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Executive Summary

The Netherlands is going through a rapid electrification phase as a result of the National Climate Agree-
ment of 2019. Industries, transport and households are shifting from fossil fuels to renewable electricity.
However, the electricity grid struggles to accommodate the rising demand and supply. Congestion oc-
curs when grid capacity is exceeded, leading to outages and delays for new connections which poses
a challenge to the energy transition. Currently, large-scale consumers such as industrial companies
(IC) are mostly affected. One potential solution for ICs are to join Energy Hubs (EH), where localized
energy generation and distribution provide a reliable source, reduce dependency on the main grid, and
lower costs for the IC.

Companies such as Emmett Green support these transition initiatives such as EH for IC by designing
private grids, financing batteries, and developing Energy Management Systems (EMS). Emmett Green
also plays a key role in EH projects by uniting these companies and act as Congestion Service Provider
(CSP) that offers flexible capacity on behalf of the EH to the grid operator. In order to offer flexible ca-
pacity, Emmett Green uses an EMS that monitors, controls, and optimizes the generation, distribution,
and consumption of energy within the EH. Additionally, Emmett Green is involved in Group Contracts
(GTO), where the participants of the EH can share capacity through joint agreements. Yet, the success
of EHs depends not only on the technical and contractual infrastructure but also on participants beha-
viour. While congestion management tools like Demand Response (DR) aim to shift electricity use to
off-peak periods, behavioural diversity can make it more difficult to align individual incentives with the
collective goals of the EH.

Existing frameworks for EHsmainly focus on techno-economic aspects using deterministic and stochastic
models. These models often assume that the actors are rational, leaving out the bounded rationality
and behavioural variability. There is a need for models that better include decentralized interactions,
emergent system dynamics, and behavioural diversity. Also, empirical validation of consumer and
prosumer behaviour is limited, especially for IC. From literature, it is clear that multi-actor collaboration
is important but current models provide little insight into how informal communication develop.

To address the previous knowledge gaps, this research aims to explore the behavioural diversity and
bounded rationality within an EH with a modelling tool such as Agent-Based Modelling (ABM). One
approach to model consumer behaviour is to use the theory of Social Value Orientation (SVO), which
divides humans into four categories: altruistic, pro-social, individualistic, and competitive. In the SVO
theory the altruistic people prioritized social welfare, while individualistic people prioritized their own
welfare. Pro-social people want to balance their self-interest with social welfare and competitive people
pursue relative advantage. Literature also described some behavioural drivers in the context of DR,
such as price sensitivity, trust, and expectations. When combining the SVO theory and behavioural
drivers with ABM, the multi-actor collaboration within an EH under congestion management can be
explored. Finally, with a survey the model can be compared with real-world data of participants in an
EH.

By addressing these considerations, this research has the following research question:

What is the impact of diverse participant behaviour and Social Value Orientations on congestion
management in an Energy Hub within a Group Contract?

To address this question, an ABM was developed to simulate an EH with ICs. Each IC was charac-
terized by SVO, behavioural drivers such as load shift sensitivity, penality sensitivity, and operational
loss of load shifting. Also, each IC had a distinct demand profile and its own categorization of the four
capacities which are fixed preferent, flexible preferent, fixed non-preferent, and flexbile non-preferent.
The model itself incorporated rotational load shedding, adaptive capacity allocation, PV panels, and a
dashboard. The IC agents followed a daily planning cycle, where they receive and observe congestion
forecast from the Collective Energy Management System (CEMS) via the dashboard, evaluate possible
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penalties, and decide whether to shift their flexible preferent loads on the same day or accept penalties.
The Key Performance Indicators (KPIs) to evaluate the performance of the model include total load
shifting, total load shedding, total penalties, and total rewards.

Nine scenarios and a base case were simulated, ranging from homogenous populations (e.g. all altru-
istic) to heterogenous populations (e.g. altruistic and pro-social). The scenarios were run 50 times per
scenario. The results across the four KPIs show clear trade-offs between the compositions, with no
single populations excelling across all KPIs. All competitive populations achieve the highest long-term
load shifting, but face very high load shedding and penalties which reduces reliability. All individualistic
populations maximize their financial rewards, but contribute the least to load shifting which shows how
they prioritize personal profit above collective performance. All pro-social populations show that they
minimize load shedding, but face high penalties and low rewards. All altruistic populations did not con-
tribute that much to load shifting, but just like pro-social population have a low number in load shedding.
The mixed populations, such as moderate, equal, competitive dominant, cooperative dominants, and
polarized, generally show balanced results and avoiding extremes. Cooperative dominants, competit-
ive dominant, and polarized populations offer moderate benefits but have higher penalties and lower
rewards. There are also seasonal patterns, because the results show that altruistic and pro-social
populations perform the best in short-term, while the competitive populations adapt over time in long-
term. However, it is important to note that competitive populations undermine reliability by a high load
shedding number.

The survey explored the behaviour of real-life participants of EHs, focussing on the SVO type and
decision factor for load shifting and capacity sharing. This survey was conducted anonymously via
Google Forms and it combined multiple-choice, open-ended, and Likert-scale questions to understand
the theoretical and new behavioural drivers, but also the SVO of participants. There were three situ-
ations presented as context for the questions: load shifting on the same day, sharing unused capacity,
and approaching another company to lower their usage.

The survey results have shown that the respondents on average all have a pro-social SVO. They
are mainly prioritizing fairness and cooperation in load shifting, capacity sharing, and approaching
another company to lower their usage. Altruistic behaviour emerges in the situations of sharing unused
capacity or load shifting, but is absent in conflict-prone situations such as asking others to reduce usage.
Individualistic and competitive responses also emerged at a lower rate, which shows that self-interest
emerges when operational stability or relative advantage is at stake. Overall, respondents value social
and operational factors such as trust, reputations, continuity of business processes, and positive past
experiences, more than financial incentives. This suggest that cooperation in EHs are less driven by
short-term profit, but more by mutual recognition and long-term relationships. Compared to the ABM,
the SVO composition of the respondents align with the all pro-social scenario. This would mean that
the respondents in an EH ware likely to perform well in load shifting and load shedding, but receive
less rewards and moderate-high penalties.

Based on the survey results and the results from the ABM, this study proposed three strategies for
improving EHs management with DR incentives: Time-of-Use (ToU) penalty pricing with dashboards,
gamification, and proportional load shedding. ToU pricing in combination with dashboards target peak
hours by signalling congestion in real-time to trigger pro-social and altruistic participants, while the
variable pricing of ToU trigger competitive participants. The challenge with this strategy is that IC
usually have limited flexibility of their processes which makes it harder for them to react to ToU signals.
With gamification the social factors are used to engage diverse participants in interactive activities and
support collaboration. The challenge with the gamification strategy is to design the game carefully, as
it needs to be tailored to the needs and motivations of participants. Lastly, proportional load shedding
is a fairer alternative than rotational load shedding as it reduces participants who have higher usage
instead of the participants who have low usage. This load shedding approach is more equitable than
equal.

For the generalizability of the results, it is important to know the model limitations. For example, it
was difficult to determine the model validity since there is no existing real-world system to compare the
model with. Also, stylized data was used as part of the model input and assumptions and simplifications
were made in conceptualizing the model. Another important limitation was that the survey yielded a low
response rate with a small sample size, so the results of the survey should be interpreted as exploratory
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rather than robust evidence.

From this thesis, it can be concluded that an ABM simulation study is a successful way to integrate
technical, economic, and behavioural aspects of EHs in one model. The model has provided a system-
level perspective, showing how heterogenous and homogenous IC compositions influence demand
response outcomes. This model can be used in future case studies to analyse collaboration patterns,
test interventions, and the the recommended strategies. Another future research suggestions would
be to extend the model with adaptive learning, social networks of ICs, and to add additional flexibility
assets to better reflect real-world EHs. Lastly, an extensive empirical data collection could validate the
behavioural assumptions with using a larger target group.

The files created and used for this thesis are available in the 4TU Research Data repository (Doerdjan,
2025).
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Abbreviations and Glossary

Abbreviations
Abbreviation Definition

ABM Agent-Based Modelling
CEMS Collective Energy Management System
CSP Congestion Service Provider
DR Demand Response
EH Energy Hub
EMS Energy Management System
GTO Group Contract
GTV Contracted Transport Capacity
G-GTV Group Contracted Transport Capacity
IC Industrial Company
kW Kilowatt
kWh Kilowatt hour
P2P Peer-to-peer
PV Photovoltaic
SVO Social Value Orientation

Glossary
Term Definition

(C)EMS An (Collective) Energy Management System is a
system that monitors, controls, and optimizes the
generation, distribution, and consumption of energy
within a facility, organization, or energy network. Its
goal is to improve efficiency, reliability, and cost-
effectiveness while reducing environmental impact
(Emmett Green, n.d.-a).

Congestion Management Strategies that aims at either steering the supply or
demand of energy during peak periods, when the
grid’s capacity reaches its limit (Wampack, 2021).

CSP A party that offers flexible capacity on behalf of one
or more grid users to the grid operator in order to
help resolve grid congestion (TenneT, n.d.).

DR Balancing the demand on power grids by encour-
aging customers to shift electricity demand to times
when electricity is more available (Arias et al., 2025)

Energy Hub A small-scale decentralised energy production unit
that utilizes locally available resources and distrib-
utes energy based on specific demand (Javid et al.,
2021).

Fixed Non-Preferent Capacity Capacity that should remain continuously available
but does not have high priority.
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Term Definition

Fixed Preferent Capacity Capacity that must remain continuously available
and also has the highest priority. Examples include
core business processes such as an oven that must
always stay if the company is a bakery.

Flexible Asset An asset is a physical energy installation that can be
owned by an individual, company, or organization.
A flexible asset is an installation that can quickly re-
spond to changes in energy demand or supply. Ex-
amples of flexible assets include solar panels, bat-
teries, charging stations.

Flexible Non-Preferent Capacity Capacity that varies over time and can be steered
without practical consequences.

Flexible Preferent Capacity Capacity that varies over time and also has high pri-
ority. This means a device or process is turned on
and off during the day by the control system, but
the exact timing may vary. So, this capacity may
be postponed, but it is necessary that eventually the
process or device is turned on that day.



1
Introduction

1.1. Research Problem
The Netherlands has been electrifying for the past few years as a result of the National Climate Agree-
ment of 2019 and therefore uses less gas than before (Klimaatakkoord, 2019). Industries, homes, and
transportation are rapidly transitioning from fossil fuels to electricity generated by renewable sources
like wind and solar. According to the CBS, 2025 , the bruto production of electricity in the Netherlands
in December 2024 was 11.57 TWh while in October 2023 it was 9.76 TWh which is an increase of 1.81
TWh per year.

However, there is a major challenge: the current electricity grid is not ready for this large-scale electrific-
ation. The existing infrastructure was not designed to handle the huge increase in demand and supply
of electricity. These peaks leads to problems during peaks, when either too much electricity is being
consumed or generated (RVO, n.d.). This exceeds maximum capacity of the grid, causing delays or
even power outages due to grid congestion.

With the electricity grid reaching its maximum capacity, an increasing number of new businesses can not
be connected to the grid. This grid congestion poses a challenge to the energy transition as currently
22 TWh of electricity supply, mainly from solar and wind energy, is stuck in a waiting queue. At the
same time, 63 TWh of electricity demand remains unfulfilled which shows that the energy needs can
not be served at the moment (Energie Nederland, n.d.). This situation has serious social and economic
consequences as delays in electrification slow the Dutch energy transition toward sustainable energy
and limit companies with expanding or investing in sustainable technologies (Rooijers, 2023a, 2023b).
Some businesses are even required to temporarily rely on fossil-fuelled back-up systems such as gas
generators, making the whole energy transition less sustainable (Rooijers, 2023a).

Grid congestion mainly affects large-scale consumers, such as industrial companies (ICs) (Stedin, n.d.).
One potential solution for ICs is joining an Energy Hub (EH), where a small-scale energy production
unit utilizes locally available resources and distributes energy based on specific demand (Javid et al.,
2021). An EH would benefit ICs because it allows them to secure reliable access to electricity for
their business processes, reduce dependency on the main grid during peak congestion periods and
potentially lower energy costs by optimizing local generation and consumption. In addition, EHs can
improve collaborative energy sharing as demonstrated at Schiphol Trade Park and a business park in
Nederweert (Rooijers, 2023a, 2023b). In the two previous examples, the companies within the park
can jointly manage limited grid capacity and trade local solar generation to meet their needs. They
also show that the energy transition is not only a technical challenge, but also a social challenge which
requires coordination, cooperation, and trust among the stakeholders.

This social challenge is also illustrated by individual entrepreneur such as JanRos of La Coquerie (West-
erveld, 2024). Ros faced delays in receiving grid capacity from Liander despite proactive planning after
switching from gas to electric ovens. To manage this delay, he implemented evening and night shifts,
installed batteries, and even developed his own Energy Management System (EMS). Ros’s experi-
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ence shows that the grid congestion challenges also require entrepreneurial problem-solving thinking,
behavioural adaptation, and proactive energy management by businesses (Westerveld, 2024).

A company that has experiences with facilitating the energy transition for ICs is Emmett Green. Em-
mett Green facilitates the energy transition, among other things, by connecting stakeholders through
services and technologies. These services and technologies include private grid design, battery finan-
cing and simulation, EMS development, and implementation of e-boilers and heating networks (Emmett
Green, n.d.-b). By primarily helping ICs, Emmett Green plays a key role in EH projects by uniting these
companies and act as congestion service provider (CSP). A CSP is a party that offers flexible capacity
on behalf of one or more grid users to the grid operator in order to resolve grid congestion (TenneT,
n.d.). This is partly done by the EMS that monitors, controls, and optimizes the generation, distribution,
and consumption of energy within the party of grid users or user (Emmett Green, n.d.-a).

Additionally, Emmett Green is already involved in group contracts (GTO), where multiple industrial
companies can share access to capacity through joint agreements (Enexis Netbeheer, n.d.). These
agreements offer a contractual foundation for energy cooperations with EHs.

However, the successful operation of an EH relies not only on the physical infrastructure and the con-
tractual foundation but also on the behavioural dynamics between its participants. Effective energy
distribution requires coordination, yet individual members may have different priorities and objectives
such as cost minimization or self-sufficiency. This creates a collective action problem where individual
businesses may see limited direct gain by participating while the grid benefits if many companies adjust
their consumption (Rooijers, 2023c).

These decentralized decisions introduce complexity into the systems behaviour, which can potentially
lead to less optimal energy flows or stability. To handle these challenges, congestion management
strategies are important because it aims to either steer supply or demand of energy during peak periods
when capacity limits are reached (Wampack, 2021).

A component of congestion management is Demand Response (DR), where participants of the EH are
encouraged to shift their electricity demand to off-peak times (Arias et al., 2025). Yet, in the context of
EH where behavioural differences shape how decisions are made, implementing congestion manage-
ment strategies such as DR may be challenging. The effectiveness of these strategies depend not only
on technology and regulation, but also on aligning incentives and engaging participants so that busi-
nesses are willing and able to adjust their energy usage without compromising core operations. This
can lead to resistance to cooperation or a situation where individual incentives conflict with collective
goals of the EH.

1.2. Research Objective
The aim of this thesis is to analyse the different types of behaviour participants/IC can show in an
EH, focussing on how cooperative and competitive dynamics influence the flow of energy distribution,
operational reliability, and overall performance of the EH. The focus is also specifically on participants
who stay in the EH and do not plan to leave or join the EH. The goal is to identify strategies that can
optimize collaboration while managing the challenges posed by competitive incentives.

This research aligns with the Complex System Engineering andManagement (CoSEM) program, as the
EH is a complex system involving multiple internal and external factors, actors, and interactions. This
thesis addresses technical challenges like grid congestion, energy distribution, and system stability,
focusing on how EHs can optimize energy flow and address infrastructure limits. On the social side,
this thesis explores how cooperative and competitive behaviours of participants impact energy sharing,
system resilience, and long-term sustainability, highlighting the role of human decision-making in the
EH’s performance.

This thesis also aligns with Emmett Green’s mission to enable and improve flexible energy systems.
By analysing behavioural dynamics in EHs, this thesis can support Emmett Green’s work at the level
of stakeholder interaction and improve coordination, flexibility, and efficiency within EHs.
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1.3. Research Scope
The scope of this research is specifically limited to participants who remain within the EH for the entire
duration of the study, with no consideration for participant turnover. New participants are not allowed to
join the Energy Hub, as the focus is not on membership dynamics or market entry and exit, but rather
on the interactions and behaviours of a fixed group of participants.

The model focuses on indirect interactions between participants, where their decisions and actions
influence each other through shared resources and system mechanisms, rather than through direct
bilateral communication. Only internal EH operations are considered; interactions with the external
energy market or other hubs are excluded.

1.4. Thesis Structure
This thesis consists of ten chapters, including the current one. Chapter 2 introduces some core con-
cepts and synthesises the relevant literature, which leads to the identification of knowledge gaps and
the formulation of the main research question. Chapter 3 outlines the research approach, which goes
further into detail on the methods for each sub-question. Chapter 4 dives into the model conceptual-
ization, where the aspects of the model is being conceptualized and discussed. Chapter 5 translates
the conceptualization of Chapter 4 into an operational model. Chapter 6 describes the set-up of the
experimental design and Chapter 7 presents the results from these experiments. Chapter 8 will ana-
lyse the model results from the previous chapter. Chapter 9 will discuss and present the survey design,
results, and analysis. Chapter 10 presents the discussions and limitations, where the methodology is
reflected upon and implications are discussed. Finally, the thesis ends with a conclusion in Chapter 11
where the research questions and sub-questions are answered. This chapter also presents managerial
recommendations and future research recommendations as well as .



2
Literature Review

In this chapter, core concepts are introduced which are used for important background knowledge later
in this research. Furthermore, an explanation of the methodology used to obtain and select literature
is given. After this, the chosen literature will be synthesized and the knowledge gaps will be identified.
Lastly, the main research question will be introduced based on the identified knowledge gaps.

2.1. Core Concepts
This section discusses some core concepts that are important for background knowledge of this re-
search. These core concepts include information about the Social Value Orientation (SVO), Behavi-
oural Drivers of Demand Response, and Group Contracts.

2.1.1. Social Value Orientation
The traditional economic models are based on the concept of homo economicus, which assumes that
individuals act only out of self-interest and wants to maximize their profit. In addition, it is assumed
that homo economicus is a rational being and also makes rational decisions (Mele & González-Cantón,
2014).

However, research in social psychology and behavioural economics of (Messick & McClintock, 1968)
have shown that the concept of homo economicus fails to fully capture human motivation, particularly
in contexts of social interdependence. They have provided empirical evidence that many individuals
can display positive social concerns, which challenges the self-interested assumptions of homo eco-
nomicus. Messick and McClintock, 1968 proposed that individuals have three dominant motivations
which are maximizing joint outcomes (cooperative), relative advantage (individualistic), and one’s own
pay-off (competitive). These motivations are not fixed, but can shift depending on the context.

Building on the empirical evidence from Messick and McClintock, 1968, the term Social Value Orient-
ation (SVO) was introduced through the research of Van Lange, 1999. Van Lange, 1999 defines SVO
as the degree to which individuals value other’s material outcomes alongside their own. In contrast to
the homo economicus, individuals with a more prosocial SVO find value in outcomes that are fair or
beneficial to both themselves and others.

Greiff et al., 2018 and Murphy and Ackermann, 2014 emphasized that SVO is a continuous spectrum
which can be divided into four ranges: altruistic, prosocial, individualistic, and competitive. Altruistic
individuals prioritize the other’s pay-off above their own, while prosocial individuals seek fairness or
maximize joint outcomes. Individualistic individuals are mainly concerned with their own outcome and
competitive individuals aim to maximize the difference in their favour even at cost of themselves.

Expanding on Greiff et al., 2018 research, Moisan et al., 2018 showed that both intrinsic social prefer-
ences and the external incentive structure of the game influence cooperative behaviour. Their study
use a set of Prisoner’s Dilemma games with varying pay-off structures and showed that SVO can predict
cooperation, but only under certain circumstances. Prosocial individuals are more likely to cooperate
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and can even encourage individualistic individuals to do the same in games where mutual cooperation
leads to rewards and rejection of cooperation leads losses. However, in games where cooperation
is less advantageous or easily exploitable, prosocial individuals may receive lower pay-offs or even
become targets of exploitation.

It can be concluded that the assumption of self-interested and rational decision-making as seen in the
homo economicus model is not adequate for portraying the diversity of human motivations in social
contexts. The integration of SVO into behavioural economic research offers a more nuanced under-
standing of cooperative behaviour. Individuals display varying degrees of concern for other’s outcomes,
which interacts with the external incentive structure. Recognizing this interplay between SVO and the
external incentive structure may allow for a more accurate prediction of behaviour in social settings and
can even help with designing institutions and policies.

2.1.2. Behavioural Drivers of Demand Response
While SVO provides a useful psychological framework for understanding how individuals value the
outcomes of other’s, it represents only one piece of a broader behavioural landscape. Real-world
decision-making in complex systems such as EHs are shaped by a wide range of behavioural drivers.

According to Arias et al., 2025, DR refers to the adjustments electricity users make to their typical
consumption patterns in response to electricity prices, financial incentives, or the need to support grid
stability. Research by Hu and Jin, 2025 underline the significant role of DR within integrated energy
systems such as EHs. They argue that DR strategies are an effective component of EHs to manage
operational uncertainties, optimizing costs, and improve overall system flexibility.

Amini et al., 2019 and Carvalho et al., 2020 have shown that there are several drivers that affects
consumer participation in DR programs. These drivers include economic and behavioural incentives.
Economic incentives such as setting tariffs canmotivate users to shift consumption, but its effectiveness
depends on the user’s price sensitivity and trust in the system. Behavioural incentives such as risks
aversion, privacy concerns and consumption patterns play an important role in individual responses.
Eslamizadeh et al., 2022 have shown that the reputation of one’s company, positive experiences, and
expectations of others can play a significant role in influencing and their willingness to participate in col-
laborative initiatives. Howard, 2024 have shown that providing users (specifically in residential context)
with insight into capacity pressure and real-time grid conditions can increase the engagement in load
shifting and other demand response action, because participants can see when their actions matter
the most.

For an industrial user in particular, behavioural constraints are often closely tied to technological and
operational limitations. While a company may theoretically benefit from shifting energy use to off-peak
hours, practical constraints such as fixed production schedules, temperature control requirements, or
quality assurance concerns may withhold such load shifts (Schwabeneder et al., 2019). It can be
concluded that for some industrial users engaging in load shifting may result in additional operational
costs (e.g.increased personnel expenses), reduced product quality requiring re-production, and other
inefficiencies in the production process.

The study of Gerami et al., 2021 points out that many industrial processes fall into categories of either
shiftable, controllable or non-shiftable loads which depends on their technological characteristics and
operational constraints. Non-shiftable processes, such as continuous kiln operations in cement pro-
duction must operate without interruption. Shiftable loads can be rescheduled within a certain time
window. Controllable loads offer more flexibility by allowing both the timing and quantity of capacity to
be adjusted. Emmett Green categorizes loads into four groups: fixed preferent, flexible preferent, fixed
non-preferent, and flexible non-preferent (M. Wildschut, 2025). The distinction between fixed and flex-
ible refers to the ability to reschedule a load: fixed loads are non-shiftable, while flexible loads can be
shifted in time. The preferent versus non-preferent classification indicates the criticality of a process to
the overall operation. For example, in the case of kiln operation within a cement production facility, the
load would be classified as a fixed preferent load. This is because the kiln must operate continuously
without interruption, and its operation is critical to the company’s core production process.

In summary, while DR plays an important role in improving operational uncertainties, optimizing costs,
and improve overall operational reliability, it also depends on understanding the behavioural and eco-
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nomic drivers that influences stakeholders in the EH. Loads can be categorized into four main categor-
ies: fixed preferent, flexible preferent, fixed non-preferent, and flexible non-preferent.

2.1.3. Group Contracts
The minister of Climate and Energy of the Dutch government, Rob Jetten, had send a letter in October
2023 to the Speaker of the House of Representatives to announce the new measures to tackle grid
congestion. These measures aim to decrease net congestion by focusing on faster grid reinforcement
and for a smarter use of the electricity network (Ministerie van Economische Zaken en Klimaat, 2023a).
One of the mentioned measures was the option for a flexible group contract for large-scale consumers,
specifically the Group Transport Agreement in short the GTO.

The GTO is an agreement between the Distribution System Operator (DSO) and a group of connected
parties such as the large-scale consumers (Wampack, 2024). In general, instead of each company
having its own contracted transport capacity (GTV), the group jointly manage and optimize their shared
group contracted transport capacity (G-GTV) by virtually linking their physical connections. The group
can only be formed if the participating companies all are on the same substation and if they have
the same type of connection, which are either low voltage, medium voltage, or high voltage (Enexis
Netbeheer, n.d.) Large-scale consumers usually are on the medium voltage. This group appoints a
single legal representative who acts as the contract holder and together they distribute the G-GTV
among the participants based on mutual agreements (Netbeheer Nederland, 2024).

This group of companies is called an energy cooperation, which is a collaborative organizational form.
Through an energy cooperation, its members can collectively invest in renewable energy technologies,
such as solar panels, wind turbines, batteries and even an EH (Westland Woont Duurzaam, n.d.). By
functioning as a cooperation, this legal entity can facilitate joint decision-making and shared owner-
ship which enables making strategic investments. An example of this is the investment in batteries,
which can be used to balance supply and demand or to make profits from market opportunities. These
revenues can be redistributed among the members of the energy cooperation based on agreed upon
principles (ACM, n.d.).

