
 
 

Delft University of Technology

Spatial Resolution Matching of Microwave Radiometer Measurements Using Iterative
Deconvolution with Close Loop Priors (ICLP)

Yao, Zhiyu; Hu, Weidong; Feng, Zhiyan; Zhang, Wenlong; Liu, Yang; Xu, Zhihao; Ligthart, Leo P.

DOI
10.1109/TGRS.2023.3291752
Publication date
2023
Document Version
Final published version
Published in
IEEE Transactions on Geoscience and Remote Sensing

Citation (APA)
Yao, Z., Hu, W., Feng, Z., Zhang, W., Liu, Y., Xu, Z., & Ligthart, L. P. (2023). Spatial Resolution Matching of
Microwave Radiometer Measurements Using Iterative Deconvolution with Close Loop Priors (ICLP). IEEE
Transactions on Geoscience and Remote Sensing, 61, 1-14. Article 5301614.
https://doi.org/10.1109/TGRS.2023.3291752
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TGRS.2023.3291752
https://doi.org/10.1109/TGRS.2023.3291752


IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023 5301614
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Radiometer Measurements Using Iterative

Deconvolution With Close Loop Priors (ICLP)
Zhiyu Yao , Weidong Hu , Zhiyan Feng , Wenlong Zhang , Yang Liu , Zhihao Xu ,

and Leo P. Ligthart , Life Fellow, IEEE

Abstract— Passive multifrequency microwave sensors fre-
quently struggle with difficulties of nonuniform spatial resolution
among multiple channels. The raw measurements in the land–sea
transition zone are seriously contaminated. Conventional analyt-
ical deconvolution techniques suffer from the tradeoff between
spatial resolution enhancement and noise amplification, leading
to low data integrity in the practical spatial resolution match-
ing application. To provide multichannel microwave radiometer
(MWR) data with matching levels of spatial resolution, a method
based on iterative deconvolution with close loop priors (ICLP)
is proposed. Specifically, a destriping module is first utilized as
a preprocessing step to maintain high data integrity. Then, the
close loop mechanism using sparse adaptive priors is proposed
to balance the spatial resolution and data integrity enhancement.
Also, progressively iterative deconvolution is introduced to realize
controllable levels of spatial resolution enhancement (spatial
resolution matching) for multichannel data to reach a consistent
level. Experiments performed using both simulated and actual
microwave radiation imager (MWRI) data demonstrate the
validity and effectiveness of the method.

Index Terms— Close loop, FengYun-3-D (FY-3D), iterative
deconvolution, microwave radiation imager (MWRI), priors,
spatial resolution matching.

I. INTRODUCTION

MICROWAVE radiometer (MWR) is designed to obtain
radiometric measurements with a combination of

frequency and polarization [1]. Due to the continuous, all-
weather, all-day observing capabilities, the MWR has been
extensively employed in worldwide weather parameters moni-
toring [2]. The retrieval of meteorological parameters, such as
cloud liquid water, total precipitation water, sea wind speed,
snow depth, and snow water equivalent, relies tremendously
on the MWR instrument [3], [4], [5].
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Overall, the MWR’s global observations are inevitably ham-
pered by low and nonuniform spatial resolution. Furthermore,
the local data in the land–sea transition zone are severely
contaminated by the relatively sizeable measured footprint
covering both terrestrial and ocean [6], [7], [8], leading
to poor local data integrity. To match to lower-frequency
channels with a low spatial resolution for multichannel joint
retrieval, one common strategy is to average high-frequency
channel data with a high spatial resolution [9], [10]. How-
ever, the multifrequency channel data with the finer spatial
resolution are desperate to be obtained when collecting
the small regional-scale distribution parameters with high-
precision requirements [11].

Spatial resolution matching aims to enhance low-frequency
channel data with low resolution to up-match high-frequency
channel data with high resolution, which is a special kind of
controllable spatial resolution enhancement algorithm. Spa-
tial resolution-matching algorithms are roughly categorized
into three groups: antenna pattern inversion, data fusion, and
learning-based methods [12], [13]. The antenna pattern inver-
sion algorithms enhance the spatial resolution by using the
redundant oversampling information from the radiometer mea-
surement scanning mechanism, such as the Backus–Gilbert
(BG) method [14], the radiometer version of the scatterometer
image reconstruction (rSIR) method [15], and the iterative
methods in Hilbert and Banach space [13], [16]. Data fusion
techniques enhance the spatial resolution of the low-resolution
(low-frequency) channels by fusing auxiliary information
from the spectral imager [17] or the finer-resolution (higher
frequency) channels [18], [19]. Learning-based technologies
exploit the corresponding intrinsic relationship of the MWR
imaging process to model an end-to-end mapping by deep
networks [20], [21], [22], [23].

