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Abstract

Starting from the 1950s, plastic has found its way into many aspects of life; from packaging to trans-

portation and construction. The annual global plastic production was estimated to be 330 million

metric tons in 2017 and will be doubled within 20 years if the current growth rate persists. In Europe,

packaging accounts for 40% of the annual plastic production. To decrease dependence on fossil fuels

and the related emissions and reduce the negative impact of plastics that enter the environment, the

EU targets to recycle 55% of plastic packaging material by 2025. A steady production of large quantities

of high-grade plastic recyclate is essential to sell the recycled material on the market and substitute

virgin plastics. But, achieving this high grade is difficult due to the wide range of polymers, including

additives and fillers. This research focuses on the sorting step of post-consumer packaging waste in a

Material Recovery Facility (MRF) that takes place before recycling.

In MRF’s, Near-Infrared (NIR) sensor-based sorting systems are state of the art to create high-grade

sorting products. NIR’s use reflection spectra to identify and distinguish a range of materials includ-

ing different types of polymers. The particles are fed to the NIR on a conveyor belt and are sepa-

rated into two flows using actuators such as air nozzles. However, while sorting, False Calls (FC) occur

when particles are incorrectly classified leading to a loss of valuable material or contamination of the

product. Thus, this research aims to increase the understanding of false calls of NIR sensor systems,

contributing to higher quality sorting products.

To reach this goal, possible causes of FC’s and their dependencies on the feedrate, feed composition

and feeding mechanism were identified. These causes were arranged into a framework consisting of

six types of FC’s. A distinction was made between errors that are working range related and those

that are not. Particles outside the working range may be classified incorrectly even when fed in a

monolayer and under perfect circumstances due to the properties of the particle.

The created framework was applied to a NIR in an MRF in the Netherlands which was tasked to sep-

arate non-plastic particles and PVC from plastic particles. Experiments were performed to single out

the probability of each type of error to occur for 13 material classes. Next, the test results were im-

plemented in a statistical model and a Monte Carlo simulation was performed. In this research, the

varying input values were used to imitate the changing feed composition. Three scenarios of adjusted

feed characteristics were analysed using the statistical model.

It was concluded that to optimize the sorting performance of the analysed NIR, all types of False Calls

should be tackled. The feed of the analysed NIR contained a large share of particles outside the work-

ing range. So, even if the particles were to be fed in a monolayer the average grade of the product

is expected to be around 85%. The combination of the experiments and the statistical model allows

for an effective evaluation of the sorting performance and a clear indication of the most problematic

aspects of the feed characteristics.

v



List of Figures

1.1 NIR sensor sorting system with conveyor belt consisting of a feeding mechanism (A), a

light source (B), a processing unit (C) and a blowbar (D) (Tomra, 2021). . . . . . . . . . . 2

1.2 Research methods and corresponding tests. White blocks represent the research meth-

ods and blue the (intermediate) results and products. . . . . . . . . . . . . . . . . . . . . 4

2.1 Plastic waste hierarchy (Rubel et al., 2019). Note: Chemical recycling does not comply

with the definition of recycling as mentioned in the EU waste directive. . . . . . . . . . . 8

2.2 Spectra for commonly used plastic packaging materials (Tatzer et al., 2005). . . . . . . . 10

2.3 Contingency table: False Calls of positive and negative sensor sorting. . . . . . . . . . . . 12

2.4 False Call framework including the dependency per type of error on the feed character-

istics. Based on lectures of Bakker (2020). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Process scheme of sorting steps preceding the analysed NIR (green) and relevant prod-

ucts (gray). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Feeding mechanism: two chutes drop material on to the belt. . . . . . . . . . . . . . . . . 20

3.3 Graphic representation of feeding mechanism. . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Flying beam technology applied in the analysed NIR. . . . . . . . . . . . . . . . . . . . . . 21

3.5 Decision scheme of the processing unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6 Sampling locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.7 Minimum and maximum Feret diameter (Sympatec GmbH, n.d.) . . . . . . . . . . . . . 24

3.8 Examples of the size fractions. Left: Small rigid plastics. Right: Medium non-plastics. . 25

3.9 Camera above the belt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.10 Material Test B: PVC flakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.11 Full factorial design, k=2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.12 Simplified image of windsifter comparable to windsifter used on-site. The blow valves

control the amount of returned air from the fan ((Nihot Airconomy, n.d.)). . . . . . . . . 30

3.13 Sorting performance for square eject particles with a size up to 50 mm. . . . . . . . . . . 33

3.14 Deterministic particles found in the plastic product. . . . . . . . . . . . . . . . . . . . . . 35

3.15 Range of feed characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.16 Distribution the total measured material area along the belt width of the NIR during a

one day period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.17 Stationary agglomeration mechanisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.18 Effect of the input factors on the feedrate [nr/s]. . . . . . . . . . . . . . . . . . . . . . . . . 38

3.19 Effect of the input factors on the share of non plastic particles [nr.%]. . . . . . . . . . . . 38

3.21 Classification and actuator action by overlapping of materials. . . . . . . . . . . . . . . . 40

4.1 Output of the model without overlap v.s. the experimental results. . . . . . . . . . . . . . 46

4.2 Sensor performance of the three scenario’s. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Number of errors per type of false call out of total analysed particles. . . . . . . . . . . . 48

5.1 Deposition of material on the acceleration belt. . . . . . . . . . . . . . . . . . . . . . . . . 51

B.1 Average input composition of each run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

vii



viii List of Figures

C.1 Mean value of results versus the number of runs . . . . . . . . . . . . . . . . . . . . . . . . 65



List of Tables

2.1 Most used polymer types of packaging material and common applications. . . . . . . . 7

2.2 Types of FC’s and assigned symbols of the probability. . . . . . . . . . . . . . . . . . . . . 16

2.3 Overview of fluctuations of the throughput of an MRF and the causes identified in liter-

ature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Material classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Assigning particles to particle size groups based on Fmin and Fmax . . . . . . . . . . . . . 24

3.3 Material used in Test C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Overview of DoE runs and operational settings . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 FPr of clean PP flakes and FNr of clean PVC flakes. . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Number of False Positives per individual particle after 3 batch runs. Batch Material: False

Negatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7 Orientation and sensor errors of non-plastic particles. . . . . . . . . . . . . . . . . . . . . 34

3.8 Orientation and sensor errors for plastic particles. . . . . . . . . . . . . . . . . . . . . . . 34

3.9 Stationary agglomeration in the feed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.10 Non-stationary agglomeration in the product. . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.11 Results of the regression analysis: model coefficients and ANOVA values. . . . . . . . . . 37

3.12 ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 False call probabilities with monolayer feeding derived from experiments . . . . . . . . 45

4.2 Input parameters per material group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Weibull distribution parameters to describe the particle size distribution of the feed. . . 45

4.4 Values pover per material group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 Applicability of FC probabilities with altered feed characteristics. . . . . . . . . . . . . . 50

5.2 Overview of causes of fluctuations of the feedrate. Completed with on-site observations. 52

A.1 Number of False Positives per individual particle after 3 batch runs. Batch Material: True

Positives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A.2 Number of False Positives per individual particle after 3 batch runs. Batch Material: True

Negatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A.3 Number of False Positives per individual particle after 3 batch runs. Batch Material: False

Positives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

B.1 Results performance indicators per run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

B.2 Average particle mass of medium size fraction non-plastics . . . . . . . . . . . . . . . . . 64

B.3 Average particle mass non-plastics for different MRF feedrates . . . . . . . . . . . . . . . 64

ix



List of Abbreviations

DKR Deutsche Gesellschaft für Kreislaufwirtschaft und Rohstoffe

DoE Design of Experiments

FC False Call

FCM Food Contact Material

FP False Positive

FPr False Positive Rate

FN False Negative

LOD Laser Object Detection

MRF Material Recovery Facility

NIR Near-Infrared

PMD Plastic verpakkingen, Metaal verpakkingen en Drinkpakken

PET Polyethylene Terephthalate

PTF Plastics To Fuel

TP True Positive

TN True Negative

UV Ultraviolet

xi



List of Symbols

Latin Symbols
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1
Introduction

1.1. Background
Moving towards a circular economy for post-consumer plastic packaging waste has a wide range of ad-

vantages. Reducing, reusing, remanufacturing and recycling plastics lowers the negative environmen-

tal impact of (micro-)plastics on land and in the oceans (Jambeck et al., 2015) and decreases green-

house gas emissions. The annual global plastic production was estimated to be 330 million metric

tons in 2017 and will be doubled within 20 years if the current growth rate persists (Lebreton and An-

drady, 2019). The expected growth and related emissions lead to an increasing consumption of the

total carbon budget of 420–570 gigatons. The global carbon budget is an emission target set to keep

the global warming below 2 degrees Celsius. It is estimated that by 2050 the accumulative greenhouse

gas emissions of plastics from cradle to grave will take up 10% to 13% of this carbon budget (Shen

et al., 2020). Only large efforts in the field of recycling, demand-management strategies and the appli-

cation of renewable energy can compensate for the greenhouse gas emissions related to the expected

growth of plastic demand (Zheng and Suh, 2019). Recycling plastics partly eliminates the first step of

the linear chain, fossil fuel extraction, which is emission intensive (Shen et al., 2020).

Apart from the environmental benefits, the European Union mentions decreasing the dependence

on fossil fuel as a reason to recycle plastics locally (European Commission, 2019). Finally, the current

landfill of plastic waste and the leakage into the environment globally leads to lost economic potential.

It is estimated that worldwide 95% of the value of plastic packaging is lost after the short term use due

to the low collection rate and recycling rate (Ellen Macarthur Foundation, 2016).

In Europe, 39.6% of the produced plastic in 2019 was used for packaging of which only one third was

recycled (Plastics Europe, 2020). More than paper and cardboard, plastic packaging increases the

lifespan of food products and has a positive effect on food safety, thus refusing all plastic packaging

may negatively affect other sustainability aspects like water usage due to an increase of food waste.

The low weight of plastics makes it a more environmental-friendly option to transport than metal or

glass (Andrady and Neal, 2009). Therefore, the EU has set the goal to recycle 55% of plastic packaging

material in 2025 to tackle the problems related to plastic (European Commission, 2019).

However, to reach these recycling goals, multiple improvements in the plastic cycle have to be made.

Hahladakis and Iacovidou (2018) claim that the technicalities, such as organisational barriers, lifestyle

and the ability to properly recover materials lack behind the governance and new business models.

To properly recover materials and maintain the value of plastics, closed-loop recycling is preferred

1



2 1. Introduction

above down cycling in the circular economy framework (Ellen Macarthur Foundation, 2016). In prac-

tice, closed-loop recycling can only be achieved when the collected material has a high grade, like the

deposit collection scheme for Polyethylene Terephthalate (PET) bottles. Adhesives, colorants and ad-

ditives are used to optimize the mechanical and aesthetic properties of plastic to match their aimed

purpose resulting in an enormous variety of plastics (Thiounn and Smith, 2020). The most suitable

recycling method depends on the properties of the plastic. For example, melting of a batch of mixed

plastic with different melting points affects the appearance and performance of the recycled product

due to insufficient blending of the material (Hahladakis and Iacovidou, 2018).

So, to move towards a circular economy for consumer plastic packaging, high-grade sorting is essen-

tial. Therefore, this research will be focused on the recovery of plastics that takes place in a MRF.

State of the art sorting facilities use a cascade of NIR sorting units to separate the incoming plastic

packaging waste into multiple polymer types (Feil et al., 2019). NIR sensor sorting systems such as the

system shown in Fig. 1.1 use the reflection of light beams to identify the material of the object and use

actuators to separate the targeted materials from the material flow (Gundupalli et al., 2017).

Figure 1.1: NIR sensor sorting system with conveyor belt consisting of a feeding mechanism (A), a light source (B), a processing
unit (C) and a blowbar (D) (Tomra, 2021).

In practice, the NIR sensor sorting systems are not always used to their full potential (Feil et al., 2019).

The performance is related to the number of times an object is not sorted into the correct material

flow. Such an event will be referred to as a false call. Multiple factors reduce the performance of an

NIR sensor: the feed, the NIR settings, the identification database, and level of regular maintenance,

amongst others. The feed of a sensor can be characterised by three related variables. First is the ma-

terial composition of the feed, this includes the material type, size, colour and shape of the particles.

The feed composition also includes the amount of dirt on the surface of the particles. Second is the

feedrate which is measured in mass, volume or particles per time unit. The final variable is the feeding

mechanism which is the way the particles are placed on the belt. This, together with the material com-

position and feedrate leads to the occupancy rate and the overlap rate. In this research, the variables

of the feed are referred to as the feed characteristics.

An NIR sensor system performs best when particles are fed in a monolayer with some space between

the particles (Pascoe et al., 2010). Due to the heterogeneity of the input material, the individual sorting
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units and the operational circumstances of an MRF, fluctuations in the feedrate and feed composition

are known to occur (Curtis et al., 2021). The variations of the feed characteristics result in fluctuations

in the occupancy rate and false calls. Controlling the feed characteristics can improve the perfor-

mance of the sensor sorting system (Feil et al., 2019).

The influence of the feed characteristics on the sorting performance has been reviewed in previous

research. The influence of the throughput rate, the share of targeted material, the roughness of mate-

rial and the surface moisture have been analysed (Küppers et al., 2020)(Küppers et al., 2019)(Küppers

et al., 2021). Also, a model was created with a predetermined probability of correct classification for

common types of plastic packaging (Kleinhans et al., 2021). But the variables of the feed and the influ-

ence on the performance have not yet been set against each other and combined in one model. In ad-

dition, research performed on a lab scale is relevant for the understanding of the sorting performance.

However, these experiments are not always able to capture the particle-to-particle interactions of het-

erogeneous waste. Khodier et al. (2021) states that real scale experiments are needed to transfer the

results to applications in the industry. So, comparing the influences of the feed characteristics on the

sorting performance of an NIR sensor sorting system in an industrial setting will point out the oppor-

tunities to optimize the feed to gain the desired quality results in an MRF. Currently, systems for smart

control of flows in MRF’s are being developed (Sarc et al., 2019). These systems aim to control the

feedrate and feed characteristics by real-time adjustment of for example the shredder settings. The

knowledge gained in this research about the optimal feed characteristics can also be applied to such

smart systems.

1.2. Objective
The aim of this research is to increase the understanding of false calls of NIR sensor systems, con-

tributing to higher quality sorted products that can open up the market of recycled plastics.

1.3. Research Questions and Scope
Based on the objective the following research questions are formulated:

Main research question:

To what extent do feedrate, feeding mechanisms and feed composition influence the type and number

of false calls in sensor sorting systems and how can these false calls be reduced?

Sub research questions:

1. What is the working range of the sensor?

The working range of the sensor defines the ranges of the particle characteristics (particle size, shape,

colour) that the sensor can process correctly with a high probability, given that the particles are fed

under optimal conditions and in a monolayer. Knowing the requirements for the optimum input

material allows to the correct evaluation of false calls.

2. What is the relation between each type of false call and feed characteristics (the average material

composition, average feedrate and the feeding mechanism)?

The relation between the feed characteristics and false calls defines the NIR sorting performance. This

information can be used to create a statistical model of the NIR sensor system.

3. What is the effect of short- and midterm fluctuations of the feed characteristics on the sorting perfor-

mance?

Due to the input material of an MRF, the design of the sorting process and maintenance, variations in

feedrate and feed composition may occur. These variations may influence the number of false calls.

Studying the effect of the variations on the total amount of false calls may lead to more insight on the
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acceptable ranges of fluctuations in the feedrate and composition.

Scope
Below the focus area and limitations of this research are summed up.

• The sorting performance of NIR sensor systems of post-consumer packaging waste in the Nether-

lands is analysed. The material is referred to as Plastic verpakkingen, Metaal verpakkingen en

Drinkpakken (PMD).

• The research is conducted at an MRF in operation and not in a lab setting. Unforeseen alter-

ations to the sorting system may occur but are monitored and noted.

• The settings of the sensor sorting system such as the splitter height, the air pressure of the noz-

zles and the classification algorithm will remain constant during the research.

1.4. Methodology
In this research, an experimental approach is used to analyse the influence of different types of FC’s on

the sorting performance of an NIR sensor system. The research is conducted at a Dutch MRF where

PMD is sorted. An NIR sensor sorting system in the facility is chosen to build up and demonstrate the

method. This NIR processes the most challenging feed in the MRF at the end of the sorting line. Due

to the wide range of particle properties in the feed this NIR encounters all types of FC’s. In Fig. 1.2 the

experimental research methodology is visualised.

Figure 1.2: Research methods and corresponding tests. White blocks represent the research methods and blue the
(intermediate) results and products.

First, types of FC’s are defined and the feed characteristics that are expected to affect each type of false

call are determined. Subsequently, the range of the feed characteristic of the chosen system is studied
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using the data collected by the NIR system. Multiple tests will be conducted to isolate the influence of

each type of FC. The feed characteristics will be varied using the Design of Experiments (DoE) method

and the earlier found working ranges of the sensor. The performance is determined by analysing the

samples of the material flows. In addition, a statistical model is developed to perform a Monte Carlo

Simulation.

Key Takeaways Chapter 1

• High-grade sorting is essential to reach the

recycling goals and move towards a circular

economy for post-consumer plastic packaging.

• NIR sensor-based sorting systems are state

of the art and are often applied to separate

polymer types and increase the grade

of products.

• A NIR makes False Calls while sorting

which lead to a lower product grade or

a loss of valuable material.

• In this research, a framework of types

of False Calls is created, implemented

on-site at a MRF and used to create a

statistical model.





2
Theoretical Background

2.1. Post-Consumer Plastic Packaging
In The Netherlands, the average person creates 34,5 kg PMD waste per year of which 71% is collected

separately (Milieu Centraal, 2018). Part of the remaining 29% is mechanically recovered from mixed

household waste. In Table 2.1 the seven polymer types with the largest production share in plastic

packaging in Europe are displayed (Plastics Europe, 2020).

Table 2.1: Most used polymer types of packaging material and common applications.

