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Summary

In this thesis, a general mechanical model to predict the dynamic behaviour of
railway vehicle systems has been developed based on multibody system methods.
The interaction between the rail and the wheel not only ensures the guidance and the
running stability of the vehicle but also gives rise to damage because of the high
contact forces. These factors should be taken into account in the design of railway
vehicles. Attention is especially paid to the geometric, kinematic and dynamic
aspects of the track and wheelset system. In the model the geometric and physical
nonlinearities due to the contact are incorporated; nonlinearities in the suspensions
can also be taken into account. The model has been implemented into a computer
package.

By assuming the two contacting bodies to be rigid, the geometric contact
between the track and the wheelset becomes a purely geometric problem in
three-dimensional space. With the necessary and sufficient conditions for two rigid
bodies in contact, the spatial locations of the contact points on the rail and wheel
surfaces may be found in terms of two independent generalized coordinates.This
requires the solution of a set of nonlinear algebraic equations. The relation between
the dependent and independent generalized coordinates is also obtained. A similar
analysis has been carried out for the roller-rig system,

In order to reduce the computing time, the set of nonlinear equations is
reduced to another set of nonlinear equations for the two-dimensional contact or is
simplified by means of the so-called first-order theory. The numerical results indicate
that the first-order equations yield a sufficiently accurate solution for the
three-dimensional contact. The singularity of the set of nonlinear equations, which
is associated with a double-contact position, is studied analytically and numerically.
Local parameterization is employed to solve the nonlinear equations. The numerical
method to determine double-contact positions is also given. By means of the
first-order equations, the numerical analysis is carried out for the well-known
combination of UIC60 and S1002 profiles and also for two measured asymmetric
profile combinations: CTO-Measured-Profiles and ORE-Benchmark-Profiles. The
influence of the track gauge and the rail inclination is presented too.

In the mechanical model, the motion of the vehicle is described by the
nominal motion, which represents the motion of the track reference frame, and the



relative motion, which defines the motion of the body or body-fixed frame relative
to the nominal motion. The nominal motion is prescribed as a function of the vehicle
nominal speed and the nominal geometry of the track. Due to the contact constraints,
a conventional wheelset has only four degrees of freedom. By using the
corresponding kinematic constraints, the general equations of motion of the wheelset
running along an arbitrary track are derived in terms of the four independent
generalized coordinates, two of which are the relative longitudinal translation and the
spin rotation of the wheelset. The associated constraint forces which are the normal
contact forces between the track and the wheelset are also determined. The theories
of rolling contact mechanics are briefly reviewed and Kalker’s simplified theory is
utilized to calculate the tangential contact forces. Moreover, the equations of motion
of a wheelset with independently rotating wheels are derived.

In the dynamic simulation the four general irregularities in tangent tracks may
be considered. The variation of the track gauge and the cross-level are incorporated
in the determination of the contact position; the lateral and vertical alignments are
incorporated in the motion of the track reference frame. The equations of motion of
a wheelset are linearized in order to analyze the stability of the stationary motion on
a perfect tangent track.

Both single wheelscts and complete vehicle systems have been simulated.
First, the solutions of some exercises contained in Pascal’s and Kik’s railway
benchmarks are demonstrated. Comparing the dynamic behaviour of vehicles with
different profile combinations indicates that a jump of the contact point destabilizes
the vehicle motion. Afterwards, vehicles with independently rotating wheels are
investigated numerically. It seems that decoupling the spin motion of the two wheels
completely may give rise to destabilization of the systems; at this point further
research is necessary.



Acknowledgements

The work presented in the thesis has been carried out at the Laboratory for
Engineering Mechanics, Delft University of Technology under financial support
provided by the Netherlands Technology Foundation (STW). Throughout the thesis,
the influence of Prof. dr. ir. A. D. de Pater and Prof. dr. ir. P. Meijers will be
obvious. 1 would like to express my deepest thanks to them for the invaluable
dedication which they gave me and also for their kindness. My grateful thanks go
to Prof. dr. ir. J.J Kalker for his seminar on contact mechanics, and go to Prof. ir.
N.H.C.E. Zeevenhoven for his helpful comments. I am also sincerely indebted to Ir.
P. Wiersma of the Centre of Technical Research (CTO) of the Netherlands Railways
in Utrecht for his valuable discussions and suggestions. The support rendered by
many colleagues in the laboratory is greatly appreciated. I would also like to
gratefully acknowledge the encouragement given by Prof. Zhiyun Shen, Prof. Shitong
Chen and Prof. Peixin Fan of Southwest Jiaotong University in Chengdu.

1






CONTENTS

1. Introduction . .... ... . ... e 1
2. Preliminaries of Multibody System Dynamics . .................... 5
2.1. Kinematics of a Rigid Body . ....... ... ... ... .. .. .. ... ... 5
2.2. Dynamics of aRigid Body . ........ ... ... ... .. ... ... ... ... 7
2.3. Dynamics of Multibody Systems . .. ...... ... .. ... .. ... ... 9

3. Geometric Contact between Track and Wheelset . ... ... ............ 13
3.1, Introduction ... ... ... e 13
3.2. Geometric Contact between Track and Wheelset .. ... .......... 16
3.2.1. Coordinate Systems . ... ... ... ..t 16

3.22. Theoretical Analysis .. ...... ... .. ... ... . .. ... ... 20

3.3. Geometric Contact in Roller Rig Systems . . ... ............... 29
3.4. Approximate Methods for Solving the Geometric Constraints . ... .. 32
3.4.1. Two-dimensional Approach ... ...... ... ... ... ... ... 32

342, First-order Theory . ... .. ... .. ... ... ... .. .. .... 36

3.43. Perturbation Method ... ..... ... ... ... ... ... . ... ... 40

3.5. Numerical Methods and Results .. ...... ... ... ... ... ..... 42
3.5.1. Numerical Methods ... ... ... ... ... ... ... ... 42

3.5.2. Implementation in the Geometric Contact Problem . ....... 45

3.5.2.1. Singularity and Double-contact Position ......... 45

3.5.2.2. Summary of the Numerical Procedure . .......... 50

3.5.3. Numerical Solutions and Discussions . . ................ 53

4. Dynamic Models of a Single Wheelset on Various Tracks . ........... 65
4.1. Introduction . ... ... ... ... .. 65
4.2. Rolling Contact Theory .. ... ... . ... .. ... ... . ... .... 67
421, Creepage and SpinCreep . ... ... . i 67

422, Contact Forces .. ... ... . .. . ... . . . .. .. 68

4.3. Kinematics of a Wheelsetona Track . .. .................... 70
4.3.1. Kinematic Analysis of the Track Reference Frame ........ 71

4.3.2. Kinematic Analysis of the Wheelset . ................. 73

4.4, Kinematic Constraints between Wheelset and Track . ........... 75



4.5, General Equations of Motion of a Wheelset Running on

an Arbitrary Track . .. ... ... 80

4.6. Equations of Motion of a Wheelset on a Tangent Track . ......... 84
4.7. Discussions on the Equations of Motion of a Wheelset on

aCurved Track ... ... ... 87

4.8. A Method to Treat the Case of Tangent Track with Irregularities ... 88

4.9. Linearized Equations of Motion for Stability Analysis ... ........ 90

5. Dynamic Model of Wheelset with Independently Rotating Wheels . ... .. 97

6. Applications in Railway Vehicle Dynamics . ................. ... 103

6.1. RyVehSim for Railway Vehicle Dynamic Simulation .......... 103

6.2. Single Conventional Wheelset . .. ... ... ... ... ... ......... 105

6.3. Complete Vehicle System . . ... ............. ... .. ....... 109

6.4. Vehicle Systems with Independently Rotating Wheels . ......... 117

6.5. Influence of Track Irregularities . ............... ... ..... 123

7. Conclusions and Recommendations for Future Researches . .......... 125

AppendiCes . . . ... 129

A. Geometric and Algebraic Representations in Kinematics . . ... ... .. 129

B. General Representation of Rotation . ... ..................... 132

C. Geometric Contact between Curved Track and Wheelset . .. .. ... .. 135

D. Profiles of the Rails and Wheels ... .. ... ... .. .. ... . .... 139

E. The Product 0 - (S+MXP) . - v oo vt e 143

F. Kinematic Analysis of an IRW System . ..................... 144

References ... .. ... ... . it 147

Samenvatting . .. ... ... 155




Chapter 1

Introduction

With the economic growth and the centralisation of the production, trade is booming;
tourism and business travel are increasing; homes and places of work are further
removed from each other; regional cities are gaining in importance. Consequently,
both passenger and freight traffic have risen strongly. The societies we live in are,
therefore, under the obligation to develop and enhance transport resources.

The railway transportation system is a system where infrastructure, rolling
stock and organisation of operations are very closely integrated. It has not only its
own virtues of safety, comfort, speed, reliability and low energy consumption, but
it is also environment-friendly. In consequence, the trend is towards an increased
demand for railway services.

Both the speed and the load carrying capacity are key factors for the railway
system. This is largely because the speed can reduce the travelling time, to which
the user is most sensitive, and an increase of the load carrying capacity would
heighten the efficiency in the freight traffic. In realising high speed railways two
concepts have been implemented successfully. The first is building of completely
new lines on which the railway vehicles can travel at very high speed (between 270
and 350 km/h). Besides, upgrading of the existing lines to raise the vehicle speed to
160-250 km/h is very realistic and economic. For freight railway vehicles on special
freight traffic lines the speed and the axle loads can be largely increased. With the
advent of high speed, the potential of the railway system may be fully exploited so
that it can even better compete with other transport systems.

In general, both key factors have negative aspects as well. Increasing the
speed induces the tendency to develop unstable lateral oscillations; increasing the
axle loads aggravates the damage due to the contact between rail and wheel. Thus,
in an optimal design of a railway vehicle system, the dynamic attributes of the
system play a very important role. The application of advanced technology will
ensure the travel safety, improve the ride comfort and lower the maintenance cost
by reducing the wear of the wheels and the rails. In this thesis the main effort is
devoted to exposing a general theory for analyzing and simulating the dynamic
behaviour of railway vehicles, to predicting the behaviour of newly designed systems
and to evaluating the systems in service.



The contact between the profiled steel wheel and the profiled steel rail
provides the interface between the moving vehicle and the infrastructure. Through
the wheelsets, on which the vehicle is levitated and steered and by which the traction
and braking are accomplished, the contact interaction strongly influences the motion
of railway vehicles. This interaction solidly depends on the geometric configuration
of the track and the wheelset system, the materials and the working circumstances.
For instance, track irregularities cause stochastic vibrations of the vehicle system,
which are usually investigated for the ride comfort by means of symmetric models
related to the vertical and pitch motions of the vehicle.

Above a critical speed the vehicle loses its stability and the hunting motion
arises. From the kinematic point of view, Klingel(1883) investigated this kind of
motion on the assumptions of conical wheels and pure rolling. He gave the well-
known formula to calculate the wavelength of the hunting motion, which is only
related to some geometric parameters. Later on, Carter (1926) took into account the
relative slip occurring in the contact area between the rail and the wheel; he
investigated the two-dimensional case and submitted formulae for the relation
between the friction force and the creepage defined by the relative slip. A similar
work was done by Rocard (1935) for explaining derailments of steam locomotives.

In reality, the rail and wheel profiles give rise to geometric nonlinearities.
These nonlinearities have been investigated by Wickens (1965), Knothe (1975),
Cooperrider and Law et al.(1976), and De Pater (1988). De Pater derived a set of
nonlinear algebraic equations to determine the contact constraints between the track
and the wheelset in three dimensions. Carter’s theory has been extended to the three-
dimensional case by Kalker (1967, 1982b), whose theories of rolling contact
mechanics have been broadly employed in the dynamic analysis. Elkins (1991) gave
a survey of the investigations on both the geometric and physical contacts.

Due to the geometric and physical nonlinearities associated with the contact,
the combination of the track and the wheelset is a very complicated mechanical
system. In general, a conventional wheelset on a track subject to two holonomic
constraints has four degrees of freedom. De Pater (1979, 1981) studied this system
thoroughly; he derived the zquations of motion for the single wheelset moving along
a perfectly straight track and also the equations for the wheelset moving through a
curved track with constant radius and cant. In a complete railway vehicle system
comprising several wheelsets, the bodies of the system are assembled by the linkages
and a multitude of linear and nonlinear suspensions. In the numerical study of certain

vehicle characteristics which were not revealed by analytical studies, deriving the
equations of motion "by hand” for such a large nonlinear system with many degrees
of freedom and then transtorming the equations into computer codes have proven to
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be a very tedious, difficult, time consuming and error prone task. With the aid of a
library in which many mechanical subsystems such as the wheel and rail subsystem
are well modeled, multibody system methods have been developed to enable
computers to formulate the equations of motion for many types of mechanical
systems (Kortim and Schiehlen, 1985; Roberson and Schwertassek, 1988). The
applications in railway vehicle dynamics were shown by Duffek et al.(1977) and
Fisette and Samin (1991).

The ideal running gear, which is composed of several elastically connected
wheelsets, has to satisfy two conflicting requirements: its motion should be suffi-
ciently stable and it should negotiate a curve as freely as possible. Based on linear
models, Wickens (1975) proposed two conditions that have to be held in the optimal
design of elastic suspensions. De Pater(1987) gave an additional condition, which
enables the running gears to be insensitive to the lateral force due to the cant defici-
ency in a curved track. The essential properties of the running gear were also studied
by Scheffel(1981), Hedrick(1982), Keizer(1985), Smith and Anderson (1988). The
forced-steering techniques shown by Fortin (1984), Shen and Yan et al. (1987) have
been developed and implemented in practice. When a forced-steering vehicle
negotiates a curved track, the mechanism linkages between the carbody, bogies and
wheelsets tend to force the wheelsets into more radial alignments on the curves.
Therefore, the wear of the rail and the wheel is reduced.

The nonlinear dynamic behaviour of railway vehicles has been studied by
many investigators. De Pater (1961) used the Krylov-Bogoljubov method to
determine the limit cycle of a two-axle bogie system described by a simplified
model. Afterwards, the Galerkin method was applied by Knothe and Moelle (1982).
The contact non-linearities were treated more appropriately and the suspension
nonlinearities were also taken into account. The features of curving behaviour of
practical vehicles were investigated by Elkins and Gostling (1977), Endlicher and
Lugner (1990), and Bailey and Wormley (1992). Either the Newton-Raphson method
or the numerical integration can be employed to study the steady-state motion in
ctrcular curves. Analytical and experimental work was also carried out in roller-rig
systems in order to validate various theories of a railway vehicle system (Jaschinski,
1990) and to investigate wear of the rail and the wheel (Chollet et al. 1989).

The lateral and yaw motions are coupled in the conventional wheelset because
of the rigid connection of the two wheels. Abolishing this coupling is expected to
prevent hunting presented in conventional railway vehicles and to reduce wear of the
rails and the wheels. But once we completely decouple the spin rotations of the two
wheels, vehicles mounted with independently rotating wheels will be sensitive to the
track irregularities and also lack the restoring forces to centre the wheelset. These
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difficulties may be overcome by utilizing the elasto-damper coupled wheelset or the
creep-controlled wheelset (Geuenich ez al. 1983). Recently, both passive and active-
controlled tilting mechanisms have been developed for increasing the operational
speed on already existing .ines which comprise many curves with relatively small
radii (Higaki et al., 1991). When the vehicle passes through a curve at high speed,
the tilting system can compensate for the insufficient curve cant, which causes larger
lateral acceleration felt by passengers; as a result, the ride comfort is improved
remarkably.

The thesis presents a general theory to model railway vehicle systems and
especially concentrates on the track and wheelset subsystems. In the next chapter,
the basic dynamics of multibody systems are briefly described. The equations of
motion of multibody systems are derived based on Jourdain’s principle and are
written in terms of the independent generalized coordinates.

In Chapter 3, first the general necessary and sufficient conditions of two rigid
bodies in contact are stated and formulated. Then a number of coordinate systems
are defined to describe the geometry of the track and wheelset system. By means of
the contact conditions a set of nonlinear algebraic equations is found for determining
the constraints due to the spatial contact between the track and the wheelset;
similarly, the equations for the roller-rig system are set up. The former set of
nonlinear equations is studied comprehensively. They are simplified by means of the
so-called first-order theory (De Pater 1988) and the two-dimensional contact is also
discussed as a special case. Numerical results for three different combinations of rail
and wheel profiles are presented.

The equations of motion of a single conventional wheelset and the wheelset
with independently rotating wheels are derived in Chapter 4 and 5 respectively. At
the beginning of Chapter 4, the theory of rolling contact mechanics is briefly
reviewed and the creep quantities are defined in a general way. The motion of the
wheelset is defined with respect to the motion of the track reference frame, which
is prescribed as a functior of the vehicle travel distance. The cases of a wheelset
moving both along a tangent track and a curved track are discussed. Attention is also
paid to track irregularities and to linearization around the stationary motion.

Some exercises contained in Pascal’s and Kik’s benchmarks are solved in
Chapter 6. Comparisons are made for the behaviour of vehicles with three kinds of
rail and wheel profiles. A rumber of vehicles with independently rotating wheels are
studied as well. Ultimately, in Chapter 7 the important conclusions of this thesis are
given and some problems and topics for further investigations are also mentioned.



Chapter 2

Preliminaries of Multibody System Dynamics

Multibody descriptions have been used to model mechanical systems like vehicles,
linkages and robots in an effective way. The development of computer-aided analysis
of multibody systems has been presented by Haug (1984, 1989), Besseling, Jonker
and Schwab (1985), Roberson and Schwertassek (1988). A survey of a number of
computer codes is given by Schiehlen (1990). Special applications in vehicle
dynamics have been reviewed by Kortiim, Sharp and De Pater (1991).

In this chapter the kinematics and dynamics of a rigid body and a system of
rigid bodies are briefly presented. Jourdain’s principle is employed to establish the
equations of motion of such systems. By making use of the constraint equations, the
equations of motion are derived in terms of the independent generalized coordinates.
Finally the constraint forces in the system are calculated.

2.1. Kinematics of a Rigid Body

The motion of a rigid body in space relative to an inertial frame can be described
by the translation of a point of the body (the reference point) relative to the inertial
frame and the rotation of the body about that point. The rotation can be characterized
by the orientations of the axes of a frame, which is located at the reference point and
rigidly embedded in the body, relative to the inertial frame. In general, it is most
advantageous to choose the mass centre of the body as the reference point. The
motion of a rigid body is therefore completely represented by the motion of its
body-fixed frame in space.

We suppose that the inertial frame and the body-fixed frame are denoted by
(o, &'} and (o, &'} respectively (see Fig.2.1). The position vector of the origin
of the body-fixed frame relative to the inertial frame is denoted by 7. The rotation
matrix of the body-fixed frame relative to the inertial frame is designated by G. The
absolute angular velocity vector of the body is denoted by ®. The general relations
between the rotation angles, the rotation matrix, the angular velocity and the angular
acceleration are given in the Appendices A and B.

Every point of the body has constant coordinates in the body-fixed frame. The



(body-fixed frame)

reference frame) i
(re o', &)

{0°, &°)

(o', &'}

Fig.2.1 A body in space.

position vector 7 7 of a point P in the body relative to the inertial frame is described
by the position vector 7 of the body-fixed frame origin relative to the inertial frame
and the position vector p of the point relative to the body-fixed frame (see Fig. 2.1)
so that we can write

-’:P :7:_*_5. (2.1.1)

By differentiating both sides of Eq.(2.1.1) once and twice with respect to time, the
absolute velocity and the absolute acceleration vectors of point P are determined by

=p = - _ (2.1.2)
r=r+ Oxp

and
wp (2.1.3)

T+ OXp+ OX(DXP).

The body motion can also be described relative to a moving reference frame
{0° €° }. In general, the translation and rotation of the reference frame relative to
the inertial frame are prescribed as time functions of the position vector 5 of the
origin and the rotation angles. The position vector of the body mass centre relative
to the inertial frame may now be given by

F_Tep. (2.1.4)

where p is the position vector of the body mass centre relative to the reference
frame. The rotation matrix cf the body-fixed frame relative to the inertial frame is:
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G =G"G° (2.1.5)

where G denotes the rotation matrix of the body-fixed frame relative to the
reference frame and G° the rotation matrix of the reference frame relative to the
inertial frame. The velocity and the acceleration vectors of the body mass centre are
determined by Egs.(A.14) and (A.15). The absolute angular velocity vector of the
body is given by

®=0°+0°, (2.1.6)

where ®° represents the absolute angular velocity vector of the reference frame and
® the angular velocity vector of the body relative to the reference frame. By
substituting (2.1.4) into Eq.(2.1.1) the position vector of point P can be expressed
in terms of the relative quantities.

When the base vectors of the reference frame remain parallel to the base
vectors of the inertial frame, the rotation matrix G° reduces to the 3x3 unit matrix
and the angular velocity @° vanishes.

Writing Egs.(2.1.1)-(2.1.3) in matrix form by using the algebraic representa-
tion we find,

P =r+GTp*, (2.1.7)
. . ~ 2.1.8
P =r+Glop ( )
and
oo . 2.1.9
rP=F+G'@p +G @ ®p*. @19

An algebraic vector with a superscript asterisk (*) refers to the body-fixed
frame; otherwise its components are taken with respect to the inertial frame.

The algebraic representation of the motion of the body mass centre in a
moving reference frame is shown in Appendix A, in which the relative motion
between two arbitrary frames is presented.

2.2. Dynamics of a Rigid Body
We first consider a system consisting of a number of particles. Let 7 be the position

vector of particle P relative to the inertial frame, 77 the mass of particle P and fp
the external resultant force applied on the particle. For such a system, Jourdain’s
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principle of virtual power states
£(7" - nlF7)-87" =0, @20
P

where the virtual velocity 877 must be compatible with the system constraints.

A rigid body (see Fig.2.1.) can be considered as a system consisting of a large
number of particles which are connected by rigid, massless rods. Jourdain’s principle
reduces to an integration taken over the entire body:

[87" 7" am(p) ~ [57 7" amP) = 0, @22

where ?P is now the external force per unit mass at point P. The virtual velocity at
point P must be compatible with Eq.(2.1.2) and this leads to
- s e = (22.3)
577 =87+ 8 xp,
where 87 denotes the virtual velocity vector of the body mass centre and 3 the
virtual angular velocity vector of the body.
Substituting (2.1.3) and (2.2.3) into Eq.(2.2.2) and taking into account the

definition of the body mass centre, we obtain

6r~(f—mr)+6(o-{f—I-m—oax(l-w)}=0 ( )
where m is the body mass and I the inertia tensor with respect to the mass centre.

The symbol ft represents the resultant force and f the resultant torque about the
mass centre; they are defined by

= J?P dm(P), 1, = fﬁx?” dm(P) . (2.2.5)

As a matter of course the constraint condition that p is constant, which
ensures the system to be a rigid body, is involved in Eq.(2.2.4). The subsequent
consideration of the constraints in systems refers only to constraints between the
bodies.

When a rigid body system lacks constraints, the system has six degrees of
freedom. The components of both the virtual velocity vector and the virtual angular
velocity vector, which cen be taken with respect to any frame, are independent.

Eq.(2.2.4) gives rise to the Newton-Euler equations




P (2.2.6)

6+ ox(T-3)=T. 227

For a body subject to a number of n, (n.<6) constraints, the number of
degrees of freedom n,is less than six and is defined by np = 6 — n,. The equations
of motion of the body may again be represented by the Newton-Euler equations
(2.2.6) and (2.2.7), which include in that case also the constraint forces and torques.
In addition, we have a set of n,_ constraint equations.

2.3. Dynamics of Multibody Systems

For a multibody system of » rigid bodies, Jourdain’s principle reads

- C—Oix(Z'a)[)]} =g, @31

2{571' Sy =mr ) + 30,1 f; - 1,0,
i
where index i refers to a quantity of body i.
We designate the centroidal body-fixed frame of body i by {o', &' }. If the
algebraic vectors of the first term in Eq.(2.3.1), which relate to translations, are taken
with respect to the inertial frame and those in the second term, which relate to
rotations, are taken with respect to the body-fixed frames, the algebraic representa-
tion of Jourdain’s principle for a multibody system is

L{8F] (fy, ~ m#) + 80} (£ - 1] @) - &1} = 0. (232)
4

We rewrite these equations in a compact form as:

p 2.3.
SvI(Mv-g-f)=0 (2.3.3)
where
vl i e e T, (23.4)
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M = diag[mE, myE, .. ,m”E,I]*,IZ*,,_.,I;], ~ 2.3.5)

g=100 ~(@ o), (& o), .., (&, o)) 1T, @30
T T T «T T *«T

F =0 Foes Fos £ s e £ 1T (2.3.7)

The components of v represent a set of 6n velocities which correspond with a set of
6n quasi-coordinates (non-integrable coordinates, Haug 1989). E in Eq.(2.3.5) is the
3x3 unit matrix and 0 in Eq.(2.3.6) is a zero vector with 3# components.

For a multibody system without constraints, the system has 6n degrees of
freedom and the components of the virtual velocity dv are independent. The
equations of motion of such a system can therefore be written as

My-g-f=0. (2.3.8)

However, in most systems the bodies are connected through various kinds of
joints. These joints give Tise to constraints on the motion of the bodies. Therefore,
the system has less than 6n degrees of freedom. In other words, the components of
the virtual velocity 8v in Eq.(2.3.3) are no longer independent and Eq.(2.3.8) is not
valid.

We consider only systems subject to holonomic constraints, but it should be
noted that the analysis can also be applied to systems with nonholonomic constraints
which are linear combinations of the first time derivatives of the generalized
coordinates. For a multibody system subject to n. independent holonomic constraints,
the number of the degrees of freedom designated as ry is equal to 6n - n_.

The differential form of the holonomic constraints, which represents the
velocity constraint conditions in the system, can be expressed in terms of the quasi-
velocities:

Dv+c¢=0, (2.3.9)

where ¢ e R™ and the rank of the n x6n matrix D is equal to the number of the
constraints, i.e., n,. The components of D and ¢ are only functions of time and the
generalized coordinates. On the other hand, we know that the quasi-velocity vector
v is a linear combination cf the generalized velocities. Due to the constraints (2.3.9),
only n, of the 6n generalized velocities are independent. Form Eq.(2.3.9), we can
find the relationship between the quasi-velocities and the independent generalized
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velocities. Denoting ¢, geR"™, as the vector of the independent generalized
coordinates, we have for the quasi-velocities:

y=Ag+b. (2.3.10)

Obviously, the components of the matrix A and the vector b are only functions of
time and the generalized coordinates; the rank of the matrix A is equal to the number
of the degrees of freedom ny. It can be proved that the matrix A is orthogonal to the
matrix D; i.e.

DA=0. (2.3.11)

Differentiating both sides of Eq.(2.3.10) with respect to time we obtain the
accelerations:
. S (2.3.12)
v=Aq + Aq + b.
The virtual vector dv in Eq.(2.3.3) must be compatible with the constraints
given by Eq.(2.3.9). Therefore, the relation between dv and 64 is given by the
equation

Sv = A 54, (2.3.13)

where the components of the vector 8¢ are independent.
Having substituted (2.3.12) and (2.3.13) into Eq.(2.3.3) we obtain the
equations of motion:

AY‘MA('I' _A'[fg _ATf: 0, (2.3.14)

with

fg — g - M(Ag + b). (2.3.15)
Obviously, Eq.(2.3.14) is a set of n; second order differential equations in terms of
the independent generalized coordinates.

The constraint forces and torques, which are responsible for maintaining the
constraints associated with the system, are often of interest and have to be
determined in the dynamic analysis, for instance, in a system with a friction joint.
When all constraints are disengaged so that every body of the system may have a
free motion and the components of dv are completely arbitrary, Eq.(2.3.3) has to be
modified to
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Mi-g-f-DTA=0, (2.3.16)
where A represents a vector of n, Lagrangian multipliers, which can be interpreted
as the vector of the generalized constraint forces dual to the virtual velocity vector
D&v (Meijers, 1992). The term DT A is the effect of the constraint forces and
torques on the system.