The advantages of a GTO is that it allows the participants of the group to optimally align their usage and
avoid simultaneous peaks. Also, for the individual is that participation in the group allows him to use
more GTV than his original GTV, as long as the group as a whole remains within the group’s capacity
(Netbeheer Nederland, 2024). Furthermore, the companies in the group are more enabled to jointly
invest in renewable energy technologies, because the usage and costs can be shared in the group.
The following figure 2.1 is a visualization of the GTO:

Figure 2.1: Visualization of GTO (Netbeheer Nederland, 2024)

The group capacity is decided by the aggregated profile of the group in the energy hub. Every company
has its own usage profile, which can differ between companies. For example, company A might use
more electricity during themorning and less during the afternoon, while company B usesmore electricity



2.2. Literature Search Process 7

during the evening and less during the morning (see Figure X on the left). On the left, three user profiles
of their electricity use have been displayed, along with their corresponding GTV. When you combine
their electricity use and GTV, the G-GTV can be calculated (on the right). The G-GTV can be roughly
calculated through determining the 95th percentile of the demand of the aggregated profile (ACM, 2025).
The G-GTV can be calculated for both feed-in and feed-out. From this visualization, it becomes clear
how much capacity is not used to its full potential.

Currently, the GTO is still under construction and is expected to be available sometime in 2025. How-
ever, the preparation for the GTO involves much coordination among participants to align their capacity
use (Wampack, 2024). From a meeting with representatives with Stedin and Liander, it became clear
that in reality this coordination is difficult to reach as participants have troubles with technical restraints
of the location or being collaborative with each other. When participants reach a consensus, the next
discussion is where to put the G-GTV as ideally from the distribution system operator’s side this would
be near the kW max (see Figure 2.1). The participants would ideally want to put the G-GTV near the
GTV(1+2+3) line, as this gives them more space to grow in the future (Liander & Stedin, 2025).

In the meeting with Liander and Stedin, 2025 it also came forward that some founded that in reality
some participants will use their GTV fully, so they can get a higher G-GTV. Here, the response of
Liander and Stedin was that they will filter these peaks away from the rest of the historical profile.

This dynamic illustrates the tension between regulatory planning and market behaviour. As the repres-
entative from Liander summarized (Liander & Stedin, 2025):

”The market will always be smarter than the lawmaker that rushes behind it.”

The quote highlights that despite rules and guidelines, participants often find ways to optimize their
position which underlines the practical challenges of aligning incentives in a shared environment.

2.2. Literature Search Process
In this section, the process of how the literature for the state-of-art literature review was acquired. This
includes where the literature has been retrieved, which keywords were used, what the criteria was for
selecting literature, and what techniques were used to find more literature.

First of all, mainly one specific scientific database was used for the retrieval of the state-of-art literature
which is ScienceDirect. ScienceDirect is a database from Elsevier that enables advanced research
and provides peer-reviewed scientific literature (Elsevier, n.d.). Apart from ScienceDirect, the TU Delft
repository was also used as scientific database. The TU Delft repository contains a range of academic
publications, including theses, authored by TU Delft students and faculty.

Next, some combinations of key words were used to search for the papers. The searches on Scien-
ceDirect are for example ‘Energy AND Hub AND Behavio(u)r’, and ‘Energy AND Hub AND Consumer
ANDBehavio(u)r’. The searches on the TUDelft Repository was for example ‘Energy ANDHub’. These
searches together provided for 78,645 hits which is a lot, so it needed to be filtered by criteria. The first
stage of screening involved reviewing the abstract and keywords off the identified papers to assess
their relevance. After that, the literature was filtered based on the publication year and type of study.
For example, the minimum publication year must be from 2016 and it must include something about
behaviour or modelling frameworks within EHs. The third criterion assessed whether the technical con-
text included for example only renewable energy or only fossil fuel based systems. Altogether, this
refinement reduced the number of articles to 121.

Eventually some articles were found by backward snowballing and looking at recommended articles.
Backward snowballing is looking at the reference list of an interesting article for articles that might be
relevant (Sutherland, n.d.). Five articles were found by backward snowballing and looking at recom-
mended articles.Finally, there were 11 relevant articles found that are included in the literature review.

2.3. Synthesises of Literature
In this section, the papers founded in the literature review process are compared and analysed. The
state-of-art literature is categorised into three main themes: optimization of energy hubs, behaviour
and decision-making, and multi-actor collaboration.
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2.3.1. Optimization of Energy Hubs
The optimization of EH has become an important area of research as integrated energy systems have to
balance efficiency, sustainability, and autonomy. EHs are the operational core of multi-energy systems
which manage the conversion, storage and distribution of various energy forms. As the role of EHs
expands, so does the complexity of optimizing their performance under economic, environmental, and
technical constraints.

Mokaramian et al., 2025 provides a comprehensive review of optimization approaches of EHs where
they are categorized into deterministic and probabilistic methods. Their focus lies primarily on the
techno-economic dimension with methods such as linear and non-linear programming to improve oper-
ational efficiency and cost-effectiveness. At the same time, their review points out that other literature
may need to include more social aspects as they are essential to optimize.

Darvishi et al., 2024 address this lack of social aspects by incorporating a multi-objective optimization
framework within a centralized EH model. Their approach simultaneously minimizes operational costs,
CO2 emissions, and consumer dissatisfaction. They employ scenario-based methods to account for
the uncertainties in renewable energy generation and incorporate load-shifting strategies as part of
their demand response modelling. This research shows the importance of integrating both supply-side
uncertainties and user-level flexibility in EH optimization.

Fan et al., 2018 shifts the optimization focus from single EHs to cooperative communities of EHs by
using a game theoretic framework. They tried to enable decentralized EHs to coordinate energy ex-
changes in such a way that it is both economically fair and not intruding on any participants privacy.
Their distribution optimization method ensures that each EH remains autonomous while still benefiting
from the system-wide coordination and cost reductions. To be noted for this study is that the framework
assumes that the players are rational, which may not always be the case in a real-world environment
with bounded rationality and incomplete information.

Continuing on the concept of the cooperative model, Gan et al., 2024 proposed a joint energy and car-
bon rights trading mechanism among network-constrained EHs. These network-constrained EHs are
EH that are dependent on the electricity grid or gas pipes. By modelling this interaction as a cooperative
game with externalities, they account for both the physical infrastructure limitations and market-based
incentives. While their two stage optimization approach proves to be effective in maintaining coalition
stability and maximizing system-wide benefits, their model also assumes perfect cooperation and com-
pliance with the agreed strategies. The model has simplified the behaviour of the players which not
represent the behavioural variability actual end-users. In the real-world, players may deviate from the
agreed strategies due to self-interest or lack of enforcement.

Earlier work by Dutta andMitra, 2017 investigated dynamic electricity pricing as a demand-sidemanage-
ment tool, which established the foundation for load shifting and price responsiveness. Their findings
confirmed that pricing schemes could shift energy demand, but also highlighted that consumers are
not very sensitive to price changes meaning that they a low elasticity. While this work laid the founda-
tion for price-based optimization models, they noted that there is a need for a model that shows how
consumers respond to dynamic tariffs.

To conclude this section, the optimization of energy hubs is evolving from cost-centric, single-agent
models towardsmore integrated, cooperative, and environmentally conscious systems. However, there
is a growing recognition that behavioural variability, decentralized interactions, and emergent system
dynamics needs to be better represented.

2.3.2. Consumer Behaviour and Decision-Making
In a complex system such as the EH, uncertainty plays an important factor on many sides. In the
previous section, it became clear that there is a need for recognition on behavioural variability and
decision-making.

The challenge of modelling consumer behaviour and system responses under uncertainty becomes
more clear in the paper of Lu et al., 2020 where the focus is on smart residential EHs. In this re-
search, they introduced behavioural uncertainty into the optimization framework by simulating six types
of user behaviour, which includes tolerance to comfort deviation and willingness to engage in demand
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response. The inclusion of the behavioural factors results in notable differences in energy costs and
comfort levels, which emphasizes how individual decision-making under uncertainty can significantly
affect system outcomes. However, in this research they did noy use empirical behavioural data to
confirm the six types of user behaviour.

At a broader system scale, Gökçek et al., 2024 explores a decentralized P2P energy trading frame-
work in a local energy community using a Multi-Agent System (MAS). Their model accounts for the
autonomy and privacy of individual participants of the EH. The consumer behaviour here is modelled
both as strategic and bounded, meaning that the consumers respond to the local price signals and grid
conditions, but their actions are constrained by their limited information and their own energy goals.
This research highlights the importance of decentralized decision making structures that can adapt to
variability and uncertainty in consumers behaviour.

Li et al., 2025 extends the research in consumer behaviour by developing an extensive digital twin
(EXDT) for interconnected multi EHs (MEHs) which also incorporates multi-agent reinforcement learn-
ing to capture local, autonomous, and stochastic decision-making processes of each EH. Here each
EH in the MEHs acts as an agent that learns optimal behaviour in a decentralized setting. The EXDT al-
lows for what-if scenario testing, including cooperative vs non-cooperative interactions and various P2P
market designs. Their findings confirm that non-cooperative strategies, which reflects the real-world
environment, result in reduced efficiency compared to cooperative models. What to note from this re-
search is that they used EHs as agents and not the end-user which are consumers and prosumers in
the EHs.

Boske, 2021 analyses how residential stakeholders with different preferences interact under various
governance and market conditions. This thesis research uses Agent-Based Modelling (ABM) to eval-
uate energy policies, emphasizing the impact of behavioural uncertainty and the need for inclusive
modelling that incorporates both individual and collective institutional responses.

In short, these studies illustrates the importance of looking beyond deterministic and scenario-based
modelling. EHs are complex adaptive systems, where behaviour is dynamic, decentralized, and shaped
by both individual preferences and institutional structures. Tools like ABM and digital twins can explore
the complexity of this behaviour and can also bridge the gap between model-based insights and real-
world decision-making.

2.3.3. Multi-Actor Collaboration
As mentioned in the previous section, consumer behaviour and decision-making is an important aspect
when modelling EHs. Another important factor that influences an EH is multi-actor collaboration, be-
cause it enables diverse stakeholders to align their goals, share knowledge, and eventually co-develop
solutions that build upon the dynamics of an EH.

The thesis research of Berkouwer, 2024 explores this complexity and focusses on the stakeholder
collaboration and how it influences the deployment of local energy systems (LES) on Dutch business
parks which are similar to EHs. Berkouwer concludes that the problem with EHs are not the technical
feasibility, but rather the organizational collaboration. Factors such as having a shared vision, learning
activities, and social network dynamics play an important role in actor alignment and trust development.
Her research shows that understanding and managing these interdependencies is important for the
broader adoption of energy systems.

Building on this, Fan et al., 2018 approach multi-actor collaboration from a systems optimization per-
spective. As said before, they proposed a game-theoretic, distributed optimization framework to enable
autonomous EHs to participate in cooperative energy sharing. Their results show that even decentral-
ized agents can reach collectively beneficial outcomes, if they follow rational decision-making principles.
However, in a real-world setting the actors are not acting with full rationality but rather bounded rational-
ity. This challenge is also noted by Berkouwer who points out that without the social and organizational
foundation, the actors may misalign their goals or fail to cooperate. Similarly, Gökçek et al., 2024 em-
phasizes that effectivemulti-actor collaborationmust balance autonomywith coordination, and flexibility
with resilience.

In summary, the literature consistently highlights that while EH hold great promise for sustainable energy
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transitions, their success heavily depends on effective multi-actor collaboration. Technical feasibility is
no longer the primary challenge but instead the complexity lies in aligning diverse stakeholder interests,
improving trust, and establishing shared goals across institutional, social, and technological domains.

2.4. Identified Knowledge Gaps
In this section, the knowledge gaps that are introduced in the previous sections are presented.

First of all, most optimization frameworks (e.g. Darvishi et al., 2024; Fan et al., 2018; Mokaramian et
al., 2025) focus on techno-economic aspects using deterministic and stochastic methods. While these
frameworks improve efficiency, these models often rely on assumptions of fully rational actors neglect-
ing the bounded rationality, incomplete information, and variability of real-world consumers. There is
a need for better representation of decentralized interactions, emergent system dynamics and behavi-
oural diversity.

Furthermore, Lu et al., 2020 introduces behavioural types but it lacks empirical validation of those
behaviours. Li et al., 2025 tries to refine the behaviour, but still comes short in modelling real con-
sumer or prosumer behaviour. Boske, 2021 studies residential behaviour, but does not gives insight
into behaviour of industrial companies. It can be concluded that there is a need for empirically groun-
ded, user-centric optimization model that reflects the real behaviour of consumers that are IC under
uncertainty.

Lastly, while multi-actor collaboration is frequently acknowledged as a key factor in the functioning
of EHs, current modelling provide limited insight into how this collaboration actually unfolds between
diverse stakeholders. As Berkouwer, 2024 and Fan et al., 2018 emphasize that trust-building, goal
alignment, and informal communication are central to effective cooperation but are not well represented
in existing models. This leaves a knowledge gap in the understanding of the underlying processes that
shape how multi-actor collaboration develops and changes over time.

2.5. Formulation of the Research Question
To shed more light on the first knowledge gap, this research should more accurately incorporate the
decentralized interaction, emergent system dynamics, and behaviour diversity within an EH. To achieve
this, a modelling tool such as ABM that can simulate individual actors and their interactions within a
complex system can be used.

To address the second knowledge gap, this research should be empirically grounded in user-centric
behaviour. This means that there needs to be more research into, and consideration for, the manner
in which actual users interact with the system. This includes incorporating the bounded rationality and
incomplete and asymmetrical information of real-world IC, but also another approach to the diversity of
behavioural dynamics of humans. FromSubsections 2.1.1 and 2.1.2, it can be said that the combination
of SVO and behavioural drivers is a suitable approach to model more accurate behaviour.

Based on the third knowledge gap, this research will examine how participants behaviour influences
multi-actor collaboration within an EH through congestion management. Specifically, it will analyse how
individual behaviours, shaped by SVO and behavioural diversity, affect the formation and outcomes of
collaborative interactions among each other under the constraint and rules of a GTO (Subsection 2.1.3).

Having discussed the considerations for formulating the research question, the main research question
is formulated as the following:

What is the impact of diverse participant behaviour and Social Value Orientations on
congestion management in an Energy Hub within a Group Contract?



3
Research Design

This chapter discusses the specific research objective based on the main research question presented
in the Section 2.5. After that, the research approach is introduced which outlines its selection for this
research. This is followed by an introduction of the sub-questions and the description of the research
methods of how they are applied to address the sub-questions.

3.1. Research Objective
The objective of this research is to develop an empirically grounded, user-centric model for EHs that
integrates the real-life behaviour of IC. Specifically, this research aims to represent how ICs with di-
verse SVOs and behavioural drivers interact with each other under bounded rationality and institutional
constraints from the Group Contract. By bridging the gap between traditional techno-economic optim-
ization models and socio-technical approaches, this research’s goal is to understand how individual
behaviours shape multi-actor collaboration and influence system-level outcomes in congestion man-
agement under a Group Contract.

Based on these objectives, the main research question is formulated as the following:

What is the impact of diverse participant behaviour and Social Value Orientations on
congestion management in an Energy Hub within a Group Contract?

3.2. Research Approach
The objective of the main research question is to explore how diverse participants behaviours, shaped
by SVO and behavioural drivers, influence congestion management andmulti-actor collaboration within
an EH under a Group Contract.

To achieve this objective, the most suitable approach is the modelling approach. This approach allows
to simulate and evaluate various types of participants, which provides insights into the dynamics of their
interactions, the resulting operational outcomes, and the overall performance of the EH under varying
behavioural and system conditions (TPM, 2024). These interactions would be difficult to observe or
test empirically as the EH are in their early stages. Through simulation, different types of participants
can be evaluated without the cost and complexity of real-world experimentation.

According to Ghorbani et al., 2010, ABM is a modelling method that focuses on the behaviour and
interactions of individuals agents rather than modelling the system a whole. ABM is frequently used for
simulating socio-technical system, which are also called complex adaptive systems, where technical
components and human behaviour are intertwined. A strength of ABM is its ability to capture how
micro-level decision-making leads to emergent macro-level patterns, which is relevant when studying
the institutional impact on system-wide performance.

Although the modelling approach is appropriate for this research, it also important to acknowledge its
limitations. For instance, modelling will always be a simplification of the real-world meaning that they

11
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are not absolutely truthful (Sterman, 2002). In this research, the representation of the EH is simplified
to keep it within the available timeframe. As Robinson, 2004 points out, such simplifications are ne-
cessary because data collection and model development can be highly time consuming. Additionally,
models rely on assumptions which means that the validity of the results depend on how accurate those
assumptions are. Robinson, 2004 also notes that some data may not be available or too difficult to
obtain, so it is sometimes necessary to make assumptions.

3.3. Formulation of Sub-Questions
In the previous section, the research approach was outlined highlighting the relevance of ABM for
exploring agent behaviour within an EH. Based on this approach, a set of sub-questions has been
formulated to structurally guide the research process towards answering the main research question.

First of all, in order to model the system in ABM, buildings blocks of the system and agents should be
defined. These buildings blocks consist of the behavioural aspects of the participants, which includes
the internal attributes, decision rules, and interaction rules (Dam et al., 2013). Conceptualizing both
the agents and the environment is important, because it ensures that the ABM accurately represents
the real-world dynamics of the EH. For this reason, the following sub-questions is formulated:

1. How can the Energy Hub be modelled as an Agent-Based Model?

According to Dam et al., 2013, the internal attributes of agents are properties that belong to the agent
itself, for example the hourly energy usage or willingness to pay for capacity. The decision rules are the
‘algorithms’ that the agents use to make choices based on their internal attributes (state) and environ-
ment. Examples of decision rules are the consideration to load shift electricity consumption to another
moment. Lastly, the interaction rules defines how agents interact with one another or the environment
which represents the social dynamics. Examples of interaction rules is the way how agents can allocate
their capacity to others.

Once the buildings blocks are established, the model can be built in ABM. Each agent will be pro-
grammed with the internal attributes, decision rules, and interaction mechanisms. The environment
of the model will represent the technical, institutional, and organizational context of the EH, including
energy exchange possibilities and the Group Contract.

Now the model is created, the Key Performance Indicators (KPIs) can be formulated to evaluate the
model and results:

2. Which Key Performance Indicators are most suitable for evaluating the performance of the
Agent-Based Model?

KPI’s provide insight into the system’s performance as they offer measurable benchmarks. In a complex
system such as the EH, KPI’s can translate abstract objectives into these measurable benchmarks to
evaluate trade-offs and compare scenarios.

Now the KPI’s are formulated, the simulation can be run with the following sub-question:

3. How do the different types of behaviours of agents influence the congestion management
of the Agent-Based Model?

In this sub-question, the ABM will be run under multiple scenarios of different behaviour types to under-
stand the influence of behaviour on congestion management. Congestion management in this case
is mainly done by the EH operators with load shedding, however the participants could also apply de-
mand response (which is part of congestion management) by load shifting. This is relevant, because
it can explore which behaviours promote congestion management and which may lead to bottlenecks.

Now the results of the different types of behaviours are out and analysed, these can be evaluated with
data of real-life participants with the following sub-question:
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4. How do the survey results of real-life participants support the behavioural mechanisms
implemented in the Agent-Based Model?

In this sub-question, empirical data is retrieved from the participants of a real EH and then compared
to the results from the ABM. This comparison not only validates the model, but also provides insights
into which behaviour types are currently present in real-life. This can point out discrepancies between
predicted and actual behaviour.

Now all data from the model and survey is analysed, these insights can be translated into potential
strategies with the following sub-question:

5. How can insights from the Agent-Based Model and survey be translated into potential
strategies that influence system-level behaviour?

In this sub-question, the goal is to explore how insights derived from the ABM and survey can be
translated into potential interventions that influence system-level behaviour within the EH. This sub-
question links simulation results to recommendations for real-world implementation.

3.4. Research Methods
In the previous section, the sub-questions were introduced. This section outlines the research methods
that is going to be used with each sub-question, detailing the specific approach and activities required
to gather the necessary data and insights.

1. How can the Energy Hub be modelled as an Agent-Based Model?

As it says in the sub-question, this sub-question uses ABM as research method. The purpose of the
model is to analyse the user behaviour. Each user (agent) represents a participant in the EH, which
are ICs. The environment in which these agents live in is an EH.

To simulate this system, the model will be developed in Python which offers flexibility and efficiency for
building and testing ABM. Python is particularly well-suited for ABM due to libraries like Mesa, which
allow for scalable simulations and easy visualization of agent interactions (Ter Hoeven et al., 2025).

As mentioned before, the limitation of using ABM is that the EH will be simplified, because a more
complex model would take more time to create and also would take a long time for running.

To make sure that the model is correctly simplified, expert interviews will be conducted to confirm that
the model accurately represents the important dynamics of the EH without forgetting critical factors.
These experts can provide feedback on the assumptions, structure, and level of detail to ensure the
model remains both valid and practical for the research objectives.

Furthermore a desk research is conducted to explore the behavioural characteristics in literature.

2. Which Key Performance Indicators are most suitable for evaluating the performance of the
Agent-Based Model?

In this sub-question, a closer look is taken at the KPI’s which are needed to evaluate the performance
of the model. The KPIs are selected based on logical reasoning from the model structure and the
objectives of the simulation.

A limitation of this approach is that the KPIs are based on logical reasoning from the ABM instead of
empirical validation, which may not include all relevant aspects of the real-world.

To address the limitations, the selection of KPIs are explicitly justified in relation to model outputs and
behavioural mechanisms. The robustness of the KPIs are tested through scenario analysis across
different agent compositions and system conditions. Expert feedback can validate the relevance of
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these KPIs, while the extreme condition testing ensures that small changes in assumptions do not
affect the interpretation of results.

3. How do the different types of behaviours of agents influence the congestion management
of the Agent-Based Model?

In this sub-question, the model is run for multiple scenarios where some behavioural parameters are
varied. Each scenario is going to be run multiple times to account for stochastic effects and to ensure
robustness in the results.

A limitation of conducting a scenario analyses in ABM is that the results can be hard to interpret, be-
cause of the complexity of interactions between many agents (Ghorbani et al., 2014).

To minimize these limitations, an extreme condition test can be conducted to understand the causal
relationship between the agents and the system-level outcomes. By varying individual parameters and
observing their impact on the system, the test can help identify which behavioural factors are most
influential. This not only improves the interpretability of the results but also supports the formulation of
targeted interventions and policy recommendations.

4. How do the survey results of real-life participants support the behavioural mechanisms
implemented in the Agent-Based Model?

The clients of Emmett Green that are in an EH will be approached and asked if they are willing to
participate in the survey.

A survey is a fitting method for this sub-question, because it allows to collect data from a large group
of EH participants. This approach makes it possible to identify preferences, and important factors
that influence behaviour in a structured and quantifiable way while being time-efficient and scalable
(Bryman, 2004).

However, the limitations of using a survey is that it gives a limited depth of the gathered information.
Respondents may not be fully able to express their thoughts. Another limitation is that the respondent
may misunderstand the questions if the questions are not clearly worded (Bryman, 2004).

To address the previous limitations, open questions and the Likert-scale will be included in the survey to
allow for a more nuanced response and richer insight. A Likert scale measures respondents agreement
with statements using multiple items, typically on a 5-point scale, such as strongly disagree, disagree,
neutral, agree, or strongly agree (TU Delft, n.d.).Furthermore, to minimize the risk of misinterpretation,
the questions will be written in simple and specific language together with examples of a situation or
explanation of terms (Bryman, 2004).

5. How can insights from the Agent-Based Model and survey be translated into potential
strategies that influence system-level behaviour?

In this sub-question, the simulation results will be interpreted and analysed to identify patterns, bottle-
necks, and trade-offs that could lead to potential interventions.

However, there is a risk in misinterpreting the outcomes of the ABM and survey that may be context-
dependent. To address this limitation, the interpretations will be discussed with experts to ensure that
the interpretations are grounded in practicalities. This can also improve the validity and relevance of
the interpretations derived from the model.

3.5. Ethical Considerations
As mentioned in the previous section, a survey will be conducted and data will from participants will be
used. When conducting research with humans as research subjects, their safety and privacy should be
guarded. For this reason an ethical plan will be submitted to the Human Research Ethics Committee



3.6. Research Flow Diagram 15

(HREC) of the TU Delft to ensure the ethical standards. This ethical plan includes a Data Management
Plan, an informed consent form, and a risk assessment. The approval of the HREC will serve as
confirmation that this study meets the ethical guidelines and respects the rights and privacy of the
participants.

3.6. Research Flow Diagram
In this section, a Research Flow Diagram is presented to breakdown the research design into phases.
In this visual representation, the research methods and sub questions are placed into these phases in
such a way that there is a clear structure. Figure 3.1 shows this Research Flow Diagram.

