
Maybe a List would be better?
Correct by construction Maybe to List refactorings in a Haskell-like language

José Carlos Padilla Cancio1

Supervisor(s): Jesper Cockx1, Luka Miljak 1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: José Carlos Padilla Cancio
Final project course: CSE3000 Research Project
Thesis committee: Jesper Cockx, Luka Miljak, Koen Langendoen

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
This paper concerns itself with correct by construc-
tion refactoring of Maybe values to List values
in a Haskell-like language (HLL) as a case study
on data-oriented refactorings. Our language makes
use of intrinsically-typed syntax and de Bruijn in-
dices for variables. Operational semantics are de-
fined using big step semantics. We define a refac-
toring function which intrinsically verifies its well-
typedness due to our intrinsically-typed syntax.
The semantic validity of this refactoring is given
by a separate proof. We use Agda, a functional
language and theorem prover, to define and prove
these properties. Techniques and concepts used in
our refactoring and proof generalize well to other
data-oriented refactorings.

1 Introduction
Refactoring is an important tool for developers. It allows
them to improve the maintainability and readability of their
codebase while preserving its behaviour. As such many, in-
tegration development environments (IDEs) attempt to auto-
mate this process [1]. Due to the automated nature of these
tools, it is essential that they have a correct implementation
and do not introduce hard to detect bugs, which IDEs attempt
to guarantee through tests. However as Dijkstra famously
said: “testing can be used to show the presence of bugs, but
never to show their absence!” [2].

Formal verification on the other hand can guarantee pro-
gram correctness. In it, we formally define our language us-
ing a mathematical model and reason about properties of the
language and operations over that language. Additionally, by
formally verifying the refactoring itself we guarantee its cor-
rectness for an arbitrary scenario and do not need to verify the
resulting program after every operation.

Owing to the rigour of mathematical proofs, integrating
formal verification into refactoring tools would give program-
mers guarantees on the correctness of the tool. This could
be of particular use in safety-critical systems where a higher
degree of certainty is required than in typical software engi-
neering scenarios.

Soares notes in [3] that there is an unfortunate lack of for-
mal verification in modern refactoring tools, owing to them
being considered cost prohibitive. We are interested in in-
creasing said formal verification, as there is a notable gap
in the literature regarding research into refactoring tools for
functional programming languages. Instead, the majority of
the research relates to OOP languages and paradigms [4].

This is somewhat surprising, as functional programming
languages (e.g. Haskell) lend themselves well to formalisa-
tion. They are deterministic, i.e. their output depends only
on the input and have direct theoretical ties to lambda calcu-
lus, a robust mathematical model of programming languages.
As such, many theorem provers are based on lambda calcu-
lus and functional programming, with Agda [5] being one of
them. In contrast to other theorem provers however, Agda is
primarily a programming language [5]. This makes it par-
ticularly well suited for the task of verifying properties of

Haskell-like code. Additionally, tools like agda2hs [6] can
help convert Agda code directly into Haskell code. For a brief
overview of Agda and relevant theory, see section 2.

Our paper concerns itself with data-oriented refactorings,
which we define as refactorings that change objects of a cer-
tain type into objects of another type while encoding the same
“intrinsic” information. They are common in Haskell and
similar languages, as it is often useful to first convert objects
to a different type and maintain the semantics before making
use of the new type’s additional features. This paper is a case
study on the refactoring from Maybe to List types. We ar-
gue that this conversion contains no loss of information as a
Nothing is equivalent to an empty list and a Just x is equiv-
alent to a list with only one element, namely x.

Most notable in the literature regarding refactoring Haskell
programs is the tool HaRe [7]. Unfortunately, it has certain
downsides: It is restricted to Haskell 98 while the current sta-
ble release is Haskell 2010 and supports a limited number of
refactorings. Of these refactorings, few have been formally
verified [8]. Accordingly, there have been desires to extend
HaRe with more refactorings, such as in [9], which includes
data-oriented refactorings.

Additionally, there is literature on the specifics of formally
verified refactorings which relates to this thesis. Sultana and
Thompson [10] define and formally verify a number of refac-
torings in typed and untyped lambda calculus using the proof
assistant Isabelle/HOL. They make use of substitution and
small step reductions in their language formalisation, which
complicate the expression of semantics and lemmas. On the
other hand, Barwell et al. [11] formalise and verify the re-
naming refactoring operation in a subset of Haskell 98 us-
ing the dependently typed language Idris. However, they
only verify well-typedness 1 and not the semantic2 behaviour.
Note that neither of these approaches concern themselves
with data oriented refactorings.

Given this gap in the literature, the relevance of data ori-
ented refactorings and the attractive properties of Agda as a
metalanguage, we formulate the following contributions of
this paper:

• We formally define a Haskell-like language (HLL) in
Agda (section 3) using

– intrinsically typed syntax (subsection 3.1) and
– big step semantics (subsection 3.2)

• We define a refactoring operation over this HLL convert-
ing objects of type MaybeTy to objects of type ListTy
(section 4)

• We verify that this refactoring is well-typed (Due to in-
trinsic typing section 4)

• Finally, we define how semantics should change by
defining the vo 7→v vn relation and then verify that this
holds for our refactoring. (section 5)

This research sheds light on aspects of defining and verify-
ing Maybe to List conversions that we argue generalize well
to other data-oriented refactorings and ultimately contribute

1Also known as static semantics
2In this paper we refer to dynamic semantics as simply semantics



to the pool of knowledge regarding formally verified correct
by construction refactorings. This claim is substantiated and
elaborated on in section 6.