Premultiplying Eq.(2.3.16) by the product DM and using Eqgs.(2.3.11) and
(2.3.12), we obtain the eqnations for the generalized constraint forces:

A=—(DM'D'Y'DM(f, + f). (2.3.17)

In the last equation the generalized accelerations have been eliminated; therefore, the
generalized constraint forces depend only on the state of the system. The procedure
of adding the constraint conditions by Lagrangian multipliers and the method of
determining the multipliers indicated above can be found in Lanczos (1952),
Schiehlen (1985) and Haug (1989). Other methods were shown by Besseling et al.
(1985) and Roberson and Schwertassek (1988).

When we investigare the stationary motion of the system, in which the inde-
pendent generalized velocities and the independent generalized accelerations vanish,
the set of differential equations (2.3.14) changes to the n, nonlinear equations

Ang +ATf=0, (2.3.18)

where the generalized coordinates are considered to be unknown variables. If the
system is in a static equilibrium state, the quantity f, in Eq.(2.3.18) vanishes.
Eq.(2.3.17) for the constraint forces is valid in both above-mentioned states.




Chapter 3

Geometric Contact between Track and Wheelset

3.1. Introduction

Railway vehicle dynamics is significantly affected by the interaction between steel
rails and steel wheels. The interaction generates the necessary conditions for a
railway vehicle running stably on the track but also gives rise to damage of the rails
and the wheels because of the high contact stresses. The motion stability of a railway
vehicle concerns the critical operating speed, the lateral dynamic behaviour, adequate
guidance and the ability of negotiating a curved track. The damage of the rails and
the wheels involves wear of rails and wheels, corrugation, fatigue etc. An optimized
railway system is one satisfying high stability requirements and a low damage rate
of the rails and the wheels; these two aspects should strongly be integrated in the
design of a bogie device or a complete railway vehicle.

Contact mechanics do therefore play an important role in the investigations
of railway dynamics. An early important contribution to this subject was due to
Carter (1926), who was the first to propose the concept of "creepage”. Later on, De
Pater (1962) predicted the friction forces based on the so-called linear theory.
Meanwhile, Vermeulen and Johnson (1964) contributed in the direct generalization
of Carter’s theory to three dimensions and established an approximate creep-force
law. Since the middle of the 1960’s, Kalker’s theories on rolling contact mechanics
have been the most widely used theories both in the simulation of railway vehicle
dynamics and in the damage analysis of the profiles of rails and wheels. For the use
in practical applications, Shen, Hedrick and Elkins (1983) proposed an alternative
creep-force law based on Kalker’s creep coefficients and Johnson-Vermeulen’s
method. Another creep-force law also based on Kalker’s creep coefficients was
established by Jaschinski (1990). Moreover, a dynamic creep-force law has been
developed by Knothe and Gross-Thebing (1986).

In Kalker’s theories of rolling contact mechanics, it is supposed that the
contact area is very small as compared with the dimensions of the contacting bodies
(rail and wheel), so that we can consider each contact body as a half space. Also, it
is assumed that in the contact area no plastic deformation occurs and Hooke’s law
remains valid. Therefore, the rolling contact problem can be reduced to the
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minimization of a function subject to the geometric condition that the contacting
bodies can not penetrate each other. Meanwhile the traction force, i.e., the friction
force, is determined based on Coulomb’s law (Kalker, 1950).

As is well known, in practical simulation of railway vehicle dynamics it is
sufficiently accurate to consider the normal problem as a Hertz problem(Love, 1926)
and to solve the tangent problem by means of Kalker’s simplified theory(Kalker,
1982). In Hertz’s problem, each surface of the contacting bodies around the contact
point is approximated by a surface of second order. As a result, the boundary of the
contact area between the rails and the wheels is an ellipse and the pressure distri-
bution over the contact area is semi-ellipsoidal. It is to be noted that in the simplified
theory, other appropriate form of pressure distribution was used (Kalker, 1982).

Both for the application of the simplified theory of rolling contact mechanics
and for the dynamic analyses, the location of the contact patch has to be determined.
Because the patch is very small with respect to the dimensions of the track-wheelset
system such as the diameter of the wheel and the track gauge, the location of the
contact patch is commonly represented by the location of a contact point which is
calculated by postulating the bodies to be rigid. In this contact problem, the ratio of
the two semi-axes of the contact ellipse depends only on the principal radii of
curvature at the contact point. In the dynamic analyses, the resultant friction force,
the resultant normal contact force and the spin moment are applied at the contact
point; the tangent forces are situated in the contact plane and the normal force and
the spin moment are perpendicular to that plane. The determination of the positions
of the contact points and the associated geometric parameters gives rise to a purely
geometric problem when the wheelset and track are assumed to be rigid.

The fact that a wheelset with two profiled wheels is placed upon a track with
two profiled rails makes the geometric constraints between track and wheelset very
complicated. An early analysis about a conical wheelset which is purely rolling on
knife edge rails, was studied by Klingel (1883). In reality, wheels and rails in service
soon wear to profiles that have radii of curvature varying across the width of the
wheel and rail. Moreover, in modern designs of railway vehicles, the new wheel
profiles also have non-conical forms. Wickens (1965) improved the accuracy of
Klingel’s analysis for the case where the rail and wheel profiles are assumed to be
circular arcs. But the variations in radii of curvature may be quite considerable; as
a result, the solution for circular arc profiles is normally only valid for small lateral
wheelset displacements. Therefore it is necessary to use numerical analysis

techniques to determine the geometric contact for a track-wheelset system with
arbitrary rail and wheel profiles. These profiles may be derived from either design
drawings or profile meastrements.
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In the early numerical methods, the geometric contact between track and
wheelset is considered to be two-dimensional (Cooperrider and Law, 1976), so that
the effect of the wheelset yaw angle is ignored. More accurate theories for deter-
mining the geometric contact in three dimensions have been developed by De Pater
(1979, 1988), Duffek (1982) and Fisette and Samin (1991). De Pater (1988) has also
simplified the exact theory by means of his first-order theory; this reduces the three-
dimensional contact problem to the solution of a set of four nonlinear equations.
Comparing the results obtained from both the exact equations, which are a set of
eight nonlinear algebraic equations, and the first-order equations, we find that the
difference is so small that the first-order theory can be considered to yield suffici-
ently accurate results (Yang and De Pater, 1991). Thus, the first-order theory has
been employed to determine the geometric contact during the dynamic simulations.

When a body contacts with
another body in space, the following
three conditions must be satisfied:

(1) There is a point in one body
that has the same location in space
as a point in the other body.

(2) The normal on the surface of
one body at the contact point is
parallel to that of the other body.

(3) Not any part of one of the
bodies penetrates the other body.

In case the contacting bodies
are assumed to be rigid, the
geometry of a body remains the
same with respect to the body-fixed Fig.3.1.1. Two bodies in contact.
frame. We assume that body 1 is in
contact with body 2 at point P (see Fig.3.1.1), so that the first condition can be
expressed by

515452, (3.1.1)

where p! and 172 are the position vectors of the contact point relative to the frames
{o', &' } and {0% &2} respectively, and p is the position vector of the origin o®
relative to the other origin ol.

The second condition leads to

nl(P) = n?(P). (3.12)
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The vectors 7' and 72 represent the unit normal vectors of the two surfaces.
Moreover, one vector, for instance 71!, is the outer normal of body 1 and the other,
7? is the inner normal of body 2. The second condition only confirms that there is
no penetration in the neighbourhood of the contact point P and does not globally
ensure the third contact coadition. Therefore the first two conditions are necessary
conditions for two bodies in contact but they are not sufficient.

Egs.(3.1.1) and (3.1.2) together with the two surface functions of the
contacting bodies represen: a set of nonlinear algebraic equations, but only two of
the three equations generated by the second contact condition are independent
because the vectors 7! and 7% are normalized.

In railway vehicle systems, there may be at one side more than one contact
point between a track and a wheelset even if the track and wheelset are assumed to
be rigid bodies. We first establish the exact theory for the common case in which
there is only one contact point at each side of the track-wheelset system.
Subsequently, a similar treatment for the geometric contact problem in roller rig
systems is presented in Section 3.3. Afterwards, in Section 3.4 three approximate
methods for modifying and solving the exact equations obtained in Section 3.2 are
discussed in detail. Moreover, a method to determine a double contact point is
proposed. In the last section of this chapter, numerical results are shown for several
track-wheelset systems. In order to verify the accuracy of the approximate methods,
we solve both the exact and the approximate equations. The effects of parameters
such as the track gauge and the rail inclination are investigated by means of the first-
order equations. The numerical results show that for certain combinations of profiles
at a certain position the rail and the wheel have two contact points at one side and
only one contact point at the other side.

3.2. Geometric Contact between Track and Wheelset
3.2.1. Coordinate Systems

A track with two rails is considered to be fixed upon a rigid base. When a wheelset,
which is composed of two wheels connected through a shaft, is placed upon the
track, the forces between a rigid wheel and a rigid rail at the contact point do not
alter the pure geometric properties of the system such as the contours of the rail and
the wheel. Hence, the geometric contact between the track and the wheelset depends
only on their geometric configurations. In reality, corresponding to a position where
the wheelset contacts the track, only the region of the track around the location of
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the wheelset centre needs to be taken into account. Therefore, at each instant, we can
restrict ourselves to a small segment of the track around the contact points in the
investigation of the geometric contact constraints. We may certainly assume the track
in the small segment to be cylindrical, so that the profiles of the cross-sections of the
rails remain the same along the track.

top plane /\//,NA
Y

l4mm |

/ N T et
NI

aR\,

(a) Rail contour. (b) Wheel contour.

Fig.3.2.1. Rail and wheel local coordinate systems.

First of all the profile functions of the rails and wheels have to be ascertained
with respect to some coordinate systems. These coordinate systems are taken from
measurements for "worn" profiles and from the design drawings in the case of "new"
profiles. It is shown in Fig.3.2.1 that the coordinates of a profile are originally given
with respect to the coordinate system (0gj» Mgj» Coj) for the rails and with respect to
(ooj*, noj*, Coj*) for the wheels. These coordinate systems are designated as the local
coordinate systems.

Here the index j (j=1,2) signifies the side of the track-wheelset system in such
a way that j=1 for the right-hand side and j=2 for the left-hand side. In addition, a
symbol with a superscript asterisk (*) indicates that the quantity refers to the
wheelset; one without the asterisk refers to the track.

For a wheel, for instance the left-hand wheel shown in Fig.3.2.1, the local
coordinate system is defined as follows: the origin is a point on the profile and the
distance from the origin to the inside surface of the wheel is equal to the constant
¢*, which is in general equal to 70mm in the European railway system; the axis
0g*Ng;* is perpendicular to the inside surface. The wheel diameter at the origin 0g;*
is denoted by d;*. When the wheelset is supposed to be symmetric, the diameters ax
of both wheels are the same; in general they will not be equal. The mean value of
the rolling radii at both origins of the wheels is considered as the nominal rolling
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radius 7.

We assume that the top line of both cross-sections of the rails is parallel to
the support base (e.g. the sleeper plane) in the nominal track system where the
imperfections of the rail profiles are zero. The track gauge denoted by 2b; is
measured 14mm below the top of the rails. The location of the origin of the rail
local coordinate system is taken at the rail tread centre for a new profile; otherwise,
it is somewhat arbitrary and often related to measurements. The axis oy, is parallel
to the top line and in our applications we stipulate that the axes oy;M,; and oy,N,
are collinear.
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Fig. 3.2.2. Track and wheelset.

Both the track reference frame (o, x, v, z) and the wheelset body frame (o*,
x*, y*, z*) are shown in Fig.3.2.2; they are designated by {01, ¢! } and {02, &’ }
respectively. The origin of the wheelset body frame is located at the mass centre of
the body and the spin (pitch) axis o*y* of the frame coincides with the axis of
revolution of the body. The rolling axis o*x* is perpendicular to the spin axis o*y*
and is the forward axis of the wheelset. The remaining axis of the wheelset body
frame is the yaw axis, which points downwards. The wheelset body frame moves
with the wheelset with the exception of the rotation of the wheelset about its axis of
revolution. In other words, the wheelset body frame is not really rigidly embedded
in the wheelset body. However, due to the axisymmetry of the wheelset, the three
axes of the frame remain constantly principal inertia axes of the wheelset body.

The origin of the track reference frame is located at a distance r, above the
local coordinate systems of the rails; the x-axis of the track reference frame is
parallel to the track direction; the z-axis is perpendicular to the top plane of the rails
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and passes the track gauge centre; the y-axis is determined by virtue of the right-
hand rule. These definitions imply that the x-y plane of the track reference frame is
certainly parallel to the top plane of the rails.

The absolute motion of the wheelset can be determined by its motion relative
to the track reference frame and the motion of the track reference frame relative to
the inertial frame. The latter motion is described as the nominal motion of the
railway vehicle. It will be convenient to study the geometric contact constraints in
the track reference frame.

Fig.3.2.3. Relation between track reference frame and wheelset body frame.

We designate the position where the track reference frame and the wheelset
body frame coincide as the geometric central position of the track-wheelset system.
In this position all the generalized coordinates describing the motion of wheelset
relative to the track reference frame vanish. This position needs not to be a physical
contact position for the track-wheelset system because it may be quite well possible
that a wheel penetrates a rail or that the wheelset does not touch the track anywhere.
In general, the relation between the track reference frame and the wheelset frame is
shown in Fig.3.2.3. The translation of the wheelset body frame relative to the track
reference frame is designated by the vector

P = pTzl 3.2.1)
where the components are
p=luv,wll. (3.2.2)

The quantities u, v and w represent the generalized coordinates and are the
longitudinal, lateral and vertical translations of the wheelset mass centre relative to
the track reference frame {o, e ! } respectively.
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The rotation of the wheelset body frame relative to the track frame is usually
described by the yaw rotation y about the axis 0*z, followed by the rolling rotation
¢ about the axis o*x* (see Fig.3.2.3) and then followed by the spin rotation 6 about
the axis o*y*. But by means of the above definition of the wheelset body frame, the
spin rotation does not change the positions of the axes o*z* and o*x* relative to the
track frame. Therefore, according to the theory given in Appendix B, the rotation
matrix G*! from the track reference frame to the wheelset body frame, which is only
related to the first and the second rotations, is determined by

G* = A'(0)A3(y), (3.2.3)

where the matrices A' and A are given by Eq.(B.2); its full expression is

cosy simy 0
G?! = | —cosd siny  cosd cosy sind 3.2.4)
sin siny —sin$ cosy cos¢
The matrix G is an orthogonal transformation matrix, hence,
GI2 — [GZI]T — [GZI ]—1 , (3258.)

where G is the rotation matrix from the wheelset body frame to the track reference
frame, which is equal to

cosy —cosQsiny  sing siny
G2 = | siny  cosdcosy —sing cosy (3.2.5b)

0 sing cosd

3.2.2. Theoretical Analysis

As has already been stated in the previous section, the wheels always contact their
corresponding rails during the motion of the wheelset through the track and the
bodies are assumed to be rigid. This implies that there is at least one contact point
at each side of the track-wheelset system. At every contact point, the first and second
contact conditions given in the previous section must be satisfied. The third condition
guarantees a unique set of contact positions in which the track and wheelset are in
contact but do not penetratz each other. In general, at each side of the track-wheelset
system the wheel is in contact with the rail at a single point.
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The motion of the single wheelset relative to the track reference frame is
described by six generalized coordinates, which are the longitudinal, lateral and
vertical displacements u, v and w of the wheelset body mass centre and the rolling,
spin (pitch) and yaw angles ¢, 6 and y of the body. Due to the geometric contact
constraints, only four of them are independent. The wheelset is an axisymmetric
body and later on it will be shown that the spin rotation about the revolution axis of
the wheelset and the longitudinal translation of the wheelset centre relative to the
track reference frame do not affect the location of the contact point on the wheel
surface with respect to the wheelset body frame. On the other hand, the spin rotation
of the wheelset does not influence the location of the contact point in the rail
surface; the longitudinal displacement only changes the longitudinal coordinate of
the contact point with respect to the track reference frame, because the related small
track segment is supposed to be cylindrical. As a result, the longitudinal
displacement u and the spin rotation of the wheelset 8 do not influence the geometric
contact constraints. These two generalized coordinates should certainly be chosen as
independent ones and of the remaining four generalized coordinates, which are the
lateral and the vertical displacements and the rolling and the yaw angles, only two
are independent because of the geometric contact constraints.

Most researchers in railway dynamics have chosen the translation v and the
yaw rotation \ as the independent generalized coordinates because the amplitudes
of ¢ and w are very small as compared with the amplitudes of y and v respectively.
However, it is shown by De Pater (1988) and Yang (1991) that choosing the rolling
and yaw rotations ¢ and y as the independent generalized coordinates is preferable
in the theoretical analysis.

In determining the contact position between track and wheelset, we have
assumed that the track is tangent in a small segment around the wheelset. As a
result, the x-coordinate disappears in the equation of the rail surface with respect to
the track reference system (o, x, y, z) and the equation can be written as:

z=fi(y) =0, (3.2.6)

where ]j(y) is the profile function of the rail cross-section (it should be noted that De
Pater (1988) defined the profile functions in a different way but his results agree
with ours). For the wheelset, which is an axisymmetric body, its wheel surface is
generated by rotating the curve z*=£*(y*) in the y*z* plane about the axis o*y*.
Consequently, the equation of a wheel surface can be designated by

«;xd’. + 2*2 _fj*(y*) — O, (327)
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where f*(y*) is the profile function of the wheel cross-section.

Meanwhile we can determine the unit normal vectors of the surfaces by
calculating the partial derivatives of the surface equations. We stipulate that the unit
normal vectors of the rail and the wheel surfaces are positive when the vectors point
in the direction of the inner normal of the rail. Therefore, the expression for the unit
normal vector of the rail at a point (x, y, z) reads

i = an 7 (3.2.8)
with
1 ’
ni= —— [0, -f(y, 11" (3.2.9)

J
1+ £20)

The unit normal vector of the wheel surface at a point (x*, y*, z*) is

n=ntle?, (3.2.10)
J J
with
T
* 1 * I *
nj= - SO — | (3.2.11)
T Laee

The prime ( ’ ) indicates the derivative of the function with respect to its own
argument.
We introduce the following notations:

rt oot g 2t (3.2.12)
gy; = %/ (¥), (3.2.13)
tgy; = ;fj*'(y*), (3.2.14)

where the upper sign in + and ¥ refers to the right-hand side j=1 and the lower sign
to the left-hand side j=2. Correspondingly, we have

B 1 . _ 4:fj’ (y) .
CosY; = —ne, SNy E (3.2.15)

Y1+ f1+F70)
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. I O

cosy; = ., osiny; = . (3.2.16)
JU 57200 JU£7200
Using these notations we can rewrite Eqs.(3.2.9) and (3.2.11) as:
. T
n; = [0, +siny |, cos}'j} (3217
and
* * 4
n; = x_cosy;, +siny Z cosy;] . (3.2.18)
f‘* r*

Here the quantity »* is the rolling radius of the wheel at point (x*, y*, z*); the angle
Y is the conicity of the rail and v, is the angle that the tangent of the rail cross-
section f j (y) at the point y makes with the axis oy. In a similar way, the angle ;yj*
is the angle that the tangent of the wheel cross-section f *(y*) at the position y*
makes with the axis o*y*. All these angles are called contact angles.

When the wheel is in contact
with the rail at a point P; (see
Fig.3.2.4), the coordinates of the
contact point on the rail surface are
assumed to be (x, Yo zj) with
respect to the track reference frame
(0, x, ¥, z); correspondingly, the
coordinates of the contact point on
the wheel surface are (x*, yj*, zj*)
with respect to the wheelset body
frame (o*, x*, y*, z*). Because

every point on a surface must Fig. 3.2.4. Relation between track and wheelset

satisfy the equation of that surface,
according to Eq.(3.2.6) and (3.2.7),
the following relations hold:

for the rails: Z —fj(yj) =0 (3.2.19)
and

2 2 * *
for the wheels: x; +z; —f () =0.

(3.2.20)
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We designate the position vector of the contact point relative to the track

reference frame {o', &'} as

B =p; ¢ (3.2.21)
with

p;=1x,y, 71" (3.2.22)
and that relative to the wheelset body frame (0%, &2} as

P/ =p) & (3.2.23)
with

p; =[x,y 7 1" (3.2.24)

Here it is to be noted that the algebraic vectors p and p* do not correspond to the
same geometric vector; they indicate only the same contact point P;.

The first contact condition requires that the positions of the contact points of
the bodies should be identical in space, this gives rise to the equation (see Fig.3.2.4)

-1 - -2
P, =P +Dpj, (3.2.25)

where the position vector of the wheelset mass centre p is given by Eq.(3.2.1).
With respect to the track reference frame {01 e }, we may reduce the last
equation from the geometric vector form to the algebraic vector form. Using the

rotation matrix G'2 given by Eq.(3.2.5), we obtain
_ 12 3.2.26
p;=p +G"p. (3.226)

By considering the case of the track and the wheelset in contact at both sides,
(3.2.26) generates the set of six equations

X; = u+ x;cosy — y/cospsiny + z/sing siny, (3.2.27)
Y, = v+ X siny + y; cosdcosy — z;sing cosy, (3.2.28)
Z, = w + yj* sing + Z;CDSd) ) (3.2.29)
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The second contact condition demands that at the contact point the unit
normal vector of the rail surface coincides with the one of the corresponding wheel
surface, viz.

ﬁj _ Ej* ) (3.2.30)

Thus, the algebraic representation of Eq.(3.2.30) with respect to the wheelset body
frame {0%, €2} is:

* _ 21 3.2.31
nj—G n;. ( )

In detail, the last equation may be written as

Y cosy® i 0 0
— cosy ; cosy siny

rl

J

tsiny} | = | —cospsiny cospcosy sing ||Esiny; (3.2.32)

z} .
L cosy sing siny  —sing cosy cos¢ || cosy;

r.

L J 4 L JL J

For each of the sides of the track-wheelset system, only two of the three equations
in (3.2.32) are independent because the normal vectors are unit vectors. The first two
equations are chosen to be the independent ones.

When we consider the contact angles and the rolling radii of the wheels to be
explicit functions of the coordinates of the contact points, the geometric problem that
has to be solved, contains the following 17 variables:

- six coordinates of the contact points with respect to the track reference frame,

i.e. Xj, ¥ and zj

- six coordinates of the contact points with respect to the wheelset body frame,

ie. x*, yi* and z;%;

- five generalized coordinates of the wheelset with respect to the track reference

frame, i.e. u, v, w, ¢, .

On the other hand, we have a set of 14 nonlinear algebraic equations for these 17
variables:

- four surface equations (3.2.19) and (3.2.20);

- six equations (3.2.27)-(3.2.29) from the first contact condition;
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- four equations in (2.2.32) from the second contact condition,

The number of variables exceeds the number of independent equations; therefore,
three of the 17 variables have to be considered as free parameters and the remaining
ones will be determined in terms of these three parameters. In principle, the
independent parameters can be chosen arbitrarily from all the variables, but normally
they are taken from the five generalized coordinates. The selected three generalized
coordinates together with the spin rotation of the wheelset will be chosen as the
independent generalized coordinates in the dynamic analysis.

We may reduce the equations for the geometric problem even further. First
we ecliminate the lateral displacement v and the vertical displacement w from
Eq.(3.2.28) and Eq.(3.2.29) respectively. Subsequently, the coordinate z; is
considered as an explicit function of the coordinate y;. Including only the first two
equations in (3.2.32) together with the equations of the wheel surfaces, we obtain the
following set of 12 nonlinear equations

(5, =¥9) =L () =x3)siny+(y; —y; Jcosycosd —(z; —z; )cosysing | = 0, (3.2.33)

L) =F (7)1 = [y =y5 )sing +(z ~z; )cosd | = 0, (3-2.34)
2 2 oo (3.2.35)
yx otz —fTy) =0,
~_cosy’ ¥ siny siny = 0, (3.2.36)
P
J
siny; ¥ cosy sing — siny ;cosycos¢ =0, (3.2.37)

V- %{(yﬁyz) - (xl*+x2*)simp+ (_yl*+y2* )cosq>cosly—(zf+z;)sin¢cosw]} =0, (3.2.38)

w— -;- {[fx()’1)+f2()/2)] ~ [} +y,)sind +(z; +2; )cosd ] } =0, (3.2.39)
xj - { U +xj* cosy —yj* Sin\p COS¢ + Z;Sintb sin\y} = 0. (3_2.40)

The longitudinal cisplacement u is certainly chosen as one of the three
independent generalized coordinates. Comparing Eq.(3.2.40) with the set of
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Eqs.(3.2.33)-(3.2.39) we realise that the longitudinal displacement affects only the
coordinates x;. In other words, if the rails in the small track segment have cylindrical
surfaces, the quantities x; do not influence the geometric constraints and as we will
see later it will neither influence the dynamic analysis; the longitudinal displacement
needs only to be considered in the dynamic analysis. Consequently, the geometric
constraints are independent of the longitudinal displacement and of the rotation of
the wheelset about its axis of revolution.

When the rolling and yaw angles are treated as the other two independent
generalized coordinates, the eight variables Y xj*, yj* and zj* can be solved in
terms of these two generalized coordinates from the set of eight nonlinear algebraic
equations (3.2.33)-(3.2.37). From the solutions for certain values of ¢ and y we can
determine the two variables v and w by means of (3.2.38) and (3.2.39). On the other
hand, if the lateral displacement and the yaw angle are chosen as two independent
generalized coordinates, the eight unknowns together with the rolling angle have to
be solved by the set of equations (3.2.33)-(3.2.37) combined with Eq.(3.2.38). The
vertical displacement w is usually selected as a dependent generalized coordinate and
it can be calculated by the relation (3.2.39) after the coordinates of the contact point
have been identified.

In principle, we could have retained all the three equations in (3.2.32) and
have replaced the wheel surface equation (3.2.35) by the third equation of (3.2.32).
But this has the disadvantage that the condition of the Jacobian matrix of the new
set of nonlinear algebraic equations required in the Newton-Raphson procedure is
worse than that of the actual set for small values of the yaw angle. Especially, when
the yaw angle is equal to zero, the coordinate x;* vanishes and the rolling radius rj*
is identical with the coordinate z*. In that case, the third equation of (3.2.32)
reduces to

cosy; = #siny ;sing + cosy ;cosd . (3.2.41)

Comparing the last equation with Eq.(3.2.37) for the case of zero yaw angle, we
discover that the two equations are dependent and the new set of equations fails to
solve the geometric problem, because the Jacobian matrix will become singular.

In general, the original profiles of the cross-sections of the rails and the
wheels are measured in the local coordinate systems (see Fig.3.2.1). The profile
functions of these sections are denoted by

8o = Foi(M,)) (3.2.42)

and
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Goi = LM, (3.2.43)

Certainly, we can not apply these functions to solve Eqs.(3.2.33)-(3.2.40) directly
and we have to transform the coordinates which are taken with respect to the local
coordinate systems to thosz taken with respect to the track reference frame for the
rails or to the wheelset body frame for the wheels. As shown in Fig.3.2.1(b) and
Fig.3.2.2, with respect to the wheelset body system the location of the origin of a
local coordinate system of a wheel is determined by the diameter of the wheel at the
origin and the distance from the origin to the inside surface of the wheel. Thereby,
this yields:

Y = £[(bg; + ¢*) = 1y, (3.2.44)
and
* 1 * *
= 5d + L) (3.2.45)

The relations between ths profile functions given in Eq.(3.2.20) and those in
Eq.(3.2.43) can easily be indicated by

500 = 3d+ £, (3.2.46)

There is no unique way to locate the origin of the local coordinate systems
for the rails and we may consider the points to measure the track gauge as the
reference points for the location of the origin. Suppose the lateral coordinate of this
point to be ¢; with respect to the local coordinate system (og;, M Coj) (see
Fig.3.2.1), we obtain the following relations

yj = +[(by + cj) - an]’ (3.247)
z; =1+ on (3.2.48)
and
fj(yj) =ry+ foj(noj). (3.2.49)

When we have the profile functions with respect to the local coordinate
systems, Eqs.(3.2.33)-(3.2.40) may be solved by using (3.2.46) and (3.2.49).
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3.3. Geometric Contact in Roller Rig Systems

Roller rig systems are often used in experiments either to predict the behaviour of
railway vehicle systems (Elkins, 1985; Heliot, 1985; Jaschinski, 1990) or to
investigate the wheel/rail interaction phenomena, such as the identification of the
creep coefficients and the wear ratio of the rail and wheel surface (Ul-Haque and
Law, 1982; Kumar, 1982). In such a roller rig the vehicle is placed with the wheels
on pairs of rollers. In general, the
rollers can only rotate about their
axes of revolution and the other five
generalized coordinates are locked. In
some test facilities such as the one
reported by Hahn (1986), full-scale
bogies or vehicles can be analyzed

but it requires a lot of effort when
vehicle types or parameters of the
vehicle have to be changed. In
contrast, the scaled vehicles can be investigated in an economic way and the
experimental results may be transformed to the full scale system based on the
similarity laws, as shown by Heliot (1985) and Jaschinski (1990). However, as
pointed out by De Pater (1990), the results obtained in the roller rig system should
be interpreted carefully because the mechanics of the roller rig differ in some aspects
essentially from the mechanics of the usual track-vehicle system.

