV that observes trash instead of collect it. Only front
facing sensors are indicated. Read from left to right, top to bottom.

— \Vall
Freespace
Agent

m— Sensors

s Trash

Figure 5-5: Two UAV sensor configurations. Left: A UAV observes trash in s6. Right: A UAV
observes trash at sI and observes a wall on its right on s4 and sb.

To turn and still sense trash on its sensors, the UAV is most likely to transition too observe
trans on its right sensor, state (1,1,1,1,1,3,1,1). This state has higher state-action values
compared to the state (1,1,1,1,1,1,1,1). Using this fitness function results an evolved tree that
observes trash instead of collect it.

Table 5-3: State-action pairs for 3 states with 3 actions.

State Move Turn Left Turn Right
(1,1,1,1,1,1,1,1) ~ 7.6659 0.728183 0.580431
(1,1,1,3,1,1,1,1) 14.301 4.88565 6.2666

(1,1,1,1,1,3,1,1) 1.28739 4.72524 20.7678

A transition from state (1,1,1,3,1,1,1,1), observing trash in front, and move forward is investi-
gated to see how it effects the optimization behavior. The transition probabilities from moving
forward from state (1,1,1,3,1,1,1,1) to the possible other states for the UAV are presented in
Table 5-4.

When the UAV takes the action to collect trash, the UAV most likely transitions to a state

Reinforcement Learning Policy Approximation by Behavior Trees Y.S. Janssen

64 Additional Results

where it observes only free space (1,1,1,1,1,1,1,1). For this state, the state with the highest
state-action value is moving forward. Moving forward from state (1,1,1,1,1,1,1,1) has a high
probability to end up in the same state, 78%.

Subsequently, if the tree BT selects the action to collect trash, it leads to transition to a state
with low state-action value and has a high probability remain in that state.

Table 5-4: Transition probabilities for moving forward when observing trash in front.

State Transition Probability

s0,s1,s2,s83,54,85,56,87 - -

0,0,0,1,1,1,1,1 298 0.7 %
11,1,1,1,1,1,1 32683 78.0 %
111,13,1,1.,1 527 1.0 %
0,0,1,1,1,1,1,1 6258 15 %
1101,1,1,1,3,1 1296 3.0%
110,110,1,1,1 299 0.7 %
0,10,1,1,1,1,3,1 31 0.0 %
1,0,1,1,1,1,0,1 235 0.6 %
0,10,1,1,3,1,1,1 37 0.0 %

)

In addition, the results in Table 5-2 indicate that successful action identification of 50%
compared to the RL policy does not lead to a reward of 50% of the RL policy. It even
resulted in a negative reward. This indicates that some information stored in the Q-table is
more important than other information.

The accumulated state-action value does not capture which information is important in the
fitness function. This indicates that approximating the RL policy is more complex than
initially was assumed. However, these results provided insight into a DTMC and how it
relates to the simulation environment. It led to change the fitness function. A new fitness
function is set up that uses the actual action identification in the next section.

Y.S. Janssen Reinforcement Learning Policy Approximation by Behavior Trees

5-1 Fitness Functions 65

5-1-2 Problem Specific Fitness Function

The BT must identify the same action as the action identified by the RL policy. The new
fitness function compares the action that is identified by the tree and directly compares it to
the action that the RL policy identifies.

Using the knowledge from Section 5-1-1, problem specific information is added to the fitness
function. To steer the optimization to successful action identification in important states, the
fitness function is tailored for these important states.

Important states are the states that involves trash or a wall. Higher fitness is given to the tree
that identifies the correct action in states where trash is observed. If trash is observed on s3,
s4 or s5 and the the tree identifies the correct action, its fitness increases with 8, compared
to a decrease with 4 of the identification is unsuccessful.

The fitness of the BT gets extra penalized if the sensor s8 observes a wall and the wrong
action is identified. This action is most likely to cause a collision. For this reason the fitness is
increase with 1, and decreased with 2. This results in the fitness function formulation shown
in Algorithm 2. The fitness function steers the GAs to converge on a population that selects
the right action when trash or a wall is observed.

if s3=3o0r sy =3 or s5 =3 then
if ap; = a,; then
Fitness = Fitness + 8;
else
Fitness = Fitness - 4;
end if
else if s) =0 then
if apt = Ayl then
Fitness = Fitness + 1;
else
Fitness = Fitness - 2;
end if
else
if Apt = Q] then
Fitness = Fitness + 1;
end if
end if

Algorithm 2: Fitness function used for Genetic Optimization. Increase/decrease fitness for
the BT when trash is observed at s3, s4 or s3. Worse fitness when s3 observers a wall and
the wrong action is selected.

When the this fitness increases above the 90% of the maximum reached fitness score of a
previous population, an additional fitness function is added. This fitness function evaluates
the BT's size. A BT with less nodes is easier to interpret. This results that a tree with less
nodes is scored with high fitness, and vice versa. Maximum fitness is scored for trees with 20
nodes or less. This leads to an optimization to reduce the size of the tree too a number of 20
nodes.

Reinforcement Learning Policy Approximation by Behavior Trees Y.S. Janssen

66 Additional Results

The parameter values for the GA that are used for the optimization are presented in Table 5-5.

Table 5-5: Parameter values for the optimization using Genetic Algorithms.