Polymer type Abbreviation Common packaging applications

Low Density Polyethylene PE-LD
Bags for bread and frozen food, shrink wrap, container lids,

squeezable bottles

High Density Polyethylene PE-HD Shampoo bottles, household cleaners bottles, juice bottles

Polypropylene PP Containers for yogurt and butter, bottle caps

Polystyrene PS Food service items, rigid food containers

Expanded Polystyrene EPS Take away food containers

Polyvinyl Chloride PVC Packaging of electronics and toothbrushes

Polyethylene Terephthalate PET Bottles for water and soft drinks, peanut butter jars

2.1.1. Polymer Waste Hierarchy
In 2008 the European Union created the Waste Framework Directive to set the definitions and basic

concepts of waste management and unify the targets and the approach to tackle waste. The five-

step waste hierarchy (Fig. 2.1), which is derived from the Ladder of Lansink, is the foundation of

this framework. In the framework, recycling is defined as "any recovery operation by which waste

materials are reprocessed into products, materials or substances whether for the original or other

purposes.". It is specified that reprocessing materials into fuels, backfilling operations and energy

recovery are not classified as recycling.

Recycling methods can be divided into upcycling and downcycling. In the case of upcycling, the prod-

uct quality resembles the quality of virgin material. This is the most preferable option because the

value of plastics is not lost and is applied mostly within the production process or for developed col-

lection schemes like PET bottles (Al-Salem et al., 2009). Part of the collected and sorted plastics do not

meet the quality standards required for upcycling. These mixed or contaminated plastics are treated

and utilised in lower value plastic products like park benches, flowerpots and traffic signs. Chemical

7
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Figure 2.1: Plastic waste hierarchy (Rubel et al., 2019). Note: Chemical recycling does not comply with the definition of
recycling as mentioned in the EU waste directive.

conversion or Plastics To Fuel (PTF) is often referred to as recycling but does not comply with the def-

inition of recycling in the European Waste Directive (2019). Energy recovery by combustion of plastics

is applied when the before mentioned methods are not possible due to e.g. economical restrictions.

Recycling is challenging due to the wide range of types of plastics and additives and fillers. Fillers such

as calcium carbonate and talc can increase hardness and is an inexpensive way to increase the bulk

of the plastics (Ügdüler et al., 2020). Additives are added to the plastic packaging to make them fit for

purpose by for example increasing the tensile strength, protecting against Ultraviolet (UV) light or de-

creasing flammability. However, these additives may decrease the recyclability and may lead to health

risks during recycling or environmental impact when plastics disintegrate after littering (Hahladakis

et al., 2018). Also, laminated plastic packaging consisting of multiple polymer types will always be

downgraded due to the low grade of the product (Shen and Worrell, 2014). Finally, polymers will de-

grade over time due to external factors such as UV. Therefore, a closed-loop in which no plastics are

downcycled currently appears unattainable.

2.2. Recycled Polymer Market
A study of the Dutch recycling system for post-consumer plastic packaging waste in 2017 states that

a large fraction of the recycled polymers is not suited for high-end consumer goods markets like food

packaging and household appliances (Brouwer et al, 2019). For safety reasons, Food Contact Material

(FCM) has to comply with strict regulations. Not only does FCM have to meet contamination and

migration limits, the maximum quantity of a substance that is allowed to migrate from the packaging

into food, but also full traceability throughout the plastic chain and separation of FCM and Non-FCM

are required (De Tandt et al., 2021). The latter two requirements pose a technological challenge to

processors and recyclers of post-consumer plastic waste. It is estimated that in Europe, 5% of the food

packaging is recycled and used to produce food packaging again (De Tandt et al., 2021).

On the other hand, there is a lack of international certification for recycled plastics per product group

(De Tandt et al., 2021) (Shamsuyeva and Endres, 2021). Quality not only depends on the share of

contamination but als on the type of contamination. At present, quality concerns and the low prices
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of high-quality virgin plastics keep packaging producers from using recycled plastics (McKinnon et al.,

2018). Also, producers require a steady, large volume flow with the security of supply.

So, the loop of plastic food packaging is hard to close. In addition, the limited uses for low-grade

recycled polymers and the low oil prices keep the market value low (Brouwer et al., 2020). Recycled

polymers with high purity can make the use of recycled plastics more attractive for manufacturers and

contribute to a circular economy (Rem, 2017) (Luijsterburg and Goossens, 2014).

2.2.1. Quality
In The Netherlands, municipalities are responsible for the collection and recycling of PMD. The mu-

nicipalities or the recyclers receive a compensation from the packaging industry to outsource the dif-

ferent steps of the chain. The quantity and quality of the material throughout the chain is monitored

by Nedvang, a company founded by the packaging industry, using the Deutsche Gesellschaft für Kreis-

laufwirtschaft und Rohstoffe (DKR) specifications. These specifications set quality targets for the five

types of products that are produced: PET (DKR328-1), PP (DKR324), PE (DKR329), foils (DKR310) and

mixed plastics (DKR350). These criteria determine the financial compensation for the organisations

involved in the chain but can be requested by the purchasers too(Ooms et al., 2010).

The Mixed plastic product mainly consists of PE and PP. A limit is set for the share of PVC. PVC is

undesirable because it releases toxic gasses when heated or dissolved and decreases the quality of the

recycled product due to the formation of compounds Park et al. (2007).

2.3. Polymer Sorting

2.3.1. State of the Art
Mechanical waste processing plants usually apply the following steps: comminution (using e.g. shred-

der or bag opener) to liberate particles and reduce the size of large outliers (Julius and Pretz, 2012).

Then, size classification to separate the waste streams into flows with a particle distribution suitable

for the following treatment steps. And lastly, the separation is based on a combination of properties

that are unique for a material group like magnetic properties, material type, density or shape (Feil

et al., 2016).

2.3.2. Optical Sorting
Optical sorting was originally developed for the food industry. An optical sorter uses a combination of

a light source and a sensor to identify the shape, colour or chemical composition of a particle. Based

on classification criteria, the particle is identified as targeted or non-targeted material and processed

accordingly by a set of actuators. This non-destructive inspection method has a short measuring time

which makes it very popular to sort material at a high throughput rate (Zerbini, 2006). In the food in-

dustry the particle characteristics of the feed like grains, nuts and fruit, are very uniform. This enables

monolayer feeding and contributed to the success of optical sorting in this industry. The application

extended to the mining industry and pharmaceutical industry and was first applied to process recy-

clable material in the waste industry around 1990 (Julius and Pretz, 2012). An optical sorting system

generally consists of four components; the feeding mechanism, the light source, a digital processing

unit and actuators (Fig. 1.1). Depending on the application and budget a spectrum is chosen (Rozen-

stein et al., 2017).
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2.4. NIR Sensor Sorting Systems

2.4.1. Working Principles
NIR sensor-based sorting units use reflection spectroscopy to identify materials. A light beam includ-

ing wavelengths in the near-infrared spectrum (750 to 2100 nm) is emitted towards the conveyor belt.

The intensity of the reflection and absorption of wavelengths in the spectrum depends on the chemi-

cal and physical properties of a material, like the molecular composition and surface conditions (Küp-

pers et al., 2019). The materials can be distinguished by the peaks in the reflection spectra (Fig. 2.2).

Black or dark materials absorb more light and are therefore less visible and can not be classified cor-

rectly. The absorption spectrum of specific wavelength ranges can be influenced by surface moisture

(Küppers et al., 2019). Higher surface roughness of the particles, on the contrary, increases the amount

of raw data and improves the classification because of less background noise (Küppers et al., 2019).

The refection of the light beam is collected from spatial areas on the particle surface called pixels. The

spectrum is evaluated for each pixel. The size of the pixel, together with the belt velocity and the frame

rate leads to the minimum particle size that can be classified correctly. For example, the NIR analysed

in this research has a pixel size of 8 mm. In the industry, chemometric methods are used to interpret

Figure 2.2: Spectra for commonly used plastic packaging materials (Tatzer et al., 2005).

the optical data (Tatzer et al., 2005). Collected data of spectral bands of known material classes are

uploaded to the data processing system as a reference database. During sorting, the incoming data is

compared to the database and the materials are identified. This method requires updates when the

feed composition changes or if new classes of materials are added.

Once the material is identified based on the reflection spectrum, a signal is sent to the connected

actuator to eject the material or not. Some data processing systems offer the option to process the

acquired data to influence the selectivity of the sensor. For example, if a high recovery of PET is aimed,

one can increase the ’weight’ of all PET indicating pixels and thereby change the surrounding pixels

to favour a "PET" identification. This will affect the action of the actuator and decrease the chance of

incorrect sorting of a valuable material like PET. By doing so, more non-PET materials may be ignored

by the NIR and therefore move along with the PET, decreasing the purity.

In case air valves are used as actuators, the time frame of the activation depends on the number of
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pixels recognised and the belt velocity. In some systems, the time frame can be adjusted manually. The

trajectory of the particle is affected by its shape, density, moment of inertia, air nozzle size, airflow and

the distance between the air nozzles. After correct recognition of the material by the sensor, a heavy

particle might still be discharged incorrectly i.e. dropped due to insufficient applied air pressure from

the valves.

2.4.2. The Working Range
The working principles of an NIR result in the working range. This is a range of particle characteristics

to which the material has to comply to have the highest probability to be sorted correctly apart from

being fed in a monolayer. The following particle properties play a role in the working range:

• Minimum particle size: Number of correctly identified pixels that is required to activate the

actuator may not be met.

• Maximum particle size: Can be too heavy to move over the splitter or may get stuck.

• Materials characterised and sorted in a database: The reflection spectrum is not recognised.

• No black/dark materials: Little light is reflected in the NIR spectral region preventing correct

identification (Rozenstein et al., 2017).

• Surface conditions (maximum amount of surface moisture, dirt or grease).

• Folded particles and complex shapes: Bended surfaces may lead to overexposure due to the high

reflection of light (Chen et al., 2021).

• Particles that tend to roll or float: The timing of the activation of the actuator is based on the

belt speed. Relative moment to the belt may lead to arriving to late or too early to be ejected.

• Minimum and maximum density: Particles may be to heavy to move over the splitter. Light

materials may flutter into the wrong section after ejection.

2.4.3. Feed Characteristics
As mentioned in the introduction, the NIR feed passing the sensor scanline can be described by three

related variables: the feed composition, the feedrate and the feeding mechanism. Combined, they

describe the occupancy rate and overlap rate on the conveyor belt.

feedrate: The feedrate, also referred to as the throughput, can be defined using the mass rate (ṁfeed)

[kg/s] or the particle rate [nr/s]. Since plastic packaging has a relatively low density, in research the

particle rate is applied. In the industry mass rate is more common. Average particle mass can be

used to calculate the mass feedrate if particles have about the same size. In the industry, plant opera-

tors have to balance between product value and technical limitations when controlling the input of a

facility (Feil et al., 2017).

Occupancy Rate: The occupancy rate [%] is the share of the sensor detectable zone of the belt that is

covered with particles. The occupancy rate can be defined as an average over the belt width per second

or specified at intervals along the width. Küppers et al. (2019) argue that the capacity of an NIR sensor

system should be indicated using the occupancy rate instead of the feedrate as the occupancy rate

and the related overlap rate are directly related to the sensor performance.

Agglomeration and Segregation: In the heterogeneous waste flow, interaction between particles or

between machine parts and particles may occur. Due to shape, adhesion or gravity, multiple objects

may act like one, which is referred to as agglomeration. Segregation occurs when objects with similar

attributes group in the process, causing an inhomogeneous flow for specific particle properties such

as size or shape.
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2.5. False Calls
The NIR sensor sorting system is a binary classification system; the incoming material is sorted into

two classes based on a classification rule. In the case of polymer sorting, the feed is sorted into a prod-

uct fraction, which contains the most valuable material, and the residue. The sensor system can be

programmed to eject either the product or the residue, respectively called positive and negative sensor

sorting. The choice for either option depends on the share of valuable material and contamination.

While sorting, errors may occur and valuable material is lost in the residual fraction or the product

fraction is contaminated. When a non-targeted particle is ejected, it is known as a False Positive (FP).

When a particle is not ejected when it had to, it is called a False Negative (FN). The fractions often

are non-symmetric meaning that the chance of a FN is different from the chance of a FP (Ooms et al.,

2010). Together, these errors are referred to as False Calls. Correctly processed particles are True Posi-

tive (TP) when ejected or True Negative (TN) when not ejected. Fig. 2.3 displays the four outcomes of

a binary classification system for both positive and negative sorting.

Figure 2.3: Contingency table: False Calls of positive and negative sensor sorting.

To sum up:

Total targeted material = Material to be ejected = P = TP + FN

Total non-targeted material = Material to be dropped = N = TN + FP

Total feed = targeted material + non-targeted material = P + N

Drop fraction = TN + FN

Eject fraction = TP + FP

2.5.1. Performance
The sorting performance of this binary classification system can be described departing from the

number of particles (n) [nr/s] or using the mass (m) [kg/s]. The former is useful to analyse the per-

formance in detail by looking at the behaviour of individual particles and to create a statistical model.

The latter can be applied to describe the sorting results of a NIR and is applied in the industry. Next,

both approaches will be described starting with the particles.
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The terms introduced in Section 2.5 can be used to describe the share of particles that is sorted cor-

rectly. The fraction of targeted particles in the feed that ends up in the drop fraction can be expressed

as the False Positive Rate (FPr)(Eq. 2.1a). Correspondingly, the FNr! (FNr!) is the share of non-targeted

material that is incorrectly ejected (Eq. 2.1b). This approach is applied by Gülcan (2020) in the mining

industry and Bukovec et al. (2007) in the pharmaceutical industry. In the case of negative sorting, a

low FPr would mean that a large fraction of the contamination is removed from the valuable material.

If the FPr is high, it would imply that a lot of valuable material is lost in the residue. So, a low FPr and

FPr are beneficial.

FNr = F N

P
(2.1a)

FPr = F P

N
(2.1b)

In the industry and partly in research, the performance indicators are based on mass. The plant sort-

ing performance is judged on the grade (G), the recovery (R) and the mass recovery (Rm) of the valu-

able materials. The grade, also referred to as the purity, is the percentage of valuable material in the

product (Eq. 2.2a). The recovery represents the amount of valuable material from the feed in the prod-

uct and is determined by the TPr and the average particle mass (mavg [kg]) (Eq. 2.2b). The mass recov-

ery can be used to quantify the product in relation to the feed (Eq. 2.2c). In this research, discharge (D)

is added to the performance. This performance indicator describes the share of non-valuable material

that is removed from the feed and does not end up in the product. These performance indicators are

also applied in earlier research by Küppers et al. (2020).

G = Valuable material in product

Total product
(2.2a)

R = TPr∗mavg = Valuable material in product fraction

Valuable material in feed
(2.2b)

Rm = Product

Total feed
(2.2c)

Rm = Non-valuable material in residue

Non-valuable material in feed
(2.2d)

Depending on the position of the sorting system in the process line, the product and residue of the

sensor system are sorted further using additional steps down the line.

2.5.2. Causes of False Calls
In literature, multiple parameters that influence the performance of NIR sensor systems are identified.

To get a grip on how the complex and interrelated factors affect the sorting performance, the param-

eters have previously been grouped. Küppers et al. (2020) organises the parameters into two groups

based on the cause of the failure of the sensor: identification errors and discharge errors. The first

is for example influenced by surface moisture and the latter by share of targeted material. However,
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variables like throughput influence both errors. In another approach, Gülcan (2020) divides them into

geometric parameters (classification algorithm, the position of the splitter, feeding mechanism, etc.)

and the process parameters (throughput, share of targeted material, size distribution, etc.). Other

papers sum up a few causes of incorrect classification such as the inability to detect black or contam-

inated material and the sub-optimal material flows due to preceding process steps (Feil et al., 2019).

In this research, the errors are divided into six categories of false calls. These categories represent

the underlying causes of the underperformance of the sensor system. This approach assumes the set-

tings of the NIR, the geometric parameters, are constant. In Fig. 2.4 an overview is presented of which

the framework is based on the lectures of Bakker (2020). First, the working range errors will be clari-

fied.

Working Range False Calls
Working range errors occur when a particle is not suited for the used NIR system. This means that if

the particle is fed in a monolayer under perfect circumstances, the particle will still not be correctly

recognized by the sensor or ejected by the actuator. Working range false calls can be avoided by pre-

processing or corrected by additional separation steps using a different separation principle or an NIR

which classification algorithm is trained using another adapted teach and learn set.

Orientation: The characteristics of the particle may lead to an unfavourable orientation on the belt.

An orientation is unfavourable if for example the dirty side or label is facing upwards and the material

can therefore not be identified correctly by the classification algorithm. Also, a round shape or asym-

metrical density of the particle may prevent it from lying still on the belt. The particle is therefore not

recognized correctly by the NIR sensor, does not reach the actuator at the predicted time, or is placed

in a way that influences the trajectory when ejected and thus failing to be thrown over the splitter.

Orientation errors may be deterministic, for example when a particle is too heavy to be thrown over

the splitter no matter the orientation, or if all sides of the particle are covered in dirt.

Size: Every NIR has a minimum and maximum particle size which is recommended by the manu-

facturer. Particles below the specified size may not be classified and ejected correctly. Above this

minimum value, however, particles may still encounter difficulties due to size. The chance of correct

sorting increases fast with particle size until size no longer plays a role.

Recognition: Targeted materials that do not have the targeted attributes are incorrectly sorted. For

example when a particle consists of a combination of recycled PE and PP which does not occur in

the database of the NIR sensor and is therefore not recognized as targeted material. The same goes for

non-targeted material that happens to have certain undesired targeted attributes, like medical objects

that are made of plastics but are not allowed in the plastic product. Finally, black materials might not

reflect enough light to be classified correctly.

False Calls Unrelated to Working Range
Some stochastic errors can happen to all particles in the feed. The feed characteristics influence the

probability of these stochastic errors. When a batch of material is sorted multiple times under the

same process conditions, the share of these stochastic errors can remain constant, but the particles

involved will differ. However, some particles may be more likely to be involved in this stochastic error

than others.

Monolayer Overlaps: Particles may overlap on the belt due to the feeding mechanism and the fee-

drate or agglomeration. Overlapping may lead to incorrect identification of (part of) the materials

involved. If a particle is correctly identified but is placed too close to an adjacent particle, it may be

co-deflected (Pascoe et al., 2010). The particle characteristics influence the chance of overlap. Long

and thin particles with a high shape factor increase the chance of overlapping (Wen et al., 2021). Also,
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when a particle has a 3D shape, it is less likely to be involved in overlapping due to its ability to roll

when dropped onto the belt. The chance of an overlap leading to a false call depends on the share

of targeted material because it influences the chance the overlap leads to an unwanted permutation

(i.e. FP or FN). To minimise the chance of overlap it is recommended to narrow the size distribution

as much as possible (Wotruba, 2006) (Julius and Pretz, 2012). Due to preceding collection and sorting

steps, some particles form agglomerated groups. The agglomeration of particles inhibits monolayer

feeding. Therefore it is considered a cause of overlap errors in this research.