2 Theoretical Backgrounds and Agda
Agda is a dependently typed, purely functional, total pro-
gramming language. It supports interactive programming
with typed holes and a rich Emacs plugin. It functions as a
proof assistant through the Curry-Howard isomorphism [12].
This section will elaborate on the definitions of these terms,
relevant details about Agda and the benefits it provides.

2.1 Dependent Types
Dependently typed languages are a type of functional lan-
guage with a very rich and extensible type system that allows
types to depend on the value of expressions. This allows the
programmer to create types that limit input to their functions
to only accept values that are deemed to be meaningful or rel-
evant. A common example of this is the Vec a n data type in
Agda. Vec a n is identical to the polymorphic singly linked
list List a data type with a relevant caveat, namely the ar-
gument n which is a natural number that specifies the length
of the list. Following this logic, one can then write for ex-
ample a head function which only accepts non-empty lists.
Thus not having to consider the case of calling head on an
empty list, as it is impossible by construction. An example
of this in our paper can be seen in subsection 3.1. We define
terms as a dependent data type ⊢ where the left argument is
a context and the right argument is a HLL type. As such, we
define terms as being dependently typed on the context they
are written in and on the HLL type that they type check to.

2.2 The Curry-Howard Isomorphism
The Curry-Howard isomorphism is a correspondence be-
tween type systems and intuitionistic logic3 [12], showing
that one can be expressed as the other. It states that there
is a mapping from propositional statements to types of pro-
grams and from proofs of those statements to programs of
those types. In other words, if you state your proposition as a
type, you can prove it to be valid by giving a type correct im-
plementation of the function. On a surface level, using Agda
types, the correspondence is as follows:

• p implies q ∼= P → Q 4

• p ∧ q ∼= P × Q 5

• p ∨ q ∼= P ⊎ Q 6

• True ∼= ⊤
• False ∼= ⊥

In a way, this correspondence is quite intuitive. If p implies
q, then given proof that p holds, we can construct a proof that
q holds. If we have evidence that p and q hold, then we ob-
viously have evidence that they both hold and given evidence

3Also sometimes called constructivist logic
4Note that the right hand side denotes a function type signature

form P to Q
5Generalized product type
6Generalized sum type

that p holds or evidence that q holds, then we have evidence
that at least one of them holds. The final two isomorphisms
listed show the correspondence between true and false literals
and types. A proposition being true makes it trivial to prove,
as such it corresponds to the unit type, which is a type with
a single constructor (named tt in Agda). On the other hand,
the false literal, which is the empty type in the context of pro-
grams as proofs, is un-provable. The empty type cannot be
inhabited by any type and has no constructors (thus it cannot
be proven true). The primary caveat regarding Curry-Howard
is that it refers to intuitionistic logic . This means that we
must create an algorithm that constructs direct evidence of a
proposition. As such, the law of excluded middle and double
negation elimination are not inference rules in intuitionistic
logic as they would be in classical logic.

2.3 Agda
This means that we can utilize Agda to formally define our
HLL, write a refactoring operation that operates over our
HLL and formally verify its implementation in the same lan-
guage. Additionally, Agda offers a host of features that aid us
in these tasks, which will be elaborated on in the following
paragraphs.

Agda is a total functional programming language. As such,
it requires that all inputs to a function have a defined output,
which by extension restricts the set of programs that can be
written in Agda to programs that provably terminate.7 This
guarantee (or expectation) of termination is useful in applica-
tions where one wishes to formally verify program attributes.
To ensure that programs terminate, Agda employs a termi-
nation checker, which only accepts structural recursion, i.e.
recursion where each call is strictly smaller in size and thus
converges to a base case.

Additionally Agda’s holes allow us to place a ? or {! !}
in our program, which it accepts as a missing chunk of code.
When we then load the file, it loads all holes and specifies
what type is necessary to fill each hole. Holes allow for a
form of interactive programming where one has a better un-
derstanding of the state of the current code, and can incre-
mentally supply solutions which will only be accepted if they
type check8.

Like in Haskell, function signatures in Agda make use of
currying, meaning that f : A → B → C describes a func-
tion that takes an argument of type A and an argument of type
B and returns a value of type C. However, in addition to this,
Agda supports implicit arguments. As an example of this,
consider the function in listing 1. It has a number of implicit
arguments required to construct the types that it accepts as in-
put and returns. However, as the implementation shows, we
can omit the implicit arguments and let Agda automatically
infer them for us, thus de-cluttering our code.

Note that Agda is not always able to infer implicit argu-
ments and sometimes needs the programmer to provide them,
however this is relatively rare.

7With the exception of coinductive data types which are not rel-
evant to this thesis

8Remember that as Agda is dependently typed, often type check-
ing is proof of correctness



1 update∋PostMap : ∀ {ty n f} {Γ : Context n} → Γ
∋ ty → (mapContext Γ f) ∋ f ty↪→

2 update∋PostMap Z = Z
3 update∋PostMap (S l) = S update∋PostMap l

Listing 1: Example function for currying and implicit arguments

3 Language Design and Specification
In order to formally reason about operations on a language it
is first necessary to define that language. As a baseline, we
decided to define our language as an extended simply typed
lambda calculus (STLC). Further sections will provide more
details on our HLL. The first section will elaborate on our lan-
guage’s type system and syntax, while the latter section spec-
ifies the language semantics. Both sub-sections first describe
relevant design decisions taken and then give the specification
of that aspect of our HLL.

