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Summary

Reynolds Averaged Navier-Stokes turbulence models have been widely used in many indus-
trial applications because of their lower computational cost compared to other simulation
approaches such as DNS and LES. This is a consequence of considering mean-flow quan-
tities achieved by the time-averaging process. However, the time-averaging introduces the
Reynolds stresses, which make the system of the RANS equations underdetermined, thus re-
quiring modelling approaches. As a consequence of modelling the Reynolds stresses based on
the Boussinesq hypothesis, RANS simulations contain model errors. To improve the RANS
predictive capability, this thesis aims to identify momentum forcing f that is required to
reduce base-model errors with respect to any given data, and determine its characteristics.

The literature study on existing RANS error estimation techniques concludes two major
approaches. The Bayesian approach improves the RANS predictions by calibrating the closure
coefficients of the RANS models. The turbulence production is iteratively corrected based on
the estimated functional errors by the full-field inversion. However, since both approaches still
rely on the Boussinesq hypothesis, they do not provide the improvement where the turbulent
anisotropy plays a role.

To avoid the Boussinesq approximation, a base-model is constructed by replacing the diver-
gence of the Reynolds stress tensor with the momentum forcing f . By performing the full-field
inversion, optimal momentum forcing f̂ is identified based on the mean DNS velocity data for
two different wall-bounded flow cases. The velocity difference between the base-model and
the mean DNS velocity data is significantly reduced by achieving f = f̂ for both test cases.
Furthermore, the flow separation and reattachment points are accurately estimated by only
correcting the velocity field.

The identified momentum forcing f̂ mostly agrees with the DNS turbulence force for the 1D
channel flow case, while some deviations of f̂ from the DNS turbulence force are observed due
to the flow separation in the 2D periodic hill flow case. To determine the characteristics of
f̂ , a shear stress component is extracted from f̂ and compared with the DNS Reynolds shear
stress. In the 1D channel flow case, the shear stress is directly determined by integrating
f̂ along the cross-section of the channel and matches with the DNS Reynolds shear stress.
On the other hand, the direct extraction of the shear stress turns out to be not possible for
the 2D periodic hill flow case, hence using a minimization approach. Together with the flow
separation, this lead to the deviations in the shear stress profiles.
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Chapter 1

Introduction

Many different techniques have been proposed to perform more efficient and accurate turbu-
lence computations in the field of computational fluid dynamics (CFD) (Pope, 2000). The full
scale turbulence computation is made by Direct Numerical Simulation (DNS). This is known
as the most accurate technique but requires large computational costs. Large Eddy Simula-
tion (LES) has been developed to reduce the computational cost by filtering the small length
scales of the turbulence. Both techniques still have some limitations in practical engineering
applications particularly for high Reynolds number flows bounded by complex geometries due
to the large computational cost. Many engineering turbulence predictions rely on Reynolds-
Averaged Navier-Stokes (RANS) simulations where the computational cost is significantly
reduced by modelling turbulent transport instead of resolving the full scales of the turbu-
lence. However, the RANS simulations involves the errors from the turbulence model and its
empirical parameters, thus yielding inaccurate turbulence predictions.

Different error estimation techniques have been developed to improve the RANS predictive
capability. A full-field inversion approach is one of the promising techniques in the field of
RANS uncertainty quantification. This is a data-driven approach which can inversely find
the optimal estimate of the quantity of interest by minimizing the difference in the full flow
field between the RANS simulation and a selected database. Parish and Duraisamy (2015)
applied this approach to correct the turbulence production of the RANS closure model. In
contrast to their work, this thesis exploits the full-field inversion technique to reproduce the
momentum forcing necessary to reduce the errors of a base-model in specific test cases. To
consolidate the purpose of the thesis, the introduction will start with the state-of-the art and
address the motivation of this research and a brief summary of the approach used. Then,
research questions will be defined and followed by the outline of the thesis.
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2 Introduction

1.1 State-of-the-art

1.1.1 Bayesian approach

To begin with, Kennedy and OHagan (2001) initially introduced a methodology of Bayesian
calibration for computer models. They defined the calibration as the process where a model
output was achieved to agree with observation data by adjusting model parameters. The
proposed Bayesian technique contains the predictions regarding all sources of uncertainty as
well as correction for inaccurate outputs of the model. Cheung et al. (2011) applied the
Bayesian technique to perform the calibration process of different stochastic model classes
based on the SpalartAllmaras (SA) turbulence model. The calibration process was performed
against the incompressible flat plate boundary layer experiment data. The resulted posterior
probabilities and the prediction for the quantities of interest were used to determine the
plausibility of the selected stochastic model class. Their result concluded that there was only
one stochastic model case that is plausible for the prediction while other two are rejected.

Oliver and Moser (2011) continued applying the Bayesian uncertainty quantification technique
to different RANS turbulence models for fully-developed channel flow. In the work, they
aimed to quantify both parameter and model-form uncertainties of various RANS models:
Baldwin-Lomax (BL), SpalartAllmaras (SA), Chien k − ε and v2 − f . The result shows that
the maximum posteriors of the SA parameters are nearest to their nominal values among
other turbulence models while the Chien k − ε requires a larger parameter value than its
nominal value to be agreed with the calibration data. The Chien k− ε model is coupled with
different stochastic models to predict the quantity of interest. The predictions are shown to
be significantly influenced by the stochastic model and provide no agreement among the data
set. On the other hand, when one of the stochastic extensions is coupled with the different
turbulence models, the plausible predictions are achieved except for the BL model.

Edeling et al. (2014) further investigated parameter variability in k − ε turbulence model by
using Bayesian uncertainty analysis for the case of turbulent boundary layers with different
pressure gradients. Based on experiment data, the closure coefficients for the turbulence model
were calibrated for different pressure gradient cases. In particular, their work summarized the
large number of posteriors through highest posterior-density (HPD) intervals, which represent
the variability of closure coefficients and provide information about model-inadequacy. 13
different boundary layer flows were considered and the calibrations were performed for each
velocity profile. The result shows that the posteriors of the closure coefficients are either
widely spread or not properly identified within a single calibration. This indicates that it is
insufficient to obtain steady estimate of model discrepancies by performing a single calibration.
However, the later result produced based on 13 calibrations gives the closure error estimate
that is consistent with the given experiment data.

Woosik Yoon M.Sc. Thesis



1.1 State-of-the-art 3

1.1.2 Anisotropy perturbation approach

Emory et al. (2011) attempted to estimate RANS model-form uncertainty by introducing
uncertainties directly to Reynolds stress tensor. This is a good motivation as the model-
form error exists due to the approximated Reynolds stress components. The methodology
of this approach is to perturb the eigenvalues of the Reynolds stress anisotropy in order to
represent the injected uncertainty. The uncertainty quantification analysis was performed
on SST k − ω turbulence model for the computation of shock/boundary layer interactions.
The study shows that the approach of the turbulence anisotropy perturbation is capable
of influencing the flow separation in the boundary layer. In addition, nominal predictions
are bounded by the resulted anisotropy perturbations. However, the perturbations in their
work were only introduced in limited directional components. Therefore, further development
regarding the directionality of the perturbations is suggested for its capability of boundedness
for any arbitrary directions.

Gorlé et al. (2012) followed the approach of Emory et al. (2011) for the flow over a wavy wall in
order to obtain the generalized perturbation functions. The analysis and validation are based
on DNS data of the flow over a wavy wall. In their work, a marker was additionally introduced
to indicate the region where perturbations need to be injected, thus resulting systematic
perturbations in that region. The result of using systematic perturbations indicates that the
simulation with a particular directional movement of eigenvalues provides better agreement
with the DNS data than the simulations with varying the eigenvalue in other directions.

The framework of the anisotropy perturbation approach was tested by Gorlé and Iaccarino
(2013) on a jet supersonic cross flow simulation with a LES database. The perturbation was
introduced in the turbulence kinetic energy as well as in the anisotropy eigenvalues in order to
investigate the Reynolds stress. The perturbation ranges was determined based on the LES
data. A clear distinction was made by the marker that indicates the region of uncertainties.
Although they again proved the capability of the marker, the uncertainty over the flow field
was not entirely captured. They concluded that this was because the range of LES isolines
was not completely bounded by the domain of this framework.

Xiao et al. (2016) combined the anisotropy perturbation approach with the Bayesian frame-
work. They aimed to reduce the model-form uncertainty of the RANS simulations in addi-
tion to the quantification. As opposed to the work of Emory et al. (2011), the perturbed
anisotropies were considered as random fields. By following the framework of the Bayesian
approach, the uncertainties are propagated to the posterior distributions of quantities of in-
terest based on the prior knowledge and observation data. The framework was tested on
the periodic hill flow and the square duct flow. However, the study was concluded that the
inferred full Reynolds stress tensor fields do not represent the accurate Reynolds stress tensor
field.

MSc. Thesis Woosik Yoon



4 Introduction

1.1.3 Adjoint-based inversion approach

An adjoint-based inversion approach was proposed by Wang and Dow (2011) to quantify
structural uncertainties in a RANS turbulence model. The aim of their work was to determine
the eddy viscosity by minimizing the difference in velocities simulated by RANS and DNS,
and model the structural uncertainties based on the obtained the eddy viscosity. The key
idea of this approach is to minimize a constructed cost function based on adjoint sensitivities.
The adjoint approach has a capability to reduce the enormous computational cost during the
optimization. The framework was tested in channel flow with the k−ω turbulence model. The
result shows that the optimal eddy viscosity profile almost is agreed with the eddy viscosity
profile extracted from the DNS data, particularly near the wall, while their discrepancies
increase as further from the wall.

While Wang and Dow (2011) pursued to obtain the optimal eddy viscosity, Parish and Du-
raisamy (2015) and Parish and Duraisamy (2016) introduced functional errors directly to the
turbulence production term in RANS transport equations. They used the full-field inversion
to estimate the optimal functional errors of the turbulence closure models on the turbulent
channel flow and the convex/concave wall bounded flow. Using the Bayesian framework, they
modelled the DNS dataset based on Gaussian uncertainty. By considering the maximum a
posteriori (MAP) estimate of the functional error probability distribution, a deterministic
optimization problem was formulated. The adjoint method was used to solve the determin-
istic optimization problem. Having successfully estimated the deterministic solution of the
functional errors, they further applied the machine learning corrections to reconstruct the
inferred information.

Singh and Duraisamy (2016) performed the full-field inversion for more complicated flow
problems such as turbulent flow with curvature, oblique shock turbulent boundary layer in-
teraction and high angle of attack flow over S809 airfoil in addition to turbulent channel
flow. Furthermore, they aimed to achieve realizations of turbulence closure models based
on limited data points. The result for the channel flow provides almost the same posterior
velocity profile compared to DNS and it was found that an additional time scale correction
was required near the wall. Assimilating limited skin-friction data provides more accurate
velocity profiles for the flow with curvature. With given wall-pressure data, the prediction
of the flow field is well obtained in the oblique shock-turbulent boundary layer interaction
case. For the S809 airfoil, limited surface pressure data on a suction side from experiments
are used, and accurate predictions are made for the separation as well as lift distributions.

1.2 Motivation and Approach

The success of quantifying the uncertainty of RANS closure coefficients by Edeling et al.
(2014) results in practical solutions to the RANS development, by providing statistical in-
formation of the closure coefficients. Also, Singh and Duraisamy (2016) improve the RANS
turbulence predictions by iteratively correcting the turbulence production based on the func-
tional error estimate. Although both studies have increased the RANS predictive capability
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1.2 Motivation and Approach 5

by either correcting the closure coefficients or the turbulence production, they still rely on
the Boussinesq approximation. Thus, the capability of the existing approaches is still limited
for flows in which the turbulent anisotropy plays a role.

As an alternative, a modification can be made on the divergence of the Reynolds stress
tensor. The turbulent force is represented by the divergence of the Reynolds stress tensor in
the RANS momentum equation. Due to the Boussinesq approximation, the capability of the
RANS simulations is limited to provide the accurate predictions for the turbulence force. This
thesis aims to estimate the correct turbulence force without modelling the eddy viscosity. To
eliminate the contribution of the eddy viscosity, the divergence of the Reynolds stress tensor is
replaced by the momentum forcing f . This modification leads to the base-model momentum
equation:

ρ∇ · (ūū) +∇p̄−∇ · (2µD(ū)) + f = 0 (1.1)

If the momentum forcing f completely fulfils the turbulence force data d, then the system
can be given by

H(f) = d (1.2)

where H(·) is the base-model operator. The system (1.2) can be also interpreted that the
errors of the base-model H with respect to the data d are completely eliminated by imposing
the turbulence force to f . However, the momentum forcing f can not be directly determined
since the base-model H does not have knowledge or information on achieving d, thus requiring
an inverse approach.

