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Abstract

This thesis aims to enhance rainfall nowcasting by improving motion field predictions
and ensemble generation within PySTEPS using machine learning techniques. Ac-
curate nowcasting is crucial for flood early warning, agriculture, transportation, and
public safety. The steady-state assumptions and ensemble generation in PySTEPS,
and many other nowcasting methods, face significant challenges in maintaining ac-
curacy over time, especially during convective weather events characterized by rapid
changes in precipitation patterns and their movement. The research focuses on three
objectives: identifying the current errors and uncertainties in PySTEPS motion field
estimations, constructing dynamic motion field predictions with the development of a
new deep-learning model, MotioNNet, and developing motion field ensemble genera-
tion methods for MotioNNet.

We introduce a new dataset containing 10,000 motion field events, consisting of events
with high rainfall and motion errors in the NL. MotioNNet, trained/validated/tested
on 75%/12.5%/12.5% of the dataset, improves motion prediction accuracy by approx-
imately 13%. It provides accurate temporal adjustments (e.g., advecting the motion),
especially in structured and stable events. For ensemble generation, probabilistic tech-
niques such as SpatialDropout and Monte Carlo dropout are employed within MotioN-
Net. The results indicate better ensemble predictions in structured and stable events,
accurately identifying problematic areas and generating realistic members. However,
it presents a small spread compared to PySTEPS. Challenges remain in accurately
capturing uncertainty during highly dynamic convective events, but new paths are
open for future enhancement.

The study concludes that integrating machine learning models into traditional now-
casting frameworks can substantially enhance motion field predictions and ensemble
generation. Future work should focus on further refining these models or exploring
more advanced architectures (e.g., ConvLSTM, diffusion models, or transformers), im-
proving context-dependent perturbations in ensemble generation, and enhancing the
references and assessments. These advancements hold potential for improving motion
field nowcasting accuracy.
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1 Introduction

In 2010, the World Meteorological Organization’s Working Group on Nowcasting Re-
search described nowcasting as a forecasting technique that provides detailed local
weather predictions from the present moment up to six hours ahead [3]. Nowcasting
plays a crucial role in various sectors that rely on weather-dependent decision-making.
These sectors range from agriculture and transportation to public health and safety
and early flood warning systems, impacting the security and health of millions of peo-
ple [4; 5]. Given the recently documented increase in the extremity of short-lasting
high-intensity (convective) precipitation events in the Netherlands [6], the relevance
of Nowcasting is expected to increase in the future.

Quantitative precipitation forecasts (QPFs) have mainly been developed in recent
times by using one of the two following processes: Numerical Weather Prediction
(NWP) models and statistical extrapolation techniques. NWP models aim to simulate
the physical processes in the atmosphere by solving a set of non-linear partial differ-
ential equations for a gridded representation of the world, parametrizing the events
that occur at a smaller scale than the grid, given some initial and boundary condi-
tions. Extrapolation-based nowcasting methods, on the other hand, predict rainfall
evolution based on recent (radar) observations. These methods assume that rainfall
intensity and motion fields remain constant over short periods. First, they estimate
the motion field based on the previous gridded observations (e.g., radar composites)
and then, by using statistical advection schemes, extrapolate the last observation along
the estimated field. These nowcasts can be further refined by introducing probabilis-
tic elements, creating an ensemble of nowcasts, therefore providing an estimation of
uncertainty from the spread of the ensemble. Operational forecasting services have
widely adopted extrapolation methods due to their low computational requirements
and ease of implementation. Some examples of these approaches are S-PROG [7]
for the deterministic case and the probabilistic STEPS [8], which have been used as
benchmarks in comparison studies for new methods [9; 1]. These are implemented and
publicly available in the Python-based library PySTEPS [10], a modular framework
that can be considered state-of-the-art in nowcasting. This project primarily investi-
gates the validity of the constant motion field assumption. Using a large dataset for
the Netherlands, the statistical deviations between the actual and predicted motion
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1. Introduction

fields are assessed and a new machine-learning based technique for generating ensemble
forecasts of motion fields for different lead times is proposed.

Compared to extrapolation forecasts, NWP models are computationally intensive and
produce forecasts at relatively coarse spatial and temporal scales. This limits the
ability to capture convective cells, which can require km-level resolution and present
lifetimes in the order of 1 hour [4]. Their update frequency and spin-up times can take
multiple hours [11] which can also limit their utility in operational settings. Moreover,
NWP models cannot directly assimilate radar data because radar reflectivity (or rain
rate) is not one of the fundamental variables simulated, but is calculated based on more
fundamental variables such as temperature, pressure or humidity. As these variables
could be adjusted in many different ways to produce the same output in terms of
rainfall, this can cause an assimilation problem. Despite recent improvements, such
as increased spatiotemporal resolution and improved data assimilation, NWP models
are still consistently being outperformed by extrapolation-based nowcasting methods
for the first two hours into the future [4; 12]. After this time range, a blending of
extrapolation and NWP methods shows benefits compared to extrapolation methods
alone [13; 4; 14; 12].

Despite their benefits, extrapolation nowcasts also come with their own set of chal-
lenges. The presence of model errors limits the capabilities of a model, particularly
the Lagrangian persistence model. As a result, the skilful lead times of nowcasting
are generally limited to only a few hours (on average) into the future. These errors
can arise from changes in precipitation that contradict the steady-state assumption,
the assumption of a stationary motion field, the errors in the growth and dissipa-
tion of the rain field and practical implementation issues such as discretization and
numerical diffusion [15; 16; 10]. Improvement in these areas can lead to better uncer-
tainty estimation and therefore more reliable forecasts. In particular, PySTEPS has
shown clear problems in forecasting extreme precipitation events related to summer
convection due to the growth and decay of precipitation but also due to incorrect
motion field estimation [4; 9; 1]. Growth and decay mechanisms of convective cells
are often assumed to be the primary sources of uncertainty in nowcasts. Interestingly,
most studies dedicated to improving the performance of extrapolation-based nowcasts
mainly focus on improving rainfall intensities, while the motion field part appears to
have been relatively overlooked so far. One of the first attempts to address this issue
dates back to the work of [15]. Specifically, they solved a 2D system of Burgers’ equa-
tion to update the motion field at each time step. This appears to be the first and
only study specifically dedicated to the problem of dynamic motion field estimation.
As an example, see the issue report in the PySTEPS repository1.

Convective events usually lead to heavier, more extreme precipitation and are of great
interest to the nowcasting community as they usually present the biggest challenge,
and even more so for NWP models [8; 4; 14; 10; 9; 1; 12]. One of the challenges
behind predicting motion fields is that they are tied to the rainfall process itself.

1https://github.com/pySTEPS/pysteps/issues/183
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The rain cells influence the motion field, and vice-versa, which can be seen in the
PySTEPS issue, where the formation of new rain cells affects the apparent motion.
This is a major challenge when generating ensemble forecasts. Current methods are
not dynamic enough for these types of behaviours. They only contain steady-state
assumptions and random fluctuations, which are the same no matter the type of event.
As such, present motion ensemble generations can be over-optimistic in capturing the
true uncertainty, underestimating the errors. Another option could be using other
information to include in the estimation, e.g. wind fields from NWP forecasts, but
none of these alternative information sources have the spatiotemporal resolution and
update frequency from weather radar. This highlights the need for further research into
motion field estimation and associated uncertainties uncertainty, especially considering
the high potential societal impact of such events. Probabilistic methods have been
widely implemented operationally for forecasting and specifically for nowcasting. The
extra information about the uncertainty in these methods is particularly useful in
capturing extreme events, but it is also useful for other operational systems that could
require rainfall estimate distributions and not deterministic outputs such as flood
forecasting [8; 17; 9; 18]. On top of this, in the Netherlands, studies have shown that
the performance of these models varies, reducing the accuracy for summer extreme
precipitation events the most, mainly related to convective processes, providing only
up to 30 minutes of predictability [19; 4].