As seen in the Figure 3.1, this research has six phases which are respectively: Research Design, Model
Conceptualization, Model Operationalization, Experimental Design, Analysis and Synthesis, Conclu-
sion and Discussion. In the first phase, the goal is to define the research with its background, objective,
problem, and research questions. After the first phase is finished, the second phase can be started
where the building blocks of the model are defined with relevant concepts, attributes, and rules. The
building blocks of the model will lead to Model Operationlization, where the EH is modelled as ABM, the
KPIs are determined, and the survey is designed. After that, the Experimental Design can be started
where the experiments are setted-up and ran. The experiments results will be used in the Analysis and
Synthesis phase, where it will be analysed together with the survey results. From this analysis, the
implications and interventions are formulated. Finally, the conclusion and discussion can be written
once the implications and interventions are formulated.
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Figure 3.1: Research Flow Diagram



4
Model Conceptualization

This chapter focuses on the first phase of the modelling process: conceptualizing the model. It begins
by outlining the primary objectives and provides a description of the agents and the environment within
the system. Key components such as the creation of demand profiles and the implementation of G-GTV
are examined. Additionally, the chapter explores the conceptualization of SVO and its integration into
the model, alongside an explanation of the penalty and reward mechanisms. The role of collectively
owned PV systems is also discussed. Furthermore, the chapter addresses the concept of bounded
rationality and how it applies to agent behaviour. Finally, the chapter concludes with a summary of the
key assumptions and simplifications made for the model.

4.1. Objectives of the Model
The objective of the model is to explore how agents (IC) with heterogeneous SVOs and demand profiles
respond to day-ahead congestion signals in an EH environment. Specifically, the model will simulate
how the agents make trade-offs between personal penalties and social costs when deciding whether to
shift their load or accept penalties. The personal penalties include costs when exceeding their allocated
capacity and operational costs of load shifting includes the costs when shifting their load. The social
costs includes the costs the rest of the EH must pay of penalties.

Furthermore, another objective of the model is to capture the dynamics of individual decentralized
decision-making and centralized control by the EMS. This dynamic will point out the emergent beha-
viour that appears in a complex system such as an EH, which can eventually help in making more
effective policy decisions. An example of such emergent behaviour is the formation of load shifting
patterns that unintentionally create new peaks in non-congested hours. These kind of effects are not
directly programmed, but arise from the interactions between agent heterogeneity, penalty structures,
and centralized control.

4.2. Description of Agents and Environment
In this section, a description is provided of the agents and the environment within the model. It outlines
their characteristics, interactions, and the context in which they function. This model represents an EH
as a system of interacting agents embedded in a shared technical and contractual environment. The
agents resembles individual ICs, while the environment provides the operational context, constraints,
and shared resources in which these agents make decisions. Together, they form a socio-technical
system where individual behaviour and the system are tightly coupled.

4.2.1. Agents
The agents in the model are the ICs of the EH. Each IC is modelled as a distinct entity with its own
preferences, priorities, and operational characteristics. While all agents share the same basic role (i.e.
consuming electricity), they differ in their attitudes toward cooperation, their tolerance for operational
adjustments, and their consumption patterns.

17
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A key defining feature of each agent is its SVO (from Subsection 2.1.1, which determines how it bal-
ances self-interest against collective benefit. Four broad SVO categories are considered: altruistic,
pro-social, individualistic, and competitive. These orientations guide how agents weigh the trade-off
between their own consumption needs and the collective goal of avoiding congestion in the EH.

Each agent’s electricity demand profile reflects variation over the day and year, as well as structural
factors such as company size or the nature of industrial processes. Within this profile, certain loads are
more flexible and critical than others, enabling agents to shift consumption in response to expected con-
gestion. The core decision each agent faces in the model is whether to adjust its planned consumption
to help avoid collective congestion, or to maintain its schedule and potentially incur a penalty.

Within the EH, ICs can theoretically perform a range of actions, such as load shifting, investing in
renewable energy sources, or even coordinating with peers to redistribute demand. However, in the
scope of this model the focus is limited to load shifting. Investment decisions fall under a longer-term
scope, and peer-coordination is excluded due to differing interpretation and uncertainties brought up
during expert interviews. Some experts predicted that ICs can call each other to ask another if they
could lower their energy consumption, however other experts predicted that ICs do not have the time
to do so (H. Spruijt, 2025; M. Wildschut, 2025).

Lastly, another interaction that the agents have is implicit capacity sharing. While each IC is assigned an
individual capacity limit, the agents can exceed their own capacity limit if there is unused capacity within
the EH from other agents. This implicit sharing creates a soft coupling between agents, influencing their
decision-making around load shifting by providing a form of indirect flexibility.

4.2.2. Environment
The environment represents the shared technical and contractual infrastructure of the EH. It includes
the CEMS, the physical connection to the electricity grid, collectively owned renewable assets, and an
information interface (dashboard) available to all agents. The CEMS is the collective version of the
EMS, which is practically the same but for the whole EH.

The EH operates under shared capacity constraints for both electricity consumption (off-take) and in-
jection (feed-in) to the grid. These limits in the GTO apply collectively to all agents. The CEMS con-
tinuously monitors the aggregated demand and generation within the EH, ensuring these limits are
adhered to. If the EH approaches its contractual capacity, the CEMS can intervene through actions
such as rotational load shedding or curtailment of renewable generation (J. Bijl, 2025). Load shedding
is the phenomenon of intentionally disconnecting power to certain areas or groups of users, which also
happens in South-Africa (Nowakowska & Tubis, n.d.). Rotational load shedding means that there is
a planned and cyclical distribution of intentional power outages among users, so that the burden is
shared evenly among the participants. Curtailment refers to the intentional reduction or limitation of re-
newable energy (RE) generation, such as wind or solar power, even when the energy could potentially
be produced (Laimon, 2025).

Collectively owned photovoltaic (PV) panels are integrated into the EH, providing RE generation that
can help reduce grid overconsumption. However, high PV generation can also contribute to congestion
on the feed-in side which requires the CEMS to occasionally curtail production. This collective owner-
ship assumption simplifies the model by ensuring the CEMS has full operational control, avoiding the
complexity of simulating competing EMS of the participants.

The dashboard interface serves as the informational link between the CEMS and the agents. It provides
real-time data and forecasts on EH performance, including demand, renewable output, and expected
congestion (J. Bijl, 2025). The day-ahead congestion forecast is a particularly important feature, as it
forms the basis for the agents’ planning decisions in the model. Both the forecast itself and the load
shift opportunities of the agents are grounded in the functioning of the day-ahead electricity market,
where supply and demand bids are cleared one day before operation to create a binding schedule of
energy transactions (Helman et al., 2008). In reality, these schedules are later adjusted with real-time
conditions which motivates participants to plan based on next-day forecasts. In the model, agents do
not trade in a market but instead rely on the forecasted congestion signal as a indicator for day-ahead
market outcomes. Their decision to adjust demand is conceptually aligned with howmarket participants
reschedule consumption in anticipation of expected prices and constraints.
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In addition to daily operations, the CEMS periodically reallocates capacity among agents based on
historical usage patterns (J. Kluijtmans, 2025). This prevents persistent under-utilization of capacity of
participants and ensures that the available capacity is distributed proportionally to need.

To summarize Section 4.2, the following Figure 4.1 is created. In this Figure, the distinction and the
relation between the agents and environment is visible.

Environment
Agents

CEMS

Dashboard Interface

Collective PV Panels

Main Grid
(Feed-in / Feed-out Limits)

Agent 1
Altruistic

Agent 2
Pro-social

Agent 3
Individualistic

Agent 4
Competitive

Figure 4.1: Conceptual Representation of the EH Environment and Agents.

4.3. Demand Profiles
In this section, an explanation is given of how the demand profiles of the agents in the model were
set-up.

MeterInsight is a Dutch data platform that allows users to monitor the energy usage of clients. The
platform retrieves energy data from diverse sources such as smart meters, submeters, solar panel
inverters, and building management systems (MeterInsight, n.d.).

For this model, historical energy consumption data was retrieved from MeterInsight for a selection of
companies. The raw data from MeterInsight included electricity usage at 15-minute intervals from the
whole year of 2024. The year of 2024 is chosen, because the data is fully available for that year and it
is the most recent year. The raw data with 15-minute intervals were converted to hourly intervals with
Python code. The following figures represent the yearly and daily demand profiles of an anonymous
company (Agent 5):

Figure 4.2: Electricity Usage of 2024 of an Anonymous Company (Agent 5)
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Figure 4.3: Average Daily Electricity Usage of an Anonymous Company (Agent 5)

The names of the companies are kept anonymous to ensure confidentiality and compliance with data
privacy. However, the sector/specialization of each company was considered when processing the
demand profiles. The sector/specialisation was used as guide to classify the total demand into four
categories of capacity (Subsection 2.1.2) which is relevant for load shedding and load shifting. To
continue with the previous demand profile, an example for this categorization is given below:

Table 4.1: Categorization of equipment preferences

Categorization Detail %
Sector/Specialization Construction
Fixed Preferent Welding equipment 35%
Flexible Preferent Sawing and drilling installations 30%
Fixed Non-Preferent Dust suction 25%
Flexible Non-Preferent Lights 10%

As seen from Table 4.1, the anonymous company specializes in construction which means that a big
part of the electricity usage is from machinery and tools necessary for core production activities. It
would be logical that the majority of the total demand originates from high-power critical equipment
such as welding machines (Fixed Preferent) and sawing/drilling machines (Flexible Preferent). These
categories reflect the essential production processes that either require constant operation or allow
limited flexibility in scheduling.

Dust suction systems (Fixed Non-Preferent) are important for maintaining a safe and compliant working
environment, but their timing is less critical to the production output and its electricity usage is not as
much as sawing and drilling installations. Lastly, lights (Flexible Non-Preferent) are not particularly part
of the production process, but are relatively low in power and have a higher degree of shiftability.

This reasoning and categorization is done for all agent’s with their demand profiles. Agents could have
different sector/specialization, which results in different types of capacity. If there is a bakery, their most
important process is baking bread so an oven would be their Fixed Preferent capacity. Compared to all
the other agents, Agent 5 also has a regular year demand and daily demand profile with a peak during
the day and a dip in the summer. Appendix A represent the profiles and categorization of the agents.
It shows the differences between the agent’s profiles.

4.4. Group Contracted Transport Capacity
In this section, an explanation is given of how the Group Contracted Transport Capacity (in Dutch:
Groeps Gecontracteerd Transport Vermogen, G-GTV) was determined for feed-in and off-take.

The choice to put a limit on both the feed-in and off-take is based on the fact that congestion not only
occurs on the demand side, but also on the supply side (RVO, n.d.). For example, solar energy that is
injected too much into the grid can lead to overloading the grid which forces grid operators (or in this
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case EH operators) to implement curtailment. Since this happens in reality, including both the limits for
feed-in and off-take makes the model more realistic with using operational constraints.

As said before in subsection 2.1.3, theG-GTV for both feed-in and off-take can be calculated through the
aggregated profile of the group. The G-GTV can be calculated through determining the 95th percentile
of the demand of the aggregated profile. The following figure portrays the aggregated profile of the
demand profiles this model uses, with the maximum demand, the sum of the GTV of all demand profiles,
and the G-GTV:

Figure 4.4: Aggregated Demand Profile

As seen in the previous figure, the maximum demand of the aggregated demand profile is around 3,581
kW (red line) which is reached around the first month of the year. This is likely due to the temperature
during the winter months, meaning that the heating demand is higher than the summer months. Also,
in the winter months there are shorter daylight hours meaning that the lights must be on for longer
periods.

What to note is that there is also a decline in demand around the eight month of the year. This was
also seen in Figure A.5a from Section 4.3. This could be explained by the fact that it is summer and
some companies may have vacation, meaning that there are less processes going on. Furthermore,
if the G-GTV for off-take would be calculated through summing up all the kW maxima of the demand
profiles, it would be 4,249 kW (green line). This would be way higher than they actually need, meaning
that there is too much capacity space left for the group.

So to actually calculate the G-GTV for off-take of the group the 95th percentile of the demand is taken,
which is 2,986 kW (orange line). What is noticeable is that the actual G-GTV is a little lower than the
kWmax of the group. This is the case, because the G-GTV is designed to filter out extreme peaks such
as the kW max that do no represent regular electricity usage. As noted by Joskow, 2008, designing
energy systems based on infrequent peak values can lead to inefficiencies and over-investment in
infrastructure.

The G-GTV for feed-in was calculated by first determining the ratio between feed-in of the EH and total
electricity usage to which the demand profiles belong from MeterInsight. This ratio was then applied
to the G-GTV for off-take to obtain a representative feed-in value. In this case, the ratio was 0.39,
resulting in a G-GTV for feed-in of 0.39 × 2,986 kW = 1,179 kW.

4.5. Social Value Orientation Conceptualization
In this section, the conceptualization of SVO is given which explains how the SVO is implemented in
the model and how the corresponding decision-making formulas are derived.

As said before in Subsection 2.1.1, there are four types of SVO individuals that can be distinguished
from each other: Competitive, Individualistic, Pro-Social, and Altruistic. Starting with competitive indi-
viduals, they aim to maximize the difference between their own pay-off and other’s pay-off in their favour.



4.5. Social Value Orientation Conceptualization 22

Individualistic individuals aim to maximize their own pay-off and have little to no concern of other’s pay-
off. Pro-social individuals aim to maximize joint outcomes, while altruistic individuals prioritizes the
other’s pay-off above their own (Greiff et al., 2018; Murphy & Ackermann, 2014).

In this model, the context of the game is choosing to do nothing and just pay penalty or to load shift
when congested hours are announced. However, for each decision there are social and individual costs
attached, which affects the decision-making. The ‘own’ pay-offs in this context are the costs that an
individual should make if they choose to pay penalty or load shift. The ‘other’s’ pay-offs are the social
costs that the rest of the EH must make if an agent chooses to pay penalty or load shift.

It can be said that the SVO types have their own self-interest weight, which determines the extent
to which an agent prioritizes its own costs versus the social costs during decision-making. A higher
self-interest weight means the agent gives more importance to minimizing its own costs, while a lower
self-interest weight indicates a greater concern for the well-being of others. A categorization of self-
interest weight could be formulated for the different SVO types:

Table 4.2: SVO types and their Self-Interest Weight

SVO Type Self-Interest Weight
Competitive 0.9
Individualistic 0.7
Pro-Social 0.5
Altruistic 0.2

According to previous information given, two formulas could be created to capture the decision-making
process:

Score(t) = Wself interest · Cself(t) + (1−Wself interest) · Csocial(t) (4.1)

Score(t) = Wself interest · Cself(t)− (1−Wself interest) · Csocial(t) (4.2)

Where:

• Cself(t): the agent’s own costs for penalty or load shifting
• Csocial(t): the cost imposed on others for penalty or load shifting
• Wself interest: the agent’s weight on self-interest

The first formula 4.1 are for the altruistic, pro-social, and individualistic individuals as they do not aim
to maximize the difference between their own pay-off and others. The second formula 4.2 is for the
competitive individuals as they aim to maximize the difference between their own pay-off and others.
If for example an altruistic individual must make a decision, their weight for self interest would be low
meaning that they care less for themselves and more for the social costs.

According to this logic, a higher Score(t) implies a less preferred option, assuming that individuals aim
to minimize cost. So agents choose the action with the lowest Score(t).

The agent’s own costs for both penalties and load shifting are influenced by three main factors: the
operational loss associated with load shifting, the agent’s penalty sensitivity, and its load shift sensitivity.
The social costs for load shifting are only influenced by the operational loss of shifting. In this calculation,
it is assumed that agents have some information about the consumption of others with noise that mimics
the agent estimate this amount. This assumption is made because there needs to some information
available about others to ’know’ the social costs. As discussed in Subsection 2.1.2, while a company
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may theoretically benefit from shifting energy use to off-peak hours, practical constraints such as fixed
production schedules, temperature control requirements, or quality assurance concerns can limit such
shifts, leading to operational losses (Schwabeneder et al., 2019).

Price sensitivity plays a central role in this trade-off. It directly influences how strongly an agent reacts
to both penalties and the potential savings from load shifting. In this research, it assumed that price
sensitivity can be split into two categories for penalties and load shifting since the willingness to avoid
penalties may not be the same as the willingness to load shifting. A highly penalty sensitive agent
is more likely to avoid penalties by shifting loads, even if operational losses are present, whereas a
less penalty sensitive agent may accept penalties as a cheaper or less disruptive option. As shown by
Amini et al. (2019) and Carvalho et al. (2020), price sensitivity can significantly affect the effectiveness
of price based demand response mechanisms.

Since the values for operational loss of load shifting, penalty sensitivity, and load shift sensitivity are not
explicitly reported in the literature, there is no empirical basis to assign fixed values. These parameters
are highly context-dependent and influenced by many factors. For instance, two companies with similar
production processes may have different penalty sensitivities depending on their financial margins or
contractual obligations.

Given this agent heterogeneity and the lack of concrete empirical data, these factors can be modelled
as individual-specific attributes rather than uniform constants. To implement this variation in the model,
these values are assigned randomly within predefined ranges (i.e. 0-1). This approach ensures that
the simulation reflects a more realistic diversity of behavioural and operational profiles, rather than
assuming that all agents respond identically to penalties or load shifting opportunities.

4.6. Penalty and Rewards
In this section, the mechanisms for penalties and rewards are discussed and an explanation is given
for the origins of these prices.

Agents must pay a penalty if they are going over their allocated capacity and receive a money reward
if they are under their allocated capacity and somebody else is using their capacity. The price for the
penalty fee is derived from the electricity prices from 2024 and is assumed to be static: 0.3 €/kWh (CBS,
n.d.). The choice to make the penalty price static is due to the fact that this research is only looking
at the effects of behaviour and not a specific price incentive. If an agent uses too much then it would
logically pay more penalty, so for the calculation of the penalty per hour the following formula could be
used:

Penalty(t) = O(t) · PF (4.3)

Where:

• O(t): overuse of capacity, the difference between their current demand and allocated capacity
• PF : penalty fee

Next, the rewards fee is derived from an actual agreement of Emmett Green and some anonymous EH
where a fixed rewards fee was established. This rewards fee is intentionally set lower than the penalty
fee to reflect the incentives in the system. While participants are encouraged to share unused capacity,
the system places a stronger emphasis on avoiding congestion because it has so ensure that a system
wide failure is avoided. Just as the penalty formula, if an agent uses too little capacity and someone
else uses this, this agent would receive more rewards:

Reward(t) = U(t) ·RF (4.4)
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Where:

• U(t): underuse of capacity
• RF : reward fee

4.7. Shared PV
This section explains how the PV generation profile was constructed.

As described before in subsection 4.2.2, the EH collectively owns the PV system which means that the
CEMS has full access to those panels. For the purpose of this model, it is assumed that all PV panels
are of a single type rated at 450 Wp, based on the average range of modern panels which typically falls
between 400 and 500 Wp (Greenchoice, n.d.). The choice to assume that there is only a single type of
PV panel is because this reduces complexity in the model. The surface area of a standard PV panel is
approximately 2 m2 (Zonnemarkt, n.d.).

According to the Dutch Ministry of Economic Affairs and Climate Policy (Ministerie van Economische
Zaken en Klimaat, 2023b), the average roof surface area of Small andMedium-sized Enterprises (SME)
ranges somewhere between 120 and 5,000m2. In this model, it is assumed that the combined available
roof area for all agents totals in 8,000 m2. This assumption is made, because 800 m2 of roof surface
area per company is randomly chosen and lies within the range. Since there are ten agents in the
model, 800 m2 is multiplied with ten which results in a total roof area of 8,000 m2.

The amount of PV panels that could be placed on the roof area of 8,000 m2 is 8,000 m2 / 2 m2 which
results in 4,000 PV panels. It assumed that not all roof area is used for PV panels, because not all
participants may have invested in PV panels and there are usually some structural constrains such as
shading, roof load limits, and suboptimal slope angles further reduce the usable area. For this reason
30% of 4,000 PV panels is taken, which results in 1,200 installed PV panels.

The generation profile of one PV is based on general seasonal and daily patterns. In winter months,
generation is lower due to shorter daylight hours, while in summer, output is higher due to longer days
and increased solar intensity. Furthermore, generation is restricted to daytime hours only, with no
production during the night.

4.8. Bounded rationality
This section describes how the model accounts for bounded rationality.

In the real-world, participants do not have perfect information about the behaviour or capacities of other
participant’s and their own capacity. Participants would also sometimes make non logical decisions due
to personal reasons or other factors (Sovacool, 2014).

To take this into account in the model, uncertainty can be introduced and activated through a parameter.
When this feature is activated, agents can estimate the available capacity from others and themselves
using a noisy approximation instead of using an exact value. Also, when choosing an action the agents
do no always choose the ‘right’ one as the noise influences their score of an action.

This noise is a stochastic distribution function that chooses a noise factor between certain values, such
as the random uniform function.

4.9. Assumptions and Simplifications
In this model, certain assumptions and simplifications were made to focus on key dynamics, reduce
complexity, and ensure computational feasibility while still capturing the important behaviours of the
agents and their interactions within the environment. In this section, the most important assumptions
and simplifications are given. The whole list of assumptions and simplifications can be found in Ap-
pendix B.

• The EMS has full operational control over shared assets.
• The EH only has PV as shared flexible asset.
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• There is only one kind of PV panels of 450 Wp.
• The agents have 8,000 m2 in total of roof space.
• The congested hours for the next day are assumed to be perfectly known and accurate.
• Agents know how much others are using.
• Each type of capacity is assumed to be one installation.
• Agents do not revise their strategies based on the outcomes.
• The decision-making formula assumes that the agents know how much others are using.
• The uncertainties of decision-making are covered by stochastic distribution functions.
• If there is no congestion the next day, the agents will not make a decision to load shift.
• Agents can only load shift their Flexible Preferent capacity.
• When rotational load shedding is activated, it will successively turn off the Flexible Non-Preferent,
Fixed Non-Preferent, Flexible Preferent, and Fixed Preferent of an agent. If that is not enough, it
will turn off the next agent on the rotation list.

• Agents can only choose to load shift; reducing their load is not included as a possibility.
• The agents have a GTO with each other and not another contract.



5
Model Operationalization

In the previous chapter, the conceptual model was discussed which included the model objectives,
description of agents and environment, important concepts, and underlying decision-making structures.
This chapter explains how these features are translated into a functioning and operational ABM. It will
describe the Model Architecture, Model Parameterisation, KPI’s, Base Case, and Model Verification.

5.1. Model Architecture
The model, input, and output files of this study for the operationalization can be found at the 4TU
Research Data repository 1.

This study models a day-ahead energy planning mechanism within an EH. The EH is composed of
ten IC agents that operate within a shared infrastructure. The system was conceptualized with shared
capacity constraints (G-GTV) and incorporates agent-based decision-making, which is formed by the
SVO. The model simulates both the planning and execution phases of energy consumption, including
bounded rationality and load shifting under constraints. The model runs for a whole year, which are
8784 steps or 8784 hours. Mesa uses discrete time steps (ticks) by default and during each time step
the scheduler activates the agents, the agents performs its actions, the model state is updated, and
eventually the step counter will go on to the next step. This process is visualized in the following Figure
5.1:

Figure 5.1: Simulation Flow of ABM (Werntges, 2020)

1Accesible at: https://doi.org/10.4121/1d4ad33a-1787-4057-8c1c-64a8ac47ef86.v1
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As mentioned before, at the core of the model there are ten heterogenous agents, with each repres-
enting an IC with unique decision-making behaviours. These behavioural differences are modelled
through SVO, a psychological and economic construct that describes how different types balances self
interest against social welfare. These orientations can be categorized as the following:

• Altruistic Agents: Prioritize Social Welfare
• Pro-Social Agents: Balance Self-Interest with Social Welfare
• Individualistic Agents: Seek to maximize their own Welfare
• Competitive Agents: Actively pursue relative advantage on Welfare

Each agent is randomly assigned a SVO type with each run, when a certain distribution is implemented
in the model.

Each agent has a portfolio of loads with different flexibilities and preferences. The loads consists of four
types: fixed preferent, flexible preferent, fixed non-preferent, and flexible non-preferent. In short, the
flexible loads can quickly respond to changes while the fixed can not quickly respond. The preferent
loads have a higher priority then the non-preferent loads. In such way, the flexible preferent load can
be shifted within the day but comes with operational cost.

The agent operates in a rolling, daily planning cycle which is structured into three phases: observe,
decide, and action.

In the observe phase, the agents receives a 24-hour forecast of expected congestion for the whole
EH. Agents will evaluate potential penalties for exceeding their allocated capacity and estimate the
cost of shifting their flexible loads to non-congested hours. Under noisy conditions, agents estimate
both forecasted demand and system constraints with potential errors which leads to suboptimal but
human-like decision patterns. This simulates bounded rationality by introducing uncertainty into each
agent’s perception, which reflects real-world decision-making limitations. The agent will also look at
which hours to shift their load to, if they eventually choose to load shift. The agent will examine all
non-congestion periods within the same day, considering only time windows that fall within the agent’s
working hours, congestion conditions, and time proximity. If the agent choose to load shift, it will choose
the hours that are closer to now and that is the least congested.

In the decision phase, each agent selects a strategy based on their SVO. Agents weigh two options:
paying a penalty for exceeding capacity allocations or shifting flexible demand to non-congested peri-
ods. The decision-making process is guided by utility functions that combine self-interest and social
considerations, normalized to ensure fair comparison across cost components. Depending on the
use_noise parameter, agents either make a deterministic choice of the action with the lowest normal-
ized cost or a probabilistic choice, where actions with lower costs are more likely to be selected.

Next, in the action phase the agents will ’submit’ their commitments for the next day with the assump-
tion that they will be executed. As the planned day unfolds, the agents implement their predefined
schedules. When the use_noise is on, unexpected behaviour may occur due to forecast errors or
unanticipated events.

When the agents actions all together threatens to exceed the EH’s capacity, the centralized EMS will
intervene. The EMS will apply rotational load shedding and curtailment of PV generation. These two
mechanisms maintain the EH’s stability and ensure that there is adherence to the contractual con-
straints. The rotational load shedding will turn of the loads in a certain order: the flexible non-preferent
load, fixed non-preferent, flexible preferent, and at last the fixed preferent in urgent cases.