The inverse approach is the process by which the causes are calculated based on a set of
observation data (R. C. Aster and Thurber, 2005). The full-field inversion introduced by
Parish and Duraisamy (2015) is capable of providing deterministic estimate of f by minimizing
the difference between H(f) and d through the adjoint-based optimization. The framework
begins with the Bayesian statistics where the posterior of f given data d can be expressed by

p(f |d) ∝ p(d|f)po(f) (1.3)

where p(d|f) is the likelihood and po is the prior. The data d is statistically modelled based
on the Gaussian uncertainty εs of the base-model such that

d = H(f) + εs, εs ∼ N (0, σ2
εs) (1.4)

with the standard deviation σεs . By assuming that the likelihood p(d|f) and the prior po
are both normally distributed, a deterministic expression for f can be derived from when the
posterior p(f |d) is at maximum. As a consequence, the problem (1.2) becomes a deterministic
optimization problem.

Solving the deterministic problem is also another challenge when it becomes a high dimen-
sional problem. In the optimization, the momentum forcing f is considered as a design vari-
able. The dimension of f increases with the number of control volumes. This means that the
optimizer has to deal with the large number of design parameters, thus increasing the com-
putational cost. To resolve the high-dimensional issue, the adjoint-based optimization is used
in this thesis. The adjoint method allows to efficiently solve the deterministic optimization
problem by evaluating the entire design parameters with one flow field calculation.
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6 Introduction

1.3 Research questions

Based on the motivation and the approach from the previous section, the research questions
are formulated:

• Can we identify the momentum forcing f necessary to reduce the base-model errors in
specific test cases with data available?

• Can we identify Reynolds stress tensor components using only the mean DNS velocity
vector field?

To provide answers to the formulated research questions, following tasks need to be achieved:

1. Formulate a deterministic optimization problem based on the Bayesian statistics.

2. Derive formulations for adjoint sensitivities and adjoint equations.

3. Validate adjoint sensitivities with finite-difference gradients.

4. Solve the deterministic optimization problem using the adjoint method.

5. Obtain the optimal estimate of the momentum forcing f through the optimization.

6. Extract the shear stress component from the optimal estimate of f .

1.4 Outline

The thesis begins with introducing the base-model from the modification of the RANS mo-
mentum equation in Chapter 2. The detailed methodologies to perform the full-field inversion
will be described in Chapter 3. Having obtained the optimal estimate of the momentum forc-
ing f through the adjoint-based optimization, Chapter 4 will illustrate how to extract the
shear stress components from the optimal estimate of f . In Chapter 5, the implementation of
the flow solvers as well as the optimization will be given. The test cases will be described in
Chapter 6 and followed by the results and analysis in Chapter 7. The sensitivity validation
is additionally performed in Chapter 8. Finally, Chapter 9 will present the conclusions and
recommendations.

Woosik Yoon M.Sc. Thesis



Chapter 2

RANS turbulence model vs Base-model

RANS simulations have been most widely used for the turbulence computation due to the
lower computational cost compared to other approaches such as DNS and LES. The reduction
in the computational cost is achieved by considering the time-averaged flow motion at one
spatial location and velocity fluctuations separately (Leschziner, 2015). However, the velocity
fluctuations introduce additional six unknowns to the momentum equation and the system
become underdetermined. This issue is resolved by modelling the unknowns in terms of the
eddy viscosity and the mean-strain-rate tensor. Nevertheless, the eddy viscosity modelling
becomes a major part of which limits the accuracy of RANS turbulence predictions together
with the classical calibration of closure coefficients. As an alternative of modelling the eddy
viscosity, a base-model is considered. The base-model uses the momentum forcing vector
field f to describes the turbulent force field. In later chapters, f will be inversely obtained by
reducing the difference between the base-model and selected data. The aim of this chapter
is to introduce the base-model with f and discuss its difference from the RANS turbulence
model. Initially, RANS equations will be derived from Navier-Stokes equations. Then, a
classical linear eddy viscosity model will be introduced and finally the base-model will be
defined.

2.1 Reynolds-Averaged Navier-Stokes equations

The motion of an incompressible fluid is governed by conservation laws stating that mass and
momentum of the fluid are conserved within the flow domain. The conservation laws can be
described by the continuity equation and the Navier-Stokes momentum equation:

−ρ∇ · u = 0 (2.1)

ρ
∂u

∂t
+ ρ∇ · (uu) +∇p−∇ · (µ(∇u + (∇u)T )) = 0 (2.2)
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8 RANS turbulence model vs Base-model

where µ is the dynamic viscosity and ρ is the constant mass density. With initial and boundary
conditions, the DNS computes the turbulent flow quantities u and p by solving (2.1) and
(2.2), but requiring the high computational cost. To resolve this issue, the time-averaged flow
quantities are considered in RANS simulations. The time-averaging approach gives the mean
of the turbulent flow quantities over a time interval ∆t at one spatial location (Moukalled
et al., 2015). The expression of the mean value can be given by

ū(t) =
1

∆t

∫ t+∆t

t
u(τ) dτ, p̄(t) =

1

∆t

∫ t+∆t

t
p(τ) dτ. (2.3)

Based on the time-averaged flow quantities, an approach of decomposing the turbulent flow
quantities in terms of their mean and fluctuations was introduced by Osborne Reynolds in
1985 (Launder, 2015). This is known as the Reynolds decomposition and is given by

u(t) = ū(t) + u′(t), p(t) = p̄(t) + p′(t) (2.4)

where u′ and p′ correspond to the fluctuating components. The turbulence strength can be
described as root-mean-square of the velocity fluctuations in Figure 2.1.

Figure 2.1: Velocity components of turbulent flow reproduced from Duarte et al. (2012)

The notations for velocity vector fields in this thesis are given by

u = (u, v, w), ū = (ū, v̄, w̄), u′ = (u′, v′, w′) (2.5)

and some useful time averaging rules can be introduced by

u′ = 0

ū = ū

∇ū = ∇ū

ū + u′ = ū (2.6)

∂(ū + u′)

∂t
=
∂ū

∂t

(ū + u′)(ū + u′) = ūū + u′u′.
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2.1 Reynolds-Averaged Navier-Stokes equations 9

Substituting the decomposed velocity and pressure from (2.4) to the incompressible Navier-
Stokes equation (2.2) results in

ρ
∂(ū + u′)

∂t
+ ρ∇ · ((ū + u′)(ū + u′)) +∇(p̄+ p′)

−∇ · (µ(∇(ū + u′) + (∇(ū + u′))T )) = 0. (2.7)

Applying the time-averaging to (2.7) yields

ρ
∂(ū + u′)

∂t
+ ρ∇ · ((ū + u′)(ū + u′)) +∇(p̄+ p′)

−∇ · (µ(∇(ū + u′) + (∇(ū + u′))T )) = 0. (2.8)

Similarly, the substitution and time-averaging apply to the continuity equation (2.1), and it
becomes

−ρ∇ · (ū + u′) = 0. (2.9)

Rearranging (2.8)and (2.9) based on (2.6) results

ρ
∂ū

∂t
+ ρ∇ · (ūū) +∇p̄−∇ · (µD(ū)− ρu′u′) = 0 (2.10)

−ρ∇ · ū = 0 (2.11)

with the mean-strain-rate tensor

D(ū) =
1

2
(∇ū + (∇ū)T ). (2.12)

The above equations are knowns as the incompressible Reynolds-averaged Navier-Stokes
(RANS) equations. In contrast to (2.1) and (2.2), they rely on the mean-flow quantities
and their time-averaged fluctuations. The fluid is assumed to be a Newtonian fluid where
the viscous stresses are generated from the flow and the viscous stress is linearly proportional
to the strain-rate-tensor (Panton, 2013). This indicates that the time-averaged fluctuations
are in a form of the stress tensor together with µD(ū) in (2.10). The tensor representing
the time-averaged velocity fluctuations is known as the Reynolds stress tensor and introduces
six additional unknowns to the RANS momentum equation. The Reynolds stress tensor is a
symmetric second-order tensor and is given by

τR = −ρu′u′ = −ρ

u′u′ u′v′ u′w′

u′v′ v′v′ v′w′

u′w′ v′w′ w′w′

 (2.13)

where the diagonal components u′u′, v′v′ and w′w′ represent normal stresses, and the re-
mainders correspond to the shear stress components. These six additional unknowns in the
Reynolds stress tensor make the system of the RANS equations underdetermined.
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10 RANS turbulence model vs Base-model

2.2 Linear eddy viscosity model

The underdetermined system due to the Reynolds averaging can be solved by modelling the
Reynolds stress tensor. Based on the content from Moukalled et al. (2015), the Reynolds
stress tensor can be modelled based on the Boussinesq hypothesis, which assumes that the
Reynolds stress tensor is linearly proportional to the mean strain rate tensor such that

τR = −ρu′u′ = 2µtD(ū)− 2

3
(ρk + µt(∇ · ū))I (2.14)

where µt is the turbulent eddy viscosity, I is the Kronecker delta tensor and the turbulent
kinetic energy k is defined as

k =
1

2
tr(u′u′). (2.15)

The divergence of the flow velocity becomes zero due to the application of the incompressibility
condition and (2.14) becomes

τR = −ρu′u′ = µtD(ū)− 2

3
ρkI. (2.16)

Substituting the approximated Reynolds tress tensor (2.16) into the RANS momentum equa-
tion (2.10) results in

ρ
∂ū

∂t
+ ρ∇ · (ūū) +∇p̄−∇ · (µD(ū) + µtD(ū)− 2

3
ρkI) = 0. (2.17)

Combining ∇ ·
(

2
3ρkI

)
with the pressure gradient yields

ρ
∂ū

∂t
+ ρ∇ · (ūū) +∇(p̄+

2

3
ρk)−∇ · ((µ+ µt)D(ū)) = 0. (2.18)

The modified pressure can be re-defined as

p̄ ≈ p̄+
2

3
ρk (2.19)

and the final form of the RANS momentum equation with the linear approximation becomes

ρ
∂ū

∂t
+ ρ∇ · (ūū) +∇p̄−∇ · ((µ+ µt)D(ū)) = 0 (2.20)

where the conservation of momentum is expressed by only two unknowns (ū and ∇p̄). Several
turbulence models based on the Boussinesq hypothesis have been developed to approximate
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2.2 Linear eddy viscosity model 11

the eddy viscosity µt. Two-equation models have been the most widely used in industrial
applications among other models such as algebraic, one-equation and second-order closure
models. This is because solving two transport equations provides acceptable solution accuracy
and requires relatively low computational costs compared to second-order closure models. As
one of classical two-equation low-Re turbulence models, Launder-Sharma k − ε (Launder
and Sharma, 1974) is considered in this chapter. The turbulence kinetic energy k and its
dissipation rate ε are evaluated from its transport equations, which are given by

∂(ρk)

∂t
+∇ ·

(
ρkū−

(
µ+

µt
σk

)
∇k
)

= P − ρε−D (2.21)

∂(ρε)

∂t
+∇ ·

(
ρεū−

(
µ+

µt
σε

)
∇ε
)

= (C1P − C2ρε)
ε

k
+ E (2.22)

with the eddy viscosity µt and th turbulence production P

µt = Cµρ
k2

ε
, P = τR∇(ūT ) (2.23)

where

Cµ = 0.09

[
exp

(
−3.4

(1 + ReT
50 )2

)]
, C2 = 1.92

[
1.0− 0.3 exp(−Re2

T )
]
, (2.24)

C1 = 1.44, σk = 1, σε = 1.3 (2.25)

and

ReT =
ρk2

µε
. (2.26)

The extra source terms D and E are given by

D = 2µ
(
∇(
√
k)
)2
, E = 2

µµt
ρ

(
∇2(ūT )

)2
(2.27)

and they become active when evaluating k and ε within the viscous sublayer. The viscous
sublayer is the region close to wall boundaries where the turbulent flow become laminar due
to no-slip boundary conditions (Iaccarino, 2004). In this region, the transport process is
dominated by molecular viscous effects, thus applying the extra source terms as the special
wall treatment. Applying the no-slip boundary conditions also implies

kwall = 0. (2.28)

Substituting (2.28) into (2.21) gives

εwall = −D = −2µ
(
∇(
√
kwall)

)2
= 0. (2.29)
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12 RANS turbulence model vs Base-model

2.3 Base-model

In the previous section, the eddy viscosity µt is modelled based on k and ε. Together with the
mean-strain-rate tensor, µt represents the approximated behaviour of the velocity fluctuations.
Alternatively, in this section, the divergence of the Reynolds stress tensor is fully replaced by
the momentum forcing f such that

∇ · ρu′u′ = f . (2.30)

The RANS momentum equation (2.10) is modified by (2.30). Together with the continuity
equation, base-model equations can be formulated by

R1 = ρ∇ · (ūū) +∇p̄−∇ · (2µD(ū)) + f = 0 (2.31)

R2 = −ρ∇ · ū = 0 (2.32)

where Ri is the residual representation of the base-model equations. While the RANS model
computes the eddy viscosity µt to predict the flow field by solving the transport equations
(2.21) and (2.21), the base-model predicts the flow field by obtaining f through the full-
field inversion technique. In addition, various modifications can be made on the base-model
momentum equation. For example, if a choice of the momentum force is made by

f = −µtD(ū), (2.33)

then the base-model will produce the exactly same flow field as the RANS prediction. When
zero momentum force is applied such that

f = 0, (2.34)

then the base-model will simulate the behaviour of the RANS prediction with µt = 0, which
is basically a laminar flow field. At the wall boundaries, no-slip conditions are applied, thus
no momentum forcing f .
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Chapter 3

Full-Field Inversion

In Section 2.3, the momentum forcing f is introduced to represent the divergence of the
Reynolds stress tensor in the base-model momentum equation (2.31). As previously discussed,
the choice of f has the significant influence on the base-model predictions. The full-field
inversion technique will be used to determine the optimal choice for f in this work.