Systemic: A sensor system may cause errors due to for example the physical design or principle short-

comings of the system. These errors are independent of the particle characteristics. Even if the mate-

rial is within the working range and is fed in a monolayer, systemic errors may occur.

Dropouts: In the sorting system, unexpected errors may occur due to the energy of particles. For

example, when two particles meet in a mid-air collision after ejection by the blow valves. It is expected

that the chance of a dropout increases with the feedrate. However, since sensor systems should be fed

in an organised monolayer the chance of a dropout is assumed to be negligible.

In the experimental part of this research, the probability of each type of FC will be determined. An

overview of the FC’s and the assigned symbols is given in Table 2.2.

Table 2.2: Types of FC’s and assigned symbols of the probability.

Type of False Call Symbol Outcome (FP, FN)

Systemic psyst Both

Size psize FN

Recognition prec Both

Orientation porient Both

Overlap: Monolayer pover Both

Overlap: Stationary Agglomerate pover,st Both

Overlap: Non-stationary Agglomerate pover,nst FN

2.5.3. Relation Between Feed Characteristics and Sorting Performance
The influence of feed characteristics on the sorting performance of optical sorters has been investi-

gated in literature. The research is focused on the mining industry and waste industry since these

industries encounter trouble with the heterogeneous feed. The sensor type, settings and classifying

system differ in each research. In addition, the type of sorted material differs as optical sorters are

applied in different industries. Therefore, the exact values found in previous research can not one-to-

one be applied to other sorting systems, but general relations can be established. Here, the findings

are summed up per industry and per type of optical sorter.

Mining Industry
VIS optical sorter

• For a constant particle size distribution, an increase of feedrate leads to a decrease in sorting

efficiency (Gülcan and Gülsoy, 2017). This is mainly due to the ejection of non-targeted particles

when particles are too close to each other. A decrease in feedrate may lead to an improved

distribution of particles on the belt because of fewer particle interactions preventing movement

across the belt (Pascoe et al., 2010).

• At a steady throughput, sorting performance decreases as particle size decreases. It is suggested

that the reduced performance is due to the perception capacity of the sensor and the accuracy

of the nozzles (Gülcan and Gülsoy, 2017) (Pascoe et al., 2010).
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• An increase in the share of material to be ejected causes a decrease in sensor sorting efficiency.

This is likely due to an increase of the probability that two overlapping particles are a combina-

tion of targeted and non-targeted material (Pascoe et al., 2010).

Waste Industry
NIR optical sorter

• A higher feedrate decreases the grade, recovery and mass recovery of the product (Küppers et al.,

2020).

• The share of eject material in the feed influences the incorrectly discharged particles: the FPr is

relatively highest around 50 percent, and quantitatively around one-third (Küppers et al., 2021).

• Yield is not affected by the share eject material for plastic squares in the range of 45 to 55 mm

(Küppers et al., 2021). However, the share of eject materials did influence the yield for larger

rectangular material (Küppers et al., 2020). It is hypothesized that the influence of the share of

eject particles further depends on the size distribution and the classification algorithm (Küppers

et al., 2021).

• Fluctuations in the feedrate on a time scale of seconds decrease the grade (Feil et al., 2019).

2.6. Fluctuations
Fluctuations of the feedrate can occur throughout the MRF. Since the facility and sorting units are

designed for a certain throughput, fluctuations in the feedrate may influence the sorting performance

when the recommended rate is exceeded. Curtis et al. (2021) has proposed to split up the fluctuations

into categories based on time: short-term (<15 s), mid-term (15 to 600 s) and long-term (>600 s). The

short-term fluctuations can be caused by for example the rotation of a drum sieve or shredder earlier

in the process. Mid-term variations may be traced back to discontinuous feeding of the process, while

long-term can be traced back to adjustments in the process or previous plant disruptions. Here, the

causes of fluctuations identified in earlier research are summed up.

2.6.1. Sorting Process Input
The material that enters the MRF is heterogeneous due to the factors below.

• Quality differences of batches from different municipalities.

• Changes in regulations (deposit scheme, PMD composition, mechanical recovery).

• Retention time at storage locations.

• Bales containing agglomerated material re-entering the process.

• Feeding system of the sorting process.

• Extremely large objects influencing the composition on short term.

2.6.2. System Fluctuations
The design of an MRF and the operating decisions like machine settings may contribute to fluctu-

ations in the throughput throughout the sorting line. In earlier research performed by Curtis et al.

(2021) multiple causes of fluctuations were mentioned which are summarised in Table 2.3. The ro-

tational movement in the drum sieve not only leads to fluctuations in the throughput but also the

formation of braids. These large and long particle combinations can not be classified correctly by an

NIR.



18 2. Theoretical Background

Table 2.3: Overview of fluctuations of the throughput of an MRF and the causes identified in literature.

Location Fluctuation Cause Duration Frequency Proposed solution

Human-controlled feeding

machinery (wheel loader,

shovel etc.)

Batch feeding

of shredder

Discontinues feeding with

wheel loader.
Mid term Irregular

Smart control, instructions

wheelloader.

Shredder

Bridging

Large particles form bridges in

the shredder, making it appear full,

influencing the automatic feeding.

Short term to

mid term
Irregular

Analysing flow data and

machine data.

Reversing intervals Shredder settings or obstruction Short term 30 sec -

Reduced processing

rate shredder

Large, thick-walled objects are

difficult to shred and may block

the shredder.

Short term to

mid term
Irregular -

Drum sieve
Fluctuation output Rotation. Short term

One drum

rotation
Other type of sieve.

Agglomerated material
Large foils and wires form braids

in the drum sieve.
Irregular

Regular maintenance intervals

shredder. Iron separation

before the drum sieve.

Oher type of sieve.

Key Takeaways Chapter 2

• NIR sensor sorting systems are able

to distinguish different types of

materials and polymers using reflection

schemes at high feedrates.

• The working principle, machine design,

machine settings and maintenance,

influence the range of particle properties

which the system can sort correctly

when fed in a monolayer. This is

referred to as the working range.

• The False Calls can be divided into six

types of which some depend on the

feed composition, feedrate and/or

feeding mechanism.

• The feedrate and feed composition vary

through time thus influencing the

probability of False Calls.



3
Analysing Sorting Performance

In this chapter, the created framework of False Calls is put to the test in an industrial setting. The goal

is to determine the probability of each type of False Call (FC) of a selected NIR sensor system. First,

the analysed NIR and the relevant preceding processing steps at the MRF are introduced. Then, the

experimental methods are described and finally the results of the analysed NIR are presented.

3.1. Experimental Setup
This research was conducted at an MRF in the Netherlands. At the facility, an NIR was chosen to

conduct the experiments. This NIR aims to increase the grade of the mixed plastics product (DKR350)

by separating the mixed plastics from the residue. Negative sorting is applied. The targeted materials

that are ejected, are all non-plastics and PVC. The non-targeted materials are plastics. This NIR was

chosen because the throughput of the NIR is relatively low, which makes manual sampling possible. In

addition, mixed plastics are currently the most challenging product at this facility. The mixed plastic

product consists of plastic types that are not targeted as one of the mono-products (PS, ABS, etc.)

and the losses of mono-products due to the imperfect sorting performance of the preceding steps.

The wide range of particle properties of both the mixed plastics and the contamination complicates

the separation of unwanted particles from the valuable plastics during this purification step. Mixed

plastics is the largest product of this MRF, similar to other Dutch MRF’s (Jansen et al., 2015).

Figure 3.1: Process scheme of sorting steps preceding the analysed NIR (green) and relevant products (gray).

19
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At the start of the sorting process, the material is fed to a bunker using an excavator. Next, in several

preprocessing steps the bags are opened and the incoming material is sorted by size and shape (Fig.

3.1). Windsifters separate heavy, mainly thick-walled, 3D particles from light, 2D particles. Since the

windsifters are not perfect, heavier materials enter the light material flow and vice versa (Jansen et al.,

2015). Ballistic separator 1 consists of two separators in parallel. The NIR analysed in this research

is followed up by a manual sorting step. This indicates that the sorting performance of the NIR is

insufficient. Due to confidentiality, only the relevant sorting steps and material flows are displayed.

3.1.1. Description NIR Sensor Sorting System
The NIR system is an AUTOSORT TS400, manufactured by TOMRA with a belt width of 2 m. The

actuator system contains 80 valves and the belt speed is set at 3.86 m/s. The pressure in the valves is

7.5 bar. The valves are programmed to open 16 ms before the identified particle and close 5 ms after

the particle has passed. At the current belt speed this reaction time means that belt area between 0.06

m before and 0.02 m after the particle is targeted by the air nozzle. To prevent the entrainment of

non-targeted material into the eject, the spacing between objects should be at least 0.06 m. Material

is dropped onto the conveyor belt from two chutes of 0,95 m x 1,20 m and 1,0 m x 1,20m (Fig. 3.2). The

material is not equally divided over both chutes; the feed of the chute displayed on the left in Fig. 3.3

also consists of the material flow from Ballistic Separator 2.

Figure 3.2: Feeding mechanism: two chutes drop material on to the belt.

Figure 3.3: Graphic representation of feeding mechanism.

The NIR uses the so-called flying beam technology (Fig. 3.4). The rotating mirror, the defining part of

this technology, provides a changing angle of incidence and angle of reflection which enables spectral

data collection along the width of the belt. The mirror has a convex polygon shape. The outgoing
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and incoming light beams are reflected by a flat side of the convex polygon and the sensor scans from

right to left as the mirror turns and both angles increase. At every corner of the mirror the angles of

incidence and reflection leap back to the smallest value and the line scan starts over. The incoming

light is divided into short time frames and a spectrum is created for the light collected during each

time frame. The spectrum is in turn used to assign a material group to the time frame. The rotation

angle of the mirror is synchronised to a position along the width of the belt. Therefore, the found

material group can be appointed to an area on the belt, which from now on is referred to as a pixel.

This NIR has a spatial resolution of 8 mm, meaning the pixel size is 8 mm by 8 mm. Information is

gathered for one line of pixels at a time while the belt and materials pas underneath the sensor. Since

the belt width is 2000 mm, one line consists of 250 pixels. The current belt speed requires 482 line

scans per second and a time frame of 8.3 nanoseconds per pixel.

Figure 3.4: Flying beam technology applied in the analysed NIR.

Processing Algorithm
As described in Section 2.4.1, the detected reflection spectrum of a pixel is used to assign a material

(class) to that pixel. The classification and processing algorithm are machine specific and vary per

producer. The adjustments mentioned in this paragraph are applied in the used NIR.

When the spectrum is not recognised the pixel is left empty at first. Next, using the processing algo-

rithm, the identified materials can be expanded to the surrounding pixels, artificially increasing the

positive identified surface. Then, the pixels that remained unidentified are designated as either plastic

or non-plastic. This decision is based on the surrounding pixels that are part of a software filter. The

following processing algorithm options can be used to adjust the sensitivity per material class:

• Expand the identified material to the surrounding pixels.

• Increase the filter size (standard size is 5 by 5 pixels).

• Adjust the percentage of pixels in a filter needed to assign a material to the filter.

The database contains multiple material groups of both targeted and non-targeted material. When

the surface of a particle is not recognised as belonging to one of those material groups and a large

share of pixels remains unidentified, the area is classified as ’Others’ and is considered a plastic. Non-

plastics that are not in the database, therefore, decrease the grade of the product (Fig. 3.5) in this case

of negative sorting.

The nozzles are activated when a set number of pixels in an area related to a nozzle is met. The re-

quired number of pixels depends on the nozzle distance.
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Figure 3.5: Decision scheme of the processing unit.

3.2. Experimental Methods
Five test were designed to single out the probability of each type of FC. This section first provides a

description of the analytical methods. Then these methods are applied throughout different tests.

Lastly the experiments are set out.

3.2.1. Analytical Methods
The behaviour of the NIR in relation to the feed characteristics was analysed by taking samples, mak-

ing video recordings and using data collected by the NIR processing unit.

Samples
To analyse the material composition in detail, samples of the material flows were taken on-site. The

sorting installation is placed in a large hall where the machines are placed on different height levels.

The NIR plastic product falls straight into a chute to the first floor and onto a conveyor belt which

ends in the manual sorting cabin. Thus, samples of the product could be taken at the manual sorting

conveyor belt (Fig. 3.6a). When sampling, two persons sweep the material of the running conveyor

belt into a container while a third person keeps track of the sampling time. The NIR residue is led on

in the sorting process. Therefore, the residue could be sampled using a sampling tool that catches the

material at a location where the conveyor belt is within manual reach (Fig. 3.6b).

(a) Sampling location of the drop fraction:
the manual sorting belt.

(b) Sampling location of the eject fraction:
a conveyor belt.

Figure 3.6: Sampling locations

The sampled particles were divided into 13 material classes depending on the type of material, size

and shape (Tab. 3.1). The NIR aims to eject all non-plastics and PVC from the material flow in order
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for the product to meet the DKR350 standard. Non-plastics and PVC were combined and regarded

as one material type. The plastics were split up into rigid plastics and foils because the shape and

density are expected to influence the behaviour of the particle in the NIR. The non-plastics show a

wide variation of particle properties. Therefore, to decrease the manual sorting work no distinction in

shape was made in this category. When uncertainties about the polymer type of rigid plastics arose,

staff members of the quality inspection department were consulted to make a distinction between

PVC and other types of rigid particles. Before and after the sample analysis, the weight of the total

sample was measured. Due to the loss of moisture and small particles, the sample weight may reduce

during sampling. When the weight loss remains below 3%, no adjustments or additional samples are

necessary (Lebersorger and Schneider, 2011).

Table 3.1: Material classes.

Group number Material Size Shape

1A

Plastic foils

Small

2D/flexible1B Medium

1C Large

2A

Rigid plastics

Small

3D2B Medium

2C Large

3A

Non-plastics and PVC

Small

All3B Medium

3C Large

4B
Plastic particles part of an agglomerate

medium
All

4C Large

5B
Non-plastic particles part of an agglomerate

Medium
All

5C Large

The diversity of particle shapes complicates the characterisation of particles into size groups. When

particles are fed to the NIR only the side facing upwards is visible. Therefore, the particle size and

shape of the top view in a stable position are analysed. The following parameters can be used to

describe the particle size and shape of irregularly shaped particles (Kandlbauer et al., 2021):

• Equivalent parameters: Dimensions of a chosen geometrical shape of which the area resembles

the particle surface area.

• Geometrical shapes: The dimensions of a chosen geometrical shape that encloses the particle.

• Shape factor: Function of the shape perimeter and surface area.

• Feret diameter (minimum and maximum): Distance between two parallel tangents (Fig. 3.7).

It was chosen to divide the particles based on the minimum Feret diameter (Fmin [mm]) and the max-

imum Feret diameter (Fmax [mm]). The Fmin is important as it is the minimum belt width occupied by

the particle if the Fmin is parallel to the scanline and blow bar. If a targeted particle is too small, the

area of the correctly identified pixels may not be large enough to activate the nozzle.

In Fig. 3.8 particles of small and medium-size fraction are shown.

Samples are taken to determine the composition of a material flow, for example, the product of the

NIR. The reliability of these samples can be expressed using the sampling error. The required max-

imum sampling error can be used to determine the sample size. In waste management, a relative

sampling error of 20% is accepted. To determine the sampling error for a certain material class the

composition of the analysed material flow is approached as a binomial distribution; particles are ei-
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Figure 3.7: Minimum and maximum Feret diameter (Sympatec GmbH, n.d.)

Table 3.2: Assigning particles to particle size groups based on Fmin and Fmax

Size Group Fmin [mm] Fmax [mm]

Small (S) <50 <150

Medium (M)
<50 150-300

50-300 50-300

Large (L) >0 >300

ther part of this material class or not. This discrete probability distribution is defined by the chance

(P ) of drawing a particle of the material class. The sampling error is equal to the standard deviation

(σ) of the binomial distribution and depends on the total number of particles in the sample (Ntot) and

the probability (Eq. 3.1a).

However, the value of P is unknown as it is the reason that the sampling analysis is conducted in the

first place. Therefore, it is assumed that for a representative sample, the ratio between the number

of particles targeted in the sampling analysis (N ) and the total number of sampled particles (Ntot ),

resembles P (Eq. 3.1b). When P in Eq. 3.1a is replaced by the ratio of particles, the standard deviation

can be calculated using the sampling results (Eq. 3.1d). The sampling error is calculated per material

class.

The sampling error σ can be expressed as an absolute error (Eq. 3.1c), a relative error (Eq. 3.1d) or a

mass error (Eq. 3.1c). The mass error is calculated using the average particle weight of the found tar-

geted material mavg by dividing the total mass of the targeted material mt by the number of particles.

To determine the required sample size, it is assumed that the share of material targeted during the

sampling analysis, P, is always above 0.05. To achieve a σrel of 20% with P = 0.05, 24 particles should be

sampled. This number is rounded to 25 particles. Large particles are likely to account for less than 5%

of the particles in the feed. To reduce the manual labour, a higher sampling error is accepted for this

size category.

The samples are split into four groups before analysing, if the minimum of 25 target particles is not

found in the first share, another quarter is added.

σ=
√

NtotP (1−P ) (3.1a)

P = N

Ntot
(3.1b)
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Figure 3.8: Examples of the size fractions. Left: Small rigid plastics. Right: Medium non-plastics.

σsamp =
√

N (1− N

Ntot
) (3.1c)

σrel =
σsamp

N
(3.1d)

σmass =σrel ∗mavg (3.1e)

mavg = mt

N
(3.1f)

NIR Feed Data
The NIR used in this research collects data about the feed by measuring the (top view) area of all the

particles that pass the sensor scan line. The measurements include the distribution of material along

the width of the belt [%] of total measured material area] and the material composition based on the

area of the material measured from above. A value is given per material [m2/h] and relative to the total

belt area occupied by all materials [%].

Video Feed Data
A Nikon 1 S2 is used to record the surface of the conveyor belt. The camera is placed above the belt as

shown in Fig. 3.9. Videos with a frame rate of 30 frames per second are made.

3.2.2. Test A: Systemic Errors
To determine the contribution of system errors and the associated chance psyst test runs were per-

formed using clean flakes of PVC and product type plastic. The square product plastic flakes originate

from a plastic packaging manufacturer and are made from polyethylene foil (PE) and for the residue

PVC flakes were used. The squares have sides of approximately 10 cm. It is expected that the total con-

tribution of systemic errors is around 1%. A total of 100 particles is used for this test in both categories.