3.1 Type System and Syntax
Type systems help ensure program validity by rejecting ex-
pressions which are not meaningful. We say that a program
is well-typed if it follows the rules of the relevant type sys-
tem. In this section, we define our language’s type system
and syntax. We first give an overview of intrinsic typing and
de Bruijn indices as relevant background before giving the
full specification of our syntax and type system.

Intrinsically-typed Syntax
Our type system and syntax are defined using the approach
of intrinsically-typed syntax as defined and implemented in
[13]. Intrinsic typing is a technique in which you define an
expression by the type that it has. Should that expression re-
quire sub-expressions, then those are also defined with their
type. In our code, this is defined as an expression type check-
ing to τ under a typing context Γ by the data type Γ ⊢ τ .
Note however, that following convention our inference rules
use the notation Γ ⊢ e : τ

Listing 2, detailing the syntax for the + operation, shows a
useful example to introduce this concept. Its constructor takes
two arguments which type check to IntTy (i.e. the terms be-
ing added) and using those terms constructs a term that type
checks to a IntTy (i.e. the sum). Should we attempt to con-
struct a + expression where one of the arguments does not
type check to IntTy, Agda would not accept the expression
as we have not provided valid arguments to the constructor.

1 _+_ : Γ ⊢ IntTy → Γ ⊢ IntTy → Γ ⊢ IntTy

Listing 2: Constructor for + operation

This follows from the primary benefit of intrinsic typing,
namely that as the syntax and type system are defined simul-
taneously, it is impossible to construct expressions that are
not well-typed. Crucially, this in turn means that any function
that operates on expressions will simultaneously be a proof
that the outcome is also well-typed (as otherwise it would not
be able to be constructed), thus sparing us from having to de-
fine a separate well-typedness proof.

De Bruijn Indices
Concerning variables, as our refactoring does not have strong
ties to variable naming, we opted to instead make use of de
Bruijn indices as defined in [14] and implemented in [13].
Conceptually, these indices are simply numerical indices stat-
ing the position in the typing context/environment which con-
tains the type/value that a given variable is referring to. Note
that in our current definition of HLL, there are only two ex-
pressions which change the context: functions which add a
single type to the context (i.e. the argument) and case state-
ments which add the types and values that the pattern match
makes available to the programmer to the context 9. This ap-
proach simplifies our language and proof, as it is not nec-
essary to deal with name shadowing or seeing if a name is
contained within a given context/environment. More specifi-
cally, we implement contexts and de Bruijn indices as shown
in listing 3.

1 data Context : Set where
2 ∅ : Context
3 _,_ : Context → Type → Context
4

5 data _∋_ :Context → Type → Set where
6 Z : Γ , A ∋ A
7 S_ : Γ ∋ A → Γ , B ∋ A

Listing 3: Definitions in Agda for the typing context and lookup
judgement

For starters, typing Contexts are defined inductively with
constructors for an empty context ∅ and for extending a con-
text with a type , . As such, contexts are similar to lists of
types (i.e. empty list, :: operator). Lookup judgements are
defined using the dependently typed ∋ 10 data type. ∋
takes as (explicit) arguments a typing Context and the Type
we wish to find in said context. There are two constructors
for lookup judgements, the Z and the S operator. Z simply
states that the first element in the Context is of the type we
want. S on the other hand, takes evidence that sub-Context
Γ contains type A and then returns evidence that the extended
context Γ, B contains A. On the one hand, we can interpret ∋
as a natural number index of a list-like object, with Z ∼= 0
and S l ∼= suc n. More pertinent to our work however, is
the interpretation of ∋ as evidence that a Context contains a
certain type at a given position (and later on when specifying
our semantics a given value at a certain position).

Specification of Intrinsically-typed Syntax
As the typing rules in Figure 1 indicate, the HLL supports
IntTy as a base type with built in operations for addition +,
subtraction - and multiplication *. Additionally, we support
the algebraic data types MaybeTy and ListTy, as they are
necessary for our proof. Note that although there is a single
base type, these types are indexed by types so may be nested
and in the future contain other base types.

Given that we have parametric types, we also need to
support some Haskell-like mechanism to extract the values

9See next section for specification of syntax
10pronounced “ni”



x : Z
Γ ⊢ x : IntTy

Γ ⊢ x : IntTy Γ ⊢ y : IntTy

Γ ⊢ x + y, x - y, x * y : IntTy

Γ ⊢ Nothing : MaybeTy τ
Γ ⊢ x : τ

Γ ⊢ Just x : MaybeTy τ

Γ ⊢ [] : ListTy τ

Γ ⊢ x : τ Γ ⊢ xs : ListTy τ

Γ ⊢ x::xs : ListTy τ

Figure 1: Typing rules for data types and operation on integers

Γ ⊢ m : MaybeTy τi Γ ⊢ en : τr Γ, τi ⊢ ej : τr

Γ ⊢ caseM m of nothingP to en or justP to ej : τr

Γ ⊢ m : ListTy τi Γ ⊢ e[] : τr Γ, τi, ListTy τi ⊢ e:: : τr
Γ ⊢ caseL m of []P to e[] or ::P to e:: : τr

Figure 2: Typing rules for case statements.

within them and thus decided to support case statements for
Lists and Maybes. However, as seen in Figure 2 pattern
matching is hard coded. The first branch of a case statement
corresponds to the “empty” case (Nothing and []) while the
second branch corresponds to the “nonempty” case (Just x
and x::xs).

Γ, τa ⊢ b : τr
Γ ⊢ λ̄b : τa ⇒ τr

Γ ⊢ f : τa ⇒ τr Γ ⊢ a : τa
Γ ⊢ f · a : τr

Figure 3: Typing rules for lambda functions and function applica-
tion.