Parish and Duraisamy (2015) initially apply the full-field inversion technique to quantify the
RANS model-form errors. The main idea of their approach is to estimate the functional errors
and correct the turbulence production based on the estimated errors by performing the full-
field inversion. The main drawback of their approach is that it still relies on the Boussinesq
approximation and will not give any improvement for flows in which the turbulent anisotropy
plays a role, e.g. duct flows or any other flow cases with secondary circulations.

To compensate the drawback of Parish and Duraisamy (2015)’s approach, this thesis avoids
the Boussinesq approximation by replacing the divergence of the Reynolds stress tensor with
the momentum forcing f and applies the full-field inversion for correcting the momentum
forcing f to reduce the base-model errors.

In the following sections, the methodology of the full-field inversion will be illustrated. To
begin with, this chapter will state a linear problem to be solved. Then the problem will
be transformed into a deterministic optimization problem by reducing the complexity of
the Bayesian framework. As gradient-based optimization is used to solve the deterministic
problem in this work, two different optimization algorithms will be discussed. A choice of
the gradient computation will be made between the finite difference approximation and the
continuous adjoint method. Finally, continuous adjoint equations will be derived in regard to
the base-model.
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14 Full-Field Inversion

3.1 Problem statement

The base-model operator is defined as H(·). When the base-model produces the same flow
field as the dataset d by imposing the momentum forcing f , a linear system can be constructed
such that

d = H(f). (3.1)

If the system is discrete-linear, (3.1) can be written as

d = Hf (3.2)

where H is an operator matrix. If H is an invertible-square matrix, the system (3.2) can be
solved by multiplying the inverse of H to the both sides of (3.2). Thus, f can be obtained by

f = H−1d. (3.3)

However, Wunsch (1997) states that the operator matrix is not always invertible especially
when there exists little information to determine an unique solution for a given system. The
base-model does not have the capability of evaluating f satisfying the dataset d. This implies
that H is no longer invertible. Hence, the problem needs to be solved by an inverse approach.
With the given dataset d, the optimal value of f can be estimated by performing optimization.
The idea of the optimization is to obtain the optimal estimate f∗ for the momentum forcing
f by minimizing the gap between the dataset d and the base-model H(f) such that

minimize
f

|d−H(f)| . (3.4)

During the optimization, f is considered as a design variable and contains the equal number
of dimension as the flow velocity field. Evaluating f i at a particular point i requires one
flow calculation. As a consequence, the optimization may lead to the drastic increase in the
number of the flow calculations and result in requiring a high computation cost. To resolve
the issue, the inverse problem is solved using the adjoint optimization. The continuous adjoint
approach (Othmer, 2008) is used in this work and the detail will be provided in later sections.

3.2 Deterministic optimization problem

High-fidelity results such as DNS and experimental measurements may contain stochastic
behaviour of turbulent flows. On the other hand, the base-model in this work is limited to
generate the stochastic feature of the turbulence. When the dataset d is to be such high-
fidelity results, it is expected to observe some statistical errors in the base-model. Since the
thesis aims to obtain the deterministic solution for the momentum forcing f , it is required to
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3.2 Deterministic optimization problem 15

construct the deterministic optimization problem. Based on the work of Parish and Duraisamy
(2016), the deterministic optimization problem will be formulated in this section. Initially,
the posterior of f can be expressed based on the data d as

p(f |d) =
p(d|f)po(f)

p(d)
(3.5)

where p(d|f) is the likelihood and po(f) is the prior. Since p(d) is independent of f , the
posterior distribution is proportional to the likelihood times prior shown as

p(f |d) ∝ p(d|f)po(f) (3.6)

The likelihood p(d|f) is based on the dataset d which is statistically modelled by

d = H(f) + εs (3.7)

where the base-model uncertainty εs is assumed to be Gaussian such that

εs ∼ N (0,Cd) (3.8)

with the observational covariance matrix Cd. This allows us to assume that the difference
between the dataset d and the base-model H(f) is also Gaussian. Subsequently, the likelihood
can be written as

p(d|f) =
1√

(2π)n det(Cd)
exp

(
−1

2
(d−H(f))T Cd

−1 (d−H(f))

)
(3.9)

where n is the number of discretization points. Applying the same Gaussian assumption to f
with the expected prior fprior gives

p(f) =
1√

(2π)n det(Cf )
exp

(
−1

2
(f − fprior)

T Cf
−1 (f − fprior)

)
(3.10)

where Cf is the prior covariance matrix. With (3.9) and (3.10), the posterior (3.6) becomes

p(f |d) ∝ exp

[
−1

2

(
(d−H(f))T Cd

−1 (d−H(f)) + (f − fprior)
T Cf

−1 (f − fprior)
)]
(3.11)

The maximum a posteriori (MAP) (Tarantola, 2005) for f can be obtained when the negative
of the exponent in (3.11) is minimum. The expression for the MAP estimate f∗ is given by

f∗ ' arg min
f

1

2

[
(d−H(f))T Cd

−1 (d−H(f)) + (f − fprior)
T Cf

−1 (f − fprior)
]
. (3.12)
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16 Full-Field Inversion

Diagonal covariance matrices for Cd and Cf are considered in this framework. This assumes
that both data are uncorrelated with the results of each base-model quantity. Furthermore,
if Cf is assumed to be much higher than Cd, the deterministic problem (3.12) can be further
simplified such that

f∗ ' arg min
f

1

2

[
(d−H(f))T Cd

−1 (d−H(f))
]
. (3.13)

This is basically a least squares cost function, which is based on a diagonal covariance matrix
Cd and no prior. With a integral form of the cost function (3.13) for the entire flow domain,
the deterministic optimization problem constrained by (2.31) and (2.32) can be formulated
by

f∗ ' arg min
f
J(ū) subject to R(f , ū) = 0 on (Ω,Γ) (3.14)

with

R = (R1,R2)T (3.15)

and

J(ū) =

∫
Ω
JΩ dΩ +

∫
Γ
JΓ dΓ (3.16)

=

∫
Ω

σ

2
(ūd − ū)2 dΩ +

∫
Γ

σ

2
(ūd − ū)2 dΓ. (3.17)

where Ω and Γ are the interior and boundary domains respectively. σ is the scalar represen-
tation of the diagonal component of Cd. The cost function J is constructed to minimize the
difference in the velocity fields. The choice of σ will be discussed when results are presented.

3.3 Gradient-based optimization

A gradient-based optimization is considered in order to minimize the cost function (3.13) in
this framework. The gradient-based method iteratively searches for a minimum of the cost
function with the directions based on its gradient (Nocedal and Wright, 2006). The general
algorithm of the gradient-based method can be described as following steps.

1. Convergence test.

2. A search direction computation.

3. A step length computation.

4. Update of the design variable fk+1.
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3.3 Gradient-based optimization 17

The design variable fk+1 is updated based on the previous optimal guess fk, the search
direction pk and the step length αk as

fk+1 = fk + αkpk (3.18)

with the condition of the step length to be a positive scalar such that

J(fk + αkpk) < J(fk) (3.19)

where J(f) is the function to be minimized. There exist various types of gradient-based opti-
mization algorithms depending on the method that is used to determine the search direction
pk. Based on contents of Hicken et al. (2012) and Nocedal and Wright (2006), the theory of
steepest-descent and quasi-Newton methods will be discussed in following subsections.

3.3.1 Steepest-descent method

Steepest-descent uses the gradient vector as the search direction. The first-order gradient Gk
for the function J(f) can be simply obtained by the first-order Taylor-series expansion

J(fk + sk) = J(fk) +GTk sk +O(s2
k) (3.20)

where sk is the step. Taking a derivative with respect to sk results in

Gk = J ′(fk) (3.21)

Steepest-descent finds the minimum of the cost function in the search direction. The search
direction is the negative-normalized gradient, i.e.

pk = − Gk
‖Gk‖

. (3.22)

Substituting the search direction (3.22) into the equation (3.18) gives the current location
update formulation (3.23) for the steepest descent algorithm:

fk+1 = fk − αk
Gk
‖Gk‖

(3.23)

where the step length αk is determined by line search. The iteration continues until the
chosen convergence criteria is satisfied. Although the steepest descent method is easy to
implement, it is known to be an inefficient method particularly when the solution approaches
more to the minimum of the cost function due to its zigzags characteristic shown in Figure
3.1. Beside, since the proper step length is not always evaluated in this algorithm, it requires
the additional information to determine the step length (Nocedal and Wright, 2006).

MSc. Thesis Woosik Yoon



18 Full-Field Inversion

Figure 3.1: Solution history of steepest-descent reproduced from Hicken et al. (2012)

3.3.2 Quasi-Newton method

The quasi-Newton method use a Hessian approximation of ∇2
fJ for the search direction pk.

The explanation about the quasi-Newton algorithm can be begun from the Newton method,
which uses a second order Taylor series expansion for the function J(f):

J(fk + sk) ≈ J(fk) +GTk sk +
1

2
sTkHksk (3.24)

where H(fk) is the Hessian. Setting the derivative of (3.24) with respect to sk to be zero
leads to

sk = −H−1
k Gk (3.25)

Using (3.18), an updated formulation of the current position for the Newton method becomes

fk+1 = fk −H−1
k Gk. (3.26)

The Newton method requires to compute the Hessian as well as the gradient in order to
determine the search direction pk. The computation of the Hessian requires a high number of
second-order derivatives. Instead of computing the full Hessian, the quasi-Newton algorithm
uses a Hessian approximation. There are various methods to approximate the Hessian. One
of the most well known methods is the Broyden Fletcher Goldfarb Shanno (BFGS) algorithm:

H−1
k+1 =

(
I −

sky
T
k

sTk yk

)
H−1
k

(
I −

sky
T
k

sTk yk

)
+
sks

T
k

stkyk
(3.27)
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3.4 Gradient computation 19

with

yk = Gk+1 −Gk (3.28)

where yk is defined as the variance of the gradient and I is the identity matrix. Figure 3.2
shows an example of the solution path of the BFGS quasi-Newton method. Compared to
steepest-descent (3.1), less iterations are required to reach the minimum of the cost function
and it is known to be the most effective method even among other quasi-Newton algorithms
(Hicken et al., 2012).

Figure 3.2: Solution history of BFGS quasi-Newton reproduced from Hicken et al. (2012)

3.4 Gradient computation

Gradient-based optimization methods require the derivative computation of the cost function
with respect to the design variable. The finite difference method provides a generic way to
compute the gradients. However, the number of gradient evaluations proportionally increases
with the number of design parameters. Alternatively, the gradients can be efficiently com-
puted by using the continuous adjoint approach. Both approaches will be discussed together
with their use in this section.