Besides these more traditional methods, multiple attempts have been made to imple-
ment data-driven models using machine learning and deep learning [9; 20; 1]. These
approaches are not theoretically limited for example by the steady-state assumption.
They expect the model to capture the complex and dynamic evolution of rainfall fields
from data alone. This has been done using different architectures (e.g. Convolutional
[21; 22; 23; 24] and Recurrent Neural Networks [20] (CNNs & RNNs) or Generative
Adversarial Networks [9; 1] (GANs) upon many others). Some of the downsides are
1) the low interpretability of the model, due to its black-box nature, and 2) the need
for high amounts of historical datasets, which are often not present, that require high
levels of pre-processing to create the cleanest possible inputs and computing power
to train the model. However, the biggest appeal of these models is good predictive
performance and low computational complexity without having to understand and/or
explicitly model the complex physical processes. On top of that, the reduced run times,
in comparison to the traditional methods, allow for the generation of larger ensemble
sizes, and the possibility of customizing the models based on training data from mul-
tiple sources and from different datasets besides radar data. Therefore, a combination
of the robustness and interpretability of the traditional methods combined with the
speed and dynamism of data-driven models is very appealing, taking the strengths of
each method while minimizing the drawbacks.

Taking the approach suggested in STEPS as a starting point, we use deep-learning
techniques that take inspiration from preexisting architectures containing a motion
field estimation component. With that combination, we aim to only change one com-
ponent of the full nowcasting chain by predicting changes in the already estimated

3



1. Introduction

motion field (by PySTEPS). This hybrid approach with a focus on the motion field
changes has not been seen before. As it has been described, this is one of the sources
of uncertainty and research in this area can advance developments in the field of now-
casting.

1.1 Research Questions

Following from the introduction, the research questions of this MSc thesis are:

1. What are the current errors/uncertainties associated with estimating
motion fields in PySTEPS?

Approach: This question will be answered by comparing the predicted motion
fields in PySTEPS (assuming Lagrangian persistence) and the actual motion
fields for a large set of events. The motion fields are calculated from a historical
dataset of radar images of the Netherlands using optical-flow methods. The
average behaviour with lead time is shown by the absolute error with respect to
the reference.

2. How can the PySTEPS motion field predictions be improved using
machine learning?

Approach: A new Deep-learning model will be trained to predict the evolution
of the PySTEPS motion field. The average error calculations are repeated for
the new model and the differences between the predicted and estimated motion
fields will be assessed using the same methodology as in 1, comparing them to
PySTEPS.

3. How can machine learning models be used to generate ensembles of
motion field predictions, and how do these ensembles compare to the
ones currently implemented in PySTEPS?

Approach: The deep-learning model will be modified to be able to produce a
prediction ensemble. The modified model and the PySTEPS ensemble generation
are compared using probabilistic evaluation methods (e.g. CRPS).

In addition to the statistical analyses, a selection of case studies will be used
to illustrate the differences between the approaches and highlight the pros and
cons of different types of rain events. These give insights into the spatial and
temporal performance of both approaches.

4



2 Background

This chapter outlines the previous work that serves as the basis for this project. It
begins with a detailed overview of the approach used in PySTEPS for estimating
motion fields. Then, the basic Deep Learning techniques used are presented including
previous usage in the field and a technical description.

2.1 Motion field estimation and modelling of errors in
PySTEPS

The estimation and forecasting of motion fields in PySTEPS consists of different parts.
First, the current motion field is estimated using the Lucas–Kanade (LK) optical flow
algorithm [25; 26], which is implemented in the OpenCV library [27]. Other options
like DARTS [28] and VET [29] are also available. Their differences are only marginal
(in the order of 2% [10]) and due to their required computational times (more than 10
times compared to LK) and the increased number of required input images (2 times
more than LK), the selected choice is LK. Generally, it is also the method that is most
often used. LK uses two or more input images to estimate the current motion field,
and the resulting field is then used in the backwards-in-time semi-Lagrangian scheme
advection method [30] for the movement of the rain field, keeping the advection field
constant. Once the motion field has been calculated, it is modified based on lead time
by adding stochastic perturbations. The implementation is as follows:

wp(x, y, t) = w0(x, y) + αpar(t)ϵparŵpar(x, y) + αperp(t)ϵperpŵperp(x, y), (2.1)

where wp(x, y, t) is the predicted motion field at coordinates (x, y) and lead-time t,
w0(x, y) is the motion field at time 0 and coordinates (x, y), both with units of km/h,
ŵpar(x, y) and ŵperp(x, y) correspond to the parallel and perpendicular components
of the current motion field at coordinates (x, y), being a normalized two-component
vector field. The perpendicular component is defined anti-clockwise with respect to
the parallel component. ϵpar and ϵperp are random variables sampled from a Laplace
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2. Background

distribution with zero mean and unit variance. They serve the purpose of introduc-
ing randomness in the perturbations. For each ensemble member, a pair of values
(ϵpar, ϵperp) is sampled, and for simplicity, in [10] they are assumed constant for the
entirety of the field. The α-components characterize the increasing magnitude of the
stochastic perturbation with lead time and, in PySTEPS, the components are modelled
using a power-law model of the form:

αpar(t) = apart
bpar + cpar, (2.2)

αperp(t) = aperpt
bperp + cperp, (2.3)

where t is the lead time in minutes and the constants [a, b, c], with units min−b for a
and unitless for b and c, for the parallel and perpendicular components. The constants
can be chosen based on the local rainfall climatology and/or characteristics of different
radar products [10]. In general, the parameters used in multiple comparison projects
take the predefined standard values (see Tab 2.1). Nevertheless, these parameters
can vary based on the dataset used, for example, in PySTEPS [10] parameters for
other motion field estimators and radar data from Switzerland and Finland can be
found (see Tab. 2.1). It is important to note that these parameters, optimized for
specific events and claiming a climatological fit with a large set of fields [10], may not
represent the high-intensity convective rainfall events of interest in this project. Fur-
thermore, geographical and climatological differences, event selection, dataset size and
data pre-processing (including clutter handling, interpolation, projection, discretiza-
tion, corrections, and dBZ to rain-rate transformation) can influence these parameters.
From [10] it is clear that the final temporal and spatial resolution of the mentioned
datasets are the same, but the interpolation and other theoretical pre-processing tech-
niques have different sources. Other differences come from the obvious climatological
and geographical conditions, as well as the total grid size, for the Netherlands being
[700x765] pixels compared to Finland [760×1226] and Switzerland [710×640]. Interest-
ingly, the documentation of PySTEPS does not mention how exactly these parameters
were fitted (e.g., dataset size, event selection, etc.).