Syntax and type rules for functions λ̄ and function appli-
cations · are given in Figure 3. Note that due to our usage
of de Bruijn indices, functions are defined by their bodies.
We do not support recursion 11 as we did not consider it rele-
vant enough to our refactoring to include in the scope of this
project.

The typing rule for variables given in Figure 4 stands out
as it is the first one that does not (technically) depend on sub-
expressions. Instead, it takes a lookup judgement as defined
in the previous section, which serves as evidence that the type
is in the Context and returns a term of that type (i.e. it refers
to that position in the context/environment)

3.2 Operational Semantics
Now that we have defined how to construct well-typed (i.e.
meaningful) expressions, we need some mechanism to assign
meaning to them. In order to do this, we have to define what
values our language can return as well as what the inference
rules are for mapping well-typed expressions to values. These
rules are defined by our operational semantics (more specifi-
cally big step semantics).

The first section deals with which values our HLL supports
and how variables are assigned to values. Afterwards, we
define big-step semantics and motivate our decision to utilize
it. Finally, we conclude with the formal specification of our
language’s operational semantics.

11Fixpoints or letrec-like constructs in the context of STLC

l : Γ ∋ τ
Γ ⊢ var l : τ

Figure 4: Typing rule for variables.

Environments and Values
Listing 4, based on the work in [13], contains the Agda
code defining both our Env and Value data types. Note that
Values are indexed over types, which allows us to place re-
straints on the values that expressions can evaluate to.

We can generally separate our values into three broad cate-
gories: base Values, inductive Values and closures (ClosV).
Base Values return a value immediately 12 and inductive val-
ues depend on some inner value such as the head and tail
of a list in ConsV which eventually terminate in some base
Values. Closures are a bit more tricky and correspond to the
value that functions evaluates to. They function by “closing
off” and storing the Envwhere the function was defined along
with the function body. As such, in order to apply functions,
we can simply extend the “closure environment” with the ar-
gument to the function and evaluate the body.

1 data Env : {n : N} → Context n → Set
2

3 data Value : Type → Set where
4 IntV : Z → Value IntTy
5 -- MaybeTy
6 NothingV : Value (MaybeTy ty)
7 JustV : Value ty → Value (MaybeTy ty)
8 -- ListTy
9 NilV : Value (ListTy ty)

10 ConsV : Value ty → Value (ListTy ty) → Value
(ListTy ty)↪→

11 -- Closures
12 ClosV : Env Γ → Γ , argTy ⊢ retTy → Value

(argTy → retTy)↪→
13 data Env where
14 ∅' : Env ∅
15 _,'_ : Env Γ → (v : Value ty) → Env (Γ , ty)

Listing 4: Definitions in Agda for values and environment

As aforementioned, we use environments to associate vari-
ables to values, which in the context of this paper will be
denoted using lowercase gamma γ. As listing 4 shows, Envs
are indexed over Context. As such, its constructors strike
a close resemblance to those of Contexts. ∅ corresponds to
∅′ while , corresponds to ,’ . Note that when extending
environments, the given Value must be of the same type as
in the context. This correspondence, in turn, allows us to use
our previous de Bruijn indices to locate values in the environ-
ment.

Big Step Semantics
Big-step semantics are a form of operational semantics de-
scribed originally by Kahn in [15] 13. Its semantic rules are
defined as a sequence of general preconditions (i.e. big steps)

12or in the case of IntV depend on Agda’s Z specification
13Kahn referred to them as natural semantics



which need to be fulfilled in order to infer the evaluation of an
expression. This allows us to abstract away the reductions de-
scribed in small step semantics and only define what is essen-
tial. We construct our big step semantics as a dependent data
type, inspired by the work of [13], in listing 5. Notationally
γ ⊢e e ↓ v indicates that an expression e in the environment
γ evaluates to the value v.

1 data _⊢e_↓_ : Env Γ → (Γ ⊢ ty) → Value ty → Set

Listing 5: Type signature of big step semantics data type

As a simple example of big step semantics and how it is
implemented in our language, consider listing 6 detailing the
big step semantics for the “+” operation. Given a left and
right expression that both evaluate to IntV values, we define
addition to be an IntV value wrapping the sum of the left and
right values. As it is not relevant to our refactoring and for
brevity’s sake, we use the underlying Agda specifications for
operations over integers, which we denote as +z or +z .

1 ↓+ : -- Eval lhs
2 → γ ⊢e l ↓ IntV i
3 -- Eval rhs
4 → γ ⊢e r ↓ IntV j
5 -- Eval sum
6 → γ ⊢e l + r ↓ IntV (i +z j)

Listing 6: Semantics for + operation

Big step semantics define inference rules which more
closely resemble the function of interpreters, which give pro-
grams meaning in the real world. However, it is important
to note that this is not an interpreter; we are simply defining
what certain terms should evaluate to given that certain pre-
conditions hold.

Specification of Big Step Semantics

γ ⊢e Int i ↓ IntV i
↓ Int

γ ⊢e x ↓ IntV i γ ⊢e y ↓ IntV j

γ ⊢e x + y ↓ IntV i+z j
↓ +

γ ⊢e Nothing ↓ NothingV
↓ Nothing

γ ⊢e x ↓ v

γ ⊢e Just x ↓ JustV v
↓ Just

γ ⊢e [] ↓ NilV
↓ []

γ ⊢e x ↓ h γ ⊢e xs ↓ t

γ ⊢e x :: y ↓ ConsV h t
↓ ::

Figure 5: Semantics for data types and operations on integers

Following the structure of the specification in subsec-
tion 3.1, we begin our specification of the big step semantics
of our HLL with the data type constructors and operations
over integers given in Figure 5. Regarding integer operations,
note that we only give the semantic rule for addition, as the
rules for subtraction and multiplication are identical with up-
dated operations.