For global data, existing methods have achieved impressive
spatial resolution enhancement results in various scenarios.
However, they also face a significant problem: the noise ampli-
fication and Gibbs fluctuation deteriorate the data integrity of
the land–sea interface local data [24]. Fusion- and learning-
based methods rarely consider the data integrity of local data,
and partial antenna pattern inversion methods can only reduce
the noise amplification and Gibbs fluctuation of local data at
the land–sea interface area [13], [25]. In short, few methods
can simultaneously enhance both global and local data.
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Compared with other types of remote-sensing images,
radiometer data require extracting accurate amplitude infor-
mation to retrieve meteorological parameters quantitatively
[8], [26]. However, the Gibbs fluctuations introduced in the
resolution enhancement process can cause over-enhancement
of the local data and make it difficult to reconstruct the
exact amplitude. Ignoring local data integrity significantly
limits the upper bound of spatial resolution enhancement for
global data. Traditional enhancement methods have a tradeoff
problem between spatial resolution and data integrity because
they perform deconvolution and convolution operations on the
Gaussian kernel, respectively, leading to a mutually constrain-
ing process. The TVBF+ method substantially improves the
data integrity while obtaining similar spatial resolution [26].
Nevertheless, it only mitigates rather than improves the mutual
constraints and tradeoff between spatial resolution enhance-
ment and data integrity enhancement.

In this article, the spatial resolution matching framework
based on progressively iterative deconvolution with close loop
priors (ICLP) mechanism is proposed. The raw measurements
are first passed through a destripe module and then input into a
group of a cascaded unconstrained deconvolution module and
an adaptive denoising module. Then the statistical adaptive
priors information of the remote-sensing images is extracted
from the output of the denoising module. Next, the spatial
resolution of the raw measurements is re-enhanced by a
deconvolution module constrained with the priors information,
and these three modules together constitute a closed-loop
feedback structure. Lastly, by cascading more constrained
deconvolution modules and adaptive denoising modules to
form several local closed-loop feedback, the spatial resolution
matching is achieved progressively and iteratively.

The contributions of this article are summarized below.

1) Before the spatial resolution matching algorithm, a stripe
noise removal operation is performed. Additionally,
the bilateral fusion algorithm introduces multichannel
consistency constraints specific to microwave radia-
tion imager (MWRI). These two operations collectively
ensure high data integrity during the spatial resolution-
matching process.

2) The closed-loop feedback mechanism utilizes local
enhancement (data integrity) to constrain global
enhancement (spatial resolution) to address the tradeoff
between spatial resolution and noise amplification and
Gibbs fluctuation generation. The mutually constrained
relationship between data integrity enhancement and
spatial resolution enhancement is transformed into a
mutually beneficial relationship.

3) Based on the closed-loop mechanism, progressive iter-
ative deconvolution is designed to improve both spatial
resolution and data integrity further. By adjusting the
number of modules for different channels, the reso-
lutions of multiple channels with different resolutions
can be matched to the same level, thus realizing
multichannel spatial resolution matching. The relevant
experiments demonstrate the design of the effectiveness
of the resolution-matching framework.

The rest of this article is organized as follows. In Section II,
the proposed resolution-matching technique is elucidated.
Experimental results and detailed analysis undertaken on both
simulated and actual MWRI radiometer data are presented
and discussed in Section III, while conclusions are drawn in
Section IV.

II. THEORETICAL BACKGROUND

The radiometer collects radiated measurements from the
Earth’s surface at different frequencies and polarization. The
measurements received by the antenna are universally for-
mulated as the convolution of the actual scene brightness
temperature with the normalized antenna pattern, which can
be represented by [27]

TA =

∫∫
�

G(l)TB(l)d A + n (1)

where l is the integration variable spanning the spatial domain
�, TA denotes the actual known radiometer measurements,
TB is the unknown scene brightness temperature to be recon-
structed, and G is the smooth integration point spread function
(PSF) which is the ground-projected footprint of the original
antenna pattern due to the scan geometry. The noise n is caused
by the insufficient sensitivity of the radiometer receiver.

Thus, the discretized version of (1) leads to an under-
determined linear problem [19] which can be expressed by

m = H ⊗ f + n (2)

where m ∈ RN is the vector that denotes the blurry and noisy
measurements TA, f ∈ RM is the vector that denotes the
unknown image TB that is required to be solved, H ∈ RM×N is
the matrix representing a projected antenna pattern footprint,
⊗ is the convolution operator, and n ∈ RN is a vector
corresponding to the radiometer system noise.