These perturbations are statistically uniform across the whole spatial domain and bear
no correlation with the forecast velocity, which results in perturbations not necessarily
located where the most uncertainty is in the estimation. While these perturbations
remain constant in space for each ensemble member, their magnitude progressively in-
creases over time. This is done to account for the uncertainty in the prediction of the
stationary motion field over time[19]. In their study, [8] showed that, when comparing
an advection field at 0-lead time with that at the final lead time, there is no notable
difference, both presenting very similar Root Mean Square Error (RMSE) with lead
time in the nowcasts for up to 3 hours. That is why the initial motion field is used as
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2.1. Motion field estimation and modelling of errors in PySTEPS

LK DARTS VET
a b c a b c a b c

Standard
par
perp

10.88
5.76

0.23
0.31

-7.68
-2.72

- - - - - -

Finland
par
perp

2.21
2.22

0.34
0.32

-2.49
-2.57

13.7
8.27

0.16
0.18

-16.24
-9.54

0.25
0.02

0.68
1.00

11.05
7.40

Switzerland
par
perp

2.56
1.31

0.33
0.36

-2.99
-1.02

24.28
-78.08

0.11
-0.03

-27.30
75.67

0.51
0.68

0.54
0.42

7.90
4.74

Fin + Swi
par
perp

2.32
1.91

0.34
0.33

-2.65
-2.07

16.55
14.75

0.14
0.11

-19.24
-16.26

0.29
0.23

0.62
0.59

8.68
5.98

Table 2.1.: Fitted coefficients of Eqs. 2.2 and 2.3 provided in the PySTEPS GitHub
repository https://github.com/pySTEPS/pysteps/blob/master/pysteps. It
provides the parallel and perpendicular components for the standard case, the radar
data of Finland, Switzerland and the combination of these two. The standard values
are only shown for LK as they are the same no matter the method.

the base of the perturbations.

Looking a bit deeper into the parameters, focusing on Lucas-Kanade, the coefficients
present negative intercepts (cpar and cperp in eq. 2.2 and 2.3) with a very high correla-
tion with each other, having a minimum value of ± 0.6 and for the a and c coefficients
a perfect negative correlation (see Tab. 2.1). It can be observed more noticeably for
DARTS. The high correlation present can lead to different combinations of values with
similar goodness of fit. This can lead to convergence issues in the numerical methods
used to derive optimal parameter values and can lead to strange, unrealistic parameter
values with little or no physical meaning. This type of problem is usually known as
“parameter indeterminacy” or “equifinality” [31]. In this situation, it makes it chal-
lenging to uniquely determine the values of the parameters. This can occur because
of a lack of data but can also be indicative of a deeper issue, such as an inadequate
or poorly constrained model for uncertainty estimation. Therefore, in these cases, it
is important to consider ways to lower the visible cross-correlations, where one option
could be changing the shape of the fitting equation [32]. In summary, the current
ensemble generation method for the motion field poses two limitations: (1) the per-
turbation values are fixed in time (per event) and space (uniform), and (2) the model
for uncertainty estimation may be inadequate.

It is also noteworthy to point out that during our initial investigations when we tried
to fit our own parameter values on 288 events (≈ 24 h, i.e. a single day of radar images)
in the Netherlands, many negative intercept parameters were found. This is disturbing
from a physical point of view because a standard deviation cannot be negative, but
it also creates problems for predicting the error variance over short lead times and
generating realistic ensembles. Moreover, the fitting generated unexpected extremely
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2. Background

Figure 2.1.: Parameter fitting output for 24 hours in the Netherlands on 28/07/2014.
For the parallel component, the fitted values explode in comparison to the expected
values, in the order of magnitude of the perpendicular case.

high and low values that compensate for each other (see Figure 2.1). This shows that
the selected model presents clear weaknesses in its definition and constraints. While
this may not be a big issue from a practical point of view since usually, the standard
deviation quickly grows and becomes positive after about 5 minutes, it is a serious
methodological weakness in the current error model. In the end, the current approach
used by PySTEPS is functional but lacks physical interpretability and scalability to
other types of data with different lead times.

2.2 Deep Learning Architecture: U-Net

The U-Net architecture was introduced for image segmentation with great success
in [33] and then has been applied to many other fields, including nowcasting [21;
22; 23; 24] due to its advanced feature extraction and processing capabilities from
image inputs. The architecture structure is based on an encoding-decoding strategy
heavily dependent on convolution and pooling with skip connections to preserve spatial
information. Over time, the vanilla implementation of the U-Net has been refined
and in particular this project focuses on the approaches followed in [9; 1]. These
present modified U-Nets with changes in the architecture and loss adjustments to
improve previous existing U-Net-based models. Convolutional layers are substituted
with residual blocks and rather than predicting only a single output and using auto-
regressive sampling, their models predict all frames in a single forward pass. On top
of that, they include a loss weighted by precipitation intensity. All these modifications
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2.2. Deep Learning Architecture: U-Net

are introduced to reduce blurring and improve performance. The results show still an
important blurring effect which produces an approximately 8 km effective resolution
at 30 min lead time and 32 km at 90 min in rainfall nowcasting [9]. Even though
these properties are not desired in an end-to-end prediction (and therefore penalize
U-Net with respect to other approaches), these are usually regarded as good or desired
characteristics of motion fields [8; 15], as motion fields tend to be smooth over longer
distances, making U-Nets a good contender for motion field estimation.

Figure 2.2.: Modified figure from [1]. Architecture details of the elements in the Evo-
lution Network (EvN) used for this project. It shows the EvN encoder with specifics
on the D Block. The arrows leaving the D-Blocks and posterior concatenations are
the skip connections. The input fields have a 480x480 shape in this project, with
convolutional layers using a 3x3 kernel. Leaky ReLU is used as activation function
with a negative slope of 0.2. BN is the batch normalization. Up and Down are
bilinear interpolations to expand or reduce spatial size. All the predictions are done
in a single forward pass.

Nowcastnet’s Evolution Network (EvN) [1] is the closest approach to the one of in-
terest here, as it explicitly predicts motion fields. The EvN has a shared encoder
for latent representations, a motion decoder for learning future motion fields and an
intensity decoder for the growth and decay of precipitation. These predictions are
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then combined using a backward semi-Lagrangian scheme to advect the rainfall field
and the model is trained to minimize the loss between the advected and observed
fields together with a continuity regularization applied to the motion field. Some of
the physical concepts that are used in the background of this model also correspond
to what is used in PySTEPS, which makes this approach more appealing for this
project. As this model aims to create an end-to-end prediction, the sections related
to advection, growth and decay are skipped and only the motion prediction approach
is extracted. Specific details on the architecture can be found in Figure 2.2. It con-
sists of five residual blocks (D-Blocks), where each block doubles/halves the number
of channels followed by spatial down/up sampling by a factor of two. The number of
channels ranges from 32 to 512 in the latent representation. The implementation and
modifications made to this model are further described in Section 3.5.

2.3 Probabilistic Deep Learning: Dropout

Dropout [34; 35] is a widely used regularization technique introduced to prevent over-
fitting in neural networks. This occurs when a model learns the training data too
well, capturing noise along with the underlying pattern, and hence performs poorly
on unseen data. The standard dropout implementation operates by randomly setting
the activation for a fraction of the neurons to zero (they are “dropped-out”) at each
update during training with a certain probability. The core idea behind dropout is
that it introduces noise into the training process, forcing the neural network to learn
more robust and generalized features.

While dropout has proven to be an effective regularization technique, it has certain lim-
itations when applied to Convolutional Neural Networks (CNNs). In CNNs, dropout
is less effective due to the strong spatial correlation between adjacent pixels in images
[36; 2]. Simply dropping out pixels does not fully prevent neurons from training. Spa-
tial Dropout [2] is a variant of the standard dropout technique, designed specifically
for convolutional layers (see Fig. 2.3). It disconnects entire feature maps in a 2D con-
volutional layer, which effectively prevents the learning of the kernels. This method
preserves the strong spatial correlation between adjacent pixels in feature maps, as
the maps not dropped out have the entire domain available for training, while still
providing a regularizing effect.