An important mechanism in themodel is implicit capacity sharing. When one agent exceeds its allocated
capacity while another underutilizes theirs, the system allows the surplus capacity to be reallocated in
real time. The agent providing surplus capacity receives financial compensation, which serves as a
natural economic incentive for capacity sharing.

The EH collectively owns 1,200 PV panels that can lead to some variability in the system. For example,
on sunny summer days the panels may alleviate congestion. But when they generate more power that
the EH uses, the excess must feed-in to the main grid. If this flow exceeds its limits, the CEMS will
curtail the PV generation. On the other hand, in the winter when the days are shorter and its not so
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sunny the PV generation is reduced and will maybe help a little bit but not solve the whole congestion
problem.

Every first day of each month, the CEMS learns from the consumption history of the agents and adjusts
the allocated capacity for each agent. It will calculate the agentsmonthly desired capacity based on their
historical consumption and calculates the average consumption with a 10% buffer above their actual
average consumption. The 10% is for acknowledging that the energy demand can vary and gives some
wiggle room. Afterwards, the CEMS uses an proportional allocation method which prevents any agent
from hoarding unused allocated capacity. The agents have no choice in deciding how much capacity
they want, because it is automatically distributed by the CEMS. This is due to model complexity reasons
and the fact that agents could hoard unused capacity.

The following Figure 5.2 summarizes the Model Architecture into a flow chart:

Figure 5.2: Flow Chart Model Architecture

As seen in Figure 5.2, the flow chart is divided into three colours/categories: Agent Actions, CEMS
Actions, and the Model itself. From Forecast Congestion to Reallocate Capacity the timestep is one
day, which is divided into 24 hours. The agent decide for the whole day and the CEMS will either load
shed and/or curtail per hour.

5.2. Model Parameterisation
To operationalize the model, the model architecture from the previous section has been translated to
code. This includes parametrization of the most important model variables. The model parameters that
can be varied by the model and agent. The parameters and their ranges have been described in Table
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5.1:

Table 5.1: Overview of Environment and Agent Parameters

Model Parameter Range/Value Description Unit
Environment Settings
Num_agents 10 The number of agents (IC) that are initialized

in the model
[#]

Schedule StagedActivation The type of schedule the model adheres to.
Agents are activated in a fixed order within
each timestep.

[-]

Use_noise True/False If this is true, it will activate stochastic uncer-
tainty to agent perceptions (e.g. estimating
costs)

[-]

Load_shedding_method Rotational Load shedding will be rotational across the
agents during congested events

[-]

Congestion_fee 0.3 The amount of penalty applied when an agent
exceeds its allocated capacity

[€/kWh]

Reward_fee 0.2 The amount of compensation when an
agent under-uses its allocated capacity and
someone else uses this capacity

[€/kWh]

Max_capacity 2986 The collective maximum feed-out capacity
based on the aggregated profile and 95th per-
centile

[kW]

Max_capacity_back 1179 The collective maximum feed-in capacity
based on usage and generation ratio

[kW]

Rolling_horizon_hours 24 Number of hours the model evaluates looking
ahead for scheduling load shifting

[h]

Amount_PV 1200 Total number of PV panels installed and col-
lectively owned by the EH

[#]

Agent Settings
ol_ls 0 – 1 Operational loss for load shifting: loss from

example reduced product quality, increased
personnel expenses, or other in-efficiencies

[€/kWh]

ps 0 – 1 Penalty sensitivity: how strongly an agent is
influenced by paying penalty

[-]

ls 0 – 1 Load shift sensitivity: willingness of an agent
to shift load

[-]

Has_shifted True/False Indicates whether an agent has already load
shifted during a congestion event

[-]

Svo_type Competitive,
Individualistic,
Pro-social,
Altruistic

The type of an agent’s SVO [-]

Self_interest 0.2 – 0.9 Value depending on SVO type; determines
how much weight an agent gives to its own
vs. social costs

[-]

Shift_start_hour 5, 6 Hour at which the agent starts its working day
and can shift its load

[h]
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Model Parameter Range/Value Description Unit
Shift_end_hour 18, 23 Hour at which the agent ends its working day

and can no longer shift load
[h]

The values from Table 5.1 are found from data, interviews with experts, literature or based on assump-
tions. Behavioural aspects such as self-interest, penalty and load shifting sensitivity are linked to a
random numeric value and are based on assumptions.

5.3. Key Performance Indicators
Key Performance Indicators (KPIs) are metrics used to measure the performance of the model and
assess the success and effectiveness of its outcomes. They also help identify which scenarios produce
the most favourable or unfavourable results. The KPIs used in this research are listed below with the
reasoning:

• Total Load Shifts: This is the total number of times flexible preferent loads of agents is shifted
to non-congested periods. This KPI is chosen, because it directly indicates how many times
agents choose to load shift instead of doing nothing and just pay penalty. A higher number of
load shifts suggests that agents are responsive to congestion signals and willing to adapt their
consumption patterns to support system efficiency. It also reflects the operational feasibility of
load shifting under the given constraints, including flexibility preferences, perceived costs, and
behavioural factors. In this way, it serves as both a technical and behavioural indicator of demand
side adaptability.

• Total Penalties: The total amount of fines imposed on agents when they exceed their allocated
capacity limit. This KPI is chosen, because it reflects how many times an agent surpasses their
allocated capacity limit, either due to insufficient flexibility in their loadmanagement or a thoughtful
choice to prioritize demand over cost savings. It is possible that agents still have to pay a penalty,
while they already have load shifted. The reason for this is that the amount of capacity that an
agent has load shifted, may not be enough to keep their usage under allocated capacity limit.

• Total Load Shedding: The total number of times the CEMS had to reduce an agent’s energy
usage to prevent that the whole EH is going over the G-GTV. This KPI is chosen, because it shows
how many times the CEMS had to interact with the EH and also reflects the EH’s operational
resilience and reliability. It also serves as an indirect measure of the effectiveness of an agent’s
planning and cooperation. In such way, fewer load shedding may suggest that agents are better
at their demand response through load shifting or capacity sharing which reduces the need for a
centralized CEMS action.

• Total Rewards: The total amount of compensation awarded to agents for giving up their capacity
to another agent. This KPI is chosen, because it reflects the implicit capacity sharing of the agents.
In the decision-making, agents take the reward fee into account when deciding to load shift or
just pay penalty. So it is not only an economic but also a behavioural KPI as it captures how an
agent’s SVO and individual cost-benefit analysis influence cooperative behaviour. It could be said
that a high total reward is equal to high amount of implicit capacity sharing, because it reflects
the total implicit capacity sharing over all the agents.

5.4. Base Case
In this section, the base case is defined which serves as reference point. The base case is construc-
ted by selecting representative values for key parameters. Table 5.2 provides an overview of these
parameters, which includes the SVO composition of agents, the use of noise, load shedding strategy,
congestion fee, and reward fee.
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Table 5.2: Overview of Base Case

Parameter Values
Num_agents 10
SVO composition 1 altruistic, 4 pro-social, 4 individualistic, 1 competitive
Use_noise False
Load_shedding_method Rotational
Amount_PV 1200
Congestion_fee 0.3
Reward_fee 0.2

As seen in Table 5.2, the SVO composition is set at 1 altruistic, 3 pro-social, 4 individualistic, and
1 competitive. This is based on the assumption that in real life, this composition follows a discrete
distribution, because altruistic and competitive types are relatively rare in most populations, while pro-
social and individualistic behaviours are more common.

The use_noise is set at false, as it serves as a reference point to a scenario where there is no bounded
rationality. It shows the effect of the absence of bounded rationality in models by isolating the influence
of the agent’s decision-making with SVO and behavioural drivers. This allows for a comparison with
scenario where use_noise is set at true, because it helps to understand how imperfect decision-making
affects the KPIs.

5.5. Model Verification
According to Sargent, 2013, model verification is one of the crucial processes in developing a simulation
model. Model verification is to ensure that the simulation model and its implementation are correct. The
focus here is on the technical accuracy of the simulation model’s implementation.

There are multiple possible ways to verify a model, however the verification in this study was inspired by
van Dam et al., 2013 whereas two verification methods were chosen. The first method is the tracking
of agent behaviour and has been performed during the iterative construction of the model. The second
method consisted of checking the model under extreme conditions. The implementation of these model
verification strategies and their results can be found in Appendix C, where the Base Case presented in
Section 5.4 is used.
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Experimental Design

The experimental design defines the structure and methodology used to evaluate the performance and
behaviour of the developed model described in the previous Chapter 5. This chapter will specify the
scenarios and its parameters implemented to test the model under various conditions. Furthermore,
this chapter will discuss the methodology used to conduct the experiments.

6.1. Experimental Set-Up
This section discusses the type of scenarios and their implementation in the model. In the context of
the EH, scenarios define the environmental and operational conditions under which the system is eval-
uated. For the experimental design, the focus is placed on varying the SVO compositions of the agents
and using the noise parameter. This choice is motivated by the central role of agent heterogeneity
in the model: each agent’s SVO determines its decision-making strategy, balancing self-interest and
social welfare. The noise parameter introduces bounded rationality, simulating uncertainty or imperfect
perception of forecasts and system constraints.

By systematically varying the proportions of altruistic, pro-social, individualistic, and competitive agents,
the experiments aim to reveal how differences in behavioural composition and bounded rationality affect
the EH’s operation. This approach isolates the influence of human-like behavioural diversity on system
outcomes, providing insights into the resilience, efficiency, and coordination of the EH.

Table 6.1 provides an overview of the scenarios, the associated SVO compositions, noise usage, and
the number of iterations per scenario. Each scenario is then described in detail, explaining the rationale
behind its composition and the type of operational situation it represents.

Table 6.1: Overview of experimental scenarios

Scenario name SVO composition Use Noise Runs
All altruistic 10 altruistic Yes 50
All pro-social 10 pro-social Yes 50
All individualistic 10 individualistic Yes 50
All competitive 10 competitive Yes 50

Equal mix 2 altruistic, 3 pro-social, 3 individualistic, 2
competitive Yes 50

Cooperative dominant 5 altruistic, 5 pro-social Yes 50
Competitive dominant 5 individualistic, 5 competitive Yes 50
Polarized 5 altruistic, 5 competitive Yes 50
Moderate 5 pro-social, 5 individualistic Yes 50

32
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6.1.1. Scenario: All Altruistic
This scenario includes ten altruistic agents, which is selected to explore the effects of a fully selfless
population. The rationale behind this composition is to create a baseline in which collective welfare is
the only guiding principle for all agents. By excluding any self-interest or competitive drive, this group
serves as a clear reference point for understanding how purely cooperative motivations influence group
composition in a simulated setting. Additionally, it serves as a comparative benchmark against more
heterogeneous compositions.

6.1.2. Scenario: All Pro-Social
The pro-social scenario is composed entirely of ten pro-social agents, which is chosen to study a pop-
ulation where individuals consider both personal outcomes and the welfare of others. Unlike purely al-
truistic agents, pro-social agents balance self-interest with concern for others, making this composition
a moderate expression of cooperative behaviour. The rationale for this composition is to understand
how a homogeneous population with tempered social motivations interacts when no extreme selfish-
ness or competitiveness is present. Just like the all altruistic scenario, it also serves as a benchmark
to heterogenous compositions.

6.1.3. Scenario: All Individualistic
This scenario includes ten individualistic agents, which is chosen to focus on the influence of pure self-
interest. The composition isolates a population where personal priorities dominate over concern for
others or competitive positioning compared to peers. By selecting a uniform group of self-interested
agents, the scenario provides an environment to explore how a fully individualistic orientation shapes
the social dynamics in the absence of cooperative or competitive pressures. Just like the all altruistic
scenario, it also serves as a benchmark to heterogenous compositions.

6.1.4. Scenario: All Competitive
This scenario includes ten competitive agents, which is selected to study the effects of prioritizing
relative advantage above all else. The rationale for this composition is to observe a population in which
competition is the sole guiding principle, providing a clear reference for understanding dynamics in a
fully competitive setting. By focusing on a uniform competitive group, it is possible to distinguish the
influence of less self-interested groups such as altruistic or pro-social. Just like the all altruistic scenario,
it also serves as a benchmark to heterogenous compositions.

6.1.5. Scenario: Equal Mix
This scenario consists of a balanced mix of agents: two altruistic, three pro-social, three individual-
istic, and two competitive. The rationale behind this composition is to represent a heterogeneous
population that reflects multiple social motivations simultaneously. By including both cooperative and
self-interested agents, the scenario allows for examining how diverse SVO can coexist within a group.
The distribution emphasizes neither extreme altruism nor pure competitiveness, creating a population
that integrates different priorities and perspectives. Overall, it can be said that it represents a realistic
setting where multiple motivations are present.

6.1.6. Scenario: Cooperative Dominant
In this scenario, five altruistic and five pro-social agents form the population which creates a cooper-
ative dominant group. The rationale for this composition is to emphasize collective welfare as the
primary driver within the population while maintaining some diversity of cooperative orientations. Al-
truistic agents ensure full selflessness, while pro-social agents introduce a balance of self-interest and
concern for others.

6.1.7. Scenario: Competitive Dominant
This scenario includes five individualistic and five competitive agents, which is designed to create a
population where self-interest and relative advantage dominate. The rationale for this composition is
to represent a group strongly oriented toward personal benefit, while excluding cooperative influences.
Individualistic agents provide self-centred priorities, whereas competitive agents add a focus on relative
positioning within the group.
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6.1.8. Scenario: Polarized
The polarized scenario consists of five altruistic and five competitive agents, which is chosen to examine
the effects of extreme divergence in SVO. The rationale behind this composition is to explore a popula-
tion where motivations are at opposite ends of the cooperative-competitive spectrum, creating a sharply
divided motivational landscape. Altruistic agents prioritize collective welfare without self-interest, while
competitive agents focus entirely on relative advantage, establishing a clear contrast within the group.

6.1.9. Scenario: Moderate
This scenario includes five pro-social and five individualistic agents, forming a population characterized
by moderate divergence in SVO. The rationale for this composition is to examine a population where
motivations are neither fully cooperative nor purely competitive, but instead hold intermediate positions.
Pro-social agents balance self-interest with concern for others, while individualistic agents focus solely
on personal outcomes which creates a moderate contrast within the group.

6.2. Methodology
The experimental set-up builds on the base case defined in Section 5.4, which serves as a bench-
mark scenario. In the base case, the parameter use_noise is set to False, representing fully rational
agents with perfect foresight. This configuration provides a reference point against which the impact of
bounded rationality and behavioural diversity can be evaluated.

In the scenarios, use_noise is activated True to capture decision-making under imperfect information,
introducing a more realistic representation of agent behaviour. Combined with different SVO compos-
itions, the previously introduced scenarios allows to explore how heterogeneity and homogeneity of
SVO and uncertainty affect system performance.

The experiments were implemented by using Python. While theMesa framework’s Batchrunner module
can be used to run multiple scenarios and iterations (Mesa-Team, n.d.), it was not used here because
from experience it does not allow easy observation of results over time. Instead, the simulations were
executed using traditional for-in loops, providing direct control over each iteration.

Each scenario was simulated over a full year to capture potential seasonal and temporal variations in
agent interactions. To account for stochastic effects and ensure representative results, 50 independent
iterations were conducted per scenario.

This approach is consistent with the methodology used in the thesis by Vliet, 2022, which also applied
ABM. Vliet, 2022 demonstrated that a single model run cannot reliably indicate the effect of parameter
settings on the KPIs. Averaging outcomes over multiple runs provides a more accurate approximation
of expected results. Her work shows that 50 iterations produce an outcome curve closely matching
the average of 1000 runs, which confirms that this number of runs is sufficient to obtain representative
results.
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Model Results

This chapter presents the results generated by the simulations. The outcomes are shown without
interpretation, providing a structured overview of how the model behaves under different experimental
settings. The chapter begins with the base case, which serves as a point of reference and reflects
a representative configuration of agents without bounded rationality. The base case establishes a
consistent benchmark against which the outcomes of the experimental scenarios can later be compared.
Afterwards, the experimental scenarios are presented individually. Each scenario corresponds to a
distinct composition of SVOs among the agents, combined with bounded rationality.

7.1. Base Case Results
This section presents the results of the base case scenario. In this setup, the distribution of SVO types
among agents was modelled using a discrete normal distribution. The cumulative outcomes over one
year are shown in Figure 7.1, while the monthly distribution of KPIs is illustrated in Figure 7.2.

Figure 7.1: Base Case Result

The results from Figure 7.1 show that both load shedding and load shifting increase during the first
months of the year, level off during the middle of the year, and rise again towards the end of the year.
On average, the number of load shedding events reaches about 188, while load shifts average around
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1,469. Penalties and rewards follow a more linear trend: rewards accumulate up to around €33,405,
whereas penalties reach up to €10,468. It is also notable that the variation across runs is relatively
large for both load shedding and load shifting.

Figure 7.2: Base Case Monthly Result

From Figure 7.2 it can be seen that penalties and rewards show a clear seasonal pattern. Both are
lowest during the summer months, while peaks occur in the early and late parts of the year. The highest
monthly penalty of €1,209 is observed in March, whereas the largest monthly reward of €4,247 occurs
in January. Load shedding peaks at around 104 events in January before dropping to nearly zero in
summer, while load shifting reaches amaximum of about 406 events. Variability across runs is relatively
small for most months, except during the first quarter, where the standard deviation is noticeably higher.

7.2. All Altruistic Results
In this scenario, the outcomes for the fully altruistic EH are reported. Figure 7.3 summarizes the cu-
mulative development of the KPIs throughout the year, while Figure 7.4 depicts the monthly averages
including their variation across runs. Both figures represent the system-wide totals.

Figure 7.3: All Altruistic Yearly Result
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What can be seen from Figure 7.3 is that both Load Shedding and Load Shifts increase rapidly in the
beginning of the year, stagnates in the middle of the year, and increases again towards the end of the
year. On average, annual load shedding stabilizes around 164 times, while load shifts accumulate to
about 1491 times. Penalties and rewards follow a more linear trajectory, with rewards reaching up to
€33,386 and penalties up to €10,470. The curves indicate that most runs remain close to the mean,
though some divergence becomes visible for load shedding at the end of the year.

Figure 7.4: All Altruistic Monthly Result

Turning to Figure 7.4, a seasonal pattern emerges: both penalties and rewards are lowest in the sum-
mer months, while peaks occur in early and late months of the year. The maximum monthly penalty
of €1,212 is recorded in month three, and the highest monthly reward of €4,239 occurs in month one.
Load shedding peaks around 89 events in January before dropping to almost zero in summer, whereas
load shifts reach about 504 at their maximum. Across runs, variability per month is minor, suggesting
consistent outcomes.

7.3. All Pro-social Results
The second scenario explores an EH consisting entirely of pro-social agents. Cumulative annual results
are displayed in Figure 7.5, and monthly averages with their spread in Figure 7.6.
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Figure 7.5: All Pro-Social Yearly Result

Figure 7.5 shows a growth pattern for load shedding and load shifting similar to the base case: a strong
rise at the beginning, a plateau mid-year, and renewed increase towards December. Annual totals
amount to about 146 load shedding events and roughly 1,572 shifts. Rewards again approach €33,382,
with penalties much lower reaching around €10,483. Unlike the altruistic case, variation between runs
becomes apparent after the second month, especially in load shedding.

Figure 7.6: All Pro-Social Monthly Result

Monthly averages in Figure 7.6 show that summer months are less demanding for the EH, with reduced
penalties and rewards. The third month records the highest penalties with €1,216, while the first month
shows rewards exceeding €4,243. The maximum load shedding (89 events) and load shifting (449
events) both occur at the beginning of the year, followed by a steady decline. Deviations across runs
remain limited, though slightly larger than in the altruistic scenario.

7.4. All Individualistic Results
Here, the focus shifts to the fully individualistic EH. Figure 7.7 presents cumulative KPIs, while Figure
7.8 gives average monthly outcomes and their variation.
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Figure 7.7: All Individualistic Yearly Result

As can be seen in Figure 7.7, cumulative load shedding and load shifting increase rapidly early in the
year, then level off during summer, before rising again towards the end of the year. Compared to the
pro-social scenario, load shedding is somewhat higher with 213 events annually, while load shifting
stays closer to 1,361. Rewards once again trend towards €33,429 and penalties around €10,457. The
spread between runs becomes more pronounced after the second month, with noticeable differences
in the load shifting graph.

Figure 7.8: All Individualistic Monthly Result

Monthly dynamics in Figure 7.8 show clear peaks early in the year: about 115 load shedding events
and 337 load shifts in January. Both KPIs drop significantly by summer, before slightly climbing again in
the autumn months. Penalties reach around €1,206 in month three, while rewards top €4,260 in month
one. While the standard deviation per month is generally small, the first quarter shows slightly higher
variability, particularly in load shedding.

7.5. All Competitive Results
The final homogeneous case is the competitive EH. The annual cumulative numbers are shown in
Figure 7.9, and monthly averages in Figure 7.10.
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Figure 7.9: All Competitive Yearly Result

In Figure 7.9, load shedding and load shifting once more show a rapid start, a mid-year slowdown,
and a renewed upward trend at the end. Here, shedding reaches 251 events annually, while shifting
approaches 1,704. Rewards remain close to €33,404 with a relatively steady progression and the
penalties also remain close to €10,488. Run-to-run variability is larger than in the previous cases,
particularly after the first months.

Figure 7.10: All Competitive Monthly Result

FromFigure 7.10, penalties again peak aroundmonth three with €1,204, and the largest monthly reward
close to €4,214 in January. Load shedding reaches about 152 events in the first month, while load
shifting peaks around 438. Both indicators decline during summer before rising again towards the
year’s end. Although monthly variation is generally modest, the initial months show greater spread
across runs, especially for shedding and shifting.

7.6. Equal Mix Results
In this section, the results of the scenario of equal mix is shown. Figure 7.11 shows the yearly cumulative
results and Figure 7.12 shows the monthly averages.
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Figure 7.11: Equal Mix Yearly Result

What can be seen from Figure 7.11 is that once again the load shedding and load shifting graphs
increases in the beginning, stagnates in the middle of the year, and slightly increase again towards
the end of the year. For load shedding the average number reaches approximately 193 and for load
shifts up to 1511 times. Just like all the other scenarios, the penalties and rewards stay linear, reaching
€10,456 and €33,409 respectively. Here, the run variability is larger in comparison with the previous
scenarios.

Figure 7.12: Equal Mix Monthly Result

From Figure 7.12, it can be noted that all the graphs follow the same trend as the homogenous scen-
arios. Penalties again peak around month three with €1,209, and the largest monthly reward close
to €4,246 in January. Load shedding reaches about 104 events in the first month, while load shifting
peaks around 418. Both load shedding and shifting decline during summer before rising again towards
the year’s end. Although monthly variation is generally modest, the initial months show greater spread
across runs, especially for load shedding and shifting.
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7.7. Cooperative Dominant Results
In the cooperative dominant scenario, the majority of agents are assigned altruistic or pro-social SVO
types. Figure 7.13 presents the yearly cumulative results, while Figure 7.14 shows the monthly break-
down of KPIs.

Figure 7.13: Cooperative Dominant Yearly Result

It can be seen that in Figure 7.13 load shifting is the dominant response in this scenario, averaging
around 1,524 events by the end of the year, while load shedding remains relatively limited at about 156
events. Both shedding and shifting increase in the early months, stagnate during summer, and then
rise again slightly in autumn. Rewards accumulate steadily, reaching nearly €33,390, while penalties
stay low at around €10,477. Variability across runs is noticeable for load shedding, but for load shifting
this is smaller.

Figure 7.14: Cooperative Dominant Monthly Result

The monthly pattern in Figure 7.14 shows that load shifting is consistently present, peaking at around
477 in January. Load shedding is concentrated in the winter months but remains low during summer
and its peak is around 88 in January. Rewards follow the same seasonal trend, with the highest monthly
value slightly exceeding €4,241 in January, while penalties peaks at €1,213 in January.
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7.8. Competitive Dominant Results
In this section, the results for the competitive dominant configuration is presented. Here, every agent
either is individualistic or competitive. Figure 7.13 present the results throughout the year and Figure
7.14 present the results per month.

Figure 7.15: Competitive Dominant Yearly Result

From Figure 7.13 it can be seen that, once again, the load shifts and load sheds follow a trend that it
increases in the beginning, stagnates in the middle, and slightly increase in the end of the year. The
load sheds on average results in 246 and load shifting in 1517. For penalties and rewards the number is
again €10,500 euros and for rewards €33,397. Load shedding and Load shifting are variable throughout
all runs.

Figure 7.16: Competitive Dominant Monthly Result

From Figure 7.16 it can be seen that penalties are consistently higher across months, with a peak of
€1,215 in March. Rewards are comparatively modest, rarely exceeding €4,237. Load shedding peaks
at nearly 140 events in January, while load shifting reaches a maximum of about 387 in February.
Summer months show reduced activity in both categories, though variability across runs is still visible
in the first three months for load shedding and load shifting.
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7.9. Polarized Results
In the polarized scenario, altruistic and competitive agents are present creating a divided agent pop-
ulation. Figure 7.17 reports the cumulative yearly outcomes, and Figure 7.18 provides the monthly
results.

Figure 7.17: Polarized Yearly Result

Figure 7.17 show that both load shedding and shifting occur at notable levels: shedding ends with about
218 events, and shifting reaches nearly 1,591. Their trajectories show the same pattern of increase
early in the year, stagnation in summer, and a small rise again at the end. Rewards reach about
€33,404, while penalties accumulate to €10,475. Variability is high, especially in load shifting and load
shedding where there are different outcomes across the runs.

