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Abstract

Starting from the 1950s, plastic has found its way into many aspects of life; from packaging to trans-
portation and construction. The annual global plastic production was estimated to be 330 million
metric tons in 2017 and will be doubled within 20 years if the current growth rate persists. In Europe,
packaging accounts for 40% of the annual plastic production. To decrease dependence on fossil fuels
and the related emissions and reduce the negative impact of plastics that enter the environment, the
EU targets to recycle 55% of plastic packaging material by 2025. A steady production oflarge quantities
of high-grade plastic recyclate is essential to sell the recycled material on the market and substitute
virgin plastics. But, achieving this high grade is difficult due to the wide range of polymers, including
additives and fillers. This research focuses on the sorting step of post-consumer packaging waste in a
Material Recovery Facility (MRF) that takes place before recycling.

In MRF’s, Near-Infrared (NIR) sensor-based sorting systems are state of the art to create high-grade
sorting products. NIR’s use reflection spectra to identify and distinguish a range of materials includ-
ing different types of polymers. The particles are fed to the NIR on a conveyor belt and are sepa-
rated into two flows using actuators such as air nozzles. However, while sorting, False Calls (FC) occur
when particles are incorrectly classified leading to a loss of valuable material or contamination of the
product. Thus, this research aims to increase the understanding of false calls of NIR sensor systems,
contributing to higher quality sorting products.

To reach this goal, possible causes of FC’s and their dependencies on the feedrate, feed composition
and feeding mechanism were identified. These causes were arranged into a framework consisting of
six types of FC’s. A distinction was made between errors that are working range related and those
that are not. Particles outside the working range may be classified incorrectly even when fed in a
monolayer and under perfect circumstances due to the properties of the particle.

The created framework was applied to a NIR in an MRF in the Netherlands which was tasked to sep-
arate non-plastic particles and PVC from plastic particles. Experiments were performed to single out
the probability of each type of error to occur for 13 material classes. Next, the test results were im-
plemented in a statistical model and a Monte Carlo simulation was performed. In this research, the
varying input values were used to imitate the changing feed composition. Three scenarios of adjusted
feed characteristics were analysed using the statistical model.

It was concluded that to optimize the sorting performance of the analysed NIR, all types of False Calls
should be tackled. The feed of the analysed NIR contained a large share of particles outside the work-
ing range. So, even if the particles were to be fed in a monolayer the average grade of the product
is expected to be around 85%. The combination of the experiments and the statistical model allows
for an effective evaluation of the sorting performance and a clear indication of the most problematic
aspects of the feed characteristics.
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Introduction

1.1. Background

Moving towards a circular economy for post-consumer plastic packaging waste has a wide range of ad-
vantages. Reducing, reusing, remanufacturing and recycling plastics lowers the negative environmen-
tal impact of (micro-)plastics on land and in the oceans (Jambeck et al., 2015) and decreases green-
house gas emissions. The annual global plastic production was estimated to be 330 million metric
tons in 2017 and will be doubled within 20 years if the current growth rate persists (Lebreton and An-
drady, 2019). The expected growth and related emissions lead to an increasing consumption of the
total carbon budget of 420-570 gigatons. The global carbon budget is an emission target set to keep
the global warming below 2 degrees Celsius. It is estimated that by 2050 the accumulative greenhouse
gas emissions of plastics from cradle to grave will take up 10% to 13% of this carbon budget (Shen
etal., 2020). Only large efforts in the field of recycling, demand-management strategies and the appli-
cation of renewable energy can compensate for the greenhouse gas emissions related to the expected
growth of plastic demand (Zheng and Suh, 2019). Recycling plastics partly eliminates the first step of
the linear chain, fossil fuel extraction, which is emission intensive (Shen et al., 2020).

Apart from the environmental benefits, the European Union mentions decreasing the dependence
on fossil fuel as a reason to recycle plastics locally (European Commission, 2019). Finally, the current
landfill of plastic waste and the leakage into the environment globally leads to lost economic potential.
It is estimated that worldwide 95% of the value of plastic packaging is lost after the short term use due
to the low collection rate and recycling rate (Ellen Macarthur Foundation, 2016).

In Europe, 39.6% of the produced plastic in 2019 was used for packaging of which only one third was
recycled (Plastics Europe, 2020). More than paper and cardboard, plastic packaging increases the
lifespan of food products and has a positive effect on food safety, thus refusing all plastic packaging
may negatively affect other sustainability aspects like water usage due to an increase of food waste.
The low weight of plastics makes it a more environmental-friendly option to transport than metal or
glass (Andrady and Neal, 2009). Therefore, the EU has set the goal to recycle 55% of plastic packaging
material in 2025 to tackle the problems related to plastic (European Commission, 2019).

However, to reach these recycling goals, multiple improvements in the plastic cycle have to be made.
Hahladakis and Iacovidou (2018) claim that the technicalities, such as organisational barriers, lifestyle
and the ability to properly recover materials lack behind the governance and new business models.
To properly recover materials and maintain the value of plastics, closed-loop recycling is preferred
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above down cycling in the circular economy framework (Ellen Macarthur Foundation, 2016). In prac-
tice, closed-loop recycling can only be achieved when the collected material has a high grade, like the
deposit collection scheme for Polyethylene Terephthalate (PET) bottles. Adhesives, colorants and ad-
ditives are used to optimize the mechanical and aesthetic properties of plastic to match their aimed
purpose resulting in an enormous variety of plastics (Thiounn and Smith, 2020). The most suitable
recycling method depends on the properties of the plastic. For example, melting of a batch of mixed
plastic with different melting points affects the appearance and performance of the recycled product
due to insufficient blending of the material (Hahladakis and Iacovidou, 2018).

So, to move towards a circular economy for consumer plastic packaging, high-grade sorting is essen-
tial. Therefore, this research will be focused on the recovery of plastics that takes place in a MRF.
State of the art sorting facilities use a cascade of NIR sorting units to separate the incoming plastic
packaging waste into multiple polymer types (Feil et al., 2019). NIR sensor sorting systems such as the
system shown in Fig. 1.1 use the reflection of light beams to identify the material of the object and use
actuators to separate the targeted materials from the material flow (Gundupalli et al., 2017).

08 N e AR O

Drop Eject

Figure 1.1: NIR sensor sorting system with conveyor belt consisting of a feeding mechanism (A), a light source (B), a processing
unit (C) and a blowbar (D) (Tomra, 2021).

In practice, the NIR sensor sorting systems are not always used to their full potential (Feil et al., 2019).
The performance is related to the number of times an object is not sorted into the correct material
flow. Such an event will be referred to as a false call. Multiple factors reduce the performance of an
NIR sensor: the feed, the NIR settings, the identification database, and level of regular maintenance,
amongst others. The feed of a sensor can be characterised by three related variables. First is the ma-
terial composition of the feed, this includes the material type, size, colour and shape of the particles.
The feed composition also includes the amount of dirt on the surface of the particles. Second is the
feedrate which is measured in mass, volume or particles per time unit. The final variable is the feeding
mechanism which is the way the particles are placed on the belt. This, together with the material com-
position and feedrate leads to the occupancy rate and the overlap rate. In this research, the variables
of the feed are referred to as the feed characteristics.

An NIR sensor system performs best when particles are fed in a monolayer with some space between
the particles (Pascoe et al., 2010). Due to the heterogeneity of the input material, the individual sorting
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units and the operational circumstances of an MRE fluctuations in the feedrate and feed composition
are known to occur (Curtis et al., 2021). The variations of the feed characteristics result in fluctuations
in the occupancy rate and false calls. Controlling the feed characteristics can improve the perfor-
mance of the sensor sorting system (Feil et al., 2019).

The influence of the feed characteristics on the sorting performance has been reviewed in previous
research. The influence of the throughput rate, the share of targeted material, the roughness of mate-
rial and the surface moisture have been analysed (Kiippers et al., 2020) (Kiippers et al., 2019) (Kiippers
et al., 2021). Also, a model was created with a predetermined probability of correct classification for
common types of plastic packaging (Kleinhans et al., 2021). But the variables of the feed and the influ-
ence on the performance have not yet been set against each other and combined in one model. In ad-
dition, research performed on alab scale is relevant for the understanding of the sorting performance.
However, these experiments are not always able to capture the particle-to-particle interactions of het-
erogeneous waste. Khodier et al. (2021) states that real scale experiments are needed to transfer the
results to applications in the industry. So, comparing the influences of the feed characteristics on the
sorting performance of an NIR sensor sorting system in an industrial setting will point out the oppor-
tunities to optimize the feed to gain the desired quality results in an MRE Currently, systems for smart
control of flows in MRF’s are being developed (Sarc et al., 2019). These systems aim to control the
feedrate and feed characteristics by real-time adjustment of for example the shredder settings. The
knowledge gained in this research about the optimal feed characteristics can also be applied to such
smart systems.

1.2. Objective

The aim of this research is to increase the understanding of false calls of NIR sensor systems, con-
tributing to higher quality sorted products that can open up the market of recycled plastics.

1.3. Research Questions and Scope

Based on the objective the following research questions are formulated:
Main research question:

To what extent do feedrate, feeding mechanisms and feed composition influence the type and number
of false calls in sensor sorting systems and how can these false calls be reduced?

Sub research questions:

1. What is the working range of the sensor?

The working range of the sensor defines the ranges of the particle characteristics (particle size, shape,
colour) that the sensor can process correctly with a high probability, given that the particles are fed
under optimal conditions and in a monolayer. Knowing the requirements for the optimum input
material allows to the correct evaluation of false calls.

2. What is the relation between each type of false call and feed characteristics (the average material
composition, average feedrate and the feeding mechanism)?

The relation between the feed characteristics and false calls defines the NIR sorting performance. This
information can be used to create a statistical model of the NIR sensor system.

3. What is the effect of short- and midterm fluctuations of the feed characteristics on the sorting perfor-
mance?

Due to the input material of an MRE the design of the sorting process and maintenance, variations in
feedrate and feed composition may occur. These variations may influence the number of false calls.
Studying the effect of the variations on the total amount of false calls may lead to more insight on the
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acceptable ranges of fluctuations in the feedrate and composition.

Scope
Below the focus area and limitations of this research are summed up.

* The sorting performance of NIR sensor systems of post-consumer packaging waste in the Nether
lands is analysed. The material is referred to as Plastic verpakkingen, Metaal verpakkingen en
Drinkpakken (PMD).

* The research is conducted at an MRF in operation and not in a lab setting. Unforeseen alter-
ations to the sorting system may occur but are monitored and noted.

* The settings of the sensor sorting system such as the splitter height, the air pressure of the noz-
zles and the classification algorithm will remain constant during the research.

1.4. Methodology

In this research, an experimental approach is used to analyse the influence of different types of FC’s on
the sorting performance of an NIR sensor system. The research is conducted at a Dutch MRF where
PMD is sorted. An NIR sensor sorting system in the facility is chosen to build up and demonstrate the
method. This NIR processes the most challenging feed in the MRF at the end of the sorting line. Due
to the wide range of particle properties in the feed this NIR encounters all types of FC’s. In Fig. 1.2 the
experimental research methodology is visualised.

Literature study NIR working range and performance

Framework Types of False Calls

Test A Test B Test C Test D
i i i j Feed iti
Sor_tlng perfect material V‘_arylnjg Product _a!'ld reject NIR sensor data Video analyses eed composition
fed in perfect monolayer particle sizes composition tests tests

Test E

Varying feed rate
and feed
composition

Feed characteristics

{incl. variations)

L 3

-
Data False Calls Site observations
Data Analyses

Statistical model of NIR
performance

‘Working Range Errors

Causes of varying feed

Literature study

Various scenarios of
feeding mechanisms,

Monte Carlo Analysis

feedrate and material
composition.

Capacity and sorting

performance NIR
sensor system

Figure 1.2: Research methods and corresponding tests. White blocks represent the research methods and blue the
(intermediate) results and products.

First, types of FC’s are defined and the feed characteristics that are expected to affect each type of false
call are determined. Subsequently, the range of the feed characteristic of the chosen system is studied
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using the data collected by the NIR system. Multiple tests will be conducted to isolate the influence of
each type of FC. The feed characteristics will be varied using the Design of Experiments (DoE) method
and the earlier found working ranges of the sensor. The performance is determined by analysing the
samples of the material flows. In addition, a statistical model is developed to perform a Monte Carlo
Simulation.

Key Takeaways Chapter 1
* High-grade sorting is essential to reach the ¢ A NIR makes False Calls while sorting
recycling goals and move towards a circular which lead to a lower product grade or

economy for post-consumer plastic packaging. aloss of valuable material.

* NIR sensor-based sorting systems are state ¢ In this research, a framework of types
of the art and are often applied to separate of False Calls is created, implemented
polymer types and increase the grade on-site at a MRF and used to create a

of products. statistical model.







Theoretical Background

2.1. Post-Consumer Plastic Packaging

In The Netherlands, the average person creates 34,5 kg PMD waste per year of which 71% is collected
separately (Milieu Centraal, 2018). Part of the remaining 29% is mechanically recovered from mixed
household waste. In Table 2.1 the seven polymer types with the largest production share in plastic
packaging in Europe are displayed (Plastics Europe, 2020).

Table 2.1: Most used polymer types of packaging material and common applications.

Polymer type Abbreviation Common packaging applications

. Bags for bread and frozen food, shrink wrap, container lids,
Low Density Polyethylene PE-LD
squeezable bottles

High Density Polyethylene  PE-HD Shampoo bottles, household cleaners bottles, juice bottles
Polypropylene PP Containers for yogurt and butter, bottle caps

Polystyrene PS Food service items, rigid food containers

Expanded Polystyrene EPS Take away food containers

Polyvinyl Chloride pPVC Packaging of electronics and toothbrushes

Polyethylene Terephthalate PET Bottles for water and soft drinks, peanut butter jars

2.1.1. Polymer Waste Hierarchy

In 2008 the European Union created the Waste Framework Directive to set the definitions and basic
concepts of waste management and unify the targets and the approach to tackle waste. The five-
step waste hierarchy (Fig. 2.1), which is derived from the Ladder of Lansink, is the foundation of
this framework. In the framework, recycling is defined as "any recovery operation by which waste
materials are reprocessed into products, materials or substances whether for the original or other
purposes.”. It is specified that reprocessing materials into fuels, backfilling operations and energy
recovery are not classified as recycling.

Recycling methods can be divided into upcycling and downcycling. In the case of upcycling, the prod-
uct quality resembles the quality of virgin material. This is the most preferable option because the
value of plastics is not lost and is applied mostly within the production process or for developed col-
lection schemes like PET bottles (Al-Salem et al., 2009). Part of the collected and sorted plastics do not
meet the quality standards required for upcycling. These mixed or contaminated plastics are treated
and utilised in lower value plastic products like park benches, flowerpots and traffic signs. Chemical
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Prevention and reduction

Conventional
Mechanical recycling mechanical recycling
(designed for recyclability) Purification process

Decomposition or
monomer recycling

Conversion or PTF

Incineration

Landfilling

Leakage into
the environment

Figure 2.1: Plastic waste hierarchy (Rubel et al., 2019). Note: Chemical recycling does not comply with the definition of
recycling as mentioned in the EU waste directive.

conversion or Plastics To Fuel (PTF) is often referred to as recycling but does not comply with the def-
inition of recycling in the European Waste Directive (2019). Energy recovery by combustion of plastics
is applied when the before mentioned methods are not possible due to e.g. economical restrictions.

Recycling is challenging due to the wide range of types of plastics and additives and fillers. Fillers such
as calcium carbonate and talc can increase hardness and is an inexpensive way to increase the bulk
of the plastics (Ugdiiler et al., 2020). Additives are added to the plastic packaging to make them fit for
purpose by for example increasing the tensile strength, protecting against Ultraviolet (UV) light or de-
creasing flammability. However, these additives may decrease the recyclability and may lead to health
risks during recycling or environmental impact when plastics disintegrate after littering (Hahladakis
et al.,, 2018). Also, laminated plastic packaging consisting of multiple polymer types will always be
downgraded due to the low grade of the product (Shen and Worrell, 2014). Finally, polymers will de-
grade over time due to external factors such as UV. Therefore, a closed-loop in which no plastics are
downcycled currently appears unattainable.

2.2. Recycled Polymer Market

A study of the Dutch recycling system for post-consumer plastic packaging waste in 2017 states that
a large fraction of the recycled polymers is not suited for high-end consumer goods markets like food
packaging and household appliances (Brouwer et al, 2019). For safety reasons, Food Contact Material
(FCM) has to comply with strict regulations. Not only does FCM have to meet contamination and
migration limits, the maximum quantity of a substance that is allowed to migrate from the packaging
into food, but also full traceability throughout the plastic chain and separation of FCM and Non-FCM
are required (De Tandt et al., 2021). The latter two requirements pose a technological challenge to
processors and recyclers of post-consumer plastic waste. It is estimated that in Europe, 5% of the food
packaging is recycled and used to produce food packaging again (De Tandt et al., 2021).