3.4.1 Finite difference method

The purpose of the finite difference is to validate the adjoint sensitivities in this work due
to the large number of the design parameters. Following the work of LeVeque (2007), the
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20 Full-Field Inversion

standard definition of the derivative for the cost function J is given by

J ′(f) = lim
∆f→0

J(f + ∆f)− J(f)

∆f
. (3.29)

The definition can be written in terms of discrete set of points f as

J ′(fk) ≈ J(fk + ∆fk)− J(fk)

∆fk
. (3.30)

The formulation (3.30) is known as a forward Euler approximation. Other equally valid
approximations exist such as backward Euler and central difference based on the choice of
offset. The forward Euler approximation is used in this work. By Taylor series expansion,
the cost function J at fk+1 is expanded about fk as

J(fk + ∆fk) = J(fk) + ∆fk
∂J

∂f

∣∣∣∣
fk

+
∆fk

2

2

∂2J

∂f2

∣∣∣∣
fk

+
∆fk

3

6

∂3J

∂f3

∣∣∣∣
fk

+ · · · (3.31)

Rearranging (3.31) gives

J(fk + ∆fk)− J(fk)

∆fk
− ∂J

∂f

∣∣∣∣
fk

=
∆fk

2

∂2J

∂f2

∣∣∣∣
fk

+
∆fk

2

6

∂3J

∂f3

∣∣∣∣
fk

+ · · · (3.32)

The left hand side of (3.32) indicates the difference between the finite-difference derivative
and the exact derivative. This difference is referred to as the truncation error, which is shown
on the right hand side of (3.32). The truncation error depends on the higher order derivatives
and the step size ∆fk. Thus, the exact derivative of J at a particular design parameter fk
can be expressed as

∂J

∂f

∣∣∣∣
fk

=
J(fk + ∆fk)− J(fk)

∆fk
+O(∆fk) (3.33)

where O(∆fk) indicates the truncation error. The total numerical errors for the finite-
difference approximation consist of both the truncation and round-off errors. Figure 3.3
shows the behaviour of both errors over the step size. The truncation error increases with the
step size whereas the round-off error decreases. This is because the step size is the multipli-
cation factor in the truncation error expression and simultaneously the variance of the cost
function J is divided by the step size. The point of diminishing returns in Figure 3.3 is the
point where the total error is at minimum, and its corresponding x-axis is the step size to be
chosen.
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3.4 Gradient computation 21

Figure 3.3: Round-off and truncation error behaviour reproduced from (Advanced Navigation
and Control Systems Laboratory, 2012)

3.4.2 Continuous adjoint sensitivity

Large numbers of design parameters have encouraged the use of adjoint sensitivities in the
optimizations involving CFD simulations. The high dimensionality issue of the design variable
in optimization is problematic as it requires numbers of gradient evaluations. The adjoint
method makes the gradient computation become the least dependent on the number of design
parameters (Dwight and Brezillon, 2008). The adjoint method can be categorized into two
different approaches: discrete adjoint and continuous adjoint. Nadarajah and Jameson (2001)
discuss the difference between the two adjoint approaches. They state that the continuous
adjoint method performs better in regards to the balance between accuracy and efficiency in
interior domain while the discrete adjoint approach is more superior at boundary domain.
The continuous adjoint approach is considered in this work. Firstly, sets of both primal and
adjoint variables are defined by

ω = (ū, p̄)T , ψ = (v, q)T (3.34)

where ω and ψ correspond to primal and adjoint notations respectively. Based on the work
of Othmer (2008), Lagrangian L can be defined by introducing the adjoint variables ψ to
governing equations such that

L = J +

∫
Ω
ψ · R dΩ. (3.35)

Since the evaluation of the domain integration (3.35) equals to zero due to the residual term
inside,

L = J, ∀ψ (3.36)
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22 Full-Field Inversion

The total variation of the Lagrangian cost function with respect to both f and ω is given by

δL =
∂L
∂f
· δf +

∂L
∂ω
· δω = δfL+ δωL (3.37)

where δ is the variation operator. Applying the same variation operator to (3.35) yields

δL = δJ +

∫
Ω
ψ · δR dΩ. (3.38)

If the adjoint quantities ψ are selected such that

δωL = 0, (3.39)

the total variation 3.37 becomes

δL = δfL. (3.40)

Expanding (3.38) further based on (3.40) gives

δL = δfL = δfJ +

∫
Ω
ψ · δfR dΩ. (3.41)

Taking the derivative of 3.41 with respect to f results in the sensitivity expression:

∂L
∂f

=
∂J

∂f
+

∫
Ω
ψ · ∂R

∂f
dΩ (3.42)

With the given cost function (3.16), the derivative of the cost function J with respect to f
becomes

∂J

∂f
= 0. (3.43)

The constrain R is defined as a set of the base-model equations (2.31) and (2.32). Taking the
derivative of R with respect to f results

∂R
∂f

=

(
∂R1

∂f
,
∂R2

∂f

)T
. (3.44)

Based on (3.43) and (3.44), the expression for the adjoint sensitivities can be given by

∂L
∂f

=

∫
Ω

v · ∂R1

∂f
+ q

∂R2

∂f
dΩ =

∫
Ω

v dΩ = v ·Ω (3.45)

where the Ω indicates the volume vector field of the given flow geometry. The adjoint sen-
sitivities are used as search directions in the gradient-based optimization. While the finite
difference gradients are determined based on the choice of the step size of which the total
numerical error is at minimum, the adjoint sensitivity only involves cheap derivatives with
respect to the design variable f . Therefore, it is concluded that the adjoint sensitivities are
preferred over the finite-different gradients in the high dimensional optimization problem.
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3.5 Derivation of continuous adjoint equations

Appropriate derivations of the adjoint equations are fundamental basis of the adjoint frame-
work as the adjoint variables are necessary to compute the adjoint sensitivities. This section
will address full derivations of continuous adjoint formulations for the base-model equations
(2.31) and (2.32). The derivation starts by choosing the adjoint variables ψ satisfying the
condition (3.39) such that

δωL = δωJ +

∫
Ω
ψ · δωR dΩ = 0. (3.46)

The variation of (3.15) with respect to the primal variables ω is expanded as

δωR = δūR+ δp̄R (3.47)

=

(
δūR1

δūR2

)
+

(
δp̄R1

δp̄R2

)
(3.48)

with

δūR1 =
∂R1

∂ū
δū = ρ(δū · ∇)ū + ρ(ū · ∇)δū−∇ · (2µD(δū)), (3.49)

δūR2 =
∂R2

∂ū
δū = −ρ∇ · δū, (3.50)

δp̄R2 =
∂R2

∂p̄
δp̄ = ∇δp̄, (3.51)

δp̄R2 =
∂R2

∂p̄
δp̄ = 0. (3.52)

Applying the variation operator with respect to the flow variables to the cost function (3.16)
gives

δωJ =

∫
Ω

∂JΩ

∂ω
δω dΩ +

∫
Γ

∂JΓ

∂ω
δω dΓ (3.53)

=

∫
Ω

∂JΩ

∂ū
δū dΩ +

∫
Γ

∂JΓ

∂ū
δū dΓ +

∫
Ω

∂JΩ

∂p̄
δp̄ dΩ +

∫
Γ

∂JΓ

∂p̄
δp̄ dΓ (3.54)

=

∫
Ω
σ(ū− ūd)δū dΩ +

∫
Γ
σ(ū− ūd)δū dΓ. (3.55)

The resulted δωJ indicates that the derivatives respect to the pressure variable disappear as
the cost function J is only dependent on the primal velocity variable. Substituting 3.48 and
3.55 into 3.46 yields

δωL = 0 (3.56)

=

∫
Ω
σ(ū− ūd)δū dΩ +

∫
Γ
σ(ū− ūd)δū dΓ

+

∫
Ω

(
v

q

)
·
(
ρ(δū · ∇)ū + ρ(ū · ∇)δū−∇ · (2µD(δū)) +∇δp̄

−ρ∇ · δū

)
dΩ. (3.57)
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For any arbitrary value of δū and δp̄, the condition defined in (3.56) should still hold. In order
to always satisfy the condition, it is necessary to separate both δū and δp̄ from other terms
regarding (3.57). For this purpose, the integration by parts is a key technique. Hinterberger
and Olesen (2011) provides specific rules for the partial integration that is applicable for this
case and they are given by∫

Ω
s(∇ · F) dΩ =

∫
Ω
∇ · (sF) dΩ−

∫
Ω

F · ∇s dΩ (3.58)

and ∫
Ω

F · (∇s) dΩ =

∫
Ω
∇ · (Fs) dΩ−

∫
Ω
s∇ · F dΩ (3.59)

where s represents the scalar field while F is denoted by the vector field. By the divergence
theorem, the volume integration of the divergence of the vector field can be replaced by the
surface integral∫

Ω
∇ · (sF) dΩ =

∫
Γ

F · sn dΓ (3.60)

and ∫
Ω
∇ · (Fs) dΩ =

∫
Γ
sF · n dΓ. (3.61)

Substituting 3.60 and 3.61 into 3.58 and 3.59 respectively gives∫
Ω
s(∇ · F) dΩ =

∫
Γ

F · sn dΓ−
∫

Ω
F · ∇s dΩ (3.62)

and ∫
Ω

F · (∇s) dΩ =

∫
Γ
sF · n dΓ−

∫
Ω
s∇ · F dΩ, (3.63)

Before applying the discussed rules for the integration by parts, the term that contains the
adjoin quantities v and q in (3.57) are divided into five separated terms:

(a):
∫

Ω v · (δū · ∇)ρū dΩ

(b):
∫

Ω v · (ρū · ∇)δū dΩ

(c):
∫

Ω q(−ρ∇ · δū) dΩ

(d):
∫

Ω v · (∇δp̄) dΩ

(e):
∫

Ω v · (−∇ · (2µD(δū))) dΩ
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Applying (3.62) to (c) and (3.62) to (d) gives∫
Ω
q(−ρ∇ · δū) dΩ = −

∫
Γ
δū · ρqn dΓ +

∫
Ω
δū · ρ∇q dΩ (3.64)

and ∫
Ω

v · (∇δp̄) dΩ =

∫
Γ
δp̄(v · n) dΓ−

∫
Ω
δp̄(∇ · v) dΩ (3.65)

respectively. Using rules from Othmer (2008), the results of integration by parts for (a), (b)
and (e) are given by∫

Ω
v · (δū · ∇)ρū dΩ =

∫
Γ
δū · (n(v · ρū)) dΓ−

∫
Ω
δū(∇v · ρū) dΩ, (3.66)

∫
Ω

v · (ρū · ∇)δū dΩ =

∫
Γ
δū · (v(ρū · n)) dΓ−

∫
Ω
δū((ρū · ∇)v) dΩ, (3.67)

∫
Ω

v · (−∇ · (2µD(δū))) dΩ =

∫
Γ
δū(2µn ·D(v)) dΓ−

∫
Γ
(2µn ·D(δū)) · v dΓ

−
∫

Ω
δū(∇ · 2µD(v)) dΩ. (3.68)

Combining the results from (3.66), (3.67), (3.64), (3.65) and (3.68) allows to rewrite (3.57):

0 =

∫
Γ
(2µn ·D(δū)) · v dΓ

+

∫
Γ

(
δū

δp̄

)
·
(

n(v · ρū) + v(ρū · n) + 2µn ·D(v)− qn + σ(ū− ūd)

v · n

)
dΓ

−
∫

Ω

(
δū

δp̄

)
·
(
∇v · ρū + (ρū · ∇)v +∇ · 2µD(v)− ρ∇q + σ(ū− ūd)

∇ · v

)
dΩ (3.69)

In order to satisfy the equation (3.69) for any arbitrary variation (δū, δp̄)T , the evaluations
of both the volume and surface integrals should be equal to zero. The conditions of which
the volume integral becomes zero are

∇v · ρū + (ρū · ∇)v +∇ · 2µD(v)− ρ∇q + σ(ū− ūd) = 0 (3.70)

∇ · v = 0. (3.71)

These conditions are known as the adjoint momentum and continuity equations. The adjoint
boundary conditions can be determined by setting the remaining surface integral from (3.69)
to be zero such that∫

Γ
(2µn·D(δū))·v+δū·(n(v·ρū)+v(ρū·n)+2µn·D(v)−qn+σ(ū−ūd))+δp̄(v·n) dΓ = 0.