Monte Carlo Dropout, an extension of the dropout method, allows us to obtain a
measure of uncertainty in deep learning models. By performing dropout at test time,
we can generate an ensemble of predictions. The variance of these predictions can then
be used as a measure of uncertainty while also having multiple different predictions.
This method has been shown to improve the performance of CNNs and U-Nets by
providing a more robust prediction. The implementation of the Dropout method to
construct ensembles is further described in Section 3.6.1.
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Figure 2.3.: Modified figures from [2]. Dropout vs SpatialDropout. The figure illus-
trates the convolution process with kernels represented by the top two pixel rows
for feature maps 1 and 2, while the bottom row depicts the output features of the
preceding layer. At the top, during back-propagation, the W2 kernel’s centre pixel
receives gradient contributions from both f2a and f2b, which is dropped, as it moves
over the input feature F2. As these are highly correlated pixels, despite the zero
gradient contribution to minimizing e (the loss function) from f2b, the strongly cor-
related f2a gradient persists and independence is not enhanced. On the right, with
SpatialDropout adjacent pixels in the dropped-out feature map are either all 0 or
all active, therefore enhancing the missing independence in the standard dropout
procedure.

2.4 Probabilistic Evaluation: CRPS

When generating multiple predictions, probabilistic evaluation methods need to be
applied to account for the quality of the ensemble and not just compare the errors
of the different members independently. A very common verification tool used for
probabilistic prediction is the Continuous Ranked Probability Score (CRPS) [37; 38;
39]. Based on the description in [39], it is defined as follows:
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CRPS(P, xa) =

∫ +∞

−∞
[P (x)− Pa(x)]

2dx (2.4)

P (x) =

∫ x

−∞
ρ(y)dy (2.5)

Pa(x) = H(x− xa) (2.6)

H(x) =

{
0 for x < 0

1 for x ≥ 0
(2.7)

where ρ(x) is the Probability Density Function (PDF) given by an ensemble forecast
and xa the observation. P (x) and Pa(x) are cumulative distributions and H(x) is
the Heaviside function. The CRPS measures the difference between the predicted and
occurred cumulative distributions. The idea behind this tool is to combine the average
error of the members with their spread value. It is zero when P and Pa are equal (all
the members are exactly the observation) and has the dimension of the parameter. If
the prediction is deterministic the CRPS reduces to MAE making it easy to interpret.
The mentioned description focuses on continuous distributions but for the discrete
cases the following modifications need to be made:

P (x) = pi =
i

N
for xi < x < xi+1 (2.8)

where P (x) is now a piecewise function, xi is the ith ordered outcome of the ensemble
where the first and last elements are set to −∞ and +∞ respectively for convenience.
This approach assumes equal weight for each of the members in the prediction. The
implementation of CRPS for this project is described in Section 3.6.2.
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3 Data and Methods

This chapter describes the specific tools, approaches and information employed in this
thesis to manipulate, filter, estimate and asses motion fields needed to reproduce the
work.

3.1 Radar data

Motion fields are calculated using the 5-minute KNMI radar reflectivity composite
maps. This product has been archived since 2008 and contains gridded files, with di-
mensions 700x765, at on average 1500 m altitude over the Netherlands and surrounding
areas measured by two radars in Herwijnen and Den Helder and can be found in https:

//dataplatform.knmi.nl/dataset/radar-tar-refl-composites-1-0. A pre-processing
step has been implemented on this dataset to remove clutter using a morphological
clutter removal scheme by [40] in Section 4.1. The radar data provided by KNMI are
stored in an 8-bit unsigned integer representation corresponding to a range from 0 to
255. It first needs to be converted to reflectivity expressed on a logarithmic scale in
units dBZ. The transformation to dBZ is done using the following equation:

{
Z(xi, yj , t) = NaN if K(xi, yj , t) = 255

Z(xi, yj , t) = K(xi, yj , t) · 0.5− 31.5 otherwise,
(3.1)

where Z and K are the radar reflectivity in dBZ and bit-wise representation respec-
tively of the pixel at coordinates (xi, yj) and time t. If needed, the reflectivity values
can also be transformed to rain rates (based on the Z-R Marshall-Palmer [41] relation-
ship with a=200 and b=1.6):

R(xi, yj , t) = 10(Z(xi,yj ,t)−23)/16, (3.2)

where R(xi, yj , t) is the rain intensity in mm h−1 of the grid cell at coordinates (xi, yj)
and time t.
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3. Data and Methods

3.2 Event Selection

The selection is derived from the approach proposed in Section 4.2 of [40], where an
event is defined as a sequence of 22 consecutive radar images, with 4 input frames
and 18 prediction frames, separated by 5-minute time intervals, focusing on a period
of 90 minutes. For an event to be considered “valid”, both KNMI radars must be
recording data. Additionally, all the radar reflectivity and echo top height maps for
the 22 consecutive frames must be available. For each valid event, a weighted sum of
the rainfall intensities at the pixel level is computed:

Sk =

22∑
t=1

∑
ij

R(xi, yj , t)
p, (3.3)

where Sk indicates the calculated coefficient of event k, t corresponds to the time index
of each frame, R(xi, yj , t) is the rain intensity in mm h−1 of the pixel at coordinates
(xi, yj). The indices i and j correspond to the position of the pixels, in the x and y
direction, for a central crop of [480x480] from the original [700x765] (taking indices
109 to 589 for x and 141 to 621 for y) domain. The analysis is restricted to this
area to mitigate larger errors caused by border artefacts in radar composites, while
fully covering the Dutch land mass. The restricted area is kept for the entirety of
the project. p is a unitless exponent that can be used to change the weight given to
individual pixels as a function of their intensity. For example, if p = 1 all rainfall
intensities are treated equally but if p = 2 more importance is set to pixels with higher
intensity, focusing on events that are more localized but more extreme rather than
more widespread with less severe rain. In this project, p = 2 is chosen to emphasize
highly convective and localized events.

For this project, a “valid” event must consist of a sequence of 25 consecutive frames
(as extra rain frames are needed to calculate the motion fields, see Sec. 3.3), compared
to the 22 of Sk. The restrictions on the availability of the data are preserved. Even
though the difference in length of a “valid” event can create conflicts (where there are
22 available frames but not 25, e.g. one radar stops recording), the impact caused
by this difference in the coefficient Sk is small, losing a fraction of “valid” events.
Therefore, the selection of events is kept the same considering only the first 22 frames.
Out of the desired amount of events, 30,000 in this study, the 3-frame difference leaves
us with 27,740 events available.

The mentioned procedure can generate a dataset with greatly correlated and over-
lapping events, which can significantly imbalance the distribution of events, over-
representing single events with high intensity and long duration. This impacts the
error analysis and the training of the machine-learning models through overfitting or
training slowdown. To avoid this, a multiple-step approach is followed for the selec-
tion. This is done sequentially, using a list of sorted events based on the associated
value from eq. 3.3.
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First, the sequence of 22/25 radar observations (the event) with the highest value
is chosen and then all the events inside a 3-hour range around it, as declustering
time, get removed. The declustering time is introduced to guarantee a certain level
of independence and is based on [8], which shows that after this period events start
being substantially different. This process is repeated, selecting the next highest value
of the remaining events in the list and removing the surrounding time steps. This is
done until the final amount of events is reached.

3.3 Motion Field Estimation for Training and Reference

Figure 3.1.: Diagram of the motion field calculation procedure. PySTEPS dataset
is composed of only one motion field that uses the first five rainfall images. The
reference dataset computes a motion field for every time step in the event of interest
using a window of 5 frames around the current time t for 90 minutes. The naming
convention uses the time label of the first rainfall frame.
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This section presents the approaches followed to calculate the motion fields from the
datasets used for training and as reference. Only specific modules from PySTEPS
(v1.7.4) were used in these calculations, including the data importers (for the KNMI
radar data), the Lucas-Kanade optical flow calculation module and transformation
modules to pre-process the radar rainfall data to scaled values (see Sec. 3.1), which is
needed for the Lucas-Kanade module [26; 25; 10].