The particles are fed to the NIR manually to avoid overlap. The test is repeated three times.

3.2.3. Test B: Working Range with Respect to Size Range
An important part of the working range of the NIR is the size range. The machine specification states

that the recommended minimal particle size is 20 mm. To confirm, the sorting performance was

analysed for square clean particles which in four sizes: 20 mm, 30 mm, 40 mm, 50 mm. In each
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Figure 3.9: Camera above the belt

Figure 3.10: Material Test B: PVC flakes

category, 50 flakes are cut from thick-walled PVC. This material was chosen because it is flexible and

easy to cut, is well detectable and does not tear like paper. PVC is an eject material. Each run is

repeated three times.

3.2.4. Test C: Working Range with Respect to Orientation and Recognition
The goal of this test is to estimate the share of deterministic and stochastic orientation errors. In

addition, this test will give an insight into if, and to what extent, deterministic particles, normally

always giving an FC, can be processed correctly under normal processing conditions thanks to being

overlapped. Finally, an analysis of the deterministic particles provides information on the working

range of the sensor and the share of particles with this kind of uniqueness problem.

The deterministic false calls were analysed by NIR sorting four batches of particles multiple times and

keeping track of the number of times each particle causes a false call. The material was fed to the

conveyor belt manually one by one to exclude overlap errors.

The material that was used for this test was taken from the residue and product flows on the conveyor

belts behind the NIR while the MRF was in operation. The four batches represent the four outcomes

of the NIR under normal process conditions (Tab. 3.3). By choosing these four batches, the behaviour

of deterministic particles under optimal conditions could be compared to behaviour under regular
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process conditions. Only the medium and large size fractions were used in these tests to rule out

size-related errors associated with the smallest range.

Table 3.3: Material used in Test C.

Batch Group Material flow Material Class

1 FP Product Plastics

2 TP Product Non-plastics

3 FN Residue Plastics

4 TN Residue Non-plastics

Deterministic particles always cause a false call under optimal feeding conditions if we look only at

orientation and recognition FC’s. The non-deterministic particles have a chance between 0 and 1 to

be sorted into the wrong fraction which probability is described by Equation 3.2. The total number of

runs (k) per batch is 3. The observed numbers of FP or FN per particle (nFC ) are recorded.

porient,i = ni

k
∗Share of particles (3.2)

In this test, false calls can be caused by orientation and recognition errors and by systemic errors. This

cannot be prevented. To determine the contribution of orientation and recognition errors the results

were corrected for the probability that a particle is involved in a systemic error (psyst,n). This binomial

chance depends on the found systemic error probability (psyst).

psyst,n = k !

n!(k −n)!
∗pn

syst ∗ (1−psyst)
k−n (3.3)

The share of particles in the feed with attributes causing recognition or orientation errors was calcu-

lated using the measured sample times. The number of particles per second was determined after

which the drop and eject were summed up.

3.2.5. Test D: Feed Characteristics
As discussed in Section 2.5, the feed characteristics influence the sorting performance. The perfor-

mance of the NIR was tested within the ranges of the feed characteristics found on-site. For example,

the performance at the minimum and maximum feedrates were determined. To determine those

boundaries the feed was characterised.

Feeding Mechanism and Occupancy Rate
The total area of material on the conveyor belt per unit of time is measured by the NIR. This informa-

tion was used to calculate the average occupancy rate. In addition, the NIR recorded the distribution

of material along the belt. Since the feedrate and the occupancy rate are related, the NIR data of the

available occupancy rate is used to inspect the variations of the feedrate through time. An NIR oc-

cupancy data set of 20 days is used to ensure that the data is representative and the influence of the

varying waste composition is reduced.

Agglomeration
To determine the impact of agglomeration on the sensor performance the occurrences of agglomer-

ated materials in the feed and the composition of agglomerated particles were analysed. A distinction

was made between stationary and non-stationary agglomeration. Stationary agglomeration is an um-

brella term that is defined as agglomerated particles that do not separate when shaken by hand. This
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term includes multiple mechanisms such as metal cans locked around other material and unopened

bags. This type of agglomeration is assumed to be present in the input of the MRF. Non-stationary

agglomeration, on the other hand, is material that is hooked into each other due to shape or sticky

surfaces. This kind of agglomeration is likely to be formed inside the sorting process and can be sepa-

rated by some shaking.

The stationary agglomeration analysis is combined with the analysis of the samples of Test E. Station-

ary agglomeration is characterised by the following variables:

• Number of agglomerated particle combinations (at least 2 particles).

• Weight of the agglomerates.

• Composition of the agglomerates (targeted/non targeted material) in both the number of parti-

cles and weight.

• Agglomeration mechanisms.

The non-stationary agglomeration was analysed by taking 8 visible heaps from the product. The

reason is that earlier performed on-site observations indicated that non-stationary agglomeration is

likely to enter the plastic product. The frequency of non-stationary agglomerates was determined by

analysing video recordings.

Non-stationary agglomeration is characterised by the following variables:

• Weight of agglomerated particles.

• Mass composition of agglomerated particles (targeted/non targeted material).

• Agglomeration mechanisms.

• Occurrence rate.

3.2.6. Test E: Occupancy and Overlap
Design of Experiments
The FC caused by overlapping materials were determined using the Design of Experiments (DoE)

method. This method is essentially a regression analysis that provides a guideline on how to plan and

design a test. It is therefore an efficient way to observe the effects of multiple parameters simultane-

ously, together with the interactions of the factors. Performing experiments in an industrial setting can

be costly. Alterations to the operation settings of the MRF such as an adjustment of the MRF feedrate

influence the quantity and quality of the product. In addition, analysing samples is time-consuming

which makes efficiency is essential. DoE has been applied before in the evaluation of the performance

of a shredder for a heterogeneous waste input and was found to provide significant models (Khodier

et al., 2021). The parameters that affect the system and can be set during the experiment are called

factors in DoE terminology. The parameters that describe the output of the system are referred to as

responses.

Full Factorial Design
A commonly applied experimental design is the full factorial design. In this design the responses are

measured for all combinations of input factors at both high (1) and low (-1) levels. Consequently, a

full factorial design with k factors requires at least 2k runs. The design can be strengthened with the

response of the system with both factors set to level 0. These so-called center points can be added

to check if the relationship between the factor and the response is truly linear or if a curvature exists.

Furthermore, the influence of uncontrollable parameters during the experiment can be estimated

using center points.

It is assumed that interactions between the two factors (X1 and X2) may influence the responses (Yr).

Therefore a polynomial multilinear model is chosen to determine a best fit to the data as follows:
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Figure 3.11: Full factorial design, k=2

Yr =β0 +β1X1 +β2X2 +β3X1X2 +ε (3.4)

The equation consists of a constant, β0, two main effects and one two-factor interaction. The coeffi-

cients are indicated with β.

Experimental Design
It was hypothesized that the feedrate, the feeding mechanism and the percentage of foils affect the

amount of overlap. The goal of this experiment is to investigate the possible relationship between

these factors and the errors caused by overlapping materials. Doing so, the feeding mechanism was

kept constant and the feedrate and feed composition were chosen as factors (k = 2). Three centre

points were added to the design which ads up to total of seven runs.

The feedrate of the NIR is varied by adjusting the input of the MRF to a value between 50% (-1) and

100% (1) of the original feedrate of the MRF. The material composition and amount of targeted mate-

rial are controlled using the settings of Windsifter 1 (Fig. 3.1).

This windsifter removes materials with a low density - mainly foils - from the flow towards the NIR. By

adjusting the settings, the share of foils continuing to the NIR can be controlled.

The principle is demonstrated in Fig. 3.12. The airflow from below can be controlled using valves. The

heavy fraction continues to the NIR. If the blow valves are closed, fewer foils will be blown into the

light fraction, increasing the share of foils in the heavy fraction and reducing the share of non-plastics

towards the NIR. In the DoE format, an open valve corresponds to level -1 and a closed valve to level

1.

Table 3.4 shows the operational setting for each run and the run order.

The test was conducted during the same 8-hour shift to avoid changes in operating staff to reduce

outside parameters that may influence the experiment. For example, a different wheel loader may

load the MRF in another way influencing the MRF feed. Also, two members of the operation staff

assist during sampling. At the beginning of each run, the MRF throughput and the windsifter settings

were altered. To make sure the flow throughout the facility was stabilized for the new settings, the

samples were taken 40 minutes after the changes.
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Figure 3.12: Simplified image of windsifter comparable to windsifter used on-site. The blow valves control the amount of
returned air from the fan ((Nihot Airconomy, n.d.)).

Table 3.4: Overview of DoE runs and operational settings

Run
Throughput Windsifter blow valves

Level Factor setting [%] Level Factor setting

1 0 75 0 half opened

2 -1 50 -1 open

3 -1 50 1 closed

4 0 75 0 half opened

5 1 100 -1 open

6 1 100 1 closed

7 0 75 0 half opened

The following three principles of DoE were implemented in this experiment:

• Replication: multiple measurements of the responses for the same combination of factors should

be made over a period of time. This is different from multiple measurements at the same mo-

ment, which are just repeated measurements. The replication aims to capture the amount of

random noise caused, for example by variations in the feed that are not measured. In this re-

search three replications of the so-called centre point were performed: at the beginning, the

middle and the end of the experimental runs.

• Blocking: If part of the system changes throughout the experiment, such as a different operator,

the experiment should be split into separate blocks, blocking in DoE terminology. This means

that the experimental runs are repeated for both operators.

• Randomization: to reduce the bias of the sampler, ambient light or the influence of variations in

the performance of sorting units earlier in line than the NIR, the order in which the experiments

are performed, should be random except for the centre points.

Data Collection
During each run, three samples are taken of both the product and the residue. The sampling time was

recorded. The following values were measured for the three size classes in both mass and number of

particles:



3.2. Experimental Methods 31

• Share of foils

• Share of rigid material

• Share of contamination

• Stationary agglomeration including the share of contamination in the agglomeration. Agglom-

eration is only measured for medium-sized and large particles.

These values are used to calculate the following eight responses (Yr):

1. Average feedrate of NIR (Eq. 3.5a and Eq. 3.5b).

2. Share of non-plastics in the NIR feed.

3. Share and grade of agglomeration in the NIR feed.

4. TPr (Eq. 2.1a)

5. FPr (Eq. 2.1b)

6. Grade (Eq. 2.2a)

7. Recovery (Eq. 2.2b)

8. Mass recovery (Eq. 2.2c)

9. Discharge (Eq. 2.2d)

The feedrate and feed composition were calculated by combining the values found for the product

and residue. To determine the average mass feedrate ṁfeed [kg/s] the mass flow to both outputs was

calculated.

ṁ =
∑3

n=1
Sample mass
Sample time

number of samples
(3.5a)

ṁfeed = ṁdrop +ṁeject (3.5b)

Analysis of Results
The feedrate of the MRF was altered to indirectly influence the feedrate of the NIR because the lat-

ter could not be adjusted individually. Experimental data analysis occurred in two steps. First, the

influence of the factors, the MRF feedrate and the opening of the blow valves, on the feedrate of the

NIR and the share of non-plastics in the NIR feed were analysed. Due to the processing steps between

the start of the MRF line and the NIR it is likely that the factors are not one on one related to the feed

characteristics of the NIR. Next, the effect of the feedrate and the share of targeted material on the TPr,

the FPr and the grade were analysed.

The factors were substituted into Equation 3.4, which was used for the regression analysis. Before the

experiments, it is unknown if a statistically relevant relation can be found between the MFR feed (F)

and the settings of the windsifter (W) and the responses (Yr).

Yr =β0 +β1F +β2W +β3FW +ε (3.6)
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The statistical software MiniTab® was used to evaluate the data. The software conducts a regression

analysis and visualises the results. For each response, forward selection is applied to create a statisti-

cally significant regression model. The software calculates the p-value of each term which indicates

the empirical significance. If the p-value is below a chosen significance level (α), it implies that the

response is not likely to be random. The value of the response can then be predicted using the coef-

ficient and the input factor. When forward selection is applied, first the term with the lowest p-value

is added to the model, followed by the others until only terms higher than the chosen significance

level remain. In general, a value between 0.05 and 0.15 is assigned to α. In this research a value 0.1 is

chosen, similar to the value applied by Khodier et al. (2021) during their experiments with waste.

Once a model with significant terms for a response is created, an analysis of the variance (ANOVA) is

performed. The share of variation of the response that can be predicted using the input factors is de-

scribed using the coefficient of determination (R2). R2
adj is the coefficient of determination adjusted

for the number of variables in the model.

Material Classification Overlap
To create a better understanding of the classification of overlapping material, multiple particle com-

binations were placed underneath the light beam of the NIR on the switched off conveyor belt. The

reaction of the actuator was confirmed by listening if the valves eject air. The results can not be used to

conclude whether or not both particles are truly ejected when targeted by the nozzles. The following

combinations were tested:

• Non-plastic material - Plastic foil (single layer).

• Non-plastic material - Plastic foil (multi-layer).

• Non-plastic material - Rigid plastic (overlapping).

• Non-plastic material - Rigid plastic (nearby).
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3.3. Results

3.3.1. Test A: Systemic Errors
The systemic error is found to be around 2% for plastics and 4% for non-plastics. It is observed that

the PVC particles are classified incorrectly due to at least three phenomena:

• The airflow of a nozzle is temporarily insufficient.

• The nozzles do not react to the PVC particle at all due to either failure of the sensor, the software

or the nozzles.

Table 3.5: FPr of clean PP flakes and FNr of clean PVC flakes.

Particle Material Amount of Particles [nr]
False Call Rate [%]

Run 1 Run 2 Run 3 Average

PP (Product) 100 2 0 4 2

PVC (Residue) 100 4 5 4 4

3.3.2. Test B: Working Range with Relation to Size
In Fig. 3.13 the TPr for square particles with a size up to 50 mm is shown. It is clear that particles

with a side length of 20 mm, the minimum particle size according to the specifications, are not clas-

sified correctly. The nozzles did not react to this particle size, hence it is assumed that this size is not

correctly identified by the classification algorithm. Next, as the size increases, the TPr increases from

an average rate of 44% for 30 mm to 65% for 50 mm. This means that working range size errors are

deterministic if they are below a certain size. For larger sizes the performance improves but is not as

expected. It is proposed to determine a cut-off value equal to the minimal size based on the TPr.

Figure 3.13: Sorting performance for square eject particles with a size up to 50 mm.

3.3.3. Test C: Working Range with Relation to Recognition and Orientation
Four batches of particles were sorted multiple times to identify the deterministic and stochastic errors

related to orientation and recognition errors. In Table 3.6, the results of the batch of False Negative

material are presented. These particles were meant to be ejected, however, it can be concluded that

49% of the particles in this batch are not ejected in any of the three runs. Out of those 28 particles,

8 were not correctly identified when placed under the sensor on the non-moving conveyor belt. In

Fig. 3.14, a few of these particles are displayed. The results also show that 17% does not cause a FN in

three out of three runs. Under processing conditions, these particles might have been overlapped and



34 3. Analysing Sorting Performance

dropped together in the plastic product, causing a FN. Another smaller chance is that these particles

had a low chance of an unfavourable orientation.

In Appendix A the results of the other batches are displayed. All plastic particles (TN and FP) were

classified correctly by the sensor when placed on a non-moving belt. As can be seen in Table 3.8, a

total of 6% of the medium and large plastic particles were involved orientation errors.

Table 3.6: Number of False Positives per individual particle after 3 batch runs. Batch Material: False Negatives

Number of FN/runs Number of particles [nr] Share of total particles [%]

0/3 10 18

1/3 7 12

2/3 12 21

3/3 20 35

3/3 (Classification error) 8 14

Total 57 100

In Table 3.7 and Table 3.8, the results of the batches are combined and processed. The chance of

an orientation error or recognition error is much higher for non-plastics. This could be due to the

processing algorithm; materials that are not recognised are classified as plastics and dropped. Also,

the material characteristics vary more for non-plastics than plastics, making it harder to include all

such material types in the database. Orientation errors due to movement on the belt can also only be

determined for non-plastic materials. If a plastic particle has a relative speed, it will still be dropped

if it does not arrive at the expected time because the belt is empty and the nozzles are not activated at

all.

Table 3.7: Orientation and sensor errors of non-plastic particles.

Number of FN/runs Share of particles [nr.%] Systemic errors Correction porient

0/3 25 88.5% 37% 0.00

1/3 14 11.1% 3% 0.01

2/3 21 0.5% 20% 0.13

3/3 31 0.0% 31% 0.31

3/3 (Classification error) 11 - 11% 0.11

Table 3.8: Orientation and sensor errors for plastic particles.

Number of FN/runs Share of particles [nr.%] Systemic Errors Correction porient

0/3 89 94.1% 95% 0.00

1/3 6 5.8% 0% 0.00

2/3 3 0.1% 3% 0.02

3/3 3 0.0% 3% 0.03

3/3 (Classification error) 0 - 0% 0.00

During the test, the particle characteristics were noted and recordings were made of the orbit of the

particles after ejection. Below the observed causes of orientation and sensor errors are listed.

Observed errors due to non-plastics orientation and recognition:

• Packaging consisting of paper and plastic.

• Contaminated tetra pack.

• Medical plastic items.
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• Light paper sheets.

• Heavy particles (e.g. diapers).

• Cables and other long and thin wires.

• Packaging with content (Uniqueness error).

• Black materials.

Plastics orientation errors:

• Round plastic lids.

• Contaminated foils.

• Plastic packaging with large paper labels.

Figure 3.14: Deterministic particles found in the plastic product.

3.3.4. Test D: Feed Characteristics
Feeding Mechanism and Occupancy Rate
The data collected by the NIR gave a first impression of the variations in feedrate. Temporary stops of

the MRF processing line were removed from the data set. The sensor system measures the material

area that passes underneath the sensor for a total time of 5 minutes. So, short and mid-term fluctua-

tions can not be distinguished when using these data. The data were applied to check if the feedrate

during Test E matches the ranges found during normal process conditions. Fig. 3.15a shows an aver-

age of just below 5000 m2 per hour and no outliers at the top. Using the belt width and the belt velocity

the average occupancy density is calculated to be 18%.

The 5-minute average area of non-plastic material varies between 12 % and 27% of the total material

feed area.