(3.72)

More specific boundary conditions will be discussed when test cases are presented.
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Chapter 4

Momentum forcing characterization

Previously in Chapter 3, the full-field inversion technique was discussed to obtain the optimal
estimate f∗ for the momentum forcing f . By assuming that the dataset d describes the high-
fidelity behaviour of turbulent flows, f∗ is expected to uniquely represent the divergence of
the Reynolds stress tensor:

f∗ ≈ ∇ · ρu′du′d. (4.1)

However, it is often observed that f∗ unnecessarily includes other influences such as applied
momentum sources or pressure gradients, depending on the set-up of flow cases. As a result,
the relation (4.1) is not always satisfied by f∗. Dovetta (2014) introduce a method to filter out
a momentum source from f∗ and obtain the corrected momentum forcing f̂ . Furthermore, they
also provide a methodology to extract the shear stress component u′v′ from the stream-wise
momentum forcing f̂ . If u′v′ satisfies the shear stress data of d such that

u′v′ ≈ u′dv′d, (4.2)

then the identified u′v′ become the Reynolds shear stress. This implies that the corrected
momentum forcing f̂ can be characterized as the turbulence force. Foures et al. (2014) further
develop the technique for the two-dimensional flow problem. Based on their approach, this
chapter will describe the process of extracting the shear stress component u′v′ from the
optimal estimate f∗. The description is limited to the wall-bounded flow cases where the
flows are driven by a constant momentum source.
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4.1 1D flow case

The x-component of the optimal estimate f∗ is decomposed into

f∗x = f̂x + M (4.3)

where f̂x is the actual momentum forcing identified and M is the applied constant momentum
source. Using (2.30), f̂x can be written as

f̂x = ρ
∂(u′v′)

∂y
. (4.4)

By referring the methodology of Dovetta (2014), taking the integration of (4.3) over the entire
flow domain gives∫ δ

0
f∗x dy =

∫ δ

0
f̂x + M dy 0 < y < δ (4.5)

where δ indicates the maximum range of the flow domain. Substituting (4.4) into (4.5) leads
to ∫ δ

0
f∗x dy =

∫ δ

0
ρ
∂(u′v′)

∂y
+ M dy (4.6)

=

∫ δ

0
ρ
∂(u′v′)

∂y
dy +

∫ δ

0
M dy (4.7)

Due to the transverse shear stress profile along the cross section of the channel, the integral
of u′v′ over the y-axis is zero, which implies∫ δ

0
ρ
∂(u′v′)

∂y
dy = 0. (4.8)

Consequently, (4.7) becomes∫ δ

0
f∗x dy =

∫ δ

0
M dy. (4.9)

Evaluating the right hand side of (4.9) and rearranging for M gives

M =
1

δ

∫ δ

0
f∗x dy. (4.10)

Substituting (4.10) back into (4.3) gives

f̂x = f∗x −
1

δ

∫ δ

0
f∗x dy. (4.11)
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Integrating (4.11) with respect to yi leads to

(u′v′)i =
1

ρ

∫ yi

0

(
f∗x −

1

δ

∫ δ

0
f∗x dy

)
dy (4.12)

where i indicates the index of each element. Evaluating (4.12) is expected to deliver the
Reynolds shear stress for the 1D channel flow case by numerically integrating it with proper
boundary conditions.

4.2 2D flow case

In two-dimensional flow case, optimal estimate f∗ can be decomposed into(
f∗x
f∗y

)
=

(
f̂x
f̂y

)
+

(
M

0

)
(4.13)

where the momentum source M is applied in stream-wise direction. The actual momentum
forcing f̂ for each component can be expressed by(

f̂x
f̂y

)
= ∇ ·

(
ρu′u′ ρu′v′

ρu′v′ ρv′v′

)
. (4.14)

By following the approach of Foures et al. (2014), decomposing the divergence of the Reynolds
stress tensor into the divergence of a second-order tensor and the gradient of a scalar function
φ results in(

f̂x
f̂y

)
= −∇ ·

(
α β

β − α

)
−∇φ (4.15)

with

α = −ρ
2

(u′
2 − v′2), φ = −ρ

2
(u′

2
+ v′

2
), β = −ρu′v′. (4.16)

The pressure gradients are non-zero quantities in the 2D flow problem. Hence, ∇φ can be
combined with the pressure gradient. This modification results in approximations:(

f̂x
f̂y

)
≈ −∇ ·

(
α β

β − α

)
(4.17)

and

∇p̄ ≈ ∇p̄−∇φ. (4.18)
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In order to obtain α and β, Foures et al. (2014) use a minimization problem. First, the
residual form of expression from (4.17) can be shown by

−∇ ·
(
α β

β − α

)
−
(

f̂x
f̂y

)
= 0. (4.19)

The cost function G is formulated by

G(α, β) =

∫
Ω

(
−∂α
∂x
− ∂β

∂y
− f̂x

)2

+

(
−∂β
∂x

+
∂α

∂y
− f̂y

)2

dΩ. (4.20)

As the cost function G is in a form of the quadratic function, its minimum can be achieved
when the gradient is zero. The gradient of the cost function is given by

∇G(α, β) =

∫
Ω
∇

[(
−∂α
∂x
− ∂β

∂y
− f̂x

)2
]

+∇

[(
−∂β
∂x

+
∂α

∂y
− f̂y

)2
]
dΩ, (4.21)

which becomes zero when satisfying

∇

[(
−∂α
∂x
− ∂β

∂y
− f̂x

)2
]

= 0, (4.22)

∇

[(
−∂β
∂x

+
∂α

∂y
− f̂y

)2
]

= 0. (4.23)

Expanding the left hand sides leads to

− ∂2α

∂x2
− ∂2β

∂x∂y
− ∂ f̂x
∂x

= 0, (4.24)

− ∂2β

∂x2
+

∂2α

∂x∂y
− ∂ f̂y
∂x

= 0, (4.25)

− ∂2α

∂x∂y
− ∂2β

∂y2
− ∂ f̂x

∂y
= 0, (4.26)

− ∂2β

∂x∂y
+
∂2α

∂y2
− ∂ f̂y

∂y
= 0. (4.27)

Substituting (4.24) and (4.25) into (4.26) and (4.27) respectively results in

∇2α = −∂ f̂x
∂x

+
∂ f̂y
∂y

, (4.28)

∇2β = −∂ f̂y
∂x
− ∂ f̂x

∂y
. (4.29)

Woosik Yoon M.Sc. Thesis



4.2 2D flow case 31

Computing the right hand sides of (4.28) and (4.29) allows to solve the Poisson equations for
α and β with requiring proper boundary conditions. In (4.16), the Reynolds stress tensor is
expressed in terms α and β. However, only β is closely related to the shear stress component
u′v′. Furthermore, an approximation is made by combining ∇φ with ∇p̄ during the decom-
posing process. Therefore, possible errors due to the approximation also can be discussed
with the results.
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Chapter 5

Implementation

This chapter will discuss the implementation of Chapter 3 and Chapter 4. The quasi-Newton
algorithm (L-BFGS-B) from the python optimization library is used for the gradient-base
optimization. The flow solvers including the base model, adjoint and Poisson equations are
implemented in the OpenFOAM CFD package, a finite-volume code written in C++. The
implementation of the flow solvers is based on the modification of the existing OpenFOAM
solver simpleFoam. In the following sections, the entire workflow of the full-field inversion
algorithm is addressed. In addition, the OpenFOAM implementation of the flow solvers is
explained with details.

5.1 Optimization workflow

The entire workflow of the gradient-based optimization is described through the flow chart
in Figure 5.1. The optimizer takes the cost function J evaluation as an input and determine
whether the gradient of J satisfies the convergence criteria (CC). The CC is set up by

Ji − Ji+1

max(|Ji|, |Ji+1|, 1)
≤ CC. (5.1)

If the cost function J does not reach the minima, then the optimizer will look for the new
search direction and the step length. The search direction is determined based the adjoint
sensitivity while line search algorithm continuously estimates the appropriate step length.
Subsequently, the design variable f is iteratively updated by (3.18) until CC is satisfied.
When the optimization is converged, the latest update of f corresponds to the optimal value
of f . The top-level optimization algorithm is implemented in a python code as shown in
Figure 5.2. The details of the python code can be illustrated through Table 5.1.
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Start

f Candidate

Solve
Primal

Solve
Adjoint

Evaluate J

J satisfies CC ?
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Perform
Line Search

YES

NO

Figure 5.1: Top-Level flow chart for Full-Field Inversion
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F = F0

opt = {’disp’ : True , ’factr’ : 1 0 . 0}
minimize ( costFnc , F , args=(caseDir , ’F’ , getIndex ( ) , endTime , N ) ,

method=’L-BFGS -B’ , jac=gradient , options=opt )

Figure 5.2: Top-Level optimization python script

F momentum forcing f
F0 initial guess for f
N grid resolution
disp set True to print convergence messages
factr convergence criteria (CC=factr*eps)
eps machine precision
minimize scipy.optimize.minimize in python
caseDir case directory
costFnc function to compute cost function J
endTime openFOAM simulation end time
gradient function to compute adjoint sensitivities

Table 5.1: Illustration of the python code

The second-level implementation computes the adjoint sensitivity and cost function based on
the evaluation of primal and adjoint flow quantities. Figure 5.3 shows the implementation of
both adjoint sensitivity (3.45) and cost function (3.17). The adjoint sensitivity is implemented
in terms of the adjoint velocity of the interior flow domain and the control volume. The
implementation is illustrated by in-text comments.

while ( simple . loop ( ) ) // Time loop

{
Info<< "Time = " << runTime . timeName ( ) << nl << endl ;
{

// Correcting primal velocity and pressure

#include "UEqn.H"

#include "pEqn.H"

// Correcting for adjoint velocity and pressure

#include "UaEqn.H"

#include "paEqn.H"

}
// Adjoint sensitivity computation

// Adjoint velocity Ua and control volume mesh.V

sens . internalField ( ) = Ua . internalField ( ) ∗ mesh . V ( ) ;
runTime . write ( ) ;

}
// Cost function evaluation via explicit volume integration

// DNS velocity Ud and primal velocity U

costFnc = ( fvc : : domainIntegrate ( 0 . 5∗ sigma∗magSqr (Ud−U ) ) ) . value ( ) ;

Figure 5.3: Second-level implementation involving sensitivity and cost function computations
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5.2 Discretization and implementation of flow solvers

The finite-volume method is one of the most well known discretization techniques in the field
of CFD. The idea of the finite-volume method is to locate the quantity of interest at the centre
of control volumes and integrate the differential form of governing equations over the each
element of control volumes (Moukalled et al., 2015). Integrating the momentum equation
(2.31) over the control volume leads to∫

V
ρ∇ · (ūū)−∇ · (2µD(ū)) + f dV =

∫
V
−∇p̄ dV. (5.2)

By using the divergence theorem, (5.2) can be transformed in terms of surface integral∫
S
ρ(ūū) · n− (2µD(ū)) · n dS + fV =

∫
V
−∇p̄ dV, (5.3)

which also can be written as semi-discrete form of the momentum equation∑
j

(ρ(ūū) · nS)j −
∑
j

((2µD(ū)) · nS)j + (fV )j = −
(∫

V
∇p̄ dV

)
j

, (5.4)

where j indicates the value at any given control volume and surface. First two summation
terms can be implicitly solved while the pressure gradient needs to be evaluated explicitly. The
OpenFOAM implementation for the primal solver is shown in Figure 5.4. The implementation
is illustrated by in-text comments.

// Starting primal velocity corrector

// Defining the momentum equation for U

tmp<fvVectorMatrix> UEqn

(
fvm : : div ( phi , U ) // Implicit discretization of divergence operator

− fvm : : laplacian (nu , U ) // Implicit discretization of laplacian operator

+ F // momentum forcing

==
fvOptions (U ) // Applying momentum source using bulk velocity

) ;

// Under -relax UEqn for U

UEqn ( ) . relax ( ) ;

fvOptions . constrain ( UEqn ( ) ) ;

// Solving the momentum equation

solve ( UEqn ( ) == −fvc : : grad (p ) ) ;

fvOptions . correct (U ) ;

Figure 5.4: Primal momentum solver UEqn.H
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By following the above discretization steps, integrating the adjoint momentum equation (3.70)
over the control volume gives∫

V
−ρ∇ · (ūv)− ρ∇v · ρū−∇ · 2µD(v)− σ(ū− ūd) dV = −

∫
V
ρ∇q dV. (5.5)

Applying the divergence theorem leads to∫
S
−ρ(ūv) · n− 2µD(v) · n dS −

∫
V
ρ∇v · ρū dV − σ(ū− ūd)V = −

∫
V
ρ∇q dV (5.6)

and its semi-discrete form becomes

−
∑
j

(ρ(ūv) · nS)j −
∑
j

(2µD(v) · nS)j

−
(∫

V
ρ∇v · ρū dV

)
j

− (σ(ū− ūd)V )j = −
(∫

V
ρ∇q dV

)
j

. (5.7)

It is shown that an additional convection term appears in (5.7). Together with the pres-
sure gradient, the adjoint convection term is solved explicitly as shown in Figure 5.5. The
implementation is illustrated by in-text comments.