Notably, in this article, the values of M and N are set to
the same for multichannel spatial resolution matching.

The data degradation of the MWR defined by (2) is an
ill-posed problem, which can be solved using regularization
methods [28], [29]

f̂ = arg min
f

(δm( f ) + λ · δREG( f )) (3)

where f̂ is the optimization objective of f , δm is an original
data-constrained term, δREG is the penalty regularization con-
strained term, and λ defines the relative weights for the two
terms.

As shown in Fig. 1, the complete resolution-matching
framework consists of a destripe block as well as n decon-
volution and denoising (DD) blocks. A DD block consists of
a sparse adaptive priors deconvolution module and a bilateral
fusion module. Deconvolution using sparse adaptive priors is
a kind of nonblind deconvolution. The bilateral fusion module
is cascaded into the deconvolution module to eliminate noise
and Gibbs fluctuations [26]. The constraints between adjacent
DD blocks are achieved by closed-loop feedback. The detailed
feature of the proposed DD blocks and closed-loop feedback
mechanism is described below.
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Fig. 1. Illustration of the proposed iterative deconvolution with closed-loop priors. The 10-GHz image is matched up to the 36-GHz image as a demonstration.
The blocks in the red dotted box are an example of a set of closed-loop feedback.

Fig. 2. Illustration of the proposed closed-loop feedback mechanism.

A. Preprocessing of Stripe Noise Removal Before Spatial
Resolution Matching

Inspired by the stripe noise removal techniques in hyper-
spectral image processing [30], [31], we observed significant
stripe noise in MWRI data, as described in Section III-A3.
Previous spatial resolution enhancement/spatial resolution-
matching algorithms have rarely addressed this issue. There-
fore, we introduce a preprocessing module for stripe noise
removal to ensure data integrity before performing spatial-
resolution matching.

B. Closed-Loop Deconvolution Using Sparse Adaptive Priors

The flow of the closed-loop deconvolution using sparse
adaptive priors is implemented according to the partial block
diagram in Fig. 1 (closed-loop structure part surrounded by
the red dotted line). After the destriping process, the original
data is initially processed through a sparse adaptive priors
deconvolution module without any constraint, and the output is
subsequently processed through the cascaded bilateral fusion
module. Then, the derivative of one DD block’s output is
computed and inputted to the next DD block along with
the raw measurement data. In the subsequent DD block, the
original measurements’ sparse adaptive priors deconvolution
process is redone under the previous DD block’s output
constraint. In summary, the closed-loop feedback comprises
a complete DD block and an additional sparse adaptive priors
deconvolution module.

The essential principle of the proposed closed-loop feedback
mechanism is illustrated in Fig. 2. The blue deconvolution
module enclosed by the red dashed line in Fig. 1 corresponds
to global enhancement in Fig. 2 and the red denoising module
corresponds to local enhancement in Fig. 2.

For the radiometer data, the sparse adaptive prior deconvo-
lution is a kind of global enhancement used to improve spatial
resolution. On the other hand, bilateral fusion is a type of local
enhancement of the land–sea interface region to enhance data
integrity. In this article, the closed-loop feedback mechanism
is introduced to exploit the sparse distribution characteristics
of the microwave image derivatives. The statistical priors
[32], [33], [34] of microwave remote-sensing images can be
extracted as fused information to avoid interference caused by
different behaviors of different channels.

Therefore, considering the local data at the land-sea
boundary as a critical factor, the method is proposed to simul-
taneously enhance the spatial resolution and data integrity.

1) The original data is enhanced globally by an uncon-
strained traditional deconvolution module. At this stage,
noise amplification and the generation of Gibbs oscilla-
tions occur simultaneously.

2) A bilateral fusion algorithm is cascaded after the
traditional deconvolution module to impose spatial con-
sistency constraints on multifrequency channels, which
enables local enhancement of the coastal transition zone
data based on the first global enhancement and thus
improves data integrity.

3) After the original data is globally enhanced once and
locally enhanced once, the adaptive prior information
of the high-quality data obtained from bilateral fusion
is extracted, and the whole image is re-enhanced under
constrained conditions of global deconvolution.

These three enhancements together form one complete
closed-loop feedback, aiming to improve both global and
local data. Generally speaking, spatial resolution and data
integrity are remarkably improved with the proposed closed-
loop deconvolution using sparse adaptive priors.

In the sparse adaptive priors deconvolution, (3) can be
expressed explicitly as

f̂ = arg min
f

δ( f )

= arg min
f

∥h f − m∥
2
2 +

5∑
s=1

λs∥ds f − ws∥
2
2 (4)
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where ds represent the first- and second-order derivative filter
operators: dx , dy , dxx , dyy , and dxy , respectively, λs are the
positive weights, and ws are the specified responses of the
ideal data f .