When we consider a single wheelset resting upon a pair of rollers (see
Fig.3.3.1), there are also two constraint relations between the translations u, v, w and
the rotations ¢, 6 and y of the wheelset. In general, the pair of rollers can be
considered as a single rigid, axisymmetric body which is supported upon a rigid
base. In order to solve the geometric constraints associated with the roller rig system,
we have to specify a coordinate system to describe the geometry of the roller body.
We may naturally define the roller-body frame in the same way as we did the
wheelset-body frame in the previous section (see Fig.3.2.2) because both bodies have
the same geometric properties. The origin of the roller body frame is chosen at the
body mass centre. With respect to this frame, which is also denoted by {0}, &! },
the roller-body surface equation can be written as

V22 + 22 - f(y) =0, (3.3.1)

where f(y) is the profile function of the roller cross-section.

Fig.3.3.1. A roller rig system.
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In a way similar to that indicated at the end of Section 3.2, we can find the
transformation from the roller body frame to the local coordinate systems with
respect to which the original rail contours are described. In comparison with the
procedure for the track-wheelset system, the vertical displacement of the wheelset
and the z-coordinates of the contact points should be treated carefully in the roller-
rig system because the roller body frame is defined in a different manner.

In addition to the notations introduced in Eqs.(3.2.12)-(3.2.16), we define the
rolling radius r of the roller as

=y x?+ 22, (3.3.2)

The unit normal vector of the roller surface at a point (x, y, z) can be expressed by

- . To 333
n=n; & (3.33)
with

ol x 4o z r (33.4)
n; = 7smyj tsiny ; .;cosyj . 3.

When the diameter of the rollers tends to infinity, the roller-rig reduces to the track-
wheelset system.

The motion of the wheelset will be described with respect to the roller body
frame. We may still utilize Fig.(3.2.3) to indicate the relation between the roller body
frame (o, X, y, z) and the wheelset body frame (o*, x*, y*, z*), but in this case the
roller body frame is no longer related to the radius 7, in Fig.(3.2.4). Supposed that
the coordinates (x;, y;, z;) indicate a contact point with respect to the roller-body
frame, all equations corresponding to the first contact condition derived for the track-
wheelset system in the previous section remain valid. Only Eq.(3.2.32) generated

from the second contact condition have to be modified to -
*
i . - Xj
—— COsY ; cosy sinyf 0 — cosY |
*
r; g
* sinY; = | —cos¢siny  cosdcosy sind tsiny; |. (3.3.5)
*
Zj * L . Z
— cosy sing siny  —sind cosy  cosd — cosY
*
L 7 1L i |
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The first two equations of (3.3.5) are chosen as the independent ones.
Finally we obtain the following set of 14 equations for the 17 variables:
(x; — Xp) = [ (x) =x5)cosy — (y; —y, ycospsimy + (zj* -z,)sin¢ siny ] = 0, (3.3.6)

0 -y - () —x,)siny+(y, -y, )eosdcosy —(z; 2, )sinpcosy ] = 0, (3.3.7)

[z, -2, 1= (¥ =y, )sind +(z] —z; )cosp ] = 0, (3.3.8)

/xf+z,~2—13-(y)=0, (3.3.9)
/xj*z—_+ Zj,,z frGh =0, (3.3.10)

*

X; X;
—L cosy = Lcosy jcosy = siny;siny, (3.3.11)
r! Ty
j
. Z.
isiny; =- cosY ; cosd siny + sinyjcosq) cosy + _’cosyjsimb ., (33.12)
v r.
J j

U= %{(xﬁxz)— [(x] +x5 Yeosy —(y1 +y, Jcosd Sinw+(2j*+22*)sin¢ sin\u]} (3.3.13)
V= %{(y, +9,)—[(x] +x,)siny +(y, +y, Jcoshcosy —(z, +z, )sind cosw]} . (33.14

w= 2 {LAOD+H0 - (0] +3)sing +(2/ +2)coso1}. (3.3.15)

This set of nonlinear algebraic equations can be handled in a similar way as the one
for the track-wheelset system. Having given values of three variables, for instance
the longitudinal displacement u, the rolling angle ¢ and the yaw angle y, we may
completely solve the twelve equations (3.3.6)-(3.3.13) to obtain the coordinates of
the contact points. Afterward, the lateral and vertical displacements are determined
from the last two equations. In contrast with the track-wheelset system, the
longitudinal displacement of the wheelset mass centre strongly influences the
geometric contact of the roller rig system.
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3.4. Approximate Methods for Solving the Geometric Constraint
Equations.

Even though we may choose the rolling angle and the yaw angle as the independent
generalized coordinates in the geometric contact problem, we have to solve a set of
eight nonlinear algebraic equations to determine the eight coordinates of the contact
points in terms of these two angles. The computer time for solving these equations
is considerable but it can be reduced to a very large extent by simplifying the
equations either to the two-dimensional equations or to the so-called first-order
equations. In contrast with the two-dimensional approach, the first-order theory still
gives rise to three-dimensional solutions. In Section 3.5, we shall see that the
simplification has the important additional advantage that certain nonlinear properties
of the solution can be found in a much easier way.

3.4.1. Two-dimensional Approach

A direct simplification of the geometric contact problem is achieved by reducing the
three-dimensional problem to a two-dimensional one in which the influence of the
yaw rotation is neglected. This simplification may be reasonable with the exception
of the case that there is contact on the flange in the presence of a large yaw angle.

When the yaw angle is equal to zero, the longitudinal coordinate of the
contact point with respect to the wheelset body frame vanishes, so that the rolling
radius r;* is equal to the vertical coordinate z* of the point. We can therefore find
the geometric contact constraints more easily, because the set of eight Eqs.(3.2.33)-

(3.2.37) can be reduced to the following four equations:

(1 =¥y) = (31 =¥, )cosd + [f,"(y1) —f5 (33)]sing =0, (34.1)
) =51 = O -y, )sing = £, 07 )= f, (03 ) ]cosd = 0, (3.4.2)
Y, =¥ %0, (3.4.3)

Using the relationship between the local coordinate systems and the frames
of the track and the wheelset given in Egs.(3.2.42)-(3.2.49), we find

thj = ¥f}l( y]') = f()j,(n()j) , (3.4.4)
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and
tg’Y; = *fj*,(yj‘*) =f0’;-'(n81)- (3.4.5)

Substituting these relations into Eqs.(3.4.1)-(3.4.3) and using the expressions
(3.2.42)-(3.2.49) again, we may rewrite Eqs.(3.4.1)-(3.4.3) with variables that refer
to the local coordinate systems:

Moy +Mgp) — Moy +Nep)cosd — [y " Mg —fin*Mep) 1sind

1 (3.4.6)
~ (2by+c +cy) + 2(bg +c* )cosd — E(dl"—d;)sinq> =0,
[fOI (n()1) —foz(noz)] + (7151 +T182) sind
* * * * * 1 " . (347)
= [fp1(Mgp) = oMo Tcosd ~2(by +c¢™)sing - 7(d1 -dj)cosp = 0,
f e —tgd — £/ (M) [+ £ (o) ted 1 =0, (3.4.8)
for (M) + 180 — fo’ M) [1 = fo" (Mg tgd 1 = 0. (3.4.9)

Obviously, the last equations involve only five variables, viz. the four lateral
coordinates of the contact points and the rolling angle ¢. This implies that also the
lateral and the vertical displacements v and w given by Eqs.(3.2.38) and (3.2.39) may
be expressed in the contact coordinates and the rolling angle ¢:

1 * * * * * * 1
= 5{ ~(Mo1 ~Mg2) + Moy =Nz 08 + [y (Moy) +p2 (Mg ) Isind (3.4.10)

+ (¢ —cy) + 2rsing } = 0,

1 * * .
= —{fyy(Mgy) + fro(Me) ] + (Mg — Mgy ) sin
w = S WM + foa(Mop Mo1 = Moz ) SING (3.4.11)

= [forMgp) +F gxMgp) Teosd + 2rg(1—cosp)}t = 0,

Having solved Eqs.(3.4.6)-(3.4.9) for a given small value ¢, of ¢, for instance
(=0, we obtain the coordinates of the contact points (g ;, &g ;) and (ng ¥, ;) for
the rails and wheels respectively. This contact position is designated as the initial
contact position, in which the contact coordinates are considered as initial values for
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the Newton-Raphson procedure to solve Eqs.(3.4.6)-(3.4.9) with varying values of
the rolling angle ¢. More importantly, these coordinates are also employed as initial
values for solving either the exact equations (3.2.33)-(3.2.37) or the first-order
equations to be derived in the next section. Corresponding to the initial contact
position, we introduce the following notations for the track:

by; = (by + ¢; = Mg;), (3.4.12)
roj="o * ij (1]0].) (3.4.13)
and for the wheelset:
bo; = (b +¢* =Mg;), (3.4.14)
* 1 * * *
roj = Edf +f()j(n0j)' (3.4.15)

These quantities represent the absolute coordinates of the contact points with respect
to the track reference frame and the wheelset body frame for ¢=¢, and y=0.
When the geometry of the track-wheelset system is asymmetric, we can easily
find that for $=0 both the lateral and vertical displacements v and w are unequal to
zero. For a symmetric geometry, v becomes zero for ¢=0 but in general w not.

(a)

Fig.3.4.1. (a). dicone upen knife edge rails and (b) dicone upon

circular cylindrical rails.

Only for a few special combinations of rail and wheel profiles, we can find
analytical solutions of Eqs.(3.4.6)-(3.4.9). One of such cases is indicated in
Fig.3.4.1a, where a dicone rolls upon knife edge rails. In this case, Eqs.(3.4.8) and
(3.4.9) are eliminated and the coordinates of the contact points of the rails are
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permanently equal to zero in their local coordinate systems. On the other hand,
because a profile function of the dicone is a linear function of the lateral coordinate,
Eqgs.(3.4.6) and (3.4.7) reduce to linear algebraic equations for the lateral contact
coordinates My * and 1y,*. Therefore, the reduced equations can be solved in an
analytical way.

In another case, the dicone is placed upon two circular cylindrical rails as
shown in Fig.3.4.1b. The contact coordinates of the rails can be determined
analytically from Eqgs.(3.4.8) and (3.4.9) due to the constant contact angles of the
wheels. Substituting the solutions for the rail coordinates into Eqs.(3.4.6) and (3.4.7)
yields a set of two linear algebraic equations from which the lateral contact
coordinates of the wheels can be solved analytically in terms of the rolling angle ¢.
Obviously, the system of a dicone upon knife edge rails is a limit case of the system
of a dicone upon circular cylindrical rails for which the rail radii approach to zero.

As examples, we consider more special cases in which we assume that the
two above-mentioned track-wheelset systems are symmetric and that the initial
contact position coincides with the central position of the wheelset. By means of the
relations (3.4.12)-(3.4.15) we may have:

b = by =by = b& = b(;z, (3.4.16)

o = o1 = T2 = To1 = oz (3.4.17)

When the dicone rests upon the knife edge rails, the lateral and the vertical
displacements can be expressed by:

v = (—%cosq) + ry)sing + kb(1-cosd )sind, (3.4.18)
w = —% sin?p + ry(1-cosp ) — kb (1-cosd )cosd . (3.4.19)

where k represents the tangent of the cone angle y,. For the system of the dicone
upon the circular cylindrical rails, we can find the following results:

v = (—%cosq) + rp)sing + kb (1—cosd )sing

(3.4.20)
R

CcosY

+ (1 —cosd )sing ,
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w o= —%sinz(i) + ry(1--cosd ) — kb (1 —cosd )cosd
(3.4.21)
_ R
cosY,

(1-cosd )cost,

where R is the radius of the rail cross-section. The approximate results obtained from
the first-order theory (De Pater, 1988) are in excellent agreement with our results.

Under the conditions that the rolling angle and the cone angle are small (¢p«1
and Yy«1), we may approximate Egs.(3.4.18) and (3.4.20) by:

k

- 3422

q)z

and Eqgs.(3.4.19) and (3.4.21) lead to

-k 2 (3.4.23)
b - 2kr0

The analytical results indicate that in these two track-wheelset systems the geometric
contact constraints are strongly dependent on the cone angle and, in contrast, they
are hardly affected by the radii of curvature of the rails.

3.4.2. First-order Theory

Both experimental and theoretical investigations of the dynamic behaviour of
practical railway vehicle systems evidence the fact that vehicles perform, in general,
small yaw and rolling rotations as well as small lateral and vertical translations. For
instance, as compared with a typical dimension of the wheelset such as the wheelset
gauge, which is about 1360mm in the standardized European railway systems, the
amplitude of the lateral wheelset displacement is only of the order of magnitude of
5mm. Thus, we may draw up a first-order theory (De Pater, 1988) to simplify the
geometric contact problem; in contradistinction to the two-dimensional approach of
the previous section, the first-order theory is completely three-dimensional.

First of all, we introduce a group of new coordinate systems called initial
coordinate systems to describe the rail and wheel profiles. As stated in the preceding
section, under the conditions ¢p=¢, and y=0 we have obtained the contact position
associated with the contact coordinates (0, +by, ;) with respect to the track
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reference frame for the rails and the coordinates (0, iboj*, roj*) in the wheelset body
frame for the wheels. We define that the origins of the initial systems, which are
denoted by (o, &;, 1;, §;) and (o}*, %, C_,J-*) for the rails and wheels respectively,
are located at these initial contact points and that their axes remain parallel to the
axes of the respective local coordinate systems. The relations between the
coordinates of the initial systems and those of the track body frame and the wheelset
body frame are therefore determined by

x; = ij .oy = i(boj—nj) , 7= r0j+Cj , (3.4.24)
and
xj* — a; s y-’* = i([)(;‘J—n;) R Z; = ri+C; . (3425)

Correspondingly, the profile functions of the rails and the wheels can be written in
the initial systems. For the rails, we obtain

[i(y)) =r; + G5, (3.4.26)
with

G, =7 ,(n;) = fo;(+ng)) = g, (3.4.27)

and for the wheels,

5l )y =rg+ ), (3.4.28)

with

* ~* * * * * * 3429
P,-=f,~(ﬂj)=foj(nj+noj)-Coj- ( )

The angles Y, and YJ* are still determined by Eqgs.(3.2.13) and (3.2.14), which yield

tgy; =f/(n;) (3.4.30)
and
tgy; =f7'(n}). (3.431)

In Eqs.(3.4}:30), (3;4.31) and henceforth the tilde (" ~ ") has been dropped and the
notations f j and f ; have been replaced by f; and f* respectively.
In addition, we define the following quantities for the subsequent analysis:
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b= %(b01+b02), Ab = (byy = bgy)» (3.432)

r= -;—(rgl’rrog), Ar = (ry; =rp), (3.4.33)

b* = %(bgl+b(;‘2), Ab* = (by;—bgy)s (3.4.39)

r= LUt A= (). (3.435)
In railway practice the following inequalities hold:

vi«b, fwl«b, (0] «1, Jyf«l. (3.4.36)

These inequalities give rise to inequalities for the small contact coordinates &j,...,.G;*
and pj* of (3.4.24-25) and (3.4.29), viz.

|ﬁj| «b, .., IC;| «b", |p;| « b* (3.4.37)

and they also ensure that:
Ab « b, Ar«r, Ab* «b*, Ar*« r*. (3.4.38)

By taking into account the condition (3.4.36), Eq.(3.2.37) may be
approximated by

* 1
Yi=v,% 0 - Sty + 050, (3.4.39)

where O4(¢,y) represents terms of the third and higher order in ¢ and . In the first-
order theory, these higher order terms are neglected. The third equation of (3.2.32)
yields

Zt
J

* *
r0j+pj

cosy; + siny jsinq) COSY — COsY ;c0s¢p = 0 (3.4.40)

and using Eq.(3.4.39), we may obtain

* * 1 «
Cj =pj - 3roj\l/ztg2yj_ (3.4.41)

In a similar way, Eq.(3.2.36) reduces to
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E) = frg, vy, £ pvigy; + g wote’y. (3.4.42)

By the last two relations, both the vertical and the longitudinal coordinates of the
contact points on the wheels are expressed as functions of the lateral contact
coordinates M;*, 1; and the rotation angles ¢, y. This is due to the fact that both the
wheel profiles p;* and the rail contact angles y; are only functions of their own
lateral coordinates.

Thus, transforming Eqs.(3.2.33) and (3.2.34) to the local coordinates and using
the relations (3.4.41) and (3.4.42), we obtain the following approximate equations:

M, +M,) - (M +M5) = 0 LA M) - (M)
(3.4.43)

+r M)+ (M) 1=2(b=b*) = Ar* o —=b* (§2+y?) = 0,

LMD =L T -4 MDD =AM 1+e(n] +n3)

(3.4.44)

* 2P VA 2 -y Ty 1+ Ar-art =250 = 0.

Moreover, calculating the tangent of both sides of Eqs.(3.4.39) yields:
*7 * ’ 1 ’ ’
A7) =K M) =10+(0% = 2y I+ M1 = 0, (B.445)
and

B3 = £ () =16 +©% = ZyP)fy (I [1+/72 ()] = 0. (3.4.46)

Evidently, Egs.(3.4.43)-(3.4.46) contain only six variables: the four lateral
contact coordinates n;, N;* and the rolling and yaw angels ¢, y. With varying values
of the rolling and yaw angles, the four lateral contact coordinates may be determined
from these four equations. Because the rail and wheel profiles are described in their
corresponding initial coordinate systems, the zero values of the lateral contact
coordinates are the solution of these four equations with ¢=¢, and y=0. Thus, this
contact position provides the four equations with the most convenient initial values
of the lateral contact coordinates when the rolling and yaw angle take values around
0, and zero respectively. Afterwards, the contact angles ¥; and y;* are calculated by
means of Eqs.(3.4.30) and (3.4.31); the vertical contact coordinates Cj of the rails can
directly be obtained from the rail surface equations (3.4.27); the longitudinal and
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vertical contact coordinates & *, Cj* of the wheels are determined by Eqgs.(3.4.41) and
(3.4.42).

Using (3.4.41) and (3.4.42), we can reduce Eqs.(3.2.38) and (3.2.39) to the
following equations, in which the lateral and vertical displacements v, w are
expressed in the lateral contact coordinates and the generalized coordinates:

v~ %{(—nﬁnﬁn?—ni)w LA (D +hH ()]
(3.4.47)

— P M) = (M) 1+ r* ¢ +Ab - Ab*+ %Ab* (02+y*) =0,

1 s * o * * *
w - —2-{[f1 (ﬂ1)+f2(ﬂ2)—f1 (nl)_fz (nz)]+¢(n1 —le) (3.4.48)

+ %’O\I’Z[ffz(nl) +f2'2(n2)]+ 2(r+r‘)—Ab‘¢+%r* 02} =0.

When the lateral displacement v is considered as one of the independent
coordinates and the rollinz angle ¢ as a dependent generalized coordinate, we have
to solve a set of five equations (3.4.43)-(3.4.47) for the five unknowns which are the
four lateral contact coordinates and the rolling angle.

In contrast to the exact theory, in the first-order theory the longitudinal and
vertical coordinates of the contact points on the wheels are not treated as variables;
they are approximately given by the relations (3.4.41) and (3.4.42) in terms of the
lateral contact coordinates, the rolling angle ¢ and the yaw angle v, which comprise
terms up to the second order in the small quantities. Therefore, the three-dimensional
geometric contact between the track and the wheelset is determined approximately
by the first-order equatiors (3.4.43)-(3.4.48). As compared with the exact equations
(3.2.33)-(3.2.40), the reduction of computer time is considerable when the first-order
theory is adopted in solving the geometric contact problem.

3.4.3. Perturbation Method

The perturbation method is widely employed in the analysis of nonlinear systems
(Nayfeh, 1976). Recently, De Pater has made use of this method to determine the
effect of the yaw angle on the geometric contact. In the first-order equations, the
rolling and the yaw angles are chosen to be the independent parameters and the
solutions of the lateral coordinates may be written as power series in terms of these
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two parameter. When we investigate the influence of the yaw angle on the lateral
contact coordinates at a fixed value of the rolling angle ¢, we need only express
these coordinates as a power series development of the yaw angle. Moreover, the
contribution of the first order terms in the yaw angle vanishes due to the fact that
only second order terms of this yaw angle appear in the equations. As a result, we

may write:

n, =y _;_nujqﬂ, (3.4.49)
and

Ny =mng+ %n{}jwz. (3.4.50)

Correspondingly, we may express the profile functions C)- and p;* and their first
derivatives around Ny and nlj* in Taylor series, so that

iy =g + %ﬂuﬁvzf,-’(m,), (3.4.51)
iy =f"(y) + %nmwzfj”(n]j), (3.4.52)
and

IACHESACHEE MU IR (3.4.53)
My = £y + %nﬂjwzﬁ”(n}}). (3.4.54)

Substituting (3.4.49)-(3.4.54) into Eqs.(3.4.43)-(3.4.46) yields two sets of
equations, one of which refers to the equations for two-dimensional contact, whereas
the other is related to the second order terms in the yaw angle. In fact, the first set
involving only the rolling angle ¢ and the quantities ny;» nlj* is the set of first-order
equations in the case y=0, from which my; and Ny;* can be solved in terms of the
rolling angle.

The other set of equations is:

(M + M) = (MG +N1) = 26* =277 [f/ () + £/ () 1, (3.4.55)
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My (M) =Nz (M) 1 ‘[nl*nfl*’(nfl)‘nflzfz*'(nfz)]

(3.4.56)

=-r* [f1l2(n11)_f2/2(n12) 1,
n;11f1“,(n;1) - nlnfl”(nn) = f]l (ﬂ“) [1 +f|,2(n]1) ], (3457)
n;lzfz*"(nfz) - nnzfzn(n]z) = fz’ (M [1 +f2'2(1112)] . (3.4.58)

These four equations are linear algebraic equations for the quantities Ty and M*.
Once ny; and ny* have been obtained from the first-order equations with y=0 by the
Newton-Raphson procedure, these linear equations can be solved. Now, the lateral
coordinates of the contact points are determined by taking into account the first
correction for the yaw angles.

3.5. Numerical Methods and Results

To determine the geometric contact between track and wheelset either by the exact
theory or by the approximate approaches one has to solve a set of nonlinear
algebraic equations with a number of parameters. Techniques for solving such
equations, which originate from many practical problems such as stability of
structures and nonlinear behaviour of dynamic systems, are summarized by Keller
(1987) and Seydel (1988).

3.5.1. Numerical Methods

The general form of nonlinear algebraic equations is expressed as
g(x, 1) =0, 3.3.1)

with g € R", x € R" and A € R. g consists of n smooth functions and X is a control
parameter. In many applications, the system may have more than one parameter; if
50, only one of them is supposed to vary over a certain specified range and the
others are assigned to sorne constant values during a computation procedure.

At a given value of the parameter A, it is expected that the solution x of
Eq.(3.5.1) can be found iteratively by means of the Newton-Raphson method. Let
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x'9 be an approximation of x; in the neighbourhood of x© we have

g(x) = g(x(o)) + gx(x(o))(x - x(o)) + higher—order terms . (3.5.2)

Here, g, is the Jacobian matrix of g(x). This relation establishes a way to calculate

a better approximation xD of x by solving the set of linear algebraic equations:

g X0y 4 gx(x(O) YD — X0y =9, 35.3)

Applying Eq.(3.5.3) repeatedly leads to the iterative procedure:
oD = 0 g;l (x®yg(x®), (3.5.4)

through which a sequence x(o), x(l), x(z), ... is generated. If this sequence is

convergent, the solution of Eq.(3.5.1) is the limit of the sequence.
The method is generally performed in two steps. First, we introduce the vector
d® for the difference between two successive iterations, so that &% is found by:

g, (x)a® = —g(x®). (3.5.5)

Afterwards, the new approximation x**!

LD Z 0 g0 (3.5.6)

is obtained by:

When the approximation x® is in the
neighbourhood of the solution, both
g(x®) and d® quickly approach zero

and we may simply establish the con-
vergence criterion by:

1dP | <e, (3.5.7)

or by

!

!

|

|
le(x®) | <e, (3.5.8) vy v
where e is a prescribed tolerance. Fig.3.5.1. Trivial predictor.

Evidently, the Newton-Raphson

method fails in case the Jacobian
matrix g (x) is singular. Another difficulty may arise when the first approximation
x@ is far away from the solution; as a result, the iteration procedure may lead to a
divergent sequence. In finding the solution of nonlinear equations, the main effort

is often to estimate a good initial approximation of the solution.
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Varying the parameter A over a certain range, we expect the solution of
Eq.(3.5.1) to be a function of the parameter: x = x(A). Suppose we have a solution
(xg, Ag). Let the Jacobian matrix g (x,) be nonsingular, then the implicit function
theorem (Keller (1987)) states the existence of a unique branch of solutions x = x(A)
in the neighbourhood of A;. Various kinds of so-called predictor-solver methods are
used to find a solution x(A) at A=(A,+A)L) where AA is a small perturbation. In a
predictor, the solution (x,, A,) is utilized to construct an approximation *O(L) of the
actual solution x(A). For example, a direct procedure takes the solution at A, as the
initial guess at A, viz. Y0 = x, = X(Ay); this approximation, called the trivial
predictor, is interpreted geometrically in Fig.3.5.1. After obtaining an initial
approximation, we apply a solver such as the Newton-Raphson method to obtain the
solution in an iteration scheme.

When the Jacobian matrix g (x, A) at the point (x,, A,) is singular, this point
is a turning point or a bifurcation point (Seydel (1988)) so that near this point there
is more than one solution. Based on the implicit function theorem and the Newton-
Raphson method, we cannot get a solution of Eq.(3.5.1) because of the singularity
of the Jacobian matrix. Thare are a wealth of continuation methods to overcome the
numerical difficulties and 0 determine the global solution of Eq.(3.5.1). But for our
application, we restrict ourselves to a system of equations with turning points.

X 1 A
} A
/

i
i
!

| N N

g
{
,
i

A

Fig.3.5.2. Removal of a turning point.

We define y = [ Py JT and consider Eq.(3.5.1) to be a set of n equations in
n+1 variables:

g(y)=0. (3.5.9)

We assume that the rank of the nx(n+1) matrix g, = [ g,, &, 113 equal to n in the
concerning range of y; then only turning points may exist in this region. In other
words, there always exists a nonsingular n x n square submatrix in the matrix g,
even at the turning point y; where the Jacobian matrix g (x, A) is singular. Without
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losing generality, every component of y is admitted to be a parameter so that the
remaining variables can be determined in terms of this parameter. At the turning
point y, where y, ,=A is a parameter, a nonsingular submatrix

og dg Jdg Jdg  Jg (3.5.10)
ox, " ox,_, oA ox,, = ox,

is constructed by replacing the k-th column vector of g, (which is singular) by the
vector g;. If we consider the variable x, as a new parameter and the parameter A as
a variable, the n variables xi,....x;_;, A, Xp415--%, can be solved as functions of the
new parameter x; in the neighbourhood of the turning point (x5, A;) (Rheinboldt,
1986). The Jacobian matrix (3.5.10) for this combination of the variables and the
parameter is no longer singular and the implicit function theorem is valid again.
Some other methods are mentioned by Seydel (1988) and Meijaard (1991). The geo-
metric interpretation of the above-mentioned procedure is illustrated in Fig.3.5.2; the
turning point disappears after rotating the diagram x,-versus-A over an angle of 90°.