// Starting adjoint velocity corrector

// Defining additional convection term

// Using explicit discretization of gradient operator

volVectorField adjointTransposeConvection ( ( fvc : : grad ( Ua ) & U ) ) ;

// Defining the adjoint momentum equation for Ua

tmp<fvVectorMatrix> UaEqn

(
fvm : : div(−phi , Ua ) // Implicit discretization of divergence operator

− adjointTransposeConvection // additional convection

− fvm : : laplacian (nu , Ua ) // Implicit discretization of laplacian operator

− sigma ∗(U−Ud ) // Result of dJ/dU with sigma=100

==
fvOptions ( Ua ) // Applying momentum source using bulk velocity

) ;

// Under - relax UEqn for U

UaEqn ( ) . relax ( ) ;

fvOptions . constrain ( UaEqn ( ) ) ;

// Solving the momentum equation using explicit discretization of gradient

operator

solve ( UaEqn ( ) == −fvc : : grad ( pa ) ) ;

fvOptions . correct ( Ua ) ;

Figure 5.5: Adjoint momentum solver UaEqn.H
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Furthermore, in Chapter 4, the Poisson equations (4.28) and (4.29) are formulated to extract
the Reynolds stress tensor components from the optimal estimate f∗. A simple openFOAM
implementation of the Poission equations is shown in Figure 5.6. The implementation is
illustrated by in-text comments.

// Loop correcting non-orthogonality.

while ( simple . correctNonOrthogonal ( ) )
{

// Solving Poisson equations for alpha and beta

// Using implicit discretization of laplacian operator

// Dimensioned constant D=1

solve

(
− dFxdx + dFydy − fvm : : laplacian (D , alpha )

) ;

solve

(
− dFydx − dFxdy − fvm : : laplacian (D , beta )

) ;
}

Figure 5.6: Poisson solver
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Chapter 6

Test cases

The full-field inversion will be tested on two canonical flow cases: the fully developed turbulent
flow in a channel and the turbulent flow over periodic hills. The tests are performed based
on DNS data for each case. The channel flow data is produced by Lee and Moser (2015) and
the flow data over two periodic hills are from Breuer et al. (2009). The momentum forcing f
is inversely estimated by comparing the velocity field produced by the base-model simulation
with the DNS data. Therefore, boundary conditions and transport properties for the base-
model simulations need to be set up to mimic the DNS set-up. This chapter aims to provide
the information of the transport conditions used together with general descriptions of both
test cases. At the end of this chapter, the imposed boundary conditions will be discussed.

6.1 1D channel flow

A channel flow is the flow bounded by two parallel walls. When the flow enters the channel
with an initial condition, the flow touching the solid surfaces is slowed down due to the
molecular viscous influence at the walls. Consequently, the velocity at the main stream
increases. The influence of the molecular viscosity initially creates the boundary layers. The
thickness of the boundary layers increases with the flow travelling in the x-direction. The
illustration of the boundary layer development for the bottom surface is shown in Figure 6.1.
As the boundary layers develop, the molecular viscous effect becomes smaller and smaller.
When the flow is completely out of controls from the molecular viscous effect, the flow becomes
turbulent, which results in the momentum exchange between fast and slow flow regions. The
turbulent flow becomes full developed when the velocity statistics due to the momentum
exchange no longer vary along the stream-wise direction (Pope, 2000).
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Figure 6.1: Boundary layer development produced by Cleynen (2016)

The 1D fully developed turbulent flow is considered where the flow profiles are no longer
influenced by the momentum exchanges. The one-dimensional geometrical set-up is shown in
Figure 6.2 where δ is the channel half width. Accordingly, the number of cells is considered
only in y-direction. More complex behaviour of the turbulent flow is expected near the walls.
Therefore, near-wall grid resolutions need to be achieved to increase the flow convergence.
The size of each cell in the y-direction is determined by the simple grading ratio Sg, which
represents the ratio of the cell density from the wall to the main stream. Different mesh
details and channel geometry information are summarized in Table 6.1.

Figure 6.2: OpenFOAM geometrical set-up for 1D channel flow

fine medium coarse

Ny 320 160 80
Sg 20 : 1
δ 1 [m]

Table 6.1: Mesh and geometrical details for 1D channel flow
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Lee and Moser (2015) provide the details of transport properties they used for their DNS
simulations. The Reynolds number Reτ can be defined by

Reτ =
uτδ

ν
(6.1)

with the kinematic viscosity ν, the channel half width δ and friction velocity uτ . To mimic
the DNS set-up for the given Reτ , the bulk velocity ub is used together with ν such that

Reb =
ubδ

ν
. (6.2)

Corresponding conditions are summarized in Table 6.2.

Reτ 180 550
uτ 0.0637309 0.0543496 [ms ]

ν 0.00035 0.0001 [m
2

s ]
ub 1 1 [ms ]

Table 6.2: Transport properties for 1D channel flow

6.2 2D periodic hill flow

The periodic hill flow is also the flow bounded by top and bottom surfaces but the latter
surface consists of two hills separated by a certain distance Lx. The main feature of this test
case is that the curved geometry of the first hill forces the flow to be separated from the
bottom surface. The flow separation is caused by an adverse pressure gradient (Anderson,
2004). To explain the flow separation, let’s consider the stream-wise momentum equation
within the boundary layer such that

ρū
∂ū

∂x
= −dp

dx
+ µ

∂2ū

∂y2

∣∣∣∣
y=0

. (6.3)

The presence of the adverse pressure gradient ( dpdx > 0) causes the stream-wise velocity gradi-

ent ∂ū
∂x to decrease. When ∂ū

∂x eventually becomes zero and change its sign, the flow reversal
can be observed. The flow reversal caused by the adverse pressure gradient separates the flow
from the bottom surface as illustrated in Figure 6.3. The flow separation additionally creates
the recirculation zone in the wake of the flow. The recirculation is closed by the stream line
where the flow travels towards a reattachment point. Both the separation and reattachment
points can be determined by the locations where

τw = µ
∂ū

∂y

∣∣∣∣
y=0

= 0 (6.4)
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with the wall shear stress τw. This will be more extensively discussed when the results of the
periodic hill flow is presented.

Figure 6.3: Separation of the boundary layer over the curved geometry produced by Cleynen
(2016)

The geometrical set-up for the 2D periodic hill flow is shown in Figure 6.4. The constructed
mesh details as well as the geometrical information are given in Table 6.3.

Figure 6.4: Geometrical set-up for 2D periodic hill flow

fine medium coarse

Nx ×Ny 200× 160 100× 80 50× 40
Sg 20 : 1

Lx × Ly 9× 3.035 [m2]
h 1 [m]

Table 6.3: Mesh and geometrical details for 2D periodic hill flow

The DNS flow condition is based on the Reynolds number Re, which is defined by

Re =
uhLy(x = 0)

ν
, (6.5)
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which can be related to the bulk velocity Reynolds number Reb

Reb =
ubLy(x = 0)

ν
(6.6)

such that

Reb = γRe (6.7)

where a geometric factor γ is given by

γ =
Ly(x = 0)

1
Lx

∫ Lx
0 Ly(x)dx

. (6.8)

The transport properties for the periodic hill flow is summarized in Table 6.5. The kinematic
viscosity ν is determined based on the given Re.

Re 700

ν 0.00142857 [m
2

s ]
uh 1 [ms ]
ub 1 [ms ]
γ 0.72

Table 6.4: Transport properties for 2D periodic hill flow

6.3 Boundary conditions for both cases

Periodic boundary conditions are applied for both test cases introduced in Section 6.1 and
Section 6.2. The fully developed velocity profiles at the outlet of the geometries are contin-
uously reimposed at the inlet. The flow bounded by each geometry is no longer driven by
the pressure gradient ∇p̄ but by a momentum source M. In OpenFOAM, M is iteratively
corrected during runtime to maintain a certain bulk velocity ub for both test cases. The
imposed M can be also evaluated through (4.10) using the trapezoidal rule for the numerical
integration and will be used to characterize the Reynolds stress tensor components in the
result section.

No slip conditions are applied at the walls as Dirichlet boundary conditions. Consequently,
there is no momentum at the boundaries, which indicates zero boundary conditions for the
momentum forcing f and the Reynolds stress tensor components. OpenFOAM uses the ρ-
normalized boundary conditions for f and the pressure p̄ such that their units follow the
normalization:

unit of ρ-normalized f per control volume =

[
kg

m2 · s2

][
m3

kg

]
=

[
m

s2

]
(6.9)
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unit of ρ-normalized p̄ per control volume =

[
kg

m · s2

][
m3

kg

]
=

[
m2

s2

]
(6.10)

The unit of the Reynold stress tensor components is the same as the unit of p̄. The primal
boundary conditions applied for both cases are summarized in table 6.5.

ū (0, 0, 0) [ms ]
f (0, 0, 0) [m

s2
]

∇p̄ (0, 0, 0) [m
s2

]

u′u′ 0 [m
2

s2
]

v′v′ 0 [m
2

s2
]

u′v′ 0 [m
2

s2
]

Table 6.5: Primal Boundary conditions in OpenFOAM

Additionally, boundary conditions for the adjoint variables v and q also need to be set.
To derive the adjoint boundary conditions, the expression of the surface integral (3.72) is
considered. The expression is always satisfied when the inside of the surface integral is zero
such that

(2µn ·D(δū)) · v + δp̄(v · n)+

δū · (n(v · ρū) + v(ρū · n) + 2µn ·D(v)− qn + σ(ū− ūd)) = 0. (6.11)

Let’s considered a channel flow simulation where the uniform velocity profile is imposed at
the inlet and the velocity gradient is set to be zero at the outlet. Based on the approach of
Othmer (2008), no slip condition at the wall and the prescribed velocity profile at the inlet
imply no variation of the primal velocity at each boundary such that

δū = 0. (6.12)

This indicates that every terms involved with δū will be eliminated from (6.11), thus remaining

(2µn ·D(δū)) · v + δp̄(v · n) = 0. (6.13)

To satisfy (6.13), each term need to be zero independent of any arbitrary variation of the
primal flow quantities. For the adiabatic wall, there is no variation of the primal velocity
normal to the surface. Therefore, only the tangential component of the primal velocity is
remained. Then the remaining conditions are

(2µn ·D(δūt)) · vt = 0 (6.14)

and

δp̄(vn) = 0 (6.15)
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with vn = v·n. Conditions to satisfy (6.14) and (6.15) for any variation of the primal variables
at the inlet and the walls become

vt = 0, vn = 0, (6.16)

which are the adjoint velocity boundary conditions. The boundary condition for the adjoint
pressure q at the inlet and walls follow the same boundary conditions for the primal pressure
p̄:

∇q = 0. (6.17)

At the outlet of the channel, imposing the zero primal velocity gradient and zero pressure
simplifies (6.11) to

n(v · ρū) + v(ρū · n) + 2µn ·D(v)− qn + σ(ū− ūd) = 0 (6.18)

which can be decomposed into normal and tangential components such that

v · ū + vnūn + µ(n · ∇)vn − q + σ(ū− ūd) · n = 0, (6.19)

ūnvt + µ(n · ∇)vt + σ(ū− ūd)t = 0. (6.20)

As a consequence, at the outlet, the adjoint pressure condition can be determined by

q = v · ū + vnūn + µ(n · ∇)vn + σ(ū− ūd) · n (6.21)

and satisfying (6.20) provides the adjoint velocity boundary conditions. In this thesis, how-
ever, the inlet and outlet adjoint boundary conditions are not applicable since periodic bound-
ary conditions are used for both test cases. Applying the periodic boundary conditions allow
to avoid the complexity of implementing the adjoint inlet and outelt boundary conditions.
Therefore, the adjoint boundary condition is only considered at the wall.
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Chapter 7

Results and Analysis

This chapter will present the results of the full-field inversion applied on the turbulent chan-
nel flow and the periodic hill flow test cases. First of all, grid convergence studies will be
performed to justify the minor influence of the selected grid resolution on simulation results.
Subsequently, the results of the base-model simulations with the reduced errors will be illus-
trated. The characteristics of the identified momentum forcing f̂ , which is the corrected form
of f∗ from Section 4, will be determined through the DNS data.