On the other hand, there is a lack of international certification for recycled plastics per product group
(De Tandt et al., 2021) (Shamsuyeva and Endres, 2021). Quality not only depends on the share of
contamination but als on the type of contamination. At present, quality concerns and the low prices
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of high-quality virgin plastics keep packaging producers from using recycled plastics (McKinnon et al.,
2018). Also, producers require a steady, large volume flow with the security of supply.

So, the loop of plastic food packaging is hard to close. In addition, the limited uses for low-grade
recycled polymers and the low oil prices keep the market value low (Brouwer et al., 2020). Recycled
polymers with high purity can make the use of recycled plastics more attractive for manufacturers and
contribute to a circular economy (Rem, 2017) (Luijsterburg and Goossens, 2014).

2.2.1. Quality

In The Netherlands, municipalities are responsible for the collection and recycling of PMD. The mu-
nicipalities or the recyclers receive a compensation from the packaging industry to outsource the dif-
ferent steps of the chain. The quantity and quality of the material throughout the chain is monitored
by Nedvang, a company founded by the packaging industry, using the Deutsche Gesellschaft fiir Kreis-
laufwirtschaft und Rohstoffe (DKR) specifications. These specifications set quality targets for the five
types of products that are produced: PET (DKR328-1), PP (DKR324), PE (DKR329), foils (DKR310) and
mixed plastics (DKR350). These criteria determine the financial compensation for the organisations
involved in the chain but can be requested by the purchasers too(Ooms et al., 2010).

The Mixed plastic product mainly consists of PE and PP. A limit is set for the share of PVC. PVC is
undesirable because it releases toxic gasses when heated or dissolved and decreases the quality of the
recycled product due to the formation of compounds Park et al. (2007).

2.3. Polymer Sorting
2.3.1. State of the Art

Mechanical waste processing plants usually apply the following steps: comminution (using e.g. shred-
der or bag opener) to liberate particles and reduce the size of large outliers (Julius and Pretz, 2012).
Then, size classification to separate the waste streams into flows with a particle distribution suitable
for the following treatment steps. And lastly, the separation is based on a combination of properties
that are unique for a material group like magnetic properties, material type, density or shape (Feil
etal., 2016).

2.3.2. Optical Sorting

Optical sorting was originally developed for the food industry. An optical sorter uses a combination of
a light source and a sensor to identify the shape, colour or chemical composition of a particle. Based
on classification criteria, the particle is identified as targeted or non-targeted material and processed
accordingly by a set of actuators. This non-destructive inspection method has a short measuring time
which makes it very popular to sort material at a high throughput rate (Zerbini, 2006). In the food in-
dustry the particle characteristics of the feed like grains, nuts and fruit, are very uniform. This enables
monolayer feeding and contributed to the success of optical sorting in this industry. The application
extended to the mining industry and pharmaceutical industry and was first applied to process recy-
clable material in the waste industry around 1990 (Julius and Pretz, 2012). An optical sorting system
generally consists of four components; the feeding mechanism, the light source, a digital processing
unit and actuators (Fig. 1.1). Depending on the application and budget a spectrum is chosen (Rozen-
stein et al., 2017).
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2.4. NIR Sensor Sorting Systems
2.4.1. Working Principles

NIR sensor-based sorting units use reflection spectroscopy to identify materials. A light beam includ-
ing wavelengths in the near-infrared spectrum (750 to 2100 nm) is emitted towards the conveyor belt.
The intensity of the reflection and absorption of wavelengths in the spectrum depends on the chemi-
cal and physical properties of a material, like the molecular composition and surface conditions (Kiip-
pers et al.,, 2019). The materials can be distinguished by the peaks in the reflection spectra (Fig. 2.2).
Black or dark materials absorb more light and are therefore less visible and can not be classified cor-
rectly. The absorption spectrum of specific wavelength ranges can be influenced by surface moisture
(Kiippers et al., 2019). Higher surface roughness of the particles, on the contrary, increases the amount
of raw data and improves the classification because of less background noise (Kiippers et al., 2019).
The refection of the light beam is collected from spatial areas on the particle surface called pixels. The
spectrum is evaluated for each pixel. The size of the pixel, together with the belt velocity and the frame
rate leads to the minimum particle size that can be classified correctly. For example, the NIR analysed
in this research has a pixel size of 8 mm. In the industry, chemometric methods are used to interpret

2. overtone C-H stretching

[ 9.9-]
! 1.a | C-Hcombination band

! o |
[ *™ | y45 | N-Hbands
m [15] ;
o jarm } ‘ll :_mirlonp C-H stretching
| am i | C-Obands
p— ‘ | 1':.:. 21 C-Hcombination band
i 2 ABZ S

{
]
(

1
|
|
|
|
|
|
|
|
|
|

PC ‘\‘—\,n-..-'—
PMMA \'r.—h_‘“-./_’w'—

o
T

1 fa

wavelength / pm

Figure 2.2: Spectra for commonly used plastic packaging materials (Tatzer et al., 2005).

the optical data (Tatzer et al., 2005). Collected data of spectral bands of known material classes are
uploaded to the data processing system as a reference database. During sorting, the incoming data is
compared to the database and the materials are identified. This method requires updates when the
feed composition changes or if new classes of materials are added.

Once the material is identified based on the reflection spectrum, a signal is sent to the connected
actuator to eject the material or not. Some data processing systems offer the option to process the
acquired data to influence the selectivity of the sensor. For example, if a high recovery of PET is aimed,
one can increase the 'weight’ of all PET indicating pixels and thereby change the surrounding pixels
to favour a "PET" identification. This will affect the action of the actuator and decrease the chance of
incorrect sorting of a valuable material like PET. By doing so, more non-PET materials may be ignored
by the NIR and therefore move along with the PET, decreasing the purity.

In case air valves are used as actuators, the time frame of the activation depends on the number of
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pixels recognised and the belt velocity. In some systems, the time frame can be adjusted manually. The
trajectory of the particle is affected by its shape, density, moment of inertia, air nozzle size, airflow and
the distance between the air nozzles. After correct recognition of the material by the sensor, a heavy
particle might still be discharged incorrectly i.e. dropped due to insufficient applied air pressure from
the valves.

2.4.2. The Working Range

The working principles of an NIR result in the working range. This is a range of particle characteristics
to which the material has to comply to have the highest probability to be sorted correctly apart from
being fed in a monolayer. The following particle properties play a role in the working range:

* Minimum particle size: Number of correctly identified pixels that is required to activate the
actuator may not be met.

* Maximum particle size: Can be too heavy to move over the splitter or may get stuck.
e Materials characterised and sorted in a database: The reflection spectrum is not recognised.

* No black/dark materials: Little light is reflected in the NIR spectral region preventing correct
identification (Rozenstein et al., 2017).

* Surface conditions (maximum amount of surface moisture, dirt or grease).

* Folded particles and complex shapes: Bended surfaces may lead to overexposure due to the high
reflection of light (Chen et al., 2021).

* Particles that tend to roll or float: The timing of the activation of the actuator is based on the
belt speed. Relative moment to the belt may lead to arriving to late or too early to be ejected.

e Minimum and maximum density: Particles may be to heavy to move over the splitter. Light
materials may flutter into the wrong section after ejection.

2.4.3. Feed Characteristics

As mentioned in the introduction, the NIR feed passing the sensor scanline can be described by three
related variables: the feed composition, the feedrate and the feeding mechanism. Combined, they
describe the occupancy rate and overlap rate on the conveyor belt.

feedrate: The feedrate, also referred to as the throughput, can be defined using the mass rate (#igeeq)
[kg/s] or the particle rate [nr/s]. Since plastic packaging has a relatively low density, in research the
particle rate is applied. In the industry mass rate is more common. Average particle mass can be
used to calculate the mass feedrate if particles have about the same size. In the industry, plant opera-
tors have to balance between product value and technical limitations when controlling the input of a
facility (Feil et al., 2017).

Occupancy Rate: The occupancy rate [%] is the share of the sensor detectable zone of the belt that is
covered with particles. The occupancy rate can be defined as an average over the belt width per second
or specified at intervals along the width. Kiippers et al. (2019) argue that the capacity of an NIR sensor
system should be indicated using the occupancy rate instead of the feedrate as the occupancy rate
and the related overlap rate are directly related to the sensor performance.

Agglomeration and Segregation: In the heterogeneous waste flow, interaction between particles or
between machine parts and particles may occur. Due to shape, adhesion or gravity, multiple objects
may act like one, which is referred to as agglomeration. Segregation occurs when objects with similar
attributes group in the process, causing an inhomogeneous flow for specific particle properties such
as size or shape.
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2.5. False Calls

The NIR sensor sorting system is a binary classification system; the incoming material is sorted into
two classes based on a classification rule. In the case of polymer sorting, the feed is sorted into a prod-
uct fraction, which contains the most valuable material, and the residue. The sensor system can be
programmed to eject either the product or the residue, respectively called positive and negative sensor
sorting. The choice for either option depends on the share of valuable material and contamination.
While sorting, errors may occur and valuable material is lost in the residual fraction or the product
fraction is contaminated. When a non-targeted particle is ejected, it is known as a False Positive (FP).
When a particle is not ejected when it had to, it is called a False Negative (FN). The fractions often
are non-symmetric meaning that the chance of a FN is different from the chance of a FP (Ooms et al.,
2010). Together, these errors are referred to as False Calls. Correctly processed particles are True Posi-
tive (TP) when ejected or True Negative (TN) when not ejected. Fig. 2.3 displays the four outcomes of
a binary classification system for both positive and negative sorting.

Input Material Input Material
Targeted = Non-Targeted = Targeted = Non-Targeted =
Valuable Material Contamination Contamination Valuable material
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Figure 2.3: Contingency table: False Calls of positive and negative sensor sorting.
To sum up:

Total targeted material = Material to be ejected =P = TP + FN
Total non-targeted material = Material to be dropped = N = TN + FP
Total feed = targeted material + non-targeted material =P + N

Drop fraction = TN + FN
Eject fraction = TP + FP

2.5.1. Performance

The sorting performance of this binary classification system can be described departing from the
number of particles (n) [nr/s] or using the mass (m) [kg/s]. The former is useful to analyse the per-
formance in detail by looking at the behaviour of individual particles and to create a statistical model.
The latter can be applied to describe the sorting results of a NIR and is applied in the industry. Next,
both approaches will be described starting with the particles.
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The terms introduced in Section 2.5 can be used to describe the share of particles that is sorted cor-
rectly. The fraction of targeted particles in the feed that ends up in the drop fraction can be expressed
as the False Positive Rate (FPr)(Eq. 2.1a). Correspondingly, the FNr! (FNr!) is the share of non-targeted
material that is incorrectly ejected (Eq. 2.1b). This approach is applied by Giilcan (2020) in the mining
industry and Bukovec et al. (2007) in the pharmaceutical industry. In the case of negative sorting, a
low FPr would mean that a large fraction of the contamination is removed from the valuable material.
If the FPr is high, it would imply that a lot of valuable material is lost in the residue. So, a low FPr and
FPr are beneficial.

FN
FNr=— (2.1a)
p

FP
FPr=— (2.1b)
N

In the industry and partly in research, the performance indicators are based on mass. The plant sort-
ing performance is judged on the grade (G), the recovery (R) and the mass recovery (Ry,) of the valu-
able materials. The grade, also referred to as the purity, is the percentage of valuable material in the
product (Eq. 2.2a). The recovery represents the amount of valuable material from the feed in the prod-
uct and is determined by the TPr and the average particle mass (/mavg [kgl) (Eq. 2.2b). The mass recov-
ery can be used to quantify the product in relation to the feed (Eq. 2.2c). In this research, discharge (D)
is added to the performance. This performance indicator describes the share of non-valuable material
that is removed from the feed and does not end up in the product. These performance indicators are
also applied in earlier research by Kiippers et al. (2020).

G= Valuable material in product

2.2a
Total product (2.2a)
R = TPr# e = Valuable material in product fraction (2.2b)
B e Valuable material in feed )
Product (2.20)
= .2¢
™7 Total feed
Non-valuable material in residue
Ry = (2.2d)

Non-valuable material in feed

Depending on the position of the sorting system in the process line, the product and residue of the
sensor system are sorted further using additional steps down the line.

2.5.2. Causes of False Calls

In literature, multiple parameters that influence the performance of NIR sensor systems are identified.
To get a grip on how the complex and interrelated factors affect the sorting performance, the param-
eters have previously been grouped. Kiippers et al. (2020) organises the parameters into two groups
based on the cause of the failure of the sensor: identification errors and discharge errors. The first
is for example influenced by surface moisture and the latter by share of targeted material. However,
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variables like throughput influence both errors. In another approach, Giilcan (2020) divides them into
geometric parameters (classification algorithm, the position of the splitter, feeding mechanism, etc.)
and the process parameters (throughput, share of targeted material, size distribution, etc.). Other
papers sum up a few causes of incorrect classification such as the inability to detect black or contam-
inated material and the sub-optimal material flows due to preceding process steps (Feil et al., 2019).

In this research, the errors are divided into six categories of false calls. These categories represent
the underlying causes of the underperformance of the sensor system. This approach assumes the set-
tings of the NIR, the geometric parameters, are constant. In Fig. 2.4 an overview is presented of which
the framework is based on the lectures of Bakker (2020). First, the working range errors will be clari-
fied.

Working Range False Calls

Working range errors occur when a particle is not suited for the used NIR system. This means that if
the particle is fed in a monolayer under perfect circumstances, the particle will still not be correctly
recognized by the sensor or ejected by the actuator. Working range false calls can be avoided by pre-
processing or corrected by additional separation steps using a different separation principle or an NIR
which classification algorithm is trained using another adapted teach and learn set.

Orientation: The characteristics of the particle may lead to an unfavourable orientation on the belt.
An orientation is unfavourable if for example the dirty side or label is facing upwards and the material
can therefore not be identified correctly by the classification algorithm. Also, a round shape or asym-
metrical density of the particle may prevent it from lying still on the belt. The particle is therefore not
recognized correctly by the NIR sensor, does not reach the actuator at the predicted time, or is placed
in a way that influences the trajectory when ejected and thus failing to be thrown over the splitter.
Orientation errors may be deterministic, for example when a particle is too heavy to be thrown over
the splitter no matter the orientation, or if all sides of the particle are covered in dirt.

Size: Every NIR has a minimum and maximum particle size which is recommended by the manu-
facturer. Particles below the specified size may not be classified and ejected correctly. Above this
minimum value, however, particles may still encounter difficulties due to size. The chance of correct
sorting increases fast with particle size until size no longer plays a role.

Recognition: Targeted materials that do not have the targeted attributes are incorrectly sorted. For
example when a particle consists of a combination of recycled PE and PP which does not occur in
the database of the NIR sensor and is therefore not recognized as targeted material. The same goes for
non-targeted material that happens to have certain undesired targeted attributes, like medical objects
that are made of plastics but are not allowed in the plastic product. Finally, black materials might not
reflect enough light to be classified correctly.

False Calls Unrelated to Working Range

Some stochastic errors can happen to all particles in the feed. The feed characteristics influence the
probability of these stochastic errors. When a batch of material is sorted multiple times under the
same process conditions, the share of these stochastic errors can remain constant, but the particles
involved will differ. However, some particles may be more likely to be involved in this stochastic error
than others.

Monolayer Overlaps: Particles may overlap on the belt due to the feeding mechanism and the fee-
drate or agglomeration. Overlapping may lead to incorrect identification of (part of) the materials
involved. If a particle is correctly identified but is placed too close to an adjacent particle, it may be
co-deflected (Pascoe et al., 2010). The particle characteristics influence the chance of overlap. Long
and thin particles with a high shape factor increase the chance of overlapping (Wen et al., 2021). Also,
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when a particle has a 3D shape, it is less likely to be involved in overlapping due to its ability to roll
when dropped onto the belt. The chance of an overlap leading to a false call depends on the share
of targeted material because it influences the chance the overlap leads to an unwanted permutation
(i.e. FP or FN). To minimise the chance of overlap it is recommended to narrow the size distribution
as much as possible (Wotruba, 2006) (Julius and Pretz, 2012). Due to preceding collection and sorting
steps, some particles form agglomerated groups. The agglomeration of particles inhibits monolayer
feeding. Therefore it is considered a cause of overlap errors in this research.

Systemic: A sensor system may cause errors due to for example the physical design or principle short-
comings of the system. These errors are independent of the particle characteristics. Even if the mate-
rial is within the working range and is fed in a monolayer, systemic errors may occur.