By adjusting the value of ws , it is possible to specify
the adaptive priors on the derivatives of f . Furthermore,
the threshold τ is introduced to suppress noise amplification,
which can be represented by

ws = ϕ
(
ds f̂ DD

)
=

ds f̂ DD(
τ

ds f̂ DD

)4
+ 1

(5)

where f̂ DD is the output of the previous DD block.
In the proposed method, we set τ = 0.5 for first-order

derivatives and τ = 0.35 for second-order derivatives. The
value of ws gradually approaches 0 with |ds f̂ i, j | < τ .
Thus, the pixel with a small derivative is considered noise
and selectively penalized. In contrast, the pixel with a large
derivative is considered a land–sea interface which can be
preserved in the proposed deconvolution algorithms.

Since δ( f ) is derivable with respect to f , the solution of
(4) can be calculated by taking the derivative to (4)(

hT h +

5∑
s=1

λsdT
s ds

)
f̂ = hT m +

5∑
s=1

λsdT
s ws . (6)

The solution of f̂ can be solved by

a f̂ = b (7)

where

a = hT h +

5∑
s=1

λsdT
s ds (8a)

b = hT m +

5∑
s=1

λsdT
s ws . (8b)

However, a is the sum of antenna pattern operation and
derivative operation, which can be regarded as combined
convolution operators. b can be considered as the constrained
measured data. The proposed method aims to reconstruct f̂
from the constrained measured data using combined convolu-
tion operators.

To solve the equation, we apply the Fourier transform to
both sides of (7)

AF̂ = B (9)

where

A = H∗ H +

5∑
s=1

λs D∗

s Ds (10a)

B = H T M +

5∑
s=1

λs DT
s Ws (10b)

where A = F(a), B = F(b), H = F(h), M = F(m),
D = F(d), W = F(w), and F denotes the Fourier transform
operator. Then, f̂ can be obtained

f̂ = F−1(B/A). (11)

Thus, the result of one closed-loop deconvolution using
sparse adaptive priors is obtained, which reconstructs the mea-
sured data with the advantages of preserving sharp land–sea
interfaces and suppressing noise amplification. With the pro-
posed method, spatial resolution and data integrity can be
enhanced simultaneously.

C. Progressively Iterative Deconvolution and Resolution
Matching Strategy

Based on closed-loop priors mechanism deconvolution, the
complete progressively iterative deconvolution structure is
constituted (several DD blocks). An enhanced spatial resolu-
tion and data integrity image are gradually generated through
progressively iterative deconvolution. The number of DD
blocks is determined as follows:∥∥ f̂ n − f̂ n−1

∥∥
2∥∥ f̂ n−1

∥∥
2

≤ µ (12)

where µ is the parameter that measures the similarity of f̂ n

and f̂ n−1.
During the actual application of multichannel microwave

data, the nonuniform spatial resolution limits the data integrity
of joint multichannel geological parameter retrieval products.
As shown in Fig. 3, the scene contains the Mediterranean
region, where spatial resolution and the contaminated land–sea
transition zone of the different channels are different. The
width of the gradient variation bands, which denotes the
contamination bands near the land–sea interface, is broader
as the spatial resolution decrease.

Essentially, the spatial resolution-matching process of the
radiometer data is a controllable spatial resolution enhance-
ment. Using the existing method with fixed reconstructed
capability, it is challenging to match the spatial resolution of
all the channels to the same level, especially for 10 V/H with
a large blur antenna pattern footprint. Through the proposed
progressively iterative deconvolution with closed-loop priors,
we can gradually match the spatial resolution of multichannel
data by adjusting the number of DD blocks.

III. NUMERICAL EXPERIMENTS

In this section, some numerical experiments on simulated
and real MWRI data are performed using MATLAB and
Python (PyTorch framework) to discuss the reconstruction
performances of the proposed ICLP versus the traditional
BG inversion [14] and our early work TVBF+ method [26].
Furthermore, to demonstrate the superiority of the proposed
method, the deep-learning-based method, which has been
proven to be a more substantial reconstruction than the tra-
ditional analytical problem [20], [22], [23], is also used as a
benchmark. In this article, we choose the basic net structure
in EDSR [35] and SR main branch of radiometer spatial
resolution-matching method [12] for contrast (16 layers resid-
ual block). Also, in Section III-B, several additional methods
were employed to compare the performance of the algorithms
on actual measurements, which are outliers [36], PMP [37],
and Real-ESRGAN [38].
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Fig. 3. Performances of the different frequency channels and the gradient calculated with the Sobel operator. Raw measurements of (a) 10 V, (b) 18 V,
(c) 23 V, and (d) 36 V. Gradient of (e) 10 V, (f) 18 V, (g) 23 V, and (h) 36 V.