In Figure 6 we define the semantics of case statements.
Each inference rule has two preconditions: the evaluation of
the term being pattern matched on and the evaluation of the
clause which corresponds to that pattern. Note that as such

Pattern matching on a Maybe

γ ⊢e m ↓ JustV u γ, u ⊢e ej ↓ v

γ ⊢e caseM m of nothingP to en or justP to ej ↓ v
↓ caseMJ

γ ⊢e m ↓ NothingV γ ⊢e en ↓ v

γ ⊢e caseM m of nothingP to en or justP to ej ↓ v
↓ caseMN

Pattern matching on a List

γ ⊢e m ↓ Consv h t γ, h, t ⊢e e:: ↓ v

γ ⊢e caseL m of []P to e[] or ::P to e:: ↓ v
↓ caseL::

γ ⊢e m ↓ NilV γ ⊢e e[] ↓ v

γ ⊢e caseL m of []P to e[] or ::P to e:: ↓ v
↓ caseL[]

Figure 6: Semantics for case expressions

we need an inference rule for each case: one for the empty
case and one for the non-empty case.

γ ⊢e λ̄b ↓ ClosV γ b
↓ λ̄

γ ⊢e f ↓ ClosV γc b γ ⊢e g ↓ a γc, a ⊢e b ↓ v

γ ⊢e f · g ↓ v
↓ ·

Figure 7: Semantics for functions and application

Figure 7 deals with the semantics of functions and their
applications. Functions have an axiomatic inference rule (i.e.
no preconditions) namely a ClosV. Applications, on the other
hand, have three steps: evaluating a function to a closure,
evaluating the argument and evaluating the body of the func-
tion under the closure environment extended by the argument
value.

l : Γ ∋ A
γ ⊢e var l ↓ v-lookup γ l

↓ var

Figure 8: Sematic rule for variables.

Unlike in subsection 3.1, defining variable semantics in
Figure 8 is not quite as trivial. As variables only contain a
pointer to the context, we need some mechanism to extract
that value from the environment at the given lookup. We call
this function v-lookup and give its definition in Agda in list-
ing 7.

4 Refactoring Function
Now that we have defined our language and its semantics, we
can construct our refactoring function. First of all, our refac-
toring operates at the top level (i.e. with an empty context).
This follows from the fact that the operation changes all type
signatures from MaybeTy to ListTy. If we were to refactor
only a sub-expression of the program Γ ⊢ ty, the return type
of some sub-expression may depend on Γ which we have not
refactored and thus may be a MaybeTy. Therefore, our func-
tion starts from an empty context and then calls a recursive



1 v-lookup : Env Γ → Γ ∋ ty → Value ty
2 v-lookup (γ ,' v) Z = v
3 v-lookup (γ ,' v) (S l) = v-lookup γ l

Listing 7: Definition of v-lookup in Agda

1 refactorListH : Γ ⊢ ty → (ev : Extend Γ Under
MaybeTy→ListTy) → (constructRefContext ev)
⊢ MaybeTy→ListTy ty

↪→
↪→

2 -- Variables
3 refactorListH (var x) ev = var (update∋PostRef

x)↪→
4 -- MaybeTy terms to ListTy
5 refactorListH Nothing ev = []
6 refactorListH (Just e) ev = refactorListH e ev

:: []↪→
7 -- caseM to caseL
8 refactorListJH (caseM m of nothingP to nC or

justP to jC) ev = -- construct caseL term.
Recurse on all subterms but jC with ev.
Recurse on jC with (eo-pad (ListTy _)
(eo-elem ev))

↪→
↪→
↪→
↪→

9 -- All other cases
10 refactorListH t ev = -- Return if base term,

else construct term while recursing on
sub-terms adding variables to context with
eo-elem where necessary

↪→
↪→
↪→

11

12 refactorList : Γ ⊢ ty → (ev : Extend Γ Under
MaybeTy→ListTy) → (constructRefContext ev)
⊢ MaybeTy→ListTy ty

↪→
↪→

13 refactorList = refactorListH

Listing 8: Pseudo-agda implementation of refactor and helper func-
tion

helper function that performs the actual refactoring. We de-
fine the functions in psuedo-Agda in listing 8.

Keen-eyed readers will note that we use functions to de-
fine and enforce properties of our refactored expression,
namely constructRefContext and MaybeTy→ListTy.
MaybeTy→ListTy defines how types should change post
refactoring, i.e. it swaps out MaybeTy for ListTy 14.
constructRefContext constructs the context that the
refactored expression would operate under by using the
Extend Under data type.

This data structure as defined in listing 9 is dependently
typed on the original Context and the relevant swap func-
tion (in our case MaybeTy→ListTy), and is conceptually
the list of operations necessary to construct the new con-
text. Its three constructors indicate constructing an empty
Context (eo-root), appending a type to the context (eo-elem)
and appending a type to the context as a side effect of the
refactoring operation (eo-pad). Using this information, the
constructRefContext function can construct the new con-
text.