This project focuses on events with a fixed duration of 90 minutes (19 frames). In
practical terms, this means that for each event, we need to extract 25 frames (19 +
4 extra input frames + 2 extra frames at the end to compute the reference motion
field for the 19th timestep in the event). The naming convention is based on the time
of the first file, out of the 25. The output motion fields are given in km/h and are
always calculated using 5 radar composites in dBZ units. Two different approaches
are implemented:

1. Urt: online calculations. Motion fields are computed in real-time, using only
data from the past and present. It considers one single motion field per event
and is computed using the first five images (see Fig. 3.1). These files correspond
to the frame where the prediction begins and its preceding four frames. This is
the approach followed in PySTEPS.

2. Uref : offline calculations. Motion fields are computed using past (previous 2
frames), present and future (next two frames) radar data. It uses “future”
information that is not available for Urt. The calculations cover the following 90
minutes into the future, therefore creating 19 motion fields. The first motion field
is centred at the start of the prediction. This gives the best possible estimate for
every lead time a-posteriori. This approach is considered as the reference (see
Fig. 3.1).

3.4 Selection of Interesting Events

To remove events that contain a lot of clutter or insignificant rain, which could also
impact the motion estimation process, an empirical coefficient and cap were intro-
duced. After the implementation of the declustering time, introduced in the previous
section, we removed events without rain or filtered by the cap. This, together with
focusing on the events with the largest coefficient, reduced the initial 30,000 events
to 10,000. This empirical method is based on preliminary analyses. It seems to work
well in practice, meaning that it eliminate problematic events and extracts interesting
events (based on visual inspection), but it is not a critical aspect of the work and could
be modified.

The coefficient tries to combine the velocity error and the presence of rain. It is
calculated as follows:
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Vk = (ln (Sk + 1))2 · ln (
√
∆V k

x

2
+∆V k

y

2
+ 1), (3.4)

∆V k
c =

∑
xi,yj ,t

| Uref,c(xi, yj , t)− Urt,c(xi, yj , t) | ·
R2(xi, yj , t)

Sk
, (3.5)

where Sk is the coefficient from equation 3.3, ∆V k
x and ∆V k

y are the averaged in time
and space velocity rain weighted absolute errors of the x and y components, calculated
using equation 3.5, where ∆V k

c is the average error of component c. The rain weights
are computed by dividing each pixel’s rain intensity in mm h−1 to the power of two
(R2(xi, yj , t)) with Sk. These weights multiply the error in the velocity and the sum
of all of them provides a spatial and time average error. The natural log is introduced
as a form of normalization, and the selection of lnx+ 1 ensures positive values for the
coefficient.

The idea behind Vk is to give more importance to events with lots of rain, high inten-
sities and big errors in velocity estimates while trying to avoid clutter and artefacts,
which can impact large areas of the motion field calculations (see Ap. A.3). The focus
on rain and velocity errors is crucial. The first serves as a way of reducing the effect
of clutter and artefacts, as the impact on large areas of motion gets minimized when
large rain fields are present and balancing the impact and relevance of the event. The
second is at the core of the research interests of this project, trying to improve in the
areas where the static approach does not work well.

Despite implementing measures to reduce clutter and artefacts, which highly influence
the motion field estimation, certain events still exhibited significant deviations. To
address this, a cap on the velocity error is considered at 35 km/h, which means that
the domain-wide average velocity error has the magnitude of approximately the average
tropical depressions [42]. If any event at any lead time contains a spatially averaged
error in any of the motion components above the limit, it gets removed. There are
examples where the error can go up to 200 km/h making this a key problem to tackle.
The value selection is based on the magnitude of events of interest in comparison to
outliers, and taking into account typical wind speed velocities. For context, the 35
km/h cap corresponds to the 99.2th percentile of the velocity errors in events with
rain at a 90-minute lead time (see Fig. B.1). This procedure removes approximately
3% of the events with rain (see Ap. A.3).
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3.5 Deep Learning Methods for Dynamic Predictions

3.5.1 Motion Field Prediction with MotioNNet

Based on the work described in Sec. 2.2, substantial modifications to EvN have been
implemented to enhance and adapt the model based on the research purposes.

The basic architecture can only extract information from 5 rainfall frames in order
to predict the motion fields 90 minutes into the future. This is a challenging task
especially when interpolating the motion to areas with no rain and when changes
are large and highly dynamic in time. To overcome this problem, architectural and
loss changes are implemented. The most important change concerns the input of the
model. In addition to using the 5 most recent radar frames, the new model, from now
on called MotioNNet (MNN), also takes the real-time estimated motion field Urt from
PySTEPS as an input (see Fig. 3.2). Then, instead of predicting the motion field
directly, MNN is modified such that it predicts the changes to be made to Urt, for the
next 90 min. in a single forward pass, to get as close as possible to the reference motion
field Uref . These two implementations are meant to benefit from the current PySTEPS
approach and then use Deep Learning to increase its flexibility and dynamism in the
prediction. The architecture and loss details are as follows:

1. As past motion is given as input, the architecture now contains two encoders
(see Fig. 3.2), one for rainfall and the other for motion, which extract the
relevant information from both sources. Then, the latent representations are
concatenated and processed through a D-Block (see Fig. 2.2) to generate a
combined representation that is fed into the decoder. The skip connections only
apply to the motion fields, as the fine details of the rainfall fields in space are
not relevant to be preserved. The extra information introduced by the past
motion provides a robust baseline for the model. It is more noticeable in the
areas that never present rain, where otherwise the model would not have any
input information to predict the motion. This allows the model to focus better
on what needs to be changed in the field and not predict the entire motion from
scratch.

2. Giving the motion as input can also cause issues. When the model tries to predict
future fields, it does not make substantial changes in time when required, going
back to Urt and remaining static. To tackle this, the model does not target Uref

but the difference between Uref and Urt. This, when added to Urt, produces a
new set of motion fields. That way, the model is forced to be more accurate in
the changes of the motion and can remain static in the areas where no changes
are expected to happen, keeping the interpolation capabilities of the PySTEPS
approach.
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Figure 3.2.: Modified figure from [1]. MotioNNet (MNN) Architecture details based on
Sec. 2.2. The diagram displays two evolution encoders, one for the rain inputs and
the other for Urt. After encoding, the results in the latent space get concatenated
and double convoluted to combine the learned representations. Then the results
go through the motion decoder to output the predicted error, in a single forward
pass, of Urt compared to Uref . The skip connections only happen between the Urt

encoder and the decoder.

3.5.2 Training, Validation and Testing

The model loss is based on the Mean Absolute Error (MAE) defined as 1
n

∑n
i=1 |yi − ŷi|,

where yi is the target, ŷi the prediction and n the number of pixels. The MAE is
calculated between the prediction and the difference of Uref and Urt. The absolute
error is calculated per grid cell and then averaged over time and space. The model
was trained on 20,000 iterations with a batch size of 16, a learning rate of 0.001 and
a decreased learning rate on plateau of 0.1. The hyper-parameter tuning and training
of the model was done completely on the DelftBlue Supercomputer from TU Delft
[43], using NVidia Tesla V100s 32 GB GPUs. The dataset is divided randomly into
training, validation and testing using 75/12.5/12.5 % respectively (7500 events for
training, 1250 for validation and 1250 for testing). The sizes and content of each
group showed in the training to be sufficient to represent the diversity of events in the
dataset.

In addition to the statistical analyses performed on the testing dataset, we also focus
on some hand-selected interesting case studies which will be used to illustrate the pros
and cons of the different approaches. If these events were present in the training or
validation set, they were moved to the test set. The selected events try to highlight the

19



3. Data and Methods

Figure 3.3.: Rain evolution of the squall line event from 2012-06-16-1755. It presents
the rain frames at time 0 and 90 min. in dBZ.