The NIR is fed by two chutes which widths lead to the two peaks loadings along the width of the belt

(Fig. 3.16). On the right (position 150 cm), the occupancy rate is highest. That side corresponds to

the chute in which 2 feed material flows are combined (See Fig 3.3). The graph shows the distribution

of the measured area of the feed along the belt width. The average occupancy density is 18% and the

occupancy density at the peaks is even higher. It is concluded that the occupancy rate along most of

the belt width exceeds the 7.5% free rectangular particles can occupy without overlap Wen et al. (2021).

Since the feeding mechanism is not altered, this uneven belt distribution is a continuous problem.

Stationary Agglomeration
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(a) Five minute average of the feed
surface area during one day

(b) Share of non-plastics material of
the feed surface area during one day

Figure 3.15: Range of feed characteristics.

Figure 3.16: Distribution the total measured material area along the belt width of the NIR during a one day period.

Some particles are part of a group that should not be presented to the sensor in a monolayer. The

occurrence of different agglomeration mechanisms was determined in relation to the total amount of

stationary agglomeration. A total of 35 agglomerated groups were detected and analysed. Based on

the results it is concluded that locking is the most occurring type of agglomeration mechanism (Fig.

3.17). Still, this mechanism accounts for only 23% of the non-plastic particles found in agglomeration

and 12% of the mass. Unopened bags are the largest contributor of agglomerated non-plastic particles

and total agglomerated mass.

It was found that on average 13% of the NIR feed mass consists of stationary agglomerated material

(Tab. 3.9) with an average non-plastic content of around a third of the mass and a fifth of the particles.

However, large variations occur for both shares.

Table 3.9: Stationary agglomeration in the feed.

wt.% nr.%

Average agglomeration in feed 13 5

STD Aggl/feed 6 2

Average Non-plastics in agglomeration 31 22

STD non-plastics 11 6

Non-Stationary Agglomeration
In Table 3.10, the composition and mechanisms of 8 agglomerate groups are listed. On average 69%

of the non-stationary agglomerate mass consists of plastics, which is quite similar to the feed com-

position. Video recordings show that non-stationary agglomeration can start with one single particle
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Figure 3.17: Stationary agglomeration mechanisms.

that is stuck on the side of a chute and then can grow to an agglomerate covering an area of 1 m2 in 8

minutes.

Table 3.10: Non-stationary agglomeration in the product.

Total weight [kg] Weight FN [kg] Grade [wt.%] Agglomeration mechanism or material

2.36 0.46 81
Rope, hook of hanging planter, bag in bag, adhesive material,

pantyhose, torn up planter, iron hooks

0.39 0.12 69 Copper cable, rope, torn up material with rough edges

0.30 0.09 70 Iron/plastic wire

1.89 0.92 51 Rope, textiles

0.61 0.24 61 Material with sharp edges

0.59 0.25 58 Wire

0.14 0.04 71 Iron wire, garbage bag loop

0.53 0.00 100 Bags inside bag

6.81 2.12 69

3.3.5. Test E: Overlap and Feedrate
The regression analysis of the experimental data of Test E indicated that, as expected, a statistically

significant relationship exists between the NIR feed and the input factors for both particle and mass

measurements (Tab. 3.11). An interaction was found between the input factors meaning that at higher

MRF feedrates and closing of the blow valve in the windsifter, the effects on the NIR feed are amplified

(Fig. 3.18). Also, the regression analysis implies that when the throughput is high, the amount of non-

plastics in the NIR feed decreases when the valves are closed, as aimed for (Fig. 3.19). However, at low

MRF throughput rates, closing the valve leads to an increase of non-plastic particles. Therefore, it is

concluded that adjusting the position of the blow valves is not a suitable way to vary the number of

non-plastics.

Table 3.11: Results of the regression analysis: model coefficients and ANOVA values.

Coefficients Feed [nr/s] Feed [kg/s] Non-plastic [wt.%] Non-plastic [nr.% ] Foils [wt.%] Foil [nr.% ] Rigid [nr.%]

Constant (β0) 58.5 -0.23 0.359 0.033 0.695 1.015 -0.017

Feed (β1) 1.4 0.02 - 0.003 -0.003 -0.006 0.002

Wind (β2) -0.4 0.01 -0.001 0.003 - -0.004 -

Feed*Wind (β3) 0.02 - - -3.5E-05 - 3.9E-05 -

ANOVA

R2 96.0 82.9 46.1 93.4 94.6 95.2 84.9

Radj 91.9 74.4 35.4 86.7 93.5 90.4 81.9

pMod 0.01 0.03 0.09 0.03 < 0.001 0.02 0.003
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Figure 3.18: Effect of the input factors on the feedrate [nr/s].

Figure 3.19: Effect of the input factors on the share of non plastic particles [nr.%].

Finally, the fraction of rigid particles and foils in the NIR feed is influenced by the feedrate. It is likely

that a lower throughput rate improves the ballistic separation performance and decreases the amount

of rigid plastics in the NIR feed. The material composition and size fractions of the NIR feed in all

seven runs can be found in Appendix A.

For the mass fraction of rigid plastic particles, the pmod was higher than 0.1 thus no significant relation

was found. Also, the coefficient of determination for the mass of non-plastic particles is very low and

the model prediction is considered insignificant.

The feed composition was used to calculate multiple performance indicators such as the grade and

the TPr of the material classes (Tab B.1, Appendix B). The performed regression analysis results in

significant models for the TPr of particles and mass (Tab. 3.12). The R2 and Radj are higher for the

medium size fraction than for all non-plastic particles combined. This indicates that the model pre-

diction of the TPr of the middle size fraction using the input factors is better than the prediction for

the TPr of all particles.

An increase in feedrate lowers the mass TPr. When the blow valves are closed, the decrease is steeper

(Fig. 3.20a). This is not the case for medium-sized non-plastic particles (Fig. 3.20b) as will be dis-

cussed in Section 3.3.6.

Material Classification in Case of Overlaps
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Table 3.12: ANOVA

TPr [nr.% ] Discharge [wt.%] TPr medium sized NP [nr.%]

Constant (β1) 0.3476 0.4227 0.373

Feed (β2) - -4.6E-05 0.00056

Wind (β3) -0.00142 0.000381 0.00156

Feed*Wind (β4) - -2.1E-05 -0.000035

ANOVA

R2 70.79 96.95 84.61

Radj 64.95 93.89 69.22

pMod 0.018 0.009 0.098

(a) Effect plot: TPr Non-plastic medium size fraction
[nr.%]

(b) Effect plot: TPr Non-plastic medium size fraction
[nr.%]

Multiple combinations of particles were placed on the non-moving belt of the NIR feed (Fig. 3.21). It

was found that the actuators were activated when non-plastic material is placed underneath a single

layer of plastic transparent foil but not when the non-plastic is underneath multiple layers of transpar-

ent plastic foil. Also, a slight overlap of the non-plastic material by rigid material may already prevent

actuator action.

3.3.6. Discussion
In this chapter a framework of the causes of false calls of an NIR was introduced and applied to an

NIR in an MRF. All errors observed and identified while testing could be assigned to one of the FC

categories. In this section each category will be discussed to determine the accuracy and evaluate the

results.

Systemic errors
The systemic error of the NIR is higher than the 1% that was expected beforehand based on earlier

results of preliminary test performed by Küppers et al. (2020) using clean flakes. It was observed that

insufficient airflow inhibited correct classification of the PVC particles. This is likely due to fouling

and could be prevented by adequate maintenance. Research has shown that failing of 20% of the air

valves reduces the TPr with 20% (Küppers et al., 2021). The larger the share for failing air valves, the

higher the probability of systemic errors.

Size errors
PVC particles below a size of 20 mm are not classified correctly by the NIR as indicated by the man-

ufacturer. As predicted, the the TPr increased along with the particle size increased. In this research

square particles up to 50 mm were analysed. But at a size of 50 mm the average TPr is still only 65% .

Due to a lack of time particle sizes between 50 mm and 150 mm were not analysed. In addition, only

square particles were used as feed hence TPr of thin particles remains unknown.

The TPr varies per run per size with differences as big as 30% for a size of 30 mm. The same batch of
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(a) Single-layer foil: shoot. (b) Multi-layer foil: no shoot.

(c) Rigid small overlap: no shoot. (d) Rigid no overlap: shoot.

Figure 3.21: Classification and actuator action by overlapping of materials.

PVC flakes was used for all three runs. The flakes were wiped clean in between the runs but dirt may

have adhered to the surface.

Recognition and Orientation Errors
Recognition and orientation errors were determined in the same test. In this industrial setting, the

classification data per pixel is not available to the users of the NIR. Therefore, in some cases, it was not

possible to determine if a particle was not recognised on the moving conveyor belt or if it has a high

probability of an orientation error. When these particles were placed on a non-moving conveyor belt,

the nozzles were not constantly opened but sputtered. These particles were assigned to orientation

errors.

Overlap Errors
The regression analyses of the experimental results of Test E showed that in general, the TPr decreases

with an increase in feedrate which corresponds to the trends found in literature. However, this was

not the case for the particles in the medium size fraction with closed blow valves of the blow valves.

This can be explained by looking at the effect of both input factors - the MRF feed and the position

of the windsifter blow valves - on the share of non-plastics in the feed (Fig. 3.19). When both input

factors are set to level 1, the share of non-plastics is at its highest point. In earlier research, a relation

was found between the share of non-plastics and the TPr in the mining industry but not in the waste

sorting. However, the decision to eject a particle is also influenced by the processing algorithm. The
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NIR is programmed to give priority to rejecting material. A larger share of plastics leads to an increased

chance of a non-plastic particle being overlapped by a plastic particle likely resulting in a drop of

both particles. But since the share of non-plastics was not systemically influenced, more research is

needed to identify the influence of the processing algorithm on the relationship between the share of

non-plastics and the TPr.

Even though a significant relation was found between the feedrate and the TPr, the feedrate did not

influence the grade or recovery, in contrast to earlier performed research. Based on the performed

tests, it is concluded that correlations between the NIR feedrate and feed composition and the sensor

performance found in earlier research do not necessarily apply to waste sorting in an industrial set-

ting. In a lab setting where thick rigid particles are used, the eject or drop decision depends on the

particle on top. But when transparent foils are involved, the sensor might also identify the particle

underneath. Also, the processing algorithm can influence the outcome.

Another explaination for the absence of the expected relations between the feedrate and the recovery

could be the design of the experiment. It was aimed to keep all variables except for the input factors

stable. However, changing the throughput rate of the MRF can have a significant effect on the perfor-

mance of all preceding sorting steps. For example, it was found that the share of rigid plastic particles

in the feed is related to the feedrate of the MRF. A lower feedrate may lead to better performance of

the ballistic separator and therefore a smaller fraction of rigid plastic particles. Further, it was found

that the non-plastic medium-sized particles in the sensor feed have a lower average particle weight

(Appendix B). This too could indicate better sorting performance of the ballistic separator at lower

feedrates. A higher average particle weight can lead to a different trajectory once ejected and there-

fore affect the sensor performance. However, more research is needed to demonstrate the effect of

the feedrate of the ballistic separator on the average particle weight. Nevertheless, unforeseen effects

of the preceding processing steps altered the feed composition and may have influenced the sorting

results. Khodier et al. (2021) stated that the DoE method can be applied to experiments using het-

erogeneous waste. However, unlike in the experimental design of Khodier et al., multiple preceding

sorting steps could influence the feed composition. It is therefore recommended to create an artificial

feed using real waste samples. However, at this facility, it was not possible to feed a prepared batch to

the NIR through both chutes without other sorting steps in between. Therefore, the model of the NIR

created in this research uses the MRF feed as an input factor instead of the NIR feed.

In addition, the sampling method may have led to deviations in the results compared to the real feed

composition. First of all, because the samples of the drop and eject fraction were taken in a short

period but not simultaneously.
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Key Takeaways Chapter 3

• Five tests are performed on-site to

single out the probability of each type

of False Call per material class.

• The Design of Experiments method is

applied to analyse the effect of the

feedrate and feed composition on the

overlap errors.

• As expected, the probability of being

involved in a False Call due to size

decreases when particle size increases

for particles <50 mm.

• The probability of being involved in an

orientation or recognition error is

determined to be around 50% for non-

plastic particles and 3% for plastic

particles.

• The TPr of non-plastics does not exceed

45%, meaning that more than half of the

contamination present in the feed ends

up in the product.



4
Statistical Model

In this chapter. a MATLAB implementation of the statistical behaviour of the NIR sensor system is

introduced. This implementation is based on the FC parameters in Fig. 2.4. The experimental results

from this research concerning the possible FC’s were applied. This model allows us to simulate dif-

ferent optimisation scenarios. Then, multiple feed optimisation scenarios were tested. Overall, this

model is aimed at improving the understanding of how all the different types of errors come together

and affect the sorting performance. Three scenarios are designed to investigate if, and to what extent

an adjustment to the present NIR could improve the performance.

4.1. Scenarios
Once the overlap probabilities are determined, three scenarios are implemented. These options are

chosen because they are realistically possible to the present MRF and tackle at least one type of error.

In the first two scenarios the feed characteristics are altered. The third scenario involves an adjustment

of the sensor system. An overview of MRF process improvement suggestions will be presented in

Chapter 5.

1. Narrow Size Distribution: In the previous chapter the working range was analysed. It was found

that the NIR has a lower TPr for small particles. In this first scenario, the input feed was modified to

simulate the effect of removing a large part of the small particle size fraction. In the MRF, a more nar-

row size distribution may be achieved by sieving the feed. The parameters that describe the particle

size distribution in the model are adjusted.

2. Tackling Stationary Agglomeration: Stationary agglomeration largely consists of unopened bags

(Section 3.3.4). More bags may be opened correctly by adjusting the bag opener settings or placing

an additional bag opener before the sensor sorting system. In this scenario it was assumed that a

modification in the preceding MRF line leads to more correctly opened bags. This can reduce the

share of stationary agglomeration in the input by 50%.

3. Reducing Classification and Orientation Errors: When particles outside of the working range are

fed to the sensor system, classification and orientation errors are likely to occur. In this last scenario,

instead of adjusting the feed, the working range of the sensor system was expanded. The working

range may be improved by placing a Laser Object Detection (LOD). This type of sensor can detect

if an object is present on the belt by height differences. This enables the detection of black particles

and materials that are not available in the database. The NIR sensor software is also able to detect the

43
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presence of particles that are not part of a certain material group or the conveyor belt and classifies

this as ’Others’. But the current software can not eject materials identified as ’Others’ (Fig. 3.5). Hence

the processing algorithm should be adjusted to enable the ejection of unknown materials.

However, the application of a LOD or an adjustment of the processing algorithm do not eliminate

all classification and orientation errors. For example, the blow bar is still not able to move heavy

particles over the splitter. Therefore, it was assumed that the classification errors reduce by 90% and

the orientation errors by 50%.

4.2. Conceptual Model
The model is created in MATLAB and revolves around a system matrix of n by m, where n is the number

of particles. In the first column, the type of material is assigned to each particle in the simulated heap

which consists of 10000 particles. The particle groups introduced in Table 3.1 in Chapter 3 are used:

foils, rigid plastics, non-plastics, and plastics and non-plastic that are part of an agglomerate. In the

next two rows, two Feret diameters F1 and F2 are given to each particle using a group-specific Weibull

distribution. The lowest of the two values represents Fmin, the highest Fmax. Then, columns 4 to 10

represent the probability of the different types of false calls. Depending on the information in the first

three columns, each particle has the probability of either causing an error (1) or not causing an error

(0), in each column representing a type of FC. In the second last column the values of columns 4 to

10 are summed up to give the total number of FC’s the particle is involved in. A value of 1 or higher

means that the particle in the corresponding row is sorted incorrectly due to FP or FN. Finally, the

last column contains the information about the particle weight which is in turn used to determine the

grade, recovery and mass recovery.

A Monte Carlo analysis was performed, meaning that the model was run multiple times with random

input composition taken from the earlier determined normal distribution (Tab. 4.2). The mean values

and standard deviation of the output values were determined. The total number of runs was set to

1000. This number was determined by increasing the number of runs in steps of 10 and comparing

the mean values of the results. At 1000 runs the swaying of the mean values is reduced to a minimum

(Fig. Appendix C)
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4.2.1. Assumptions
• Small particles are not involved in orientation errors or sensor errors, these are accounted for

by the size errors.

• Particles do not result in an orientation error and a recognition error simultaneously.

• In Test E results such as the average feedrate, grade and recovery were determined without

the effect of non-stationary agglomerate. To simulate the impact of the non-stationary parti-

cle combinations on the sorting results, they are added on top of the average feed. Therefore,

the total amount of sorted particles in one run exceeds 10000. In the model, the addition does

not affect the probability of overlap errors.

• Particle size is only important for free particles since they cause errors based on size.
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4.2.2. Input Parameters
The probabilities of each type of false call determined in this research were implemented in the sta-

tistical model (Tab. 4.1).

Table 4.1: False call probabilities with monolayer feeding derived from experiments

Material Class psyst psize prec porient

1A 0.02 0 0 0

1B 0.02 0 0 0.03

1C 0.02 0 0 0.03

2A 0.02 0 0 0

2B 0.02 0 0 0.03

2C 0.02 0 0 0.03

3A (<20 mm) 0.04 1 0 0

3A (>20 mm, <30 mm) 0.04 0.8 0 0

3A (>30 mm, <40 mm) 0.04 0.6 0 0

3A (>40 mm, <50 mm) 0.04 0.3 0 0

3A (>50 mm) 0.04 0 0 0

3B 0.04 0 0.1 0.4

3C 0.04 0 0.1 0

As described in Section 4.2, the composition of the input varies per run. For all three non-agglomerated

material groups, a value is chosen from the normal distribution. A size is assigned to all free particles

from a material-specific Weibull distribution (Tab. 4.3). This distribution is based on research on

waste particle size distributions performed by Tanguay-Rioux et al. (2020) and adjusted to match the

ratios found from sampling. The distribution of the input is based on the data collected in Test E.

Table 4.2: Input parameters per material group.

Mean STD

Share of Foils 0.47 0.05

Share of Rigids 0.12 0.03

Share of Non-plastics 0.32 0.10

Share of particles part of stationary agglomerate 0.05 0.02

Grade agglomeration 0.78 0.05

Table 4.3: Weibull distribution parameters to describe the particle size distribution of the feed.