Parameter Value
No. of steps through DTMC 100
Max number of generation (G) 150
Population size (M) 100
Tournament selection size (s) 8%
Crossover rate (P.) 50%
Mutation rate (P,) 30%
Headless-Chick Crossover rate (Ppe) 10%
Maximum tree depth (Dg) 3
Maximum no. of children (D.) 4
No. of simulation runs per generation (k) 5

Figure 5-6a show the population mean fitness and the mean fitness of the best individual in
each generation. The mean fitness improves gradually and then settles at around the 0.5 of
the normalize fitness axis. This implies that the genetic diversity in the pool is sufficient.

Progression of the Tree size score

—C- Mean
— %~ Best of Population
|

300

250

200 [

Fitness
Tree size
@

g

o
1<)

508 | |

02 1 1 0 1 1
0 50 100 150 0 50 100 150

Generation Generation
(a) Progression of the fitness score of the (b) Progression of the number of nodes of
best individual and the mean of the popu- the best individual of the population and
lation throughout the genetic optimization. the mean of the population throughout the
The highest fitness of the best scoring indi- genetic optimization.

vidual is evolved after 145 generations.

Figure 5-6: Genetic Optimization results.

Figure 5-6b shows the tree size of the best individual and the tree size of the population
mean. Figure 5-6b shows that the average tree size began at about 75 nodes and then slowly
increases until 200 nodes and from there continues to reduce in size and eventually drops
below 150. The best individual BT after 150 generations had 38 nodes. By removing the
nodes that have no effect on the final behavior, called pruning, the final BT resulted in a BT
with 17 nodes.

Y.S. Janssen Reinforcement Learning Policy Approximation by Behavior Trees

5-1 Fitness Functions 67

The best evolved BT of the population after 150 generations and after pruning is presented
in Figure 5-7. The condition statements are indicated with the sensor s; and the check [wall
(0), free (1), trash (3)]. And the action are indicated with L for turn left, R for turn right
and M for move forward.

?
—_— L
S,= 0 ? ? §;!
L 8,73 2
H[—
L] G D[R

Figure 5-7: Graphical depiction of genetically optimized BT.

The results of the evolved BT are shown in Table 5-6. The optimized tree is evaluated on
three subtask: collision avoidance, collect trash and search trash.

Table 5-6: Results optimized BT with GA for 150 generations using problem specific fitness

function.
State Q-learning Optimized BT
Action-selection for all states 100 % 34 %
Action-selection for simulation 100 % 93%
Average reward 298 159
Representation 3123 entries 17 nodes

Collision avoidance

The RL algorithm learned to avoid collisions by turning left. This action results in counter
clockwise traveling through the room. This characteristic behavior is also demonstrated when
the UAV uses the evolved BT.

The UAV with the evolved BT as action identification method is shown in Figure 5-8. The
agent observes the wall in front, no pieces of trash and selects to turn to the left. After which
the agent continues to follow the wall.

The collision avoidance behavior can now be verified using Figure 5-7. The red box indicating
the check for a wall in front, together with the rules of the BT framework show that the agent
will never move forward. The 17 nodes of the BT make this possible. This compared to
identifying all wall states in the Q-table of the RL policy and then check the state-action
values.

Collect trash
When the UAV observes trash on its left and then collect the trash by moving forward. A

Reinforcement Learning Policy Approximation by Behavior Trees Y.S. Janssen

68 Additional Results

Figure 5-8: A motion example of UAV with optimized BT as action selection policy. Agent
shows goal driven behavior when trash is observed. Dark blue indicate walls, light blue indicate
free space, green indicate trash, yellow indicate the UAV's position. Read from left to right, top
to bottom.

motion example that demonstrates collect trash behavior is shown in Figure 5-12. It shows
the UAV that follows the wall and decides to turn when trash is observed.

Figure 5-9: A motion example of UAV with the optimized BT as action selection policy. Agent
shows goal driven behavior when trash is observed. Dark blue indicate walls, light blue indicate
free space, green indicate trash, yellow indicates the UAV's position. Read from left to right, top
to bottom.

It is verified using Figure 5-7 that the UAV will not collect trash on its right.

Search trash

Search trash behavior is not developed by the RL controller. The RL controller did learn
actions to increase its chance to encounter trash. This behavior to increase the chance of
encounter trash is not evolved in the BT.

The evolved tree captured one important subtask, collision avoidance. The evolved tree
represents this subtask using 4 nodes which are easy to verify. Verify 4 nodes is less work

compared to have to adjust all state-action values for states involving an object the Q-table.

Y.S. Janssen Reinforcement Learning Policy Approximation by Behavior Trees

5-2 Acting policy in the DTMC 69

5-1-3 Evaluation Fitness Function

Three subtasks that are identified for the RL policy that are not present in the evolved BT:
collect trash on right, collect trash in front first and increase the chance to encounter trash.
However, an advantage of the BT framework is the ease to make adjustments to the tree and
add behaviors so these behaviors could be added.

Although already a partial success is achieved, this fitness function limits wider use of this
method. If the same results can be obtained with a generic fitness function for the opti-
mization, the method would increase its applicability to other problems. This led to the
development and results presented in Part I.

5-2 Acting policy in the DTMC

The actions identified by the BT during the optimization were used to transition through the
DTMC. An other option is to select the actions that the RL policy identified. To investigate
the difference in optimization, a preliminary analysis is performed. One of the recommen-
dation presented in Part I is to investigate the influence of selecting the acting policy in the
DTMC during optimization. The results, with the RL policy as acting policy in the DTMC,
present a direction for future research.