All the actual experimental data were obtained from the
conical-scanning MWRI onboard the FengYun-3-D (FY-3D)
satellite [39], which are Level-1 (L1) swath data that preserve
the native scan geometry compared with gridded data [13]. The
MWRI observes the Earth at an altitude of 836 km, observation
of 45◦, and an azimuth spanning 104◦, leading to a swath
width of 1400 km. It collects the Earth’s surface radiation at
five frequencies (10.65, 18.7, 23.8, 36.5, and 89 GHz) with
vertical and horizontal polarization. For convenience, the total
ten channels of MWRI are represented as 10, 18, 23, 36,
and 89 V/H, respectively. The total number of measurement
points is 266×1825 (the scan direction × the track direction) at
each channel. The specific performances of the FY-3D MWRI
instrument are compiled in Table I [1].

The ultimate ability to handle the single-channel resolution
enhancement of the proposed algorithm must be illustrated
before multichannel resolution-matching cases are performed.
Thus, the spatial resolution enhancement of the 10 V/H chan-
nel (worst degradation case) using simulated and actual data is
presented in parts Sections III-A and III-B, respectively. The
spatial resolution-matching case for four channels is shown in
Section III-C.

A. Spatial Resolution Enchantment on Simulated Data

Using actual MWRI data to undertake quantitative spatial
resolution analysis and data integrity enhancement is complex.
The inconsistent performance of the multifrequency channels
exacerbates the difficulty of the problem. Thus, the simulated
brightness temperature image can be a substitute. The peak
signal-to-noise ratio (PSNR) [40] and structural similarity
(SSIM) [41], which are widely recognized for their capacity
to analyze an image in terms of the pixel level, are used as
objective metrics.

1) Simulated Synthetic Data: As illustrated in Fig. 4(a), the
simulation of a continental area containing abrupt discontinu-
ities and continuously undulating land–sea interfaces is at the

center of the scenario. The gradually enlarged pairs of double
lines, triple lines, and spots around the center of the scene
are generated to simulate rivers and small isolated islands,
representing the maximum reconstruction capability. The local
areas of the small, isolated spots (enclosed by a black dash-
dotted rectangle), and the simulated land–sea interface area
(enclosed by a white dash-dotted rectangle) are enlarged for
better visual evaluation. Fig. 4(b) shows the simulated 10 V/H
image generated by Fig. 4(a) and (2). The antenna pattern of
the MWRI instrument system can be considered a low-pass
spatial frequency filter. The simulated small islands and the
land–sea interface are smoothed to disappear, as illustrated
in Fig. 4(b). Fig. 4(c)–(f) depicts the reconstruction results
obtained by different methods, while the related performance
metrics are listed in Table II (scene 1).

As can be seen, all methods have sharper reconstructed
results than the simulated 10 V/H image. Specifically, tradi-
tional BG methods enhance spatial resolution at the expense
of noise amplification. The poor data integrity further limits
spatial resolution enhancement. The reconstructed result of
TVBF+ significantly improves data integrity while obtain-
ing a similar spatial resolution enhancement ability as the
BG method. The EDSR presents improvements in both data
integrity and spatial resolution enhancement while introducing
some spurious information (as the area pointed by the black
arrow, the restored amplitude in the center of spots is too high).
The proposed ICLP delivers phenomenal reconstructed results
in data integrity and spatial resolution simultaneously. Polluted
data from land–sea transition zone are apparently eliminated,
and no noticeable artifacts are introduced.

Detailed analyses of the brightness temperature reconstruc-
tion performance are evaluated with the along-track transects
[labeled with the green dash-dotted line in Fig. 4(a)], as shown
in Fig. 5. The sharpness and amplitude of small targets in the
simulated 10 V/H image are severely damaged. It is difficult
to fix the worst case with conventional BG. The TVBF+ can
only reconstruct the shape of the target but not the precise
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TABLE I
MAIN CHARACTERISTICS OF THE FY3D MWRI

Fig. 4. (a) Synthetic brightness temperature image. (b) Simulated 10 V/H
measurement obtained from Fig. 4(a). Results reconstructed from Fig. 4(b)
using the (c) BG method, (d) TVBF+, (e) EDSR, and (f) ICLP.