Scale factor Shape factor

Foils 11 1.8

Rigid Plastics 9.0 2.5

Non-plastics 6.55 1.1

4.2.3. Calculation Overlap Error
The model is used to calculate the chance of an overlap error. Test E provides data of the chance of

being involved in one of the other errors (ptot) for a range of feedrates. However, the contribution of

false calls due to overlapping (pover) of particles can not be extracted from this data alone. So, first, the

chance of causing an error when fed in a perfect monolayer (pmono) was calculated by combining the

errors in the model. Then, pover was calculated using Equation 4.1. It is assumed that the errors are

uncorrelated.
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ptot = pmono +pover −pmono ∗pover (4.1)

4.3. Results and Discussion

4.3.1. Overlap Errors
First, the model was run with the contribution of overlap errors set to zero. In the graph plot in Fig. 4.1,

the difference between the model with a monolayer and the experimental results is shown. The feed

in the model does contain particles that form a stationary agglomerate and can therefore not be con-

sidered a perfect monolayer. By keeping these particle combinations in the feed in the model, it can

be compared to the experimental data and additional assumptions can be avoided. The differences

are contributed to pover.

Figure 4.1: Output of the model without overlap v.s. the experimental results.

Using Eq. 4.1, the probabilities pover were determined (Tab. 4.4). The value of pover for small non-

plastic particles is high compared to the larger sizes. The relatively high probability can be explained

by the choices made in the NIR software. As was seen in Test E, when smaller non-plastics are close to

plastic particles, the actuators are not activated. However, it is possible that the results found in Test B

(Working Range with Respect to Size Range) can only be applied to clean and pure particles and due

to surface contamination of small particles, the number of pixels recognized by the system may not

meet the requirements for actuator activation. Lastly, the model accounts for only a psize for which

both dimensions are below 50 mm.

4.3.2. Scenarios
The performance indicators were computed for the scenarios and compared to feeding material in a

monolayer and the regular feed characteristics (Fig. 4.2). In the model, the share of non-plastics in

the NIR feed is calculated using the relations found in Test E. When particles are fed in a monolayer

the FPr and FNr are not related to the share of non-plastics. However, the product grade, recovery

and mass recovery do depend on the share of non-plastics. Therefore, both input compositions are

displayed in the Fig. 4.2. First, it can be concluded that feeding the material in a perfect monolayer
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Table 4.4: Values pover per material group.

Material Class pover

Small Foils 0.020

Middle Foils 0.021

Large Foils 0.030

Small Rigid 0.000

Middle Rigid 0.053

Small Non-plastics 0.654

Middle Non-plastics 0.219

Large Non-plastics 0.165

still only leads to an average grade of 84% at a low share of non-plastics and 75% at a high share. This

indicates that a significant part of the feed is outside the working range of the sensor. Apart from the

monolayer with the low feedrate composition all scenarios are calculated using the feed composition

that is linked to the high feedrate of the MRF because it represents the normal operating conditions.

Tackling the classification and orientation errors leads to the largest improvement of the grade, fol-

lowed by tackling the stationary agglomeration. Only small differences in the recovery were found as

the plastic particles are not likely to cause working range errors and the overlap error is steady within

the measured throughput range. Improving the grade does lead to a lower mass recovery since more

targeted materials are ejected and do not end up in the product. In scenario 2, the unopened bags

were removed from the feed. Since the share of plastics was higher for agglomerated material, remov-

ing the agglomeration from the feed results in a lower overall grade.

Figure 4.2: Sensor performance of the three scenario’s.

In Fig.4.3 the number of particles involved in each type of FC is displayed. In the first scenario 90% of

the small particles are removed from the feed. Therefore, the number of systemic FC’s is also lower. In

all three scenarios. the highest number of particles is involved in an overlap error.
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Figure 4.3: Number of errors per type of false call out of total analysed particles.

Key Takeaways Chapter 4

• A statistical model was created to

represent the heterogeneity of the feed

and performance.

• The probability of an overlap error is

larger for non-plastic particles which are

to be ejected.

• Three process adjustment scenarios

were tested: smaller size range, less

agglomerated material and reduction of

orientation errors. The latter adjustment

is expected to give the most significant

results.



5
Discussion

In this study, first, a framework of causes of a FC of an NIR sensor-based sorting system was introduced

and applied in a case study in an MRF. Next, a statistical model of the NIR was created to analyse the

combination of FC’s. This chapter discusses the methodology and the limitations of the experiments

and the model. In addition suggestions are made on how the amount of FC’s may be reduced.

5.1. Methodology
The applied framework of independent false calls is a new method to analyse sensor sorting perfor-

mance. Previous research on NIR performance is mainly focused on one or two types of FC’s such

as recognition or overlapping of particles while other errors are eliminated by feeding in a monolayer

or using clean particles. This research provides a starting point for a more elaborate approach of the

types of FC’s which can provide the means to tackle errors more efficiently.

The framework was applied to an NIR which uses negative sorting to remove contamination from

the mixed plastics product. This specific NIR was a suitable system to demonstrate the framework

because the feed consisted of a wide range of particle properties which enabled the observation of all

types of FC’s. An NIR that applies positive sorting and targets, for example, only PET bottles is likely to

encounter fewer errors due to working range because the targeted material is relatively homogeneous.

In Test E, the DoE method was applied to determine the probability of an overlap error in relation

to the feedrate and feed composition. The feed of the NIR could only be adjusted by adjusting the

MRF feedrate. Therefore, the regression analysis was performed in two steps to determine if the feed

of the NIR could be controlled as expected. Statistical significant relations between the input factors

and the responses were found. However, this approach may not be able to control all variables that

influence the FC’s. The average weight of non-plastic particles, for example, is higher at a higher feed

rate (Appendix B). This could be due to a better performance of the ballistic separator. An increase

in weight might lead to an increase in orientation errors because particles become too heavy to be

blown over the splitter. It is therefore unknown if the increase of the FNr is entirely due to the higher

throughput.

The Monte Carlo analysis allows for the evaluation of waste with a changing feed composition. The

standard deviation of the composition was determined using the variation of the centre points in Test

E. However, at a higher feed rate the variations in the composition may be larger.
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5.2. Limitations

5.2.1. Experiments
In Section 3.2.1 it was determined that a sample should consist of at least 25 particles that are targeted

by the sampling analysis to keep the relative sampling error below 20%. This requirement was not met

for the large size fraction because of the low occurrence of large particles in the NIR feed. To reduce

the sampling error to 20% would require large sample sizes and thus limit the number of samples that

could be sorted within the available time. Due to the low occurrence, the influence of the sampling of

this category on the total sampling error remains low.

The orientation errors and recognition errors were analysed using samples of more than 100 particles

for both non-plastics and plastics. However, the analysed samples are just a snapshot of the feed

composition and should be used as an indication of the probability of orientation and recognition

errors. Since it is not feasible to sample the entire feed at high frequency, a balance needs to be found.

5.2.2. Statistical Model
The grade, recovery and mass recovery depend on the share of non-plastic particles in the NIR feed

and the FPr and FNr. Since the feed composition may change over time, the values are an indication of

the possible grades. However, the scenarios can be compared to determine the most effective strategy

to reduce FC’s.

The error probabilities were determined for this specific NIR. To apply the statistical model to another

NIR or for a significant change of the feed characteristics, part of the error probabilities should be

redetermined. Table 5.1 states whether the probabilities can still be applied when the feed character-

istics are changed. As can be expected, it depends on the type of adjustment. For example, the feeding

mechanism could be changed by decreasing the belt speed. This leads to a longer frame time which

might improve the recognition of all particles including smaller ones. When the conveyor belt is re-

placed by a chute, the probability of a systemic error should also be reevaluated. A significant change

in feed composition due to for example the addition of a preprocessing step requires the calibration

of recognition, orientation and overlap errors.

Table 5.1: Applicability of FC probabilities with altered feed characteristics.

Type of False Call Feed rate Feed composition Feeding mechanism

Systemic Yes Yes Depends on alteration

Size Yes Yes Depends on alteration

Recognition Yes No Depends on alteration

Orientation Yes No No

Overlap
Only if feed < 50% or

>100% of MRF feed
No No

5.3. Application of Results for Process Improvements
The correct ejection of particles fed in a perfect monolayer depends on the NIR sensor settings, such as

the belt speed and splitter roll height and distance. These settings are determined by the trajectory of

ejected and dropped particles. Again, the range of particle properties is essential. When heavy parti-

cles are to be ejected, high air pressure and a low splitter height are required, but this may cause lighter

particles to hit the back of the eject box and bounce back. Also, a small range of particle properties

makes it easier to adjust the belt speed to prevent the relative movement of 3D particles or the floating

of foils. Therefore, the processing steps preceding an NIR should be designed and operated in a way

that provides the smallest range of particle properties with the purpose that the feeding mechanism
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can be optimized.

The results of this research can be used to identify possibilities for process improvement. Next, a few

suggestions for this specific NIR are summed up. Due to the limited time available and the investment

that is required to make the adjustments, they were not tested on-site.

Narrow size distribution: The recommended ratio between the smallest and the largest particle is

1:3 to 1:4 (Pretz, 2006). Since the NIR feed currently exceeds this ratio and also contains particles

that are out of working range in relation to size, the addition of a sieving step is recommended. The

statistical model has shown that removing 90% of the smaller particles slightly improves the grade

compared to the current situation because the non-plastic particles are smaller in size than the plastic

particles. This indicates that, relatively, more non-plastic particles can be removed. The model does

not account for the possible decrease in overlap errors when small particles are removed, which may

further improve the grade.

Figure 5.1: Deposition of material on the acceleration belt.

Feeding mechanism: The NIR sensor system is currently fed by two chutes, resulting in two peaks

with high occupancy density on the belt. Both of the chutes deposit material from the two identical

ballistic separators above. However, the chute on the left (Fig. 5.1) also receives a smaller size fraction

from another ballistic separator and is fed from the side instead of the top. This leads to a higher

occupancy rate on this side. In addition, video recordings show that part of the particles coming from

the right chute hit the sidewall which is placed under a small angle. The particles, therefore, bounce

off to the left (white arrow). Additional video analysis is needed to determine the contribution of this

movement to the unbalanced particle distribution on the belt.

Fluctuations: In Table 5.2, the list of causes of fluctuations is extended based on on-site observations.

Earlier research has shown that fluctuations in the NIR feed may reduce the product grade.
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Table 5.2: Overview of causes of fluctuations of the feedrate. Completed with on-site observations.

Location Fluctuation Cause Duration Frequency Proposed solution

Wheel loader
Discontinuous feeding

of shredder

Discontinues feeding with

wheel loader.
Mid term Irregular

Smart control, instructions

wheel loader

Shredder

Bridging

Large particles form bridges in

the shredder, making it appear full,

influencing the automatic feeding.

Short term to

mid term
Irregular

Analysing flow data and machine

data.

Reversing intervals Shredder settings Short term 30 sec -

Reduced processing

rate shredder

Large, thick walled objects are

difficult to shred and may block

the shredder.

Short term to

mid term
Irregular -

Drum sieve
Fluctuation output Rotation. Short term

One drum

rotation
Other type of sieve.

Braid formation
Large foils and wires form

braids in the drum sieve.
Short term Irregular

Regular maintenance intervals

shredder. Iron separation before

the drum sieve. Other type of sieve.

Input Materials Heterogeneous input
Large particles. Short term Irregular -

Residence time of material,

municipality, seasonal fluctuations.
Long term Irregular -

Windsifters Blockage

Clustered materials block the

suction of air and materials

are not removed

Short term to

mid term
Irregular

Chutes Blockage

After blockage of a chute, all

materials are deposited onto the belt

in one go

Short term Irregular

Conveyor belt Braid formation
Material gets stuck behind sharp

edges.
Mid term Irregular Remove sharp edges.

Eddy current and

Windsifters

Reduced sorting

performance

After an emergency stop, the

machines need time to start.

If materials are still present in the

system, they will not be removed

from the main flow. Leading to an

increase of flow for part of the process.

Short term to

mid term
Irregular

Delay the start of the conveyor

belt system after an emergency

stop until all machines are ready.
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Conclusion and Recommendations

6.1. Conclusions
To answer the main research question first the sub-research questions are revisited.

Sub research questions

What is the working range of the NIR?

The working range of an NIR sensor sorting system is the range of particle properties that the system

can correctly recognise and eject when targeted. Particle size, shape, density and material type can

restrain proper processing. It was found that for the analysed NIR, particles with a dimension be-

low 2 cm cannot be ejected. Starting from 2 cm, the chance of correct classification increases with

the particle size. The working range also depends on the database. Due to the wide range of non-

plastic particles, not all materials are part of the database. However, an all-encompassing database

will not solve all recognition errors. Medical objects, for example, are made of plastics and therefore

not ejected, but are unwanted in the mixed plastics product. In addition, the NIR requires monolayer

feeding.

What is the relation between each type of false call and feed characteristics (the average feed composi-

tion, average feedrate and the feeding mechanism)?

Working range errors are related to the particle properties and therefore also related to the feed com-

position. It was hypothesised that the chance of whether a false call is made, also depends on the

feeding mechanism. For example, a lower belt speed may result in less relative movement to the belt.

However, in the experiments performed during this research the feeding mechanism was kept con-

stant.

In literature, it is concluded that the number of false calls related to the overlapping of material de-

pends on all three feed characteristics. In this research, a relation was found between the feedrate and

the True Positive rate (FNr); at a higher feedrate the share of non-plastics that are ejected decreases.

No statistical relevant relation was found between the feedrate and the False Positives (FP) for the

analysed feedrate range. However, there is a difference between the number of FP’s when feeding in

a monolayer compared to regular feeding. Indicating that for the analysed throughput range, around

8% of the plastics are lost in the eject fraction due to overlap or proximity of particles.

Systemic errors are the only type of false call that is not related to the feed characteristics.

What is the effect of short- and midterm fluctuations of the feed characteristics on the performance?
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Short-term feedrate fluctuations are mainly caused by the non-stationary agglomeration of material

at this site. However, the number of particles involved in non-stationary agglomeration is relatively

low in the current feed. In addition, the grade of the agglomerate is around 70%. Therefore, non-

stationary agglomeration only significantly affects the sorting performance when the average product

grade is higher.

The results found while answering the sub research questions contribute to the conclusion of the main

research question:

To what extent do feedrate, feeding mechanisms and feed composition influence the type and number

of false calls in sensor sorting systems and what are ways to control these false calls?

In this research, a framework consisting of five types of relevant false calls was used to analyse the

sorting performance of a chosen NIR. The influence of the feed characteristics on the total number of

false calls and the ratio between the types of errors varies per NIR.

This research shows that to significantly improve the sorting performance, all feed characteristics need

to be optimised. The model of the analysed NIR demonstrates that even if the material is fed in a

perfect monolayer the expected grade is 85%. A first step may be to optimise the feed composition

based on the working range. Process adjustments like an additional sieving step can narrow the range

of particle characteristics and improve the sorting performance.

At the same time, the feeding mechanism can be improved to optimise the distribution of the ma-

terial on the belt and decrease overlap errors. If the feedrate is kept within the ranges applied in this

research, the average pover of medium sized non-plastics will remain around 0.22. Lastly, the reduction

of fluctuations decreases underperformance due to on one side overloading and unused potential on

the other side.

Analysing the NIR performance by looking into the contribution of the types of FC’s can be a useful

tool to optimize the sorting results. In the industry, a heterogeneous material flow is fed to the NIR.

The preceding processing steps should be optimised and maintained properly with the result that they

can be used to their full potential. The NIR’s are currently the most advanced technology on-site that

aims to produce valuable high-grade materials. The preceding process steps should therefore be used

to create a feed within the working ranges of the NIR with an as small as possible range of particle

properties.

The steps applied in this research can help to determine if the particle characteristics are suited for

the used NIR or if controlling the feedrate should be the main focus. Using NIR’s to their full potential

will contribute to higher grade sorting products and therefore to better recycling.

6.2. Recommendations

6.2.1. Experimental Improvements
• The quality of a product not only depends on the amount of contamination and on the type of

contamination. To create high-quality products, additional tests can be conducted to determine

the type of error related to a specific group of contaminants, such as PVC, to target the FC’s of

this group more efficiently.

• In this research square particles with a size up to 50 mm were analysed to determine the working

range. The TPr of particles of 50 mm is only 65%. To determine a cut off value particle sizes in

the range of 50 mm to 150 mm should be tested because particles with a size of 150 mm are

known to have a TPr of 96% (Test A). It is recommended to use larger batches of clean flakes to

determine the size error and systemic error instead of performing multiple runs to reduce the

potential influence of adhering dirt.
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• Plastic packaging has a low density compared to the materials sorted in other industries using an

NIR. Due to the low particle weight and high conveyor belt speed, particles are not immediately

pulled along by the conveyor belt. It was observed that foils often linger until they are carried

along by another particle. Looking into the interaction between particles on the conveyor belt

may provide more insights into the chances of overlap.

6.2.2. Statistical Model Improvement
The model developed in this research is a statistical model with parameters based on observations

and sampling. Such a model does not include all possible interactions and changes in the feed. More

empirical and theoretical research is needed to describe the influence of all feed characteristics on the

sorting performance. Some suggestions are summed up below.

• In the current model, the pover is a function of the MRF feedrate and the position of the blow

valves of the windsifter. However, the overlap is also known to depend on the global shape (2D

or 3D) and the detailed shape of the particles. By gathering more information on the particle

characteristics of non-plastic particles and the influence of the share of rigid materials on the

overlap error, the model can be improved to approach industrial sorting more closer. The same

goes for small particles. When creating a statistical model to determine the pover, the influence

of the processing algorithm should also be taken into account. Because the decision to eject

or drop, for example, a combination of a small non-target particle on top of a larger targeted

particle depends on the algorithm settings.

• An orientation error can be caused by different particle characteristics in combination with the

feeding mechanism: The inability of a particle to lay still, high density or an unfavourable side

which prevents recognition, amongst others. By further looking into the causes of orientation

errors it can be determined what share can be prevented by for example changing the feeding

mechanism. Access to the sensor sorting software and data is needed to make a distinction

between these errors.

• Apart from the orientation and recognition errors, all probabilities are assumed to be indepen-

dent of each other. However, particles with orientation errors might also have a high probability

of being involved in overlap errors.