Figure 3.4.: Rain evolution of the isolated convective cells event from 2010-07-10-1800.
It presents the rain frames at time 0 and 90 min. in dBZ.

magnitude of the errors that can take place due to the static motion field assumption.
The events are 2012-06-16-1755, 2012-01-03-1410, 2021-10-21-1025 and 2010-07-10-
1800. They represent two of the main characteristics found when exploring cases
using Vk. The first three events are associated with highly structured and stable
events containing what is known as squall lines (see Fig. 3.3 and C.1) and cyclonic
rotation (see Fig. C.4) and the last related to isolated convective cells (see Fig. 3.4).
Of the first three events, only the squall line of 2012-06-16-1755 will be shown from
now on as it summarizes the most important features of these types of events, but the
analysis for the other two can be found in Appendix C.

Squall lines are quasi-linear convective systems where convection is heavily structured
following a line. They tend to have a steady structure and fast displacement, last-
ing several hours [44]. These types of events have been found multiple times in the
dataset of interest, and the structured line of convection can be fully connected or
disconnected, where the latter presents higher-intensity precipitation. Squall lines are
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of great interest as the impact of the motion field estimation can be comparable in
magnitude to the growth and decay of precipitation, which is common to other highly
structured and stable events. In these events, the motion field gets advected follow-
ing the squall line, as it does not fully follow the general motion direction, but can
deviate in movement from this. This property is shared for convective areas in other
structured and stable events (see Ap. C). That way, as the convective line propagates,
the motion field propagates with it, avoiding the intrusion of the rain in areas with
much different displacement. Preserving the motion of the line is important, as squall
line motion tends to be predominant when encountering other rainfall structures. In
the squall line event selected (see Fig. 3.3), there is a disconnected line of convection
moving eastward. It pushes a region of lighter widespread rain to the east which itself
moves very quickly NE.

Isolated convective cells, on the other hand, are much more intricate in the relation-
ship between motion and growth and decay. These cases usually present one or more
isolated convective cells that are independent of the general movement and when mul-
tiple isolated cells are present, more randomly spread. This imposes a great challenge
in the nowcast, as the motion field evolution is strongly connected to the growth and
dissipation of the cells, requiring the estimation of the motion field and the estimation
of the rain evolution as well. In the selected event (see Fig. 3.4), the entire domain
moves northwards. Isolated cells with high-intensity precipitation in the centre of the
area split and connect with the bigger area of rain to the left, dissipating slightly.
On top of that, more cells get generated connected to the bigger area of rain at the
right.

3.6 Ensemble Prediction

3.6.1 Ensemble Generation

The techniques described in Section 2.3 are applied to MNN to compare the ensemble
generation with PySTEPS (see Sec. 2.1). All the models involved in the comparison
generate ensembles with 30 members.

To each D-Block (see Fig. 2.2) inside MNN (see Sec. 3.5), SpatialDropout was added
by dropping feature layers in the output of both the double convolution and the single
convolution separately. The model was trained for different drop probabilities: 0.1, 0.2
and 0.5. This range provides information on the effect dropout has on the model. For
higher probabilities, worse performance per member but greater diversity and spread
are expected. The SpatialDropout was kept during testing to generate an ensemble of
predictions following the Monte Carlo dropout technique.

For a fair comparison with the PySTEPS approach, the coefficients described in Sec.
2.1 are fitted to the 10,000 selected events. The resulting values are [0.4826, 0.5241,
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Figure 3.5.: Standard deviation of the differences in the motion field dataset between
Uref and Urt. The fitted parameters of Eqs. 2.2 and 2.3 are included.

3.3406] for the parallel component and [0.3813, 0.5328, 2.5928] for the perpendicular
component (see Fig. 3.5 and Eqs. 2.2 and 2.3).

3.6.2 Evaluation of the ensembles

For the evaluation of the PySTEPS and MNN with dropout ensemble generation
approaches, we use the CRPS coefficient described in Section 2.4. The metric, with
km/h units, is calculated for the entire domain ([480x480]) for all lead times. It can
then be averaged in space to visualize the temporal evolution of the models. The
performance over the spatial domain can be shown for a single lead time including
and comparing individual members.

In particular, the approach shown in [39] and implemented in PySTEPS is used.
This implementation is needed due to the finite size of the ensemble, which requires
additional steps from Section 2.4. The CRPS in this approach is evaluated as follows
(see Sec. 2.4 for notation):

ci =

∫ xi+1

xi

[pi −H(x− xa)]
2dx → CRPS =

N∑
i=0

ci (3.6)

and ci can be evaluated based on the location of the observation as:
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ci = αip
2
i + βi(1− pi)

2 (3.7)

(3.8)

where α and β have km/h dimensions. These equations provide the CRPS per pixel.
As all the pixels and members are considered to have the same weight, the standard
arithmetic mean is used to obtain spatial or temporal averages.
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4 Results

4.1 Error Analysis of Motion Field Estimation

4.1.1 PySTEPS Statistical Characterization

x-component y-component

Figure 4.1.: MAE of Urt vs Uref for the top 10,000 events selected including both the
x (left) and y (right) components. Different percentiles are shown indicating the
spread of the error in the different events. The associated displacement error has
also been calculated and can be found in the Appendix B.

Following the methodology described in Sections 3.3-3.4, we calculated the spatially
averaged MAE of the estimated motion fields for the x and y components. Figure 4.1
shows that the PySTEPS approach already deviates at the first time step, indicating
that using only past observations for the motion field is not enough. There is a rapid
and sudden increase in MAE for short lead times below 10 minutes. The median
value over time is approximately 4-9 km/h for both the x- and y-components, leading
to an overall misplacement in the order of 3-8 km in 90 minutes. These magnitudes
refer to an average over the entire domain, but locally, the errors can be substantially
larger. The distribution of the errors is positively skewed for the entire range with an
increasing spread at longer lead times, magnifying the errors in the velocity estimation
(up to 15 km/h at 90 min for the 95th percentile) and therefore the displacement. The
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comparison with the results including all the events with rain (without filtering down
to 10,000 events) can be found in Appendix B.

4.1.2 PySTEPS Analysis on Events of Interest

The analysis of the events of interest (see Sec. 3.5.2) shows that Urt lacks a more dy-
namical prediction of the motion fields, which causes significant errors in the motion
and therefore large misplacement issues. For highly structured and stable events like
squall lines, these errors are very prominent (Fig. 4.2). When looking into isolated
convective cell events, the errors are again present, but growth and decay of precipita-
tion play a bigger role, which does not allow us to solve the issue by simply advecting
the motion (Fig. 4.3).

(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)

Figure 4.2.: Representation of the squall line event on 2012-06-16-1755. It contains the
rain observation at 0 and 90 min. (a, b), Urt, Uref at 90 min. (c, d), their difference
at 90 min (h). and the observed and extrapolated cumulative rainfall over 90 min.
using the static and the dynamic approach for the latter (e, f, g).

In the squall line event (see Fig. 4.2), there is a clear identification of a problem in the
region over which the squall line moves. As Urt does not advect the motion field, the
errors grow up to more than 100 km/h. This can significantly affect the nowcast of
rain. For example, the results of using Uref for the extrapolation of rain shows that the
easterly movement and the structure of the rain are better preserved than when using
Urt(see Fig. 4.2). There are clear changes due to growth and decay, but the spatial
structure of the convective cell at the SE of the centre with intense precipitation is well
captured. In the Urt case the cell enters the area with high displacement and wrongly
gets significantly displaced NE, together with the surrounding rainfall fields that are
not part of the squall line. It is important to note that there are still modifications
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related to the growth and decay of rain that are not taken into account in the nowcasts,
but the more accurate representation of the final fields is a positive signal towards
improvement.