Dropouts: In the sorting system, unexpected errors may occur due to the energy of particles. For
example, when two particles meet in a mid-air collision after ejection by the blow valves. It is expected
that the chance of a dropout increases with the feedrate. However, since sensor systems should be fed
in an organised monolayer the chance of a dropout is assumed to be negligible.

In the experimental part of this research, the probability of each type of FC will be determined. An
overview of the FC’s and the assigned symbols is given in Table 2.2.

Table 2.2: Types of FC’s and assigned symbols of the probability.

Type of False Call Symbol Outcome (FP, FN)
Systemic Psyst Both

Size Dsize FN
Recognition Prec Both
Orientation Porient Both
Overlap: Monolayer Pover Both
Overlap: Stationary Agglomerate Poverst Both
Overlap: Non-stationary Agglomerate  Povernst FN

2.5.3. Relation Between Feed Characteristics and Sorting Performance

The influence of feed characteristics on the sorting performance of optical sorters has been investi-
gated in literature. The research is focused on the mining industry and waste industry since these
industries encounter trouble with the heterogeneous feed. The sensor type, settings and classifying
system differ in each research. In addition, the type of sorted material differs as optical sorters are
applied in different industries. Therefore, the exact values found in previous research can not one-to-
one be applied to other sorting systems, but general relations can be established. Here, the findings
are summed up per industry and per type of optical sorter.

Mining Industry
VIS optical sorter

» For a constant particle size distribution, an increase of feedrate leads to a decrease in sorting
efficiency (Gtilcan and Giilsoy, 2017). This is mainly due to the ejection of non-targeted particles
when particles are too close to each other. A decrease in feedrate may lead to an improved
distribution of particles on the belt because of fewer particle interactions preventing movement
across the belt (Pascoe et al., 2010).

» Atasteady throughput, sorting performance decreases as particle size decreases. It is suggested
that the reduced performance is due to the perception capacity of the sensor and the accuracy
of the nozzles (Giilcan and Giilsoy, 2017) (Pascoe et al., 2010).
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¢ Anincrease in the share of material to be ejected causes a decrease in sensor sorting efficiency.
This is likely due to an increase of the probability that two overlapping particles are a combina-
tion of targeted and non-targeted material (Pascoe et al., 2010).

Waste Industry
NIR optical sorter

* Ahigher feedrate decreases the grade, recovery and mass recovery of the product (Kiippers et al.,
2020).

* The share of eject material in the feed influences the incorrectly discharged particles: the FPr is
relatively highest around 50 percent, and quantitatively around one-third (Kiippers et al., 2021).

* Yield is not affected by the share eject material for plastic squares in the range of 45 to 55 mm
(Kiippers et al., 2021). However, the share of eject materials did influence the yield for larger
rectangular material (Kiippers et al., 2020). It is hypothesized that the influence of the share of
eject particles further depends on the size distribution and the classification algorithm (Kiippers
etal., 2021).

* Fluctuations in the feedrate on a time scale of seconds decrease the grade (Feil et al., 2019).

2.6. Fluctuations

Fluctuations of the feedrate can occur throughout the MRE Since the facility and sorting units are
designed for a certain throughput, fluctuations in the feedrate may influence the sorting performance
when the recommended rate is exceeded. Curtis et al. (2021) has proposed to split up the fluctuations
into categories based on time: short-term (<15 s), mid-term (15 to 600 s) and long-term (>600 s). The
short-term fluctuations can be caused by for example the rotation of a drum sieve or shredder earlier
in the process. Mid-term variations may be traced back to discontinuous feeding of the process, while
long-term can be traced back to adjustments in the process or previous plant disruptions. Here, the
causes of fluctuations identified in earlier research are summed up.

2.6.1. Sorting Process Input

The material that enters the MRF is heterogeneous due to the factors below.
* Quality differences of batches from different municipalities.
* Changes in regulations (deposit scheme, PMD composition, mechanical recovery).
* Retention time at storage locations.
* Bales containing agglomerated material re-entering the process.
» Feeding system of the sorting process.

 Extremely large objects influencing the composition on short term.

2.6.2. System Fluctuations

The design of an MRF and the operating decisions like machine settings may contribute to fluctu-
ations in the throughput throughout the sorting line. In earlier research performed by Curtis et al.
(2021) multiple causes of fluctuations were mentioned which are summarised in Table 2.3. The ro-
tational movement in the drum sieve not only leads to fluctuations in the throughput but also the
formation of braids. These large and long particle combinations can not be classified correctly by an
NIR.
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Table 2.3: Overview of fluctuations of the throughput of an MRF and the causes identified in literature.

Location Fluctuation Cause Duration Frequency | Proposed solution
H -controlled feedi
umzfn controfiled eeding | g ich feeding Discontinues feeding with . Smart control, instructions
machinery (wheel loader, Mid term Irregular
of shredder wheel loader. wheelloader.
shovel etc.)
- Large particles for,m b4r idges in Short term to Analysing flow data and
Bridging the shredder, making it appear full, R Irregular .
. . h . mid term machine data.
Shredder influencing the automatic feeding.
Reversing intervals Shredder settings or obstruction Short term 30 sec -
) Large, thick-walled objects are
Reduced processing ) Short term to
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Analysing Sorting Performance

In this chapter, the created framework of False Calls is put to the test in an industrial setting. The goal
is to determine the probability of each type of False Call (FC) of a selected NIR sensor system. First,
the analysed NIR and the relevant preceding processing steps at the MRF are introduced. Then, the
experimental methods are described and finally the results of the analysed NIR are presented.

3.1. Experimental Setup

This research was conducted at an MRF in the Netherlands. At the facility, an NIR was chosen to
conduct the experiments. This NIR aims to increase the grade of the mixed plastics product (DKR350)
by separating the mixed plastics from the residue. Negative sorting is applied. The targeted materials
that are ejected, are all non-plastics and PVC. The non-targeted materials are plastics. This NIR was
chosen because the throughput of the NIR is relatively low, which makes manual sampling possible. In
addition, mixed plastics are currently the most challenging product at this facility. The mixed plastic
product consists of plastic types that are not targeted as one of the mono-products (PS, ABS, etc.)
and the losses of mono-products due to the imperfect sorting performance of the preceding steps.
The wide range of particle properties of both the mixed plastics and the contamination complicates
the separation of unwanted particles from the valuable plastics during this purification step. Mixed
plastics is the largest product of this MRE similar to other Dutch MRF’s (Jansen et al., 2015).

MRF input Foils Non-plastics Mix 350
Shredder  |-» D.rum L, Windsifter N Sjcveral L Ballistic | e NIR Sensor Man.ua\
Sieve 1 sorting steps separator 1 System sorting
Heavy 3D
| |
Windsifter Ballistic

Light ———

2 separator 2

Figure 3.1: Process scheme of sorting steps preceding the analysed NIR (green) and relevant products (gray).
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At the start of the sorting process, the material is fed to a bunker using an excavator. Next, in several
preprocessing steps the bags are opened and the incoming material is sorted by size and shape (Fig.
3.1). Windsifters separate heavy, mainly thick-walled, 3D particles from light, 2D particles. Since the
windsifters are not perfect, heavier materials enter the light material flow and vice versa (Jansen et al.,
2015). Ballistic separator 1 consists of two separators in parallel. The NIR analysed in this research
is followed up by a manual sorting step. This indicates that the sorting performance of the NIR is
insufficient. Due to confidentiality, only the relevant sorting steps and material flows are displayed.

3.1.1. Description NIR Sensor Sorting System

The NIR system is an AUTOSORT TS400, manufactured by TOMRA with a belt width of 2 m. The
actuator system contains 80 valves and the belt speed is set at 3.86 m/s. The pressure in the valves is
7.5 bar. The valves are programmed to open 16 ms before the identified particle and close 5 ms after
the particle has passed. At the current belt speed this reaction time means that belt area between 0.06
m before and 0.02 m after the particle is targeted by the air nozzle. To prevent the entrainment of
non-targeted material into the eject, the spacing between objects should be at least 0.06 m. Material
is dropped onto the conveyor belt from two chutes 0f 0,95 mx 1,20 m and 1,0 m x 1,20m (Fig. 3.2). The
material is not equally divided over both chutes; the feed of the chute displayed on the left in Fig. 3.3
also consists of the material flow from Ballistic Separator 2.

Figure 3.2: Feeding mechanism: two chutes drop material on to the belt.

Ballistic Separator 1B Ballistic Separator 1A
2D fraction 2D fraction

T

Ballistic Separator 2
3D + sieve fraction

P

Acceleration belt

x =200 X

[
o

Figure 3.3: Graphic representation of feeding mechanism.

The NIR uses the so-called flying beam technology (Fig. 3.4). The rotating mirror, the defining part of
this technology, provides a changing angle of incidence and angle of reflection which enables spectral
data collection along the width of the belt. The mirror has a convex polygon shape. The outgoing
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and incoming light beams are reflected by a flat side of the convex polygon and the sensor scans from
right to left as the mirror turns and both angles increase. At every corner of the mirror the angles of
incidence and reflection leap back to the smallest value and the line scan starts over. The incoming
light is divided into short time frames and a spectrum is created for the light collected during each
time frame. The spectrum is in turn used to assign a material group to the time frame. The rotation
angle of the mirror is synchronised to a position along the width of the belt. Therefore, the found
material group can be appointed to an area on the belt, which from now on is referred to as a pixel.

This NIR has a spatial resolution of 8 mm, meaning the pixel size is 8 mm by 8 mm. Information is
gathered for one line of pixels at a time while the belt and materials pas underneath the sensor. Since
the belt width is 2000 mm, one line consists of 250 pixels. The current belt speed requires 482 line
scans per second and a time frame of 8.3 nanoseconds per pixel.

O

|sEEEEs sEEEEEEEEEEEEEEEn|

Figure 3.4: Flying beam technology applied in the analysed NIR.

Processing Algorithm

As described in Section 2.4.1, the detected reflection spectrum of a pixel is used to assign a material
(class) to that pixel. The classification and processing algorithm are machine specific and vary per
producer. The adjustments mentioned in this paragraph are applied in the used NIR.

When the spectrum is not recognised the pixel is left empty at first. Next, using the processing algo-
rithm, the identified materials can be expanded to the surrounding pixels, artificially increasing the
positive identified surface. Then, the pixels that remained unidentified are designated as either plastic
or non-plastic. This decision is based on the surrounding pixels that are part of a software filter. The
following processing algorithm options can be used to adjust the sensitivity per material class:

e Expand the identified material to the surrounding pixels.
* Increase the filter size (standard size is 5 by 5 pixels).

» Adjust the percentage of pixels in a filter needed to assign a material to the filter.

The database contains multiple material groups of both targeted and non-targeted material. When
the surface of a particle is not recognised as belonging to one of those material groups and a large
share of pixels remains unidentified, the area is classified as 'Others’ and is considered a plastic. Non-
plastics that are not in the database, therefore, decrease the grade of the product (Fig. 3.5) in this case
of negative sorting.

The nozzles are activated when a set number of pixels in an area related to a nozzle is met. The re-
quired number of pixels depends on the nozzle distance.
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Figure 3.5: Decision scheme of the processing unit.

3.2. Experimental Methods

Five test were designed to single out the probability of each type of FC. This section first provides a
description of the analytical methods. Then these methods are applied throughout different tests.
Lastly the experiments are set out.

3.2.1. Analytical Methods

The behaviour of the NIR in relation to the feed characteristics was analysed by taking samples, mak-
ing video recordings and using data collected by the NIR processing unit.

Samples

To analyse the material composition in detail, samples of the material flows were taken on-site. The
sorting installation is placed in a large hall where the machines are placed on different height levels.
The NIR plastic product falls straight into a chute to the first floor and onto a conveyor belt which
ends in the manual sorting cabin. Thus, samples of the product could be taken at the manual sorting
conveyor belt (Fig. 3.6a). When sampling, two persons sweep the material of the running conveyor
belt into a container while a third person keeps track of the sampling time. The NIR residue is led on
in the sorting process. Therefore, the residue could be sampled using a sampling tool that catches the
material at a location where the conveyor belt is within manual reach (Fig. 3.6b).

(a) Sampling location of the drop fraction: (b) Sampling location of the eject fraction:
the manual sorting belt. a conveyor belt.

Figure 3.6: Sampling locations

The sampled particles were divided into 13 material classes depending on the type of material, size
and shape (Tab. 3.1). The NIR aims to eject all non-plastics and PVC from the material flow in order
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for the product to meet the DKR350 standard. Non-plastics and PVC were combined and regarded
as one material type. The plastics were split up into rigid plastics and foils because the shape and
density are expected to influence the behaviour of the particle in the NIR. The non-plastics show a
wide variation of particle properties. Therefore, to decrease the manual sorting work no distinction in
shape was made in this category. When uncertainties about the polymer type of rigid plastics arose,
staff members of the quality inspection department were consulted to make a distinction between
PVC and other types of rigid particles. Before and after the sample analysis, the weight of the total
sample was measured. Due to the loss of moisture and small particles, the sample weight may reduce
during sampling. When the weight loss remains below 3%, no adjustments or additional samples are
necessary (Lebersorger and Schneider, 2011).

Table 3.1: Material classes.

Group number Material Size Shape

1A Small

1B Plastic foils Medium 2D/flexible
1C Large

2A Small

2B Rigid plastics Medium 3D
2C Large

3A Small

3B Non-plastics and PVC Medium All
3C Large

4B Plastic particles part of an agglomerate medium All
4C Large

5B Non-plastic particles part of an agglomerate Medium All
5C Large

The diversity of particle shapes complicates the characterisation of particles into size groups. When
particles are fed to the NIR only the side facing upwards is visible. Therefore, the particle size and
shape of the top view in a stable position are analysed. The following parameters can be used to
describe the particle size and shape of irregularly shaped particles (Kandlbauer et al., 2021):

¢ Equivalent parameters: Dimensions of a chosen geometrical shape of which the area resembles
the particle surface area.

* Geometrical shapes: The dimensions of a chosen geometrical shape that encloses the particle.
¢ Shape factor: Function of the shape perimeter and surface area.
* Feret diameter (minimum and maximum): Distance between two parallel tangents (Fig. 3.7).

It was chosen to divide the particles based on the minimum Feret diameter (F,in, [mm]) and the max-
imum Feret diameter (Fpnax [mm]). The Fpjy is important as it is the minimum belt width occupied by
the particle if the Fpy, is parallel to the scanline and blow bar. If a targeted particle is too small, the
area of the correctly identified pixels may not be large enough to activate the nozzle.

In Fig. 3.8 particles of small and medium-size fraction are shown.

Samples are taken to determine the composition of a material flow, for example, the product of the
NIR. The reliability of these samples can be expressed using the sampling error. The required max-
imum sampling error can be used to determine the sample size. In waste management, a relative
sampling error of 20% is accepted. To determine the sampling error for a certain material class the
composition of the analysed material flow is approached as a binomial distribution; particles are ei-
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Figure 3.7: Minimum and maximum Feret diameter (Sympatec GmbH, n.d.)

Table 3.2: Assigning particles to particle size groups based on Fp,j, and Fmax

Size Group Fmin [Imm]  Fjax [mm]

Small (S) <50 <150
50 150-300
Medium (M) <
50-300 50-300
Large (L) >0 >300

ther part of this material class or not. This discrete probability distribution is defined by the chance
(P) of drawing a particle of the material class. The sampling error is equal to the standard deviation
(o) of the binomial distribution and depends on the total number of particles in the sample (Ny) and
the probability (Eq. 3.1a).

However, the value of P is unknown as it is the reason that the sampling analysis is conducted in the
first place. Therefore, it is assumed that for a representative sample, the ratio between the number
of particles targeted in the sampling analysis (/V) and the total number of sampled particles (N;),
resembles P (Eq. 3.1b). When P in Eq. 3.1a is replaced by the ratio of particles, the standard deviation
can be calculated using the sampling results (Eq. 3.1d). The sampling error is calculated per material
class.

The sampling error o can be expressed as an absolute error (Eq. 3.1c), a relative error (Eq. 3.1d) or a
mass error (Eq. 3.1c). The mass error is calculated using the average particle weight of the found tar-
geted material m,yg by dividing the total mass of the targeted material 7, by the number of particles.
To determine the required sample size, it is assumed that the share of material targeted during the
sampling analysis, P, is always above 0.05. To achieve a o of 20% with P = 0.05, 24 particles should be
sampled. This number is rounded to 25 particles. Large particles are likely to account for less than 5%
of the particles in the feed. To reduce the manual labour, a higher sampling error is accepted for this
size category.

The samples are split into four groups before analysing, if the minimum of 25 target particles is not
found in the first share, another quarter is added.

0 =14/ NiotP(1-P) (3.1a)

(3.1b)
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Figure 3.8: Examples of the size fractions. Left: Small rigid plastics. Right: Medium non-plastics.