When the BT is selected as active policy in the DTMC, the state that are evaluated are the
states that are more likely to be actually encountered by the tree in simulation. However,
for wrong action identification, the tree moves to an other state compared to the RL policy
and that state is less likely to be visited by the RL policy. It is interesting to see that the
optimization has difficulty to evolve a BT that captures the characteristics of a RL controller.

This chapter present a preliminary analysis on selecting the RL policy as active policy to
transition through the DTMC.

5-2-1 RL as Active Policy

To investigate the influence on the active policy in the DTMC, the optimization is run by
transitioning in the DTMC using the action selected by the RL policy instead of the BT
as done in the previous sections. The GAs settings used are the same as presented in the
scientific paper. The only with difference is the acting policy. The preliminary analysis for
the RL policy as active policy in the DTMC are discussed.

Reinforcement Learning Policy Approximation by Behavior Trees Y.S. Janssen

70 Additional Results

The optimization is run also used the same fitness function as was specified in the scientific
paper in Part I.

o
o

—C- Mean
— %~ Best of Population

o
S

0.9

S
o

I | —C- Mean
% —>— Best of Population
Yo R
23 T R e

08 |

®
IS
S

w
o

|
07 1 g
é ! @ 30
|
05 ,“ 20 |
o 15F
I |
0.4 10 bk
0.3 - . 5 - .
0 50 100 150 0 50 100 150
Generation Generation
(a) Progression of the fitness score of the (b) Progression of the number of nodes of
best individual and the mean of the popu- best individual of the population and the
lation throughout the genetic optimization. mean of the population throughout the ge-
The highest fitness of the best scoring indi- netic optimization.

vidual is evolved after 8 generations.

Figure 5-10: Genetic Optimization results for run with RL policy as active policy.

The evolved BT which is optimized using the RL action selection in the DTMC is presented
in Figure 5-11. An overview of the results of the evolved BT are presented in Table 5-7.

—|> M
L] Goo)| |G- | L

G

Figure 5-11: Graphical depiction of optimized BT using GAs. Transitions in the DTMC for the
optimization based on the action selection of the RL policy. Green box indicates behavior to turn
before a corner. Red box indicates the behavior to collect trash on its left.

Collision avoidance

By evaluating the tree, it is clear that the tree misses the nodes for a wall check in front.
However, when the UAV moves towards a wall the check on sensor s! and s/ ensure that
the UAV will turn left instead of hitting the wall indicated with the green box. However, the
results indicate that the UAV collides with the wall, resulting in an average reward of -484.

The motion plot in Figure 5-12, shows the UAV with the BT as action selector hit the obstacle
block in the environment.

Y.S. Janssen Reinforcement Learning Policy Approximation by Behavior Trees

5-2 Acting policy in the DTMC 71

Table 5-7: Results optimized BT with GA for 150 generations using the RL policy to transition
through the DTMC.

State Q-learning Optimized BT with Q-values
Action-selection for all states 100 % 82 %
Action-selection for simulation 100 % 49 %

Average reward 260 -484
Representation 3123 entries 9 nodes

Figure 5-12: A motion example of UAV with the optimized BT as action selection policy. Agent
shows goal driven behavior when trash is observed. Dark blue indicate walls, light blue indicate
free space, green indicate trash, yellow indicates the UAV's position. Read from left to right, top
to bottom.

The result of a tree without the check on a wall in front is seen in ??. This explains the
reward Table 5-7. To provide more information, the reward per run are shown in Table 5-8.
This show that if 4 runs in the simulation were performed, this tree would have a high average
score compared to its average score on 10 runs. It shows that the obstacle in the environment
is not encountered often, which also explains the missing behavior nodes to select the right
action in this state.

The simulation run without encountering the obstacle in the environment results in an suc-
cessful action identification of 86% and a average reward of 119. The BT framework does
provide the ability to easily extend the tree with this check.

Collect trash

The red box around the 3 nodes in Figure 5-11 show that the tree will select to turn left when
a piece of trash is observed on its left sensor. However, when trash is observed on the right
of the UAV, the tree does not identify the action to collect it.

Search trash

Reinforcement Learning Policy Approximation by Behavior Trees Y.S. Janssen

72 Additional Results

Table 5-8: Reward for 10 runs with the UAV running the evolved tree.

Run: Runl | Run2 | Run3 | Run4 | Runb5 | Run6 | Run7 | Run 8 | Run 9 | Run 10
Reward: 107 145 147 38 -1212 -1034 -1034 -1014 -974 159
Simulation 88% | 85% | 8% | 9% | 16% | 25% | 25% | 24% | 24% | 85%
Success rate

The tree evolved the characteristic behavior of turning before the corner. This way there is an
increase chance to encounter trash. During the evaluation of the RL controller, this behavior
was labeled as typical and was not optimized when the BT was selected as active policy. The
green box in Figure 5-11 shows this characteristic behavior.

5-2-2 Evaluation Active Policy

A challenge when the RL action identification is used as policy to move through the DTMC is
immediately observed. Without extra conditions on the fitness function, the optimization is
most likely to transition in a subset of the states in Q-table and DTMC, resulting in missing
important transitions.

When an action identified by the tree is wrong, the RL action selection will still move on
from this state to the correct new state and this allows the tree to obtain high fitness for the
rest of the run. This BT, with high fitness, will however not perform well in simulation if
important states, as collision avoidance, are missed and the UAV will get stuck when facing
this state in the actual simulation.

For this optimization the same (generic) fitness function is used. To implement small adjust-
ment to this fitness function, or to dynamically switch between the active policies during the
simulation might improve the optimization results.