(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)

Figure 4.3.: Representation of the isolated convective cells event on 2010-07-10-1800
related to isolated convective cells. It contains the rain observation at 0 and 90 min.
(a, b), Urt, Uref at 90 min. (c, d), their difference at 90 min (h). and the observed
and extrapolated cumulative rainfall over 90 min. using the static and the dynamic
approach for the latter (e, f, g).

For the isolated convective cells events, as can be seen in Fig. 4.3, Uref tries to repli-
cate the movement of the rain. See the slopes and structure of the lines of cumulative
rain at the N/NE, which are more similar to the observations. Unfortunately, as the
evolution of the rainfall field is not included, the final structure is erratic. The correc-
tion produced by implementing Uref makes a slight improvement when displacing the
biggest two cells, but this is limited again by the feedback between rain and motion.
The areas of motion that change from Urt to Uref are directly related to areas where
rain is present, and the magnitude is bigger in the regions where growth and decay of
precipitation are more intense.

From the events of interest, it is clear that a more dynamic approach in PySTEPS is
desired. For the structured and stable cases, we consider Uref an interesting target
as it portrays correctly, in general, the evolution of the motion field. For the cases
with isolated convection and more impact of growth and decay, Uref help is useful but
less significant. A combination of the issues of motion together with the growth and
decay of precipitation is more relevant. However, in some cases, the rain surrounding
the convective areas with a different motion than the convective cell can confuse Uref

calculations (see C.1.1). This shows some of the limitations in the reference used for
this project.
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4.2 Motion Field Estimation with Deep Learning

4.2.1 Deterministic Comparison of Motion Estimation

PySTEPS MotioNNet

Figure 4.4.: MAE comparing the errors with lead time of Urt (left) and MotioNNet
(right) for the test set of the model training. It includes the average of the x and y
components showing different percentiles that indicate the spread of the error.

Figure 4.4 shows the MAE of the estimated velocity by PySTEPS and the MNN,
following the same approach as in Section 4.1.1. MNN provides an overall improvement
(average error of 4.5 km/h) compared to Urt (average error of 5.2 km/h) of around
13% for all lead times. For shorter lead times there is no significant improvement,
preserving the initial error and the sudden and rapid increase observed in Sec. 4.1.1
(see Fig. 4.4). As lead time increases, the benefit of the new model is more prominent.
Focusing on 90 min. lead time for ease of interpretation, the spread is reduced by
approximately 18% and the entire distribution is moved downwards. The larger error
events get more affected, with an improvement going up to 2.5 km/h (20%) for the
95th percentile. This demonstrates a clear impact of the new approach on the most
severe cases, flattening the distribution of the errors and decreasing the spread with
lead time significantly.

4.2.2 Motion Field Estimation on Events of Interest

The events of interest show that MNN performs significantly better than PySTEPS
in the prediction of the motion field for highly stable and structured events (Fig. 4.5).
When looking into the isolated convective cells events, where growth and decay is
much more relevant, the model performs almost identically to PySTEPS while making
changes to the given motion field (Fig. 4.6).

The squall line event (see Fig. 4.5) shows an improvement from the new approach (9.4
with MNN compared to 12.4 km/h average error with Urt). MNN identifies correctly
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(a)

(d)

(e)

(b)

(f)

(c)

Figure 4.5.: Representation of the event of interest from 2012-06-16-1755 related to
squall lines. It contains Uref , Urt, and the prediction at 90 min. (a, b, e), the
difference of both with respect to Uref at 90 min. (e, f) and the spatially averaged
error over lead time (d).

the areas presenting the biggest issues and modifies them correctly, advecting the
field, reducing significantly the error. The band related to the squall line with the
most significant problems gets narrowed. Maximum error values decrease by at least
30 km/h which are even greater in the surrounding areas. However, the magnitude of
the change is still not sufficient. The temporal evolution of the error looks parallel to
PySTEPS but improves even at 0 min and this difference diverges over time.

The isolated convective cell event (see Fig. 4.6) is completely different to the other
case. The average error is the same at 3.9 km/h and the temporal evolution almost
exactly overlaps with the static approach. The visual inspection of the spatial error
shows that the model does not just stick to the given motion field. It seems to identify
the areas with issues correctly and tries to make changes although not successfully.
The central region in the domain improves but the two other most noticeable regions
(southwest and east) have the opposite effect.

MNN shows a dynamical prediction compared to PySTEPS, resulting in motion esti-
mates that are on par with or better than the static PySTEPS estimates. This makes
it a worthwhile alternative. In particular, highly structured and stable events substan-
tially benefit. The improvement in some cases can go up to 45% (see C.2.2) and in
others, even when the improvement is not homogeneous (see C.1.2), there is an overall
benefit. For events with a high impact of growth and decay, where the prediction
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(a)

(d)

(e)

(b)

(f)

(c)

Figure 4.6.: Representation of the event of interest from 2010-07-10-1800 related to
isolated convective cells. It contains Uref , Urt, and the prediction at 90 min. (a, b,
e), the difference of both with respect to Uref at 90 min. (e, f) and the spatially
averaged error over lead time (d).

of the motion is more complex, the performance of MNN is on par with PySTEPS.
Hence, MNN provides overall a clear step forward from the original static motion field
estimation approach.

4.3 Probabilistic Prediction

4.3.1 Probabilistic Comparison of Motion Estimation

We modified the deterministic models following the methods described in Sec. 2.1 for
PySTEPS and Sec. 3.6.1 for the MNN. They are compared using CRPS as described
in Section 3.6.2. The differences between MNN and PySTEPS are much smaller in
the probabilistic setting than in Section 4.2.1. The MNN models with low dropout
probabilities present a smaller spread but higher values in the distribution of the errors
than PySTEPS. This is driven by higher CRPS values for the lower quantiles across
the ensembles and lower values for the upper quantiles.

The PySTEPS approach (see Fig. 4.7) has the biggest CRPS spread over lead time, but
the lowest mean compared to all the other options. For small lead times, MotionNNet
and PySTEPS produce very similar error distributions. However, as we move toward
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PySTEPS

Do 0.5 Do 0.1

Do 0.2

Figure 4.7.: CRPS with lead time comparison on the test set between PySTEPS and
the new approach with dropout probabilities of 0.1, 0.2 and 0.5. It includes the
average of the x and y components showing different percentiles that indicate the
spread of the CRPS.

longer lead times, the differences between the models become more apparent. If we
focus on 90 min. (see Fig. 4.7), it is clear that for the lower percentiles, decreasing
dropout probabilities lead to higher CRPS values (up to 1.5 km/h higher) compared
to PySTEPS, and the opposite occurs in the upper percentiles (up to 0.5 km/h less).
This decreases the spread of the error by 20% and displaces the error distribution to
larger values on average.

The key to understanding why the errors in PySTEPS behave like this lies in Equation
3.4 (see Section 2.1), where we can see that the perturbations added to the motion field
are randomly chosen from a Laplace distribution whose standard deviation increases
with lead time. These random perturbations can reach 7-8 km/h for 90 min. lead
time (see Sec. 3.6). The problem with this approach is that the same perturbation
is applied to the entire spatial domain, independently of the magnitude and local
characteristics of the motion field. This does not make a lot of sense from a physical
point of view since motion field perturbations are likely to be linked to local changes
in rainfall patterns, and locally-varying phenomena such as horizontal convergence,
divergence and convection. Realistic ensembles should reflect this idea and only add
uncertainty in areas that are susceptible to see significant deviations from Lagrangian
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persistence.