Fig. 5. Along-track transects of the synthetic scenario [labeled with the green
dash-dotted line in Fig. 4(a)].

amplitude due to its limited power in resolution enhancement.
The learning-based EDSR achieves a balance between spa-
tial resolution enhancement and noise amplification to some
extent. Yet, it inevitably introduces the Gibbs-related artifact
(the area pointed by the red arrow) because of the irreversibly
lost high-frequency information. Notably, the proposed ICLP
method deals with the problem of optimal sharpness, unex-
pected artifact, and accurate restoration in equilibrium.

The spatial resolution can be obtained by calculating the
footprint size at the nadir [10], as shown in Fig. 6. Also, the

Fig. 6. Reconstructed antenna pattern footprint at nadir using the algorithm
in Fig. 4(c)–(f).

Fig. 7. Range of the experimental area on the map. (Bottom left) Enlarged
area of the Tonle Sap Lake. (Bottom right) Enlarged area of the Kota
Pangkalpinang. The sampling points on the map represent the position, and
the color represents the brightness temperature of the measurements at the
position.

quantitative spatial resolution value (SRV) can be calculated
using the highest correlation coefficient proposed in LiY [12],
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Fig. 8. (a) Synthetic scene brightness temperature image. (b) Simulated 10-V antenna brightness temperature image obtained from Fig. 8(a). Results
reconstructed from Fig. 8(b) using the (c) BG method, (d) TVBF+, (e) EDSR, and (f) ICLP.

which can be seen as a comprehensive response to spatial
resolution and data integrity. The average spatial resolution
of the along-track and along-scan direction is 65.8 km in
the simulated 10 V/H image. However, some high-frequency
information is irrecoverably lost in the data acquisition process
owing to the excessively large PSF spanning multiple adjacent
sampling points. Recovery of high-frequency details is a
process of “creating something out of nothing.” There is a
limitation for the traditional deconvolution restoration method
[42], [43]. It is about 45% empirically in the presence of noise.

The improvement of SRV using traditional BG methods
is finite, about 41% in the average of 100 independent
experiments. The TVBF+ and EDSR can upgrade SRV by
53%–58%. The ICLP achieves the most satisfactory results
because of its ability to supplement high-frequency detail
from other channels constantly. The SRV can be ameliorated
by 76%–79%, equivalent to four to five times the original
resolution. Fig. 6 shows that the ICLP result has approached
the sampling interval, which means that a joint retrieval can
be obtained with 89 V/H.

2) Simulated Actual Data: Admittedly, the above experi-
ments demonstrate the effectiveness of the proposed algorithm
from the perspective of simulated data. Nevertheless, the
scenario we used above is comparatively straightforward and
particular. A synthetic scene that closely matches the actual
situation needs to be generated. Here, the actual measure-
ments of FY3D-MWRI from December 28, 2021, are chosen.
As depicted in Fig. 7, the 10-V data of the South Asia zone
with 256 × 256 sampling points, whose geographical features
include sufficient lakes, islands, and land–sea interfaces, are
selected. The Tonle Sap Lake (pointed by the black arrow) and
Kota Pangkalpinang (pointed by the red arrow) are magnified,
respectively.

Fig. 8(b) depicts the simulated 10 V/H scene generated by
Fig. 8(a) and (2). The same area as in Fig. 7 is enlarged
(enclosed by the white dash-dotted rectangle) for a better
visualization effect. The Sap Lake and Kota Pangkalpinang
in the simulated 10 V/H scene are blurred to disappear.

Apparently, BG methods can only partially reconstruct the
image and introduce drastic noise amplification. The TVBF+
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Fig. 9. (a) Synthetic scene brightness temperature image. (b) Contamination point of the simulated 10-V antenna brightness temperature image. The
contamination points of the reconstructed image from Fig. 8(b) using the (c) BG method, (d) TVBF+, (e) EDSR, and (f) ICLP.

TABLE II
RECONSTRUCTION PERFORMANCES OF DIFFERENT SPATIAL RESOLUTION ENHANCEMENT METHODS

optimizes the data integrity problem while the accuracy of
reconstructed amplitude is inadequate. The EDSR methods
further improve the spatial resolution, which can be demon-
strated by the clearer interface of the Kota Pangkalpinang area.

The proposed ICLP offers an outstanding performance
where the amplitude and the interface of the Sap Lake and
Kota Pangkalpinang are reconstructed accurately. Furthermore,
almost no artifacts are introduced. The spatial resolution and
data integrity are remarkably enhanced together.

The related performance metrics analysis is listed in Table II
(scene 2). Additionally, 500 simulated images degraded at
10, 18, 23, and 36 V/H parameters of FY3D MWRI from
December 1, 2021, to December 15, 2021, are also chosen
to perform metrics evaluation. Their average results are also
included in Table II.