3.5.2. Implementation in the Geometric Contact Problem
3.5.2.1. Singularity and Double-contact Position

As stated in Sections 3.2 and 3.4, the geometric contact problem reduces to a system
of nonlinear equations, from which the contact coordinates are determined in terms
of two physical parameters: the rolling and yaw angles ¢ and y. Because we con-
sider arbitrary combinations of rail and wheel profiles, some nonlinear phenomena
such as jumps of the contact points may occur when varying the two angles. The
numerical difficulties which may arise with the nonlinear phenomena, are analyzed
through the two-dimensional geometric contact equations.
Making use of Eqs.(3.4.4) and (3.4.5), we rewrite Eq.(3.4.3) as follows:

arctan f,” (y,) — arctanf," (y; ) -~ ¢ =0 (3.5.11)

arctanf,” (y,) — arctanf,”’ (y, ) = ¢ = 0. (3.5.12)

These two equations together with Eqs.(3.4.1) and (3.4.2) make up a set of four
equations in five unknowns: the four lateral contact coordinates and the rolling angle
¢. As usual, the rolling angle ¢ is considered as a parameter and the four contact
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coordinates are chosen as variables; hence we have

(3.5.13)

with x = [ ), y,, yl*, yz* 1T and A = ¢. The Jacobian matrix of Eq.(3.5.13) is found

g(x,A)=0
to be:
1
i’
g _ flll
g 1+£2
0

f2 144

1+f,7

—cosd +fl*’ sing
—sind —fl* " cosd

fl* ’”
2
1+£

cost — fz* " sind ]

sing +f2* " cosd

f2* 17

¥, 2
1+f |

(3.5.14)

In order to simplify this matrix, we introduce R; and Rj* to designate the radii of
curvature of the profile functions:

1 EII

—RT. —_—
J '(1_‘_](-']‘/2)3

Replacing the first derivatives of the profile functions f | and f j* by the

corresponding tangents of the contact angles, Eq.(3.5.14) reduces to

—tgY,

8x

R, cosy,

-1

—tgy,

1
R, cosy,

TN SRS Atae'

1 fj*//

Ccos(v]-0)  cos(y3+9) |
cosy, cosy,
sin(y; —6)  sin(y; +¢)
cosy, cosy,
- 0
R} cosy;
0 v
Rz* cosY;

The determinant of the Jacobian matrix g, is calculated by

(3.5.15)

(3.5.16)
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tgy, +tgy 1 1 1 1
gl =-— =2 () (—-

cosﬂcosy; Ry R; R, Rz*

)- (3.5.17)

Corresponding to the zero value of this determinant, there are three
possibilities to give rise to a singular matrix g,: (1) at one side, the radii of curvature
of the rail and wheel profiles are equal at the contact point; (2) the radii are the same
at both sides and (3) the contact angles in both rails have opposite values. All these
singularities lead to failure of the Newton-Raphson method.

In the second case there is a bifurcation. Because the second and the third
cases rarely happen in railway vehicle systems, they remain out of consideration.

To investigate whether there is a turning point in the first case, we have to
calculate the partial derivative of g(x,A) with respect to the parameter A=¢,

(yf =y, )sind +(f" —f," ) cosdp
g, = | (1 my2)cosb +(f =y )sing | (3.5.18)
-1
- —1 —

Apparently, it is impossible that the vector g; is a linear combination of the columns
of matrix g,; this implies that in the first singular case the rank of the matrix g,
remains equal to the number of equations. Consequently, the singularity of g,
corresponds to a turning point and there exists a unique relationship between the
contact coordinates and the rolling angle.

These results remain valid for the three-dimensional case with a small yaw
angle. The subsequent analysis refers to the first-order theory because in our
computations only this theory is used to determine the geometric contact constraints.
The first-order equations are rewritten in the general form:

g(x, A, y)=0, (3.5.19)

with x = [ Ny, N, nl*, nz* ]T. The control parameter A represents the rolling angle
¢ and vy is a fixed yaw angle.

The singularity of the Jacobian matrix g, leads to a jump of a contact point
on the rail and wheel surfaces. In railway vehicle dynamics such a nonlinear
phenomenon is called a double-contact position because at this instant there exist two
contact points at one side corresponding to the same values of the rolling angle ¢
and the yaw angle y. It is known that double-contacts may occur on the flange as
well as in the tread part of the wheel surfaces.



48

A typical solution path is shown in Fig.3.5.3 where two turning points C and
E appear. The results have been obtained from the combination of the UIC 60 rails
and S1002 wheels with 1435mm track gauge, 1/40 inclination and 1360mm wheelset
gauge in the case of y=0. Fig.3.5.3(a) indicates the relation between the lateral
displacement v and the rolling angle ¢; Fig.3.5.3(b) shows the lateral contact
coordinate of the right-hand rail as a function of the rolling angle ¢ and Fig.3.5.3(c)
explains qualitatively what happens.

When the rolling aagle ¢ decreases, the contact coordinate shifts along the
curve AB (see Fig.3.5.3.b) until it arrives at the critical point B; at the corresponding
rolling angle ¢y and the lateral displacement vy there is another contact point at F.
Between B and C, there is penetration in the neighbourhood of the point F but not
nearby the contact points in the ABC region. At C and E the radii of curvature of
the rail and the wheel are identical so that these two points correspond to turning
points with respect to the rolling angle. Because from C to E the rail radius of
curvature is greater than that of the wheel, there is penetration around the solutions
in the region CDE. When the contact coordinate varies along the curve EF, the rail
penetrates the wheel in the region around ABC but not nearby the contact points on
EF. F is the other critical point where the penetration in ABC alters to the contact
point B. From F to G (excluding the critical point F), a wheel is in contact with its
corresponding rail at one point.

From a numerical point of view, by choosing the lateral contact coordinate
instead of the rolling angle ¢ as the control parameter, the numerical difficulties
around the two turning peints C and E can be completely avoided; the numerical
procedures will be discussed in detail in the subsequent sections.

In reality, penetration is not admitted, therefore, the solutions in the open
region BCDEF do not exist and only the parts AB and FG of the curve have
physical meaning. The two critical points B and F correspond with a double-contact
position; these two points can be determined on the basis of the fact that the lateral
displacement v calculated by means of (3.4.47) at B is identical with that at F.

We may establish the following nonlinear equations to find these two points:

g(}’p}’p}’p)’@}'@‘l’)
g()’5,y6,)’7,y8sy9»\|!)
h(y, ) =| Yo~ vy Yaede W) |=0 (3.5.20)

y]] - v(y_59y6vy7’y8’y9’ W)

Yo ~ Y
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with k € R'!, y € R'L. In this equation, g is given by means of the first-order
equations; yy represents the rolling angle ¢; y o and y,; are two auxiliary variables;
the four variables (y;, ¥,, ¥3, ¥4) and the other four variables (ys, Y, ¥7, ¥g) are two
sets of the lateral contact coordinates. Eq.(3.5.20) is a set of eleven nonlinear
equations in eleven variables with the yaw angle as a parameter. When the initial
approximation of the set of variables (y;, y5, Y3, ¥4) is a solution of Eq.(3.5.19)
around point B, the initial approximation of (ys, Ys, ¥, Yg) is a solution in the
neighbourhood of point F and yq is an approximation of the rolling angle ¢ near the
points B and F, Eq.(3.5.20) may be solved by means of the Newton-Raphson
method. The solution (y,, ¥,, ¥4, ¥4) coincides with point B and (ys, yg, ¥, ¥g) With
point F, so that the double-contact problem is completely solved. In real computa-
tions, the two auxiliary variables y,, and y,; are eliminated from Eq.(3.5.20) and
only a set of nine nonlinear equations in nine variables is solved.

To show that a solution satisfies the third contact condition, which prohibits
penetration between the rails and the wheels, is very complex, especially for three-
dimensional solutions. There are no ways to ensure that a solution is a real solution
in two-dimensional contact with the exception of comparing the vertical coordinates
of the whole surfaces of the rails and the wheels in the track reference frame.
Suppose that A in Fig.3.5.3 corresponds with a real contact position, we may then
expect that solutions in its neighbourhood also hold even in three-dimensional
contact with a small yaw angle because the implicit function theorem guarantees the
unique solution path passing A. This can be proved numerically for a two-
dimensional contact and the above-mentioned analysis concerning the solution path
ABCDEFG is also based on the numerical calculations.

3.5.2.2. Summary of the Numerical Procedure

The geometry of the track-wheelset system is completely specified by the profiles
of the rails and the wheels in the local coordinate systems together with the track
gauge, the inclination, the wheelset gauge and the diameters of the wheels. Each of
the profiles and every parameter should be considered individually as a factor to
affect the geometric contact.

A computer program named "GeoCont" has been drawn up for solving the
geometric contact between track and wheelset. The program accomplishes the
problem in three steps:

+ choosing the profiles and the parameters, then transforming the profiles to the
initial coordinate systems;
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+ determining the global solution paths;
+ finding the double-contact position if there is one and generating the output
files.
We follow this sequence to illustrate the numerical procedure in the program.

In the first step, the theoretical or measured profiles have to be represented
by numerical tables which contain the lateral and the vertical coordinates and their
first and second derivatives. For measured profiles, the original experimental data
have to be smoothed because of the accuracy of the instruments, the errors of the
observers and the flaking of the surfaces. The smoothed results obtained by means
of a least square method or a linear programming method as shown by Sauvage
(1975) are expected to be continuous up to the second derivatives. If the inclination
needs to be taken into account, the right-hand rail has to rotate anticlockwise over
the inclination angle and the other rail rotates clockwise. Notice that for measured
rail profiles, the inclination is already incorporated in the experimental data.

So far, the points used to measure the track gauge are unknown, but they are
incorporated in the rail profiles and change with the inclination. To find the points
we have to determine the tops of the rails where the first derivatives are equal to
zero; then, we can find the points the positions of which are 14mm below the top
plane (Fig.3.2.1). Their lateral coordinates in the local coordinate systems have
already been denoted by c; in Section 3.2.

According to Eqs.(3.4.6)-(3.4.9) for the two-dimensional approach, we may
work out a solution for a given track-wheelset system at zero rolling angle ¢ with
certain initial values of the lateral contact coordinates Mgy, Mg nm* and ‘102*-
Whether the rails penetrate the wheels at this solution is checked by comparing the
vertical coordinates of the rail and wheel surfaces in the track reference frame. If the
solution is associated with penetration, the initial approximations of the lateral
coordinates have to be modified to obtain a real solution. After this has been
accomplished, the profile functions are transformed from the local coordinate
systems to the initial coordinate systems by means of Eqgs.(3.4.24) and (3.4.25).

Solving the first-order equations is the aim in the applications of the program.
As stated in the preceding section numerical difficulties arise when the radii of
curvature of the rail and the wheel are equal or approach each other at a contact
position. Taking the lateral contact coordinate of the right-hand rail 1, as the
parameter A in the set of first-order equations (3.5.19), we can overcome such
difficulties only when they occur at the right-hand side of the system but not at the
left-hand side. In some cases this requires the coordinate of the left-hand rail 1, to
be the parameter rather than one of the four variables. Therefore, at each
computation step the parameter A has to be chosen out of the two coordinates n; and
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M, to ensure a nonsingular Jacobian matrix. It is advisable not to choose the rolling
angle as the parameter in case of passing a turning point.

The zero coordinates Ny, M,, N3 and 1y, viz. the origins of the initial coordinate
systems, are always a solution of Eq.(3.5.19) with ¢=0 and y=0; meanwhile, they
are also good approximations of the coordinates for the case of small rolling and
yaw angles. From these origins we may start the whole solution path. In general the
yaw angle W remains constant in the analysis.

The last two solutions denoted by (x(l-_l), ¢(l._1)) and (x(l-), %) must be kept
available during the computation. In case the coordinate 1, (say x,) is the parameter,
the next solution (x(l- +1y ¢‘(i +1)) for an increment A)\(H_]) of N, may be determined
from the approximations given by the trivial predictor. Because the slope of the
tangent approaches infinity in the neighbourhood of the turning point (Fig.3.5.3), we
establish an inequality to assure that the solution is still sufficiently far away from
the turning point. Hence,

K <K, (3.5.21)
where
K< | Moy ~ Mg . (3.5.22)
Mgy ~ Mg

The quantity K, is the cr:tical slope; the optimal value is about 6.0 in the program
"GeoCont". When the inequality (3.5.21) is deficient, the coordinate N, becomes the
parameter A instead of 1, and the step size for the new parameter 1, is given by

(M2 = Mog-1y)

(mm) . (3.5.23)
P (Mo~ Myeny) |

Adgyyy = 0.1

Correspondingly, the quantity K is then equal to the inverse number of the right-hand
member of Eq.(3.5.22). Applying this process repeatedly may generate the global
solution path we need.

Both the value of K and the number of the iterations (N) in obtaining a
solution of Eq.(3.5.19) are used to adjust the step size of the parameter, which is one
of the coordinates 1, and 1,. In case the number of iterations N is less than an
optimal value Ny (= 10 and the slope K is less than 1.0, the step size increases
to Ak, 1,=1.618AM;), but it is limited by the maximum value 0.4. On the other hand,
when N 2 Nop[, K>10and A?\(i) > 0.2, we take A?\ﬁ+1):0.618A7u(i)

The useless data that correspond to penetration have to be deleted from the
results. As indicated in Fig.3.5.3, the increment of the lateral displacement v as a
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function of the rolling angle ¢ changes its sign around the turning points C and E.
On the basis of this fact, the two points in which the sign changes, can be found in
the results saved in the sequence of A to G; therefore, it is easy to get some
solutions in AC nearby the turning point C and in EG closed to E. By making use
of these solutions to determine the initial approximations of Eq.(3.5.20), which are
expected nearby the double-contact position B and F, this equation may be solved
iteratively to obtain the contact coordinates of the double-contact position B and F
as well as the corresponding lateral displacement and the rolling angle. Afterwards,
the data on BDEF are deleted and the information of B and F is inserted into the
data file.

The most essential data files contain the lateral displacement, the rolling
angle, the difference of the rolling radii and the four lateral contact coordinates in
addition to the information of the system, the positions of double-contact and the
constant value of the yaw angle. Some other quantities such as the contact angles,
the vertical displacement, the longitudinal and vertical contact coordinates can easily
be calculated by means of the essential output data.

3.5.3. Numerical Solutions and Discussions

A typical combination of theoretical profiles of rails and wheels, viz. the UIC60 rails
and the S1002 wheels is handled as an example of a symmetrical track-wheelset
system. Two other asymmetric combinations, called CTO-Measured-Profiles and
ORE-Benchmark-Profiles (see Appendix D), have been measured from tracks and
wheelsets in service, so that the inclinations of their rails are already incorporated
in the experimental results. In all three combinations which are considered in the
computations, the distance between the inside surface of the wheels (or the wheelset
gauge) is equal to 1360mm and the nominal rolling radius is 460mm. In order to
compare the numerical results, the contact coordinates are taken with respect to the
local coordinate systems of the profiles with the exception of the contact coordinates
mentioned in Table.3.5.1.

First of all, in order to validate of the approximate methods numerically, we
compare the numerical results determined by the exact theory with those determined
by the approximate methods described in Section 3.4. The track-wheelset system
used in these computations is the combination of the UIC60 rails and the S1002
wheels with the rail inclination 1 in 40 and 1435mm track gauge. In this thesis it is
designated as UIC60-51002-Standard. As we expected, Fig.3.5.4 indicates that the
differences between the results obtained by solving the exact equations and the first-
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6.0 - —— y=0 (the first-order theory)

------ w=0.03 rad.

- —=- y=0.05rad.
4+ y=0 (the exact theroy)
Ol y=0.03 rad.
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~ph——

difference of the rolling radii Ar (mm)

0.0 2.0 4.0 6.0
lateral displacement v (mm)

Fig.3.5.4. Comparison of the exact theory and the first-order theory for the
UIC60-S1002-Standard.

v Ar n* n* &* &
(mm) | (mm) (mm) (mm) (mm) (mm)
exact theory 5190 11389 [19.700 |[-11.106 |2.648 |-0.190
two-dimensional approach | 4.462 1.387 19.824 -9.308 0.0 0.0
first-order theory 5210 |1.389 [19.702 |[-11.114 [2.709 [-0.154
perturbation method 5201 |1.388 |19.680 |-11.284 |2.704 |-0.180

Table.3.5.1. Comparison of the results obtained by various methods for
y=0.05 rad. and ¢=0.0003 rad. (the contact coordinates are taken with respect
to the initial coordinate systems).

order theory equations are so small that the first-order theory can be considered to
yield sufficiently accurate results. Moreover, the computer time to solve the set of
four nonlinear algebraic equations of the first-order theory is certainly much less than
that to solve the set of eight nonlinear algebraic equations of the exact theory.
Fig.3.5.4 and Table.3.5.1 show that the two-dimensional approach is applicable only
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when the yaw angle and the lateral displacement are very small. The first-order
theory and the perturbation method are recommended for the dynamic simulations.
They can be applied both to the tabulation of the contact constraints in advance and
to the online calculations. In our computations the first-order theory is adopted.

In the first-order equations (3.4.43)-(3.4.46), the geometric contact of a track-
wheelset system primarily depends on the following factors: the profiles of the rails
and the wheels, the track gauge, the wheelset gauge, the diameters of the two wheels
and the rail inclination, which is only a design variable in the design of new tracks.
For the combination of the UIC60 rails and the S1002 wheels, Fig.3.5.5 shows the
change of the initial contact position, where the rolling angle and the yaw angle are
both equal to zero, in a large range of the track gauge (1420mm-1460mm) for the
different rail inclinations. With the largest rail inclination (1 in 20), the initial lateral
contact coordinates of the rails and the wheels are smooth functions of the track
gauge. By contrast, for the other inclined rails, the coordinates and the contact angles
of the initial contact position change discontinuously to the flange of the profiles
when the track gauge is varied (see Fig.3.5.6). These contact angles strongly affect
the stability of railway vehicles; for a normal rail inclination 1 in 40, the tangent of
the initial rail contact angle jumps from the value 0.027 to 0.065 at 1434.62mm track
gauge and from 0.128 to 0.302 at 1425mm. In the range of 1434.62mm-1460mm the
initial contact angle remains low with values from 0.0088 to 0.027.
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Fig.3.5.5. The lateral coordinate of the initial contact position as a function
of the track gauge and the rail inclination for the UIC60-S1002 combination.
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Fig.3.5.6. (a) The contact angles at the initial contact position as functions of
the track gauge and the rail inclination for the UIC60-S1002 combination. (b)
The initial contact angles as functions of the track gauge for the ORE-
Benchmark-Profiles and the CTO-Measured-Profiles.
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Fig.3.5.7. The lateral coordinate of the initial contact position as a function
of the track gauge for ORE-Benchmark-Profiles and CTO-Measured-Profiles.
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For the other two asymmetric combinations the initial contact angles and the
initial contact coordinates are indicated in Figs.3.5.6 and 3.5.7. Around 1434mm
track gauge, the contact angles jump from -0.01 to 0.1 for the CTO-Measured-
Profiles. This combination is the only one having (small) negative contact angles for
certain values of the track gauge. Another remarkable result refers to the ORE-
Benchmark-Profiles; the variation of the track gauge does not induce a jump of the
contact position in the whole range from 1425 to 1460mm.

The further invest gations of the influences of the track gauge and the
inclination on the geomeiric contact are demonstrated in Fig.3.5.8 and Fig.3.5.9
respectively for the combination of the UIC60 rails and the S1002 wheels, the yaw
angle being zero. Because the considered inclinations of the rails are so small as
compared to unity that thzy only slightly change the lateral coordinate of the rail
profiles, we can still compare the lateral contact coordinates for the different
inclinations in one diagram.

When rail inclination approaches zero, or when the track gauge is reduced,
for the same lateral displacement the lateral contact coordinates move towards the
flange area, thereby increasing the contact angles. According to the two figures, the
lateral displacements corresponding to the double-contact position vary with the track
gauge and the rail inclination. In the case of 1 in 40 rail inclination, the contact point
on a surface of a rail or a wheel can only be located in three ranges of the profile
and between two ranges there is a contact jump, which corresponds to a double-
contact position. A jump induces a discontinuity of both the rolling radii difference
and the contact angle.

track gauge = 1430mm
double-contact | v(mm) | Ar(mm) | Ng;(mm) | Ng(mm) T]m*(mm) noz*(mm)
1st 2.113 0.810 15.349 10.863 17.066 8.111
1.268 15.349 0.542 17.066 -2.210
2nd 2.36 1.397 15.892 -0.444 17.854 -3.441
3475 26.397 -0.444 28.359 -3.441
track gauge = 1440mm
Ist 2.658 0.173 0.682 -4.842 -2.156 13.040
0.623 10.853 -4.842 8.015 13.040
2nd 7.308 1.578 15.900 -4.401 17.858 -17.394
3.653 26.395 -4.401 28.354 -17.394

Table.3.5.2. The influence of the track gauge on the double-contact positions
of UIC60-S1002-Standard (see also Fig.3.5.8).
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Table.3.5.2 lists the double-contact positions and some associated parameters.
From this table and Fig.3.5.8 we find that in spite of the track gauge varying the
lateral displacement v where a double-contact occurs, the lateral contact coordinates
of the jump positions are almost independent of the track gauge. The numerical
results listed in Table.3.5.2 also indicate that at a double-contact position, there exist
three contact points in the contacting bodies and hence, the jump of the contact point
occurs only at one side. Moreover, for 1430mm track gauge, the first double-contact
at v=2.113mm is caused by a jump of the contact point at the left-hand side but the
double-contact at v=2.360mm is caused by a jump at the right-hand side.

For the rail inclination 1 in 20, there are only two contact ranges in a profile.
When the lateral displacement is in the range from -5.97mm to +5.97mm, the contact
point lays on the tread segments of the profiles at both sides and the contact angle
is very low (approximately 0.013); once the amplitude of the lateral displacement
exceeds 5.97mm, at one side the contact point directly jumps to the flange.

The accuracy of the dynamic analyses can be improved by treating the
geometric contact between track and wheelset three-dimensionally, in other words,
by taking into account the influence of the yaw angle, especially in case of a
conventional vehicle negotiating a narrow curved track.

For the UICG60-S1002-Standard combination we have applied the three-
dimensional theory and the results are shown in Figs.3.5.10 to 3.5.12. The relations
between the generalized coordinates are indicated in Fig.3.5.10; the amplitude of the
vertical displacement w is much smaller than that of the lateral displacement in the
absence of flange contact. Due to the jump of the contact position, the first
derivative of the rolling angle is no longer a continuous function of the lateral
displacement. According to Fig.3.5.11, the longitudinal contact coordinate of the left-
hand wheel hardly changes with the yaw angle for a positive lateral displacement v;
however, the coordinate of the right-hand wheel varies strongly at large positive
lateral displacements for non-zero yaw angles. As indicated in Fig 3.5.12 and
Table.3.5.3, the yaw angle, like the track gauge, hardly alters the three possible
contact ranges on the surfaces of the rails and the wheels. By contrast, the lateral
displacement v corresponding to the double-contact position is significantly affected
by the yaw angle.

In the ORE-Benchmark-Profiles, there is no jump in the tread contact, thus
therefore the relations of the generalized coordinates are smooth functions. Because
the combination is asymmetric, the zero difference of the rolling radii does no longer
correspond to the zero rolling angle and the zero lateral displacement: Ar=0 at
$=1.84x10"rad. and v = -0.81mm.
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yaw angle y = 0
double-contact | v(mm) { Ar(mm) | Ny (mm) [ Ng(mm) ﬂ01*(mm) T]oz*(mm)
Ist 0.187 0.044 0.663 -0.738 -2.164 -3.948
0.496 10.854 -0.738 -8.027 -3.948
2nd 4.823 1.537 15.897 -4.913 17.856 -12.908
3.613 26.396 -4913 28.356 -12.908
yaw angle y = 0.05 rad.
Ist 1.062 0.123 0.621 -3.517 -2.234 -8.535
0.579 10.876 -3.517 8.065 -8.535
2nd 5.521 1513 15.700 -4.963 17.557 -14.585
3.681 26.470 -4.963 28.534 -14.585

Table.3.5.3. The influence of the yaw angle on the double-contact positions
of UIC60-S1002-Standard (see Fig.3.5.1).

The results shown n Fig.3.5.14 are for the asymmetric combination of the
CTO-Measured-Profiles. There is a special interval of the lateral displacement v (-
1.93mm to -1.14mm for y=0rad.) where the difference of the rolling radii is almost
zero (Ar=0.012 to 0.028mm). In this interval the contact angles of both rails are
small and negative; when the lateral displacement is beyond this interval, one of the
rail contact angles still remains negative. By contrast, in the UIC60-5S1002
combination and for the ORE-Benchmark-Profiles, both rail contact angles are
always positive.

When the CTO-Measured-Rails are combined with the new wheel profiles
$1002, the difference of the rolling radii is found to be almost zero (Ar = -0.058 to
0.063mm) in a larger range of the lateral displacement ( v = -5.216 to 1.962mm, see
Fig.3.5.15). In this range, the contact angles of both rails are very small. Another
example refers to the combination of the CTO-Measured-Rails and the BR P8 wheel
profiles, which are utilized on major lines in Britain; this combination generates no
special range with zero d:fference of rolling radii so that it may provide suitable
conicities in the tread contact area.

As has been shown above, the geometric contact between track and wheelset
is very sensitive to the profiles and other geometric parameters. Because the contact
strongly influences the dynamic behaviour of railway vehicles, the optimization of
these factors is extremely important in the design of the vehicles.
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Chapter 4

Dynamic Models of a Single Wheelset on Various
Tracks

4.1. Introduction

The dynamics of a railway vehicle wheelset have long been of interest to specialists
in the dynamic field and to railway companies. The hunting of the wheelset observed
above a critical vehicle speed is the primary source of the instability of railway
vehicles. It 1s also a significant factor of wear of the rails and the wheels, ride
discomfort and derailment. A peak of the acceleration due to the hunting motion also
produces high dynamic loads on the suspension through which the wheelset is con-
nected with the bogie, so that the suspension may easily be damaged. This chapter
presents the achievements in establishing dynamic models of a single wheelset.

It is well known that the dynamics of a wheelset are inherently nonlinear.
Among the sources of nonlinearity especially are important:

+ the geometric contact between the rails and the wheels (geometric
nonlinearity);
« the creep forces which are the interaction forces between the rails and the
wheels (physical nonlinearity);
« the nonlinear characteristics of the suspension.
Only the first and the second types of nonlinearity are taken into account because
in this chapter only the motion of a single wheelset is investigated.

De Pater (1961) attempted to investigate analytically the effect of nonlinear
elements in railway vehicles by means of the method of Krylov and Bogoliubov. In
his nonlinear model contact between wheel flange and rail was described as a
collision phenomenon and the linear creep law was assumed to be valid. The limit-
cycle and its stability for a two-axle vehicle were determined by means of the so-
called equivalent linear equations. Later on, the method of Krylov and Bogoliubov
was also applied by Van Bommel (1964), and Law and Brand (1973). Cooperrider
and Hedrick ef al. (1975) developed the quasi-linearization technique to predict the
nonlinear response of railway vehicles. Hauschild (1981), Knothe and Moelle (1982)
used the Galerkin method to transform the nonlinear equations of motion to a set of
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nonlinear algebraic equations; the frequencies, amplitudes and phases of possible
limit-cycles were determined from these nonlinear algebraic equations. True (1983)
investigated the nonlinear phenomena of Cooperrider’s vehicle model by means of
the Hopf bifurcation analysis.