Figure 7.18: Polarized Monthly Result

From Figure 7.18 it becomes clear that the seasonal effect of load shedding is concentrated in the winter
months with up to 115 events in January, whereas load shifting is follows almost the same pattern, with
a maximum of around 431. Rewards peak in the early months, above €4,230 in January, while penalties
show their maximum in March at around €1,206. Variation across runs is significant in the early part of
the year but becomes less pronounced during summer for load shedding and load shifts.
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7.10. Moderate Results
In this section, the moderate results are presented where only pro-social and individualistic agent occur.
Figure 7.19 summarizes the cumulative yearly results, and Figure 7.20 shows the monthly KPIs.

Figure 7.19: Moderate Yearly Result

The results from Figure 7.19 show a balanced outcome: load shedding averages around 176 events,
while load shifting ends at 1,466. Both metrics rise at the beginning of the year, stagnate through the
middle, and then climb slightly again in late months. Rewards accumulate to approximately €33,407,
and penalties end around €10,468. Variability across runs is present but less compared to the polarized
case.

Figure 7.20: Moderate Monthly Result

Monthly from Figure 7.20 outcomes show the same seasonal trend as the base case: low penalties and
rewards during summer and peaks in winter months. The maximum penalty of about €1,210 occurs in
March, while the largest monthly reward, above €4,254, occurs in January. Load shedding is highest in
January (around 99 events) and nearly disappears in summer, while load shifting peaks at about 400.
Variability across runs is somewhat visible in the first months, but small for the rest of the year.
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Model Analysis

This chapter interprets and compares the results presented in Chapter 7. While the previous chapter
reported the outcomes of each scenario individually, this chapter analyses these findings to identify
overarching patterns, differences, and implications. This chapter begins with validating the model and
proceeds to the analysis of the model results.

8.1. Model Validation
Traditional model validation involves assessing whether a model accurately represents the real-world
system and its behaviour (Dam et al., 2013). However, there is no real-world situation to compare this
with, as this model represents a future EH with a GTO that is already running. When investigating a
future scenario, the model validation should focus on whether it is useful and convincing in its system
behaviour. The output values are in this case not as important as the insights provided by the model
(Dam et al., 2013). According to Sargent, 2013, each model is created with a purpose and should be
validated in relation to this purpose.

8.1.1. Model Validation in Relation to Model Purpose
The purpose of this study’s model was to gain knowledge about the effects of SVO on participation in
demand response. The model purpose can be validated by analysing the results of the experiments
and asking to one’s self if the results seem accurate and acceptable.

First of all the model input data is not empirical. Many assumptions and simplifications were made,
which led to a simplified version of the real-world energy system. For this reason, the model does
not accurately predict the actual values of penalties, load shifts, load sheds, and rewards if different
SVO compositions would be implemented. However, the relative changes and range differences in the
experiment results can be interpreted and validated.

When looking at load shedding, it becomes clear that it increases with every SVO composition through-
out the year. This behaviour seems valid as it corresponds to the effects of less cooperative orientations
found in the literature, where self-interested behaviour reduces willingness to load shift for the benefit
of the system. In contrast, scenarios dominated by pro-social or altruistic agents show lower levels
of shedding and higher levels of shifting, which is consistent with theoretical expectations. The rela-
tionship between penalties, rewards, and the SVO composition also appears logical, with competitive
agents leading to higher penalties and individualistic agents achieving more rewards.

Overall, the model grasps the relative dynamics between different SVO compositions and their impact
on demand response participation. While the absolute values should not be interpreted as real-world
predictions, the patterns and relationships observed in the results correspond to expectations from the
literature and therefore validate the model in relation to its intended purpose.

46
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8.1.2. Extensive Model Validation Approach
Extensive model validation would require a high amount of resources and time, which were unfortu-
nately not available within the scope of this thesis. A more traditional validation could be applied to this
research, but would demand more effort. Nevertheless, a potential approach to validate the model can
be proposed.

Even though there is no model available that compares with this model, cross-validation of model com-
ponents could serve as a starting point. For instance, the simplified EH representation, and the pricing
mechanism could be validated against existing models in the literature. Financial aspects such as the
implementation of penalties, rewards, and operational loss of load shifting could also be compared to
established models from energy economics or demand response studies. In addition, insights from
models outside the energy sector that use financial incentives to influence behaviour could provide
useful reference points, even if the applications are not directly comparable.

A particular challenge is the behavioural dimension of the model, which has not often been represented
in quantitative simulations of energy systems. This makes it difficult to find directly comparable bench-
marks. For this reason, expert validation could be an appropriate and effective method. Experts in
energy policy, consumer psychology, and behavioural economics could provide feedback on whether
the modelled agent responses to incentives and system conditions are realistic, and how the assump-
tions might be improved. Such expert assessment would also be valuable for evaluating the general
assumptions underlying the future-oriented scenarios employed in this study.

Another widely used validation method is empirical validation, where model outcomes are compared
to observed data or historical events. While this is challenging in this study due to the focus on a future
scenario of EHs with different behaviours of agents, some aspects of the model could still be validated
at a higher level. For example, empirical studies on congestion patterns, flexibility utilization, or load-
shifting behaviour in existing energy systems can be used as benchmarks to assess whether the model
produces logical behavioural responses.

Overall, while an extensive validation was not feasible in this thesis, a combination of cross-validation,
expert validation, and partial empirical comparisons would provide a solid framework for further valid-
ating and improving the model in future work.

8.2. Analysis of Model Results
This analysis examines the four main KPIs: load shedding, load shifts, rewards, and penalties. General
patterns and seasonal variations are discussed, followed by a discussion of homogeneous versus
heterogeneous setups. Together, these analyses demonstrate how the behavioural heterogeneity of
consumers can either stabilize or destabilize energy systems under DR schemes.

The following two Tables 8.1 and 8.2 summarizes this section per KPI per scenarios. Table 8.1 provides
an overview of the SVO composition per scenario and Table 8.2 shows the results of the trade-offs
across the four KPIs by using colour coding to interpret the desirability of the results. Green is the most
desirable, while the colours leaning toward red are less desirable.
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Table 8.1: SVO compositions per scenario

Scenario SVO Composition
All Altruistic 10 altruistic
All Pro-social 10 pro-social
All Individualistic 10 individualistic
All Competitive 10 competitive

Equal Mix 2 altruistic, 3 pro-social, 3 individualistic, 2 compet-
itive

Base Case 1 altruistic, 4 pro-social, 4 individualistic, 1 compet-
itive

Cooperative Dominant 5 altruistic, 5 pro-social
Competitive Dominant 5 individualistic, 5 competitive
Polarized 5 altruistic, 5 competitive
Moderate 5 pro-social, 5 individualistic

Table 8.2: Yearly Trade-offs across SVO Population Compositions and KPIs

Scenario Load Shifting Load Shedding Rewards Penalties
All Altruistic Moderate-Low Low Low Moderate
All Pro-social Moderate-High Very Low Very Low Moderate-High
All Individualistic Very Low Moderate-High Very High Low
All Competitive Very High Very High Moderate High
Equal Mix Moderate Moderate High Very Low
Base Case Low Moderate Moderate-High Moderate-Low
Cooperative Dominant Moderate-High Low Moderate-Low Moderate-High
Competitive Dominant Moderate High Moderate-Low Very High
Polarized High Moderate-High Moderate Moderate
Moderate Low Moderate-Low Moderate-High Moderate-Low

Very Undesirable Undesirable Neutral Desirable Very Desirable

From Table 8.2, it could be said that with every scenario a trade-off could be made with the KPIs.
Equal mix with heterogeneous SVOs is the most balanced outcome across all KPIs, while competitive
dominant which consists only of self-interested agents got the least desirable outcomes across all KPIs.
The following subsections will analyse these insights in more detail.

8.2.1. Load Shedding
This section discusses the results for load shedding. The following Figure 8.1 shows an overview of
load sheds across all scenarios, comparing monthly results and results over the year with each other.
Each bar presents the average load shed value distribution for a given scenario.
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Figure 8.1: Load Shedding Monthly Distribution across the Year

As seen in Figure 8.1, the simulations have shown that load shedding is sensitive to the composition of
the agent population. In the monthly results for January, the ranking from highest to lowest load
shedding was respectively: all competitive, competitive dominant, polarized, all individualistic,
equal mix, base case, moderate, all altruistic, all pro-social, and cooperative dominant. Fully
competitive populations consistently display the highest levels of shedding, which reflects their prioritiz-
ation of self-interest over system-level coordination. Competitive dominant and polarized populations
also shed relatively more, but they are slightly mitigated by the presence of some altruistic agents. In
contrast, all altruistic, all pro-social, and cooperative dominant populations show the lowest levels of
load shedding, suggesting that their willingness to support the EH reduces the need to rely on load
shedding as a response to congestion.

Seasonal demand and solar production have a clear effect during the high-demand winter months as
the differences between the SVO types becomes more noticeable. Competitive and individualistic pop-
ulations are shed more during the winter months, whereas altruistic and pro-social populations are
shed less. At the same time, PV panels produce less in the winter as there is less sun, which reduces
PV generation. The EH can rely less on available flexible capacity, so load shedding is the only way
to not break the contractual limits. In lower-demand periods such as spring and summer, the combin-
ation of lower demand and higher PV production reduces overall shedding which leads to decreasing
the differences between population compositions. It can be said that the SVO is particularly influ-
ential during peak demand periods when both capacity margins and renewable production are
constrained.

The yearly results reveal a slightly different pattern, with the ranking from highest to lowest shedding
as: all competitive, competitive dominant, polarized, all individualistic, equal mix, base case, moderate,
all altruistic, cooperative dominant, and all pro-social. Over a longer period of time, all competitive
populations continue to shed the most while all altruistic populations maintain the same low shedding
observed in January. Over time competitive populations persistently shed the most due to their
self-interested behaviour across seasons, while altruistic populations maintain low shedding
by consistently cooperating even during winter months with low PV generation. Notably, co-
operative dominant and all pro-social populations switch positions compared to the monthly ranking,
suggesting that system behaviour over the year can reorder the relative performance of cooperative
strategies depending on cumulative interactions and seasonal variations.

Comparing all scenarios to the base case shows how population extremes influence load shedding.
The base case, which features a discrete distribution of SVOs and no noise, consistently occupies the
middle of the ranking, serving as a reference for moderate system performance. Populations above the
base case, particularly all competitive, competitive dominant, or polarized, demonstrate that the pres-
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ence of self-interest amplifies reliance on shedding. Those below the base case, such as cooperative
dominant, all altruistic, or all pro-social, show that pro-social and altruistic orientations can mitigate
system pressure. Scenarios with mixed compositions, like equal mix or moderate, are close to
the base case which shows the balancing effect of heterogeneity.

Overall, these results suggest that the system is most vulnerable to load shedding under competitive
dominated populations, while altruistic or pro-social compositions provide greater resilience and reduce
the need for interventions such as load shedding. Seasonal variations in solar production further in-
tensify these effects, particularly in winter months when PV generation is limited and the system faces
higher stress.

8.2.2. Load Shifting
This section discusses the results for load shifting. The following Figure 8.2 shows an overview of load
shifts across all scenarios, comparing monthly results and results over the year with each other. Each
bar presents the average load shift value distribution for a given scenario.

Figure 8.2: Load Shifts Monthly Distribution across the Year

As seen in Figure 8.2, the simulations have shown that load shifting also depends on the composition
of the agent population. In the monthly results, the observed ranking from highest to lowest
number of load shifting in the month January was: all altruistic, cooperative dominant, all pro-
social, all competitive, polarized, equal mix, base case, moderate, competitive dominant, and
all individualistic.

Altruistic and pro-social populations have shown the highest engagement in voluntary load shifts, which
reflects a high willingness to support the community. In contrast, individualistic populations show lower
levels of load shifting which shows that they prioritize self-interest over helping the community. Interest-
ingly, fully competitive populations are fourth in the order for load shifting, likely because the presence
of penalties constrain their behaviour. Mixed populations hold the intermediate positions in the order,
which can be explained by the fact that the presence of altruistic and pro-social agents might increase
the number of load shifting. The presence of individualistic agents would decrease this number of load
shifting.

Seasonal demand also plays a role in load shifting. During high-demand winter months, the differences
between SVO types become clear as altruistic and pro-social agents maintain high levels of load shifting
while competitive or individualistic agents engage less. In lower-demand periods such as spring
and summer the gap narrows, which indicates that SVO are particularly influential during peak
demand moments when capacity margins are tight.
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Solar production clearly affect load shifting. Limited PV production in winter reduces local generation,
which increases system pressure and therefore shows the importance of cooperative behaviours. In
spring and summer when demand is lower and PV production is higher, overall load shifting decreases
and the differences between population compositions narrow. This indicates that SVO is especially
influential under periods of high system stress, when capacity margins and renewable genera-
tion is limited.

In the yearly results, the observed ranking from highest to lowest number of load shifting differs: all
competitive, polarized, all pro-social, cooperative dominant, competitive dominant, equal mix, all al-
truistic, base case, moderate, and all individualistic. This suggests that over time, all competitive
populations engage more in load shifting than might be expected from their monthly behaviour.
This could potentially be due to the presence of rewards, penalties, and repeating shifting opportunities
which incentivized competitive agents to adapt their strategies over time and exploit flexibility whenever
it benefits them. Meanwhile altruistic populations who rank highly in January, rank lower annually. This
indicates that short-term willingness to shift may not always translate to sustaining that action over a
full year. The behaviour of altruistic agents are less influenced by the rewards and penalties, which
leads to a saturation point once their altruistic motivations are fulfilled.

When comparing all scenarios to the base case, it becomes clear that the base case consistently falls
just below the middle of the rankings. This suggests that a balanced, discrete distribution of agent types
with no noise produces moderate levels of load shifting. In the monthly results, all altruistic, cooperative
dominant, and all pro-social scenarios rank above the base case. In the yearly results, this applies to
fully competitive, polarized, and pro-social combinations. This shows that extreme population composi-
tions can increase engagement in load shifting, which is either driven by strong cooperative tendencies
or by penalties that limit high self-interest. On the other side, scenarios below the base case including
moderate, competitive dominant, and all individualistic in the monthly results, reveal that insufficient
pro-social motivation or excessive self-interest withholds participation. This comparison shows that
the population composition and time interact with each other. Populations that shift a lot in a given
month do not always continue that behaviour over the whole year. Competitive populationsmay
even perform more load shifting at the end of the year, as repeated opportunities and penalties
push them to shift over time.

Overall, the base case shows the moderating effect of heterogeneity while deviations above or below
it illustrate how extremes in agent behaviour drive the variability in system-level outcomes. Pro-social
and altruistic agents increase the number of load shifts, particularly during periods of high demand and
low renewable production. Individualistic populations rely less on voluntary shifting and may require
additional motivators to increase demand response.

8.2.3. Rewards
This section discusses the results for rewards. The following Figure 8.3 shows an overview of rewards
across all scenarios, comparing monthly results and results over the year with each other. Each bar
presents the average rewards value distribution for a given scenario.



8.2. Analysis of Model Results 52

Figure 8.3: Rewards Monthly Distribution across the Year

As seen in Figure 8.3, the simulations have also shown that rewards (also implicit capacity sharing)
are influenced by the composition of the agent population with small differences. In the monthly
results for January, the ranking from highest to lowest rewards is: all individualistic, moderate,
base case, equal mix, all pro-social, cooperative dominant, all altruistic, competitive dominant,
polarized, and all competitive. All individualistic populations consistently achieve the highest rewards
which reflects their focus on maximizing personal gain, while competitive populations rank the lowest
positions due to their behaviour of a desire to outperform others rather than to optimize absolute gains.
This shows that all individualistic agents will implicitly share more as long as they receive their monetary
rewards. Mixed populations generally achieve intermediate outcomes, suggesting that a combination
of self-interested and pro-social orientations produces moderate reward levels.

Seasonal effects are visible in the monthly results. Peaks occur in January, reflecting the high activity at
the start of the year with smaller secondary peaks in March and October. These peaks likely corres-
pond to periods of increased energy demand or favourable system conditions for shifting and
earning rewards. Furthermore, there is a dip in July which can be caused by lower energy de-
mand during summermonths and higher PV production reducing the need for participant action.
Across these seasonal variations, individualistic populations consistently exploit reward opportunities.
Pro-social, cooperative, and altruistic populations prioritizes system balance over personal gain. Mixed
and moderate populations show intermediate seasonal patterns, adjusting their engagement according
to both population composition and seasonal system conditions.

In the yearly results, the ranking shifts somewhat: all individualistic remains at the top, followed
by equal mix, moderate, base case, polarized (equal to all competitive), all competitive (equal
to polarized), competitive dominant, cooperative dominant, all altruistic, and all pro-social. This
indicates that over longer periods mixed and moderate populations can outperform some highly pro-
social or competitive groups, as there more opportunities to load shifts. Interestingly, polarized and
all competitive populations have to the same reward level annually, showing that repeated in-
teractions over time can equalize outcomes between extremes of SVO.

Comparing all scenarios to the base case highlights that individualistic and moderately mixed popula-
tions consistently outperform it, while cooperative-dominated and altruistic populations tend to receive
fewer rewards over time. This suggests that strategies prioritizing personal gain or balancing
self-interest with cooperation are more successful in maximizing cumulative rewards, whereas
purely pro-social or highly cooperative strategies may trade-off individual reward for load shift-
ing.

Overall, the results demonstrate that both population composition and seasonal dynamics strongly
influence rewards. Individualistic populations consistently maximize their cumulative rewards, while
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pro-social, cooperative and altruistic populations achieve lower rewards due to their focus on support
rather than personal gain. Mixed populations hold intermediate positions, benefiting from a balance
of self-interest and cooperation. Seasonality intensifies these differences: winter and early autumn
months offer more opportunities to earn rewards, while summer months show a general decline across
all scenarios due to reduced demand and higher PV generation. This shows that both SVO and seasons
must be considered when assessing strategies to optimize individual and collective outcomes in the
EH.

8.2.4. Penalties
This section discusses the results for penalties. The following Figure 8.4 shows an overview of penalties
across all scenarios, comparing monthly results and results over the year with each other. Each bar
presents the average penalties value distribution for a given scenario.

Figure 8.4: Penalties Monthly Distribution across the Year

As seen in Figure 8.4, the simulations indicate that penalties vary depending on the SVO of the agent
population with small differences. In themonthly results for January, the highest penalties were ob-
served in the all pro-social scenario, followed by competitive dominant, cooperative dominant,
all altruistic, moderate, equal mix, base case, all individualistic, polarized, and all competitive.
This outcome is somewhat counter-intuitive, as one might expect pro-social or altruistic populations to
minimize penalties through cooperative behaviour. However, the higher penalties in these groups sug-
gest that their strong willingness to shift load may also increase their exposure to penalty conditions
in constrained system states. By contrast, fully competitive populations show the lowest penalties
monthly, reflecting their unwillingness to participate in system-supportive actions that could otherwise
result in penalty exposure.

Seasonal variations also have an impact on penalty outcomes across all scenarios. Monthly results
show that penalties tend to peak in March and November, periods that likely correspond with
higher system demand and reduced renewable generation. However, penalties are lowest in
August when there is reduced demand and higher PV generation. Cooperative and pro-social
populations are particularly sensitive to these seasonal dynamics: their willingness to engage in load
shifting exposes them to higher penalties during the winter months. Equal mix and moderate popula-
tions generally experience intermediate seasonal fluctuations, which suggests that heterogeneity helps
buffer the extremes caused by both altruistic and competitive behaviours. These patterns indicate that
both the periods of high and low demand, PV generation, and the SVO of agents together drive the
seasonal penalty trends.



8.3. Trade-offs 54

In the yearly results, the ranking shifts from high to low are: competitive dominant, all competitive, all pro-
social, cooperative dominant, polarized, all altruistic, base case (equal to moderate), moderate (equal
to base case), all individualistic, and equal mix. Over time, pro-social and altruistic populations drop
lower in the ranking, while competitive groups accumulate greater penalties. This shift suggests that
sustained self-interested behaviour leads to long-term inefficiencies that the system penalizes,
whereas cooperative groups balance their participation in ways that mitigate penalties over
time.

When comparing scenarios to the base case, a clear pattern emerges. In the monthly results, the base
case lies near the middle of the ranking, with only competitive, polarized, and individualistic populations
performing better in terms of lower penalties. In the yearly results, the base case and moderate scen-
arios share the same middle position, outperforming both highly competitive groups and even some
cooperative populations. This indicates that the discrete distribution of agents in the base case
produces a stabilizing effect that avoids the extremes of very high or very low penalty exposure.

Overall, the results show that penalties are influenced by a combination of agent composition, sea-
sonal demand fluctuations, and renewable generation. Populations dominated by pro-social or altruistic
agents tend to face higher penalties during peak-demand months. Highly self-interested populations,
such as competitive or individualistic agents, generally have lower penalties monthly, but over the
course of the year the penalties accumulate more due to repeated suboptimal behaviours. Mixed and
moderate populations consistently hold intermediate positions, which highlights the stabilizing effect of
heterogeneity within the EH.

8.3. Trade-offs
The results across all four KPIs reveal some trade-offs between different SVO compositions. No single
agent population performs best across all dimensions, meaning that the EH design must balance com-
peting outcomes depending on whether the emphasis is on resilience, fairness, or individual incentives.

Competitive and individualistic populations show the sharpest contrasts. All competitive populations
achieve the highest levels of load shifting in the yearly results, which indicates that self-interested
behaviour can still contribute to offering flexibility under strong constraints. However, this comes
at the cost of very high load shedding and penalties which makes these populations less reliable in
maintaining operational reliability. This counter-intuitive outcome can be explained by the fact
that they load shift to optimize their own benefits and not the for the collective, so they are load
shifting in such a way that it creates localized congestion that has to be shed.

In contrast, all individualistic populations rank highest in rewards as agents maximize opportun-
ities for financial benefit. Yet this group performs lowest in load shifting, which underlines the tension
between individual profit and collective performance.

Altruistic and pro-social populations have a different type of trade-off. Over the year, all altruistic agents
keep load shedding low but achieve only moderate to low levels of load shifting and rewards. Pro-
social populations perform somewhat better with ranking moderate-high in load shifting and very low
in shedding, but they obtain the lowest rewards and face moderate to high penalties. This indicates
that although both altruistic and pro-social orientations improve resilience by reducing load
shedding and contributing to flexibility, it happens at the expense of maximizing their financial
outcomes.

Mixed populations, such as the equal mix, moderate, and base case scenarios, occupy middle
positions across most KPIs. The equal mix population show moderate load shifting and shedding,
but achieve high rewards while keeping penalties very low. This indicates that diversity in SVO can
stabilize performance and maximize financial outcomes without creating systemic problems.

Moderate population rank low in load shedding but keeps load shifting, rewards, and penalties in the
moderate range. This scenario makes the moderate population a somewhat ’steady’ configuration by
not excelling in any KPI.

The cooperative dominant population performs moderately high in load shifting and keeping load shed-
ding low. However, this population faces higher penalties while earning moderate-low rewards. This
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suggests that cooperation strengthens systemic stability, but also exposes the population to costs when
incentives are misaligned.

Competitive dominant populations showmoderate load shifting, but also experience high load shedding,
low rewards, and very high penalties. These results underline the risks of dominance by self-interested
behaviour, as operational reliability becomes harder to maintain and financial outcomes far are from
optimal.

Next, polarized population perform well in load shifting but show relatively high load shedding and mod-
erate results in rewards and penalties. This configuration shows both the benefits and disadvantages
of a strong contrast population. While flexibility is achieved by high results in load shifting, the high
amount of load shedding lowers their reliability.

Lastly, the base case consistently holds a balanced position across the KPIs. It performs low in load
shifting, moderate in load shedding, moderate-high in rewards, andmoderate-low in penalties. It can be
said that the base case neither maximizes performance in any KPI or exposes the EH to vulnerabilities
een in more extreme population types. However, it is good to note that the base case does not account
for uncertainty.

Seasonal patterns also reveal important trade-offs. In the short-term results which are represented
by monthly data (e.g. January), all altruistic and all pro-social populations lead in load shifting and
show reduced shedding. This shows that altruistic and pro-social agents prioritize the system when
their actions align with their intrinsic motivations to support the collective. All competitive populations
rank slightly lower in load shifting in the short-term results, because they prioritize self-interest over
collective benefit. In the long-term results which is represented by the aggregated year results, the pre-
vious behaviour changes. All competitive populations move to the top in load shifting while all altruistic
and all pro-social populations drop lower in the rankings. This change is due to cumulative effects of
competitive agents repeatedly facing penalties and rewards, so their total strategic engagement across
many events becomes significant. Pro-social agents hold a moderate-high positions, because they are
trying to balance supporting the collective and their self-interest. This leads to consistent engagement
in load shifting without overexposing themselves with load shifting. Altruistic agents consistently act
to support the system, so their total grows steady but does not spike because they are not strategic-
ally shifting just as competitive agents. This illustrates a trade-off between short-term benefits of
cooperative agents (all altruistic and all pro-social) and long-term adaptability of competitive
agents (all competitive). While cooperative agents seek the best for the collective, their contribution
remains steady and predictable. Competitive agents strategically respond to repeated opportunities
that allows them to gradually increase their total load shifting over the year.



9
Survey

This chapter presents and discusses the design of the survey for real-life participants of an EH, which
is followed by the survey results. After that, the analysis of the survey results are discussed. Lastly,
this chapter ends with a comparison between the survey analysis and the ABM.