Crucially, Extend Under helps us deal with the fact
that when converting from caseM to caseL, our refactor-
ing doesn’t preserve the context’s structure. To demonstrate

14This function is applied recursively on types with sub-types

1 data Extend_Under_ : Context → (Type → Type) →
Set where↪→

2 eo-root : Extend ∅ Under f
3 eo-elem : Extend Γ Under f → Extend (Γ , ty)

Under f↪→
4 eo-pad : Type → Extend Γ Under f → Extend Γ

Under f↪→

Listing 9: Agda implementation of Extend Under data structure

this, consider listing 10. Specifically note that while ap-
plying our refactoring, we convert e j to e ::, the clause
for the just pattern to the clause for the nonempty list pat-
tern. When we pattern match on a Just, the inner type of
the MaybeTy is made available (Γ, a), whereas when pattern
matching on a nonempty list, both the head and tail are made
available (Γr, b, ListTy b). As this step changes the struc-
ture of the context, we keep track of the insertions made
(with Extend Under ). Additionally, by virtue of this en-
try being new, it is never used by e :: and thus we can
also safely “instruct” all variables to ignore it (i.e. with the
update∋PostRef function).

1 -- Original expression
2 caseM matchOnM of
3 NothingP to e_n
4 or
5 JustP to e_j
6

7 -- Post refactor
8 caseL matchOnL of
9 []P to e_[]

10 or
11 ::P to e_::

Listing 10: Refactoring of caseM statement

vars and caseMs aside, the majority of the function is
fairly straightforward. In the cases detailed in lines 8-9,
we swap MaybeTy terms for their corresponding ListTy
equivalents. Nothing becomes [] and Just e becomes
refactorListH e ev :: []. For all other terms, base
terms remain unchanged, while for polymorphic terms we
construct the same parent term and recurse into its sub-terms.

5 Verifying Semantic Behaviour
Many properties of our refactoring have already been verified
by construction. Intrinsically-typed syntax guarantees well-
typedness and dependently typed values exclude MaybeTy
terms from our syntax . This leaves only verifying the se-
mantic behaviour of our refactoring as an explicit proof. In
this section we will first define relevant relations necessary
for our proof and then give an overview of the proof itself.

5.1 Relations
In order to do this, we need to define what the desired be-
haviour of our refactoring even is. As such, we introduce the
relation vo 7→r vn to express that if an expression evaluated
to vo, then after refactoring we expect it to evaluate to vn .



The inference rules for this relation are defined in figures 9
and 10. Our definition is inductive and ensures that MaybeTy
values have been replaced according to what our refactoring
should produce while also ensuring that the portions of values
which are not MaybeTy remain untouched.

x = y

Int x 7→v IntV y

NothingV 7→v NilV

x 7→v h t = NilV

JustV x 7→v ConsV h t

ho 7→v hn to 7→v tn
ConsV ho to 7→v ConsV hn tn NilV 7→v NilV

Figure 9: Inference rules for 7→v except closures

As is evident by the complexity of the inference rule, clo-
sures are somewhat of an exception. Our refactoring can
change the length and content of a closure environment and
by definition changes its body. As these changes are con-
text dependent and to avoid circularity, we present the def-
inition in Figure 10. This rule is inspired by the concept
of extensional equivalence [16] and states that two functions
are equivalent if for all ao 7→v an arguments they produce
ro 7→v rn results.

∀ao 7→v an γo, ao ⊢e bo ↓ ro γn, an ⊢e bn ↓ rn ro 7→v rn
ClosV γo bo 7→v ClosV γn bn

Figure 10: Inference rules for 7→v of closures

On top of this, we define another relation e, γo 7→e γn
for environments. It is defined in Figure 11 and conceptually
states that, given a list of changes made to the context c (i.e.
the Extend Under data type), all non padded entries to the
environment a, b must be a 7→v b.

eo-root, ∅′ 7→e ∅′
c, γo 7→e γn

(eo-pad x c), γo 7→e γn, b

c, γo 7→e γn a 7→v b

(eo-elem c), γo, a 7→e γn, b

Figure 11: Inference rules for , 7→e

5.2 Proof of Semantics
We have written our proof in Agda but for brevity will give a
non-rigorous overview of the essence of the structure of our
proof. In Agda our proof is structured similarly to our refac-
toring in that it is a top level function that calls a recursive
helper. We will focus on the helper function in our overview.

Central Theorem. Given a semantic derivation do : γo ⊢e

e ↓ vo an environment γn such that c, γo 7→e γn and the
semantic derivation dn : γn ⊢e refactorListH c e ↓ vn
then vo 7→v vn

Proof. We will prove this statement by case analysis on (do,
dn), showing that all valid combinations of (do, dn) preserve
the central theorem. Most cases function by induction on the
fact that all other cases hold.

Case 1 (↓ var). Valid semantic derivations: (↓ var, ↓ var)

Proof. Since c, γo 7→e γn and our refactored expression can-
not refer to padded entries, the central theorem holds by defi-
nition

We now consider “base” derivations for simple expressions
with no sub-expressions

Case 2 (↓ Int). Valid semantic derivations: (↓ Int, ↓ Int)

Proof. IntV i 7→v IntV j if i = j. Our refactoring does
not affect any underlying Agda integers in Int terms, thus
i = j and the theorem holds for this case.

Case 3 (↓ Nothing). Valid semantic derivations: (↓
Nothing, ↓ [])

Proof. As both derivations are base derivations and
NothingV 7→v NilV, this holds.

Case 4 (↓ []). Valid semantic derivations: (↓ [], ↓ [])

Proof. As both derivations are base derivations and NilV 7→v

NilV, this holds.

This concludes the set of proofs for simple base deriva-
tions.

Case 5 (↓ +, ↓ -, ↓ *). Valid semantic derivations: (↓ +, ↓ +),
(↓ -, ↓ -), (↓ *, ↓ *)

Proof. The same logic applies to all 3 operations: All opera-
tions result in integers, thus we need to show that io+z jo 7→v

in +z jn. If io = in and jo = jn hold, then it would follow
trivially. For terms of adding two Int terms, this holds by
case 2 as a base case. By induction, this also holds for com-
plex terms.