It has been shown by De Pater(1979, 1981) that it is possible to derive exact
equations of motion for a wheelset moving along a tangent track or a track with
constant radius of curvaturz and with constant cant. From the dynamic point of view,
the six equations of motion of the wheelset together with the two constraint
equations due to the contact between track and wheelset can be solved for the six
generalized coordinates and the two normal contact forces. The tangential forces are
determined in terms of the normal contact forces and the geometric and kinematic
parameters at the contact points. The theoretical and numerical analysis of a vehicle
passing through a curved track were also done by Elkins and Gostling (1977),
Duffek et al. (1977), and Kortiim and Wormley (1981). Recently, Fisette and Samin
(1991) have developed symbolic software to generate the equations of motion and
employed the software in the investigation of a railway vehicle system with
independent wheels. Nonlinear models of the wheelset have been developed by many
investigators such as Burton and Whitman (1980), Mufti and Dukkipati (1982), Kik
(1991), Pascal and Sauvage (1991). The problems arising in the development of the
mechanical models of the wheelset are well discussed by Elkins (1991).

In the preceding chapter, the geometric constraints between the rigid track and
the rigid wheelset have been investigated in detail. The dependent generalized
coordinates and the contact position can be determined numerically from the
postulation that both wheels remain in contact with their corresponding rails. This
finally gives rise to two holonomic constraint equations. The dependent generalized
accelerations and the constraint forces can be eliminated from the unreduced
differential equation by utilising the corresponding kinematic constraint equations
(Yang and De Pater 1991).

In the present chapter, first the creep-force laws used in the dynamic simula-
tions are discussed; see Section 4.2. In Section 4.3, the kinematics of a conventional
wheelset are discussed and the kinematic constraints between the track and the
wheelset are given in the following section. The general equations of motion of the
wheelset given in Section 4.5 are established on the basis of Jourdain’s principle. In
Sections 4.6 and 4.7, the dynamic models of the wheelset moving along a tangent
track and a curved track are derived from the general equations of motion. The effect
of track irregularities on the dynamic models is studied in Section 4.8. Finally, in the
last section a linear dynamic model for the linear stability analysis is given.
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4.2 Rolling Contact Theory

The determination of the contact forces between the rails and the wheels plays an
important and critical role in the analysis of the performance of railway vehicles. A
detailed and systematic classification of all rolling contact problems was given by
Kalker (1990); a brief review has been given in Chapter 3. The linear theory is
extensively used in linear lateral stability analyses of railway vehicles for the
determination of the critical speed. The Shen-Hedrick-Elkins theory and Kalker’s
simplified theory (FASTSIM) are both recommended to be utilised in dynamic
simulations. The former loses its validity for large values of the spin, so that it is
only applicable to cases without flange contact. All these three theories have been
numerically verified by the exact contact theory of Kalker (1990) related with the
program CONTACT.

4.2.1 Creepages and Spin Creep

Due to the fact that the rolling radii of the two wheels vary along their axis of
revolution, the wheelset will, in general, not perform a pure rolling along the track;
there exists relative motion in the contact area between a rail and a wheel. The
longitudinal creepage v, and the lateral creepage v, are used to describe the
deviations from a pure rolling motion of the two contacting bodies.

In order to define the direc-
tions of the creepages and the contact
forces, we introduce the contact
frame {Pj, ePI ) (see Fig.4.2.1).
Consider a wheel in contact with a >\
rail at the point P, with the coor- [ ]|
dinates (x;", yj*, z; ). The origin of \
the contact frame is located at the
contact point Pj ; 1ts vector basis is
obtained from that of the wheelset-
body frame (0%, €7 } by the rotation
arctan(xj*/zj*) around the 02y2 axis,
viz. o*y* and 222, followed by the
rotation Y, around the axis in the direction of the base vector Ele, which is the
instantaneous rolling direction of the wheel. Therefore, the relation between the
contact frame {Pj, &%} and the wheelset-body frame {0?, &2 } can be indicated by

Fig.4.2.1. The contact plane
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The longitudinal and lateral creepages are defined by the components of the
relative velocity at the contact point which are taken with respect to the contact
frame {Pj, ¢ ¥}, divided by the nominal longitudinal velocity V,, of the wheelset
centre. When the relative velocity at the contact point P; is denoted by AV (P;), the
creepage quantities can be found as:

ij

1
v, | = - AV(P), (4.2.3)

0

n

where Av ( P ) is the component vector of AV ( P; ) with respect to {Pj, ehy

Another quantity, viz. the spin creepage Vepip is defined as the ratio between
the component of the wheel angular velocity (T)j in the normal of the surfaces at the
contact point and the nominal velocity, so that

1 - =
Vg = - 0 AP (4.2.4)
n

4.2.2. Contact Forces'

The loading exerted upon the wheel at the contact point includes the normal contact
force, the two tangential contact forces and the spin moment. The longitudinal

"In Section 4.2.2, the index j to indicate the side of rail and wheel is omitted.
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tangential force 7_"x, the lateral tangential force Ty and the spin moment M, are
defined along the directions of the vector basis € *; by contrast, the positive normal
contact force N is taken in the opposite direction of the base vector €3P . Hence,

s —-P - =P " - P o - P 2.
T, =T, T,=T,2 . M,=Me , N=-Ng . (4.2.5)

The resultant of the tangential forces is defined by

T-1leP (4.2.6)
with
T=[T,T7,,0]". (4.2.7)

This force should be limited by Coulomb’s law:

T, + T, <uN, (4.2.8)
where p is the friction coefficient.

In the three above-mentioned rolling contact theories, the contact area around
the contact point, which is found in the geometric contact problem, is determined by
Hertz’s problem; the semi-axes a and b of the contact ellipse are functions of the
normal force, the geometry and the material properties (Love, 1929). The semi-axis
a is taken in the rolling direction.

In Kalker’s linear theory, the formulae for the creep forces read:

T,=-c*GCj v, (4.2.9)
2 3
Ty = -C Gszuy -C GC231)SP (4.2.10)

and the spin moment is

M, = GCuu, - c*GCyyv,,. (4.2.11)
Here G is the shear modulus of the contacting material; c:(ab)l/2 is the average
radius of the contact ellipse. The creepage and spin coefficients C ;j were computed
and tabulated by Kalker (1967) as functions of the ratio of the semi-axes of the
contact ellipse a/b and Poisson’s ratio.

The creep forces are proportional to the creep quantities; the saturation effect
given by Eq.(4.2.8) is not taken into account. Therefore, Kalker’s linear theory is
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only valid for small creepsges and small spin creep. Shen, Hedrick and Elkins (1983)
improved Kalker’s linear theory on the basis of the Vermeulen-Johnson formulae.
Shen et al. assume that tke resultant tangential force Ty is determined by
Tp 1 Th 1 Tq .
pN[(%)—§<_]’f/>2+§7<_;>31, for TR<3pN
T, = v H H (4.2.12)

pN, for T;Z3pN

with

—_—

. 2 2 (4.2.13)
T, = \/Tx T

Tx* and Ty* are calculated according to Eqs.(4.2.9) and (4.2.10). Introducing the
reduction coefficient €=TR/TR*, we obtain the creep forces

T,=¢ T; (4.2.14)
and

_ ¥ 42.15

T,=eT, ( )

In Kalker’s simplified theory the surface displacement at a point in the contact

area depends only on the surface traction at that point and the displacement is

proportional to the local surface load. The boundary conditions express that at the
leading edge of contact where the particles enter the contact area, the surface loads
and the slip vanish. Based on the simplified theory and the saturation effect, the
program FASTSIM has been developed (Kalker, 1982). Several investigators (Shen
et al., 1983; Fortin, 1984) have tested the accuracy of this procedure. It is reported
that the results obtained by FASTSIM are always in good agreement with those
determined by the exact rolling contact theory (CONTACT).

4.3. Kinematics of a Wheelset on a Track

In fact, railway vehicles travel not only along a perfect straight track but also along
a curved and superelevated guideway. In the kinematic analysis, it is convenient to
consider the motions of the individual bodies of a vehicle system to be composed
of two parts: first the motion of the system as a whole in a nominal configuration;
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secondly, the motions of the individual bodies about the nominal configuration. From
the numerical analysis point of view it is also necessary to generate the equations of
motion of vehicles in terms of the generalized coordinates with respect to the moving
reference frame instead of those with respect to the inertial frame.

4.3.1. Kinematic Analysis of the Track Reference Frame

Consider a single wheelset moving along a track. Both when the track is tangent and
when it is curved and superelevated, the motion of the wheelset relative to the
inertial frame {0, &1} can be described by the motion of the track reference frame
{o', &'} relative to the inertial frame combined with the motion of the wheelset
relative to the track reference frame (see Fig.4.3.1).

inertial frame

Fig.4.3.1. The coordinate systems.

The position vector of the track reference frame is denoted by 5. In general,
we define:

- T = . - 43.1
szlslel, 1s:[Vn,O,O]]. ( )
Following Duffek et al. (1977) the orientation of the track reference frame relative
to the inertial frame is here described by three consecutive rotations with the angles

(o, o, 0):



72

“"'V—l',[,.:r’/‘/j/( //m)

inertial frame

Fig.4.3.2. Definitions of the angles o, and o,.

» o, : azimuth-angle (rotation about the base vector AN
* o, : climb-angle (angle between the base vector Ell and horizontal plane);
* (@ cant-angle (rotation about the base vector Ell; see Fig.C.1a).
In Fig.4.3.2, the curve A’B’C’ is the projection of the curve ABC on the horizontal
plane. According to Appendix B, the rotation matrix G° is defined by

el =G, G°=AY0y)A% 0y AN (a,). (4.3.2)

The full expression of G is:
COSU,COSO COSU,SINQL —S1nQ,
o i o . - o :
G° = SanL351nClzCOSOLl ',osa3sma1 San(.3SIIlO(2$1nCt1+COSOL3COSQ1 snn(13003a2 R
COS0L;SINOL,COSTL +SIN0LSINGL  COSOLSINML,SINOL —SINA;COSTL;  COSOLICOSL)

(4.3.3)

The angular velocity ®° of the track reference frame reads:

—0SiN0L,+0L4
— L oT =1 - . . (4.3.4)
0’= "o e, ®° = | O,SIN0;C080,+H0,C080

alcos(x3cosoc2—azsm(x3

It is assumed that the track is defined by the curvature x of the curve A’B'C’, the
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height 4 and the cant angle o,; all three quantities are given as functions of the track
length s. Furthermore, we have:

a, = arcsinl ' (5)],  doy, = 28 gy (4.3.5)
cosa,
and
N
o, = flc(s*)cosot2 ds*, doy = x(s)coso, ds . (4.3.6)
0

In this way, for prescribed nominal forward speed V, =ds/dt, the motion of the track
reference frame can be completely determined.

4.3.2. Kinematic Analysis of the Wheelset

By quoting the results given in Section 2.1 and the Appendices A and B, the motion
of the wheelset mass centre relative to the inertial frame (o', &'} is expressed as
follows:

T=3+p, (4.3.7)
L L=, - (4.3.8)
r=s+p+0°xp,
and
(4.3.9)

F=5+p+®°xp + DOX(DXP) +20°xD .

where E and 5 are the velocity and the acceleration of the wheelset mass centre
as seen from the track reference frame {o', &' }.

The wheelset is axisymmetric, so that the rotation of the wheelset about its
axis of revolution does not affect the geometry and the complete mass distribution
of the system. We define the nominal spin angle as the ratio of the vehicle travel
distance s and the nominal rolling radius of the wheels; therefore, the nominal spin
angular velocity is

Q =_". (4.3.10)



74

The introduction of the nominal angular velocity € is important for the linear
stability analysis.

The absolute angular velocity of the wheelset is composed of the angular
velocity of the track reference frame and the angular velocity of the wheelset relative
to the track reference frame:

®=0°+ (7)21. (4.3.11)

The angular acceleration is then determined by

- - — _ _ (4.3.12)
D=0+ 0 + %0,

-21 . .
where ®°' is the angular acceleration as seen from the track reference frame.

According to Appendix B, the relative angular velocity of the wheelset is

32 =0’ e? with ) =HO-0, (4.3.13)
where
10 0 ¢ 0
. o . (43.14)
H=|01 sinp |, 0= y| 0,=|9,|
0 0 cosd W 0

Here y represents the deviation of the nominal spin rotation. Furthermore, the
corresponding angular acceleration is given by:

: T = ) g . 43.1
0 =@¥"e?  with @ =HO +hy -6, (4315
where
~y(=6,, + X)cosd
. (4.3.16)
hy = dycosd

(-6, + %) 6 — dysing

When the wheelset moves at the constant forward speed V,, the nominal spin angular

velocity is constant and the nominal angular acceleration vanishes.
Combining the component vector of the absolute velocity (4.3.8) and that of
the absolute angular velocity (4.3.11) yields




75

r (43.17)
Vv = >
m*
where
7:—}7‘8—1, a) - (D*T é“l. (4318)

r (4.3.19)

where the component vectors are defined by

o (4.3.20)

F=7le!l, =o'l e?,

Note that v is not the time derivative of v because the wheelset-body frame is not
embedded rigidly in the wheelset body; it is only used to designate the combination
of the wheelset acceleration terms. However, v and v are designated as the quasi-
velocity and the quasi-acceleration of the wheelset respectively.

4.4. Kinematic Constraints between Wheelset and Track

When two bodies are in contact at a single point as shown in Fig.3.1.1, the motions
of the two contacting bodies are restricted. From the kinematic point of view, the
contact generates one constraint: at the contact point the normal component of the
relative velocity between the two contacting bodies vanishes; as a result, the number
of the degrees of freedom of the system reduces by one. The kinematic constraint
equation corresponding to the contact point P can be expressed by

AV(P) - n(P) =0, (4.4.1)
where

- - _ (4.4.2)
Av=p +®“ Xp~,

and
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Py = (P) = n%(P). (4.4.3)

In Eq.(4.4.2), @' represents the relative angular velocity between the two contacting
bodies; 5 is the velocity vector of the origin of the frame {02, el } as viewed
from the frame {o', &' } and p? is the position vector of the contact point relative
to the frame {02, e’ } (sez Fig.3.1.1). The kinematic constraint equation (4.4.1) is
linear in the generalized velocities; the coefficients of the generalized velocities are
functions of the contact coordinates and the generalized coordinates. All these
coordinates must satisfy the geometric constraint equations (3.1.1) and (3.1.2).
Moreover, the kinematic constraint (4.4.1) is holonomic.

For the railway vehicle system the motion is shown in Fig.4.3.1. Here the
motion of the wheelset is subject to the two kinematic constraints because both
wheels contact their corresponding rails. Therefore, of the six generalized coordinates
describing the motion of the wheelset which are the longitudinal, lateral and vertical
translations #, v and w, and the rolling, spin and yaw rotations ¢, 8 and y (they are
defined relative to the track reference frame), only four are independent. From
Eq.(4.4.1) the kinematic constraints of the wheelset system are defined by

Aﬁj . ﬁj =0, (4.4.4)

where 7zj is the normal vector of the rail (and wheel) surface at the contact point.
The track is fixed cn the ground so that it does not move with respect to the
inertial frame {01, &' }; therefore, the relative velocity between the wheel and the
‘ rail at the contact point is the absolute velocity of the contact point of the wheel and
; it is calculated by:
\

- _d
T

(F+PH) =F+®xpl. (4.4.5)

Substituting (4.4.5) into Eq.(4.4.4), we obtain the kinematic constraint equations of
the wheelset system:

- t - - 4.4.6
nj-(r+wxp§)=0. ( )

By means of the contact condition (3.2.30), Eq.(4.4.6) reduces to:
x T (447)

T o * _
n;G°r-n; p,® =0.

Using (4.3.17), we can therefore rewrite Eq.(4.4.7) in the general form (2.3.9) of a
constraint equation:

S
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Dr+c=0, (4.4.8)
where ¢ = 0 and
T * T x
n, G° -n, p, (4.4.9)
D = ;
nzTG" —n; ’13;

In principle, the Jacobian matrix associated with the constraints may be found
directly from Eq.(4.4.8). According to Eq.(4.3.8), Eq.(4.3.11) and the contact
condition (3.2.25), the relative velocity (4.4.5) can be determined in terms of the
motion of the track reference frame and the relative motion of the wheelset:

- s - - - _ 4.4.10
Avj=s+(o"><p}+p+w21><p§. ( )
Substituting (4.4.10) into Eq.(4.4.6) yields:
- o -, - - - - 4.4.11
nj-(s+(o"Xp;+p+c)21><p§)=O, ( )
From (3.2.10), (3.2.23) and (4.3.13), we obtain the scalar:
x; cos * e * j* *
—-cosy; tsiny —— COsY ;
- - -2 ’j T
n o (@2 x Py = . . .
0 (-=0,+x)+ysind  ycosd
. . (4.4.12)
%j Y %

_ Y . Y
cosy ; ( —x; cosd Y + zjq))(xtgyj +_]*).

Tj

Obviously, due to the absence of the spin rotation of the wheelset in this triple
product, we observe that the contact constraints are independent of the spin rotation
as might be expected; only the remaining five generalized velocities are restricted
by the two constraints. Therefore the spin rotation is always chosen to be one of the
independent generalized coordinates.
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By introducing the quantities:

C] = cosy; (=tgy} + -_) (4.4.13)
"j
] = [n,, ny, m,)7, from Eq.(4.4.11) the linear
relations between the six generalized velocmes can be found as:

and supposing that n; = n' &' with n;

ny, ny m, 2 C; 0 —x;Clcosd ||p 4.4.14
x My M AT (4.4.14)
Moy Moy Mo zz*Cz* 0 —xz*Cz*costb 0
where
= =1
) .(s+(D0j><pl) (4.4.15)
E(t) = -

_ = p— -1
n, - (s+®°xp,)

Eq.(4.4.15) indicates the contribution of the motion of the track reference frame,
which is known as a function of the time ¢ and the generalized coordinates (the
position vectors of the contact points relative to the track reference frame). When the
equations of the ra11 surfaces are independent of the distance s, it can be proved that

n (5+®%x p ) is equal to zero (see Appendix E). This holds, for example, for
the cases of the tangem track and the track with constant radius and cant.

Usually, the longitudinal generalized coordinate u is chosen to be one of the
independent generalized coordinates. Especially, when the rails in a small track
segment around the origin of the track reference frame are assumed to be cylindrical,
we know from Eq.(3.2.17) that n, is equal to zero. This shows that the longitudinal
generalized velocity is independent of the kinematic constraints of the wheelset
system. In principle, we may choose any two of the remaining four generalized
coordinates to be independent. For example, when the lateral and vertical
displacements v and w are chosen as the dependent generalized coordinates, it
follows from Eq.(4.4.14) that their generalized velocities can be written as linear
combinations of the independent generalized velocities &, ¢ and . Similarly, the
generalized velocities w and ¢ can be expressed as linear combinations of the
independent generalized velocities i, v and .

Generally, the generalized velocities may be expressed in terms of the
independent generalized velocities:
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p _ (4.4.16)
o =Jq+ (1),

where the four components of vector ¢ are the independent generalized velocities
and the vector £(¢) is determined by the motion of the track reference frame.
Because the contact constraints of the wheelset system are holonomic, Eq.(4.4.16)
can in principle be integrated and J is the Jacobian matrix. Whether the lateral and
vertical displacements v, w or the vertical displacement w and the rolling angle ¢ are
chosen as the dependent generalized coordinates, the partial derivatives of the
dependent generalized coordinates with respect to the independent ones in the
Jacobian matrix J can be found from Eq.(4.4.14).

The generalized accelerations may be obtained by differentiating Eq.(4.4.16)
with respect to time:

) . 4.4.17
|:g:l:,]ij+ld+ £(1). ( )

The second partial derivatives implied in J and €(r) can be calculated numerically
or by means of a perturbation method (De Pater 1992).

Finally, from (4.3.8)-(4.3.16), (4.4.16) and (4.4.17) the quasi-velocity and the
quasi-acceleration vectors defined by (4.3.17) and (4.3.19) can be expressed as
functions of the independent generalized velocities and accelerations:

v=Ag+b,, (4.4.18)
v=A§ +b,, (4.4.19)
where

A=HJ, H*'=daglG H], (4.4.20)
b, = H €(1) + & (1), (4.4.21)
b,=H (Jg+8&)+e, ), (4.4.22)

with



80

el-s el -moxp (4.4.23)
e ()= . |+ ,
_en 5'2_6)0
» ¢l & {BOXP + B Ox(DOXP)+20°xp} (4.4.24)
€ (1) = .|+ . .
‘ o= 0, (5% + Bxd)

The 6x4 matrix A and the vectors b, and b, are only functions of the generalized
coordinates and time. In the case of a tangent track, the second vectors in the right-
hand sides of Eq.(4.4.23) and Eq.(4.4.24) vanish because ®° is equal to zero. For the
general case, Eqs.(4.4.23) and (4.4.24) can be rewritten to:

GaT ls, C;oT 1(“[‘)0 P (4425)
£,(1) = . + a1
- -9, G '’
Gol %5 GOT(liI)“s—ﬁ1<b”+1(§°16)0p+21c~0”¢) (4.4.26)
e (1) = .|+ .
4 _he‘en G''o? - 1 GY lo°

4.5. General Equations of Motion of a Wheelset Running on an
Arbitrary Track

The wheelset system is a dynamic system containing one body subject to the two
contact constraints. Jourdain’s principle discussed in Chapter 2 leads to the equations
of motion of the wheelset system:

SvI(Mv-g-f)=0, (4.5.1)

where the components of the velocity and the virtual velocity have to satisfy the
constraint equations:
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Dv+c=0, D3dv=0. (4.5.2)

In agreement with (4.4.18) this leads to

v=Ag+b,, dv=A384. (4.5.3)

For the wheelset system, the 2x6 matrix D is given by Eq.(4.4.9), the 6x4 matrix A
by Eq.(4.4.20) and

0
" IrmE 0 } . { } (4.5.4)
0 7 -0 ln*

Here m represents the mass of the wheelset and 7 the inertia matrix of the wheelset;
J contains the resultant force and the resultant torque applied at the system.

Due to the constraint (4.5.2) this system has only four degrees of freedom. In
general, the spin angle ¥ and the longitudinal displacement u are always chosen as
independent generalized coordinates; the other two are chosen from the remaining
four generalized coordinates which are the lateral and vertical displacements v, w,
and the rolling and yaw angles ¢, y. Therefore, the general equations of motion of
a single wheelset on an arbitrary track can be written in terms of the independent
generalized coordinates:

MAiI' _A'Iv(fg +f) _ 0’ (455)
where
My=A"MA, f,=-Mb,+g. (4.5.6)

The vector g contains the four independent generalized coordinates; the vector b, is
given by (4.4.22). The 4x1 vector Ang describes the generalized gyroscopic forces
and the 4x1 vector A'f includes the generalized applied forces.

The resultant impressed force and torque f applied at the wheelset system can
be separated into two parts: f=f, + f-. The first part f, contains the components of
the impressed forces and the components of the impressed torques with the exception
of the contribution of the contact forces and the contact spin moments. The gravity
force of the wheelset is incorporated in f,. The second part f. is due to the forces
and the torques in the contact patches. We know that the normal contact forces are
constraint forces and therefore, f~ comprises only the tangential contact forces and
the spin moments which are considered as impressed forces and torques respectively.

According to (4.2.5), the resultant impressed force due to the contacts at both
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sides of the wheelset system reads

]_vtCT - 7'~1 ¥ Tz :fg[GoTGu 2Pl goTgR2 g2l 4.5.7)
where
fr=0Ty, T, ,0, Ty, T, 017, (4.5.8)

The resultant torque due to the contacts is

2
- - oy =
frem =X ( M, +p;xT;)
=1 (4.5.9)

T .« T =2 To=% ~2 Pl =% ~2,P2 T =2
:fM[nlanz*] [ +f](p1(; 7PZG J ea
where

fy =M, M1, (4.5.10)

Therefore, combining (4.5.7) and (4.5.9) yields
fe=Upfr+Uyfy. (4.5.11)

Obviously, the first three components of f, which are taken with respect to the
inertial frame, represent the total contact force; the remaining three components
represent the total torque due to the contacts and they are taken with respect to the
wheelset-body frame. The matrices in Eq.(4.5.11) are

GOT G12 GZ,PI GOTGH G2,P2

Uy = (4.5.12)
*ﬁr G>P! ﬁ; G2P?
and
0 0
u,=| . .| (4.5.13)
ny n,

As discussed in Section 4.2, the tangential contact forces and the spin
moments are functions of the creepages and the spin creeps. By means of (4.2.3),
(4.2.4), (4.3.11) and (4.4.10), we find for the creep quantities:

o
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ij
1 ; . ~ .~ * 4.5.14
Uyd' :_Gi’j,Z{GZl(ls+ 1(1)0Pj)+021p+(’)21pj}, ( )
n
0
and
b T «T 21
V= 7(nj ®? + n; o ). (4.5.15)
n

On the other hand, the tangential contact forces and the spin moments are also
functions of the normal contact forces, which are the constraint forces corresponding
to the kinematic constraints (4.5.2), so that the normal contact forces need to be
determined. Corresponding to the constraints (4.5.2), Eq.(2.3.17) gives the vector of
the Lagrangian multipliers A ,

A=—(DM'DY 'DM(f, +[). (4.5.16)

To check the physical interpretation of these Lagrangian multipliers, i.e. the
relationship between the multipliers and the normal contact forces, we have to know
the so-called distribution matrix of the normal contact forces. The formula for the
resultant constraint forces applied at the wheelset body reads:

J_C;CNZA_]1 +N2=-f;TV[G”Tn],GOTnz]Te_I, (4.5.17)

where fy = [N,, N,17. The resultant constraint torque is:

=2 = 2.5 T =% % ~% % 7T — 45.18
row = PixNy + PyxNy = ~fy [Py, pyny ) &2 ( )
Combining (4.5.17) and (4.5.18) yields:

Fon = UnSys (4.5.19)

where the 6x2 matrix Uy, is the distribution matrix of the normal contact forces and
is determined by:

ol oT
U - G" ny Gy (4.5.20)
v -

~ %k * -~ K *
piny P

Comparing (4.5.20) and (4.4.9), we find U, = -D" . Therefore, the vector Sy of
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the normal contact forces is equal to —A , viz.

fy= (DM DY IDMN(f, 4 ). (4.5.21)

Meanwhile, we verify that the distribution matrix Uy is orthogonal to the transpose
of the matrix A, in agreernent with Eq.(2.3.11).

Because the normal contact forces are incorporated in the general reduced
equations of motion of the wheelset, Eqs.(4.5.5) and (4.5.21) are coupled; therefore,
they must be solved simultaneously. During a numerical integration, good approxi-
mations for the normal contact forces are available from the preceding integration
step. Thus, only a few iterations, possibly just one, are required to generate the
solution. When we start the integration of Eq.(4.5.5), the normal contact forces often
have to be determined in the absence of good starting values.

4.6. Equations of Motion of a Wheelset on a Tangent Track

For the tangent track, the vector basis of the track reference frame {01, e 1} remains
parallel to that of the inertial frame (o', €' }; this implies that many terms
comprised in the general equations of motion (4.5.5) will be simplified considerably.
First of all, the angular velocity of the track reference frame vanishes and the
rotation matrix G° is the 3x3 unit matrix:

%°=0. G°=E (4.6.1)

- s

so that according to Eq.(4.3.8) the component vector of the absolute velocity of the
wheelset mass centre with respect to the inertial frame is determined by

F=s4p. (4.6.2)
According to Eq.(4.3.11) the component vector of the absolute angular velocity of
the wheelset with respect to the wheelset-body frame reduces to

@ = @2 (4.6.3)

The normal vector of the contact plane with respect to the track reference
frame is given in (3.2.17):

- T —
n-:n.el, nj:[n

J J o By 1y 17 = [0, iSian, cos’yj]T. (4.6.4)

7y "z

From Eq.(4.4.14) we know that the displacement u is independent of the kinematic
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constraints in the case of a tangent track. Moreover, substituting (4.6.1) and (4.6.4)
into Eq.(4.4.15), we find that &(¢) = 0. As a result, the dependent generalized
coordinates are independent of the displacement u and time ¢.