7.1 Grid convergence study

In the framework of the full-field inversion, CFD simulations are repeated hundreds or thou-
sands of times. Therefore, the choice of finest grid resolutions may not be the wisest option to
avoid the large computational costs. The grid convergence study is a method to investigate
the discretization errors of the simulations based on the selected grid resolutions with respect
to the finest grids. By following the approach of Roache (1998), the error between the discrete
solution and the exact solution is defined as

E = g(∆y)− gexact (7.1)

= C1(∆y)m + C2(∆y)m+1 + C3(∆y)m+2 + · · · (7.2)

where Ci is a constant, ∆y is the grid spacing and m is the order of convergence. The
contribution of higher order terms is relatively small compared to the term with the order of
m. Therefore, all the higher order terms are neglected. Having simplified the error expression,
taking the logarithm of both sides of (7.2) leads to

log(E) = log(C1(∆y)m)

= log(C1) +m log(∆y) (7.3)
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which indicates that the order of convergence can be evaluated by estimating the slope of
log(E) versus log(∆y) plot. Furthermore, the order of convergence can be more directly
evaluated by using a constant grid refinement ratio (r) and its expression is given by

m = log

(
g3 − g2

g2 − g1

)
/ log(r). (7.4)

The expression (7.4) is based on three solutions where g3 corresponds to the solution from
the coarsest-grid and g1 indicates the finest-grid solution. Additionally, a higher-order solu-
tion can be further estimated from the obtained lower-order solutions by using Richardson
extrapolation. This method allows to acknowledge the discrepancy between the solution at
zero grid spacing and the solution at the selected grid. The discrete solution (g(∆y)) can be
expressed by the Taylor series expansion

g(∆y) = g0 + g′′′(∆y) +
g′′′

2
(∆y)2 +

g′′′

6
(∆y)3 + · · · (7.5)

where g0 indicates the solution in the limit of zero grid spacing. Under the assumption that
the solution converges with second-order accuracy, the higher-order solution based on the two
finest grid solutions can be computed by

g0 ≈ g1 +
g1 − g2

rm − 1
. (7.6)

The grid convergence study starts with determining quantities of interest that are relevant
to the test cases introduced. The quantity of interest for the wall bounded cases such as
channel flow and periodic hill flow is the wall shear stress τw as it continuously varies with
grid resolutions. For the one-dimensional channel flow problem, τw only exists at the bottom
and top walls, and they are also equivalent to each other. On the other hand, the two-
dimensional periodic hill case contains a distribution of τw in x-direction and geometrical
difference between the top and bottom walls. As a consequence, it is most instructive to
determine the point location of τw for the grid convergence study. τw is taken from the
bottom wall at the outlet of the flow. The flow simulations for each test case are performed
based on the mesh grid given in Table 6.1 and Table 6.3. Since finer grids are constructed
near the walls for both cases, ∆y is determined by taking the average of entire grid spacings
such that

∆y =

∑Ny

i=1(yci+1 − yci)
Ny − 1

(7.7)

where yc is the set of centre coordinates of grid cells in y-direction. Normalizing ∆y by the
smallest average-grid spacing gives

(∆y)+ =
∆y

∆ysmallest
(7.8)

The evaluations of τw together with (∆y)+ for each test case are given in Table 7.1 and 7.2.
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Table 7.1: Evaluation of τw for one-dimensional channel flow

Ny ∆y (∆y)+ τw
320 0.006267 1.00 −0.00104993
160 0.012566 2.01 −0.00104971
80 0.025267 4.03 −0.00104881

Table 7.2: Evaluation of τw for two-dimensional periodic hill flow

Ny ∆y (∆y)+ τw
200 0.012786 1.00 −0.01212630
100 0.025709 2.01 −0.01283799
50 0.052042 4.07 −0.027923

The order of convergence m for τw is evaluated using (7.4) and the Richardson extrapolation
estimate g0 is determined by (7.6). The results of the grid convergence study are given in
Table 7.3 and the study is visualized through Figure 7.1 and Figure 7.2. Strong convergences
for both cases are illustrated by the order of convergence equal or above 2 for τw. From the
grid convergence studies, it can be seen that the influence of the selected grid resolutions,
which correspond to (∆y)+ = 2, on the evaluation of τw is rather minor. Thus the choice of
the grid resolutions can be justified for the use in the flow simulations.

Table 7.3: Results of grid convergence study for both cases

channel flow periodic hill flow

m 2 4
g0 −0.00105 −0.012091

0 1 2 3 4

(∆y)+

0.0000020

0.0000018

0.0000016

0.0000014

0.0000012

0.0000010

0.0000008

τ w

1.048e 3
Richardson Extrapolate Simulations

Figure 7.1: Wall shear stress τw for the 1D channel flow case with different grid resolutions
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Figure 7.2: Wall shear stress τw for 2D periodic hill flow case with different grid resolutions

7.2 1D channel flow results

The results of the full-field inversion applied on the channel flow case will be illustrated in
this section. Some of the results are presented in non-dimensional forms. The dimensionless
quantities used in this section are given by

y+ =
yuτ
ν
, ū+ =

ū

uτ
, u′v′

+
=
u′v′

u2
τ

(7.9)

Where the friction velocity uτ can be evaluated based on the wall shear stress τw by

uτ =

√
τw
ρ

(7.10)

To begin with, the result of the optimization for different Reτ is shown in Figure 7.3. The cost
function J for both Reτ is successfully minimized based on the adjoint sensitivities. The sig-
nificant difference is observed in terms of the number of the cost function evaluations between
the two cases. The increase of the Reynolds number generally requires longer simulation time.
It can be seen that this also complicates the optimization process. The scalar representation σ
of the diagonal inverse of the covariance matrix plays a role of the relaxation constant within
the cost function J as given in (3.16). The choice of σ is 100, which is determined based on
trials and errors to extend the number of optimization runs.
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Figure 7.3: Cost function J histories for the 1D channel flow case with different Reτ

The reduction in the cost function J is reflected in the result of velocity profiles in Figure
7.4 and 7.5. The base-model with fx = 0 generates the laminar flow velocity profile. The
momentum forcing fx is iteratively updated through the full-field inversion. When fx reaches
to its optimal f̂x, the velocity difference between the base-model and the mean DNS velocity
data is significantly reduced. The near-wall velocity profile for Reτ = 180 is more accu-
rately achieved compared to Reτ = 550. This is because the lower optimization convergence
is resulted with the higher Reτ . Improving the optimization convergence still remains as
challenge, hence requiring further studies.
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ū
+
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Figure 7.4: Velocity profiles for the 1D channel flow case with Reτ = 180
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Figure 7.5: Velocity profiles for the 1D channel flow case with Reτ = 550

The difference in the y+ range is observed from the results. The increase in Reτ indicates
that the inertial force becomes more dominating the viscous force. The increase of the inertial
force results in the steeper velocity gradient at the wall, thus increasing the wall shear stress
τw. Since y+ relies on τw, higher Reτ leads to the increase of y+.

The force profiles are compared in Figure 7.6 and Figure 7.7. Although the identified momen-
tum forcing profile f̂x have shown a descent agreement with the DNS turbulence force profile
at y+ ≥ 10, some deviations are also observed near the wall. It is interesting to see that the
velocity field produced by the full-field inversion is still strongly converged to the mean DNS
velocity data despite the force profile deviations.

To investigate further on the characteristics of the identified momentum forcing profile f̂x,
the shear stress component u′v′ is extracted from f̂x using the expression (4.12). Initially
the divergence of the Reynolds stress tensor was replaced by the momentum forcing f in
Section 2.3. If the extracted u′v′ agrees with the DNS Reynolds shear stress profiles, then the
identified f̂x represents the DNS turbulence force. Using the boundary conditions given in
Table 6.5, the shear stress profiles are compared in Figure 7.8 and 7.9. It can be seen that the
deviations observed in the force profiles are significantly reduced in the shear stress profiles
for both Reτ cases through the characterization process (4.12). As a result, the extracted
shear stress u′v′ strongly agrees with the DNS Reynolds shear stress. This means that the
identified momentum forcing f̂x contains the turbulence characteristics.
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Figure 7.6: Force profiles for the 1D channel flow case with Reτ = 180
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Figure 7.7: Force profiles for the 1D channel flow case with Reτ = 550
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Figure 7.8: Shear stress profiles for the 1D channel flow case with Reτ = 180
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Figure 7.9: Shear stress profiles for the 1D channel flow case with Reτ = 550
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Another interesting feature of the identified profile f̂x is the low-frequency oscillations at
y+ ≥ 30. The oscillation seems to be magnified with the Reτ case. This feature is suspected
as a result of either numerical errors or physical observations. One of the possible causes
for the numerical errors is the discontinuity due to the interpolation. If the DNS data is
interpolated on the finer grid than its own, then the interpolation will create additional data
points that are not necessarily on the trend line of the DNS data. This eventually causes
the discontinuity. Fortunately, this is not the case since the DNS data is on much finer grid
than the base-model simulation. Another cause of the numerical errors is the choice of the
grid resolution. The influence of the grid resolution on the flow simulations was previously
discussed in Section 7.1. To investigate whether the grid resolution influences on the results
of the optimization, the full-field inversion is further performed with lower and higher grid
configurations. The results for the different grid resolutions are summarized through Figure
7.10 and Figure 7.11. No significant difference among different grid configurations is found
in regards to the cost function histories and the optimal momentum forcing f̂x. The low-
frequency oscillations also remain the same for the different grid configurations. Therefore, it
can be analysed that the oscillating behaviour of f̂x is not caused by the numerical errors but
possibly interpreted as physical observations, which need to be further investigated in future
work.
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Figure 7.10: Cost function J for the 1D channel flow case with different grid resolutions
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Figure 7.11: Influence of grid resolutions on force profiles for the 1D channel flow case

7.3 2D periodic hill flow results

The full-field inversion is also applied to reduce the base-model simulation errors for the flow
over the periodic hills. The choice of initial f is made by

f = −µtD(ū)

∣∣∣∣
k−ε

(7.11)

where the eddy viscosity µt and the strain-rate tensor field D(ū) are computed based on
the Launder-Sharma k − ε model. By correcting f through the full-field inversion, the mean
DNS velocity profile is aimed to be achieved. The low Reynolds number Re = 700 is consid-
ered. The case of the periodic hill flow requires sufficient grid resolutions to observe the flow
separation and recirculation. Therefore, the flow simulation time is expected to take longer
compared to the 1D channel flow. The choice of the low Re is to perform the fundamental
studies on how the flow separation influences the result of this framework with the reduced
computational burden.

The evaluation history of the cost function J is shown in Figure 7.12. Compared to the
1D channel flow case, the lower rate of the optimization convergence is achieved. The cost
function J is reduced based on the adjoint sensitivities and the quasi-Newton optimization
algorithm. Since they are complicatedly involved in the gradient-based optimization, it is
difficult to determine the exact cause of limiting the J convergence.
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Figure 7.12: Cost function J for the 2D periodic hill flow case

The results of velocity fields are normalized by the bulk velocity ub, scaled by 2 and presented
in Figure 7.13 and Figure 7.14. Despite the reduced rate of the J convergence, the result shows
that difference between the Launder-Sharma k − ε base-model solution and the mean DNS
velocity data is remarkably reduced by applying the full-field inversion. Moreover, the feature
of the flow reversal within the recirculation zone is also accurately achieved with respect to
the mean DNS velocity data.

Another interesting quantity of interest in the periodic hill flow case is the wall shear stress
τw. When the flow is separated from the bottom surface, the velocity gradient becomes zero
at the wall. Since τw is defined by

τw =
∂ū

∂y

∣∣∣∣
wall

(7.12)

the location of the flow separation can be determined when τw = 0. The region where the
flow is reattached to the bottom surface can be also determined by the same analogy. Figure
7.15 shows the τw profiles along the bottom surface in the stream-wise direction. One of the
downside of the Launder-Sharma k−ε model is shown to be the limited capability of predicting
the flow separation and reattachment points. Although the correction of the inlet and outlet
τw profiles is not accurately made, the locations of the flow separation and reattachment are
more precisely evaluated through the full-field inversion. It is remarkable to see that the flow
separation and reattachment features are correctly captured by reducing the errors in the
velocity fields. However, improving the τw estimation at the inlet and the outlet of the flow
domain still remains as challenge.
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Figure 7.13: Velocity profiles in x-direction for the 2D periodic hill flow case
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Figure 7.14: Velocity profiles in y-direction for the 2D periodic hill flow case
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Figure 7.15: Wall shear stress τw profiles along the bottom surface

The optimal momentum forcing f̂ is the result of iteratively correcting f by demanding the
error reductions in the velocity field of the Launder-Sharma k− ε base-model. Different force
profiles are compared through Figure 7.16 and Figure 7.17. The force profiles both in x- and
y-direction are scaled by 5. Unlikely to the velocity profiles from Figure 7.13 and Figure 7.14,
substantial differences are still observed between the identified f̂ and the DNS turbulence
force.

The deviations from the DNS turbulence force can be analysed through the wall shear stress
τw given in Figure 7.15. The flow separation near the first curvature has the negative influence
on f̂ . As the flow travels over the recirculation zone, the deviations in the force profiles become
diminished. The minimal deviations are observed when the flow is reattached to the bottom
surface. The reattachment point also can be considered as the region where the the influence
of the flow separation is minimum. Consequently, it can be seen that the predominant cause
of the deviations in the force profiles is the flow separation.