Case 6 (↓ Just). Valid semantic derivations: (↓ Just, ↓ ::)

Proof. JustV v 7→v ConsV h t if v 7→v h and NilV =
t. The latter holds by the definition of our refactoring. The
former holds by induction.

Case 7 (↓ ::). Valid semantic derivations: (↓ ::, ↓ ::)

Proof. ConsV ho to 7→v ConsV hn tn if ho 7→v hn and
to 7→v tn. This holds by induction

Case 8 (Valid case statements). Valid semantic derivations:
(↓ caseMJ, ↓ caseL::), (↓ caseMN, ↓ caseL[]), (↓
caseL::, ↓ caseL::), (↓ caseL[], ↓ caseL[])

Proof. For all these cases, we show that by induction the re-
spective clauses of the case are eo 7→v en. We extend the
environment according to inner values for all non padded en-
tries. The relation holds for these extensions since the values
being matched on are mo 7→v mn (e.g. the head and tail of
the lists will have this property in the caseL caseL case)

Case 9 (Absurd case statements). As we defined the inputs to
the Agda function very broadly, we must consider the follow-
ing: (↓ caseL::, ↓ caseL[]), (↓ caseL[], ↓ caseL::), (↓
caseMJ, ↓ caseL[]), (↓ caseMN, ↓ caseL::)



Proof. All of these combinations are absurd as the terms they
match on are not mo 7→v mn. As such, these rule combina-
tions are impossible and the central theorem holds by princi-
ple of explosion.

Case 10 (↓ λ̄). Valid semantic derivations: (↓ λ̄, ↓ λ̄)

Proof. Take an arbitrary ao and an such that ao 7→v an
and extend the bodies of the functions to the semantic rules
γco, ao ⊢e bo ↓ ro γcn, an ⊢e bn ↓ rn. By induction, as
we have shown that all other cases result in ro 7→v rn, this
holds.

Case 11 (↓ ·). Valid semantic derivations: (↓ ·, ↓ ·)

Proof. As we have shown in case 10, the closures are
closo 7→v closn, which by definition means that for all ar-
guments ao 7→v an, the results are ro 7→v rn.ro = vo and
rn = vn so the central theorem holds.

As the central theorem holds for all possible cases, the the-
orem holds.

6 Conclusions, Limitations and Future Work
6.1 Contribution
This paper makes use of Agda to define a HLL and a refac-
toring operation (swapping Maybe values to List values).
We successfully verify well-typedness and valid semantic be-
haviour fully with the use of Agda.

The benefits of dependent types were of great assistance in
this task, as they allow one to not only limit input to the cases
which are relevant, but also to enforce desirable properties of
the result, e.g. making Value’s indexed on types and restrict-
ing the values one can have post refactoring to exclude any
MaybeTy value.

We discovered techniques for constructing our refactoring
and proof that were instrumental and we believe generalize
well to formally verifying refactorings.

Firstly, our 7→v relation dictating how we expect program
results to change post refactoring helped explicitly express
how our refactoring should affect semantic behaviour. Specif-
ically in the case for closures, its use of a weaker “contextual
equivalence” helped us define what valid transformations of
closures are without having to rely on our refactoring defini-
tion to define the body of the closure. Additionally, the def-
inition for closures makes proving function application triv-
ial. We believe that this notion is also relevant to other data-
oriented refactorings where results can strictly change but in-
formation is still preserved in some sense. The specific def-
inition for closures generalizes to most refactorings, as they
understandably may change code.

Our Extend Under data type was of great help when
dealing with changes in the structure of the Context and Env
by accumulating all changes made to the Context and la-
belling whether that addition existed before the refactoring or
is simply a side effect of the refactoring. This notion would
extend well to other data-oriented refactorings and generally
refactorings that change the structure of the environment.

6.2 Limitations and future work
There are a number of limitations to our work as well as gen-
eral future work that we can directly observe.

To start with, as the 7→v relation relies on “quasi” contex-
tual equivalence in the case of comparing closure values our
relation for closures is relatively weak. A refactoring could
potentially admit refactorings that radically change the bodies
of closures but would still be accepted, as it does technically
affect semantic behaviour. It is worth investigating if there is
a stronger definition that fits our purposes and is not circu-
lar or whether the strong constraints of the other cases of the
relation exclude this possibility.

A significant portion of our results and approach is depen-
dent on the fact that we utilize de Bruijn indices instead of
named variables, which is not how Haskell or most program-
ming languages approach variables. We argue that this is not
a major limitation as the general effect or intent of the in-
dividual approaches apply to named variables as well, e.g.
changing the structure of the environment as a consequence
of the refactoring. Nonetheless, it would be good to adapt
our approach to make use of named variables to see if the
approach does indeed map and to uncover results which are
closer to the real world nature of Haskell and similar pro-
gramming languages.

Although we intrinsically verify well-typedness through
the usage of intrinsically typed syntax, we still need to use an
extrinsic proof to verify that the semantic behaviour matches
expectations. Future work could investigate the feasibility of
attempting to integrate this property into the refactoring func-
tion directly, thus ensuring that refactoring functions are truly
“correct by construction”.

Another noteworthy limitation is our decision to hard code
case statements due to time constraints. It is worth investi-
gating how we can model generic pattern matching, both in
regards to number and order of patterns as well as depth of
the patterns. Additionally, it is worth investigating if there is
a need for additional methods or lemmas for this more generic
definition.