In literature the equations of motion of the wheelset are often derived in terms
of the lateral displacement v and the yaw angle ; the vertical displacement w and
the rolling angle ¢ are then the dependent generalized coordinates. In this case the
vector of the independent generalized coordinates reads:

g=1lu, v,y yvl’. (4.6.5)

As stated before, the dependent generalized coordinates are functions of only
two independent generalized coordinates: the lateral displacement v and the yaw
angle y. In general, these functions cannot be expressed explicitly; they can only be
found numerically from the equations based on the geometric compatibility
conditions of two bodies in contact. By contrast, once the contact coordinates are
attained, the kinematic constraint equations can be explicitly written in terms of the
linear generalized velocities, viz. Eq.(4.4.14). Therefore, the Jacobian matrix, which
corresponds to the geometric contact constraints, can be determined from the
kinematic constraint equations. As a result, we obtain

1 0 0
01 0
;o 0w,0 Y| (4.6.6)
06,00,
00 1
000 1 |

Solving Eq.(4.4.14) for the dependent generalized velocities, we find the first partial
derivatives in the matrix J:

1
Oy = ——. (4.6.7)
Z C1 -z, C,

(xl* C, - x; C, ) cosd

Oy (4.6.8)

* *
71 C) -z C,

and
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* *
7 gy, Cy + 25 127, G,

w, = (4.6.9)
Z; Cl - 22* C'z
wy - (x72y — X521 )C;C, (1gY | +1gY, ) cosd ‘ 4.6.10)
’ 7, Cy -z, C,y
where
cosy n'
S U sy, v L), (4.6.11)
gy, + gy, cosy; rj*
Moreover, the vectors b, and b, in Eqs.(4.4.21)-(4.4.22) reduce to:
b,=¢, = [ v, 0,00 -Q, O}T (4.6.12)
and
A 0 .
b,=Jq+ + €. (4.6.13)
hq

Here the acceleration terms in b, vanish for the constant nominal speed.
The determination of the creep forces has been discussed in the previous

section. For this case f, in the equations of motion (4.5.5) is:
0

= -M(Jg+¢€.)—|_ .
Te (Jq ») @' I w? + Ih,

(4.6.14)

The normal contact forces are still calculated by Eq.(4.5.21).
Both the matrix M, in Eq.(4.5.6) and the product DM DT in Eq.(4.5.21) are
positive definite. Furthermore, we have

m 0 0 0
2 2
. 0 m+(mw + 7)) 0 mw’vw’w+1x¢’v¢’w) 4.6.15)
AT . .
0 0 { 1,sind
; 2 2 2 2
_0 mw w o 0 [sind 1,cos"¢+ sin"0 +(mw O W |

When the rolling and yaw angles are chosen as the independent generalized
coordinates, the equations of motion can be derived in a similar way (Yang and De
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Pater 1991). In the subsequent analyses, we only consider the cases that the lateral
displacement v and the yaw angle v are the independent generalized coordinates.

4.7. Discussions on the Equations of Motion of a Wheelset on a
Curved Track

When the surface equations of the rails which are given with respect to the track
reference frame (o', &' }, are independent of the distance s, it can be proved (see
Appendix E) that the following equation holds :

, €

< - 47.1
'ﬁj~(5+w"x1)}):0. ( )

Therefore, in this case the kinematic constraint (4.4.11) reduces to

- - 47.2
r_zj-(5+o)21><pi):0. (47.2)

Obviously, Eq.(4.7.2) is independent of the motion of the track reference frame.
Correspondingly, we find that the vectors & (¢) and €(¢) defined in (4.4.15) and
(4.4.16) are equal to zero. For the tangent track and the track with constant radius
of curvature, constant cant and zero climb-angle, Eq.(4.7.1) can be proved easily.

When the radius of curvature of the track, the cant angle or the climb-angle
varies with the distance s, even when the cross-sections of the rails are assumed to
remain constant, it is very difficulty to derive the exact equations of the rail surfaces.
Fortunately, the instantaneous geometric contact between the track and the wheelset
is only related to a small track segment. As stated in Section 3.2.1 and Appendix C,
this small segment of the curved track can usually be assumed as a tangent track or,
which is even better, as a track with constant radius and cant angle when the track
radius is small. In these cases the real surface equations of the rails can be
approximated by equations which are independent of the distance 5. Based on this
postulate, the exact kinematic constraint equations (4.4.11) are replaced by (4.7.2)
for the curved track.

Now we consider the case in which the small segment of the curved track
under consideration is assumed to be cylindrical and perpendicular to the plane of
the cross-section. Because the normal vector of the contact plane with respect to the
track reference frame is still given by (3.2.17), the kinematic constraint equations
(4.7.2) are independent of the longitudinal displacement u. As a result, the Jacobian
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matrix J and the matrix M, are the same as those for the tangent track. Despite we
have E(¢t)=0 and €(¢)=0, ascompared with the case of the tangent track, the
vectors b, and b, in Egs.(4.4.21) and (4.4.22) are much more complicated. As shown
in (4.4.25) and (4.4.26), they strongly depend on the motion of the track reference
frame and thus on the geometric configuration of the whole curved track.

As an example, we consider the simplest curved track whose radius and cant
angle are constant and whose climb-angle is equal to zero. According to Section
(4.3.1), the rotation matrix G° in (4.3.3) reduces to

cosQ sinc. 0

G°=|—cosBsina  cosPcoso sinf |, (4.7.3)

sinBsinoe  —sinfcosa cosP

where we use o and P tc replace the angle o, and the cant angle oy, which are
defined in Section (4.3.1), respectively. By means of Eq.(4.3.6), we obtain:

w  g=n (4.7.4)
0

where Rj is the radius of curvature of the track. The components of the angular
velocity of the track referznce frame ®° are therefore given by:

v v
l@? =10, lsinp, —Lcosp 1T (4.7.5)
RO RO

For a prescribed nominal speed V =ds/dt, the motion of the track reference frame can
be completely determined.

4.8. A Method to Treat the Case of a Tangent Track with
Irregularities

In investigations on tracks with irregularities it is a common practice to assume that
the rail profiles remain the same along the track. The irregularities of the track
geometry, as shown in Fig.4.8.1, are defined in terms of four parameters: the
deviations of the track gauge, the lateral alignment, the cross level and the vertical
alignment (Garg and Dukkipati, 1984).
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(c) cross level (d) vertical alignment

Fig 4.8.1. Definitions of track irregularities

In order to take into account the influences of the irregularities on the contact

geometry, according to section 3.4.2 we may rewrite the first-order equations as

g(x,A) = 0. Here x contains the four lateral contact coordinates; the parameters
are

A=[0,v, b, Ab, r, Ar, b*, Ab*, r*, Art T, (4.8.1)

Here, the deviations of the four track parameters: b, Ab, Ar and r can represent the
irregularities of the track. We denote these deviations by &b, dAb, dAr and Or
respectively, where
ob is the variation of track gauge;
0.58Ab the lateral alignment;
0.50Ar the cross level;
or the vertical alignment.
Furthermore, by means of Eqs.(3.4.43)-(3.4.48) we find that both 8Ab and dor do not
affect the lateral contact coordinates; they only change the lateral and vertical
displacements to v+0.50Ab and w+3r respectively. Only the deviations 85 and 8Ar
influence the lateral contact coordinates.
The following assumptions are made in the dynamic simulations when the
track irregularities are taken into account:
(1) The track reference frame moves with the lateral and vertical track alignment
but its vector basis remains parallel to the inertial frame;
(2) A small track segment is cylindrical in the track reference frame;
(3) Egs.(4.7.1) and (4.7.2) hold for the case of a track with irregularities.
On the basis of these assumptions, the deviations of the lateral and vertical
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alignments are incorporated in the motion of the track reference frame.
The quasi-velocity and quasi-acceleration vectors for such a track-wheelset
system are still expressed in the general forms of (4.4.18) and (4.4.19):

v=Aqg+b, v=Ag +b,, (4.8.2)
Here the vectors b, and b, are given by

b,=[V, 6v, 8w, 0,-Q 0 17, (4.8.3)

b,=HJg+[07, k1 +[V,, &, 8w, 0, -2, 017 (4.8.4)
with

8v = 0.58Ap,  Ow = or. (4.8.5)

The matrix J is identical with (4.6.6), which has been derived for a perfect tangent
track. The influences of the deviations of the track gauge and the cross level are
incorporated in the determination of the contact coordinates.

4.9. Linearized Equations of Motion for Stability Analysis

When a railway vehicle moves along a tangent track at low speed, the whole vehicle
system may perform a stable stationary motion. The stability of this motion can be
concluded from the eigenvalues of the equations of motion of the system which is
obtained by linearizing the equations of motion (4.5.5) around the stationary motion.
By considering small deviations, the linearized equations of motion may, in general,
be written as:

AJMAGAG — AJ (A, + &) = 8AT (f 5+ f,) = 0. (4.9.1)

where the index O refers to the stationary motion; the operator A indicates the
deviations of the corresponding terms. When the constraint forces given by (4.5.21)
are incorporated in the reduced equations of motion (4.5.5) due to the friction forces,
the deviation of the constraint forces must also be taken into account:

AN = —AD, (fo+fy) + Do (Af,+Af), (4.9.2)

where A contains the Lazrangian multipliers and
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D, =M 'DIy'DM! (4.9.3)

Due to the fact that there exists spin creep even in the stationary motion and
that the contact geometry is strongly nonlinear, the linearization process is very
complicated. De Pater (1979, 1987, 1992) has done comprehensive research work on
this subject. He has expressed the parts of the profiles which are near the contact
points by polynomials of second order in terms of the lateral contact coordinates and
then the contact geometric quantities such as the contact angles can be found as
functions of the independent generalized coordinates. He has also considered the
influence of the fact that in the stationary motion, the lateral tangential forces are
unequal to zero and the influence of the deviation of Kalker’s creep coefficient f,,
which is due to the deviation of the normal contact force. In certain cases, these two
factors, which are overlooked by many investigators, may play an important role in
determining the critical speed of the vehicle.

In order to simplify the linear stability analysis, we consider the motion of a
symmetric wheelset system moving stationarily along the centre of the track.
Because the lateral motion, which is described by the lateral displacement v and the
yaw angle y, uncouples from the symmetric motion (with « and %), only the lateral
motion is considered in the linearizing process. In this case, we denote the contact
coordinates by pj*=[0, 1by, ro]T and in the following analysis we replace Aq by g,
so g=[v, y]".

From either Eqs.(4.6.20)-(4.6.23) or the following relations between the
generalized coordinates given by De Pater (1988):

o = —& v, (4.9.4)
by—roteYo
gy . (b+Rsiny )(b+R *siny) v_2+(b0—r0th0)thO—\ﬁ, 4.9.5)
b-rigy  (R*-R)(b-rtgy)’cos’y |, 2 2

w=—

we find that O 04 ¢y and w o vanish and that w , and w, are small quantities
of order one. Here, R," and R, are the radii of curvature of the wheel and rail
profiles in the lateral direction. Therefore, by means of Eq(4.6.6), we have;

T r T

010 00 00 w,v 0 0 0

Ay = \ . AA = " _ (4.9.6)
000 0 01 00 wy,¥ o0 ¢,v0

where the partial derivatives are determined by Eqs.(4.9.4) and (4.9.5).
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According to section (4.5) the resultant impressed force and torque may be
givenby f, = [ f,, 0, mg, 0, 0, 0]7'. From Eqs.(4.6.16) and (4.9.6) we see that
the linearizing process implies that AAngO and AOTAfe are equal to zero and that

0
VIV v (4.9.7)
@ 0 mgw,. [V '
and
AlAf, = - 0 b, V} (4.9.8)
& -1Q.6, 0 W

For Kalker’s linear creep law, we use f);, f», and f,; to denote the coefficients

of the creepages and the spin creep v, v,; and Vg, in Eqgs.(4.2.9) and (4.2.10), and
use f3; to denote the coefficient of Vypj in Eq.(4.2.11). We introduce
T T2 ~
v=[v, 91", v =lv, v, v, (4.9.9)
so the linear creep law is
~f; 0 0 0o "
Tj = KTj“j = 0 _f;2 _f23 \)j, MZJ = KMjuj = f23 Dj' (4910)
0O 0 O I3
This leads to
fr=K;v, fyu=Ky,v, (4.9.11)
where
K 0 K 0
K, - n . K, = M1 . (4.9.12)
0 K, 0 K,

A difficulty arises due to the linearization associated with the tangential forces
and the spin moments. Because the spin creep contains a term of order zero, as
pointed out by De Pater (1992), we have to take into account the change of the
coefficients f,; and f3;. The linearization of the creep quantities leads to

V=0 + Auj. (4.9.13)

We may also introduce the following linearizations:
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Y=Yt AY;, z=r=rytAr, (4.9.14)
where
eV _
Ay, = - Ar; = Av. (4.9.15)
0

The effective conicity A and the contact angle parameter € derived by De Pater
(1979) are

\ Rg tgYo| bo+ Rysiny,, bO* cos” 370 by + Rysiny
= €=

A : (4.9.16)
* by — 1ot * —rgt
Ry —Ry| %0~ "o'&Yo Ry —R, 0~ "ot8Yp
It is clear that from (4.5.14) and (4.5.15) we have
sin .
vy; =0, 0, foyr (4.9.17)
o
and
b, . c cosY, -
Av; = | ;_O\ux _X_v, LV - yceosy,, Yow - _t v T, (4.9.18)
n o n Vn bO o
where the coefficient ¢, is given by
b
c = 0 (4.9.19)

v

(by — rptgyy)cosy, ‘

By introducing the quantity T, = f,, siny,/r,, the creep forces and torques due
to the stationary motion are
sinzy0

Feo = Uppfpg + Uppf o = [0, 0, 2Tsiny,,, 0, 2f;, 017 (49.20)

’

o

and the deviations of the creep forces and torques are determined by:
Afe = AU pfrg + AUy f 10+ U g Af ¢ + U o Ay, (4.9.21)

or
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AMf¢ = AU Kpyoy + AUy K g0y + Upg AK 0y + Uyyg AK 0 (4.9.22)
+ UTOKTOAD + LTMOKMOA‘)

In the following analysis, the second and fourth terms of the right-hand member of
the last equation are neglected. From Eqs.(4.9.12) and (4.9.17), we have,
. . T
siny siny
O (M) 0, 0, ~—2(Afy),. 0 | . (4.9.23)

o o

By means of De Pater’s analysis(1987), the non-zero components of (4.9.23) are

. < T
$500 p R NV VY (4.9.24)
T, Bl N, r ! N, 7
0 o o0 0
where
mg
N. = Tt . 4.9.25
0 2cosY 080 ( )

The deviations of the normal contact forces may be determined by Eq.(4.9.2) and
they are given by

€ .
AN; = £Njtgy, B_v + Iancn\p
0

(4.9.26)
N C, . COSYO . €
ct . v—wco + - \
F C, gy /ol an WeosY ) +f53( v v bo"OV)
where
m (b cosyy-rysiny) byc

s -
I, sin”y g+ m (b cosy,—rysiny)

"~ )etgy,. (4.9.27)
0sY,

Finally, substituting, these analytical results into Eq.(4.9.1), we can obtain the

following set of linear homogeneous differential equations:
Mg+Cg+Kig=0, (4.9:28)

where
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2
m+ 1 0 492
m, = |71 ’ (4.9.29)
. 0 {
cv2 cosY,,
zfzz-v— 1,Q,06,+2fc,
C _ n n
L =
o b2 cosY,
-1.Q —2fa b 2f 42
y2a 0,y 2 v, I vV, I3 i (4.9.30)
2
T,c T.c cosy T,c
* 0-v * 0tv 0 0%y
2¢, /0 Cpfp3——— -21.Q ¢
+ " NyV, " NyV, yoonn N,
0 0
i , ec,
—(mg—2T,siny ) Wy~ 25, —2f1,€,COSY
K - byry
L Ab, £cosy, ) 5
2f1 -2f3 -(mg—ZTosmyO)w'wﬁh 2f53c08%Y,,
o byry
T (¢ ) +t ECv) 2 *f TOECV 2 *f TOCV
- sin —)-2¢ =2¢, frr——_COS
ol 0 Sy +1gYy By n 23N0b0r0 nl22 N, Yo
+
sin’y,,
2339, 0
0

(4.9.31)

When the contact angle , is assumed to be small, the deviations of the
normal contact forces can be neglected and the stationary tangential force T, can also
be treated as a small quantity as compared with M. In this case the matrices C; and
K; may be simplified considerably.

When the stationary wheelset position is not in the central plane of the track,
the normal contact forces of both sides have different values and so do the contact
angles and Kalker’s linear creep coefficients. To avoid these difficulties in the
linearization, we may approximate the solution by substituting the average values of
the parameters of the asymmetric system into (4.9.29) to (4.9.31).
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Chapter 5

Dynamic Models of a Single Wheelset with
Independently Rotating Wheels

The literature concerned with independently rotating wheel (IRW) systems for
railway vehicles is comprehensively reviewed by Dukkipati e al. (1991); they
discuss various methods of providing the guidance capability to railway vehicles with
IRW. In this chapter, a wheelset system with independently rotating wheels is
studied as a system with five degrees of freedom: the longitudinal and lateral
displacements of the mass centre of the wheelset system, the yaw angle of the
system and the two spin rotations of the wheels around the system axis of revolution.
The equations of motion of such a system are derived and they are compared with
the equations of motion for the conventional wheelset.

Fig. 5.1. An independently rotating wheel system.

2

An IRW system is shown in Fig.5.1. The frame (0% &2 }, which is still
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called the wheelset-body frame, is located at the mass centre of the IRW system.
Similar to the conventional wheelset system, the position vector of its origin relative
to the inertial frame is denoted by 7 and p is the position vector relative to the track
reference frame {o!, & 1'}. the absolute velocity and acceleration of the origin are
determined by Eqs.(4.3.8) and (4.3.9). As shown in Fig 5.1, the right-hand wheel is
identified as body 1 and the left-hand wheel as body 2. The wheel-body frame {o™,
¢ ™ } is situated at the mass centre of wheel j; its base vectors are always parallel
to those of the wheelset-bady frame. The position vector of the origin of the wheel-
body frame relative to the origin of the wheelset-body frame is denoted by the
constant vector i-l_, where

T=1T¢%, 1=10,1,0]". .1

In agreement with Chapter 2, we use Fj to denote the position vector of the origin
of the wheel-body frame relative to the inertial frame and (T)j to denote the absolute
angular velocity of the wheel-body frame. The position vectors of the contact points
are shown in Fig.5.1.

The interaction between two wheels is due to the revolute joint, which gives
rise to five constraint equations. Therefore, together with the two contact constraints,
the system is subjected to seven kinematic constraints, which are represented by the
following constraint equations:

=T+ @y x(-2]), 62
e (B, - ®,) =0, (5.3)
el (B, - ®y) =0, (5.4)
m-(F;+ ®;xa;)=0. (5.5)

Combining Eqgs.(5.2)-(5.5) yields the general form of the constraint equations:
Dv+c=0. (5.6

In this case the vector ¢ with seven components is equal to zero and
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On the other hand, because the wheelset system with IRW is axisymmetric
and the mass centres of the system and the wheels are located in the axis of
revolution of the system, the quasi-velocity vector discussed in Chapter 2 can easily
be expressed as:

v=Av, (5.8)
where
E -Gl 0 )
~ r 0
A - E G 0 R |y (5.9)
L~ E 07 =% X )
0 E dx X21 0

The matrix G is the rotation matrix of the wheelset-body frame relative to the inertial
frame and 7,, represents the relative spin angle between the wheels. The spin
rotations do not affect the contact constraints between rails and wheels and we
choose the longitudinal and lateral displacements of the mass centre of the wheelset
system u and v, the yaw angle v, the spin angle ), of the right-hand wheel and the
relative spin angle X, as the independent generalized coordinates of the system:

g="[u, v, %, ¥, % 1. (5.10)
In this way we can write
|80 5.11
v =A,q+ ’ , (5.11)
0
where
Ay=HyJ,, H;=diag[H* 1], J,=diaglJ]1]. (5.12)
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The 7x5 matrix J, is the Jacobian matrix of the IRW system due to the contact
constraints. The matrices H* and J are defined by (4.4.20) and the vector & ,(¢)
by (4.4.25); they refer to the conventional wheelset. Substituting (5.11) into Eq.(5.8)

yields
V= Adsb, (5.13)
with .
A=AA,, b, =4 Evo(t)}, (5.14)
Correspondingly, the quasi-accelerations are:
p=AG+b,. (.15)
where
(5.16)

b,=A (H}J,q+ [}

T
2> 017 ) + by

See Appendix F. Here the vector € (1) is determined by Eq.(4.4.26) and

Ga, 6,1 ,
o —X21 913
-Go, 0,/ (5.17)
bipw = 0 ) by, = 0
X21 @13
by

Now, the creepages and the spin creep can be calculated by

T _ 1 -pj = — = _ b apio, AT <+ %y (5.18
Vi Oy 0 —Te (rj+0)].><aj)—_G’ (G r+mjpj),( )

n n

1 -
V.= n.-

sof Yy J % J - (5.19)
n

el
I

|
3*
e

The tangential contact forces and the spin moment for each wheel can be determined
by means of the definitions of (4.2.3)-(4.2.6) and the creep laws.

R
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Therefore, the equations of motion of an IRW system can be written as
Eq.(2.3.14) together with Eq.(2.3.17). For the IRW system, f includes the tangential
contact forces and the spin moments. The vector A contains seven Lagrangian
multipliers which correspond to the interaction forces due to the revolute joint and
the normal contact forces.

In general, the constraint forces due to the revolute joint need not to be
determined; by contrast, the normal contact forces are required because they directly
influence the friction forces. In order to determine the normal contact forces and to
compare the equations of motion with those of the conventional wheelset, we rewrite
the equations of motion Eq.(2.3.14) of an IRW system as:

T . T (5.20)
Ay Mg As g = Ay (Sfopw + Frpw ) =0
and the normal contact forces are determined by
-1 5T -1 -1
In = (D My Dy ) D iw M ipw (S girw + 1w ) » (5.21)

where

T T T T
Mypw=ATMA, fopw=A1Sy Sirw=A1S, Dpy=[-Uy, 0]. (522)

DRy is a 2x7 matrix whose submatrix Uy was derived for the conventional
wheelset; see Eq.(4.5.20). The first three components of the vector fizy represent the
components of the resultant impressed force applied at the IRW system; they
certainly include the tangential forces. The following three components represent the
components of the resultant torque and the last component is the spin torque applied
at the left-hand wheel. In more detail, we have

mE 0 0
My, =| 0 1 Lyd |, (5.23)
T
0 I,d, I,
0
N0 _ (5.24)
forrw ="M jpy (HyJ» g+ 0 )= | o d o+, ke,
0

and
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Urfr + Uulu (5.25)

(firw) cont = * :
—sinys M, +T 75

Here m is the mass of the whole wheelset system; the diagonal 3x3 matrix I
represents the inertia matrix of the whole system with respect to the wheelset mass
centre and [, is the moment of inertia of the wheel about the axis of revolution. hy,
is defined by (4.3.16). fr, fy, Up and Uy are defined by (4.5.8), (4.5.10), (4.5.12)

and (4.5.13) for the conventional wheelset system and r2* is the instantaneous rolling
radius of the left-hand wheel. Moreover, it can be shown that Eq.(5.22) reduces to:

fy=—(ULM U UM (5.26)

Note that here M=diag[mE, I] and that f’ contains only the first six components of
Ferw + firw)-



Chapter 6

Applications in Railway Vehicle Dynamics

The need to economically and effectively qualify new designs of railway vehicles
has led to rapid developments of more reliable and accurate computer simulation
codes (Kortiim, Sharp and De Pater, 1991). On the basis of the theoretical analyses
presented in the previous chapters, a computer simulation program, RyVehSim, has
been developed for the investigation of the dynamic behaviour of railway vehicles.

In this chapter, RyVehSim is briefly introduced. In order to validate this
simulation code, first a single conventional wheelset is studied; for Pascal’s
benchmark (Kortiim, 1991) the results given by RyVehSim are in good agreement
with those given by MEDYNA, VOCO (Pascal, 1990) and Robotran (Fisette, 1991b).
Subsequently, Kik’s benchmark (Kik and Pascal, 1991) is considered. The dynamic
analysis is also carried out for this vehicle model moving along tracks with
asymmetric profiles: the CTO-Measured-Profiles and ORE-Benchmark-Profiles. As
compared with conventional vehicles, the results in Section 6.4 show that vehicles
equipped with IRW have a completely different dynamic behaviour. Ultimately, the
influence of the track irregularities is demonstrated.

6.1. RyVehSim for Railway Vehicle Dynamic Simulation

RyVehSim has been developed to predict the dynamic behaviour of railway vehicles.
It can be employed to study a single wheelset, a complete vehicle system and even
a train with several vehicles. The vehicle may be equipped with a number of
conventional wheelsets or wheelsets with independently rotating wheels (IRW). For
vehicles with both conventional wheelsets and IRW, the sequence of the wheelsets
and IRW can be chosen arbitrarily.

The motion of a body in the vehicle system is described by the small relative
motion combined with the large motion of the moving reference frame. As discussed
in Section 4.3, the motion of the reference frame is prescribed by the given nominal
speed of the vehicle and the track route.

The vehicle systems handled by RyVehSim are assumed to be assembled by
various kinds of suspension elements (springs and dampers). Obviously, the
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interactions between bodies due to these suspensions do not give rise to geometric
or kinematic constraints; therefore, such suspensions do not reduce the number of
degrees of freedom of the vehicle system. In RyVehSim, a wheelset, as discussed in
Chapter 4, has four degrees of freedom; a bogie has full six degrees of freedom
which are represented by the three displacements of the body mass centre and the
three rotation angles that are defined in Appendix B. However, for a carbody the
longitudinal motion is often considered as a kinematic excitation, so that it has only
five degrees of freedom which are the lateral and vertical displacements of the mass
centre and the three rotation angles. For a vehicle with one carbody and two two-
axle bogies, the system has altogether 33 degrees of freedom.

The interaction force or torque due to a suspension element mostly depends
only on the relative motion between its connecting bodies. Once the motion of the
body mass centre and the body rotation are given, the position and velocity of a node
attached to the suspension can easily be calculated by means of Egs.(2.1.1) and
(2.1.2). Thus, the suspension force and torque can be determined. The suspension
elements available in RyVehSim are springs with linear stiffness and dampers with
linear characteristics; they are listed as follows:

+  spring;

. bending spring;

. damper;

. a combination of a spring and a damper in parallel;

. a combination of a spring and a damper in series.
The nonlinear suspensions such as the bump stop and the Coulomb ("dry") friction
damper can be introduced by users. Associated with the geometric and kinematic
information of the nodes, RyVehSim provides a special subroutine in which the users
are able to define a large number of nonlinear suspension elements as a library for
various railway vehicles. Impressed forces or torques, which are constants or time
functions, can be defined in a similar way.

The numerical analysis of the vehicle system is carried out through the time
integration of the nonlinear equations of motion. RyVehSim can record any desired
information such as the displacements and accelerations of points of the bodies, the
suspension forces and torques, the creepages and the spin creep, and the normal and
tangential contact forces All these data may be used in a post-processor. In
RyVehSim, each integration step includes the following items:

. the geometric contact between track and wheelset;

. the contact mechanics;

. the integration of the equations of motion;

. the determination of the constraint forces (the normal contact forces).
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In the geometric contact problem, the independent generalized coordinates of the
wheelset, usually the lateral displacement and the yaw angle, are the input
arguments. By means of the first-order theory, this problem is solved on-line in
terms of the independent generalized coordinates. On the other hand, in order to
overcome the numerical difficulties due to double contact, the jump positions of the
contact points have to be determined in advance with the aid of GeoCont discussed
in Chapter 3. Then by making use of this information, the program RyVehSim can
judge in which range of the profiles the contact takes place during the simulation.
As a result, we obtain the contact coordinates, the radii of curvature of the rail and
wheel profiles at the contact points, the contact angles, the dependent generalized
coordinates (the vertical displacement and the rolling angle) as well as components
of the Jacobian matrix of the track-wheelset subsystem.