9.1. Survey Design
The purpose of the survey is to gain insights into the behaviour of real-life participants within an EH.
Specifically, the survey aims to approximate the distribution of SVO types present in actual EHs and
identify the factors that influence decisions regarding load shifting and capacity sharing.

The survey was distributed using Google Forms, a free and user-friendly tool. It was chosen because
it allows easy access for all participants, anyone with the survey link can simply complete the question-
naire without the need for additional software or accounts.

The survey is completely anonymous, and no personal data of participants is collected. Participation is
voluntary; respondents may join or leave the survey at any time. However, once the survey has been
submitted, it cannot be exited or altered. This information is also explained in the first part of the survey,
where the informed consent is discussed.

The survey questions were designed to test behavioural factors identified in literature to explore the
alignment between theoretical insights and real-world data of ICs. They were also designed to un-
cover new behavioural factors directly from the experiences of real-life participants. To achieve this,
multiple-choice questions were created around clearly described scenarios to ensure that respondents
understand the question. Additionally, open-ended questions were included to identify any factors
not previously considered. Furthermore, Likert-scale questions were used to measure the degree of
agreement with specific factors, providing quantitative insight into participant attitudes.

Some survey answer options are designed to reflect the different SVO types, which describe how
individuals prioritize their outcomes relative to others when making decisions. As mentioned before
in Section 4.5, it can be assumed that competitive individuals aim to maximize their own pay-off and
other’s pay-off in their favour. Individualistic individuals aim to maximize their own pay-off and have little
to no concern of other’s pay-off. Pro-social individuals aim to maximize joint outcomes, while altruistic
individuals prioritizes the other’s pay-off above their own (Greiff et al., 2018; Murphy & Ackermann,
2014).

This means that individualistic individuals are represented by answer options that emphasize pursuing
strategic self-interest. Competitive individuals are reflected in options that focus on maximizing the
difference between their own outcomes and those of others. Prosocial individuals tend to prioritize
balancing their own interests with the collective good, while altruistic individuals are characterized by
answer options expressing a strong willingness to cooperate, share capacity, and contribute solely to
collective solutions.

56
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Several survey answer options include behavioural factors that influence consumer decision-making
regarding load shifting. These factors correspond to those identified in the literature review (see Sub-
section 2.1.2), which are financial incentives, operational losses, expectations of other companies, the
company’s own reputation, and access to insights. In the survey, financial incentives are represented
by both rewards and penalties within a single question.

Mind that the formulation of all these answer options are subjective and can be formulated in different
ways.

The English version of the survey is provided in Appendix D. Since all participants are Dutch speakers,
a Dutch version was created for their convenience. The Dutch survey can be accessed via the following
link: Google Forms Survey.

The answer options with the matching SVO types of Questions 1, 4 and 7 are given below in Tables
9.1, 9.2 and 9.3 respectively:

Answer option SVO type
We see scarcity as an opportunity. If we can consume more than others, we
might be able to gain a strategic advantage.

Competitive

We prefer to run our process at the time that is most efficient for us. If it is really
necessary to shift due to the scarcity, we will only do so if it does not harm our
own planning and objectives. Our priority lies in the optimal operation of our
company.

Individualistic

We understand that there is scarcity and therefore want to contribute to a bal-
anced solution. We are willing to shift our process, provided it fits within our
operational capabilities.

Pro-Social

If scarcity is expected, we absolutely want to prevent our extra consumption
from disadvantaging others. We will voluntarily shift our process to a quieter
time during the day so that enough capacity remains available for the entire
hub. The collective interest comes first.

Altruistic

Table 9.1: Answer options with matching SVO type of Question 1

The answer option of competitive should reflect that they prioritize maximizing their own outcomes re-
lative to others. So, in first question the competitive sees the energy shortage as a chance to have a
strategic advantage over others. An individualist only focusses on maximizing their own outcome, so
the answer option of individuals should reflect that they are acting for their self-interest. This means
that they will only load shift if it does not negatively affect their operation of the company. Next, pro-
socials want fair outcomes for both themselves and others, so their answer option should reflect their
willingness to adjust their processes while staying within their operational capabilities. Lastly, an altru-
istic prioritizes the well-being of others above their own, so their answer option should reflect that they
voluntarily will load shift to ensure that the collective interest is met.

https://docs.google.com/forms/d/e/1FAIpQLSe9L4cPWC-KRFqwf7eHizBQ2I5EsHq5PU453H1l-DI31NuDXw/viewform?usp=header
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Answer option SVO type
If another company runs into trouble due to a capacity issue while we have
sufficient capacity, it strengthens our position in the hub. We see no reason to
share our capacity; it is better that they manage their own affairs.

Competitive

As long as we do not urgently need the capacity, we keep it available for our
own flexibility. We want to avoid getting into trouble ourselves later on.

Individualistic

We currently have available capacity and are willing to share it if that helps
solve a problem for another company. As long as it does not disrupt our own.

Pro-Social

If another company urgently needs capacity and we do not need it at that mo-
ment, we will of course make it available to them.

Altruistic

Table 9.2: Answer options with matching SVO type of Question 4

In the fourth question, a competitive sees another company’s capacity problem as an opportunity to
strengthen their own position and also has no reason to share capacity because they do not gain from
it. An individualist in this situation will keep their capacity to themselves, because they do not want to
give it away in case they will need it. A pro-social wants what is best for both themselves and others, so
their answer option shows again their willingness to share as long it does not affect themselves. Finally,
an altruistic will only think about others and will have no second thought about giving the capacity to
someone else.

Answer option SVO type
No, unless they offer themselves. My process is important, but not more im-
portant than preventing strain on others

Competitive

Yes, absolutely. If I benefit from it and they can give way, then that’s their
problem

Individualistic

Yes, I can ask in a polite manner and it is reasonable. Together looking for the
best solution for everyone.

Pro-Social

Yes, definitely. My process is important, and if I ask politely whether they can
shift, that’s fine.

Altruistic

Table 9.3: Answer options with matching SVO type of Question 7

In the seventh question, a competitive will not ask first unless others do it first because they want to
minimize any risk or effort on their part. They are too focussed on their position and avoid taking action
themselves. An individualist will only call if it benefits their own process, because they only care about
themselves. A pro-social will think of others and ask in a polite manner to talk about the best solution
for everyone, because they want the best for all. Lastly, an altruistic will not think twice about calling
other because they think about the collective good and think that others will also voluntarily reduces or
load shift for them.

9.2. Survey Results
In this section, the results from the online survey are presented. The survey’s goal was to gain insights
into the behaviour of real-life participants within an EH. In addition, the survey aims to approximate the
distribution of SVO types from actual participants in an EH and identify factors that influence decisions
regarding load shifting and capacity sharing. The questions of the survey with the answer options can
be seen in Appendix D. Four respondents have reacted to the online survey. The statistical represent-
ativeness of this sample size is low, however it gives an impression of the real-world context.

Question 1
In the first question, the respondents were asked to choose from four options where each answer option
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reflects a SVO type. The question talks about a situation where the company wants to consume more
than agreed, but they still can shift to another moment on the same day. The following Figure 9.1
visualizes the answer in a pie chart, where each respondent corresponds with A, B, C and D:

Figure 9.1: SVO type for load shifting on the same day

From Figure 9.1, it can be seen that respondent A and C react pro-social to this answer, while respond-
ent B is altruistic. Respondent D have shown to agree with the competitive answer.

Question 2
In the second question, the respondents were asked to rate a couple of factors that influence load
shifting on the same day. Again, the question talked about a situation where the company wants to
consume more than agreed, but they still can shift to another moment on the same day. The following
Table 9.4 summarizes the answers, where each respondent corresponds with A, B, C and D:

Table 9.4: Factors influencing load shifting on the same day

Factor Very not important Not important Neutral Important Very Important
Financial rewards B A C, D
Penalty A, C, D B
Cost of Production B A C D
Insight into Capacity D A, B, C
Expectation of others A, B, C, D
Reputation B C A, D

From Table 9.4, it can seen that respondent A finds insight into capacity, expectation of others, and
reputation to be important. Penalty seem to be not important to respondent A. Financial rewards and
cost of production is neutral to respondent A.

Respondent B finds insight into capacity and expectation of others to be important. Financial rewards,
cost of production, and reputation seem to be (very) not important to respondent B. Penalty is neutral
to respondent B.
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Respondent C finds financial rewards, cost of production, insight into capacity, and expectation of others
to be important. Penalty is the only factor to be not important to respondent C, while reputation remains
neutral.

Respondent D finds financial rewards, expectation of others, and reputation to be important. Cost of
production is even to be found very important to respondent D. Penalty is the only factor to be not
important, while insight into capacity remains neutral.

Question 3
In the third question, the respondents were asked to give an answer to an open question which dis-
cusses other factors that influence load shifting on the same day.

There were two answers to this question, since it was optional to fill this in:

Respondent C: ’I assume that agreements have been made with the participants in the hub regarding
how to handle grid congestion, and that everyone also adheres to the agreements’

Respondent A: ’Primary business processes should in principle continue as planned. Secondary busi-
ness processes can if necessary be shifted (or cancelled) to a more favourable time’

Question 4
In this fourth question, the respondents were asked to choose from four options where each answer
option reflects a SVO type. The question talks about a situation where the company has reserved
capacity but does not necessarily need it while another company needs it. The following Figure 9.2
visualizes the answer in a pie chart, where each respondent corresponds with A, B, C and D:

Figure 9.2: SVO type for load shifting on the same day

From Figure 9.2, it can be seen that respondents A and B chose the altruistic option. Respondents C
and D chose the pro-social option.

Question 5
In the fifth question, the respondents were asked to rate a couple of factors that influence their decision
to give reserved capacity away. Again, the question talked about a situation where the company has
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reserved capacity but does not necessarily need it while another company needs it. The following Table
9.5 summarizes the answers:

Table 9.5: Factors influencing giving up capacity to others

Factor Very not important Not important Neutral Important Very Important
Financial rewards B A C, D
Positive Experiences D A, C B
Image B A, C, D

From Table 9.5, it can been seen that respondent A finds positive experiences and image to be import-
ant. Financial rewards remains neutral.

Respondent B finds positive experiences to be very important, while image remains neutral. Financial
rewards is even to be found very not important.

Respondent C finds financial rewards, positive experiences, and image to be equally important.

Respondent D finds financial rewards and image to be important, while positive experiences remains
neutral.

Question 6
In this sixth question, the respondents were asked to give an answer to an open question which dis-
cussed factors that influence their decision to give reserved capacity away.

There was one answer to this question, since it was optional to fill this in:

Respondent A: ’We need to solve this together, so I expect the same from other participants where
the continuation of business processes is more important than financial considerations.’

Question 7
In the seventh question, the respondents were asked to choose from four options where each answer
option reflects a SVO type. The question talked about a situation where there is limited capacity in
the EH and the company wants to continue their process, but that is only possible if another company
lowers their usage. Here the question was about approaching another company to ask if they can
make space for the company. The following Figure 9.3 visualizes the answers, where the respondents
correspond with A, B, C, and D:
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Figure 9.3: SVO type for load shifting on the same day

From Figure 9.3, it can be seen that respondents A, C and D agree with the pro-social option. Only
respondent B agrees with the competitive option.

Question 8
In this last question, the respondents were asked to give an answer to the open question which dis-
cussed if there were other factors that influence their decision to approach another company. No one
have reacted to this question.

9.3. Analysis of Survey
In this section, the survey results are analysed and the patterns/interpretations are discussed. There
were three situations presented, where each time the SVO type is tested and the factors influencing
decisions are examined.

Across these three situations an average could be calculated to determine the SVO type for each
respondent. Respondent A chose the pro-social option (pro-social corresponds with number 2) two
times and once the altruistic option (altruistic corresponds with number 1). The average for respondent
A could be calculated as (2 + 2 + 1) / 3 = 1.67. This means that in general respondent A is somewhere
between altruistic and pro-social, but leans more towards pro-social.

Respondent B chose the altruistic option (altruistic corresponds with number 1) twice and the compet-
itive option (competitive corresponds with number 4) once. The average for respondent B could be
calculated as (1 + 1 + 4) / 3 = 2.00. This means that in general respondent B is pro-social.

Respondent C chose in all three situations the pro-social option (pro-social corresponds with number
2). The average for respondent C could be calculated as (2 + 2 + 2) / 3 = 2.00. This means that in
general respondent C is pro-social.

Respondent D chose the pro-social option (pro-social corresponds with number 2) twice and the in-
dividualistic option (individualistic corresponds with number 3) once. The average for respondent D
could be calculated as (2 + 2 + 3) / 3 = 2.33. This means that in general respondent D is somewhere
between pro-social and individualistic, but leans more towards pro-social.

It can be said that all respondents from the survey are pro-social or lean toward the pro-social behaviour.
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Since most choices per situation were pro-social, it can be said that respondents prioritize fairness
and cooperation when making decision about load shifting, capacity sharing, and approaching another
company to lower their usage. The altruistic responses from respondents A and B emerge particularly in
situations where unused capacity could be shared or where the respondent would load shift. This may
suggest that in the case of capacity sharing when there is an excess, some respondents are willing to
put the collective interest above their own because they do not need the excess anyway. Notably, there
were no altruistic responses for approaching another participant to lower their energy usage. This may
indicate that altruism can be more easily expressed in passive or voluntary moments than in actively
requesting another to reduce or shift their usage.

One individualistic response from respondent D occurred in the situation where the company wants to
consume more than agreed, but they can load shift to another moment on the same day. This shows
that respondent D have decided in terms of their own operational stability rather than what is fair. Also,
one competitive response from respondent B occurred in the situation to approach another participant
to lower their energy usage. This might suggest that in a conflict-prone interaction such as asking
another to reduce or load shift, a small part of the respondents may be acting more out of self-interest
and viewing this situation as an opportunity to increase relative advantage.

From the factors, it can be said that respondents find different factors important. Respondent A mostly
values social and operational factors such as insight into capacity, expectation of others, positive ex-
periences, image and reputation. Respondent B finds insight into capacity, positive experiences and
expectation of others to be most important. Respondent C finds financial rewards, cost of production,
insight into capacity, positive experiences, image and expectation to be valuable. Respondent D finds
financial rewards, cost of production, expectation of others, image and reputation important.

Overall, the respondents are mostly motivated by social and operational factors than by financial in-
centives. While there are some differences between respondent A, B and C, D with finding financial
rewards important, the social and operational factors consistently appear across the respondents. This
may suggest that in practice, cooperation in the EH are not primarily driven by short-term financial gain,
but the desire to maintain operational reliability and build trusted long-term relationships. For example,
the importance of reputations shows that participants care about how they are perceived by their peers
because this may influence future opportunities for collaboration. This example can be verified by the
fact that positive past experiences is also an important factor that is valued. Participants are more likely
to give up capacity or shift their processes if they believe that others would do the same for them.

The answers to the open questions emphasize the importance of trust and cooperation. Respondent C
have expressed the importance of having clear and shared agreements within the EH about handling
scarcity and respondent A have expressed that primary business processes should always continue.
Respondent A also said that secondary business processes can be adjusted if needed. Respondent
A explicitly stated that the continuation of business processes is more important than financial incent-
ives and that he expects the same attitude from others. This suggests that the participants should
have a clear agreement of rules among them, where cooperation is expected not because of financial
incentives but of mutual recognition of business continuity.

Since there are four responses to this survey which is a small samples size, the results of this survey
should be interpreted as exploratory instead of robust evidence. The limitations of this survey can be
found in Subsection 10.3.3 in the Discussion chapter.

In conclusion, the survey results show that the respondents all have a pro-social SVO type which
emphasizes that their decision-making is more likely based on cooperation and fairness. Altruistic
tendency may show when participants have unused capacity or have the ability to load shift. Individu-
alistic and competitive SVO types are rare and only show in conflict-sensitive situations such as asking
someone else to lower or shift their usage. Social and operational factors such as trust, reputation, and
safeguarding core business processes are valued more than financial incentives. This suggests that
collaboration in the EH depends primarily on mutual expectations and shared agreements rather than
financial rewards or penalties. The results of this survey is more exploratory instead of robust evidence,
because of the small sample size of the respondents.
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9.4. Comparison with the Agent-Based Model
In general, the four respondents either are pro-social or lean to pro-social. Compared to the scenarios
in the model, the configuration of SVO of the respondents corresponds exactly with the all pro-social
scenario. In the all-pro-social scenario, every agent has a pro-social type. If the respondents were
in an EH with each other, it would mean that they are likely to perform well in load shifting and load
shedding. However, it is also likely that they receive less rewards andmoderate-high penalties. Notably,
the importance of factors from the survey corresponds with performing well on load shifting and load
shedding. This is because the respondents and thus the pro-socials find social and operational factors
much more important that financial incentives such as rewards and penalties. This means that in
practice, the respondents are likely to cooperate and make decisions that benefit the collective even if
there is lower individual financial gain or higher penalties.

The survey shows that there are some situations where the respondents can deviate from the pro-social
typing depending on the situation. In the ABM model there is only situation where the agents could
do something, which is the load shifting the company’s process to another moment on the same day.
Future research with a larger sample size should validate whether the observed behaviour and dom-
inance of pro-social behaviour reflects the dynamics of real-world EHs. Additionally, future research
could also implement the other two situations (capacity sharing and asking others to reduce their usage)
in the model to explore the behaviour when other options are available.

Compared to the ABM, the factors are to some extent implemented in the model but could be extended.
Currently, the model includes productions costs, penalty and load shift sensitivity. However, social
drivers such as reputation, expectations, and trust between participants are not included because there
was no time. The survey suggests that these social dynamics are important drivers in practice and
should be included in future versions of the model.
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Discussion

This chapter reflects on the methodology and the interpretation of results. This is followed by a discus-
sion of this research’s limitations, where critical assumptions, model limitations, and survey limitations
are addressed. Lastly, this chapter ends with implications for the design and management of an EH.

10.1. Reflection on Methodology
Using a modelling approach, specifically ABM, proved to be an effective way to combine behavioural,
technical, and economic aspects in an EH. This method allowed the integration of different IC profiles
and their decision-making, which offers insights into system-level outcomes that more tradition models
would not seize. Alternative modelling approaches, such as techno-economic system models, beha-
vioural psychology experiments, or optimization-based economic models, could each provide more
precise information within their domain. However, none of these would combine all perspectives simul-
taneously. The chosen approach offered an advantage by capturing the interactions between diverse
agents and their environment.

One methodological challenge was the formalization of behavioural aspects. SVO were modelled as
discrete categories, which allows for a clear differentiation but at the same time it simplifies reality. In
reality, these orientations are on a continuous spectrum and people can fall in between two SVOs. A
continuous approach of the SVO could have captured this complex behaviour more realistically, but it
would have required more model complexity and calibration. In the survey, it was also more practical
to use discrete categories since the questions would otherwise have needed to be designed with finer
scales. This will make the questions longer and potentially harder for respondents to interpret correctly.
While this choice limited the psychological depth of the simulation, it allowed for behavioural diversity
to be expressed in a quantifiable way.

Another consideration was computational intensity regarding running experiments. Each simulation
run consisted of 8784 steps, which ensured that all seasons are included and real-time dynamics were
preserved. However, this also produced large output files and limited the total number of scenarios
that could be simulated. For this study, 50 runs per scenario was sufficient since another master thesis
which used ABM proved that number to be enough (Vliet, 2022). However, incorporating more uncer-
tainty or additional scenarios in the model would have significantly increased the computational burden.
Reducing the time horizon could have helped this, but this would be at the cost of losing all seasons.
Therefore, the chosen approach was well suited for the scope of this study.

10.2. Reflection of Results Interpretation
The interpretation of the results from this research comes with certain challenges. Since the model was
not calibrated against a specific real-world EH, there was no direct benchmark available for validation of
the absolute values. This limits the extent to which numerical outcomes, such as penalties or levels of
load shifting, can be generalized. However, the goal of the model was not to provide precise forecasts
but rather explore how interactions between IC and its environment would unfold. From this perspective,
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the results are meaningful and valid in terms of capturing the system dynamics and its trends.

The exact numbers produced by the model should be treated cautiously, as they depend on a number
of assumptions and simplifications. On the other hand, the relative changes across scenarios are
generalizable. For instance, the simulations consistently showed that heterogenous groups are much
more stable than homogenous groups on the KPIs. This effect is not dependent on a specific parameter
value, but emerges from the structure of the model itself. Such results provide an useful indication for
EH designers: diversity among participant’s behaviour can improve resilience in demand response.

What can not be generalized directly are the exact tipping points or thresholds at which behavioural
change occurs, since these are sensitive to assumptions made about consumer preferences such
as penalty sensitivity. More precise knowledge on such thresholds could only be discovered by case
studies with real-world data. In that context, the samemodel structure could be used but with empirically
grounded input parameters.

10.3. Limitations
In this section, some critical assumptions and model limitations are discussed. An overview of all
assumptions that were made can be found in Appendix B.

10.3.1. Critical Assumptions
This research did not aim to develop a fully detailed model, but rather to create a high-level framework
capable of providing insights into demand response in EHs with diverse IC. Some model parameters
are inherently uncertain, particularly those representing behavioural aspects which had to be quantified
numerically. As a result, a number of simplifying assumptions were made regarding both the EH and
the IC. While assumptions are an unavoidable part of simulation modelling, it is essential that they are
supported by existing literature or grounded in clear reasoning. The following subsection discusses the
most critical ones of these assumptions.

First of all, the representation of the flexible assets in the model are highly simplified. PV is the only type
of flexible asset to be considered, without the inclusion of other technologies such as batteries, wind
turbines, or thermal storage. The PV installations are assumed to be identical panels of 450Wp, without
efficiency variations or degradation over time. The agents are also assumed to have a fixed amount
of roof space and installations, without the possibility to expand their roof space and installations over
time. These assumptions may limit the realism of the EH representation as they simplify the technical
challenges and opportunities of flexible assets in real-world EHs.

Next, the CEMS is assumed to have perfect foresight of congestion hours for the following day and to
respond instantaneously. In reality, there will be forecasting errors and delays in response time. The
CEMS is also assumed to perfectly redistribute the group capacity each month proportionally to each
agent. In reality, this redistribution may not always be perfect and there may be a different distribution
key. It is also assumed that all agents in the EH do not have other EMS for their own assets, but only
have one CEMS for the whole EH. In real-life, this may not be always the case as participants already
have an EMS before entering the EH. These assumptions may limit the realism of the CEMS as they
simplify practical challenges such as imperfect forecasting and potential conflicts of interest between
participants with the distribution key.

Lastly, the representation of agent behaviour is another important limitation. Agents in the model are
restricted to load shifting as their only flexibility option, without the possibility to reduce their demand or
invest in their own flexible assets. The SVO is modelled as four discrete categories, while in reality SVO
exist on a continuous spectrum and can change over time. The agents can not adapt their strategies,
learn from the past outcomes or each other. In the decision-making formulas, parameters such as
penalty and load shifting sensitivity are included. These are quantified values, which are not empirically
supported to be precisely that value. These assumptions may limit the realism of the agents as this
representation simplifies important behavioural dynamics.

10.3.2. Model Limitations
A simulation is a simplification of reality, so not all aspects of a system such as an EH can be included
in the model. The way certain features were included in the model directly influences how the results
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can be interpreted.

This research does not represent a real-world case study as it relied on stylized and self-constructed
data. Demand profiles were drawn from MeterInsight, where real-life data of potential participants from
different EHs are registered. These profiles are not necessarily from one EH as some participants did
not have data available from 2024. The PV profile of generation is self-constructed based on seasonally
and daily patterns instead of measured data. The model outcomes can not be generalized, because
the input data does not correspond with one specific EH.

The results should instead be interpreted as indicative trends rather than exact forecasts. In reality,
there are many configurations of EHs: some have a lot of flexible assets, while others may have more
participants and different types of flexible assets. Each of these configurations could have different
results and implications, which indicates that future research could explore these configurations to a
specific case.

10.3.3. Survey Limitations
In addition to the critical assumptions and the model limitations, the design and outcomes of the survey
also comes with limitations that affect the reliability of the findings.

First of all, the sample size of the survey was very small as only four participants responded. In context
of behavioural or social science research, this sample size is far below the recommended thresholds.
Memon et al., 2020 suggested that behavioural studies typically require a sample size between 30 and
500 respondents. With such a limited number of four responses, it is not possible to identify patterns
or make statistically meaningful claims. The results of the survey should therefore be interpreted as
exploratory input rather than robust evidence. Future research could conduct larger-scale survey with
a more representative sample size to obtain statistically meaningful insights.

Another limitation is the fact that the survey was conducted online. While online surveys are convenient
and cost-effective as there are no costs to visit the respondents (DeCarlo, 2018), they also come with
disadvantages. As mentioned before in Section 3.4, the limitations are that it gives a limited depth of
gathered information and respondentsmay not fully be able to express their thoughts. Also respondents
may misinterpret the questions. To tackle these limitations, the survey was deigned with examples,
open questions, and the Likert-scale (Bryman, 2004). However, the answers to open questions could
not be more clarified because there was no direct communication which limits the depth of the answers.
Future research could conduct a complementary interviewwith respondents as a follow-up to the survey,
which would help to better understand the respondents answers.

10.4. Implications
The findings from this study have several implications for the design and management of EH with
demand response incentives. In the following subsections, three strategies are discussed. These
three strategies are Time-of-Use pricing with dashboard, gamification, and rotational load shedding.