Despite the fact that the evolved tree misses a branch to avoid collisions when an obstacle is
observed in front of the UAV, the evolved BT did evolve one of the characteristic behavior of
the RL controller. This behavior was viewed as the most creative one developed by the RL
controller. Without the information to search for trash, it developed a behavior to increase the
chance to encounter it. This genetic optimization was the first to evolve this behavior. Setting
expectations that changing the active policy to the actions identified by the RL controller
might produces better optimizations.

Y.S. Janssen Reinforcement Learning Policy Approximation by Behavior Trees

Chapter 6

Conclusions

This thesis presented a method to automatically generate a BT, using GAs, that approximates
a RL policy, normally captured in in an difficult to interpret Q-table. A particular focus was
whether the BT would help to understand the developed behavior of the RL controller and
present the behavior in an intelligible way and allow for adjustments. The method was tested
on a UAV simulation with a guidance task in an unknown environment.

The results show that the genetically optimized BT successfully identifies the correct action
for 93% of the states encountered in the simulation run. When the action identification of
the evolved BT is evaluated for all states in the Q-table, the tree identifies 63% of the actions
correctly. After manually extending the tree, the optimized BT has a success rate of 86% for
all states in the Q-table and a success rate of 96% for the states encountered in a simulation
run. Although high success rates are obtained for the run in simulation, not all characteristic
behaviors of the RL policy are captured by the tree.

A graphical depiction of the evolved BT allows easy verification for the subtask collision
avoidance. The graphical depiction of the evolved BT allows for easy verification for the
collision avoidance subtask with only 4 nodes, compared to the verification of 1464 state-
action values in the Q-table. This suggests that a BT provides easy verification of subtasks
for the designer of RL learned behavior.

The approximation is performed using GAs in a DTMC. This DTMC is constructed during
the learning of the guidance task by the UAV. The DTMC successfully captures the transition
probability of the UAV in the environment without the need to simulate the environment,
which speed up computation for the optimization. However, transitioning to rare states pose
a challenge during the optimization in the DTMC. But the DTMC helps to identify where
insight would be valuable and hence act as both a guide and stimulant to further research.

The aim of this research was to answer the research question: How can the policy of a
Reinforcement Learning controller be made more intelligible by an automatically generated
Behavior Tree?

The results show that it is feasible to learn control actions using the RL Q-learning algorithm
and automatically approximate this control policy with the BT framework. This representa-

Reinforcement Learning Policy Approximation by Behavior Trees Y.S. Janssen

74 Conclusions

tion with the BT results in a high level of understanding of the developed behavior, provides
easy verification and the tools to extend the behavior to improve performance.

This work presented two main contribution: The approximation of a developed RL policy
using a BT and this approximation is performed in a DTMC of the environment instead of
the simulation environment; the ability to manually adjust the evolved BT and as such allow
easy verification of subtask of the developed RL policy.

This thesis work also provided more insight in the policy structure of the RL controller. It is
observed that the characteristic policy behavior for a RL agent is strongly coupled to successful
action identification for rare states. It suggests that the success of the approximation of a
RL policy depends on action identification for these rare states. Based on this observation
future investigation should perform a sensitivity analysis identify and involve these states in
the approximation.

This method is applied to a dual task with simple dynamics for the UAV system, but is
not limited to such tasks. RL controllers are challenged with more difficult tasks with more
difficult dynamics for hierarchical RL problems. The hierarchical combination of task can be
utilized with the BT framework. The combination of hierarchical RL with the BT framework
is interesting to investigate to present the RL policy in subtasks in order of priority

The use of the BT framework as a policy approximation provides the user with increased flex-
ibility, manual adaptation of the developed RL policy and scalability for further development.
The BT framework is a promising tool in future development for robotic behavior.

Y.S. Janssen Reinforcement Learning Policy Approximation by Behavior Trees

Chapter 7

Recommendations

Behavior Trees The BT framework is formed by hierarchically organizing behavior sub-trees
consisting of ordered nodes Directed Acyclic Graphs (DAGs). DAGs consist of a number of
nodes that are connected with directed edges which could be used by a visual editor to
visualize and even edit the BT. Future research can design a Graphical User Interface (GUI)
to be able to interactively design BTs. This would increase the validation of the automatically
generated behavior since the designer could detect faults more easily.

Reinforcement Learning The variables changed during the learning of the RL controller
were limited only to initial position and orientation of the UAV, additional parameters may be
useful to promote more general behavior to learn the guidance task more effectively. Rooms
with different shapes and environmental objects in as well as changes to vehicle dynamics
which are more representative of reality should aid the development of more effective RL
controller.

This method was applied to a simple dual-task problem with limited observability for the
agent. Future research will investigate implementing a battery indication on the UAV and a
charge location in the environment. larger discrete state-space RL problems, or even contin-
uous state-spaces to test this method.

Genetic Optimization By not adding task specific knowledge to the genetic operators the
converged solution is not steered by the human designers. This led to an optimization with
large of redundant branches and nodes in the BTs. This is solved after optimization by
pruning the BTs. It would be interesting to automate this pruning by applying the simple
rules of the BT framework to the evolutionary optimization process. The influence of of
pruning on the genetic diversity during the evolution process can also be investigated.

This research presented no investigation into the effect of genetic parameters of the GAs.
It was used as a tool which was developed by Scheper et al. (2016) and adjusted for this
research. As the genetic operators on BTs can result in quite complex BTs, a more detailed
analysis should be performed to adapt it to this research. Different parameter settings were
used during this research, but not enough to establish trends or perform analysis on the GAs
settings for the optimized solutions.