With increasing vehicle speed, flange contact tends to occur. At this moment,
RyVehSim is incapable of dealing with the flange contact appropriately. When the
lateral displacement of the wheelset exceeds a limit given by the user, the program
halts or enforces the displacement to remain equal to the limit value,

The creepages and the spin creep are calculated by means of the definitions
(4.2.3) and (4.2.4). Using the normal contact forces obtained from the preceding
integration step and the geometric parameters at the contact points, we determine the
contact areas by means of Hertz’s theory. Therefore, during the simulation, the
instantaneous values of the ratio of the semi-axes of the contact ellipse and the
lengths of the semi-axes are calculated. The tangential contact forces obey the creep
laws. RyVehSim provides three options: Kalker’s linear law, the Shen-Hedrick-
Elkins law and Kalker’s simplified theory incorporated in FASTSIM.

The Runge-Kutta-Fehlberg 45 method (which has a variable stepsize) is
adopted to integrate the nonlinear equations of motion. On the basis of the
integration results, the normal contact forces are amended by Eq.(4.4.23). If desired,
the accuracy can be improved through an iteration procedure.

All numerical results presented in this chapter have been obtained by using
RyVehSim with FASTSIM. The default mash number required by FASTSIM is
10x10; Poisson’s ratio is chosen to be 0.28 and the shear modulus 8.1x10° N/m?.

6.2. A Single Conventional Wheelset

A single wheelset problem proposed by Pascal (Kortiim 1991) is regarded as one of
the benchmarks for comparing the various simulation codes used by railway
engineers. The wheelset shown in Fig. 6.2.1 moves at the constant speed of 30 m/s
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and it is loaded by a lateral force applied at the wheelset at the track level and a
constant vertical force (F,=154715 N) at the wheelset mass centre. Only the mass
of the wheelset is provided and is equal to 1887kg. It is expected that the yaw angle
of the wheelset remains small because of a stiff torsional spring with the stiffness
qu=8.16-107 Nmy/rad, which yields a restoring moment about a vertical axis and
keeps the wheelset almost orthogonal to the track. The lateral displacement of the
wheelset is only bounded by the wheel flanges. The profiles of the rails and the
wheelset are the UIC60-S1002-Standard profiles. Only the first of the three exercises
required in the benchmark is presented here.

F,= 154715 N

i _ - ) - i
1 . 7

Lt

F, = 20000 N

X X ’
K. = 8.16:10" Nm/rad

Fig.6.2.1 Wheelset benchmark proposed by Pascal.

Pascal’s benchmark
p=0.3 vimm) |y(mrad) {N; kN) |N, (kN) {T,; (kN) | T, (kN) | T, (kN) Ty2 (kIN)
MEDYNA (4.888 -0.422 90.0 84.1 232 =232 114 -3.30
Robotran |5.193 -0.421 90.32 84.11 23.29 -2349 1995 -2.88
VOCO 5214 -0.422 89.85 84.45 23 -23 10.0 -291
RyVehSim {4.930 -0427 90.21 84.14 23.40 -23.61 9.65 -3.45

Table 6.2.1. Survey of the stationary results for Pascal’s benchmark.

In this analysis, the stationary wheelset motion as well as the contact forces
are determined as functions of the friction coefficient u in the case that the lateral
impressed force is a step loading of 20 kN. The solutions are determined by
integrating the nonlinear equations of motion. The detailed solutions indicate that for
u=0.1 and 0.2, the contact point at the right-hand side oscillates around the second
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jump position (v=4.823mm, see Fig.3.5.4) so that no stationary solution is obtained.
The results for these values of u are the mean values. Tables 6.2.1 and 6.2.2 show
that the results found by RyVehSim are in good agreement with those obtained by
some other simulation codes (Pascal, 1990; Fisette, 1991b).

Pascal’s benchmark
VOCO results
fric. coeff. | v(mm) |y(mrad) [N, (kN) [N, (kN) [T, (kN) |T,, (&N) |7, (GRN) [T, (kN)

0.1 4.96 -0.157  [90.91 84.45 8.475 -8.475 1.576 0.64
0.2 5.047 -0.298 90.53 84.45 16.3 -16.3 4964 -1.787
0.3 5214 -0.422 89.85 84.45 23 -23 10.0 2291
0.4 54 -0.526 88.6 84.45 28.6 -28.6 15.8 -4.02
RyVehSim results
0.1 4.830 -0.151 90.82 84.46 8.247 -8.321 1.484 -1.053
02 4.830 |-0281 190.18 84.64 1552 -15.57 4252 -2.557
0.3 4.93 -0427  [90.21 84.14 2340 23.61 9.65 =345
04 5434 -0.546 89.49 84.04 29.88 -30.16 14.11 -4.60
Table 6.2.2. Comparison of the results found by VOCO and RyVehSim
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Fig.6.2.2. The time history of the lateral displacement at 9 m/s.

The second example concerns the nonlinear behaviour of a single wheelset
without mounting any suspension element. The profiles are also UIC60-S1002-
Standard. The inertia properties are: m=1500 kg, /,=1,=1000 kgm? and 1,=100 kgmz;

the friction coefficient p=0.3. Fig.6.2.2 shows the time history of the lateral
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displacement of the wheelset mass centre when the wheelset moves along a tangent
track at a constant speed of 9 m/s; the relation between the lateral displacement and
the yaw angle is shown in Fig.6.2.3. With initial values of the lateral displacement
v=lmm and the yaw angle 'y=2mrad, the lateral displacement approaches the stable
limit cycle after about 12 seconds. The wave length of the limit cycle of the lateral
displacement is about 6.84n; its amplitude is about 6.14mm. The amplitude of the
yaw angle is equal to 5.37 mrad.
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Fig.6.2.3. The relation between the lateral displacement and the yaw angle
during the transient motion at 9my/s.

The third example demonstrates the dynamic response of a wheelset passing
a track with an imperfection (see Fig.6.2.4) as given in the ORE benchmark (ORE,
1991). Just as in the second example, no suspension restricts the motion of the
wheelset, but the profiles are now the ORE-Benchmark-Profiles. The inertia
properties slightly change to: m=1503 kg, /,=1,=810 kgm2 and ]y=112 kgmz. The
integration is carried out at a constant speed of 10 m/s and with zero initial values
of the lateral displacement and the yaw angle. The lateral displacement and the yaw
angle shown in Fig.6.2.5 are given relative to the track reference frame. Due to the
track perturbation, the trajectory of the wheelset changes significantly. Between the
travelling distances of 5.0 and 5.1 m, the yaw angle becomes almost equal to the
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very large value of -50 mrad and the lateral displacement sharply changes from

-1.4mm to -1.75mm.
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5m ‘ i

0.1m DIRECTION OF MOTION
left rail

right rail

Fig.6.2.4. Track alignment input for ORE Benchmark.
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Fig.6.2.5. The response of the wheelset (the dot line for the perfect tangent

track and the solid line for the track defined in Fig.6.2.4).

6.3. Complete Vehicle System

Besides the above-mentioned single wheelset benchmark proposed by Pascal, another
railway vehicle benchmark was submitted by Kik in the workshop of the Interna-
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tional Association of Vehicle System Dynamics (IAVSD) in Herbertov and later on
it was revised by Kik anc Pascal (1991). In this benchmark a passenger car with
two-axle bogies is specified. The combination of the profiles is also UIC60-S1002
Standard. With the exception of the bump stop, the suspensions are linear. The
locations of the nodes to which the suspensions are attached, are shown in Fig.6.3.1.
The mass centre of the carbody has an excentricity of 0.2m to the right-hand side
relative to the geometric centre of the carbody. The geometric configuration of the
whole system refers to the equilibrium position in case the carbody mass centre
coincides with its geometric centre.

o

i «.;/b“” e ,
3 \a@) \@L
" & '/

N2/ bodys N / body2 N body 1

7/

(e

body 7

Fig.6.3.1. Kik’s benchmark vehicle: a cross bracing spring is mounted
between node 4 of body 1 and node 4 of body 2; an axle-bracing spring is
mounted between node 5 of body 1 and node 14 of body 3; for the trailing
bogie we have a similar situation.

First of all, the generalized coordinates in the stationary motion are found by
integrating the nonlinear equations of motion. The lateral displacement of the mass
centre and the rolling angle of the carbody are equal to 0.23 m and 0.0610 rad,
respectively; all the four wheelsets are almost in the track central plane. But the
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normal contact forces applied at the wheels are quite different; at a right-hand wheel
it is about 62.05kN and at a left-hand side wheel it is about 40.93kN. This difference
is due to the excentricity of the carbody mass centre.

Corresponding to the stability analysis requested in the benchmark, the
simulation is carried out at a speed of 170m/s, however, with different initial values
as compared to those of the benchmark. The carbody and the bogies are placed in
the positions which coincide with their geometric configurations in the stationary
motion. An initial lateral velocity of 0.01m/s is assigned to the two bogies and the
first, second and third wheelsets. In addition, the first wheelset has an initial lateral
displacement of 0.001m, whereas the three other wheelsets are in the central position.

In order to understand the creep law generated by the FASTSIM algorithm,
the normalized creepage T and normalized creep force o, which are defined by:

2 n2
Tx+Ty
BN

(6.3.1)

bG
c = . 1= z_pﬁx/(cl]Ux)2+(C22uy+C23\/ab v,

are recorded point by point in each integration step (see Fig.6.3.2). During the
motion, the contact ellipse for each contact point is determined from the normal
contact force and the radii of curvature of the profiles at that instant. This illustrates
the importance of a good algorithm for the creep law: it is not enough to use just a
simple formulae.
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Fig.6.3.2. The results of FASTSIM.
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Fig.6.3.5. The relation between the lateral displacement and the yaw angle for
the fourth wheelset.

The lateral responses of the wheelsets are shown in Fig.6.3.3. Under the afore-
mentioned initial conditions, the 1st and 2nd wheelsets soon achieve limit cycles; the
other two perform chaotic motions. The lateral amplitudes of the first three wheelsets
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are at the same level of about 2mm; but the dynamic response of the 4th wheelset
is critical. Its lateral amplitude is about 6.1mm and thus it is much larger than those
of the other wheelsets. Fig.6.3.4 indicates the influence of the excentricity of the
carbody mass centre on the contact forces of the 4th wheelset; the amplitudes of the
contact forces applied at the right-hand wheel are larger than those at the left-hand
wheel; the mean values of the normal forces approach the stationary values.

The simulations have also been carried out for the vehicle running at other
speeds. Fig.6.3.5 demonstrates the influence of the vehicle speed. With the increase
of the speed, the amplitudes increase and the limit cycle of the lateral motion of the
4th wheelset becomes chaotic at high speed.

The influence of the profiles is studied by comparing the dynamic responses
of the vehicle moving along the three kinds of the tracks which are UIC60-S1002
Standard, CTO-Measured-Profiles, ORE-Benchmark-Profiles. The detailed
investigations indicate that the ORE-Benchmark-Profiles provide the best dynamic
properties. Below 150my/s the lateral motion quickly tends to the stationary motion.
Because of the asymmetry of the profiles, the wheelset mass centre moves away
from the track centre to stay at the position where v=-0.81mm corresponding to the
zero difference of the rolling radii (see Fig.6.3.6). At 170 m/s, the wheelsets of the
trailing bogie hunt with very small amplitudes: 0.5mm at the leading wheelset and
Imm at the trailing wheelset, whereas the wheelsets of the leading bogie are
stationary. Between 210 and 220 m/s, the trailing wheelset of the leading bogie starts
moving laterally, resulting even in flange contact.
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.......................................................
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Fig.6.3.6. The response of the 4th wheelset of Kik’s vehicle model with ORE-
Benchmark-Profiles at 150 m/s.
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Fig.6.3.8 The relation between the lateral displacement and the velocity.

For the other two combinations of the profiles, the results are compared in
Figs.6.3.7-6.3.8. By contrast to the situation with ORE-Benchmark-Profiles, these two
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combinations show that the flange contact tends to occur at the 4th wheelset. The
critical speeds of flange contact are also lower: for UIC60-51002 Standard it is in
the range of 170m/s-180m/s and for CTO-Measured-Profiles it is in the range of
130m/s-140m/s. For the 1st wheelset the hunting frequency changes significantly
with speed . Above a certain speed the frequency of the 4th wheelset remains around
8 Hz for UIC60-51002 Standard. For CTO-Measured-Profiles the frequency of that
wheelset is always around 11 Hz. These simulation results signify that the dynamic
behaviour of the vehicle with the UIC60-S1002 Standard profiles is better than that
of the vehicle with CTO-Measured-Profiles.

The analysis confirms that the contact geometry plays a very important role
in railway vehicle dynamics. A jump of the contact point occurring even at small
lateral displacements induces the hunting motion.

6.4. Vehicles with Independently Rotating Wheels

First the conventional single wheelset model defined in the second example in
Section 6.2 is modified into an IRW system. The dynamic response of the IRW
system is shown in Fig.6.4.1. By contrast to the situation for the conventional
wheelset, at a speed of 9m/s both the Iateral motion and the yaw motion of the IRW
system slowly converge to a stationary motion; the average wave length for the IRW
is equal to 16.75m, which is much longer than that for the conventional wheelset.
It is seen that releasing the spin rotation constraint between the two wheels may
improve the dynamic behaviour of the single wheelset system.

4.0
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0.0 L\

““““““““ W[a{era]msplacement(mm)

2.0 :
a0 L : : Do yaw angle(mrad) : 1
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Fig.6.4.1. The response of the wheelset with IRW at 9m/s

Secondly, we compare two kinds of two-axle bogies, one with conventional
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wheelsets and the other with independently rotating wheels. The inertia properties
of the systems as well as the geometric configurations are selected from Kik’s
benchmark; but the suspensions are modified by removing the longitudinal cross
bracing and the two axle bracing, and by reducing stiffness of the primary
longitudinal and lateral springs from 4.0-10° to 8.0-10° N/m. Fig.6.4.2 shows the
dynamic responses of the lateral displacement and the yaw angle of the wheelset at
a speed of 35m/s.

For the conventionzl bogie we now observe a hunting motion. The amplitudes
of its trailing wheelset are slightly larger than those of the leading wheelset and the
wave lengths are almos: equal (10.5m). As compared to the motion of the
conventional bogie, the motion of the bogie with IRW is quite stationary. The yaw
angles of the wheelsets with IRW vanish; but the wheelset centres shift about 4.2mm
to the left-hand side of the track. In spite of the large lateral displacement, the
longitudinal tangential contact forces vanish as expected. The reason is that the
difference of rolling radii no longer generates a sufficiently large tangential force
which tends to move the wheelsets to the central position for the symmetric profiles
or to a position where the difference of the rolling radii is near to zero for the
asymmetric profiles.

The third example is to study the influence of the sequence of the IRW
wheelset by comparing three vehicles which are modifications of Kik’s benchmark.
In the first vehicle model all four conventional wheelsets are replaced by wheelsets
with IRW; in the second model only the trailing bogie is equipped with two
unconventional wheelsets; in the third model the wheelsets of the leading bogie are
replaced by IRW systems. The results shown in Figs.6.4.3 to 6.4.5 refer to the same
speed: 40m/s. In agreement with the remark in Section 6.1, we see that in Figs.6.4.3
and 6.4.4, the results are unreliable after a certain lapse of time.

The responses of the wheelset of the leading bogie for the first and third
vehicles are similar. The yaw angles vanish; the wheelsets first run off the track
centre about Smm and then slowly go down to 4mm. The motions of the trailing
bogies of the first and second vehicles are unstable; the flange contacts first occur
at the leading wheelset (third wheelset). Among the three vehicles only the third one
may be considered as stable. A detailed investigation shows that the first wheelset
achieves flange contact at a speed in between 90m/s and 110m/s.

Evidently, as compared with the conventional vehicle discussed in the
preceding section, these three vehicles are unacceptable. To implement the IRW
technique in the railway vehicles needs further comprehensive investigations.
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6.5. Influence of track irregularities

The track irregularities are, in general, discussed in Section 4.8. According to the
numerical results shown in Section 3.5.3, the variation of the track gauge shifts the
double-contact position, for instance, in the case of the well-known profile
combination of UIC60-S1002. When the track irregularities are taken into account
in the dynamic simulation, in order to avoid the difficulty in the online determination
of the geometric contact position, the rail and wheel profiles, (UIC60-S1002-
Standard) of the vehicle required in Kik’s benchmark are replaced by the
combination of ORE-Benchmark-Profiles. As shown in Section 6.3, among the three
analyzed vehicles the one equipped with ORE-Benchmark-Profiles provides the best
dynamic behaviour; its critical speed of the hunting motion is higher than 150m/s.
All four kinds of track irregularities can be handled in the dynamic
simulations but no attempt is made to use recorded real track irregularities.
Sinusoidal excitations are easily arranged and can be used here without loss of
generality. As an example, the variation of the track gauge and the cross level are
represented only by the first harmonic and the lateral and vertical alignment by the
first and third harmonics; they are given as follows:
 the variation of the track gauge:

§b = 0.001 sin( 2;”

6.5.1
5 (6.5.1)

« the lateral alignment:

5Ab = 0.002sin( 2% ) + 0001 sin( 2% ), 6.5.2)
70 40

o the cross level:

SAr = 0.001 sin( 2_7“{{), (6.5.3)

« the vertical alignment:

5r = 0.002sin( 255 ) + 0001 sin( 270, (6.5.4)
25 %5

The wave lengths of the lateral and vertical alignments are equal to 25m and 40m
respectively. At a speed of 60m/s they correspond to excitation frequency of 2.4Hz
and 1.5Hz respectively and at 90m/s they correspond to 3.6Hz and 2.25Hz. Due to
the irregularities, the hunting motion arises. As shown in Fig.6.5.1, the accelerations
are most sensitive to the third harmonic of both wave lengths. The information
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gained will be of great value for understanding the influence of the track
irregularities on the railway vehicle dynamics.
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Fig.6.5.1 The influence of the track irregularities (power spectral density).




Chapter 7

Conclusions and Recommendations
for Future Research

Our objective to develop a reliable and highly accurate computer-aided analysis tool
based on the multibody system method to predict and evaluate the dynamic
behaviour of railway vehicle systems has been reached to a great extent. The
equations of motion of the vehicle system have been derived in terms of the
independent generalized coordinates, which represent the motion of the bodies
relative to the nominal motion of the vehicle. The geometrical and physical
nonlinearities due to the contact between rail and wheel have been incorporated in
the vehicle models and are handled accurately. The nonlinearities of suspension
characteristics can also be taken into account in the vehicle models.

We realize that the geometric contact constraints between track and wheelset
depend only on the small segment around the nominal position of the wheelset. In
case of a curved track it is in general sufficient to replace the actual curved track by
the tangent along the track curve in determining the constraints. Hence, in the
curving studies we can directly make use of the numerical methods for the tangent
track discussed in Chapter 3.

When the motion of the track reference frame is defined properly, it is shown
that this motion is independent of the contact constraints in the wheelset system (for
the case of a transition curved track, this is an approximation). If so, the generalized
coordinates are restricted by the constraints which are both holonomic and
scleronomic. Then the analytical expressions for the components of the Jacobian
matrix associated with the contact constraints are obtained as functions of the
generalized coordinates, the contact coordinates and the contact angles. Using these
analytical expressions leads to an improvement of the accuracy of the integrating
process.

In the derivation of the general equations of motion of a single wheelset
moving along an arbitrary track, the traditional and still extensively used methods.
in which parameters such as the difference of rolling radii, the equivalent conicity
and the gravitational stiffness (Garg 1984) are applied, have been completely
abandoned. Meanwhile, the longitudinal translation and the spin rotation were no
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longer assumed to be constant in contradistinction to what most investigators do, and
they were chosen as independent generalized coordinates in the equations of motion.
Moreover, the whole vehicle system was fully described in three dimensions.

In the literature about establishing the equations of motion of a wheelset
equipped with independently rotating wheels, it is often assumed a priori that the
longitudinal creepages of both wheels vanish. But the consequence of this (incorrect)
assumption would be that it gives rise to two additional nonholonomic constraints
to ensure zero longitudinal creepages. As shown in Chapter 5, once the relative spin
rotation between the two wheels is fixed, the equations of motion of the subsystem
reduce to those for the conventional wheelset, as it would be expected.

In certain combinations of rail and wheel profiles there are double-contacts
even for small lateral displacements. These double-contacts divide the profiles into
several sections and it is of interest to know that the edges of the sections remain
almost the same when the track gauge and the yaw angle vary. This enables us to
set up a method to judge accurately the contact region during online determination
of the geometric contact constraints in the dynamic simulations. Moreover, the online
calculation of the geomelric contact position makes it possible to consider the
irregularities of the track more properly.

These double-contacts destabilize the motion of the vehicles. Hence, in the
design of new combinations of rail and wheel profiles, such double-contacts should
be avoided. Moreover, the phenomenon of double-contact existing in service lines
needs to be investigated in more detail in order to know whether this occurs already
for new wheels or starts after wear in service.

The maximum normal force exerted at the contact patch comprises the static
and dynamic loads. A direct method to reduce the contact forces seems to be
lowering the weight of the whole vehicle system by using new materials and by
optimizing the structure cf the vehicle. In order to minimize the dynamic normal
load and the tangential contact forces, the vehicle should be operated at a speed for
which the parasitic motion is absent. Consequently, in order to increase the vehicle
speed, it is necessary to investigate the relation between the design parameters and
the stability of the stationary motion.

Despite the fact that the lateral responses of the single wheelset with
independently rotating wheels and the bogie equipped with IRW show better
dynamic behaviour as compared to the conventional wheelset and bogie, the
complete vehicle equippec with IRW behaves in a quite different manner. Therefore,
it is inappropriate to eliminate the spin constraint between the two wheels
completely. However, making use of advantages of the IRW technology, for
instance, by installing elastic and damping devices or controlled actuators between
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the two wheels to adjust the longitudinal contact force and to avoid large stationary
lateral shift as well as to deliver sufficient guidance, may provide railway engineers
with a good opportunity to achieve a more optimal design. More simulations and
theoretical analyses are required with the now available tools to evaluate such
devices.

The simulation subroutines for a vehicle negotiating a curved track will be
accomplished in the near future. Special attention is to be paid to the transition
curve, in which flange contact often occurs. The dynamic behaviour of the vehicles
with advanced IRW devices passing through a curve is also of interest to be studied.

The wheel flange plays an extremely important role in the safety aspect of the
vehicle. The flange operates as a limiting device to the lateral displacement and the
corresponding forces. To study the vehicle derailment, an appropriate simulation of
the flange contact requires more accurate considerations of the geometric contact
between the track and wheelset system. Meanwhile, due to the large lateral force
applied at the rail in this case, it would be better also to incorporate the displacement
and the rotation of the rail in the investigations.

Besides passive suspension systems, active-controlled suspension systems and
mechanism linkage systems are more and more applied in railway vehicle design.
Both the kinematic and the dynamic analysis methods have to be extended in order
to be able to analyse such systems.
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Appendices

A. Geometric and Algebraic Representations in Kinematics

The position of an object in the three-dimensional Euclidean space is commonly
specified with respect to a Cartesian coordinate system. A Cartesian frame is
characterized by the location of its origin o and its three orthogonal base vectors e
(i=1,2,3). We restrict ourselves to orthogonal bases. The frame is simply designated
by the notation {0, € }. The symbol e denotes the vector basis of the coordinate
system and reads
7

g=2, &, & (A1)

A directed line segment from one point in space to another one is called a geometric
vector or simply a vector. If a geometric vector is denoted by @ and the components

of it with respect to three axes of the frame {0, € } are a,, a, and a; respectively,
a can be expressed by

a=e¢a=a'e (A2)
with
a=la, ay, ay]". (A3)

a is called an algebraic vector with three components.

In general, we have used overlining such as a for the geometric description
(in which a quantity is independent of the definition of a coordinate system), and a
bold font such as a for the algebraic description (in which a quantity is taken with
respect to a certain coordinate system).

The scalar product and the vector product of two arbitrary vectors in space
are determined by

a-b=a'b=b"a (A4)
and

xb=¢, ab=c, (A.5)

INY

where the tilde operator "~" generates a 3x3 skew-symmetric matrix @ from an
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algebraic vector @ in such a way that

0 -a3 a,
a=| a 0 —q (A.6)
-a, a 0

Note that the algebraic vectors a, b and ¢ in Eqs.(A.4) and (A.5), corresponding to
the geometric vectors a, band € respectively, are taken with respect to the same
orthogonal frame, e.g., the frame {o, e }.

The relation between two frames in space is determined by the position vector
linking their origins and the 3x3 matrix for the rotation from one frame to the other.
We denote the two frames by {o, & iy and {0, € /Y respectively. The rotation
matrix G/ carrying {0/, €'} to {¢/, &} is defined by

g=-Glizt. (A7)
The rotation matrix G/ is an orthogonal matrix, which implies that

GY = [Gji]—l - [Gji]T‘ (A.8)
where GY is the rotation matrix from {¢/, &’ } to {0, &* }.

A quantity relating two frames such as the rotation matrix G' is generally
indicated by two superscripts. Additionally, if necessary, an algebraic vector with
respect to a frame is indicated by a left superscript, e.g., Ja rtepresents the
components of geometric vector @ with respect to the frame (o/, €7). These
notational rules are taken from Roberson and Schwertassek (1989).

As we know, the components of @ can be given either in the frame (o', &%)
or in the frame {¢/, &7}, thus,

a=ella=¢&""a. (A.9)
Using Eq.(A.7) leads to
ja = Gliig. (A.10)

More details of the vector algebra and the transformations of the coordinate systems
are given in Bowen and Wang (1980).

We designate the position vector of the origin o relative to {0, €'} by 5.
The relation between the rotation matrix G” and the angular velocity vector @" of the
frame {¢/, €’} relative to the frame {0, &'} is (Roberson and Schwertassek, 1989)

Ji L
gg_t_ = -‘®"G", (A.11)
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where ‘7 represents the algebraic vector of the angular velocity taken with
respect to the frame {¢/, e’ }

ol = 7T il (A.12)
We consider a particle P. Its posi- o
tion vector relative to {¢/, €’} is denoted fo’, €} 5 P
by p (see Fig.A.1) and the vector relative \ o
to {0, ¢* ) by T, then

FT=3+D. (A.13)

Differentiating both sides of the last
equation, we obtain the velocity vector
and the acceleration vector of the particle
P as viewed from the frame (¢, €}:

(A.14)

o Fig. Al. The position of point P.
T=S+p+ OXp

and

F=S+p+0Xp +0OX(OXP)+2Bxp, (A15)
where we notice that 5 and 5 represent the velocity and acceleration vectors of the
particle as viewed from the frame {¢/, e/ }.

The algebraic descriptions corresponding to Eqs.(A.13)-(A.15) are taken with
respect to the frame {¢f, ¢ }. So we have:

ros+Gilp. (A.16)
F=5+GYp+GYinp (A17)

and
(A.18)

F =5+ GUip+ GYinip + GV g i@ip + 267 e ip

The algebraic vectors jp, j;j and j{)' correspond to the geometric vectors p, 5
and p respectively and are taken with respect to the frame {¢/, €’ }.
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B. General Representation of Rotation

The rotation of a body in space is a motion with three degrees of freedom. We can
use either the four Euler parameters, only three of which are independent, or three
independent angles to represent the rotation. Here we give a general definition of
these angles and also determine the corresponding angular velocity and acceleration.