10.4.1. Time-of-Use pricing with dashboard
Seasonal variations in load shedding, load shifting, rewards, and penalties indicate that targeted time-
sensitivity interventions can improve overall performance. Altruistic and pro-social agents are most
effective during peak demand periods or times of low renewable generation. Their cooperative orient-
ation ensures that they engage in load shifting, but this often plateaus over time since their actions are
less responsive to financial incentives. In contrary, competitive agents show great strengths in long-
term adaptability. Over time the competitive agents face repeated rewards and penalties that influence
their decision-making, which leads to taking better advantages of shifting opportunities.

The survey have shown that all respondents on average have a pro-social SVO type, which means that
they are willing to cooperate. Their actions are not primarily driven by financial incentives, but rather
social and operational factors such as having insight into capacity pressure within the EH. Competitive
and individualistic types are less common in the survey results, but from the model is can be said that
they are driven by financial incentives.

It can be said that a combined strategy is needed that encourages cooperation during peak hours while
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still providing triggers for competitive and individualistic agents.

An example of such a strategy is a Time-of-Use (ToU) penalty scheme combined with a dashboard.
ToU is a pricing scheme where the electrical prices vary between predefined periods of the day, with
higher prices during peak demand hours and low prices during off-peak times. By providing predictable
financial incentives, ToU encourages consumers to shift their electricity use from expensive peak hours
to cheaper off-peak hours (Wang & Li, 2015). According to the extreme condition test from Section 5.5,
the pricing must stay between the 0 and 1 €/kWh. The reason for this is that system boundary is 1
€/kWh, so in the model agents already have shifted their maximum flexible capacity.

In research by Zhang et al., 2000 into dynamic ToU pricing for Electric Vehicle (EV) charging, the authors
propose a strategy in which the EV cluster aggregator (could also be the EH operator) first collects the
charging plans and the schedules of its participants. Then, based on the collected charging plans
and expected output of renewable generation, the price could be determined for each time period and
continuously be updated. The price adjustment is based on the difference between supply and demand
in each time slot with the goal to minimize imbalance. To ensure practicality for its users and economic
efficiency, the price is constrained. The price can not exceed the peak-valley price, so that users remain
incentivized. The price may also not drop below the generation and transmission costs of renewable
energy. If the dynamic pricing does not achieve the desired load adjustment, the pricing goes back to
safe prices so that non-responding EVs are charged normally.

In this combined strategy, the dashboard provides real-time signals of congestion moments, while
penalties have a higher number for peak moments particularly in the winter or low renewable genera-
tion moments. For altruistic and pro-social agents, the dashboard shows when their actions are most
needed which allows them to target load shifting in critical hours. Altruistic and pro-socials are less
responsive to penalties or rewards, so factors such as transparency and insight into the capacity pres-
sure within the EH would help to encourage cooperation. For competitive agents, the combination of
information from the dashboard and higher penalties during critical hours encourages them to adapt
more and increase load shifting.

However, there are some challenges when using ToU for IC. According to Normasari et al., 2025 who
conducted a systematic literature review about ToU schemes, the main issue is the limited flexibility
in operational processes as production and maintenance schedules are often fixed. This makes it
difficult to shift energy without affecting efficiency or output. Next, optimizing energy consumption under
ToU requires integrating production planning, maintenance, and energy costs which can be a complex
operational and technical task. Therefore, it requires careful planning and coordination across the EH
to balance operational constraints with peak-demand hours. Also, successful implementation depends
on the IC understanding and responding correctly to the signals which requires transparent dashboard
and communication.

10.4.2. Gamification
The results also highlight the value of heterogeneous populations. Mixed compositions, such as mod-
erate or equal mix, consistently produce balanced outcomes across all KPIs which decreases the ex-
tremes observed in the pure homogenous compositions. In this way, heterogeneity reduces extremes
and risks while maintaining reasonable financial outcomes.

From the survey results, it was clear that participants can be influenced by social factors such as repu-
tation, positive experiences, expectations, and trust. These factors should therefore be encouraged
within the EH to strengthen long-term engagement. Also, all respondents have on average a pro-social
type and in some situations altruistic, individualistic, or competitive responses which affects the diversity
in the group.

This suggests that EH designers should encourage diversity in user behaviours to stabilise performance
and use the social factors in this incentive.

According to Galeote et al., 2025 who reviewed gamification for sustainability transitions, gamification
can improve this diversity and trust in users by engaging different participants in structured, interactive,
and playful activities.

To quote Baptista and Oliveira, 2019, gamification is the use of game-design elements in non-gaming
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contexts, in a process of enhancing a service with game-related features that support users’ overall
value creation. Gamification seeks to unite functionality and engagement, to increase usability, pro-
ductivity, and satisfaction, to create more enjoyable experiences, to drive behaviours, and to produce
positive business impact.

The research of Galeote et al., 2025 proves that gamified interventions can increase awareness, stim-
ulate creativity, and encourage collaboration among diverse stakeholders. By providing a safe envir-
onment, gamification helps participants explore complex system dynamics, understand how individual
actions impact collective outcomes, and build emotional and cognitive engagement.

A gamified approach in the case of the EH could be that there are cooperative challenges where par-
ticipants can earn (gamified) rewards when everybody contributes to load shifting. This way the par-
ticipants can build trust, improve reputations and expectations and have positive experiences with
each other. With this implementation, gamification can bring different participants together while also
strengthening the social dynamics.

An example of gamification in the context of demand response is the Jeju Island pilot project (Lee et
al., 2024) from Korea. The project implemented game-based incentives via a mobile application to
increase participation in demand response events. Here, participants could earn points for connecting
their electric vehicles during demand response evenest, engage in subgames such as quizzes, lotteries,
or badge collections, and compete via a leader board. These elements balanced intrinsic motivations
like achievements, recognition, and competition, while also encouraging engagement over time. What
important is to note, the design allowed participants with different behavioural tendencies to contribute.

Another example of gamification is the game ’Rethinking Users’. According to Youngblood and Chesluk,
2022, ’Rethinking Users’ can offer a new perspective that embeds all users in a framework of complex,
linked experiences. This game is designed to make abstract system interactions tangible, allowing parti-
cipants to experiment with different roles, explore trade-offs, and see the consequences of their choices
in a simulated environment. This game can encourage collaboration across heterogeneous popula-
tions by allowing the different types of participant to explore how their behaviours impact individual-
and system-level outcomes. This shared perspective can reduce the reliance on penalties, improve
engagement in load shifting, and helps align the individual with collaborative objectives.

According to Becka et al., 2019, gamification elements should not be added randomly when designing
an app. It should be aligned with the user’s needs, motivations, and the overarching system object-
ives. Poorly designed gamification can otherwise lead to confusion, disengagement, or even frustration
which undermines the intended behavioural change. In addition, gamification in the energy domain is
still relatively underdeveloped compared to other domains such as health. Most existing apps use only
a limited number of basic components and rarely use advanced elements such as narratives, or im-
mersive environments. Therefore, the success of gamification in the context of EH depends on moving
beyond superficial into a developed design, where each component is purposefully aligned with the
user’s needs, motivations, and overarching system objectives.

10.4.3. Proportional Load Shedding
Lastly, it was noticed from the runs that rotational load sheddingmight not be the fairest approach. In the
current implementation, some agents are shed even though their energy usage is relatively low, while
other agents that exceed their capacity limits do not pay the price of being shed. This could eventually
lead to perceived inequalities among participants and reduced trust in the EH. The observation suggests
that another load shed method may be more fair and better to implement.

An example of a new method could be proportional load shedding with the priority order that already
is implemented in the model. In proportional load shedding, each agent’s reduction would be scaled
according to its actual energy consumption. This ensures that an agent with a high energy usage are
more affected then the agents with a lower energy usage. According to Valiev et al., 2017 proportional
load shedding, in particular Active Proportional Strategies, are recommended for practical implement-
ation because they lower total interruptions, fairly distribute the shortage among participants, and help
identify weak points in the network. With this method, the focus is more on equity instead of equality
as agents are shed relative to their actual demand rather than being treated identically.
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Conclusion

This chapter concludes this study by answering the main research question and sub-questions, which
presents a concise answer for each of them based on this research. Next, the scientific and societal
contribution are discussed after which the final section presents recommendations for further research.
Lastly, this chapter will end with managerial recommendations.

11.1. Main Research Question
In this research, an Agent-Based Model (ABM) simulation was created and a survey was conducted to
gain more insight in the effect of different Social Value Orientation (SVO) types in an Energy Hub (EH)
and bounded rationality. The main research question was the following:

What is the impact of diverse participant behaviour and Social Value Orientations on
congestion management in an Energy Hub within a Group Contract?

ABM can be used to assess the impact of participants behaviour on congestion management in an
EH. This can be done by representing each Industrial Company (IC) as an autonomous agent with its
own energy demand and decision-making rules based on SVO. ABM allows these agents to interact
with each other and with the shared EH infrastructure, which is managed by the Collective Energy
Management System (CEMS).

By using ABM, it was possible to simulate the interactions between the four different SVO types and
explore how these influence load shifting and cooperation. The model also includes bounded rationality,
which mimics the fact that agent make decisions on limited information and do not always make the
right decisions because humans are not perfect. This approach shows how system-level outcomes,
such as total load shifts, penalties, load shedding, and rewards, are affected by different compositions
of agent types.

When comparing homogenous and heterogenous populations with each other, the model have demon-
strated that behavioural diversity in an EH can balance the system-level outcomes and mitigate the
extreme outcomes. Behavioural diversity also balances short-term and long-term Demand Response
(DR). Different trade-offs could be made among homogenous populations if there is a specific emphasis
on resilience, fairness, or other values.

The survey results have provided additional insights that complement the findings from the ABM. In
practice, participants are mostly motivated by social and operational factors such as trust, reputation,
positive past experiences, and adherence to shared agreements, instead of purely financial incentives.
Most respondents can be typed as pro-social, with sometimes altruistic, individualistic, or competitive
tendencies depending on the context.

Combining the insights from the ABM and survey, it becomes clear that strategies for the EH should not
only rely on financial incentives but also the social and operational drives. From these results, several
potential strategies could be formulated such as Time-of-Use penalty pricing with real-time dashboards,
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gamification, and proportional load shedding technique. These strategies can help align individual
actions with collective goals, improve balance in the system, and stimulate the social dynamics within
the EH.

11.2. Sub-Questions
1. How can the Energy Hub be modelled as an Agent-Based Model?

The EH can be modelled as an ABM by representing each IC as an autonomous agent with its own
portfolio of energy demands, decision-making behaviour, and bounded rationality. The behavioural
diversity of these IC agents are based of SVO, which categorizes people into altruistic, pro-social,
individualistic, or competitive types:

• Altruistic Agents: Prioritize Social Welfare
• Pro-Social Agents: Balance Self-Interest with Social Welfare
• Individualistic Agents: Seek to maximize their own Welfare
• Competitive Agents: Actively pursue relative advantage on Welfare

The agents follow a daily planning cycle, where they receive and observe congestion forecasts from
the Collective Energy Management System (CEMS) via a dashboard, evaluate possible penalties, and
decide whether to shift their flexible preferent loads or accept penalties. The penalties is the amount of
money that the agents have to pay if they exceeds their capacity limit. Their decision-making are influ-
enced by their SVO and bounded rationality, which mimics human-like heterogeneous responses. This
daily planning cycle is based on the day-ahead market, where agents make commitments for the fol-
lowing day and execute them. The environment of the model is defined by the shared EH infrastructure,
which includes collective capacity constraints, a CEMS, and photovoltaic (PV) panels.

The actions of the agents altogether interact with the shared EH infrastructure, which is managed by
the CEMS. The CEMS enforces operational reliability through mechanisms such as rotational load
shedding, curtailment of PV generation, adaptive capacity allocation, and implicit capacity sharing. In
the latter, unused capacity of an agent can be reallocated to another that exceeds its allocated capacity.
Financial compensation is then given if implicit sharing happen.

For this ABM of the EH certain assumptions and simplifications were made. The whole list can be
found in Appendix B, but the important ones are the following:

• The EMS has full operational control over shared assets.
• The EH only has PV as shared flexible asset.
• The congested hours for the next day are assumed to be perfectly known and accurate.
• Agents knows how much others are using.
• Each type of capacity is assumed to be one installation.
• Agents do not revise their strategies based on the outcomes.
• The decision-making formula assumes that the agents know how much others are using.
• If there is no congestion the next day, the agents will not make a decision to load shift.
• Agents can only load shift their Flexible Preferent capacity.
• Agents can only choose to load shift; reducing their load is not included as a possibility.
• The agents have a GTO with each other and not another contract.

2. Which Key Performance Indicators are most suitable for evaluating the performance of the
Agent-Based Model?

For this research, four Key Perfomance Indiciators (KPI) were chosen to evaluate the results of the
ABM with. These KPIs are total load shifts, total penalties, total load shedding, and total rewards.
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First of all, the total load shifts is the total number of times flexible preferent loads of agents is shifted
to non-congested periods. This KPI is chosen, because it directly indicates how many times agents
choose to load shift instead of doing nothing and just pay penalty. A higher number of load shifts sug-
gests that agents are responsive to congestion signals and willing to adapt their consumption patterns
to support system efficiency. It also reflects the operational feasibility of load shifting under the given
constraints, including flexibility preferences, perceived costs, and behavioural factors. In this way, it
serves as both a technical and behavioural indicator of demand-side adaptability.

Next, the total penalties is the total amount of fines imposed on agents when they exceed their alloc-
ated capacity limit. This KPI is chosen, because it reflects how many times an agent surpasses their
allocated capacity limit, either due to insufficient flexibility in their load management or a deliberate
choice to prioritize demand over cost savings.

Then, the total load shedding is the total number of times the CEMS had to reduce an agent’s energy
usage to prevent that the whole EH is going over the Group Conctracted Transport Capacity (G-GTV).
This KPI is chosen, because it shows how many times the CEMS had to interact with the EH and also
reflects the EH’s resilience. It also serves as an indirect measure of the effectiveness of an agent’s
planning and cooperation. In such way, fewer load shedding may suggest that agents are better at their
DR through load shifting or capacity sharing which reduces the need for a centralized CEMS action.

Lastly, the total rewards is the total amount of compensation awarded to agents for giving up their
capacity to another agent. This KPI is chosen, because it reflects the implicit capacity sharing of the
agents. In the decision-making, agents take the reward fee into account when deciding to load shift or
just pay penalty. So it is not only an economic but also a behavioural KPI as it captures how an agent’s
SVO and individual cost-benefit analysis influence cooperative behaviour.

3. How do the different types of behaviours of agents influence the congestion management
of the Agent-Based Model?

The different behaviours of agents with varying SVO strongly influence how congestion is managed
within the EH. All altruistic and pro-social agents contribute most effectively during peak demand peri-
ods or moments of low renewable generations, since they are more willing to load shift for the collect-
ive. However, their total load shifts plateaus over time, because their behaviour is less responsive to
repeated penalties or rewards. On the other hand, all competitive agents are more strongly driven by
financial incentives. Over time, it becomes clear that they adapt to repeated penalties and rewards
which enables them to exploit load shifting opportunities more effectively in the long run. Individualistic
agents consistently contribute the least to congestion management and thus not load shifting. Since
these agents prioritize their own welfare, their load shifting levels remain the lowest of all agent types.

Looking at the mixed groups, agent heterogeneity in an EH plays an important role in balancing short-
term and long-term congestion management. The presence of a mixed population prevents extreme
outcomes, because they balance the behaviour of the less self-interested ones and the highly self-
interested.

4. How do the survey results of real-life participants support the behavioural mechanisms
implemented in the Agent-Based Model?

The survey have shown that the participants are primarily motivated to load shift or give capacity away
by social and operational factors such as trust, reputation, positive experiences, adherence to shared
agreements instead of financial incentives. This matches the assumptions made for the ABM, where
specifically the pro-social and altruistic agents handle based on collective well-being.

The survey also have shown the diversity in participant behaviour in certain situations as all respond-
ents are in general pro-social, but sometimes altruistic, individualistic, and even competitive tendencies
occur depending on the situation. For example, more altruistic tendencies occur when there is excess
capacity left while another company needs it. This may suggest that respondents are willing to put the
collective interest above their own because they do not need the excess anyway. Competitive tenden-
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cies appeared in conflict-prone situations such as asking another company to reduce or shift their load,
which reflects that a small percentage may act out of self-interest under pressure. Individualistic tend-
encies emerged in scenarios involving load shifting, where respondents emphasized the importance of
maintaining the operational stability of their own business process.

The survey shows that all four respondents are either pro-social or lean toward pro-social behaviour,
which matches with the all pro-social scenario in the ABM. This suggests that in practice the respond-
ents from the survey in an EH are likely to cooperate and make decisions that benefit the collective,
even if it results in lower individual rewards or higher penalties. This behaviour observed from the
scenarios corresponds with the respondents prioritizing social and operational factors over financial
incentives. As said before, there are some deviations from behaviour depending on the situation which
can suggest that there can be some level of heterogeneity in real-world EHs. Also, only a limited num-
ber of respondents participated in the survey, which means that the evidence is not sufficient to make
strong claims about the actual distribution of behavioural types in practice. Future research should test
with larger sample sizes and validate the all pro-social behaviour. In addition, future research should
include the other two situations and additional social factors from the survey in the model.

5. How can insights from the Agent-Based Model and survey be translated into potential
strategies that influence system-level behaviour?

The insights from the ABM and survey can be translated into potential interventions that influence
system-level behaviour in the EH by tailoring strategies to agent behaviour, timing, and heterogeneity.

The ABM emphasizes the role of agent types in congestion management. Altruistic and pro-social
agents respond strongly to collective needs, especially during peak demand periods or low renewable
generation but their responsiveness plateaus over time. Competitive agents are highly adaptive to
repeated incentives and penalties, which encourages them to exploit load shifting opportunities more
effectively in the long term. However, individualistic agents consistently contribute the least to conges-
tion management.

One practical intervention to balance the strengths of each group and mitigate weaknesses, is a Time-
of-Use (ToU) pricing scheme combined with a real-time dashboard. ToU pricing provides predictable
financial incentives, encouraging load shifts from peak to off-peak periods. The dashboard communic-
ates congestion signals in real-time, giving altruistic and pro-social agents insight into capacity pressure
within the EH and motivating competitive agents to adapt strategically to penalties and rewards.

The ABM also shows the value of heterogeneous populations. Mixed agent compositions consistently
produce balanced outcomes across all KPIs, which balances the extremes observed in homogeneous
populations. This suggests that interventions should aim to maintain or encourage behavioural di-
versity, as it stabilizes system performance while preserving financial incentives. From the survey it
was clear that social factors are important for most participants so these should be encouraged. Also,
the responses seem to be pro-social with some other SVO type tendencies. This indicates that there
is a need to promote more diversity.

Gamification can be an effective intervention to maintain or encourage behavioural diversity. By enga-
ging participants in interactive and playful activities, gamified systems can increase awareness, encour-
age collaboration and trust, update expectations of everyone, and provide a safe space for participants
to explore the effects of their actions on the system. Examples include the Jeju Island pilot project,
where EV owners earned points, participated in subgames, and competed via leader-boards. Another
example is the “Rethinking Users” game, which allows participants to experiment with different roles
and see how behaviours affect system-level outcomes. Gamification helps with aligning individual ac-
tions with collective objectives and sustains engagement over time.

Proportional load shedding is another intervention that can be included in future EHs as rotational load
shedding might not be the fairest approach. The reason for this is that some agents in the model are
shed even though they are not using as much as others who are not shed. According to literature is
seems that proportional load shedding may be the fairest focussing more on equity instead of equality.
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11.3. Scientific Contribution
A lot of research has already been done in the field of DR or the optimization of EHs. However, previous
research focussed mainly techno-economic aspects such as improving the operational efficiency and
cost-effectiveness (e.g. Darvishi et al., 2024; Fan et al., 2018; Mokaramian et al., 2025). Most of these
studies disregarded the heterogeneity of irrational actors and their bounded rationality. Behavioural
diversity was researched by some studies (e.g. Boske, 2021; Li et al., 2025; Lu et al., 2020), but there
was a need for empirically grounded, user-centric model that reflects the real behaviour of industrial
consumers. Next, while multi-actor collaboration is acknowledged as a key factor in the functioning of
EHs (e.g. Berkouwer, 2024; Fan et al., 2018), current modelling provide limited insight into how this
collaboration actually unfolds between the industrial consumers.

Based on former research and the identified knowledge gaps, this thesis analysed how the collective
behaviour of heterogeneous or homogeneous groups of participants in an EH shapes technical, eco-
nomic, and behavioural aspects of the system. Scientific contributions were made to three parts of
literature, which are optimization of EH models, behavioural diversity of consumers, and multi-actor
collaboration within the EH.

First of all, this thesis contributes to the optimization of EH models by integrating both technical, be-
havioural, and economic aspects into a single model. Unlike previous studies that primarily focused
only on the operational efficiency and cost-minimization, this model also considers flexible load shifting
and behavioural diversity. Here, participants can choose to shift their load themselves instead of the
energy producer (e.g. Boske, 2021). This research has contributed to optimizing EH models by includ-
ing real-world operational constraints and demand-side flexibility. It can be said that the model itself
is a scientific contribution, as it can be reused in future studies to evaluate interventions and explore
behavioural compositions.

The second scientific contribution is the understanding of behavioural diversity among IC. By incor-
porating SVO and bounded rationality into ABM, the study captures heterogenous and homogeneous
decision-making patterns. This method is an approach to allow more realistic simulation of the decision-
making of load shifting. Additionally, this approach has introduced a new way to represent decision
making about DR in a quantitative manner and incorporate this in a quantitative agent-based model.
The final simulation model was able to provide comprehensive insights about participation in DR on a
system level.

Lastly, the final scientific contribution to the literature on multi-actor collaboration by modelling indirect
interactions between the different ICs within the EH. The agent-based approach captures how shared
infrastructure, penalties, rewards, and informational dashboards influence collective behaviour. The
findings of this research show how heterogenous populations can stabilize the system, while homo-
geneous groups may intensify extremes. This highlights the importance of diversity in DR. By linking
individual-level behaviour to system-level performance, this research provides valuable insights for
designing intervention strategies for future EHs.

11.4. Societal Contribution
The energy transition is one of the challenges of this century and IC are expected to play an active role in
balancing their demand with supply. As the demand of energy is growing, the reliability of energy supply
becomes uncertain. This requires mechanisms for DR to ensure grid stability. EHs offer a promising
solution by coordinating multiple ICs within a shared infrastructure. However, the dynamics of such a
collaboration remains hard to predict. This thesis provides insights into how heterogenous behaviours
influence system-level outcomes and reasons which interventions can support more effective DR. In
doing so, the results offer valuable lessons for both policy makers and practitioners involved in the
energy transition.

Firstly, the research shows that purely homogenous populations produce extreme outcomes. In con-
trast, heterogenous populations achieved amore balanced system performance across economic, tech-
nical, and behavioural aspects. This has social relevance, because it shows that supporting behavioural
diversity within EHs can stabilize the collective outcomes.

Next, the strategies that were recommended in this research offer practical pathways for improving
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engagement. A combination of dashboards that provide real-time congestion signals and seasonal
ToU penalties can be an effective strategy. Such tools allow ICs to see when their actions matter most
and align their decisions with system needs. Furthermore, gamified interventions offer opportunities
to engage participants in a more collaborative and sustainable way, which shifts the perception of DR
from an imposed burden to a shared responsibility. By encouraging transparency, engagement, and
cooperation these strategies contribute to the societal goals of promoting fair participation in the energy
transition.

Lastly, this research shows the societal implications of encouraging ICs to actively participate in the
energy transition. This study emphasizes that the energy transition is not only a technical or economic
challenge but also a social challenge. While advances in technology and market mechanisms are
important, their effectiveness eventually depends on how people engage with them. The importance of
factors such as behavioural diversity, trust, and cooperation among participants underline that achieving
collective energy goals relies on aligning individual incentives with shared societal benefits. Behavioural
diversity allows for a more balanced system performance, trust encourages the IC’s willingness to
share resource, and cooperation is the backbone of coordinating with other IC’s. By encouraging these
factors, ICs may see the energy transition not as as burden that can not be helped but rather a chance
to evolve their operations, behaviour and eventually contribute to a more resilient energy system. This
way the energy transition also becomes a catalyst for social innovation, empowerment, and long-term
community well-being.

11.5. Managerial Recommendations
The findings of this research contribute to several insights for managers and policymakers involved in
the design and operation of EHs under congestion management. Based on the results of this thesis,
three recommendations can be made.

A ToU pricing scheme for penalties paired with a real-time dashboard can provide advantages for the
participants of the EH as it allows for transparent information and gives predictable financial incentives.
Altruistic and pro-social participants are less sensitive to financial penalties and rewards, but can be
motivated by social factors such as insights into the pressure of the system. A dashboard that shows
real-time capacity pressure helps them to target load shifting at the peak moments. Competitive and
individualistic participants aremore responsive to financial triggers, so predictable penalties during peak
hours can encourage adaptive decision-making over time. However, manager and policymakers must
also account for limitations of ICs such as that they have rigid production and maintenance schedules.
This may make it harder for ICs to react to ToU signals as they have limited flexibility.

Next, survey results have shown that potential participants have a pro-social SVO type, which makes
them less motivated by financial incentives such as penalties and rewards. At the same time, the model
have shown that heterogenous populations with a mix of different SVO types have more balanced out-
comes across the KPIs. For this reason, managers and policymakers should encourage diversity, trust,
and engagement. A game such as ’Rethinking Users’ can offer new perspectives for participants and
allows let the participants see the consequences of their choices in a simulated environment. Gami-
fied interventions such as cooperative challenges, recognition systems, or leader-boards can engage
different behavioural types and encourage long-term cooperation and trust. What to note is that gami-
fication should not be applied superficially, because to be effective it must be tailored to the needs and
motivations of participants.