Reinforcement Learning Policy Approximation by Behavior Trees Y.S. Janssen

76 Recommendations

Simulation runs in the DTMC of each BT in a generation are not dependent on other indi-
viduals in the population. This lends the simulation of individuals to run in parallelism. To
spread the computational load of the simulations over multiple platforms would reduce the
total time to optimism the BTs.

DTMC The observed behavior to free up its sensors is not approximated with the BT.
The state for which this action needs to be identified also has a low probability state of
transition too in the DTMC. The approximation did not successful identified this behavior,
but it is viewed as characteristic for the RL controller. Future research will investigate to
involve low probability states better in the optimization without increasing computation time
significantly.

Another interesting direction for future research is to investigate which active policy must be
followed in the DTMC. Future research will investigate the sensitivity of the acting policy in
the DTMC. When the optimization uses the RL policy as active policy to step through the
DTMC, an unsuccessful action selection by the tree will still transition to an state that will
actually be encountered more often by the RL policy.

A first indication on how this effects the approximation is presented in Chapter 5. In Chapter 5
the active policy for state transitions is the RL policy.

Finally, future research should investigate mapping continuous state-space problems transi-
tions into a DTMC. Providing a framework to approximate a RL without the use of compu-
tationally expensive simulation environments.

Y.S. Janssen Reinforcement Learning Policy Approximation by Behavior Trees

OO0k WN =

Appendix A

Pruning

The approximation with GAs let the BTs grow during the process of evolution. During the
optimization process only the size of the BT is used in the fitness function. This leaves the
chance for the evolution to evolve BTs with nodes in the BT that have no influence on the
behavior. These BTs are pruned. Pruning is simply removing nodes from the BT that will
have no effect on the exhibited behavior.

Pruning is possible by following the rules of the BT structure and the customized leaf nodes.
For the current customization, conditions nodes have two possible return statuses, Success or
Failure, where action nodes only return Success. With these leaf nodes and the standard BT
framework, the following nodes can be removed:

e nodes after an Action node in a Selector will not be evaluated, see Listing A.1

e multiple Action nodes within a Sequence result in only the last action, see Listing A.2

e a composite with only one child can be replaced by its child node, see Listing A.3

Listing A.1: nodes in green is an Action node in a Selector will not be evaluated

<BTtype >composite<function>selector <vars><name>selector <endl>
<BTtype >composite<function>sequence <vars><name >sequence <endl>
<BTtype >composite<function>selector <vars><name>selector <endl>
<BTtype >action<function>turn_left <vars >I<name >khepera<endl>
<BTtype >condition<function>equal_to<vars >7,3<name >khepera<endl>
<BTtype >condition<function>equal_to<vars >3,0<name>khepera<endl>
<BTtype >composite<function>selector <vars><name>selector <endl>
<BTtype >composite<function>sequence <vars><name>sequence <endl>
<BTtype >composite<function>sequence<vars><name>sequence <endl>
<BTtype >condition<function>equal_to<vars >3,0<name>khepera<endl>
<BTtype >condition<function>equal_to<vars >1,0<name>khepera<endl>
<BTtype >action<function>turn_right <vars >0<name >khepera<endl>
<BTtype >action<function>move<vars >2<name >khepera<endl>
<BTtype >composite<function>sequence<vars><name>sequence <endl>
<BTtype >condition<function>equal_to<vars >6,0<name >khepera<endl>
<BTtype >condition<function>equal_to<vars >1,3<name >khepera<endl>
<BTtype >action<function>turn_right <vars >0<name >khepera<endl>
<BTtype >action<function>turn_right <vars >0<name >khepera<endl>
<BTtype >action<function>move<vars >2<name >khepera<endl>

Reinforcement Learning Policy Approximation by Behavior Trees Y.S. Janssen

© 00O U WN =

© 00U W=

© 00O U WN =

78 Pruning

Listing A.2: Multiple Action nodes within a Sequence result in only the last action node so node
indicated in green can be pruned away

<BTtype >composite<function>selector <vars><name>selector <endl>
<BTtype >composite<function>sequence<vars><name >sequence <endl>
<BTtype >composite<function>selector <vars><name>selector <endl>
<BTtype >action<function>turn_left <vars >I<name >khepera<endl>
<BTtype >condition<function>equal_to<vars >7,3<name >khepera<endl>
<BTtype >condition<function>equal_to<vars >3,0<name>khepera<endl>
<BTtype >composite<function>selector <vars><name>selector <endl>
<BTtype >composite<function>sequence<vars><name>sequence <endl>
<BTtype >composite<function>sequence <vars><name>sequence <endl>
<BTtype >condition<function>equal_to<vars >3,0<name>khepera<endl>
<BTtype >condition<function>equal_to<vars >1,0<name>khepera<endl>

<BTtype>action<function>move<vars >2<name >khepera<endl>
<BTtype >composite<function>sequence<vars><name>sequence<endl>
<BTtype >condition<function>equal_to<vars >6,0<name >khepera<endl>
<BTtype >condition<function>equal_to<vars >1,3<name >khepera<endl>
<BTtype >action<function>turn_right <vars >0<name >khepera<endl>
<BTtype >action<function>move<vars >2<name>khepera<endl>

Listing A.3: A sequence with one child can be replaced by its child node

<BTtype >composite<function>selector <vars><name>selector <endl>
<BTtype >composite<function>sequence<vars><name>sequence <endl>