N
Osamp = N(1- ) (3.1c)
NtOt
g
Orel = % (3.1d)
Omass = Orel * Mavg (3.1e)
m,
Mayg = ﬁt (3.11)

NIR Feed Data

The NIR used in this research collects data about the feed by measuring the (top view) area of all the
particles that pass the sensor scan line. The measurements include the distribution of material along
the width of the belt [%] of total measured material area] and the material composition based on the
area of the material measured from above. A value is given per material [m2/h] and relative to the total
belt area occupied by all materials [%].

Video Feed Data
A Nikon 1 S2 is used to record the surface of the conveyor belt. The camera is placed above the belt as
shown in Fig. 3.9. Videos with a frame rate of 30 frames per second are made.

3.2.2. Test A: Systemic Errors

To determine the contribution of system errors and the associated chance psyst test runs were per-
formed using clean flakes of PVC and product type plastic. The square product plastic flakes originate
from a plastic packaging manufacturer and are made from polyethylene foil (PE) and for the residue
PVC flakes were used. The squares have sides of approximately 10 cm. It is expected that the total con-
tribution of systemic errors is around 1%. A total of 100 particles is used for this test in both categories.
The particles are fed to the NIR manually to avoid overlap. The test is repeated three times.

3.2.3. Test B: Working Range with Respect to Size Range

An important part of the working range of the NIR is the size range. The machine specification states
that the recommended minimal particle size is 20 mm. To confirm, the sorting performance was
analysed for square clean particles which in four sizes: 20 mm, 30 mm, 40 mm, 50 mm. In each
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Figure 3.10: Material Test B: PVC flakes

category, 50 flakes are cut from thick-walled PVC. This material was chosen because it is flexible and
easy to cut, is well detectable and does not tear like paper. PVC is an eject material. Each run is
repeated three times.

3.2.4. Test C: Working Range with Respect to Orientation and Recognition

The goal of this test is to estimate the share of deterministic and stochastic orientation errors. In
addition, this test will give an insight into if, and to what extent, deterministic particles, normally
always giving an FC, can be processed correctly under normal processing conditions thanks to being
overlapped. Finally, an analysis of the deterministic particles provides information on the working
range of the sensor and the share of particles with this kind of uniqueness problem.

The deterministic false calls were analysed by NIR sorting four batches of particles multiple times and
keeping track of the number of times each particle causes a false call. The material was fed to the
conveyor belt manually one by one to exclude overlap errors.

The material that was used for this test was taken from the residue and product flows on the conveyor
belts behind the NIR while the MRF was in operation. The four batches represent the four outcomes
of the NIR under normal process conditions (Tab. 3.3). By choosing these four batches, the behaviour
of deterministic particles under optimal conditions could be compared to behaviour under regular
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process conditions. Only the medium and large size fractions were used in these tests to rule out
size-related errors associated with the smallest range.

Table 3.3: Material used in Test C.

Batch Group Material flow Material Class

1 FP Product Plastics
2 TP Product Non-plastics
3 FN Residue Plastics
4 TN Residue Non-plastics

Deterministic particles always cause a false call under optimal feeding conditions if we look only at
orientation and recognition FC’s. The non-deterministic particles have a chance between 0 and 1 to
be sorted into the wrong fraction which probability is described by Equation 3.2. The total number of
runs (k) per batch is 3. The observed numbers of FP or FN per particle (nrc) are recorded.

Porient,i = % * Share of particles (3.2)

In this test, false calls can be caused by orientation and recognition errors and by systemic errors. This
cannot be prevented. To determine the contribution of orientation and recognition errors the results
were corrected for the probability that a particle is involved in a systemic error (psyst,n). This binomial
chance depends on the found systemic error probability (psyst).

k! n k—n
Psyst,n = m * Pyst * (1= Psyst) (3.3)

The share of particles in the feed with attributes causing recognition or orientation errors was calcu-
lated using the measured sample times. The number of particles per second was determined after
which the drop and eject were summed up.

3.2.5. Test D: Feed Characteristics

As discussed in Section 2.5, the feed characteristics influence the sorting performance. The perfor-
mance of the NIR was tested within the ranges of the feed characteristics found on-site. For example,
the performance at the minimum and maximum feedrates were determined. To determine those
boundaries the feed was characterised.

Feeding Mechanism and Occupancy Rate

The total area of material on the conveyor belt per unit of time is measured by the NIR. This informa-
tion was used to calculate the average occupancy rate. In addition, the NIR recorded the distribution
of material along the belt. Since the feedrate and the occupancy rate are related, the NIR data of the
available occupancy rate is used to inspect the variations of the feedrate through time. An NIR oc-
cupancy data set of 20 days is used to ensure that the data is representative and the influence of the
varying waste composition is reduced.

Agglomeration

To determine the impact of agglomeration on the sensor performance the occurrences of agglomer-
ated materials in the feed and the composition of agglomerated particles were analysed. A distinction
was made between stationary and non-stationary agglomeration. Stationary agglomeration is an um-
brella term that is defined as agglomerated particles that do not separate when shaken by hand. This
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term includes multiple mechanisms such as metal cans locked around other material and unopened
bags. This type of agglomeration is assumed to be present in the input of the MRE Non-stationary
agglomeration, on the other hand, is material that is hooked into each other due to shape or sticky
surfaces. This kind of agglomeration is likely to be formed inside the sorting process and can be sepa-
rated by some shaking.

The stationary agglomeration analysis is combined with the analysis of the samples of Test E. Station-
ary agglomeration is characterised by the following variables:

e Number of agglomerated particle combinations (at least 2 particles).
* Weight of the agglomerates.

* Composition of the agglomerates (targeted/non targeted material) in both the number of parti-
cles and weight.

e Agglomeration mechanisms.

The non-stationary agglomeration was analysed by taking 8 visible heaps from the product. The
reason is that earlier performed on-site observations indicated that non-stationary agglomeration is
likely to enter the plastic product. The frequency of non-stationary agglomerates was determined by
analysing video recordings.

Non-stationary agglomeration is characterised by the following variables:

* Weight of agglomerated particles.
* Mass composition of agglomerated particles (targeted/non targeted material).
* Agglomeration mechanisms.

¢ Occurrence rate.

3.2.6. Test E: Occupancy and Overlap

Design of Experiments

The FC caused by overlapping materials were determined using the Design of Experiments (DoE)
method. This method is essentially a regression analysis that provides a guideline on how to plan and
design a test. It is therefore an efficient way to observe the effects of multiple parameters simultane-
ously, together with the interactions of the factors. Performing experiments in an industrial setting can
be costly. Alterations to the operation settings of the MRF such as an adjustment of the MRF feedrate
influence the quantity and quality of the product. In addition, analysing samples is time-consuming
which makes efficiency is essential. DoE has been applied before in the evaluation of the performance
of a shredder for a heterogeneous waste input and was found to provide significant models (Khodier
et al,, 2021). The parameters that affect the system and can be set during the experiment are called
factors in DoE terminology. The parameters that describe the output of the system are referred to as
responses.

Full Factorial Design

A commonly applied experimental design is the full factorial design. In this design the responses are
measured for all combinations of input factors at both high (1) and low (-1) levels. Consequently, a
full factorial design with k factors requires at least 2X runs. The design can be strengthened with the
response of the system with both factors set to level 0. These so-called center points can be added
to check if the relationship between the factor and the response is truly linear or if a curvature exists.
Furthermore, the influence of uncontrollable parameters during the experiment can be estimated
using center points.

It is assumed that interactions between the two factors (X; and X,) may influence the responses (Y;).
Therefore a polynomial multilinear model is chosen to determine a best fit to the data as follows:
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Figure 3.11: Full factorial design, k=2

Yi=Po+P1X1+B2Xo+P3X1Xo+€ (3.4)

The equation consists of a constant, 3y, two main effects and one two-factor interaction. The coeffi-
cients are indicated with (3.

Experimental Design

It was hypothesized that the feedrate, the feeding mechanism and the percentage of foils affect the
amount of overlap. The goal of this experiment is to investigate the possible relationship between
these factors and the errors caused by overlapping materials. Doing so, the feeding mechanism was
kept constant and the feedrate and feed composition were chosen as factors (k = 2). Three centre
points were added to the design which ads up to total of seven runs.

The feedrate of the NIR is varied by adjusting the input of the MRF to a value between 50% (-1) and
100% (1) of the original feedrate of the MRE The material composition and amount of targeted mate-
rial are controlled using the settings of Windsifter 1 (Fig. 3.1).

This windsifter removes materials with a low density - mainly foils - from the flow towards the NIR. By
adjusting the settings, the share of foils continuing to the NIR can be controlled.

The principle is demonstrated in Fig. 3.12. The airflow from below can be controlled using valves. The
heavy fraction continues to the NIR. If the blow valves are closed, fewer foils will be blown into the
light fraction, increasing the share of foils in the heavy fraction and reducing the share of non-plastics
towards the NIR. In the DoE format, an open valve corresponds to level -1 and a closed valve to level
1.

Table 3.4 shows the operational setting for each run and the run order.

The test was conducted during the same 8-hour shift to avoid changes in operating staff to reduce
outside parameters that may influence the experiment. For example, a different wheel loader may
load the MRF in another way influencing the MRF feed. Also, two members of the operation staff
assist during sampling. At the beginning of each run, the MRF throughput and the windsifter settings
were altered. To make sure the flow throughout the facility was stabilized for the new settings, the
samples were taken 40 minutes after the changes.
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Figure 3.12: Simplified image of windsifter comparable to windsifter used on-site. The blow valves control the amount of
returned air from the fan ((Nihot Airconomy, n.d.)).

Table 3.4: Overview of DoE runs and operational settings

Run Throughput Windsifter blow valves
Level Factor setting [%] Level Factor setting

1 0 75 0 half opened
2 -1 50 -1 open
3 -1 50 1 closed
4 0 75 0 half opened
5 1 100 -1 open
6 1 100 1 closed
7 0 75 0 half opened

The following three principles of DoE were implemented in this experiment:

 Replication: multiple measurements of the responses for the same combination of factors should
be made over a period of time. This is different from multiple measurements at the same mo-
ment, which are just repeated measurements. The replication aims to capture the amount of
random noise caused, for example by variations in the feed that are not measured. In this re-
search three replications of the so-called centre point were performed: at the beginning, the
middle and the end of the experimental runs.

* Blocking: If part of the system changes throughout the experiment, such as a different operator,
the experiment should be split into separate blocks, blocking in DoE terminology. This means
that the experimental runs are repeated for both operators.

e Randomization: to reduce the bias of the sampler, ambient light or the influence of variations in
the performance of sorting units earlier in line than the NIR, the order in which the experiments
are performed, should be random except for the centre points.

Data Collection

During each run, three samples are taken of both the product and the residue. The sampling time was
recorded. The following values were measured for the three size classes in both mass and number of
particles:



3.2. Experimental Methods 31

¢ Share of foils
e Share of rigid material
¢ Share of contamination

* Stationary agglomeration including the share of contamination in the agglomeration. Agglom-
eration is only measured for medium-sized and large particles.

These values are used to calculate the following eight responses (Y;):

—

. Average feedrate of NIR (Eq. 3.5a and Eq. 3.5b).

. Share of non-plastics in the NIR feed.

. Share and grade of agglomeration in the NIR feed.
. TPr (Eq. 2.1a)

. FPr (Eq. 2.1b)

. Grade (Eq. 2.2a)

. Recovery (Eq. 2.2b)

. Mass recovery (Eq. 2.2c)

. Discharge (Eq. 2.2d)

© 0 N OO ks w0

The feedrate and feed composition were calculated by combining the values found for the product
and residue. To determine the average mass feedrate ritgeeq [kg/s] the mass flow to both outputs was
calculated.

23 Sample mass
n=1 Sample time

= 3.5
m number of samples (3-52)

Hfeed = mdrop + meject (3.5b)

Analysis of Results

The feedrate of the MRF was altered to indirectly influence the feedrate of the NIR because the lat-
ter could not be adjusted individually. Experimental data analysis occurred in two steps. First, the
influence of the factors, the MRF feedrate and the opening of the blow valves, on the feedrate of the
NIR and the share of non-plastics in the NIR feed were analysed. Due to the processing steps between
the start of the MRF line and the NIR it is likely that the factors are not one on one related to the feed
characteristics of the NIR. Next, the effect of the feedrate and the share of targeted material on the TPr,
the FPr and the grade were analysed.

The factors were substituted into Equation 3.4, which was used for the regression analysis. Before the
experiments, it is unknown if a statistically relevant relation can be found between the MFR feed (F)
and the settings of the windsifter (W) and the responses (Y;).

Yr=ﬁ0+ﬁ1F+ﬁ2W+ﬁ3FW+€ (3.6)
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The statistical software MiniTab® was used to evaluate the data. The software conducts a regression
analysis and visualises the results. For each response, forward selection is applied to create a statisti-
cally significant regression model. The software calculates the p-value of each term which indicates
the empirical significance. If the p-value is below a chosen significance level («), it implies that the
response is not likely to be random. The value of the response can then be predicted using the coef-
ficient and the input factor. When forward selection is applied, first the term with the lowest p-value
is added to the model, followed by the others until only terms higher than the chosen significance
level remain. In general, a value between 0.05 and 0.15 is assigned to o. In this research a value 0.1 is
chosen, similar to the value applied by Khodier et al. (2021) during their experiments with waste.

Once a model with significant terms for a response is created, an analysis of the variance (ANOVA) is
performed. The share of variation of the response that can be predicted using the input factors is de-
scribed using the coefficient of determination (R?%). R? adj is the coefficient of determination adjusted
for the number of variables in the model.

Material Classification Overlap

To create a better understanding of the classification of overlapping material, multiple particle com-
binations were placed underneath the light beam of the NIR on the switched off conveyor belt. The
reaction of the actuator was confirmed by listening if the valves eject air. The results can not be used to
conclude whether or not both particles are truly ejected when targeted by the nozzles. The following
combinations were tested:

* Non-plastic material - Plastic foil (single layer).
* Non-plastic material - Plastic foil (multi-layer).
* Non-plastic material - Rigid plastic (overlapping).

* Non-plastic material - Rigid plastic (nearby).
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3.3. Results

3.3.1. Test A: Systemic Errors

The systemic error is found to be around 2% for plastics and 4% for non-plastics. It is observed that
the PVC particles are classified incorrectly due to at least three phenomena:

* The airflow of a nozzle is temporarily insufficient.

e The nozzles do not react to the PVC particle at all due to either failure of the sensor, the software
or the nozzles.

Table 3.5: FPr of clean PP flakes and FNr of clean PVC flakes.

False Call Rate [%]
Runl Run2 Run3 Average
PP (Product) 100 2 0 4 2
PVC (Residue) 100 4 5 4 4

Particle Material Amount of Particles [nr]

3.3.2. Test B: Working Range with Relation to Size

In Fig. 3.13 the TPr for square particles with a size up to 50 mm is shown. It is clear that particles
with a side length of 20 mm, the minimum particle size according to the specifications, are not clas-
sified correctly. The nozzles did not react to this particle size, hence it is assumed that this size is not
correctly identified by the classification algorithm. Next, as the size increases, the TPr increases from
an average rate of 44% for 30 mm to 65% for 50 mm. This means that working range size errors are
deterministic if they are below a certain size. For larger sizes the performance improves but is not as
expected. It is proposed to determine a cut-off value equal to the minimal size based on the TPr.

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

TPr[-]

20 30 40 50
Side Lenght Square Particles [mm]

Run 1 Run 2 Run 3 == Average

Figure 3.13: Sorting performance for square eject particles with a size up to 50 mm.

3.3.3. Test C: Working Range with Relation to Recognition and Orientation

Four batches of particles were sorted multiple times to identify the deterministic and stochastic errors
related to orientation and recognition errors. In Table 3.6, the results of the batch of False Negative
material are presented. These particles were meant to be ejected, however, it can be concluded that
49% of the particles in this batch are not ejected in any of the three runs. Out of those 28 particles,
8 were not correctly identified when placed under the sensor on the non-moving conveyor belt. In
Fig. 3.14, a few of these particles are displayed. The results also show that 17% does not cause a FN in
three out of three runs. Under processing conditions, these particles might have been overlapped and
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dropped together in the plastic product, causing a FN. Another smaller chance is that these particles
had a low chance of an unfavourable orientation.

In Appendix A the results of the other batches are displayed. All plastic particles (TN and FP) were
classified correctly by the sensor when placed on a non-moving belt. As can be seen in Table 3.8, a
total of 6% of the medium and large plastic particles were involved orientation errors.