The absolute error with the true value is of concern in
the practical data application. According to the sensitivity
and calibration error of the MWRI instrument [17], we set
the deviation of 2.5 K to determine whether the sampling
point is contaminated, as shown in Fig. 9. The contami-
nated sampling points in the simulated 10 V/H scene are

mainly near the land–sea interface, and there are also some
contaminated sampling points in the remaining areas due to
the noise. In total, about 60% sampling points in this scene
are contaminated. Using the BG methods, the number of
contaminated points obviously decreased by about 30%. The
TVBF+ and EDSR methods ameliorate the phenomenon, and
the contaminated points occur only at the land–sea transition
zone. The ICLP methods eliminate most of the contaminated
points (only 2.56% contaminated points left), revealing the
proposed method’s exceptional precise-reconstruction ability.

3) Ablation Study of Destriping Module: In fact, most of the
previous spatial resolution enhancement algorithms for MWRs
have largely overlooked the impact of striping noise. As shown
in Fig. 10, the MWRI image was decomposed using wavelet
decomposition, revealing the presence of significant stripe
noise in the scanning direction of the instrument. Furthermore,
the deconvolution operation also amplifies the stripe noise,
as illustrated in Fig. 11.

Therefore, before applying the actual spatial resolution
matching algorithm, we incorporated a stripe noise removal
module (ICLP+) to ensure that the subsequent spatial
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Fig. 10. Illustration of the stripe noise in the MWRI image.

Fig. 11. Impact of the stripe noise on deconvolution.

resolution matching algorithm does not amplify the impact
of stripe noise.

Based on this, we also conducted an additional ablation
study. As shown in Table III, 100 typical scenes were sim-
ulated and degraded with the addition of stripe noise. The BG
and ICLP methods were used for spatial resolution enhance-
ment, and a module to remove stripe noise was added before
the algorithm. The results of the ablation experiments are
shown in Table III. It can be seen that in the presence of stripe
noise, for the single-stage deconvolution algorithm (BG), the
module for removing stripe noise before the deconvolution
operation greatly improves performance. For the multistage
spatial resolution enhancement algorithm (ICLP), since the
algorithm itself has a denoising module, the module for
removing stripe noise has a small improvement.

B. Spatial Resolution Enchantment on Actual Measurements
The above results show the superior resolution enhancement

ability of the proposed ICLP method from the perspective
of simulated synthetic data. In this section, the resolution
enhancement effect on actual radiometer measurements is
discussed.

The actual 10-V measurements are used as the experimental
objects because it has the most extreme degradation condition.
Since the ideal TB at 10 V is unavailable, the actual mea-
surements at 37 V can be used as a reference. As depicted
in Fig. 12, the Tonle Sap Lake (enclosed by a white
dash-dotted rectangle) and Kota Pangkalpinang (enclosed
by a white dash-dotted rectangle) are not well-defined in
actual 10-V measurements but are clearly presented in 36-V
measurements.
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Fig. 12. (a) Actual 36-V measurements. (b) Actual 10-V measurements. Results reconstructed from Fig. 12(b) using the (c) BG method, (d) TVBF+,
I EDSR, (f) PMP, (g) Outliers, (h) Real-ESRGAN, and (i) ICLP.

As shown in Fig. 12(c)–(f), all algorithms produce more
precise interfaces of the lake and island. Specifically, the
traditional BG algorithm resulted in poor data integrity due
to amplifying noise and producing significant artifacts. The
TVBF+ and EDSR methods significantly improved upon
the drawbacks of the BG algorithm by reducing noise and
artifacts. However, these two methods still suffer from cer-

tain limitations, including the presence of conspicuous data
contamination areas in the land–sea transition zone and the
inability to accurately reconstruct the amplitude of small tar-
gets such as islands and lakes. The TVBF+ method produced
an over-smoothing effect due to the use of a denoising filter
(Tonle Sap Lake), while the EDSR method produced an over-
enhanced effect (Kota Pangkalpinang). Both over-smoothing
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TABLE III
RECONSTRUCTION PERFORMANCES OF BG AND ILP W/ W/O THE DESTRIPE MODULE

Fig. 13. (a) 10-V measurement. (b) 18-V measurement. (c) 23-V measurement. (d) 36-V measurement. Using the proposed ICLP method (e) reconstructed
10-V result, (f) reconstructed 18-V result, (g) reconstructed 23-V result, and (h) reconstructed 36-V result.

and over-enhanced effects are unacceptable as they affect the
accurate acquisition of meteorological parameters for each
pixel.