• In this research, the statistical model is not verified using a independent data set. It is recom-

mended to compare the model output to new experimental results of the grade and recovery.
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A
Data Test C

Table A.1: Number of False Positives per individual particle after 3 batch runs. Batch Material: True Positives

Number of FN/runs Number of particles [n] Share of total particles

0/3 33 56%

1/3 12 20%

2/3 11 19%

3/3 9 15%

3/3 (Classification error) 0 0%

Total 65 100%

Table A.2: Number of False Positives per individual particle after 3 batch runs. Batch Material: True Negatives

Number of FP/runs Number of particles [n] Share of total particles

0/3 123 90%

1/3 7 5%

2/3 4 3%

3/3 3 2%

3/3 (Classification error) 0 0%

Total 137 100%

Table A.3: Number of False Positives per individual particle after 3 batch runs. Batch Material: False Positives

Number of FP/runs Number of particles [n] Share of total particles

0/3 81 84%

1/3 11 11%

2/3 4 4%

3/3 1 1%

3/3 (Classification error) 0 0%

Total 97 100%
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B
Data Test E

(a) Input size fractions particles. (b) Input composition mass.

(c) Input composition particles. (d) Input composition mass.

Figure B.1: Average input composition of each run
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Table B.1: Results performance indicators per run

Low, Open Low, Closed High, Open High, Closed Centerpoint 1 Centerpoint 2 Centerpoint 3

Feedrate Mass 0.74 0.94 1.18 2.03 1.28 1.10 0.96

Feedrate Particles 136 178 206 334 212 190 186

Feedrate NIR 4500 5000 5900 6300 5300 5200 5500

FPr particles 6% 0.06 0.08 0.04 0.06 0.11 0.06

FPr mass 0.08 0.09 0.08 0.03 0.05 0.09 0.06

TPr Particles 0.34 0.21 0.32 0.16 0.29 0.34 0.28

TPr Mass 0.40 0.33 0.38 0.20 0.34 0.33 0.30

Purity particles 85% 73% 72% 73% 81% 78% 79%

Purity mass 76% 75% 68% 73% 77% 77% 77%

Yield particles 94% 94% 92% 96% 95% 91% 94%

Yield mass 93% 90% 93% 97% 95% 92% 94%

Recovery particles 88% 89% 84% 93% 89% 84% 88%

Recovery mass 83% 83% 80% 92% 87% 80% 87%

FPr Small Foils 0.03 0.05 0.06 0.04 0.02 0.10 0.02

FPr Middle Foils 0.08 0.07 0.10 0.05 0.07 0.09 0.09

FPr Small Rigids 0.04 0.03 0.04 0.03 0.06 0.06 0.07

FPr Middle Rigids 0.08 0.15 0.11 0.03 0.10 0.14 0.07

TPr Small Non-Plastics 0.29 0.16 0.28 0.14 0.24 0.34 0.24

TPr Middle Non-Plastics 0.38 0.36 0.41 0.21 0.39 0.36 0.41

Table B.2: Average particle mass of medium size fraction non-plastics

Non-plastic particles in product Non-plastic particles in residue

Run Total Mass [kg] Nr of particles Avg particle mass Total Mass [kg] Nr of particles Avg particle mass

Center point 0.28 25.00 0.011 0.40 30.00 0.013

Center point 0.44 28.00 0.016 0.64 48.00 0.013

Low feed, open valves 0.30 25.00 0.012 0.36 37.00 0.010

Low feed, open valves 0.38 31.00 0.012 0.38 25.00 0.015

Low feed, closed valves 0.44 31.00 0.014 1.16 71.00 0.016

Low feed, closed valves 0.40 27.00 0.015 0.42 28.00 0.015

Center point 0.30 26.00 0.012 0.34 21.00 0.016

Center point 0.42 25.00 0.017 0.46 34.00 0.014

High feed, open valves 0.64 23.00 0.028 0.42 29.00 0.014

High feed, open valves 0.44 27.00 0.016 0.78 48.00 0.016

High feed, closed valves 0.54 25.00 0.022 0.26 21.00 0.012

High feed, closed valves 0.38 25.00 0.015 0.68 36.00 0.019

Center point 0.60 28.00 0.021 0.54 33.00 0.016

Center point 0.20 12.00 0.017 0.54 33.00 0.016

Table B.3: Average particle mass non-plastics for different MRF feedrates

Non-plastic particles in product Non-plastic particles in residue

Center point 0.016 0.015

Low feed 0.013 0.014

High feed 0.020 0.016



C
Monte Carlo Runs

Figure C.1: Mean value of results versus the number of runs
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D
Matlab File

Matlab Code

1 clear a l l

2 close a l l

3

4

5 % Scenario 0.0 = Stationary agglomerate in feed , no free p a r t i c l e overlap and

non−stat ionary agglomerate

6 % Scenario 0.1 = Overlap , no non−stat ionary agglomerate

7 % Scenario 0.2 = Overlap and non−stat ionary agglomerate

8 % Scenario 1 = Narrow Size d i s t r i b u t i o n

9 % Scenario 2 = Recuding stat ionary agglomeration

10 % Scenario 3 = Reducing recognition and orientation errors

11

12 Scenario = 4 ;

13

14 t i c

15

16 %% Input parameters

17

18 nT = 10000; % Number of p a r t i c l e s

19

20 ThroughputMRF = 100; % Feed of material recovery f a c i l i t y [% of

maximal throughput ]

21 Wind = 0 ; % Closing of the blow valve of the windsif ter (

percentage closed )

22

23 FeedP = 58.5 + 1.4 * ThroughputMRF − 0.440 * Wind + 0.0172 * Wind *
ThroughputMRF ; % NIR feed [ p a r t i c l e s per second ]

24

25 Time = nT/FeedP ; % Running time [ sec ]

26

27 meanfoils = 1.0146 − 0.00578 * ThroughputMRF − 0.003546 * Wind + 0.000039 *

67



68 D. Matlab File

ThroughputMRF * Wind ; %Average share of f o i l s of free p a r t i c l e s

28 meanrigid = −0.0165 + 0.002338 * ThroughputMRF ; %Average share of r i g i d

p l a s t i c s of fr ee p a r t i c l e s

29 meanwaste = 0.0325 + 0.003242 * ThroughputMRF + 0.002933 * Wind −3.5*10^−5 *
ThroughputMRF * Wind ; %Average share of non− p l a s t i c s of free p a r t i c l e s

30 meanSA = 0 . 0 5 ; %Average share of stat ionary agglomerate in the input [

p a r t i c l e s / p a r t i c l e s ]

31 meanSAplastics = 0 . 7 8 ; % Share of p l a s t i c p a r t i c l e s in stat ionary

agglomerate

32

33 STDfoils = 0 . 0 2 9 ;

34 STDrigid = 0 . 0 1 5 ;

35 STDwaste = 0 . 0 1 5 ;

36 STDSA = 0 . 0 2 ;

37 STDSAplastics = 0 . 0 5 ; % STD of share of p l a s t i c s in stat ionary agglomerate

38

39 i f Scenario == 3

40 STDSAplastics = 0 . 0 2 5 ;

41 meanSAplastics = 0 . 9 0 ;

42 end

43

44 ShareNSAplastics = 0 . 7 1 ; % STD of share of p l a s t i c s in stat ionary

agglomerate

45

46 TimeNStAggl = 5 ; % Time between non−stat ionary agglomeration [ sec ]

47 PNStAggl = 20; % P a r t i c l e s per non−stat ionary agglomeration

48

49

50 %% Average p a r t i c l e mass per material c l a s s

51

52 MassSF = 0.0007;

53 MassMF = 0.0054;

54 MassLF = 0.0347;

55

56 MassSR = 0.0034;

57 MassMR = 0.0117;

58

59 MassSW = 0.00165;

60 MassMW = 0.0164;

61 MassLW = 0 . 1 4 7 ;

62

63 MassSAP = 0 . 0 1 3 ;

64 MassSAW = 0 . 0 2 1 ;

65

66

67 %% Parameters : Error p−values

68

69 psystw = 0 . 0 4 ; % systemic errors p l a s t i c s

70 psystp = 0 . 0 2 ; % systemic errors non− p l a s t i c s

71



69

72 p1size = 0 . 3 ; % Size errors : Size between 2 cm and 3 cm

73 p2size = 0 . 6 ; % Size errors : Size between 3 cm and 4 cm

74 p3size = 0 . 8 ; % Size errors : Size between 4 cm and 5 cm

75

76 precw = 0 . 1 ; % deterministic uniqueness/working range errors non−

p l a s t i c s

77 precp = 0 . 0 0 ; % deterministic uniqueness/working range errors p l a s t i c

78

79 porientw = 0.40 / (1 − precw ) ; % orientation error non− p l a s t i c s

80 porientp = 0.03 / (1 − precp ) ; % orientation error p l a s t i c s

81

82 pagglw = 0 . 9 5 ; % Error agglomerated non− p l a s t i c s

83 pagglp = 0 . 0 2 ; % Error agglomerated p l a s t i c s

84

85 pOFoilsS = 0 . 0 2 ;

86 pOFoilsM = 0 . 0 2 1 ;

87 pOFoilsL = 0 . 0 3 ;

88

89 pORigidS = 0 . 0 0 0 ;

90 pORigidM = 0 . 0 5 3 ;

91 pORigidL = 0.0 ;

92

93 pOWasteS = 0 . 6 5 4 ;

94 pOWasteM = 0 . 2 1 9 ;

95 pOWasteL = 0 . 1 6 5 ;

96

97 i f Scenario == 0

98

99 pOWasteS = 0 ;

100 pOWasteM = 0 ;

101 pOWasteL = 0 ;

102

103 pOFoilsS = 0 ;

104 pOFoilsM = 0 ;

105 pOFoilsL = 0 ;

106

107 pORigidS = 0 ;

108 pORigidM = 0 ;

109 pORigidL = 0 ;

110

111 end

112

113 i f Scenario == 3

114

115 precw = 0 . 0 1 ; % deterministic uniqueness/working range errors non−

p l a s t i c s

116 precp = 0 . 0 0 ; % deterministic uniqueness/working range errors p l a s t i c

117

118 porientw = 0.20 / (1 − precw ) ; % orientation error non− p l a s t i c s

119 porientp = 0.03 / (1 − precp ) ; % orientation error p l a s t i c s
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120

121 end

122

123

124 %% S t a r t monte carlo runs

125

126 Monte = zeros (1000 ,20) ; %Empty matrix to save r e s u l t s of each run

127

128 for j = 1:1:1000

129 nT = 10000; % Number of p a r t i c l e s

130

131 %% Feed composition

132

133 ShareFoilsP = normrnd( meanfoils , STDfoils ) ; % Share of f o i l s of free

p a r t i c l e s , random number from normal d i s t r i b u t i o n

134 ShareRigidP = normrnd( meanrigid , STDrigid ) ; % Share of r i g i d of free

p a r t i c l e s , random number from normal d i s t r i b u t i o n

135 ShareWasteP = normrnd( meanwaste , STDwaste ) ; % Share of non− p l a s t i c s

( waste ) of free p a r t i c l e s , random number from normal d i s t r i b u t i o n

136 ShareStAggl = normrnd(meanSA, STDSA) ; % Share of non−

p l a s t i c s ( waste ) in the input , random number from normal d i s t r i b u t i o n

137

138

139 ShareFoils = ( ShareFoilsP /( ShareRigidP + ShareWasteP + ShareFoilsP ) ) * (1−

ShareStAggl ) ; % Share of f o i l s in the input , random number from

normal d i s t r i b u t i o n

140 ShareRigid = ( ShareRigidP /( ShareRigidP + ShareWasteP + ShareFoilsP ) ) * (1−

ShareStAggl ) ; % Share of r i g i d p l a s t i c s in the input , random

number from normal d i s t r i b u t i o n

141 ShareWaste = ( ShareWasteP /( ShareRigidP + ShareWasteP + ShareFoilsP ) ) * (1−

ShareStAggl ) ; % Share of non− p l a s t i c s ( waste ) in the input ,

random number from normal d i s t r i b u t i o n

142

143

144 ShareAplastics = normrnd( meanSAplastics , STDSAplastics ) ; % Share of

p l a s t i c s in stat ionary agglomerate , random number from normal d i s t r i b u t i o n

145

146 i f ShareAplastics > 1 % Share of p l a s t i c s can not

be higher than 1

147 ShareAplastics = 1 ;

148 end

149

150 ShareAwaste = 1 − ShareAplastics ; % Share of non− p l a s t i c s ( waste )

in agglomerated material , random number from normal d i s t r i b u t i o n

151 ShareStAggl = 1 − ShareFoils − ShareRigid − ShareWaste ; % Share of

stat ionary agglomerated material

152

153

154

155 nNSA = f l o o r ( ( Time/TimeNStAggl ) ) * PNStAggl ; % Total Non−St Agglomarate
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during one batch

156

157 i f Scenario == 0 | | Scenario == 0.1

158 nNSA = 0 ;

159 end

160

161 nA = round (nT * ShareStAggl ) ; % Number of Agglomerated p a r t i c l e s

162 nNA = nT − nA ; % Number of Free p a r t i c l e s (Non−

Agglomerated )

163

164 nNSAPlastics = round ( ShareNSAplastics * nNSA) ; % Share of p l a s t i c s non

− s t agglomerate

165 nNSAWaste = round((1 − ShareNSAplastics ) * nNSA) ; % Share of non−

p l a s t i c s in non− s t agglomerate

166

167

168 nT = nT + nNSA; % Non−stat ionary Agglomerated p a r t i c l e s are

added to the t o t a l amount of p a r t i c l e s

169

170

171 % Number of p a r t i c l e s per material type

172

173 nFoils = round ( ShareFoils * (nNA+nA) ) ;

174 nRigids = round ( ShareRigid * (nNA+nA) ) ;

175 nWaste = round ( ShareWaste * (nNA+nA) ) ;

176

177 nAPlastics = round ( ShareAplastics * nA) ; % Number of stat ionary

agglomerated p l a s t i c p a r t i c l e s

178 nAWaste = round ( ShareAwaste * nA) ; % Number of stat ionary

agglomerated non− p l a s t i c p a r t i c l e s

179

180

181 % Three matrixes to reduce running time

182

183 P = zeros (nNA, 1 3 ) ; % Free p a r t i c l e s (Non−Agglomeration

) matrix

184 PA = zeros (nA, 1 3 ) ; % Stationary agglomeration matrix

185 PNSA = zeros (nNSA, 1 3 ) ; % Non− Stationary agglomeration

matrix

186

187

188 %% Type of material (column 1)

189 % Material types

190

191 % 1 = F o i l s

192 % 2 = Rigids

193 % 3 = Non− P l a s t i c s

194 % 4 = St −Aggl P l a s t i c s

195 % 5 = St −Aggl Non− P l a s t i c s

196 % 6 = N−St −Aggl P l a s t i c s
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197 % 7 = N−St −Aggl Non− P l a s t i c s

198

199

200 P ( 1 : nFoils , 1) = 1 ;

201 P ( ( nFoils + 1) : ( nFoils + nRigids ) , 1) = 2 ;

202 P ( ( nFoils + nRigids + 1) : ( nFoils + nRigids + nWaste ) , 1) = 3 ;

203

204

205 PA ( 1 : ( nAPlastics ) , 1) = 4 ;

206 PA ( ( nAPlastics + 1) : ( nAPlastics + nAWaste ) , 1) = 5 ;

207

208

209 PNSA( 1 : ( nNSAPlastics ) , 1) = 6 ;

210 PNSA( ( nNSAPlastics + 1) : ( nNSAPlastics + nNSAWaste) , 1) = 7 ;

211

212

213

214 %% P a r t i c l e s i z e (Column 2 & Column 3)

215

216 for i = 1 : 1 :nNA

217 i f P( i , 1 ) == 1

218 P( i , 2 ) = wblrnd ( 1 1 , 1 . 8 ) ;

219 P( i , 3 ) = wblrnd ( 1 1 , 1 . 8 ) ;

220

221 end

222

223 i f P( i , 1 ) == 2

224 P( i , 2 ) = wblrnd ( 9 . 0 , 2 . 5 ) ;

225 P( i , 3 ) = wblrnd ( 9 . 0 , 2 . 5 ) ;

226

227 end

228

229 i f P( i , 1 ) == 3

230 P( i , 2 ) = wblrnd ( 6 . 5 5 , 1 . 1 ) ;

231 P( i , 3 ) = wblrnd ( 6 . 5 5 , 1 . 1 ) ;

232 end

233

234 end

235

236

237 % Assign p a r t i c l e to s i z e f r a c t i o n based on the value in column 2 and 3

238 % 1 = Small

239 % 2 = Middle

240 % 3 = Large

241

242 for i = 1 : 1 :nNA

243 i f (P( i , 2 ) < 5 && P( i , 3 ) < 15) | | (P( i , 2 ) < 15 && P( i , 3 ) < 5)

244 P( i , 1 2 ) = 1 ;

245 end

246 i f (P( i , 2 ) > 5 && P( i , 3 ) <30 && P( i , 3 ) >5) | | ( P( i , 2 ) < 30 && P( i , 3 ) > 5 && P
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( i , 2 ) >5) | | ( P( i , 2 ) < 5 && P( i , 3 ) >15) | | (P( i , 2 ) > 15 && P( i , 3 ) < 5)

247 P( i , 1 2 ) =2;

248 end

249 i f (P( i , 2 ) > 30 | | P( i , 3 ) > 30)

250 P( i , 1 2 ) = 3 ;

251 end

252 end

253

254 %% P a r t i c l e weigth

255

256 %% 1 . Systemic Errors (colomn 4)

257

258 for i = 1 : 1 :nNA

259 P( i , 4 ) = rand ; % Gives a l l f ree p a r t i c l e s a random number

between 0 and 1 in column 4

260 i f P( i , 1 ) == 3

261 i f P( i , 4 ) < psystw % I f random value i s < p , the p a r t i c l e i s

sorted i n c o r r e c t l y ( 1 )

262 P( i , 4 ) = 1 ;

263 else % I f random value i s > p , the p a r t i c l e i s

sorted c o r r e c t l y ( 0 )

264 P( i , 4 ) = 0 ;

265 end

266

267 else

268 i f P( i , 4 ) < psystp

269 P( i , 4 ) = 1 ;

270 else

271 P( i , 4 ) = 0 ;

272 end

273 end

274 end

275

276

277

278 %% Working range : Size (column 5)

279

280 for i = 1 : 1 :nNA

281 i f P( i , 1 ) == 3

282 i f P( i , 2 ) < 2.0 && P( i , 3 ) < 2.0

283 P( i , 5 ) =1;

284 end

285

286 i f P( i , 2 ) > 2.0 && P( i , 2 ) < 3.0 && P( i , 3 ) < 3.0

287 P( i , 5 ) = rand ;

288 i f P( i , 5 ) < p1size

289 P( i , 5 ) = 1 ;

290 else

291 P( i , 5 ) = 0 ;

292 end
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293 end

294

295 i f P( i , 2 ) > 3.0 && P( i , 2 ) < 4.0 && P( i , 3 ) < 4.0

296 P( i , 5 ) = rand ;

297 i f P( i , 5 ) < p2size

298 P( i , 5 ) = 1 ;

299 else

300 P( i , 5 ) = 0 ;

301 end

302 end

303

304 i f P( i , 2 ) > 4.0 && P( i , 2 ) < 5.0 && P( i , 3 ) < 5.0

305 P( i , 5 ) = rand ;

306 i f P( i , 5 ) < p3size

307 P( i , 5 ) = 1 ;

308 else

309 P( i , 5 ) = 0 ;

310 end

311 end

312 end

313 end

314

315 %% Working range : C l a s s i f i c a t i o n error (column 6)

316

317 for i = 1 : 1 :nNA

318 i f P( i , 1 2 ) == 2 | | P( i , 1 2 ) == 3 % I f material i s in the Middle

or Large s i z e f r a c t i o n

319 P( i , 6 ) = rand ;

320 i f P( i , 1 ) == 3

321 i f P( i , 6 ) < precw

322 P( i , 6 ) = 1 ;

323 else

324 P( i , 6 ) = 0 ;

325 end

326

327 else

328 i f P( i , 6 ) < precp

329 P( i , 6 ) = 1 ;

330 else

331 P( i , 6 ) = 0 ;

332 end

333 end

334 end

335 end

336

337 %% Orientation (column 7)

338

339

340 for i = 1 : 1 :nNA

341 i f P( i , 1 2 ) == 2
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342 i f P( i , 6 ) == 0 % P a r t i c l e can not have a c l a s s i f i c a t i o n

error and orientation error at the same time .