Table 3.6: Number of False Positives per individual particle after 3 batch runs. Batch Material: False Negatives

Number of FN/runs Number of particles [nr] Share of total particles [%]
0/3 10 18
1/3 7 12
2/3 12 21
3/3 20 35
3/3 (Classification error) 8 14
Total 57 100

In Table 3.7 and Table 3.8, the results of the batches are combined and processed. The chance of
an orientation error or recognition error is much higher for non-plastics. This could be due to the
processing algorithm; materials that are not recognised are classified as plastics and dropped. Also,
the material characteristics vary more for non-plastics than plastics, making it harder to include all
such material types in the database. Orientation errors due to movement on the belt can also only be
determined for non-plastic materials. If a plastic particle has a relative speed, it will still be dropped
ifit does not arrive at the expected time because the belt is empty and the nozzles are not activated at

all.

Table 3.7: Orientation and sensor errors of non-plastic particles.

Number of FN/runs Share of particles [nr.%] Systemic errors Correction porient
0/3 25 88.5% 37% 0.00

1/3 14 11.1% 3% 0.01

2/3 21 0.5% 20% 0.13

3/3 31 0.0% 31% 0.31

3/3 (Classification error) 11 - 11% 0.11

Table 3.8: Orientation and sensor errors for plastic particles.

Number of FN/runs Share of particles [nr.%] Systemic Errors Correction porient
0/3 89 94.1% 95% 0.00
1/3 6 5.8% 0% 0.00
2/3 3 0.1% 3% 0.02
3/3 3 0.0% 3% 0.03
3/3 (Classification error) 0 - 0% 0.00

During the test, the particle characteristics were noted and recordings were made of the orbit of the
particles after ejection. Below the observed causes of orientation and sensor errors are listed.

Observed errors due to non-plastics orientation and recognition:
» Packaging consisting of paper and plastic.
e Contaminated tetra pack.

* Medical plastic items.
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 Light paper sheets.

* Heavy particles (e.g. diapers).

* Cables and other long and thin wires.

» Packaging with content (Uniqueness error).

¢ Black materials.
Plastics orientation errors:

* Round plastic lids.
¢ Contaminated foils.

e Plastic packaging with large paper labels.

Figure 3.14: Deterministic particles found in the plastic product.

3.3.4. Test D: Feed Characteristics

Feeding Mechanism and Occupancy Rate

The data collected by the NIR gave a first impression of the variations in feedrate. Temporary stops of
the MRF processing line were removed from the data set. The sensor system measures the material
area that passes underneath the sensor for a total time of 5 minutes. So, short and mid-term fluctua-
tions can not be distinguished when using these data. The data were applied to check if the feedrate
during Test E matches the ranges found during normal process conditions. Fig. 3.15a shows an aver-
age of just below 5000 m? per hour and no outliers at the top. Using the belt width and the belt velocity
the average occupancy density is calculated to be 18%.

The 5-minute average area of non-plastic material varies between 12 % and 27% of the total material
feed area.

The NIR is fed by two chutes which widths lead to the two peaks loadings along the width of the belt
(Fig. 3.16). On the right (position 150 cm), the occupancy rate is highest. That side corresponds to
the chute in which 2 feed material flows are combined (See Fig 3.3). The graph shows the distribution
of the measured area of the feed along the belt width. The average occupancy density is 18% and the
occupancy density at the peaks is even higher. It is concluded that the occupancy rate along most of
the belt width exceeds the 7.5% free rectangular particles can occupy without overlap Wen et al. (2021).
Since the feeding mechanism is not altered, this uneven belt distribution is a continuous problem.

Stationary Agglomeration
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Figure 3.15: Range of feed characteristics.
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Figure 3.16: Distribution the total measured material area along the belt width of the NIR during a one day period.

Some particles are part of a group that should not be presented to the sensor in a monolayer. The
occurrence of different agglomeration mechanisms was determined in relation to the total amount of
stationary agglomeration. A total of 35 agglomerated groups were detected and analysed. Based on
the results it is concluded that locking is the most occurring type of agglomeration mechanism (Fig.
3.17). Still, this mechanism accounts for only 23% of the non-plastic particles found in agglomeration
and 12% of the mass. Unopened bags are the largest contributor of agglomerated non-plastic particles
and total agglomerated mass.

It was found that on average 13% of the NIR feed mass consists of stationary agglomerated material
(Tab. 3.9) with an average non-plastic content of around a third of the mass and a fifth of the particles.
However, large variations occur for both shares.

Table 3.9: Stationary agglomeration in the feed.

wt.% nr.%
Average agglomeration in feed 13 5
STD Aggl/feed 6 2
Average Non-plastics in agglomeration 31 22
STD non-plastics 11 6

Non-Stationary Agglomeration

In Table 3.10, the composition and mechanisms of 8 agglomerate groups are listed. On average 69%
of the non-stationary agglomerate mass consists of plastics, which is quite similar to the feed com-
position. Video recordings show that non-stationary agglomeration can start with one single particle
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Figure 3.17: Stationary agglomeration mechanisms.

that is stuck on the side of a chute and then can grow to an agglomerate covering an area of 1 m? in 8

minutes.
Table 3.10: Non-stationary agglomeration in the product.
Total weight [kg] Weight FN [kg] Grade [wt.%] Agglomeration mechanism or material
2.36 0.46 81 Rope, hook of hanging planter, bag in bag, adhesive material,
pantyhose, torn up planter, iron hooks
0.39 0.12 69 Copper cable, rope, torn up material with rough edges
0.30 0.09 70 Iron/plastic wire
1.89 0.92 51 Rope, textiles
0.61 0.24 61 Material with sharp edges
0.59 0.25 58 Wire
0.14 0.04 71 Iron wire, garbage bag loop
0.53 0.00 100 Bags inside bag
6.81 2.12 69

3.3.5. Test E: Overlap and Feedrate

The regression analysis of the experimental data of Test E indicated that, as expected, a statistically
significant relationship exists between the NIR feed and the input factors for both particle and mass
measurements (Tab. 3.11). An interaction was found between the input factors meaning that at higher
MREF feedrates and closing of the blow valve in the windsifter, the effects on the NIR feed are amplified
(Fig. 3.18). Also, the regression analysis implies that when the throughput is high, the amount of non-
plastics in the NIR feed decreases when the valves are closed, as aimed for (Fig. 3.19). However, at low
MRF throughput rates, closing the valve leads to an increase of non-plastic particles. Therefore, it is
concluded that adjusting the position of the blow valves is not a suitable way to vary the number of

non-plastics.

Table 3.11: Results of the regression analysis: model coefficients and ANOVA values.

Coefficients Feed [nr/s] Feed [kg/s] Non-plastic [wt.%] Non-plastic [nr.% ] Foils [wt.%] Foil [nr.%] Rigid [nr.%]
Constant (39) 58.5 -0.23 0.359 0.033 0.695 1.015 -0.017
Feed (1) 1.4 0.02 - 0.003 -0.003 -0.006 0.002
Wind (32) -0.4 0.01 -0.001 0.003 - -0.004 -
Feed*Wind (33) 0.02 - - -3.5E-05 - 3.9E-05 -
ANOVA
R? 96.0 82.9 46.1 93.4 94.6 95.2 84.9
Radj 91.9 74.4 35.4 86.7 93.5 90.4 81.9
PMod 0.01 0.03 0.09 0.03 <0.001 0.02 0.003
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Figure 3.19: Effect of the input factors on the share of non plastic particles [nr.%].

Finally, the fraction of rigid particles and foils in the NIR feed is influenced by the feedrate. It is likely
that a lower throughput rate improves the ballistic separation performance and decreases the amount
of rigid plastics in the NIR feed. The material composition and size fractions of the NIR feed in all
seven runs can be found in Appendix A.

For the mass fraction of rigid plastic particles, the pyoq was higher than 0.1 thus no significant relation
was found. Also, the coefficient of determination for the mass of non-plastic particles is very low and
the model prediction is considered insignificant.

The feed composition was used to calculate multiple performance indicators such as the grade and
the TPr of the material classes (Tab B.1, Appendix B). The performed regression analysis results in
significant models for the TPr of particles and mass (Tab. 3.12). The R? and Ragj are higher for the
medium size fraction than for all non-plastic particles combined. This indicates that the model pre-
diction of the TPr of the middle size fraction using the input factors is better than the prediction for
the TPr of all particles.

An increase in feedrate lowers the mass TPr. When the blow valves are closed, the decrease is steeper
(Fig. 3.20a). This is not the case for medium-sized non-plastic particles (Fig. 3.20b) as will be dis-
cussed in Section 3.3.6.

Material Classification in Case of Overlaps
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Table 3.12: ANOVA

TPr [nr.%] Discharge [wt.%] TPr medium sized NP [nr.%]

Constant (3;) 0.3476 0.4227 0.373
Feed (8,) - -4.6E-05 0.00056
Wind (B3) -0.00142 0.000381 0.00156
Feed*Wind (B4) - -2.1E-05 -0.000035
ANOVA

R? 70.79 96.95 84.61
Radj 64.95 93.89 69.22
PMod 0.018 0.009 0.098
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Multiple combinations of particles were placed on the non-moving belt of the NIR feed (Fig. 3.21). It
was found that the actuators were activated when non-plastic material is placed underneath a single
layer of plastic transparent foil but not when the non-plastic is underneath multiple layers of transpar-
ent plastic foil. Also, a slight overlap of the non-plastic material by rigid material may already prevent
actuator action.

3.3.6. Discussion

In this chapter a framework of the causes of false calls of an NIR was introduced and applied to an
NIR in an MRE All errors observed and identified while testing could be assigned to one of the FC
categories. In this section each category will be discussed to determine the accuracy and evaluate the
results.

Systemic errors

The systemic error of the NIR is higher than the 1% that was expected beforehand based on earlier
results of preliminary test performed by Kiippers et al. (2020) using clean flakes. It was observed that
insufficient airflow inhibited correct classification of the PVC particles. This is likely due to fouling
and could be prevented by adequate maintenance. Research has shown that failing of 20% of the air
valves reduces the TPr with 20% (Kiippers et al., 2021). The larger the share for failing air valves, the
higher the probability of systemic errors.

Size errors

PVC particles below a size of 20 mm are not classified correctly by the NIR as indicated by the man-
ufacturer. As predicted, the the TPr increased along with the particle size increased. In this research
square particles up to 50 mm were analysed. But at a size of 50 mm the average TPr is still only 65% .
Due to a lack of time particle sizes between 50 mm and 150 mm were not analysed. In addition, only
square particles were used as feed hence TPr of thin particles remains unknown.

The TPr varies per run per size with differences as big as 30% for a size of 30 mm. The same batch of
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(a) Single-layer foil: shoot.

(c) Rigid small overlap: no shoot. (d) Rigid no overlap: shoot.

Figure 3.21: Classification and actuator action by overlapping of materials.

PVC flakes was used for all three runs. The flakes were wiped clean in between the runs but dirt may
have adhered to the surface.

Recognition and Orientation Errors

Recognition and orientation errors were determined in the same test. In this industrial setting, the
classification data per pixel is not available to the users of the NIR. Therefore, in some cases, it was not
possible to determine if a particle was not recognised on the moving conveyor belt or if it has a high
probability of an orientation error. When these particles were placed on a non-moving conveyor belt,
the nozzles were not constantly opened but sputtered. These particles were assigned to orientation
errors.

Overlap Errors

The regression analyses of the experimental results of Test E showed that in general, the TPr decreases
with an increase in feedrate which corresponds to the trends found in literature. However, this was
not the case for the particles in the medium size fraction with closed blow valves of the blow valves.
This can be explained by looking at the effect of both input factors - the MRF feed and the position
of the windsifter blow valves - on the share of non-plastics in the feed (Fig. 3.19). When both input
factors are set to level 1, the share of non-plastics is at its highest point. In earlier research, a relation
was found between the share of non-plastics and the TPr in the mining industry but not in the waste
sorting. However, the decision to eject a particle is also influenced by the processing algorithm. The
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NIR is programmed to give priority to rejecting material. A larger share of plastics leads to an increased
chance of a non-plastic particle being overlapped by a plastic particle likely resulting in a drop of
both particles. But since the share of non-plastics was not systemically influenced, more research is
needed to identify the influence of the processing algorithm on the relationship between the share of
non-plastics and the TPr.

Even though a significant relation was found between the feedrate and the TPr, the feedrate did not
influence the grade or recovery, in contrast to earlier performed research. Based on the performed
tests, it is concluded that correlations between the NIR feedrate and feed composition and the sensor
performance found in earlier research do not necessarily apply to waste sorting in an industrial set-
ting. In a lab setting where thick rigid particles are used, the eject or drop decision depends on the
particle on top. But when transparent foils are involved, the sensor might also identify the particle
underneath. Also, the processing algorithm can influence the outcome.

Another explaination for the absence of the expected relations between the feedrate and the recovery
could be the design of the experiment. It was aimed to keep all variables except for the input factors
stable. However, changing the throughput rate of the MRF can have a significant effect on the perfor-
mance of all preceding sorting steps. For example, it was found that the share of rigid plastic particles
in the feed is related to the feedrate of the MRE A lower feedrate may lead to better performance of
the ballistic separator and therefore a smaller fraction of rigid plastic particles. Further, it was found
that the non-plastic medium-sized particles in the sensor feed have a lower average particle weight
(Appendix B). This too could indicate better sorting performance of the ballistic separator at lower
feedrates. A higher average particle weight can lead to a different trajectory once ejected and there-
fore affect the sensor performance. However, more research is needed to demonstrate the effect of
the feedrate of the ballistic separator on the average particle weight. Nevertheless, unforeseen effects
of the preceding processing steps altered the feed composition and may have influenced the sorting
results. Khodier et al. (2021) stated that the DoE method can be applied to experiments using het-
erogeneous waste. However, unlike in the experimental design of Khodier et al., multiple preceding
sorting steps could influence the feed composition. It is therefore recommended to create an artificial
feed using real waste samples. However, at this facility, it was not possible to feed a prepared batch to
the NIR through both chutes without other sorting steps in between. Therefore, the model of the NIR
created in this research uses the MRF feed as an input factor instead of the NIR feed.

In addition, the sampling method may have led to deviations in the results compared to the real feed
composition. First of all, because the samples of the drop and eject fraction were taken in a short
period but not simultaneously.
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Key Takeaways Chapter 3

* Five tests are performed on-site to
single out the probability of each type
of False Call per material class.

* The Design of Experiments method is
applied to analyse the effect of the
feedrate and feed composition on the
overlap errors.

* As expected, the probability of being
involved in a False Call due to size
decreases when particle size increases
for particles <50 mm.

* The probability of being involved in an
orientation or recognition error is
determined to be around 50% for non-
plastic particles and 3% for plastic
particles.

e The TPr of non-plastics does not exceed
45%, meaning that more than half of the
contamination present in the feed ends
up in the product.




Statistical Model

In this chapter. a MATLAB implementation of the statistical behaviour of the NIR sensor system is
introduced. This implementation is based on the FC parameters in Fig. 2.4. The experimental results
from this research concerning the possible FC’s were applied. This model allows us to simulate dif-
ferent optimisation scenarios. Then, multiple feed optimisation scenarios were tested. Overall, this
model is aimed at improving the understanding of how all the different types of errors come together
and affect the sorting performance. Three scenarios are designed to investigate if, and to what extent
an adjustment to the present NIR could improve the performance.

4.1. Scenarios

Once the overlap probabilities are determined, three scenarios are implemented. These options are
chosen because they are realistically possible to the present MRF and tackle at least one type of error.
In the first two scenarios the feed characteristics are altered. The third scenario involves an adjustment
of the sensor system. An overview of MRF process improvement suggestions will be presented in
Chapter 5.

1. Narrow Size Distribution: In the previous chapter the working range was analysed. It was found
that the NIR has a lower TPr for small particles. In this first scenario, the input feed was modified to
simulate the effect of removing a large part of the small particle size fraction. In the MRE a more nar-
row size distribution may be achieved by sieving the feed. The parameters that describe the particle
size distribution in the model are adjusted.

2. Tackling Stationary Agglomeration: Stationary agglomeration largely consists of unopened bags
(Section 3.3.4). More bags may be opened correctly by adjusting the bag opener settings or placing
an additional bag opener before the sensor sorting system. In this scenario it was assumed that a
modification in the preceding MRF line leads to more correctly opened bags. This can reduce the
share of stationary agglomeration in the input by 50%.

3. Reducing Classification and Orientation Errors: When particles outside of the working range are
fed to the sensor system, classification and orientation errors are likely to occur. In this last scenario,
instead of adjusting the feed, the working range of the sensor system was expanded. The working
range may be improved by placing a Laser Object Detection (LOD). This type of sensor can detect
if an object is present on the belt by height differences. This enables the detection of black particles
and materials that are not available in the database. The NIR sensor software is also able to detect the
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presence of particles that are not part of a certain material group or the conveyor belt and classifies
this as 'Others’. But the current software can not eject materials identified as 'Others’ (Fig. 3.5). Hence
the processing algorithm should be adjusted to enable the ejection of unknown materials.