The PMP method effectively eliminates data contamination
bands in clearly defined land–sea transition areas by using
patch-wise minimal pixel prior information, but its unique
prior information targeting natural images results in excessive
smoothing in areas with relatively flat land/ocean gradients,
causing effective information in the original image to be
erased. The outliers method performs better in reconstructing
the information of the land–sea boundary transition zone
compared to the above-mentioned methods, but failed to
accurately reconstruct the contours of islands as shown by
the comparison with the 36.5-GHz channel image. The Real-
ESRGAN method achieves the best restoration of land–sea
gradient information, almost eliminating all land–sea transition
zone polluted data, and producing almost no amplification of
noise and artifacts. However, due to its GAN-based principle,
the method was not completely accurate in recognizing some
small structures, leading to enhancement effects beyond the
original data information.

Noticeably, the proposed ICLP method effectively addressed
the above issues by significantly reducing the polluted data
in the land–sea transition zone, producing clearer land–sea
boundaries, and generating more realistic reconstructed infor-
mation when compared to the 36.5-GHz channel image
with no artifacts or excessive blurring. Overall, in terms

of comprehensive consideration, the clarity of reconstructed
images, reconstruction accuracy, noise amplification suppres-
sion ability, and artifact generation suppression ability, the
ICLP method achieved the best reconstruction effect for
the actual measured MWRI data, indicating better spatial
resolution and data integrity enhancement and providing
support for subsequent multichannel data spatial resolution
matching.

C. Spatial Resolution Matching on Actual Measurements

We have previously demonstrated the proposed algorithm’s
spatial resolution enhancement capability for the most
extreme 10 V/H cases. In this section, we will explore the
spatial resolution-matching ability among different channels.
In the actual algorithm application, we adjust the number of
DD blocks to 4, 3, 3, and 2 for 10, 18, 23, and 36 V/H
channels, respectively, which is due to the tradeoff between
the matching accuracy and time consumption.

As shown in Fig. 13(a)–(d), the original spatial resolution
increases with increasing frequency channels. Fig. 13(e)–(h)
shows the spatial resolution matching results of Fig. 13(a)–(d)
utilizing the proposed ICLP method. The proportion of con-
taminated data near the land–sea interface decreases, and
the different channels’ contaminated band is almost at the
same level. (One thing worth noting is that because they
detected various temperature brightness and atmospheric char-
acteristics, different frequency measurements had distinct color

Authorized licensed use limited to: TU Delft Library. Downloaded on July 28,2023 at 13:50:04 UTC from IEEE Xplore.  Restrictions apply. 



5301614 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023

Fig. 14. (a) 10-V gradient. (b) 18-V gradient. (c) 23-V gradient. (d) 36-V gradient. Using the proposed ICLP method (e) reconstructed 10-V result,
(f) reconstructed 18-V result, (g) reconstructed 23-V result, and (h) reconstructed 36-V result.

ranges. Setting the same color range would prevent certain
small regions from being explicitly portrayed.)

Fig. 14 depicts the image gradients before and after apply-
ing the proposed ICLP algorithm. However, large gradients
occur mainly along the land–sea interface area. The large
antenna pattern footprint results in the wide gradient variation
band. The width of the gradient variation band indicates the
spatial resolution, which is approximated for all frequency
channels after applying the spatial resolution enhancement of
the proposed method. Comparing results before and after the
algorithm’s application reveals that ICLP achieves satisfying
spatial resolution matching results.

IV. CONCLUSION

A new multichannel spatial resolution-matching technique
is proposed, composed of the progressively iterative decon-
volution structure and closed-loop priors mechanism. The
adaptive closed-loop priors mechanism solves the mutual
constraint problem of spatial resolution enhancement and noise
amplification, achieving relatively high spatial resolution and
data integrity. Progressive iterative deconvolution ensures that
even the most severely degraded data can be progressively
recovered, where high-frequency details can be well sup-
plemented. Different levels of degraded data are recovered
to the same optimal quality by setting different iterative
blocks. Experimental results based on synthetic and actual
MWRI measurements confirm the soundness of the ICLP
method, which outperforms the traditional analytical and basic
learning-based methods in restoring the small targets accu-
rately and reducing the artifacts, especially near the land–sea
interface area. The spatial resolution of all the frequency
channels is matched up to a comparable level.

However, the reconstruction ability of a single sparse adap-
tive priors deconvolution module in ICLP is not comparable

to that of deep-learning methods. Future developments will
be devoted to combining the multichannel information, the
closed-loop priors mechanism, and the learning-based method
to exploit the design of an effective deep explainable spatial
resolution-matching network.
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