343 P( i , 7 ) = rand ;

344 i f P( i , 1 ) == 3

345 i f P( i , 7 ) < porientw

346 P( i , 7 ) = 1 ;

347 else

348 P( i , 7 ) = 0 ;

349 end

350

351 else

352 i f P( i , 7 ) < porientp

353 P( i , 7 ) = 1 ;

354 else

355 P( i , 7 ) = 0 ;

356 end

357 end

358 end

359 end

360 end

361

362

363

364

365 %% Overlap (colomn 8)

366

367 for i = 1 : 1 :nNA

368 P( i , 8 ) = rand ;

369 i f P( i , 1 ) == 1

370 i f P( i , 1 2 ) == 1

371 i f P( i , 8 ) < pOFoilsS

372 P( i , 8 ) = 1 ;

373 else

374 P( i , 8 ) = 0 ;

375 end

376

377 e l s e i f P( i , 1 2 ) == 2

378 i f P( i , 8 ) < pOFoilsM

379 P( i , 8 ) = 1 ;

380 else

381 P( i , 8 ) = 0 ;

382 end

383

384 else

385 i f P( i , 8 ) < pOFoilsL

386 P( i , 8 ) = 1 ;

387 else

388 P( i , 8 ) = 0 ;

389 end

390
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391 end

392 end

393

394 i f P( i , 1 ) == 2

395 i f P( i , 1 2 ) == 1

396 i f P( i , 8 ) < pORigidS

397 P( i , 8 ) = 1 ;

398 else

399 P( i , 8 ) = 0 ;

400 end

401

402 e l s e i f P( i , 1 2 ) == 2

403 i f P( i , 8 ) < pORigidM

404 P( i , 8 ) = 1 ;

405 else

406 P( i , 8 ) = 0 ;

407 end

408

409 else

410 i f P( i , 8 ) < pORigidL

411 P( i , 8 ) = 1 ;

412 else

413 P( i , 8 ) = 0 ;

414 end

415 end

416 end

417

418 i f P( i , 1 ) == 3

419 i f P( i , 1 2 ) == 1

420 i f P( i , 8 ) < pOWasteS

421 P( i , 8 ) = 1 ;

422 else

423 P( i , 8 ) = 0 ;

424 end

425

426

427 e l s e i f P( i , 1 2 ) == 2

428

429 i f P( i , 8 ) < pOWasteM

430 P( i , 8 ) = 1 ;

431 else

432 P( i , 8 ) = 0 ;

433 end

434

435 else

436 i f P( i , 8 ) < pOWasteL

437 P( i , 8 ) = 1 ;

438 else

439 P( i , 8 ) = 0 ;

440 end
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441 end

442 end

443 end

444

445

446 %% Stationary Agglomeration (colomn 9)

447

448

449 for i = 1 : 1 :nA

450 PA( i , 9 ) = rand ;

451 i f PA( i , 1 ) == 5

452 i f PA( i , 9 ) < pagglw

453 PA( i , 9 ) = 1 ;

454 else

455 PA( i , 9 ) = 0 ;

456 end

457

458 else

459 i f PA( i , 9 ) < pagglp

460 PA( i , 9 ) = 1 ;

461 else

462 PA( i , 9 ) = 0 ;

463 end

464 end

465 end

466

467 PT = [P ; PA ] ;

468

469

470

471

472 %% Non−stat ionary Agglomeration (column 10)

473

474

475 for i = 1 : 1 :nNSA

476 i f PNSA( i , 1 ) == 7

477 PNSA( i , 1 0 ) = 1 ;

478

479 else

480 PNSA( i , 1 0 ) = 0 ;

481 end

482 end

483

484

485 PT = [PT ;PNSA ] ;

486

487 i f Scenario == 1

488 for i = 1 : 1 :nT

489 i f PT( i , 12) == 1

490 PT( i , 12) = rand ;
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491 i f PT( i , 1 2 ) < 0.1

492 PT( i , 1 2 ) = 1 ;

493 else PT( i , : ) = 0 ;

494

495 end

496

497 end

498 end

499 end

500

501 nT = s i z e (PT, 1 ) ;

502

503

504 %% Results

505

506 S=sum(PT ( : , 4 : 1 0 ) , 2 ) ; % Sum of a l l errors

507 PT ( : , 1 1 ) = S ; % Sum of a l l errors i s saved in Column 11

508

509 S_TypeError = sum(PT) ; % Sum per type of error

510

511

512 TP = 0 ; %Number of True P o s i t i v e s

513 TN = 0 ; %Number of True Negatives

514 FN = 0 ; %Number of False Negatives

515 FP = 0 ; %Number of False P o s i t i v e s

516

517

518 SF = 0 ; %Number of Small F o i l s

519 MF = 0 ; %Number of Middle F o i l s

520 LF = 0 ; %Number of Large F o i l s

521

522

523 TNSF = 0 ; %True Negative Rate Small F o i l s

524 FPSF = 0 ;

525

526 TNMF = 0 ;

527 FPMF = 0 ;

528

529 TNLF = 0 ;

530 FPLF = 0 ;

531

532 SR = 0 ; % Small Rigids

533 MR = 0 ;

534 LR = 0 ;

535

536

537 TNSR = 0 ;

538 FPSR = 0 ;

539

540 TNMR = 0 ;
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541 FPMR = 0 ;

542

543 TNLR = 0 ;

544 FPLR = 0 ;

545

546 SW = 0 ; % Small non− p l a s t i c s ( Waste )

547 MW = 0 ;

548 LW = 0 ;

549

550

551 TPSW = 0 ;

552 FNSW = 0 ;

553

554 TPMW = 0 ;

555 FNMW = 0 ;

556

557 TPLW = 0 ;

558 FNLW = 0 ;

559

560

561 % Rates

562

563 for i = 1 : 1 : ( nT)

564 i f PT( i , 1 ) == 3 | | PT( i , 1 ) == 5 | | PT( i , 1 ) ==7

565 i f PT( i , 1 1 ) == 0

566 TP = TP + 1 ;

567 else

568 FN = FN + 1 ;

569 end

570 else

571 i f PT( i , 1 1 ) == 0

572 TN = TN + 1 ;

573 else

574 FP = FP + 1 ;

575 end

576 end

577 end

578

579 %F o i l s

580

581 for i = 1 : 1 :nT

582 i f PT( i , 1 ) == 1 && P( i , 1 2 ) == 1

583 SF=SF+1;

584 PT( i , 1 3 ) = MassSF ;

585 i f PT( i , 1 1 ) == 0

586 TNSF = TNSF + 1 ;

587 else

588 FPSF = FPSF + 1 ;

589 end

590 end



80 D. Matlab File

591 i f PT( i , 1 ) == 1 && P( i , 1 2 ) == 2

592 MF = MF + 1 ;

593 PT( i , 1 3 ) = MassMF;

594 i f PT( i , 1 1 ) == 0

595 TNMF = TNMF + 1 ;

596 else

597 FPMF = FPMF + 1 ;

598 end

599 end

600 i f PT( i , 1 ) == 1 && P( i , 1 2 ) == 3

601 LF = LF +1;

602 PT( i , 1 3 ) = MassLF ;

603 i f PT( i , 1 1 ) == 0

604 TNLF = TNLF + 1 ;

605 else

606 FPLF = FPLF + 1 ;

607 end

608 end

609 end

610

611 FPrSF = FPSF/SF ;

612 FPrMF = FPMF/MF;

613 FPrLF = FPLF/LF ;

614

615 %Rigids

616

617 for i = 1 : 1 :nT

618 i f PT( i , 1 ) == 2 && P( i , 1 2 ) == 1

619 SR=SR+1;

620 PT( i , 1 3 ) = MassSR ;

621 i f PT( i , 1 1 ) == 0

622 TNSR = TNSR + 1 ;

623 else

624 FPSR = FPSR + 1 ;

625 end

626 end

627 i f PT( i , 1 ) == 2 && P( i , 1 2 ) == 2

628 MR = MR + 1 ;

629 PT( i , 1 3 ) = MassMR;

630 i f PT( i , 1 1 ) == 0

631 TNMR = TNMR + 1 ;

632 else

633 FPMR = FPMR + 1 ;

634 end

635 end

636 i f PT( i , 1 ) == 2 && P( i , 1 2 ) == 3

637 LR = LR +1;

638 i f PT( i , 1 1 ) == 0

639 TNLR = TNLR + 1 ;

640 else
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641 FPLR = FPLR + 1 ;

642 end

643 end

644 end

645

646 FPrSR = FPSR/SR ;

647 FPrMR = FPMR/MR;

648 FPrLR = FPLR/LR ;

649

650 %Non− p l a s t i c s

651

652 for i = 1 : 1 :nT

653 i f PT( i , 1 ) == 3 && P( i , 1 2 ) == 1

654 SW=SW+1;

655 PT( i , 1 3 ) = MassSW;

656 i f PT( i , 1 1 ) == 0

657 TPSW = TPSW + 1 ;

658 else

659 FNSW = FNSW + 1 ;

660 end

661 end

662 i f PT( i , 1 ) == 3 && P( i , 1 2 ) == 2

663 MW = MW + 1 ;

664 PT( i , 1 3 ) = MassMW;

665 i f PT( i , 1 1 ) == 0

666 TPMW = TPMW + 1 ;

667 else

668 FNMW = FNMW + 1 ;

669 end

670 end

671 i f PT( i , 1 ) == 3 && P( i , 1 2 ) == 3

672 LW = LW +1;

673 PT( i , 1 3 ) = MassLW;

674 i f PT( i , 1 1 ) == 0

675 TPLW = TPLW + 1 ;

676 else

677 FNLW = FNLW + 1 ;

678 end

679 end

680 end

681

682 FNrSW = FNSW/SW;

683 FNrMW = FNMW/MW;

684 FNrLW = FNLW/LW;

685

686 SAP = 0 ;

687 SAW = 0 ;

688 TNSAP = 0 ;

689 FPSAP = 0 ;

690 TPSAW = 0 ;
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691 FNSAW = 0 ;

692 %Stationary agglomeration

693 for i = 1 : 1 :nT

694 i f PT( i , 1 ) == 4 | | PT( i , 1 ) == 6

695 SAP=SAP+1;

696 PT( i , 1 3 ) = MassSAP ;

697 i f PT( i , 1 1 ) == 0

698 TNSAP = TNSAP + 1 ;

699 else

700 FPSAP = FPSAP + 1 ;

701 end

702 end

703 i f PT( i , 1 ) == 5 | | PT( i , 1 ) == 7

704 SAW = SAW + 1 ;

705 PT( i , 1 3 ) = MassSAW;

706 i f PT( i , 1 1 ) == 0

707 TPSAW = TPSAW + 1 ;

708 else

709 FNSAW = FNSAW + 1 ;

710 end

711 end

712 end

713

714

715

716 PT( ~any (PT, 2 ) , : ) = [ ] ;

717

718 MaterialClass = [ " Small F o i l s " ; " Middle F o i l s " ; " Large F o i l s " ; " Small Rigids " ; "

Middle Rigids " ; " Large Rigids " ; " Small N−P " ; " Middle N−P " ; " Large N−P " ] ;

719 TotalInput = [ SF ;MF; LF ; SR ;MR; LR ;SW;MW;LW] ;

720 F a l s e C a l l r a t e = [ FPrSF ; FPrMF ; FPrLF ; FPrSR ;FPrMR; FPrLR ;FNrSW;FNrMW;FNrLW ] ;

721

722 Table = table ( MaterialClass , TotalInput , F a l s e C a l l r a t e ) ;

723

724 %% Results Mass

725

726 TNM = TNSF * MassSF + TNMF *MassMF + TNLF * MassLF + TNSR * MassSR + TNMR *
MassMR + TNSAP *MassSAP ;

727 FPM = FPSF * MassSF + FPMF *MassMF + FPLF * MassLF + FPSR * MassSR + FPMR *
MassMR + FPSAP * MassSAP ;

728

729 TPM = TPSW * MassSW + TPMW *MassMW + TPLW * MassLW + TPSAW * MassSAW;

730 FNM = FNSW * MassSW + FNMW *MassMW + FNLW * MassLW + FNSAW * MassSAW;

731

732 Grade = TNM / (TNM+FNM) ;

733 Massrecovery = (TNM + FNM) / (TNM+FNM+TPM+FPM) ;

734 Recovery = TNM / (TNM + FPM) ;

735

736

737 %% Monte Carlo r e s u l t s
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738

739

740 Monte( j , 1 ) = Grade ;

741 Monte( j , 2 ) = Recovery ;

742 Monte( j , 3 ) = Massrecovery ;

743 Monte( j , 4 ) = FPrSF ;

744 Monte( j , 5 ) = FPrMF ;

745 Monte( j , 6 ) = FPrLF ;

746 Monte( j , 7 ) = FPrSR ;

747 Monte( j , 8 ) = FPrMR;

748 Monte( j , 9 ) = FNrSW;

749 Monte( j , 1 0 ) = FNrMW;

750 Monte( j , 1 1 ) = FNrLW;

751 Monte( j , 1 2 ) = FP/(FP+TN) ;

752 Monte( j , 1 3 ) = FN/(FN+TP) ;

753 Monte( j , 1 4 ) = S_TypeError ( 1 , 4 ) ;

754 Monte( j , 1 5 ) = S_TypeError ( 1 , 5 ) ;

755 Monte( j , 1 6 ) = S_TypeError ( 1 , 6 ) ;

756 Monte( j , 1 7 ) = S_TypeError ( 1 , 7 ) ;

757 Monte( j , 1 8 ) = S_TypeError ( 1 , 8 ) ;

758 Monte( j , 1 9 ) = S_TypeError ( 1 , 9 ) ;

759 Monte( j , 2 0 ) = S_TypeError (1 ,10) ;

760

761 Stdev = nanstd (Monte) ;

762 Mean = nanmean(Monte) ;

763

764 Check = TP + TN + FP + FN;

765

766 P l a s t i c s = TN + FP ;

767 NonPlastics = TP + FN;

768

769 NPINPUT = NonPlastics /Check ;

770 end

771

772

773 %% Graphs and Tables

774

775 MaterialClass = [ " Small F o i l s " ; " Middle F o i l s " ; " Large F o i l s " ; " Small Rigids " ; "

Middle Rigids " ; " Large Rigids " ; " Small N−P " ; " Middle N−P " ; " Large N−P " ] ;

776 TotalInput = [ SF ;MF; LF ; SR ;MR; LR ;SW;MW;LW] ;

777 F a l s e C a l l r a t e = [ FPrSF ; FPrMF ; FPrLF ; FPrSR ;FPrMR; FPrLR ;FNrSW;FNrMW;FNrLW ] ;

778 TypeofError = [ " Systemic " ; "WR: Size " ; "WR: C l a s s i f i c a t i o n " ; "WR: Orientation " ; "

Overlap " ; " St Agglomeration " ; "Non− s t Agglomeration " ] ;

779

780 Values = [ " Grade " ; " Recovery " ; " Mass Recovery " ; " FPr Small F o i l s " ; " FPrMiddle

F o i l s " ; " FPr Large F o i l s " ; " FPr Small Rigids " ; " FPr Middle Rigids " ; " FNr Small

N−P " ; " FNr Middle N−P " ; " FNr Large N−P " ; "FPr Total " ; "FNr Total " ] ;

781 MeanValues_Monte_Carlo = Mean( 1 , 1 :13) ’ ;

782 STDvalues_Monte_Carlo = Stdev ( 1 , 1 : 1 3 ) ’ ;

783
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784 Table1 = table ( MaterialClass , TotalInput , F a l s e C a l l r a t e ) ;

785 Table2 = table ( Values , MeanValues_Monte_Carlo , STDvalues_Monte_Carlo ) ;

786

787 f i g u r e ( )

788 histogram (PT ( : , 1 1 ) ) ;

789 t i t l e ( ’Number of errors per p a r t i c l e ’ )

790 xlabel ( ’Number of Errors ’ )

791 ylabel ( ’Number of p a r t i c l e s ’ )

792

793

794 X = c a t e g o r i c a l ( TypeofError ) ;

795 f i g u r e ( )

796 bar (X ,Mean( 1 , 1 4 : 2 0 ) )

797 xlabel ( ’Type of Errors ’ )

798 ylabel ( ’Number of p a r t i c l e s ’ )

799

800 %% Print

801

802 Table2

803

804 toc

805

806 % MassNP = 0 ;

807 % MassP = 0 ;

808 %

809 % for i = 1 : 1 :nT

810 % i f PT( i , 1 ) == 3 | | PT( i , 1 ) == 5

811 % MassNP = MassNP + PT( i , 1 3 ) ;

812 % else

813 % MassP = MassP + PT( i , 1 3 ) ;

814 % end

815 % end

816 %