Lastly, implementing proportional load shedding instead of rotational load shedding can increase fair-
ness. Rotational load shedding may unfairly penalize low consuming participants while high consuming
participants are spared. With the proportional load shedding method, the reductions are scaled accord-
ing to each participant’s actual usage. This method actually stimulates fairness by prioritizing equity
rather than equality.

11.6. Further Research
This research has focussed on the interplay between IC, their behaviour, and the functioning of EHs.
However, the model and its findings can be improved for future research to deepen the understanding
of EHs.
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First of all, this research’s goal was to explore the collective behaviour of IC in an EH by using an
ABM that included technical, economic, and behavioural aspects. Due to the limited scope and time
frame of this research, several assumptions and simplification were made as discussed in Chapter 10.
Nevertheless, the model was able to provide valuable insights into how heterogenous and homogen-
eous populations influence DR. The model is suitable for exploratory purposes and can be applied in
small-scale case studies, where real data on consumer profiles is available. The future research re-
commendation is to apply the model to more specific case studies, which allows for empirical validation
of the behavioural parameters.

Next, this research’s main focus was comparing the effects of different SVO group compositions within
the EH. While this provided valuable insights into how behavioural diversity influences DR, the model
did not test a range of potential interventions. Future research could explore interventions that were
mentioned earlier, such as ToU pricing schemes for penalty with dashboards, gamified mechanisms,
and proportional load shedding. By implementing these interventions in the model with the hetero-
geneous agent populations, it becomes possible to explore how the interventions affect the collective
outcomes and how different agent types respond to those interventions.

Thirdly, in the model the agents follow behavioural rules throughout the simulation which is implemen-
ted via SVO. In reality, people and thus also IC learn from experience and adapt their behavioural
rules. Agents could for example switch from SVO throughout the time as indicated by Moisan et al.,
2018, which can change the whole social dynamic. Future research can incorporate adaptive learn-
ing mechanisms, such as reinforcement learning, into the model. This implementation would allow
researchers to study how behaviours evolve over repeated interactions and whether cooperation can
emerge without external enforcement.

Another future research recommendation is including additional flexibility assets in the model. The
model only included PV panels as part of the shared EH infrastructure, which means that agents could
only contribute to DR through behavioural adjustments such as load shifting. However, real-world EHs
are expected to include a broader portfolio of flexible assets. Future research could extend the model to
include flexible assets such as batteries, thermal energy storage, or hydrogen systems. For example,
researcher could evaluate whether battery systems reduce the dependency on behavioural DR.

Also, future research could include active capacity sharing and approaching another agent to reduce
their usage. Active capacity sharing means that agents could ask another to use the unused capacity.
The model only included the option to load shift, since experts do not agree with each other if the ICs
will have more option. In the model it, means that the agents only can contribute to DR through shifting
their load. In practice, participants may have more options to cooperate or negotiate with others.

Then, future research could include social networks between the IC. As mentioned before, research
has shown that people are influenced by their peers through reputation or benchmarking. Introducing a
social network structure into the ABMwouldmake it possible to study how peer influences choicesmade
by others in an EH. For example, IC may be more likely to implement load shifting if others are seen to
benefit from it. From the survey, it was clear that there are more social dynamics factors to be included
in future models such as trust, expectations, positive past experiences, and reputation. Incorporating
these into future models would help to make a more realistic representation of how behavioural drivers
influence outcomes in an EH.

In addition, future research could explore the effects of different EMS of agents in an EH. This includes
scenarios where individual agents have their own EMS that interacts with the CEMS, which could give
more insights of potential conflicts or synergies challenges within the EH. It would allow for more a
realistic approach for an EH, because participants often have their own EMS.

Lastly, this research was limited by the empirical data available to check behavioural assumptions.
While a survey was conducted, the response rate was low which restricted the ability to fully capture
the diversity of perspectives. This leads to not accurately validating the observed SVO behaviour
of the survey and correctly comparing it with the scenarios of the ABM. Future research could use
the same approach in more extensive data collection using larger target group or targeted interviews.
Using the same approach from this study ensures methodological consistency and allows the new
findings to be directly compared with the results from this study. Such bigger dataset would increase
the statistical representativeness of the survey and allows for a more preciser identification of patterns
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across the respondents. This bigger dataset would also form a stronger empirical basis that could
reveal more behavioural drivers and validate the assumptions made in the model. Also, the observed
SVO behaviour of the respondents from the survey could be validated and compared with the scenarios
of the model.



12
Disclosure of AI

While preparing this work, I used NotebookLM to summarise papers that I selected. I copied certain
parts of the paper and asked NotebookLM if it could bullet point or summarise in words the selected
text. I used ChatGPT to help with ideation of the model, structure the text that I have written and to add
missing links between sentences. Also, ChatGPT and Claude were used for ideating how to structure
the code for the ABM. After using this tool/service, I reviewed and edited the content as needed and I
take full responsibility for the content of my research report.
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A
Profiles and Categorization of Agents

This Appendix will show the ten agents with corresponding demand profiles and categorization. The
first graph (a) shows the demand in kW over a year and the second graph (b) shows the average
demand in kW over a day. The table (c) shows the categorization of the four types of capacities for the
total demand.

(a) Electricity Demand Profile of 2024 Agent 1 (b) Daily Demand Profile of Agent 1

Type Aluminium Manufacturer
Fixed Preferent Potlines
Flexible Preferent Cool Water Pumps
Fixed Non-Preferent Waste Disposal Installations
Flexible Non-Preferent Lights

Figure A.1: Demand Profiles and Categorization of Agent 1
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(a) Electricity Demand Profile of 2024 Agent 2 (b) Daily Demand Profile of Agent 2

Type Prefab Concrete Producer
Fixed Preferent Concrete Mixers
Flexible Preferent Ventilation Systems
Fixed Non-Preferent Conveyer Belts
Flexible Non-Preferent Cooling Machines

Figure A.2: Demand Profiles and Categorization of Agent 2

(a) Electricity Demand Profile of 2024 Agent 3 (b) Daily Demand Profile of Agent 3

Type Timber Trader
Fixed Preferent Climate Control
Flexible Preferent Sawing and Drilling Installations
Fixed Non-Preferent Wood dryer
Flexible Non-Preferent Lights

Figure A.3: Demand Profiles and Categorization of Agent 3
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(a) Electricity Demand Profile of 2024 Agent 4 (b) Daily Demand Profile of Agent 4

Type Shipyard
Fixed Preferent Cool Water Pumps
Flexible Preferent Ventilation and Extraction Systems
Fixed Non-Preferent Welding and Cutting Equipment
Flexible Non-Preferent Lights

Figure A.4: Demand Profiles and Categorization of Agent 4

(a) Electricity Demand Profile of 2024 Agent 5 (b) Daily Demand Profile of Agent 5

Type Construction
Fixed Preferent Welding Equipemnt
Flexible Preferent Sawing and Drilling Installations
Fixed Non-Preferent Dust Extraction
Flexible Non-Preferent Lights

Figure A.5: Demand Profiles and Categorization of Agent 5
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(a) Electricity Demand Profile of 2024 Agent 6 (b) Daily Demand Profile of Agent 6

Type Industrial Services and Producer
Fixed Preferent CNC Machines
Flexible Preferent Charging Stations for Electric Vehicles
Fixed Non-Preferent Cooling Systems
Flexible Non-Preferent Lights

Figure A.6: Demand Profiles and Categorization of Agent 6

(a) Electricity Demand Profile of 2024 Agent 7 (b) Daily Demand Profile of Agent 7

Type Bakery
Fixed Preferent Oven
Flexible Preferent Cooling Systems
Fixed Non-Preferent Moisture Control
Flexible Non-Preferent Lights

Figure A.7: Demand Profiles and Categorization of Agent 7
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(a) Electricity Demand Profile of 2024 Agent 8 (b) Daily Demand Profile of Agent 8

Type Real Estate
Fixed Preferent Servers
Flexible Preferent Server Cooling
Fixed Non-Preferent Heating
Flexible Non-Preferent Lights

Figure A.8: Demand Profiles and Categorization of Agent 8

(a) Electricity Demand Profile of 2024 Agent 9 (b) Daily Demand Profile of Agent 9

Type Car Wash
Fixed Preferent Water Pumps
Flexible Preferent Drying Installation
Fixed Non-Preferent Boiler
Flexible Non-Preferent Advertising Lights

Figure A.9: Demand Profiles and Categorization of Agent 9
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(a) Electricity Demand Profile of 2024 Agent 10 (b) Daily Demand Profile of Agent 10

Type Industrial Producer
Fixed Preferent CNC Machines
Flexible Preferent Oven
Fixed Non-Preferent Extraction Systems
Flexible Non-Preferent Heating

Figure A.10: Demand Profiles and Categorization of Agent 10
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Overview of Model Assumptions and

Simplifications

In this Appendix, an overview is given of the model assumptions and simplifications. Each assumption
or simplification is categorized into either three categories, which are Electricity Supply and Demand,
CEMS, and Agent Behaviour and Decision-Making.

B.1. Electricity Supply and Demand
• The EMS has full operational control over shared assets.
• The EH only has PV as shared flexible asset.
• The agents do not have their own flexible asset.
• There is only one kind of PV panels of 450 Wp.
• The PV generation is from one PV panel and in the model the amount of PV panels is multiplied
by the generation of that hour.

• In the summer there are more PV generation hours then in the winter.
• PV generation only happens during the day and not the night.
• There are no energy losses causes by transportation and transmission.
• The G-GTV for feed-in is based on a ratio from real-life usage versus feed-in.
• The agents have 8,000 m2 in total of roof space.
• Each type of capacity is assumed to be one installation, while in real-life this could be multiple.
• The type of installation is assumed to be typical in accordance to the type of company.
• Agents do not plan to expand their company or processes

B.2. CEMS
• The CEMS applies rotational load shedding if there is congestion
• When rotational load shedding is activated, it will first turn off the Flexible Non-Preferent, Fixed
Non-Preferent, Flexible Preferent, and then Fixed Preferent of an agent.

• If one agent is fully load shed and it is not enough, the load shedding will continue with the next
agent on the list.

• When curtailment happens, the EMS curtails the excess PV panels.
• The congested hours for the next day are assumed to be perfectly known and accurate.
• Everybody uses the CEMS and nobody has their own EMS.

90



B.3. Agent Behaviour and Decision-Making 91

• Themonthly reallocation is based on proportional redistribution which is deterministic andmemory-
based.

• The desired capacity of an agent in proportional redistribution is simplified as the monthly average
consumption plus a 10% buffer.

• The 10% buffer of proportional redistribution is assumed to account for fluctuations in energy use.
• The CEMS has a fast and direct response.
• The congestion and reward fees are fixed, while in real-life these can be dynamic.

B.3. Agent Behaviour and Decision-Making
• Agents can only choose to load shift; reducing their load is not included as a possibility.
• The agents have a GTO with each other and not another contract.
• The SVO composition of the base case has discrete distribution , because altruistic and compet-
itive are assumed to be relatively rare in populations.

• Price sensitvity is split up into two parameters: penalty and load shifting sensitivity.
• Behavioural parameters such as self-interest, penalty and load shifting sensitivity have made up
numerical values to simplify the concept.

• An agent that have a high probability for an action will likely choose that action, but the chance
that it will choose another action with a lower probability can still happen.

• An agent will stay the same SVO type and can not become another type.
• An agent can not fall in between two SVO types, while in real-life this can be the case.
• The implementation of the pay-off game in the model is assumed to be one vs. the rest instead
of one vs another.

• The number of EH participants does stay the same throughout the whole simulation, the parti-
cipants can not leave or enter the EH.

• The model operates in discrete time steps, while real energy consumption and decision-making
happens in continuos time.

• Agents do not revise their strategies based on the outcomes.
• The decision-making formula assumes that the agents know how much others are using.
• The uncertainties of decision-making can be covered by stochastic distribution functions.
• If there is no congestion the next day, the agents will not make a decision to load shift.
• Agents can only load shift their Flexible Preferent capacity
• The base case follows a discrete distribution for the SVO composition.
• With each new run, the agents are distributed another SVO type if there is a particular SVO
configuration.
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Model Verification

In this Appendix, model verification is implemented to ensure that the simulation model and its imple-
mentation are correct. Van Dam et al. (2013) have proposed multiple methods to verify the model, but
in this research two verification methods were chosen. The two verification methods are tracking of
agent behaviour, and the extreme condition test.

C.1. Tracking of Agent Behaviour
As the model started rather simple and was enriched with more complexity along the way, verification
happened during multiple stages of the model construction process. When the final model version
was finished, a structured walk-through was implemented to check if all steps were executed correctly.
This was done by printing variable values during the simulation, studying short periods of simulation
time and analysing the agent and model variables over time. For the tracking of agent behaviour, a
number of agents were followed throughout the simulation, to verify if the values of the agent variables
were correct over time and if they had changed as expected. To do this, the different procedures and
processes were tracked over time starting from the model and agent initialization.

The initialization of the agents consisted of multiple functions, including initializing the demand profiles,
operational loss of load shifting, penalty sensitivity, and load shift sensitivity, working time, and self-
interest weight.

Figure C.1: Code Snippet of Initializing Agents

The initialization of the model consisted of initializing the congestion fee, reward fee, the maximum
feed-out capacity, the maximum feed-in capacity, the amount of PV panels.

Other interesting time steps to verify are the fact that when a congestion period is announced, the
agents will use the functions observe, decide, and act accordingly. In the function observe, the agent
estimates the congestion for tomorrow and calculated the variables used for the decide function. Next,
in the decide function the agent evaluates the actions it could take (either accept penalty or load shift)
for tomorrow and chooses the best one. Lastly, in the act function the agent implements the chosen
plan for each congestion hour during the day. To check if the three functions are executed, printing
statements were used to verify this which is shows in the following figure.
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Figure C.2: Code Snippet of Initializing Model

Figure C.3: Code Snippet of Agent’s Three Main Functions

C.2. Extreme Condition Test
The extreme condition test is used to evaluate if the model code works as expected under different
extreme conditions. The goal is not only to confirm that the model works as expected, but also to
understand its boundaries. The model boundaries are important to understand because they provide
insight into the range within which the model delivers reliable results, and beyond which the results
may no longer be credible.

For this sensitivity analysis, three variables were tested which are congestion fee, ol ls, and amount pv.
These were chosen, because congestion fee and amount pv are two fixed parameters of the model and
ol ls is a fixed parameter of the agent self. By testing these parameters, it can be assessed how both
system-wide and agent-specific constraints affect the model’s behaviour. These variables were tested
against the KPI’s, which are total load shifts, total penalties, total EMS load sheds, and total rewards.
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(a) Load Shifts vs Congestion Fee (b) Penalties vs Congestion Fee

(c) Load Shedding vs Congestion Fee (d) Rewards vs Congestion Fee

Figure C.4: Congestion Fee Extreme Condition Test

What can be seen from Figure C.4 is that as congestion fees increase, the amount of load shifts and
penalties rise until the congestion fee reaches 1 €/kWh, after which they both decrease. This behaviour
can be explained by the system boundary at 1 €/kWh: for values above this threshold, agents have
already shifted their maximum flexible capacity and cannot shift any further, which reduces both load
shifts and penalties. For values below 1 €/kWh the system behaves as expected, as agents are more
incentivized to shift load when the congestion fee rises.

For load shedding, higher congestion fees initially lead to fewer residual congestion events because
more agents actively shift load. This reduces the need for EMS interventions, resulting in lower load
shedding. With more flexible capacity used efficiently, there is also more available space for other
agents to shift load which increases the rewards received by agents who participate in load shifting.
Conversely, if agents choose not to shift and instead pay the penalty, total penalties rise more sharply
as the congestion fee increases.
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(a) Load Shifts vs Operational Loss of Load Shifting (b) Penalties vs Operational Loss of Load Shifting

(c) Load Shedding vs Operational Loss of Load Shifting (d) Rewards vs Operational Loss of Load Shifting

Figure C.5: Operational Loss of Load Shifting Extreme Condition Test

What can be seen from Figure C.5 is that both the number of load shifts and the rewards decrease
as the operational loss of load shifting increases. This follows from the fact that shifting becomes less
attractive when it comes with higher losses. As a result, fewer agents choose to shift and consequently
the rewards also decline because less flexibility is deployed.

The amount of load shedding on the other hand increases with the operational loss. Since fewer agents
are willing to shift voluntarily, more residual congestion remains in the systemwhichmust then be solved
by CEMS load shedding. This continues until it reaches a limit, which reflects the maximum number of
time steps in which congestion occurs — beyond this limit, load shedding cannot increase further.

The penalties show a different pattern: they peak around 0.2 €/kWh and remain relatively flat after
0.4 €/kWh. This can be explained by the balance between shifting and paying the penalty. At very
low operational loss most agents prefer to shift, so penalties remain relatively low. As the operational
loss increases more agents stop shifting and accept penalties instead causing the penalty costs to rise.
Once a critical threshold (around 0.4 €/kWh) is reached almost all agents who are willing to shift have
already dropped out and penalty levels stabilize. This is because further increases in operational loss
no longer change agent behaviour significantly.

The rewards follow a specific pattern: they decline until 0.4 €/kWh, then increase slightly until 0.7 €/kWh
before declining again. This fluctuation is likely due to the interplay between fewer agents shifting at
higher operational losses and the concentration of rewards among the smaller group that still engages in
shifting. In other words, when only a few agents remain willing to shift, they may capture relatively more
rewards for the flexibility they provide. This is until eventually even this residual flexibility disappears
as losses rise further.
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(a) Load Shifts vs Amount of PV (b) Penalties vs Amount of PV

(c) Load Shedding vs Amount of PV (d) Rewards vs Amount of PV

Figure C.6: Amount of PV Extreme Condition Test

What can be seen from Figure C.6 is that both the number of load shifts and the rewards follow a similar
non-linear pattern: they first decrease, then increase, and finally decrease again around the point of 100
PV panels. After this threshold, both values gradually decline as the number of PV panels continues to
rise. This indicates that the integration of additional PV initially reduces flexibility needs, but around 100
panels new congestion points emerge that temporarily increase load shifting and rewards after which
the system saturates and flexibility becomes less effective.

Load shedding remains stable at lower PV levels and then rapidly decreases as the number of pan-
els approaches 100. This can be explained by the fact that additional PV initially alleviates residual
congestion, lowering the need for forced EMS interventions. However, after surpassing this point load
shedding increases again due to new imbalances caused by excess PV generation that cannot always
be matched with flexible demand.

Penalties remain relatively stable until just before 100 PV panels, after which they increase sharply.
At the 100-panel threshold, penalties reach their peak and then decrease again. This pattern reflects
the tipping point where the added PV shifts the system from being slightly under-supplied to occasion-
ally over-supplied, which increases penalties temporarily until flexibility and saturation effects dampen
further penalty growth.
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Survey

This appendix shows the survey in English that has been send to the real-life participants of Emmett
Green of various EHs. The participants will remain anonymous together with the EH they are involved
in. The survey was conducted in Dutch, because all of the participants speak Dutch and not English.
So for the sake of this research, the English translation of the survey is given below. The link of the
Dutch survey that has been send can be found here: Google Forms Survey

Dear participant,

Thank you very much for your time and effort in participating in this survey. This survey is part of my
graduation research and focuses on decision-making within local energy hubs. The aim of my research
is to better understand how different participants can collaborate and which factors influence this pro-
cess, particularly in situations where energy capacity is limited.

This research is part of my Master’s thesis at the Faculty of Technology, Policy and Management at TU
Delft, under the supervision of academic mentors and in collaboration with Emmett Green.

The survey consists of 9 questions and will take approximately 5–10 minutes to complete. The ques-
tions focus on your preferences, attitudes, and potential decisions within hypothetical energy hub scen-
arios. Your participation will help me gain insight into how companies make investment and operational
decisions.

Confidentiality and data handling
Your responses will be treated with strict confidentiality and used solely for academic research purposes.
The survey is anonymous; no personal information such as your name, IP address, or organization will
be collected. This means that no one will be able to trace your responses back to you.

• The data will be securely stored on TU Delft servers.
• Only I, as the researcher, and my academic supervisors will have access to the raw data.
• Data will not be shared with third parties without your explicit consent.
• The results may be published in anonymized and aggregated form in academic or professional
contexts. Only the responses to multiple-choice and closed questions will be published.

• Please do not include your name or any other identifying information in the open text fields. These
fields are meant solely for general insights and should not contain any personal data.
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• The anonymized dataset may also be included in open-access repositories for future academic
reuse.

• In accordance with TU Delft’s data management policy, research data will be retained for a period
of 10 years. Your rights and potential risks

Participation in this study poses no physical, emotional, or reputational risks. You are completely free 
to skip any question you do not wish to answer. You may also stop filling out the survey at any time, 
as long as you have not yet submitted your responses. Once submitted, withdrawal is unfortunately no 
longer possible, as the data will be fully anonymized. No financial compensation or reimbursement is 
offered for your participation.

Questions or contact
If you have any questions about the research or your participation, please feel free to contact: 
Research contact:
Shanaya Doerdjan

TU Delft – Faculty of Technology, Policy and Management

By clicking ”Next” to begin the questionnaire, you confirm that you have read the above information 
and voluntarily agree to participate in this anonymous study.

Question 1 Suppose: within the energy hub, a shortage has been announced at a certain point in the 
future. Your company wants to consume more than agreed at that time, but that process can still be 
shifted to another moment on the same day.

Which of the options below best matches how you would act in that situation?

□ We see scarcity as an opportunity. If we can consume more than others, we might be able to gain
a strategic advantage.

□ We prefer to run our process at the time that is most efficient for us. If it is really necessary to
shift due to the scarcity, we will only do so if it does not harm our own planning and objectives.
Our priority lies in the optimal operation of our company.

□ We understand that there is scarcity and therefore want to contribute to a balanced solution. We
are willing to shift our process, provided it fits within our operational capabilities.

□ If scarcity is expected, we absolutely want to prevent our extra consumption from disadvantaging
others. We will voluntarily shift our process to a quieter time during the day so that enough
capacity remains available for the entire hub. The collective interest comes first.

Question 2 Suppose: within the energy hub, a shortage has been announced at a certain future mo-
ment. Your company wants to consume more than agreed at that time, but that process can still be
shifted to another moment on the same day.

To what extent do the factors below influence your choice to consume at a different time on the same
day?

Please indicate how important you find each factor.

• Financial rewards if you do not consume during peak moments
• A penalty if you still consume during peak moments
• Costs of production interruption during peak moments (lost revenue, additional labour costs)
• Insight into capacity pressure within the hub
• Expectation that other companies will also be flexible with shifting
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• Reputation of your company compared to other companies in the energy hub

Scale: Not very important, Not important, Neutral, Important, Very important

Question 3 Suppose: within the energy hub, a shortage has been announced at a certain future mo-
ment. Your company wants to consume more than agreed at that time, but that process can still be
shifted to another moment on the same day.

Are there any other factors that influence your choice to consume at a different time on the same day?

Please enter your answer. If there are no other factors, you may skip this question.

Question 4 Suppose: your company has reserved energy capacity at a certain time that is not urgently
needed, while another company in the energy hub urgently needs capacity.

Which of the options below best matches how you would act in that situation?

□ If another company runs into trouble due to a capacity issue while we have sufficient capacity, it
strengthens our position in the hub. We see no reason to share our capacity; it is better that they
manage their own affairs.

□ As long as we do not urgently need the capacity, we keep it available for our own flexibility. We
want to avoid getting into trouble ourselves later on.

□ We currently have available capacity and are willing to share it if that helps solve a problem for
another company. As long as it does not disrupt our own.

□ If another company urgently needs capacity and we do not need it at that moment, we will of
course make it available to them.

Question 5 Suppose: your company has reserved energy capacity at a certain time that is not urgently
needed, while another company in the energy hub urgently needs capacity.

To what extent do the following factors influence your choice to share capacity?

Please indicate how important you find each factor.

• Financial compensation
• Positive experiences with other companies
• Reputation

Scale: Not very important, Not important, Neutral, Important, Very important

Question 6 Suppose: your company has reserved energy capacity at a certain time that is not urgently
needed, while another company in the energy hub urgently needs capacity.

Are there any other factors that influence your choice to share capacity?

Please enter your answer. If there are no other factors, you may skip this question.

Question 7 Suppose: your company has an important process scheduled at a certain time that requires
a lot of energy. However, there is limited capacity in the energy hub, and if all companies proceed with
their planned consumption, the grid will become overloaded.

You see that you can only run your process if another company voluntarily reduces or shifts their con-
sumption temporarily.
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Would you personally approach this other company (via WhatsApp or phone call) to ask them to make
room for your process?

□ No, unless they offer themselves. My process is important, but not more important than preventing
strain on others.

□ Yes, I can ask in a polite manner and it is reasonable. Together looking for the best solution for
everyone.

□ Yes, definitely. My process is important, and if I ask politely whether they can shift, that’s fine.
□ Yes, absolutely. If I benefit from it and they can give way, then that’s their problem.

Question 8 Suppose: your company has an important process scheduled at a certain time that requires
a lot of energy. However, there is limited capacity in the energy hub, and if all companies proceed with
their planned consumption, the grid will become overloaded.

You see that you can only run your process if another company voluntarily reduces or shifts their con-
sumption temporarily.

Are there any other factors that influence your choice to personally approach another company with
the request to make room for your process?

Please enter your answer. If there are no other factors, you may skip this question.
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