<BTtype >condition<function>equal_to<vars >3,0<name >khepera<endl>
<BTtype >composite<function>selector <vars><name>selector <endl>
<BTtype >composite<function>sequence<vars><name>sequence <endl>
<BTtype >composite<function>sequence<vars><name >sequence <endl>
<BTtype >condition<function>equal_to<vars >3,0<name>khepera<endl>
<BTtype >condition<function>equal_to<vars >1,0<name>khepera<endl>
<BTtype>action<function>move<vars >2<name >khepera<endl>
<BTtype >composite<function>sequence<vars><name>sequence <endl>
<BTtype >condition<function>equal_to<vars >6,0<name>khepera<endl>
<BTtype >condition<function>equal_to<vars >1,3<name>khepera<endl>
<BTtype >action<function>turn_right <vars >0<name >khepera<endl>
<BTtype >action<function>move<vars >2<name >khepera<endl>

Applying global information of the node combinations leads to further reduction in size. An
example of this global optimization can be seen in Listing A.4

If we evaluate the BT to the Condition node on line 5 and the branch of nodes on line
9,10,11,12,13 under Sequence node at line 7. Evaluating the trees execution we see that the
Condition node has two possible outcomes. If the outcome of the Condition node on line 5
is Success, the Sequence node node on line 7 will never be evaluated. In this case the branch
on line 9,10,11,12,13 will not be evaluated. If the outcome of the Condition node on line 5
is Failure, then the Sequence node will be evaluated. Its first branch start with a checking
the same condition as Condition node in line 5. Returning Failure to its parent, such that
the Sequence will not evaluate its children further. In this case again, the Selector and its
children have no effective impact on the output of the BT

Listing A.4: A sequence with one child can be replaced by its child node

<BTtype >composite<function>selector <vars><name>selector <endl>

<BTtype >composite<function>sequence<vars><name >sequence <endl>
<BTtype >action<function>turn_left <vars >Il<name >khepera<endl>
<BTtype >condition<function>equal_to<vars >7,3<name >khepera<endl>

<BTtype >condition<function>equal_to<vars >3,0<name>khepera<endl>

<BTtype >action<function>turn_right <vars >0<name >khepera<endl>
<BTtype >action<function>move<vars >2<name >khepera<endl>

Y.S. Janssen Reinforcement Learning Policy Approximation by Behavior Trees

Appendix B

Code structure

This chapter present the implementation of the BT framework. It explain how the framework
was set-up. This appendix describes the implementation of the UAV simulation using Unified
Modelling Language (UML) charts.

B-1 Simulation

For this research the simulations are programmed in the C++programming languages. The
C++programming language allows to interaction with low level hardware and allows for real
time performance which is often needed for developing UAVs and MAVs. The writer of this
paper had no prior experience with compile languages. Programming in the C++languages
turned out to be a challenge compared to the scripting language MATLAB. It took more time
than expected to implement the same functionalities. However, as control engineer for robotic
systems it the languages that is probably the most common languages used in robotics.

This thesis is programmed following the setup of Object-Oriented Programming. A feature of
objects is that an object’s procedures can access and often modify the data fields of the object
with which they are associated. In OOP, classes are designed by making them out of objects
that interact with one. The UML chart with the class structure for the UAV simulation is
shown in Figure B-1.

The UAV class includes all the simple dynamics of the UAV system. The UAV class selects a
Solution class, either the Q-learning class or the BT class. Both Solution classes communicate
with the UAV through a Blackboard Struct. A Blackboard is used to store the required data
and manages the reading and writing of data from any requester, UAV Class or Solution
Class.

This DTMC class is constructed during the learning of the guidance task by the UAV. When
the learning stops, the transition probability matrix is stored in the DTMC class. The Solution
Class can now be evaluated for the UAV in simulation, but also in the DTMC Class.

Reinforcement Learning Policy Approximation by Behavior Trees Y.S. Janssen

80 Code structure

«Class» «Class»

DTMC VAV «Class»

ion Environment

«Struct> ‘ «Struct>
Blackboard «Class» R Blackboard

ion Method

«Class» «Class»
Q-learning irae

Figure B-1: Static class structure of the modeled UAV simulation.

B-2 BT implementation

For the Evolutionary Optimization (EO) on BTs the framework of Scheper et al. (2016) is
implemented to use the GA and adjusted for this research. The notation of the BT framework
is adapted from (Scheper et al., 2016; Champandard, 2007)

The standard node class, called behavior, is defined from which all other types of nodes inherit
from. This standard class is independent from the implementation for this research. This set
up the code such that it maintains the re usability and expandability which make the BT
framework so useful.

«Class»
Behavior Tree

«Class»

«Struct»
«Class» Turn right

«Class»
@ >

«Struct»>
Turn left

«Class»
Selector

«Struct»
Move forward

«Class»
Condition node
7 4\
/ \
/ \

/ \
«Struct» «Struct> «Struct»
Equal to Greater than Less than

Figure B-2: The class structure of the BT class.
The Blackboard architecture implemented for the UAV to add data to the BT, containing 9

entries: for each 8 sensors a variable s;, and an action a. The sensor values are set as the
input for the BT and the action is set as as output by the BT.

Y.S. Janssen Reinforcement Learning Policy Approximation by Behavior Trees

Appendix C

Reinforcement Learning

Reinforcement Learning Policy Approximation by Behavior Trees Y.S. Janssen

82 Reinforcement Learning

6
5
4
3
2
0

(a) Exploration UAV reward 109. (b) Exploration UAV reward 105.