However, the application of a LOD or an adjustment of the processing algorithm do not eliminate
all classification and orientation errors. For example, the blow bar is still not able to move heavy
particles over the splitter. Therefore, it was assumed that the classification errors reduce by 90% and
the orientation errors by 50%.

4.2. Conceptual Model

The modelis created in MATLAB and revolves around a system matrix of n by m, where n is the number
of particles. In the first column, the type of material is assigned to each particle in the simulated heap
which consists of 10000 particles. The particle groups introduced in Table 3.1 in Chapter 3 are used:
foils, rigid plastics, non-plastics, and plastics and non-plastic that are part of an agglomerate. In the
next two rows, two Feret diameters F; and F; are given to each particle using a group-specific Weibull
distribution. The lowest of the two values represents Fpin, the highest Frhax. Then, columns 4 to 10
represent the probability of the different types of false calls. Depending on the information in the first
three columns, each particle has the probability of either causing an error (1) or not causing an error
(0), in each column representing a type of FC. In the second last column the values of columns 4 to
10 are summed up to give the total number of FC'’s the particle is involved in. A value of 1 or higher
means that the particle in the corresponding row is sorted incorrectly due to FP or FN. Finally, the
last column contains the information about the particle weight which is in turn used to determine the
grade, recovery and mass recovery.

A Monte Carlo analysis was performed, meaning that the model was run multiple times with random
input composition taken from the earlier determined normal distribution (Tab. 4.2). The mean values
and standard deviation of the output values were determined. The total number of runs was set to
1000. This number was determined by increasing the number of runs in steps of 10 and comparing
the mean values of the results. At 1000 runs the swaying of the mean values is reduced to a minimum
(Fig. Appendix C)

x1 Fiy By Psyst,x1 Psizex;  Pclass,xy  Porient,xy  Pover,x;  Poversst,x;  Povernst,xy  Ptot,xy Mx

Xn F2,x,, FZ,xn Psyst,x, Psize,x, Pclass,x, Porientx, Poverx, Poverstx; Povernstx; Ptotx, Mx,

4.2.1. Assumptions

* Small particles are not involved in orientation errors or sensor errors, these are accounted for
by the size errors.

e Particles do not result in an orientation error and a recognition error simultaneously.

* In Test E results such as the average feedrate, grade and recovery were determined without
the effect of non-stationary agglomerate. To simulate the impact of the non-stationary parti-
cle combinations on the sorting results, they are added on top of the average feed. Therefore,
the total amount of sorted particles in one run exceeds 10000. In the model, the addition does
not affect the probability of overlap errors.

* Particle size is only important for free particles since they cause errors based on size.



4.2. Conceptual Model 45

4.2.2. Input Parameters

The probabilities of each type of false call determined in this research were implemented in the sta-
tistical model (Tab. 4.1).

Table 4.1: False call probabilities with monolayer feeding derived from experiments

Material Class Psyst Psize Prec  Porient

1A 0.02 0 0 0

1B 0.02 0 0 0.03

1C 0.02 0 0 0.03
2A 0.02 0 0 0

2B 0.02 0 0 0.03

2C 0.02 0 0 0.03
3A (<20 mm) 0.04 1 0 0
3A (>20 mm, <30 mm) 0.04 0.8 0 0
3A >30 mm, <40 mm) 0.04 0.6 0 0
3A (>40 mm, <50 mm) 0.04 0.3 0 0
3A (>50 mm) 0.04 0 0 0

3B 0.04 0 0.1 0.4
3C 0.04 0 0.1 0

As described in Section 4.2, the composition of the input varies per run. For all three non-agglomerated
material groups, a value is chosen from the normal distribution. A size is assigned to all free particles
from a material-specific Weibull distribution (Tab. 4.3). This distribution is based on research on
waste particle size distributions performed by Tanguay-Rioux et al. (2020) and adjusted to match the
ratios found from sampling. The distribution of the input is based on the data collected in Test E.

Table 4.2: Input parameters per material group.

Mean STD
Share of Foils 0.47  0.05
Share of Rigids 0.12  0.03
Share of Non-plastics 0.32 0.10
Share of particles part of stationary agglomerate  0.05  0.02
Grade agglomeration 0.78  0.05

Table 4.3: Weibull distribution parameters to describe the particle size distribution of the feed.

Scale factor Shape factor

Foils 11 1.8
Rigid Plastics 9.0 2.5
Non-plastics 6.55 1.1

4.2.3. Calculation Overlap Error

The model is used to calculate the chance of an overlap error. Test E provides data of the chance of
being involved in one of the other errors (po) for a range of feedrates. However, the contribution of
false calls due to overlapping (pover) of particles can not be extracted from this data alone. So, first, the
chance of causing an error when fed in a perfect monolayer (pmono) Was calculated by combining the
errors in the model. Then, pgver was calculated using Equation 4.1. It is assumed that the errors are
uncorrelated.
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Ptot = Pmono T Pover — Pmono * Pover (4.1)

4.3. Results and Discussion

4.3.1. Overlap Errors

First, the model was run with the contribution of overlap errors set to zero. In the graph plot in Fig. 4.1,
the difference between the model with a monolayer and the experimental results is shown. The feed
in the model does contain particles that form a stationary agglomerate and can therefore not be con-
sidered a perfect monolayer. By keeping these particle combinations in the feed in the model, it can
be compared to the experimental data and additional assumptions can be avoided. The differences
are contributed to pgyer-

High MRF feed data  w Low MRF feed data Model monolayer

FNr Total

FPr Total

FNr Small NP

FPr Middle Rigids mm

FPr Small Rigids m
FPr Large Foils

FPr Middle Foils

FPr Small Foils  m
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Figure 4.1: Output of the model without overlap v.s. the experimental results.

Using Eq. 4.1, the probabilities pover were determined (Tab. 4.4). The value of pgyer for small non-
plastic particles is high compared to the larger sizes. The relatively high probability can be explained
by the choices made in the NIR software. As was seen in Test E, when smaller non-plastics are close to
plastic particles, the actuators are not activated. However, it is possible that the results found in Test B
(Working Range with Respect to Size Range) can only be applied to clean and pure particles and due
to surface contamination of small particles, the number of pixels recognized by the system may not
meet the requirements for actuator activation. Lastly, the model accounts for only a psi,e for which
both dimensions are below 50 mm.

4.3.2. Scenarios

The performance indicators were computed for the scenarios and compared to feeding material in a
monolayer and the regular feed characteristics (Fig. 4.2). In the model, the share of non-plastics in
the NIR feed is calculated using the relations found in Test E. When particles are fed in a monolayer
the FPr and FNr are not related to the share of non-plastics. However, the product grade, recovery
and mass recovery do depend on the share of non-plastics. Therefore, both input compositions are
displayed in the Fig. 4.2. First, it can be concluded that feeding the material in a perfect monolayer
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Table 4.4: Values pover per material group.

Material Class Pover
Small Foils 0.020
Middle Foils 0.021
Large Foils 0.030
Small Rigid 0.000
Middle Rigid 0.053

Small Non-plastics 0.654
Middle Non-plastics  0.219
Large Non-plastics 0.165

still only leads to an average grade of 84% at a low share of non-plastics and 75% at a high share. This
indicates that a significant part of the feed is outside the working range of the sensor. Apart from the
monolayer with the low feedrate composition all scenarios are calculated using the feed composition
that is linked to the high feedrate of the MRF because it represents the normal operating conditions.

Tackling the classification and orientation errors leads to the largest improvement of the grade, fol-
lowed by tackling the stationary agglomeration. Only small differences in the recovery were found as
the plastic particles are not likely to cause working range errors and the overlap error is steady within
the measured throughput range. Improving the grade does lead to a lower mass recovery since more
targeted materials are ejected and do not end up in the product. In scenario 2, the unopened bags
were removed from the feed. Since the share of plastics was higher for agglomerated material, remov-
ing the agglomeration from the feed results in a lower overall grade.

Monolayer: Low feed composition Monolayer: High feed composition m Overlap
Overlap & non-st m 51: Smaller size range mS2: Less agglomeration
m S3: Orientation errors
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Figure 4.2: Sensor performance of the three scenario’s.

In Fig.4.3 the number of particles involved in each type of FC is displayed. In the first scenario 90% of
the small particles are removed from the feed. Therefore, the number of systemic FC'’s is also lower. In
all three scenarios. the highest number of particles is involved in an overlap error.
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Figure 4.3: Number of errors per type of false call out of total analysed particles.

* A statistical model was created to
represent the heterogeneity of the feed
and performance.

* The probability of an overlap error is
larger for non-plastic particles which are
to be ejected.

Key Takeaways Chapter 4

* Three process adjustment scenarios
were tested: smaller size range, less
agglomerated material and reduction of
orientation errors. The latter adjustment
is expected to give the most significant
results.




Discussion

In this study, first, a framework of causes of a FC of an NIR sensor-based sorting system was introduced
and applied in a case study in an MRE Next, a statistical model of the NIR was created to analyse the
combination of FC’s. This chapter discusses the methodology and the limitations of the experiments
and the model. In addition suggestions are made on how the amount of FC’s may be reduced.

5.1. Methodology

The applied framework of independent false calls is a new method to analyse sensor sorting perfor-
mance. Previous research on NIR performance is mainly focused on one or two types of FC’s such
as recognition or overlapping of particles while other errors are eliminated by feeding in a monolayer
or using clean particles. This research provides a starting point for a more elaborate approach of the
types of FC’s which can provide the means to tackle errors more efficiently.

The framework was applied to an NIR which uses negative sorting to remove contamination from
the mixed plastics product. This specific NIR was a suitable system to demonstrate the framework
because the feed consisted of a wide range of particle properties which enabled the observation of all
types of FC’s. An NIR that applies positive sorting and targets, for example, only PET bottles is likely to
encounter fewer errors due to working range because the targeted material is relatively homogeneous.

In Test E, the DoE method was applied to determine the probability of an overlap error in relation
to the feedrate and feed composition. The feed of the NIR could only be adjusted by adjusting the
MREF feedrate. Therefore, the regression analysis was performed in two steps to determine if the feed
of the NIR could be controlled as expected. Statistical significant relations between the input factors
and the responses were found. However, this approach may not be able to control all variables that
influence the FC’s. The average weight of non-plastic particles, for example, is higher at a higher feed
rate (Appendix B). This could be due to a better performance of the ballistic separator. An increase
in weight might lead to an increase in orientation errors because particles become too heavy to be
blown over the splitter. It is therefore unknown if the increase of the FNr is entirely due to the higher
throughput.

The Monte Carlo analysis allows for the evaluation of waste with a changing feed composition. The
standard deviation of the composition was determined using the variation of the centre points in Test
E. However, at a higher feed rate the variations in the composition may be larger.
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5.2. Limitations

5.2.1. Experiments

In Section 3.2.1 it was determined that a sample should consist of at least 25 particles that are targeted
by the sampling analysis to keep the relative sampling error below 20%. This requirement was not met
for the large size fraction because of the low occurrence of large particles in the NIR feed. To reduce
the sampling error to 20% would require large sample sizes and thus limit the number of samples that
could be sorted within the available time. Due to the low occurrence, the influence of the sampling of
this category on the total sampling error remains low.

The orientation errors and recognition errors were analysed using samples of more than 100 particles
for both non-plastics and plastics. However, the analysed samples are just a snapshot of the feed
composition and should be used as an indication of the probability of orientation and recognition
errors. Since it is not feasible to sample the entire feed at high frequency, a balance needs to be found.

5.2.2. Statistical Model

The grade, recovery and mass recovery depend on the share of non-plastic particles in the NIR feed
and the FPr and FNr. Since the feed composition may change over time, the values are an indication of
the possible grades. However, the scenarios can be compared to determine the most effective strategy
to reduce FC'’s.

The error probabilities were determined for this specific NIR. To apply the statistical model to another
NIR or for a significant change of the feed characteristics, part of the error probabilities should be
redetermined. Table 5.1 states whether the probabilities can still be applied when the feed character-
istics are changed. As can be expected, it depends on the type of adjustment. For example, the feeding
mechanism could be changed by decreasing the belt speed. This leads to a longer frame time which
might improve the recognition of all particles including smaller ones. When the conveyor belt is re-
placed by a chute, the probability of a systemic error should also be reevaluated. A significant change
in feed composition due to for example the addition of a preprocessing step requires the calibration
of recognition, orientation and overlap errors.

Table 5.1: Applicability of FC probabilities with altered feed characteristics.

Type of False Call Feed rate Feed composition Feeding mechanism
Systemic Yes Yes Depends on alteration
Size Yes Yes Depends on alteration
Recognition Yes No Depends on alteration
Orientation Yes No No

Only if feed < 50% or
Overlap >100% of MRF feed No No

5.3. Application of Results for Process Improvements

The correct ejection of particles fed in a perfect monolayer depends on the NIR sensor settings, such as
the belt speed and splitter roll height and distance. These settings are determined by the trajectory of
ejected and dropped particles. Again, the range of particle properties is essential. When heavy parti-
cles are to be ejected, high air pressure and a low splitter height are required, but this may cause lighter
particles to hit the back of the eject box and bounce back. Also, a small range of particle properties
makes it easier to adjust the belt speed to prevent the relative movement of 3D particles or the floating
of foils. Therefore, the processing steps preceding an NIR should be designed and operated in a way
that provides the smallest range of particle properties with the purpose that the feeding mechanism
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can be optimized.

The results of this research can be used to identify possibilities for process improvement. Next, a few
suggestions for this specific NIR are summed up. Due to the limited time available and the investment
that is required to make the adjustments, they were not tested on-site.

Narrow size distribution: The recommended ratio between the smallest and the largest particle is
1:3 to 1:4 (Pretz, 2006). Since the NIR feed currently exceeds this ratio and also contains particles
that are out of working range in relation to size, the addition of a sieving step is recommended. The
statistical model has shown that removing 90% of the smaller particles slightly improves the grade
compared to the current situation because the non-plastic particles are smaller in size than the plastic
particles. This indicates that, relatively, more non-plastic particles can be removed. The model does
not account for the possible decrease in overlap errors when small particles are removed, which may
further improve the grade.

Figure 5.1: Deposition of material on the acceleration belt.

Feeding mechanism: The NIR sensor system is currently fed by two chutes, resulting in two peaks
with high occupancy density on the belt. Both of the chutes deposit material from the two identical
ballistic separators above. However, the chute on the left (Fig. 5.1) also receives a smaller size fraction
from another ballistic separator and is fed from the side instead of the top. This leads to a higher
occupancy rate on this side. In addition, video recordings show that part of the particles coming from
the right chute hit the sidewall which is placed under a small angle. The particles, therefore, bounce
off to the left (white arrow). Additional video analysis is needed to determine the contribution of this
movement to the unbalanced particle distribution on the belt.

Fluctuations: In Table 5.2, the list of causes of fluctuations is extended based on on-site observations.
Earlier research has shown that fluctuations in the NIR feed may reduce the product grade.
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Table 5.2: Overview of causes of fluctuations of the feedrate. Completed with on-site observations.
Location Fluctuation Cause Duration Frequency | Proposed solution
Discontinuous feeding | Discontinues feeding with . Smart control, instructions
Wheel loader Mid term Irregular
of shredder wheel loader. wheel loader
L ticles fi bridges i
. arge particies orrn 4“ gesin Short term to Analysing flow data and machine
Bridging the shredder, making it appear full, R Irregular
. . . . mid term data.
Shredder influencing the automatic feeding.
Reversing intervals Shredder settings Short term 30 sec -
Large, thick walled objects are
Reduced processing ) 5 rekw ) Short term to
difficult to shred and may block R Irregular -
rate shredder mid term
the shredder.
. . One drum .
. Fluctuation output Rotation. Short term . Other type of sieve.
Drum sieve rotation
; . Regular maintenance intervals
) . Large foils and wires form .
Braid formation oo . Short term Irregular shredder. Iron separation before
braids in the drum sieve. . .
the drum sieve. Other type of sieve.
Large particles. Short term Irregular -
Input Materials Heterogeneous input g P n - g
Residence time of material,
L. ) Long term Irregular -
municipality, seasonal fluctuations.
Clustered materials block the
N . . . Short term to
Windsifters Blockage suction of air and materials . ITrregular
mid term
are not removed
After blockage of a chute, all
Chutes Blockage materials are deposited onto the belt Short term Irregular
in one go
Material gets stuck behind sharj
Conveyor belt Braid formation edges 8 P Mid term Irregular Remove sharp edges.
After an emergency stop, the
machines need time to start. Delay the start of the convevor
Eddy current and | Reduced sorting If materials are still present in the Short term to Y Y
. . R Irregular belt system after an emergency
Windsifters performance system, they will not be removed mid term . )
. . stop until all machines are ready.
from the main flow. Leading to an
increase of flow for part of the process.




Conclusion and Recommendations

6.1. Conclusions

To answer the main research question first the sub-research questions are revisited.
Sub research questions

What is the working range of the NIR?