More substantial deviations are observed in the y component of the force profiles compared to
their x component. Figure 7.14 shows that almost no improvement is made by the full-field
inversion. This indicates that the x component of the optimal momentum forcing f̂ has more
dominant influences on the velocity field. Similar to the 1D channel flow case, the behaviour of
f̂ is still capable of reproducing the mean DNS velocity field in spite of the observed deviations
in the force profiles.
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Figure 7.16: Force profiles in x-direction for the 2D periodic hill flow case
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Figure 7.17: Force profiles in y-direction for the 2D periodic hill flow case
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The characteristics of the identified momentum forcing f̂x is further investigated by making
the comparison in shear stress profiles. By following the approach discussed in Section 4.2,
the Poisson equation (4.29) with the boundary conditions from Table 6.5 is solved to extract
the shear stress representation β from f̂x. If the extracted β profiles agrees with the DNS
Reynolds shear stress, then the identified momentum forcing f̂x represents the stream-wise
DNS turbulence force.

The extracted shear stress β is compared with the Launder-Sharma k − ε and the DNS
Reynolds shear stress profiles in Figure 7.18. The shear stress profiles are normalized by a
square of the bulk velocity ub and scaled by 7. The shear stress profile of the Launder-Sharma
k − ε is slight improved towards the DNS shear stress profile through the full-field inversion.
The deviations observed in the force profiles from Figure 7.16 are also dwindled. However,
the characterization process does not significantly reduce the deviations, thus remaining the
interrupted β profiles due to the flow separation.
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Figure 7.18: Shear stress profiles for the 2D periodic hill flow case

The flow separation has been discussed as the main cause of the deviations in the shear stress
profiles as well as in the force profiles. Additional potential cause can arise from the ap-
proximation made during the characterization process. From (4.15), the optimal momentum
forcing f̂ is decomposed into the divergence of the modified Reynolds stress tensor and the
gradient of the scalar function φ. The approximation is made by eliminating ∇φ from f̂ such
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that (
f̂x
f̂y

)
= −∇ ·

(
α β

β − α

)
−∇φ (7.13)

≈ −∇ ·
(
α β

β − α

)
. (7.14)

The eliminated ∇φ is combined with the ∇p̄ in the base-model momentum equation, thus
forming the modified pressure gradient (4.18). This thesis has not investigated how the
modification made with ∇φ influences on β. Characterizing ∇φ remains as future studies
which could increase the capability of the characterization technique proposed by Foures
et al. (2014).
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Chapter 8

Adjoint sensitivity validation

The momentum forcing f is a force field that needs to be evaluated at every control volume.
Therefore, when f is considered as a design variable, solving the optimization problem en-
counters the high-dimensional problem. As a solution to the high-dimensional optimization
problem, the continuous adjoint method is considered. The results presented in Chapter 7 are
achieved based on the adjoint-based optimization. In the adjoint-based optimization, the cost
function J is minimized based on the adjoint sensitivities. While other gradient computation
methods such as the finite-different approximation demand one flow field calculation to eval-
uate the gradient of the cost function J at a particular point location, the entire sensitivity
field can be computed by the adjoint method.

The continuous adjoint method is used to solve the optimization problem in this thesis. The
method, however, involves complex derivations and has not been tested in various cases.
Therefore, it is difficult to determine the validity of the adjoint sensitivities. One way to
validate the adjoint sensitivities is the validation through the finite-different gradients. In
this chapter, the adjoint sensitivities will be compared with the finite-difference gradients for
both test cases. Moreover, the validation process will be additional performed on the different
adjoint framework where the frozen turbulence assumption is involved.

8.1 Finite-Difference gradient

Based on the procedure discussed in Subsection 3.4.1, the finite-difference gradients for the
1D channel flow problem are determined through Figure 8.1. The gradients are evaluated
at seven different y locations. The results show that the truncation errors are added to the
gradients when the step size ∆f is chosen to be too large while the rounding errors are caused
by small ∆f . This means that minimum errors occur at the region where the variation of the
gradients with respect to ∆f is minimum. The choice of the finite-difference gradient is made
within the minimum error region.
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Figure 8.1: Determination of finite-difference gradients for the 1D channel flow case

It is shown that the finite-difference approach requires multiple flow calculations only to
determine the proper step size ∆f for the gradient of the cost function J at a particular point
location. Through the entire process illustrated in Figure 8.1, the gradients are determined
only for the seven locations. The same procedures are applied to compute the finite-difference
gradients for the 2D periodic hill flow case.

8.2 Adjoint vs Finite-Difference

The computation of the adjoint sensitivities is performed using (3.45) and the finite-difference
gradients at point locations are determined in Section 8.1. The adjoint sensitivities are com-
pared with the finite-difference gradients for the 1D channel flow in Figure 8.2. The result
shows that the adjoint sensitivities strongly agree with the finite-difference gradients. This
implies the promising credibility of this adjoint framework for the 1D channel flow problem.

The validation process is also performed for the 2D periodic hill flow case. It is determined to
evaluate the finite-difference gradients at the inlet and mid-section of the flow domain. Seven
different points of interest in y-direction are selected at each x-location for the validation
process. Figure 8.3 illustrates the validation of the adjoint sensitivities through the finite-
difference gradients for the selected evaluation locations in the 2D periodic hill flow case. It
is shown that the relative errors between two approaches lie below 5% of the finite-difference
gradients. Overall, the adjoint sensitivities agree with the finite-difference gradients.
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Figure 8.2: Validation of adjoint sensitivities on finite-difference gradients for the 1D channel
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Figure 8.3: Validation of adjoint sensitivities on finite-difference gradients for the 2D periodic-hill
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An additional validation process is performed on the adjoint framework where the
frozen turbulence assumption is used. Taylor (1938) addresses the idea of the frozen turbulence
by considering the spatial structure of a turbulent velocity field from the a single point cal-
culation or measurement of the temporal fluctuation as an actual structure of turbulence.
The frozen turbulence assumption is useful for deriving the adjoint formulations because it
allows to consider the eddy viscosity µt as independent to the flow variables. Considering a
momentum equation where a design force s is added to the RANS momentum equation such
that

ρ∇ · (ūū) +∇p̄−∇ · ((µ+ µt)D(ū)) + s = 0 (8.1)

Following the derivation from Section 3.5, the adjoint momentum equation for (8.1) can be
derived as

∇·ρū + (ρū · ∇)v +∇ · 2(µ+ µt)D(v)− ρ∇q + σ(ū− ūd) = 0 (8.2)

∇ · v = 0 (8.3)

with a integral form of its adjoint boundary condtion∫
Γ
(2(µ+ µt)n ·D(δū)) · v + δp̄(v · n)+

δū · (n(v · ρū) + v(ρū · n) + 2(µ+ µt)n ·D(v)− qn + σ(ū− ūn)) dΓ = 0 (8.4)

The validation process for the adjoint sensitivities based on (8.2) and (8.3) is performed on
the 1D channel flow case.
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Figure 8.4: Influence of the frozen turbulence assumption on adjoint sensitivities for the 1D
channel flow case
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The adjoint sensitivities involving the frozen turbulence assumption are compared to the finite-
difference gradients in Figure 8.4. In contrast to the previous validation results where the
frozen turbulence assumption is not considered, the adjoint sensitivities do not match with
the finite-difference gradients. The errors become enlarged as the evaluation point is further
away from the wall. It can be seen that the continuous adjoint approach is disturbed by the
frozen turbulence assumption at least in the framework of (8.1). As a result, the cost function
J constrained by (8.1) will not be successfully minimized due to the invalid adjoint sensitivity
computation.
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Chapter 9

Conclusions and Recommendations

The objective of this thesis is to identify the momentum forcing f necessary to reduce the
errors of the selected base-model in wall-bounded test cases by applying the full-field inversion
approach and to determine whether the Reynolds stress tensor components can be identified
using the mean DNS velocity vector field. As a final chapter of the thesis, the conclusions
and recommendations will be addressed.

9.1 Conclusions

The literature study on existing RANS error estimation techniques concludes two major
approaches. The Bayesian approach improves the RANS predictions by calibrating the closure
coefficients of the RANS models. The turbulence production is iteratively corrected based on
the estimated functional errors by the full-field inversion. However, since both approaches still
rely on the Boussinesq assumption, they do not provide the improvement where the turbulent
anisotropy plays a role.

The base-model momentum equation (2.31) is constructed to avoid the violation of the Boussi-
nesq assumption by replacing the divergence of the Reynolds stress tensor with the momentum
forcing f . The optimization problem is formulated using a cost function J based on Bayesian
statistics. Through the cost function J , the velocity difference between the base-model sim-
ulation and the DNS data is minimized by performing the adjoint-based optimization.

The flow simulations are implemented in OpenFOAM and the quasi-Newton algorithm (L-
BFGS-B) from the python library is used for the optimization. The full-field inversion is
performed on 1D channel flow and 2D periodic hill flow. The results of the full-field inversion
are summarized:
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• The base-model velocity errors with respect to the mean DNS velocity data for both
test cases are significantly reduced by identifying the momentum forcing f = f̂ .

• Total number of cost function J evaluations drastically increase with the increase in the
Reynolds number.

• In the 1D channel flow case, the identified momentum forcing f̂ mostly agrees with the
DNS turbulence force profile except for the flow domain of y+ < 10.

• At y+ ≥ 30, the identified momentum forcing f̂ experiences low-frequency oscillations
for the 1D channel flow case.

• The extracted shear stress from f̂ strongly agrees with the DNS Reynolds shear stress
data for the 1D channel flow case.

• The flow separation and reattachment locations are correctly estimated by the full-field
inversion for the 2D periodic hill flow case.

• In the 2D periodic hill flow case, the identified momentum forcing f̂ deviates from the
DNS turbulence force profiles due to the influence of the flow separation and the same
applies to the shear stress comparison.

• The adjoint sensitivities used for the optimization are validated through the finite-
different gradients for both test cases.

To sum up, the optimal momentum forcing f̂ is identified to reduce the base-model errors
in both wall-bounded flow cases based on the mean DNS velocity data. The Reynolds shear
stress can be identified using only the mean DNS velocity data for the 1D channel flow case.
This is enabled by resulting a fully determined problem where the shear stress can be directly
obtained from f̂ in the 1D channel flow problem. On the other hand, the identified shear stress
for the 2D periodic hill flow case does not fully correspond to the DNS Reynolds shear stress
data. The 2D periodic hill flow case results in the underdetermined problem where the direct
identification of the Reynolds shear stress is no longer possible, thus using a minimization
approach. This influences the result for the identified shear stress.

9.2 Recommendations

The full-field inversion in this thesis is currently applied for relatively low Reynolds number
flow cases. It is observed that the increase of the Reynolds number leads to the significant
increase in the total number of cost function evaluations. Accordingly, applying this frame-
work for higher Reynolds number flow cases are obligate to perform further investigations on
grid resolutions, numerical schemes and optimization algorithms to reduce the computational
burden.

The low-frequency oscillations are observed in the optimal momentum forcing profile f̂ for
the 1D channel flow case. They are considered as physical observations in this work as they
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are not influenced by the different numerical set-up. Further research can be conducted to
characterize the observed oscillations and also to determine their impact on the velocity fields.

In the 2D periodic hill flow case, the wall shear stress at the inlet and the outlet of the flow
domain was not correctly estimated through the full-field inversion. This is because the cost
function is constructed to minimize the difference in the velocity fields. A better estimate of
the wall shear stress can be obtained by constructing a new cost function which involves the
wall shear stress as well as the velocity.

From the adjoint sensitivity validation, it is observed that the base-model framework (2.31)
has provided the valid adjoint sensitivities. On the other hand, the framework where the
eddy viscosity is still involved computes the adjoint sensitivities that do not agree with the
finite-difference gradients. One possible cause of the invalid adjoint sensitivities is the frozen
turbulence assumption. Hence, an additional investigation can be performed to analyse the
influence of the frozen turbulence assumption either on continuous or discrete adjoint methods.

The framework has provided the capability of predicting velocity vector fields for the canoni-
cal wall-bounded test cases. The reconstruction of the velocity vector fields can be performed
based on the limited sparse data points. The success of the sparse data reconstruction will
increase the value of existing data from point measurement experiments such as Hot-Wire
Anemometry. In addition, the framework has also enabled the possibility of getting informa-
tion on the Reynolds shear stress by only having velocity information in the cost function.
This also needs further research with the sparse data, which will be the next step from this
thesis onwards.
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