4
3.5
3
25
2
15
1
0.5
0

(c) Exploration UAV reward 109. (d) Exploration UAV reward 105.

Figure C-1: Exploration maps for low reward episodes.

Y.S. Janssen Reinforcement Learning Policy Approximation by Behavior Trees

83

3
4
25
35
) 3
25
15
2
1 1.5
1
05
05
0 0

(a) Exploration UAV reward 262. (b) Exploration UAV reward 262.
2
1.8 K
16 .
14 K
1.2 .
1
0.8 .
0.6 .
0.4 .
0.2 .
0

(c) Exploration UAV reward 279. (d) Exploration UAV reward 240.

Figure C-2: Exploration maps for high reward episodes.

Reinforcement Learning Policy Approximation by Behavior Trees Y.S. Janssen

84 Reinforcement Learning

Y.S. Janssen Reinforcement Learning Policy Approximation by Behavior Trees

Bibliography

Al-emran, M. (2015). Hierarchical Reinforcement Learning: A Survey. International Journal
of Computing and Digital Systems, 2(2).

Andre, D., & Russell, S. J. (2001). Programmable reinforcement learning agents. In (pp.
1019-1025). MIT Press.

Barto, A. G., & Dietterich, T. G. (2004). Reinforcement learning and its relationship to
supervised learning. In Handbook of learning and approximate dynamic programming (pp.
47-64). Wiley - IEEE Press. doi: 10.1002/9780470544785.ch2

Barto, A. G., & Mahadevan, S. (2003). Recent Advances in Hierarchical Reinforcement Learn-
ing. Discrete Event Dynamic Systems, 13(1/2), 41-77. doi: 10.1023/a:1022140919877

Bishop, C. (1994). Novelty detection and neural network validation. IEE Proceedings -
Vision, Image, and Signal Processing, 141(4), 217.

Busoniu, L., Schutter, B. D., Babuska, R., & Ernst, D. (2010, may). Using prior knowledge
to accelerate online least-squares policy iteration. In 2010 IEEE international conference
on automation, quality and testing, robotics (AQTR). Institute of Electrical & Electronics
Engineers (IEEE).

Champandard, A. J. (2007). Packaging - google chrome. https://aigamedev.com/insider/
presentations/behavior-trees/. ((Accessed on 11/03/2016))

Colledanchise, M., & Ogren, P. (2014, sep). How behavior trees modularize robustness
and safety in hybrid systems. In 2014 IEEE/RSJ international conference on intelligent
robots and systems. Institute of Electrical & Electronics Engineers (IEEE). doi: 10.1109/
iros.2014.6942752

de Pontes Pereira, R., & EngeMartinsl, P. (2015). A framework for constrained and adaptive
behavior-based agents. CoRR, abs/1506.02312. Retrieved from http://arxiv.org/abs/
1506.02312

Reinforcement Learning Policy Approximation by Behavior Trees Y.S. Janssen

https://aigamedev.com/insider/presentations/behavior-trees/
https://aigamedev.com/insider/presentations/behavior-trees/
http://arxiv.org/abs/1506.02312
http://arxiv.org/abs/1506.02312

86 BIBLIOGRAPHY

Dey, R., & Child, C. (2013, aug). QL-BT: Enhancing behaviour tree design and imple-
mentation with g-learning. In 2013 IEEE conference on computational inteligence in
games (CIG). Institute of Electrical & Electronics Engineers (IEEE). doi: 10.1109/
cig.2013.6633623

Dietterich, T. G. (2000). Hierarchical Reinforcement Learning with the MAX(Q Value
Function Decomposition. Journal of Artificial Intelligence Research, 13, 227-303. doi:
10.1613 /jair.639

Doya, K. (2000). Reinforcement learning in continuous time and space. Neural Computation,
12(1), 219-245. doi: 10.1162/089976600300015961

Dromey, R. (2003). From requirements to design: formalizing the key steps. In First interna-
tional conference onSoftware engineering and formal methods, 2003.proceedings. Institute
of Electrical & Electronics Engineers (IEEE). doi: 10.1109/sefm.2003.1236202

He, P., & Jagannathan, S. (2007, apr). Reinforcement learning neural-network-based con-
troller for nonlinear discrete-time systems with input constraints. IEEE Trans. Syst., Man,
Cybern. B, 37(2), 425-436.

Isla, D. (2005). Handling Complexity in the Halo 2 AL. In Gdc 2005 proceeding.

Klockner, A. (2013). Behavior Trees for UAV Mission Management. Informatik 2013: infor-
matik angepasst an Mensch, Organisation and Umwelt, P-220(September), 57—68.

Klockner, A. (2013, aug). Interfacing behavior trees with the world using description logic.
In ATAA guidance, navigation, and control (GNC) conference. American Institute of Aero-
nautics and Astronautics (AIAA). doi: 10.2514/6.2013-4636

Kober, J., Bagnell, J. A., & Peters, J. (2013, aug). Reinforcement learning in robotics: A
survey. The International Journal of Robotics Research, 32(11), 1238-1274. doi: 10.1177/
0278364913495721

Lazaric, A., Restelli, M., & Bonarini, A. (2007). Reinforcement learning in continuous
action spaces through sequential monte carlo methods. In Advances in neural information
processing systems (p. 8).