The working range of an NIR sensor sorting system is the range of particle properties that the system
can correctly recognise and eject when targeted. Particle size, shape, density and material type can
restrain proper processing. It was found that for the analysed NIR, particles with a dimension be-
low 2 cm cannot be ejected. Starting from 2 cm, the chance of correct classification increases with
the particle size. The working range also depends on the database. Due to the wide range of non-
plastic particles, not all materials are part of the database. However, an all-encompassing database
will not solve all recognition errors. Medical objects, for example, are made of plastics and therefore
not ejected, but are unwanted in the mixed plastics product. In addition, the NIR requires monolayer
feeding.

What is the relation between each type of false call and feed characteristics (the average feed composi-
tion, average feedrate and the feeding mechanism)?

Working range errors are related to the particle properties and therefore also related to the feed com-
position. It was hypothesised that the chance of whether a false call is made, also depends on the
feeding mechanism. For example, a lower belt speed may result in less relative movement to the belt.
However, in the experiments performed during this research the feeding mechanism was kept con-
stant.

In literature, it is concluded that the number of false calls related to the overlapping of material de-
pends on all three feed characteristics. In this research, a relation was found between the feedrate and
the True Positive rate (FNr); at a higher feedrate the share of non-plastics that are ejected decreases.
No statistical relevant relation was found between the feedrate and the False Positives (FP) for the
analysed feedrate range. However, there is a difference between the number of FP’s when feeding in
a monolayer compared to regular feeding. Indicating that for the analysed throughput range, around
8% of the plastics are lost in the eject fraction due to overlap or proximity of particles.

Systemic errors are the only type of false call that is not related to the feed characteristics.

What is the effect of short- and midterm fluctuations of the feed characteristics on the performance?

53



54 6. Conclusion and Recommendations

Short-term feedrate fluctuations are mainly caused by the non-stationary agglomeration of material
at this site. However, the number of particles involved in non-stationary agglomeration is relatively
low in the current feed. In addition, the grade of the agglomerate is around 70%. Therefore, non-
stationary agglomeration only significantly affects the sorting performance when the average product
grade is higher.

The results found while answering the sub research questions contribute to the conclusion of the main
research question:

To what extent do feedrate, feeding mechanisms and feed composition influence the type and number
of false calls in sensor sorting systems and what are ways to control these false calls?

In this research, a framework consisting of five types of relevant false calls was used to analyse the
sorting performance of a chosen NIR. The influence of the feed characteristics on the total number of
false calls and the ratio between the types of errors varies per NIR.

This research shows that to significantly improve the sorting performance, all feed characteristics need
to be optimised. The model of the analysed NIR demonstrates that even if the material is fed in a
perfect monolayer the expected grade is 85%. A first step may be to optimise the feed composition
based on the working range. Process adjustments like an additional sieving step can narrow the range
of particle characteristics and improve the sorting performance.

At the same time, the feeding mechanism can be improved to optimise the distribution of the ma-
terial on the belt and decrease overlap errors. If the feedrate is kept within the ranges applied in this
research, the average pover of medium sized non-plastics will remain around 0.22. Lastly, the reduction
of fluctuations decreases underperformance due to on one side overloading and unused potential on
the other side.

Analysing the NIR performance by looking into the contribution of the types of FC’s can be a useful
tool to optimize the sorting results. In the industry, a heterogeneous material flow is fed to the NIR.
The preceding processing steps should be optimised and maintained properly with the result that they
can be used to their full potential. The NIR’s are currently the most advanced technology on-site that
aims to produce valuable high-grade materials. The preceding process steps should therefore be used
to create a feed within the working ranges of the NIR with an as small as possible range of particle
properties.

The steps applied in this research can help to determine if the particle characteristics are suited for
the used NIR or if controlling the feedrate should be the main focus. Using NIR’s to their full potential
will contribute to higher grade sorting products and therefore to better recycling.

6.2. Recommendations

6.2.1. Experimental Improvements
* The quality of a product not only depends on the amount of contamination and on the type of
contamination. To create high-quality products, additional tests can be conducted to determine
the type of error related to a specific group of contaminants, such as PVC, to target the FC’s of
this group more efficiently.

e In this research square particles with a size up to 50 mm were analysed to determine the working
range. The TPr of particles of 50 mm is only 65%. To determine a cut off value particle sizes in
the range of 50 mm to 150 mm should be tested because particles with a size of 150 mm are
known to have a TPr of 96% (Test A). It is recommended to use larger batches of clean flakes to
determine the size error and systemic error instead of performing multiple runs to reduce the
potential influence of adhering dirt.
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* Plastic packaging has alow density compared to the materials sorted in other industries using an
NIR. Due to the low particle weight and high conveyor belt speed, particles are not immediately
pulled along by the conveyor belt. It was observed that foils often linger until they are carried
along by another particle. Looking into the interaction between particles on the conveyor belt
may provide more insights into the chances of overlap.

6.2.2. Statistical Model Improvement

The model developed in this research is a statistical model with parameters based on observations
and sampling. Such a model does not include all possible interactions and changes in the feed. More
empirical and theoretical research is needed to describe the influence of all feed characteristics on the
sorting performance. Some suggestions are summed up below.

* In the current model, the pyyer is a function of the MRF feedrate and the position of the blow
valves of the windsifter. However, the overlap is also known to depend on the global shape (2D
or 3D) and the detailed shape of the particles. By gathering more information on the particle
characteristics of non-plastic particles and the influence of the share of rigid materials on the
overlap error, the model can be improved to approach industrial sorting more closer. The same
goes for small particles. When creating a statistical model to determine the pgver, the influence
of the processing algorithm should also be taken into account. Because the decision to eject
or drop, for example, a combination of a small non-target particle on top of a larger targeted
particle depends on the algorithm settings.

* An orientation error can be caused by different particle characteristics in combination with the
feeding mechanism: The inability of a particle to lay still, high density or an unfavourable side
which prevents recognition, amongst others. By further looking into the causes of orientation
errors it can be determined what share can be prevented by for example changing the feeding
mechanism. Access to the sensor sorting software and data is needed to make a distinction
between these errors.

» Apart from the orientation and recognition errors, all probabilities are assumed to be indepen-
dent of each other. However, particles with orientation errors might also have a high probability
of being involved in overlap errors.

* In this research, the statistical model is not verified using a independent data set. It is recom-
mended to compare the model output to new experimental results of the grade and recovery.
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Data Test C

Table A.1: Number of False Positives per individual particle after 3 batch runs. Batch Material: True Positives

Number of FN/runs Number of particles [n] Share of total particles
0/3 33 56%
1/3 12 20%
2/3 11 19%
3/3 9 15%
3/3 (Classification error) 0 0%
Total 65 100%

Table A.2: Number of False Positives per individual particle after 3 batch runs. Batch Material: True Negatives

Number of FP/runs Number of particles [n] Share of total particles
0/3 123 90%
1/3 7 5%
2/3 4 3%
3/3 3 2%
3/3 (Classification error) 0 0%
Total 137 100%

Table A.3: Number of False Positives per individual particle after 3 batch runs. Batch Material: False Positives

Number of FP/runs Number of particles [n] Share of total particles
0/3 81 84%
1/3 11 11%
2/3 4 4%
3/3 1 1%
3/3 (Classification error) 0 0%
Total 97 100%
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Data Test E
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Figure B.1: Average input composition of each run
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64 B. Data Test E

Table B.1: Results performance indicators per run

Low, Open Low,Closed High,Open High, Closed Centerpointl Centerpoint2 Centerpoint3

Feedrate Mass 0.74 0.94 1.18 2.03 1.28 1.10 0.96
Feedrate Particles 136 178 206 334 212 190 186
Feedrate NIR 4500 5000 5900 6300 5300 5200 5500

FPr particles 6% 0.06 0.08 0.04 0.06 0.11 0.06

FPr mass 0.08 0.09 0.08 0.03 0.05 0.09 0.06

TPr Particles 0.34 0.21 0.32 0.16 0.29 0.34 0.28

TPr Mass 0.40 0.33 0.38 0.20 0.34 0.33 0.30

Purity particles 85% 73% 72% 73% 81% 78% 79%
Purity mass 76% 75% 68% 73% 7% 77% 7%
Yield particles 94% 94% 92% 96% 95% 91% 94%
Yield mass 93% 90% 93% 97% 95% 92% 94%
Recovery particles 88% 89% 84% 93% 89% 84% 88%
Recovery mass 83% 83% 80% 92% 87% 80% 87%

FPr Small Foils 0.03 0.05 0.06 0.04 0.02 0.10 0.02

FPr Middle Foils 0.08 0.07 0.10 0.05 0.07 0.09 0.09
FPr Small Rigids 0.04 0.03 0.04 0.03 0.06 0.06 0.07
FPr Middle Rigids 0.08 0.15 0.11 0.03 0.10 0.14 0.07
TPr Small Non-Plastics 0.29 0.16 0.28 0.14 0.24 0.34 0.24
TPr Middle Non-Plastics 0.38 0.36 0.41 0.21 0.39 0.36 0.41

Table B.2: Average particle mass of medium size fraction non-plastics

Non-plastic particles in product Non-plastic particles in residue
Run Total Mass [kg] Nrof particles Avgparticlemass Total Mass [kg] Nr of particles Avg particle mass
Center point 0.28 25.00 0.011 0.40 30.00 0.013
Center point 0.44 28.00 0.016 0.64 48.00 0.013
Low feed, open valves 0.30 25.00 0.012 0.36 37.00 0.010
Low feed, open valves 0.38 31.00 0.012 0.38 25.00 0.015
Low feed, closed valves ~ 0.44 31.00 0.014 1.16 71.00 0.016
Low feed, closed valves ~ 0.40 27.00 0.015 0.42 28.00 0.015
Center point 0.30 26.00 0.012 0.34 21.00 0.016
Center point 0.42 25.00 0.017 0.46 34.00 0.014
High feed, open valves  0.64 23.00 0.028 0.42 29.00 0.014
High feed, open valves  0.44 27.00 0.016 0.78 48.00 0.016
High feed, closed valves  0.54 25.00 0.022 0.26 21.00 0.012
High feed, closed valves  0.38 25.00 0.015 0.68 36.00 0.019
Center point 0.60 28.00 0.021 0.54 33.00 0.016
Center point 0.20 12.00 0.017 0.54 33.00 0.016

Table B.3: Average particle mass non-plastics for different MRF feedrates

Non-plastic particles in product Non-plastic particles in residue
Center point  0.016 0.015
Low feed 0.013 0.014
High feed 0.020 0.016
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Matlab File

Matlab Code

clear all
close all

% Scenario 0.0 = Stationary agglomerate in feed, no free particle overlap and
non-stationary agglomerate

% Scenario 0.1 = Overlap, no non-stationary agglomerate

% Scenario 0.2 = Overlap and non-stationary agglomerate

% Scenario 1 = Narrow Size distribution

% Scenario 2 = Recuding stationary agglomeration

% Scenario 3 = Reducing recognition and orientation errors

Scenario = 4;

tic

%% Input parameters

nT = 10000; % Number of particles

ThroughputMRF = 100; % Feed of material recovery facility [% of
maximal throughput]

Wind = 0; % Closing of the blow valve of the windsifter (

percentage closed)

FeedP = 58.5 + 1.4 x ThroughputMRF - 0.440 * Wind + 0.0172 * Wind =
ThroughputMRF; % NIR feed [particles per second]

Time = nT/FeedP; % Running time [sec]
meanfoils = 1.0146 - 0.00578 = ThroughputMRF - 0.003546 * Wind + 0.000039 =
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ThroughputMRF = Wind; %Average share of foils of free particles

meanrigid = -0.0165 + 0.002338 * ThroughputMRF; %Average share of rigid
plastics of free particles

meanwaste = 0.0325 + 0.003242 = ThroughputMRF + 0.002933 * Wind -3.5%x10A-5 =
ThroughputMRF = Wind; %Average share of non-plastics of free particles

meanSA = 0.05; %Average share of stationary agglomerate in the input [
particles/particles]

meanSAplastics = 0.78; % Share of plasticparticles in stationary
agglomerate

STDfoils = 0.029;

STDrigid 0.015;

STDwaste = 0.015;

STDSA = 0.02;

STDSAplastics = 0.05; % STD of share of plastics in stationary agglomerate

if Scenario ==
STDSAplastics = 0.025;
meanSAplastics = 0.90;

end

ShareNSAplastics = 0.71; % STD of share of plastics in stationary
agglomerate

TimeNStAggl = 5; % Time between non-stationary agglomeration [sec]

PNStAggl = 20; % Particles per non-stationary agglomeration

%% Average particle mass per material class

MassSF = 0.0007;
MassMF = 0.0054;
MassLF = 0.0347;
MassSR = 0.0034;
MassMR = 0.0117;

MassSW = 0.00165;
MassMW = 0.0164;
MassIW = 0.147;

MassSAP
MassSAW

0.013;
0.021;

%% Parameters: Error p-values

psystw
psystp

0.04; % systemic errors plastics
0.02; % systemic errors non-plastics
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plsize = 0.3;
p2size = 0.6;
p3size = 0.8;

precw = 0.1;

% Size errors: Size between 2 cm and 3 cm
% Size errors: Size between 3 cm and 4 cm
% Size errors: Size between 4 cm and 5 cm

% deterministic uniqueness/working range errors non-

plastics
precp = 0.00; % deterministic uniqueness/working range errors plastic
porientw = 0.40 / (1 - precw); % orientation error non-plastics
porientp = 0.03 / (1 - precp) ; % orientation error plastics
pagglw = 0.95; % Error agglomerated non-plastics
pagglp = 0.02; % Error agglomerated plastics
pOFoilsS = 0.02;
pOFoilsM = 0.021;
pOFoilsL = 0.03;
pORigidS = 0.000;
pORigidM = 0.053;
pORigidL. = 0.0 ;
pOWasteS = 0.654;
pOWasteM = 0.219;
pOWasteL = 0.165;
if Scenario ==
pOWasteS = 0;
pOWasteM = 0;
pOWasteL = 0;
pOFoilsS = 0;
pOFoilsM = 0;
pOFoilsL = 0;
pORigidS = 0;
pORigidM = 0;
pORigidL = 0 ;
end
if Scenario == 3
precw = 0.01; % deterministic uniqueness/working range errors non-
plastics
precp = 0.00; % deterministic uniqueness/working range errors plastic
porientw = 0.20 / (1 - precw); % orientation error non-plastics
porientp = 0.03 / (1 - precp) ; % orientation error plastics
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end

%% Start monte carlo runs
Monte = zeros(1000,20); %Empty matrix to save results of each run

for j = 1:1:1000
nT = 10000; % Number of particles

%% Feed composition

ShareFoilsP = normrnd(meanfoils, STDfoils) ; % Share of foils of free
particles, random number from normal distribution

ShareRigidP = normrnd(meanrigid, STDrigid) ; % Share of rigid of free
particles, random number from normal distribution

ShareWasteP = normrnd (meanwaste, STDwaste) ; % Share of non-plastics
(waste) of free particles, random number from normal distribution

ShareStAggl = normrnd (meanSA,STDSA) ; % Share of non-

plastics (waste) in the input, random number from normal distribution

ShareFoils = (ShareFoilsP/(ShareRigidP + ShareWasteP + ShareFoilsP)) = (1-
ShareStAggl) ; % Share of foils in the input, random number from
normal distribution

ShareRigid = (ShareRigidP/(ShareRigidP + ShareWasteP + ShareFoilsP)) = (1-
ShareStAggl) ; % Share of rigid plastics in the input, random
number from normal distribution

ShareWaste = (ShareWasteP/(ShareRigidP + ShareWasteP + ShareFoilsP)) = (1-
ShareStAggl); % Share of non-plastics (waste) in the input,
random number from normal distribution

ShareAplastics = normrnd (meanSAplastics, STDSAplastics) ; % Share of
plastics in stationary agglomerate, random number from normal distribution

if ShareAplastics > 1 % Share of plastics can not
be higher than 1
ShareAplastics = 1;

end

ShareAwaste = 1 - ShareAplastics; % Share of non-plastics (waste)
in agglomerated material, random number from normal distribution

ShareStAggl = 1 - ShareFoils - ShareRigid - ShareWaste; % Share of

stationary agglomerated material

nNSA = floor ((Time/TimeNStAggl)) = PNStAggl; % Total Non-St Agglomarate
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during one batch

if Scenario == 0 || Scenario == 0.1
nNSA = 0;

end

nA = round(nT * ShareStAggl); % Number of Agglomerated particles

nNA = nT - nA; % Number of Free particles (Non-
Agglomerated)

nNSAPlastics = round(ShareNSAplastics * nNSA); % Share of plastics non
-st agglomerate

nNSAWaste = round((1-ShareNSAplastics) * nNSA); % Share of non-

plastics in non-st agglomerate

nT = nT + nNSA; % Non-stationary Agglomerated particles are
added to the total amount of particles