We utilise the symbols o-i (i=1,2,3) to indicate the three axes of the body-
fixed frame {0, € }. Without loss of generality, we suppose that the body-fixed
frame {0, € } is coinciding with a frame {0, & ! } at the beginning of the rotations
and that the final position of the body-fixed frame is obtained by the following
sequence of operations: a rotation 6, about the o-/ axis, followed by a rotation 0,
about the o-m axis and followed by a rotation 8, about the o-n axis. The index / is
one of the integers 1, 2 and 3; so are the indices m and n. These indices must satisfy
the conditions: m is equal to neither / nor n.

The angles to represent the rotation of a frame are 6,, 8, and 6;. We intro-
duce three auxiliary frames {0, e 2 ), {o, € 3} and {0, €% ). These frames coincide
respectively with the three positions of the body-fixed frame after each rotation; the
final position of the body-fixed frame is identical with the frame {0, € 4 ). Thus, we
use G*', G** and G* to indicate the rotation matrices from the frames {o, & Y,
{0,62 ) and {0, €3 ) to the final frame {0, €}, respectively. We obtain

G =A"(0,)A"(8,)A'(0)), G¥=A"(8,)A™(8,), G¥=4"(8;), (B

where the matrices A, A™ and A", given by Roberson (1989 p69-70), represent the
rotation matrices betweer. two adjacent frames, e.g., the rotation matrix from the
frame {0, €2 } to the frame {0, € } is denoted by the notation A™, which may be
one of the following matrices

1 0 0 cosae O —sino cosa. sina O
AI(OL)= 0 coso sinx ,Az(a): 0 1 0 |, A¥o)=|-sino. cosot 0]
0 -sin coso sinot. 0 coso 0 0 1

(B.2)

The angular velocity of the body relative to the frame {0, &' } contams three
relative angular velocities which are associated with the three rotations. We write

® =0+ d?%+ 0% (B.3)
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with

2 = e—1]‘ll(61)’ 532 = e—lem(ez), o8 = e—3Txn(e3)’ (B.4)

where A‘(o) (i=],2,3) is defined in such a way that the k-th (k=1,2,3) component
of it is equal to zero for i#k or o for i=k,

ot 0 o1 B.5)
M) =]0} Aa)=|a | A(a)=]0 '
0 0 o
It is easy to show that
Al(a) A (o) = Ri(a). (B.6)

The algebraic vector of the angular velocity with respect to the body-fixed
frame can be expressed as
4 = ‘@2 + 40P + ‘¥ (B.7)
with

4(1)21 — G41 ll(e])’ 4(1)32 — G42 lm(ez), 4(1)43 — G43 ln(es) (BS)

We use notation C . ,; to represent the column j of matrix C, i.e.,

_ T B.
C,; =1C.Cypr o .C,)" (B.9)

Eq.(B.7) reduces to

. B.1
‘o =HO, (B.10)
where the coefficient matrix H of the angular velocity is determined by
W16 62, 6,1 @10

The components of the matrix H are only functions of the rotation angles.

Because the cross product of two identical vectors vanishes, the angular
acceleration with respect to the body-fixed frame can be determined by
differentiating both sides of Eq.(B.10)

‘o= HB + 6. (B.12)
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The corresponding angular acceleration vector is

- - . B.13
o=, (B.13)

The classical choice of angles is / = 3, m = 1 and n = 3. The angles are
universally known as the Euler angles. The rotation matrix for this case is

G = A3(9;)A1(8,)A%(8)). (B.14)

In railway vehicle dynamics, the rotations are usually described by the yaw,
rolling and pitch angles, i e., /=3, m=1 and n=2. The yaw axis is the vertical axis of
the vehicle (pointing downward), the rolling axis is about the forward axis and the
pitch axis is about the remaining (lateral) axis. These angles are called Tait-Bryan
angles in Roberson and Schwertassek (1989). When the three angles are denoted by

81 =V, 62 =0, 63 =X (BIS)
the rotation matrix can be written as
GY = A2 A () A y).

The full expression of the rotation matrix given in the last equation is

(B.16)

cosy cosy/—sing siny siny  cosy siny +sind siny cosy —cos¢ siny, (B.17)
G = —cosQ siny cos¢ cosy sind

sing cosy simy +siny cosy  siny siny—sing cosycosy cosf cosy,

The angular velocity given by Eq.(B.10) reduces to

cosy 0 —cos¢siny o

4 (B.18)

w=| 0 1 sing X
siny 0 cosdcosy v

and the angular acceleration given in Eq.(B.12) to

cos® 0 —cos¢ sind (1) —ysiny O qisimp siny — ycosd cosy ¢
‘o=| 0 1 sind X1+ 0 O dcoso X
siny O cos¢cosy \y yxcosy O —sing cosy, — xcosd siny \y
(B.19)
Note that the component sequence in the vector [, X, V] T corresponds with the
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indices of the frame vector basis. The 3x3 matrix on the right-hand side of Eq.(B.18)
is still called the coefficient matrix of the angular velocity.
When the algebraic vectors of the angular velocity and acceleration vectors
® and ® are taken with respect to an auxiliary frame, e.g., {0, " }, we have

_ . B - (B.20)
w:e3]3m, o=
with
7 4. B.21
30 =G4314(o, 3= GBT 4 ( )

Using Egs.(B.1), (B.15), (B.18) and (B.19), we obtain, with /=3, m=1 and n=2:

10 0 | ¢
; ‘ i (B.22)
o =01 sind || %
0 0 coso \|1
and the angular acceleration
L0 0 6] |00 —cosod |0
¢ xcosd | 0 (B.23)

3@ =10 1 sind | % [+[0 0 ocoso 1| % |.
00 coso |y | |3 0 —gsing |y

C. Contact between Curved Track and Wheelset

With respect to the geometric contact for a curved track with very small radius of
curvature, for example when the radius of curvature is of the same order of
magnitude as the track gauge, we may not assume that in a small track segment the
track is cylindrical. We restrict ourselves to the case that the curved track has a
constant radius of curvature and a constant superelevation (the "cant" angle B). When
the radius of curvature and the cant angle vary with the distance along the curve, we
still can consider them to be constant in a small segment of the curve in the
neighbourhood of the wheelset (see Fig. C.1). De Pater (1981) presented the general
theory of the motion of a single wheelset moving through a curve with constant
radius and cant.
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o [——— y 1 0 i .—y i C//
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(a). As viewed from the vertical line CC'. (b). As viewed from the line CC

Fig. C.1. A curved track.

The restriction means that the trajectory of the track gauge centre is a circle.
Moreover, the inner rail and the outer rail of the track are concentric toroids about
CC’. In this case, the z-axis of the track reference frame is still perpendicular to the
top line of the rails; the x-axis is the tangent line of the track central trajectory at the
frame origin; the y-axis is therefore perpendicular to CC”. In addition, the rotation
of the y-axis around the axis CC’ forms a circular conical surface with the conicity
(m/2 - tgP); the x-y-plane s a tangent plane of the surface. The rails lay on a similar
conical surface. However, for a small longitudinal displacement u, the rails may be
replaced by ones that lay on the plane parallel to the x-y-plane. Therefore, the
influence of the cant angle 3 may be represented by the modified curve radius which
is measured along the rail tops; in other words, the radius of the track centre
trajectory indicated by R, in Fig.Cla is modified by RO*:RO/cosB in Fig.C1b. The
other effects of the cant angle, which are taken into account by De Pater (1981), may
be neglected when the gzometric contact is determined with respect to the track
reference frame for small longitudinal displacements and we shall consider the track
as circular in Fig.Clb.

Using a cylindrical coordinate system we can easily draw up the surface
equation of the track segment. The origin of the cylindrical coordinate system is
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located at the circle centre of the rails C and its vertical axis is parallel to the
vertical axis o-z of the track reference frame (o, x, y, z). The surface equation of the
track segment can be written as:

z-f(R)=0, C.D
with
R =R; - R,. (C.2)

Because the geometric constraints are investigated in the track reference
frame, we have to convert the quantities in the cylindrical coordinates system to the
track reference frame. Doing so we obtain

Rp:\/x2+(y—Rg)2 (€3

If the surface equation of the track segment is designated as F ;x,y, 2)=0, its partial

derivatives with respect to the coordinates x, y, z can be expressed as

*

oF oF . y—-R oF .
=Ry I oprry_ Y _J=1. (C4
P 1’ ( )Rp, % I (R) 7] ; 5

where ];-’(R) represents the partial derivative of the rail profile function with respect
to the argument R; it depends only on the profile function itself.

Because the inner normal vector of the rail is defined to be positive, the unit
normal vector of the rail at a point (x, y, z) reads

- _ T -1 C5
ng=n;e (C.5)
with

1 , X
NS et
\/1+.]3,2 p

Using the notation given in Egs.(3.2.12)-(3.2.14), Eq.(C.6) can be written as

(C.6)

* s

, (y=Ry) . -

n]-:{x_g_smyj, P 0 siny ;, cosy; | . €7n
p P

Obviously, in a tangent track the radius of curvature of the track is infinite; thus,
Eq.(3.2.17) can be considered as a special case of Eq.(C.7).
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When the coordinates of the contact points lying in the rail surfaces are
designated by (x;, y;, z;) and when we substitute (3.2.5), (3.2.18) and (C.7) into
Eq.(3.2.29), we obtain the expression

} T 1
X?‘ X
I cosy” cos sin 0 F_J_sin
7 Rp;
- . . (y; -Rg) . [C®
tsiny; | = | —cosdsiny cos cosy  sind F_— iy,
R,.
Pj
*
L cosy; sind siny  —sing cosy  coso cosy
*
L rj J L d L J

Only two equations in (C.8) are independent.

The equations associated with the first contact condition are still valid in this
case; they are given by Eqs.(3.2.27)-(3.2.29). Therefore, the geometric contact
conditions together with the body surface equations and Egs.(C.2), give rise to the
following set of 16 equations for the 19 variables which include the two auxiliary
variables R;:

(3, =y = [ (x] =x;)siny--(y{ —y, Jcosycosd ~(z —z, )cosysing | = 0, (C.9)

[z, -2, 1= [(y] =y, )sind +(z{ —z, Jcosp ] = 0, (C.10)
: 2 * C.11
R/'_RO +\/xj+(yj—R0)2:OY ( )
z; =~ f;(R;)) =0, (C.12)
2t ey C.13
Jx?e? S pr =0, (€.13)
' * X; v,—R,
A cosy; J siny jcosy + Qi Ro) siny ; siny = 0, (C.14)
r; Rg - R, Ry - R;
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Fsiny ; # siny cosgsiny + siny cosdcosy —cosy sing = 0,
Ry —R; Ry - R,
(C.15)
X; = { U+ x; cosy ~y; siny cos +z;'sing siny } = 0. (C.16)

v—_;.{(yﬁyz) - [(x]*+x2*)sinq;+(y;+y;)cos¢cosw—(z1'+zz*)sinq>cosw]} =0, (C.17)

W= % {[f1(.)’1)+f2()'2)] - [(y;+y2*)sin¢ +(zl*+z;)cos¢ ] } =0, (C.IS)

In order to solve this set of equations, three of the 19 variables have to be chosen
as independent parameters.

D. Profiles of the Rails and Wheels in the Examples

Besides the circular cylindrical rails and the conical wheels, three combinations of
the rail and wheel profiles are treated in various examples of the numerical computa-
tions. One is the symmetrical system of the UIC60 rails and the S1002 wheels; this
well-known combination is often used in testing and comparing the software.
Another combination called CTO-Measured-Profiles is asymmetric; it is provided by
"Centrum Technisch Onderzoek" (CTO) of Netherlands Railways; these profiles
result from measurements on worn out rails and wheels. Because the wheels are
turned off periodically, the wheelset in this system is considered to be symmetrical
and the wheel profiles are obtained by averaging the experimental data of both
wheels; the rails have different profiles and they have been measured at 27.9 km in
the line between Venlo and Eindhoven. This measured track-wheelset system has
1435 mm track gauge and 1360mm wheelset gauge. The third combination given in
the ORE benchmark, is designated as ORE-Benchmark-Profiles; in this asymmetrical
system, the track gauge is equal to 1434.07mm and the wheelset gauge is 1359.9mm

For the two asymmetrical systems, the original data are first transformed to
the local coordinate systems. The origins of the local coordinate systems for the rails
may not rest on the surface of the rails, as shown for instance in Fig.D1. The CTO-
Measured-Rail has been measured in the polar coordinate system (op, p, ). Point
A is the reference point for the CTO instrument; its coordinates with respect to the
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polar coordinate system are (34mm,0). By means of this point the original
experimental data listed in Table.D1 can be corrected; moreover, the coordinates of
point A are (34mm, 31.5mm) with respect to the local coordinate system. For the
ORE-Benchmark-Rail, the coordinates of the origins 0y for the rails are (£750mm,
33mm) with respect to the original coordinate system (oy;, Y Zy) and those for the
wheels are (£749.95mm, 0). Furthermore, the transformed profiles are smoothed by
means of a least square method. The original data of the profiles are listed at the end
of this Appendix. For the theoretical rail profile UIC60, the origin of the local
coordinate system is always chosen at the point where the rail profile curve intersects
the axis of symmetry of the rail.

top plane M,

e

002

Fig.D1. The local coordinate system of the rails. The left-hand figure refers
to CTO-Measured-Rail and the right-hand figure to ORE-Benchmark-Rail.

(mm) UIC60 UIC60 ORE-Benchmark- | CTO-Measured-
1/40 1/20 Rail Rails
o 35.988 35.021 32.977 34.087
Cy 35.988 35.021 32.956 33.638

Table.D.1. The lateral coordinates of the points to measure the track gauge.

Another important geometric parameter associated with a rail is the position
of the point by means of which the track gauge is defined; this point is 14mm lower
than the top plane of the rails (see Fig.D1). As indicated in Table.D1, its lateral
coordinate (denoted by cj) varies with the profile function and the rail inclination.
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-33.0
-32.0
-31.0
-30.0
-29.0
-28.0
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-26.0
-25.0
-24.0
-23.0
<220
-21.0

10.105
18.008
20519
22370
23855
25.091
26.182
27.114
27.879
28475
28.899
29265
29.561
29.740
20,829
20.832
29.747
29.537
20247
28.881
28.414
27795
27.001
25972
24518
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15614
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11.032
09.662
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1.953
1.803
1.646
1.505
1.381
1.264
1.144
1.029
0.925
0.812
0.692
0.597
0.505
0.425
0.351
027
0.203
0.136
0.083
0.035
-0.004
-0.048
-0.092
-0.130
-0.168
-0.197
-0.221
-0.231
-0.252
-0.267
-0.288
-0.301
-0.311
-0.322
-0.328
-0.331
-0.338
-0.335
-0.336
-0.337
-0.334
-0.321
-0.305
-0.284
-0.270
-0.261
-0.256
-0.246
-0.243
-0.242

30.0
31.0
320
33.0
34.0
350
36.0
370
380
39.0
40.0
41.0
420
43.0
44.0
45.0
46.0
470
48.0
49.0
50.0
51.0
520
53.0
54.0
550
56.0
57.0
58.0
59.0
60.0
61.0
62.0
63.0
64.0
65.0
66.0
67.0
68.0
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-0.249
-0.253
-0.264
-0.281
-0.293
-0.322
-0.352
-0.398
-0.443
-0.502
-0.556
-0.614
-0.680
-0.751
-0.820
-0.892
-0.964
-1.038
-1.113
-1.191
-1.265
-1.346
-1.422
-1.500
-1.584
-1.662
-1.749
-1.833
-1.946
-2.086
-2.443
-3.276
-4.185
-5.144
-6.131
-11.844
-12.013
-12.032
-12.030
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ORE-Benchmark-Profiles

Rail Prof DBT1--MA, Measured 14/05/90 Wheel Prof DBW---3B, Measured 27/06/90
left right left right

-789.3340 18.7649 789.3123 18.7543 -803.7889 -2.0833 803.9563 -2.7149
-788.8182 21.9150 788.6566 21.8217 -801.0829 -1.8917 801.1913 -2.4345
-787.7553 24.8860 787.6150 24.7914 -797.6288 -1.6969 797.7491 -2.2075
-785.9649 27.4267 785.7357 27.2476 27949998 -1.5261 795.0786 -2.0037
-784.8382 28.5109 784.5823 28.2961 -791.6215 -1.2840 791.7179 -1.7498
-783.5661 29.4485 783.2974 29.2064 -789.0507 -1.1218 789.1056 -1.5228
-782.1594 30.2252 781.8837 29.9589 -785.7401 -0.9100 785.8101 -1.2304
-780.6432 30.8411 780.3671 30.5552 -783.2118 -0.7723 783.2479 -1.0356
-779.0603 31.3192 778.7982 21.0282 -779.9458 -0.6071 780.0051 -0.7906
-777.4551 31.6945 777.2312 314276 -777.4416 -0.5175 7774734 -0.6524
-775.8100 31.9342 775.6705 21.7555 -774.1931 -04521 774.2551 -0.5388
-774.1959 32.1187 774.0940 319734 -771.6909 -0.4119 771.7289 -0.4787
27711006 323912 771.0330 :2.2831 -768.4319 -0.3863 768.5049 -0.4070
-768.1944 32.6006 768.1474 25124 27659152 03543 765.9667 -0.3542
-765.4279 327194 765.4015 2.6600 -762.6307 -0.3061 762.7178 -0.2918
-762.7926 32.7835 762.7794 Z2.71475 -760.0914 -0.2398 760.1528 -0.2435
-760.2745 32.8311 760.2701 :2.8159 -756.7658 -0.1743 756.8620 -0.1758
-757.8377 32.8258 757.8368 :2.8217 -754.1887 -0.0992 754.2559 -0.1272
-755.4717 32.8117 7554720 32.8142 -750.8021 -0.0292 750.9085 -0.0375
-753.1523 327766 753.1527 2.7825 -748.1745  0.0608 748.2607 0.0661
-750.8603 32.7275 750.8603 32.7350 27447209 0.1833 744.8517 0.2150
-748.5772 32.6503 748.5762 12.6644 -742.0471  0.3434 742.1531 03704
-746.2843 32,5600 746.2819 132.5773 -738.5303  0.5655 738.6902 0.6348
27439659 324354 7439604 324615 -735.8174  0.8305 7359460 0.8771
-741.6065 322719 741.5961 32.3080 -732.2537  1.2072 7324319 12740
-739.1985 32.0404 739.1743 32.1069 27295156  1.6100 729.6652 1.6648
-736.7343  31.7274 736.6892 131.8287 -725.9141  2.1568 726.1411 22826
-734.2074 313196 734.1381 11.4498 -723.2018  2.7905 723.3693 2.8426
-731.5990 30.8244 731.4970 30.9876 27196770 3.7051 719.8829 3.7445
27289153  30.2046 728.7973 30.3671 7170673 4.6604 717.2325  4.6736
-727.5596 29.8235 727.4251 29.9956 -714.0233  6.5266 714.1832 64575
-726.1949 29.3950 726.0524 129.5648 27121213 8.6464 712.2198 8.5298
27248662 28.8693 724.7263 129.0247 -710.4525 124757 7104164 12.1078
-723.5845 28.2448 723.4612 128.3725 -709.3994  15.5923 709.5266 15.5096
-722.4080 274760 722.3037 27.5767 -707.9161 19.2787 708.0970 19.2138
-721.3296 26.5895 721.2280 26.6810 -706.3588 21.4706 706.5378 21.4413
-720.2932 25.6488 720.2140 25.7152 -703.9579 23.8004 704.2073 23.7987
-719.4036 24.5766 719.3110 124.6490 -701.9276 253772 702.1464 253716
-718.6196 23.4241 718.5340 23.4864 -698.8621 269930 699.1821 27.0381
-717.9820 22.1766 717.8805 122.2451 -695.9553  27.7395 696.2961 27.8295

-717.5214  20.8324 717.4451 20.8801
-717.1741  19.4487 717.1337 19.4720
-716.8918 18.0613 716.8940 18.0601
-716.7601  16.6317 716.7653  16.6292
-716.7356 151932 716.7150 15.2024
-716.7080 124303 716.6547 124497
-716.6538  9.8085 716.6202 9.8181
-716.5999  7.2822 716.5363  7.2957
-716.5707 4.8190 716.4675 4.8335
-716.5150  2.4016 716.3804 24110
-716.4437 -0.0001 716.3062 -0.0001
-7164111 24090 716.2266 -2.4219
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E. The Product n ¢ (s + ® x p )

Consider a particle P moving on the surface of a body C that is fixed in an inertial
frame. From Fig.E.1, we have the relation:

F=3+D, (E.1)

= - - =2 (E.2)
S+OXp=r-p,
where ® is the angular velocity of the moving reference frame. When we denote the

normal vector of C at P by n, it is clear that the following relation holds:

. E3
nr=0. 3

moving reference frame

{0%€°)}

Fig.E.1. Description of the motion of the point P.

For the case that the cross-section of C is constant, we can assume that the
surface C is formed by the motion of a curve AB along a trajectory L. The curve AB
is always in the yz plane of the moving reference frame. Therefore, the equation of
AB is only in terms of the coordinates y and z and it is independent of the inertial
frame and the coordinate x:

f(y,2)=0. (E-4)
We observe the motion of P from the reference frame. First, the point P is

only admitted to move along the curve AB. In this case the normal vector 0 is in the
yz plane and
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. E.S
Ap=0, E>

so that we have from (E.2), (E.3) and (E.5)

- s - = (E.6)
n-(s+wxp)=0.
When P moves on the surface nearby AB, in general, Eq.(E.5) does not hold
because the equation of this surface, which is a function of the three coordinates x,
y and z, depends on the position of the reference frame. Only for the special case
where the body C is a toroid, in other words, when its surface equation is
independent of the position of the reference frame, we may write the surface
equation as

g(x, y,2z)=0; (E.7)
hence the components of 1i are proportional to dg/dx, dg/dy, dg/dz, so that

d - E.8

Eg(x,y,z)=n-p=0. (E.8)

Consequently, we obtain Eq.(E.6).
However, for the application of railway vehicle dynamics, Eq.(E.6) is always
a good approximation.

F. Kinematic Analysis of an IRW System

For an IRW system, the motion of the wheels is described by

s L = F.1
n=r+w0xI, (F.1)
- L - - F.2
Iy =T+ @, %xX(-1), *2)
W, = ®; + Oy, (F.3)
where

- (F.4)

(_02] - [0, XE],O]Q“.

So the accelerations are:




~|
Il
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+
e
X
ey
+
e
X
—~~~
e
X
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~
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e
o

W) = W, + Wy + Ay,
with

POV~ P S - =
hgpy = @1 X Wy = hgy€” = [ Y03, 0, %0, ]e

Substituting (F.3) and (F.7) into Eq.(F.6) yields:
fz =7 - 631x7— 6]x(61x7),

Writing Eqs.(F.6)-(F.9) in algebraic form we can find birw in Eq.(5.16).
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(F.7)
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Samenvatting

Gebaseerd op methoden voor multibody-systemen is in het proefschrift een algemeen
mechanisch model ontwikkeld om het dynamisch gedrag van spoorwegvoertuig-
systemen te voorspellen. De interactie tussen rail en wiel zorgt niet alleen voor de
geleiding en de stabiliteit van het voertuig maar veroorzaakt ook schade door hoge
contactkrachten. Deze factoren moeten bij het ontwerpen van spoorwegvoertuigen
in rekening gebracht worden. Speciale aandacht wordt besteed aan de geometrische,
kinematische en dynamische aspecten van het spoor-wielstel systeem. In het model
zijn de geometrische en fysische niet-lineariteiten ten gevolge van het contact
opgenomen; niet-lineariteiten in de ondersteuningen kunnen eveneens in rekening
gebracht worden. Het model is verwerkt in een computerprogramma.

Door te veronderstellen dat de twee met elkaar in contact zijnde lichamen
onvervormbaar zijn, leidt het geometrisch contact tussen rail en wielstel tot een
zuiver geometrisch probleem in de driedimensionale ruimte. Met de noodzakelijke
en voldoende voorwaarden voor twee onvervormbare lichamen die in contact zijn,
kunnen de locaties van de contactpunten op de spoorstaaf- en wicloppervlakken
gevonden worden, uitgedrukt in twee onafhankelijke gegeneraliseerde codrdinaten.
Dit vereist de oplossing van een stelsel niet-lineaire algebraische vergelijkingen. Ook
wordt dan het verband tussen de afhankelijke en de onafhankelijke gegeneraliseerde
codrdinaten verkregen. Een overeenkomstige analyse is ook uitgevoerd voor een
rolproefstand.

Om de rekentijd te verminderen, wordt het stelsel niet-lineaire vergelijkingen
gereduceerd tot een stelsel niet-lineaire vergelijkingen voor het twee-dimensionale
contact of het wordt vereenvoudigd door middel van de zogenaamde eerste-
ordetheorie. De numerieke resultaten geven aan dat de eerste-ordevergelijkingen een
voldoende nauwkeurige oplossing geven voor het driedimensionale contact. De
singulariteit van het stelsel niet-lineaire vergelijkingen, die verbonden is met het
optreden van dubbelcontact, is analytisch en numeriek onderzocht. Het lokale effect
van controleparameters wordt gebruikt om de niet-lineaire vergelijkingen op te
lossen. Ook wordt een numericke methode voor het bepalen van dubbel-
contactposities gepresenteerd. Met de eerste-ordevergelijkingen is de numerieke
analyse uitgevoerd voor de bekende combinatie van UIC60 - en S 1002 - profielen
en ook voor twee gemeten asymmetrische profiel combinaties:"CTO-Measured-
Profiles” en "ORE-Benchmark-Profiles”. De invloed van de spoorbreedte en de
spoorstaathelling wordt eveneens gegeven.
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In het mechanische model wordt de beweging van het voertuig beschreven
door de nominale beweging, die de beweging van het referentie-codrdinatensysteem
van het spoor (“track reference frame") aangeeft en de relatieve beweging die de
beweging van het lichaam of het aan het lichaam bevestigde coordinatensysteem ten
opzichte van de nominale beweging definicert. De nominale beweging wordt
beschreven als een functie van de nominale snelheid van het voertuig en de nominale
geometrie van het spoor. Ten gevolge van de verbindingen die voortvloeien uit het
contact tussen spoor en wielstel, heeft een conventioneel wielstel slechts vier graden
van vrijheid. Door gebruik te maken van de corresponderende kinematische
verbindingen, worden de algemene bewegingsvergelijkingen van het wielstel
bewegend langs een willekeurig spoor afgeleid en uitgedrukt in de vier
onafhankelijke gegeneraliseerde coordinaten. Twee hiervan zijn de relatieve
verplaatsing in langsrichting en de rotatie van het wielstel om zijn as. Tevens worden
de normale componenten van de contactkrachten tussen het spoor en het wielstel
bepaald. De theorieén voor het rollend contact worden in het kort besproken en de
vereenvoudigde theorie vaa Kalker wordt toegepast om de tangentiéle componenten
van de contactkrachten te berekenen. Bovendien worden de bewegingsvergelijkingen
voor een wielstel met onarhankelijk roterende wielen afgeleid.

In de dynamische simulatie kunnen vier algemene vormafwijkingen in
rechtspoor worden beschouwd. De atwijking van de spoorbreedte en de scheluwte
("cross-level”) worden opgenomen in de bepaling van de contact posities; de
afwijkingen in zijdelingse en verticale richting worden opgenomen in de beweging
van het referentie-codrdinatensysteem van het spoor. De bewegingsvergelijkingen
voor een wielstel worden gelineariseerd om de stabiliteit van de stationaire beweging
op een volkomen recht spoor te analyseren.

Zowel losse wielstellen als complete voertuigsystemen worden gesimuleerd.
Eerst worden de oplossingen van enkele opgaven, opgenomen in de spoorweg-
"benchmark" problemen van Pascal en Kik, gedemonstreerd. Vergelijking van het
dynamisch gedrag van voertuigen met verschillende combinaties geeft aan dat een
sprong van een contactpunt de beweging van het voertuig destabiliseert. Vervolgens
worden voertuigen met onafhankelijk roterende wielen numeriek onderzocht. Het

schijnt dat een volledige ontkoppeling van de rotaties van de beide wielen om hun
gemeenschappelijke omwentelingsas destabiliserend werkt op het systeem; op dit
punt is verder onderzoek noodzakelijk.