Lindsay, P. A. (2010, Sept). Behavior trees: From systems engineering to software engineering.
In 2010 8th IEEE international conference on software engineering and formal methods.
Institute of Electrical & Electronics Engineers (IEEE). doi: 10.1109/sefm.2010.11

Millan, J. D. R., Posenato, D., & Dedieu, E. (2002). Continuous-action Q-learning. Machine
Learning, 49(2-3), 247-265. doi: 10.1023/A:1017988514716

Millington, 1., & Funge, J. (2009). Artificial intelligence for games, second edition (2nd ed.).
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Nedié¢, A., & Bertsekas, D. P. (2003).
Discrete Event Dynamic Systems, 13(1/2), 79-110.

Nolfi, S. (2002, Jan). Power and the limits of reactive agents. Neurocomputing, 42(1-4),
119-145. doi: 10.1016/s0925-2312(01)00598-7

Y.S. Janssen Reinforcement Learning Policy Approximation by Behavior Trees

BIBLIOGRAPHY 87

Ogren, P. (2012, Aug). Increasing modularity of UAV control systems using computer game
behavior trees. In AIAA guidance, navigation, and control conference. American Institute
of Aeronautics and Astronautics (AIAA). doi: 10.2514/6.2012-4458

Palanisamy, M., Modares, H., Lewis, F. L., & Aurangzeb, M. (2015, Feb). Continuous-time
g-learning for infinite-horizon discounted cost linear quadratic regulator problems. [EFE
Trans. Cybern., 45(2), 165-176. doi: 10.1109/tcyb.2014.2322116

Parr, R. E. (1998). Hierarchical control and learning for markov decision processes (Unpub-
lished doctoral dissertation). University of California at Berkeley.

Perez, D., Nicolau, M., O'Neill, M., & Brabazon, A. (2011). Evolving behaviour trees for
the mario ai competition using grammatical evolution. In Applications of evolutionary
computation (pp. 123-132). Springer Science Business Media. doi: 10.1007/978-3-642
-20525-5_13

Qiao, J., Fan, R., Han, H., & Ruan, X. (2009). Q-learning based on dynamical structure neural
network for robot navigation in unknown environment. In Advances in neural networks
ISNN 2009 (pp. 188-196). Springer Science Business Media. doi: 10.1007/978-3-642-01513
-721

Scheper, K. Y. W., Tijmons, S., de Visser, C. C., & de Croon, G. C. H. E. (2016). Behaviour
trees for evolutionary robotics. Artificial Life, 22, 23-48.

Sutton, R., & Barto, A. (1998, Sep). Reinforcement learning: An introduction. IEEE Trans.
Neural Netw., 9(5), 1054. doi: 10.1109/tnn.1998.712192

Sutton, R. S., Precup, D., & Singh, S. (1999, Aug). Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1-
2), 181-211. doi: 10.1016/s0004-3702(99)00052-1

Tesauro, G. (1994, Mar). TD-gammon, a self-teaching backgammon program, achieves
master-level play. Neural Computation, 6(2), 215-219. doi: 10.1162/neco.1994.6.2.215

Thorndike, E. L. (1911.) Animal intelligence; experimental studies, by edward I. thorndike.
New York,The Macmillan company,.

Watkins, C. J. C. H., & Dayan, P. (1992, May). Q-learning. Machine Learning, 8(3-4),
279-292. doi: 10.1007/bf00992698

Xiaoqin, D., Qinghua, L., & Jianjun, H. (2009, Aug). Applying hierarchical reinforcement
learning to computer games. In 2009 IEEE international conference on automation and
logistics. Institute of Electrical & Electronics Engineers (IEEE). doi: 10.1109/ical.2009
.5262787

Yamasaki, T., Sakaida, H., Enomoto, K., Takano, H., & Baba, Y. (2007). Robust trajectory-
tracking method for UAV guidance using proportional navigation. In 2007 international

conference on control, automation and systems. Institute of Electrical & Electronics Engi-
neers (IEEE). doi: 10.1109/iccas.2007.4406558

Reinforcement Learning Policy Approximation by Behavior Trees Y.S. Janssen

88 BIBLIOGRAPHY

Yan, Q., Liu, Q., & Hu, D. (2010). A hierarchical reinforcement learning algorithm based
on heuristic reward function. In 2010 2nd international conference on advanced computer
control. Institute of Electrical & Electronics Engineers (IEEE). doi: 10.1109/icacc.2010
.h486837

Yoshikawa, M., Kihira, T., & Terai, H. (2008). Q-learning based on hierarchical evolutionary
mechanism. WSEAS Transactions on Systems and Control, 3(3), 219-228.

Y.S. Janssen Reinforcement Learning Policy Approximation by Behavior Trees

	Acronyms
	Introduction
	Research Question
	Thesis Layout

	I Paper
	II Literature Study
	Reinforcement Learning
	Reinforcement Learning the Basics
	Markov and Partially Observable Decision Processes
	Value Function
	Dynamic Programming
	From Dynamic Programming to Monte Carlo
	Temporal Difference Learning
	Advantages
	Limitations

	Recent Advances
	Hierarchical Reinforcement Learning
	Continuous Reinforcement Learning

	Behavior Trees
	Behavior Tree
	The Emergence
	Semantics
	Execution
	Advantages
	Limitations

	Recent Advances
	Optimizing BT

	Preliminary research
	Windy Grid World
	Policy Representation using BTs

	III Additional Results
	Additional Results
	Fitness Functions
	Accumulated State-Action Value Fitness Function
	Problem Specific Fitness Function
	Evaluation Fitness Function

	Acting policy in the DTMC
	RL as Active Policy
	Evaluation Active Policy

	Conclusions
	Recommendations
	Pruning
	Code structure
	Simulation
	BT implementation

	Reinforcement Learning
	Bibliography