% Number of particles per material type

nFoils = round(ShareFoils * (nNA+nA));
nRigids = round(ShareRigid * (nNA+nA));
nWaste = round(ShareWaste * (nNA+nA));

nAPlastics = round(ShareAplastics * nA); % Number of stationary
agglomerated plastic particles

nAWaste = round (ShareAwaste = nA); % Number of stationary
agglomerated non-plastic particles

% Three matrixes to reduce running time

P = zeros(nNA,13); % Free particles (Non-Agglomeration
) matrix

PA = zeros(nA,13); % Stationary agglomeration matrix

PNSA = zeros (nNSA,13); % Non— Stationary agglomeration
matrix

%% Type of material (column 1)
% Material types

% 1 = Foils

% 2 = Rigids

% 3 = Non-Plastics

% 4 = St-Aggl Plastics

% 5 = St-Aggl Non-Plastics
% 6 = N-St—Aggl Plastics
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w % 7 = N-St-Aggl Non-Plastics

198

199

200 P(l:nFoils, 1) = 1;

. P((nFoils + 1):(nFoils + nRigids), 1) = 2;

x2 P((nFoils + nRigids + 1):(nFoils + nRigids + nWaste), 1) = 3;
203

204

205 PA(1l:(nAPlastics), 1) = 4;

206 PA((nAPlastics + 1):(nAPlastics + nAWaste), 1) = 5;
207

208
200 PNSA(1:(nNSAPlastics), 1) = 6;
20 PNSA((nNSAPlastics + 1) :(nNSAPlastics + nNSAWaste) , 1) = 7;

212
213
ae %% Particle size (Column 2 & Column 3)

215

a6 for i = 1:1:nNA

217 if P(i,1) ==1

218 P(i,2) = wblrnd(11,1.8);

219 P(1,3) = wblrnd(11,1.8);

220

221 end

23 if P(i,1) == 2

224 P(1,2) = wblrnd(9.0,2.5);
25 P(i,3) = wblrnd(9.0,2.5);
226

227 end

229 if P(i,1) == 3

230 P(i,2) = wblrnd(6.55, 1.1);
231 P(l,g) = wblrnd(6.55, 1.1);
232 end

2 end

235

236

a7 % Assign particle to size fraction based on the value in column 2 and 3
a8 % 1 = Small

2 % 2 = Middle

a0 % 3 = Large

a2 for i = 1:1:nNA

23 if (P(i,2) <5 &« P(i,3) < 15) || (P(i,2) < 15 & P(i,3) < 5)
244 P(lr]-z) = 1;
245 end

246 if (P(i,2) > 5 && P(i,3) <30 && P(i,3)>5) ||(P(i,2) < 30 & P(i,3) >5&&P
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(i,2)>5) ||(P(i,2) <5 && P(i,3) >15) || (P(i,2) > 15 && P(i,3) < 5)

247 P(1,12) =2;

248 end

249 if (P(i,2) > 30 || P(i,3) > 30)
250 P(i,12) = 3;

251 end

2 end

s %% Particle weigth
255

»6 %% 1. Systemic Errors (colomn 4)

s for i = 1:1:nNA

259 P(i,4) = rand; % Gives all free particles a random number
between 0 and 1 in column 4

260 if P(i,1) == 3

261 if P(i,4) < psystw % If random value is < p, the particle is
sorted incorrectly (1)

262 P(i,4) = 1;

263 else % If random value is > p, the particle is
sorted correctly (0)

264 P(1;4) = O;

265 end

266

267 else

268 if P(i,4) < psystp

269 P(1,4) = 1;

270 else

271 P(i,4) = 0;

272 end

273 end

2 end

275
276
277

28 %% Working range: Size (column 5)

w0 for i = 1:1:nNA

281 if P(i,1) == 3

262 if P(i,2)< 2.0 && P(i,3)< 2.0
283 P(i,5)=1;

284 end

285

286 if P(i,2) > 2.0 & P(i,2) < 3.0 && P(i,3) < 3.0
287 P(I,S) = rand;

288 if P(i,5) < plsize

289 P(1,5) = 1;

290 else

291 P(i,5) = 0;

292 end
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end
if P(i,2) > 3.0 && P(i,2) < 4.0 && P(i,3) < 4.0
P(i,5) = rand;
if P(i,5) < p2size
P(i,5) = 1;
else
P(i,5) = 0;
end
end
if P(i,2) > 4.0 && P(i,2) < 5.0 & P(i,3) < 5.0
P(i,5) = rand;
if P(i,5) < p3size
P(i,5) = 1;
else
P(i,5) = 0;
end
end
end
end

%% Working range: Classification error

for i = 1:1:nNA

if P(i,12) == 2 || P(i,12) == 3
or Large size fraction

P(i,6) = rand;

if P(i,1) ==
if P(i,6) < precw
P(i,6) = 1;
else
P(i,6) = 0;
end
else
if P(i,6) < precp
P(i,6) = 1;
else
P(i,6) = 0;
end
end
end

end

%% Orientation (column

for i = 1:1:nNA
if P(i,12) == 2

(column 6)

% If

material is

in the Middle
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if P(i,6) == 0 % Particle can not have a classification
error and orientation error at the same time.

P(i,7) = rand;
if P(i,1) == 3
if P(i,7) < porientw

P(i,7) = 1;
else
P(i,7) = 0;
end
else
if P(i,7) < porientp
P(i,7) = 1;
else
P(i,7) = 0;
end
end
end
end
end

%% Overlap (colomn 8)

for i = 1:1:nNA
P(i,8) = rand;

if P(i,1) ==
if P(i,12) == 1
if P(i,8) < pOFoilsS
P(i,8) = 1;
else
P(i,8) = 0;
end

elseif P(i,12) ==
if P(i,8) < pOFoilsM

P(i,8) = 1;

else
P(i,8) = 0;

end

else

if P(i,8) < pOFoilsL
P(i,8) = 1;

else
P(i,8) = 0;

end
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end
end

if P(i,1) == 2
if P(i,12) ==
if P(i,8)
P(i,8)
else
P(i,8)
end

elseif P(i,12)
if P(i,8)
P(i,8)

else
P(i,8)

end

else
if P(i,8)
P(i,8)
else
P(i,8)
end
end
end

if P(i,1) == 3
if P(i,12) ==
if P(i,8)
P(i,8)

else
P(i,8)

end

elseif P(i,12)

if P(i,8)
P(i,8)
else
P(i,8)
end

else
if P(i,8)
P(i,8)
else
P(i,8)
end

N =

N

pORigidS
1;

0;

pORigidM
1;

0;

pORigidL
L;

0;

pOWasteS
L;

0;

pOWasteM
L;

0;

pOWasteL
L;

0;



441 end
442 end
w3 end

us 9% Stationary Agglomeration (colomn 9)

ws for i = 1:1:nA

450 PA(i,9) = rand;

151 if PA(i,1) == 5

152 if PA(i,9) < pagglw
153 PA(i,9) = 1;

454 else

155 PA(i,9) = 0;

456 end

457

458 else

459 if PA(i,9) < pagglp
460 PA(i,9) = 1;

161 else

162 PA(i,9) = 0;

463 end

164 end

w5 end

w7 PT = [P,PA],
468
469

470

w2 %% Non-stationary Agglomeration (column

a5 for i = 1:1:nNSA

476 if PNSA(i,1) == 7
477 PNSA(I,IO) = 1;
478

479 else

180 PNSA(i,10) = 0;
481 end

w2 end

s PT = [PT;PNSAJ;

486

w7 if Scenario ==

s for i = 1:1:nT

189 if PT(i, 12) ==1

190 PT(i, 12) = rand;
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if PT(i,12) < 0.1
PT(i,12) = 1;
else PT(i,:) = 0;
end
end
end
end

nT = size (PT,1);

%% Results

S=sum(PT(:,4:10) ,2);
PT(:,11)

S;

% Sum of all errors
% Sum of all errors

S_TypeError = sum(PT);

TP
N =
FN
FP

SF

LF =

TNSF
FPSF

FPMF

FPLF

SR

LR =

TNSR
FPSR

o O O O

YdNumber
YdNumber
%dNumber
YdNumber

YaNumber
YANumber
YdNumber

%Irue Negative Rate Small Foils

of
of
of
of

of
of
of

% Sum per type of error

True Positives
True Negatives
False Negatives
False Positives

Small Foils
Middle Foils
Large Foils

% Small Rigids

is saved in Column 11
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FPMR = 0;
TNLR = 0;
FPLR = 0;
SW = 0; % Small non-plastics (Waste)
= 0;
IW = 0;
TPSW = 0;
ENSW = 0;
TPMW = 0;
NNMW = 0;
TPLW = 0;
ENIW = 0;
% Rates
for i = 1:1:(nT)
if PT(i,1) == 3 || PT(i,1) == 5 || PT(i,1)
if PT(i,11) == 0
TP = TP + 1;
else
FN = FN + 1;
end
else
if PT(i,11) ==
™ = 1IN + 1;
else
FP = FP + 1;
end
end
end
%Foils
for i = 1:1:nT
if PT(i,1) == 1 && P(i,12) ==
SF=SF+1;
PT(i,13) = MassSF;
if PT(i,11) == 0
TNSF = TNSF + 1;
else
FPSF = FPSF + 1;
end
end
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if PT(i,1) == 1 && P(i,12) == 2
MF = MF + 1;
PT(i,13) = MassMF;
if PT(i,11) ==
TNMF = ITNMF + 1;
else
FPMF = FPMF + 1;
end
end
if PT(i,1) == 1 && P(i,12) == 3
LF = LF +1;
PT(i,13) = MassLF;
if PT(i,11) == 0
TNLF = TNLF + 1;
else
FPLF = FPLF + 1;
end
end
end

FPrSF = FPSF/SF;

FPrMF

FPMF/MF;

FPrLF = FPLF/LF;

= 2

== 3

%Rigids
for i = 1:1:nT
if PT(i,1) == 2 && P(i,12) ==1
SR=SR+1;
PT(i,13) = MassSR;
if PT(i,11) ==
TNSR = TNSR + 1;
else
FPSR = FPSR + 1;
end
end
if PT(i,1) == 2 && P(i,12)
MR = MR + 1;
PT(i,13) = MassMR;
if PT(i,11) == 0
TNMR = ITNMR + 1;
else
FPMR = FPMR + 1;
end
end
if PT(i,1) == 2 && P(i,12)
LR = LR +1;
if PT(i,11) ==

else

TNIR = TNIR + 1;



641 FPIR = FPIR + 1;
642 end

643 end

ss  end

645

s FPTSR = FPSR/SR;

sv FPIMR = FPMR/MR;

ss FPrLR = FPLR/LR;

649

0 YNon-plastics

651

2 for i = 1:1:nT

653 if PT(i,1) == 3 && P(i,12) ==1
654 SW:SW+1;

655 PT(i,13) = MassSW;

656 if PT(i,11) == 0

657 TPSW = TPSW + 1;

658 else

659 FNSW = ENSW + l;

660 end

661 end

662 if PT(i,1) == 3 && P(i,12) ==
663 MW = MW + 1;

664 PT(i,13) = MassMW;

665 if PT(i,11) == 0

666 TPMW = TPMW + 1;

667 else

668 HINMW = INMW + 1;

669 end

670 end

671 if PT(i,1) == 3 && P(i,12) ==
672 IW = IW +1;

673 PT(1,13) = MassLW;

674 lf PT(I,ll) =0

675 TPLW = TPILW + 1;

676 else

677 ENIW = FENIW + 1;

678 end

679 end

e0 end

681

s2 FNISW = FNSW/SW,
s3  FENOMW = ENMW/MW;
ss  FNILW = FNIW/IW;
685

o5 SAP =
o7 SAW =
os  TINSAP
69 FPSAP
w0 TPSAW = 0;

I
(=R ]
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FNSAW = 0;
%Stationary agglomeration
for i = 1:1:nT
if PT(i,1) == 4 || PT(i,1) == 6

SAP=SAP+1;
PT(i,13) = MassSAP;
if PT(i,11) ==

TNSAP = TNSAP + 1;
else

FPSAP = FPSAP + 1;
end

end
if PT(i,1) == 5 || PT(i,1) == 7
SAW = SAW + 1;
PT(i,13) = MassSAW;
if PT(i,11) == 0
TPSAW = TPSAW + 1;
else
FNSAW = FNSAW + 1;
end
end
end

PT( ~any(PT,2), : ) = [I;

MaterialClass = ["Small Foils";"Middle Foils";"Large Foils";"Small Rigids";"
Middle Rigids";"Large Rigids";"Small N-P";"Middle N-P";" Large N-P"];

Totallnput = [SF;MF;LF;SR;MR;LR;SW;MW;IW];

FalseCallrate = [FPrSF;FPrMF; FPrLF; FPrSR;FPrMR; FPrLR ; FNrSW;FENiMW; FNrLW 1 ;

Table = table (MaterialClass, Totallnput, FalseCallrate) ;

%% Results Mass

TNM = TNSF = MassSF + TNMF *MassMF + TNLF = MassLF + TNSR * MassSR + TNMR «
MassMR + TNSAP =MassSAP;

FPM = FPSF * MassSF + FPMF «MassMF + FPLF * MassLF + FPSR = MassSR + FPMR =

MassMR + FPSAP x MassSAP;

TPM = TPSW * MassSW + TPMW +MassMW + TPLW % MassLW + TPSAW x MassSAW;
INM = ENSW * MassSW + INMW «MassMW + ENLW * MassLW + FNSAW = MassSAW;

Grade = TNM / (INVHNM) ;

Massrecovery = (INM + ENM) / (INMHNMHTIPM+EPM) ;
Recovery = T\M / (INM + FPM) ;

%% Monte Carlo results
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Monte(j,1) = Grade;
Monte(j,2) = Recovery;
Monte(j ,3) = Massrecovery;
Monte(j ,4) = FPrSF;
Monte(j ,5) = FPIMF;
Monte(j ,6) = FPrLF;
Monte(j,7) = FPrSR;
Monte(j,8) = FPrMR;
Monte (j ,9) = FNiSW;

Monte(j,10) = FENiMW;
Monte(j,11) = ENILW;
Monte(j,12) = FP/(FP+IN);
Monte(j,13) = EN/(FN+TP);

Monte(j,14)
Monte(j,15)
Monte(j,16)
Monte (j,17)
Monte(j,18)
Monte(j,19)
Monte(j,20)

S_TypeError(1,4);
S_TypeError(1,5);
S_TypeError(1,6);
S_TypeError (1,7);
S_TypeError (1,8);
S_TypeError(1,9);
S_TypeError(1,10);

Stdev = nanstd (Monte) ;
Mean = nanmean(Monte) ;

Check = TP + TN + FP + FN;

Plastics= TN + FP;
NonPlastics = TP + FN;

NPINPUT = NonPlastics/Check;
end

%% Graphs and Tables

MaterialClass = ["Small Foils";"Middle Foils";"Large Foils";"Small Rigids";"
Middle Rigids";"Large Rigids";"Small N-P";"Middle N-P";"Large N-P"];

Totallnput = [SF;MF;LF;SR;MR;LR;SW;MW;IW];

FalseCallrate = [FPrSF;FPrMF;FPrLF; FPrSR;FPrMR; FPrLR ; FNrSW;FENIMW; FNrLW 1 ;

TypeofError = ["Systemic";"WR: Size";"WR: Classification"; "WR: Orientation";"
Overlap";" St Agglomeration"; "Non-st Agglomeration"];

Values = ["Grade";"Recovery";"Mass Recovery";"FPr Small Foils";" FPrMiddle
Foils ";"FPr Large Foils";"FPr Small Rigids";"FPr Middle Rigids";"FNr Small
N-P";"FNr Middle N-P";"FNr Large N-P"; "FPr Total"; "FNr Total" ];

MeanValues_Monte_Carlo = Mean(1, 1:13) ’;

STDvalues_Monte_Carlo = Stdev(1,1:13) ’;
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Tablel = table (MaterialClass, Totallnput, FalseCallrate);

Table2 = table (Values, MeanValues_Monte_Carlo, STDvalues_Monte_Carlo) ;

figure ()

histogram (

title (’Number of errors per particle’)

PT(:,11));

xlabel ('Number of Errors’)
ylabel ('Number of particles’)

X = categorical (TypeofError);

figure ()

bar (X,Mean(1,14:20))
xlabel ('Type of Errors’)
ylabel ('Number of particles’)

%% Print

Table2

toc

% MassNP =

% MassP =
%
% for i =

0;
0;

1:1:nT

% if PT(i,1) == 3 || PT(i,1) ==

%

% else
%

% end
% end

%

MassNP = MassNP + PT(i,13);

MassP = MassP + PT(i,13);