Formulating a generic definition of pattern matching in a
HLL and verifying its behaviour would also help pave the
way for defining a generic data oriented refactoring function.
Given that many of the data types and approaches used in this
paper are not specific to the conversion of Maybe to List, it is
worth investigating how these techniques could be used to de-
fine and verify other data oriented refactorings. Future work
could even investigate the possibility of defining a generic
function that, given the minimal amount of information, both
constructs a function to operate the refactoring and verifies its
correctness (in terms of well-typedess, semantics and poten-
tially other properties). As our case statements are hard coded
and tied to the type being matched on, this research would de-
pend on uncovering how to model and verify generic pattern
matching.

Ackowledgements
First and foremost, I am immensely grateful to my super-
visors, Luka Miljak and Jesper Cockx. Their guidance and
feedback has been invaluable in this endeavour and I never



would have completed this thesis without it. Specifically I
would like to thank Jesper Cockx for their wonderful func-
tional programming course, that sparked my interest in this
field. Dank je wel.

To my friend William, I thank him for recommending said
course to me and for motivating my descent into this rabbit
hole. Shukran habibi.

To my incredible partner, Astrid, thank you for standing by
my side and dealing with my moments of stress, frustration,
long hours spent immersed in research and even longer rants.
Additionally I would like to thank her for teaching me the
usage of commas in the English language.

I would also like to acknowledge my sister for her constant
motivation and belief in my abilities. Your unwavering faith
in me even when I doubted myself has been pivotal in my
academic journey. Gracias por creer en mi, Isa.

I would also like to thank my group mates for their support
and advice, helping me avoid pitfalls they had already dealt
with. Specifically I would like to thank Jeroen Bastenhof for
inspiring me with the Extend Under data type.

Lastly, I want to express my deepest appreciation to my
parents for their unending support and encouragement to pur-
sue my dreams and happiness in life. Gracias por decir que
sigua lo que ame.

References
[1] M. Fowler, Refactoring. Addison-Wesley Professional,

2018.
[2] B. Randell and J. Buxton, “Software engineering tech-

niques: Report of a conference sponsored by the
nato science committee, rome, italy, 27th-31st october
1969,” 1970.

[3] G. Soares, “Making program refactoring safer,” in Pro-
ceedings of the 32nd ACM/IEEE International Confer-
ence on Software Engineering-Volume 2, pp. 521–522,
2010.

[4] E. A. AlOmar, M. W. Mkaouer, C. Newman, and
A. Ouni, “On preserving the behavior in software refac-
toring: A systematic mapping study,” Information and
Software Technology, vol. 140, p. 106675, 2021.

[5] A. Bove, P. Dybjer, and U. Norell, “A brief overview of
agda-a functional language with dependent types.,” in
TPHOLs, vol. 5674, pp. 73–78, Springer, 2009.

[6] J. Cockx, O. Melkonian, L. Escot, J. Chapman, and
U. Norell, “Reasonable agda is correct haskell: writing
verified haskell using agda2hs,” in Proceedings of the
15th ACM SIGPLAN International Haskell Symposium,
pp. 108–122, 2022.

[7] H. Li, S. Thompson, and C. Reinke, “The haskell refac-
torer, hare, and its api,” Electronic Notes in Theoretical
Computer Science, vol. 141, no. 4, pp. 29–34, 2005.

[8] H. Li and S. J. Thompson, “Formalisation of haskell
refactorings.,” Trends in Functional Programming,
pp. 95–110, 2005.

[9] C. Brown, “A collection of ideas for haskell transforma-
tion,” 2006.

[10] N. Sultana and S. Thompson, “Mechanical verification
of refactorings,” in Proceedings of the 2008 ACM SIG-
PLAN symposium on Partial evaluation and semantics-
based program manipulation, pp. 51–60, 2008.

[11] A. D. Barwell, C. M. Brown, and S. Sarkar, “Proving re-
naming for haskell via dependent types: a case-study in
refactoring soundness,” in 8th International Workshop
on Rewriting Techniques for Program Transformations
and Evaluation (WPTE 2021), 2021.

[12] M. H. Sørensen and P. Urzyczyn, Lectures on the Curry-
Howard isomorphism. Elsevier, 2006.

[13] P. Wadler, W. Kokke, and J. G. Siek, Programming Lan-
guage Foundations in Agda. Aug. 2022.

[14] N. de Bruijn, “Lambda calculus notation with nameless
dummies, a tool for automatic formula manipulation,
with application to the church-rosser theorem,” Indaga-
tiones Mathematicae, vol. 75, no. 5, p. 381–392, 1972.

[15] G. Kahn, “Natural semantics,” in STACS 87: 4th Annual
Symposium on Theoretical Aspects of Computer Science
Passau, Federal Republic of Germany, February 19–21,
1987 Proceedings 4, pp. 22–39, Springer, 1987.

[16] J. H. Morris Jr, Lambda-calculus models of program-
ming languages. PhD thesis, Massachusetts Institute of
Technology, 1969.


	Introduction
	Theoretical Backgrounds and Agda
	Dependent Types
	The Curry-Howard Isomorphism
	Agda

	Language Design and Specification
	Type System and Syntax
	Intrinsically-typed Syntax
	De Bruijn Indices
	Specification of Intrinsically-typed Syntax

	Operational Semantics
	Environments and Values
	Big Step Semantics
	Specification of Big Step Semantics


	Refactoring Function
	Verifying Semantic Behaviour
	Relations
	Proof of Semantics

	Conclusions, Limitations and Future Work
	Contribution
	Limitations and future work