Therefore, although the average statistics can be better in some cases, the spatial
structure of the modifications is relevant and can be problematic, affecting significantly
individual ensemble members. It is then important to explore more in-depth specific
events.

4.3.2 Ensemble Generation on Events of Interest

(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)

Figure 4.8.: Representation of the event of interest from 2012-06-16-1755 related to
squall lines. The top row contains the difference to Uref at 90 min. of the average
prediction of the PySTEPS ensemble, the lower and the upper bound (a, b, c). The
bottom row is the same for the model with a drop probability of 0.2 (e, f, g). On the
right, the spatially averaged MAE of those 3 predictions for PySTEPS and dropouts
of 0.1, 0.2 and 0.5 are shown together with the average CRPS for each model (d,
h). The shaded area of the MAE plot is the error gap between the bounds.

The events presented in Sec. 3.5.2 are used again to show with greater detail the
different error behaviour of each approach. The MNN models, present ensembles
where each member is still substantially better than PySTEPS for structured and
stable cases (Fig. 4.8). For cases where growth and decay are more prominent, and
the velocity errors are smaller, each of the members in PySTEPS performs equally
or worse than any of the MNN models (Fig. 4.9, where the red shaded area has a
much higher error than the ensemble mean of PySTEPS). They contain unrealistic
spatial perturbation patterns, meaning that many individual ensemble members show
deviations from the average motion field that are not realistic (i.e., that are very
unlikely to occur in reality because the uncertainty of the motion field predictions is
likely not to be the same everywhere). The MNN models, even though they perform
worse than in the deterministic case, have realistic ensembles where the problematic
areas of the prediction are clearly identified.
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(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)

Figure 4.9.: Representation of the event of interest from 2010-07-10-1800 related to
isolated convective events. The top row contains the difference to Uref at 90 min.
of the average prediction of the PySTEPS ensemble, the lower and the upper bound
(a, b, c). The bottom row is the same for the model with a drop probability of
0.2 (e, f, g). On the right, the spatially averaged MAE of those 3 predictions for
PySTEPS and dropouts of 0.1, 0.2 and 0.5 are shown together with the average
CRPS for each model (d, h). The shaded area of the MAE plot is the error gap
between the bounds.

The squall line event (see Fig. 4.8) is very similar to the deterministic analysis. The
temporal evolution of the error with dropout is slightly worsened. The error spread
increases for both the dropout and PySTEPS models over time with a bigger spread
for PySTEPS, common to other structured and stable cases (see Ap.C). The mean lies
in the middle of the spread, therefore not improving compared to individual members.
The CRPS behaviour is almost identical to the MAE. Spatially, the mean does not
improve the deterministic prediction but is quite similar, with a larger error region
to the left of the domain. The bounds are close to the mean and for the areas with
larger errors, the deterministic prediction lies between them. For the areas with low
errors differences can be seen but are much smaller than in the PySTEPS bounds. The
spatial structure of the field is well preserved in both PySTEPS and MNN without
unrealistic changes.

For the isolated convective cell event (see Fig. 4.9), the average prediction of PyS-
TEPS remains the same as in the deterministic case, but the dropout models perform
worse by approximately 1 km/h. The spread of the MNN dropout models is small, but
the mean is more robust than individual members, albeit worse than the deterministic
prediction. Normally with ensembles, the ensemble mean is supposed to be better
than the deterministic run, indicating that none of the options are yet refined or opti-
mal enough. PySTEPS has a larger spread than the dropout cases, and its members
generally perform equal to or worse than the dropout methods. The CRPS indicates
better performance for PySTEPS but misses information related to the spatial distri-
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bution of the errors. The ensemble members of PySTEPS can be very far apart (with
members showing NW motion errors and other members indicating SE errors), which
you can see in the lower bound and upper bound of Fig. 4.9. This indicates com-
plementary errors due to the random sampling in the PySTEPS ensemble generation
procedure. The dropout ensemble does not perform as well as the deterministic case on
average. The most challenging regions are identified, and the model attempts to make
changes. These changes result in large error blobs in regions with significant growth
and dissipation processes, yet the spatial structure is more consistent in the members
(which can be positive but also reduces the spread), which is the main difference from
PySTEPS.

The CRPS description presented a higher error distribution for MNN compared to
PySTEPS. Nevertheless, when exploring specific events, PySTEPS ensemble genera-
tion can produce unrealistic members. This is due to perturbations that are not based
on the underlying context, but that are independent of the magnitude and local char-
acteristics of the motion field. MNN models produce better predictions in structured
and stable events. They also identify problematic areas accurately and generate more
realistic ensemble members overall. In events with large motion errors, the spread in
both methods is too small but affects MNN more intensely. This shows that uncer-
tainty quantification in convective events is still a big challenge, where the magnitude
(especially for MNN) and the spatial distribution of the perturbations (focusing on
PySTEPS) in the ensembles play a very important role.
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5.1 Answers to Research Questions

The work can be summarized in three main parts: in the first part, an in-depth analysis
and evaluation of motion field estimates and forecasts in PySTEPS was conducted.
In the second part, a new machine-learning model, MotioNNet, for predicting motion
fields based on a modified implementation of the NowcastNet architecture was trained.
In the third part, the ensemble predictions of the two models were analyzed and
compared to each other.

The main findings are as follows:

1. What are the current errors/uncertainties associated with estimating
motion fields in PySTEPS? The results show errors already existing at the
beginning of the prediction, approximately 1-3 km/h on average, that increase
and spread with lead time, 4-8 km/h at 90 min. on average. This can lead to
average displacement errors of 3-8 km, which means that the localized misplace-
ments of rain cells can be much higher, up to tens of km. Using two events of
interest, we show that the advection of the motion field for highly structured
and stable events is crucial for an improved prediction. Isolated convective cells
impose larger problems due to the connection between the growth and decay of
precipitation and motion field dynamics.

2. How can the PySTEPS motion field predictions be improved using
machine learning? We present a new Deep Learning model, MotioNNet, that
predicts changes in the PySTEPS motion field. The model was trained on 7,500
events, validated on 1,250 events and tested on 1,250 events that contained
high-intensity rainfall and motion error in the Netherlands. The inputs used
are rainfall fields and PySTEPS motion field estimation. MotioNNet improves
the existing motion field estimation approach by approximately 13% on average,
affecting the most problematic events. On specific events, this improvement can
go up to 45 %. The model identifies regions that are an issue for PySTEPS and in
general, improves the motion estimate there. The model predicts the advection
of the motion but in general not as intense in magnitude as in the reference. We

35



5. Conclusions

expect that our new method using dynamic error predictions of motion fields
can strengthen some of the weaknesses of extrapolation-based methods where
the steady-state assumption does not hold.

3. How can machine learning models be used to generate ensembles of
motion field predictions, and how do these ensembles compare to the
ones currently implemented in PySTEPS? SpatialDropout and Monte
Carlo Dropout are included in MotioNNet to create probabilistic predictions.
This combination makes better predictions in structured and stable events. It
accurately identifies problematic areas and generates realistic ensemble mem-
bers. PySTEPS ensemble generation is theoretically limited, providing a better
spread for events with large errors but unrealistic members where low errors are
present. The new method introduces new features, like accurately identifying the
spatial distribution of uncertainty, lacking in the current PySTEPS approach.
Unfortunately, it does not yet provide enough ensemble spread, resulting in an
insufficient captured forecast uncertainty.

5.2 Recommendations

These points suggest new ways forward. One option would be improving the model
by modifying the existing architecture or including new options like ConvLSTMs,
Diffusion models or Transformers, which could provide better predictions. New and
different ways of introducing dropout in MNN can still be explored, like restricting
dropout to the deeper feature maps while increasing the dropout rate. Some of these
alternative architectures also allow modifications to become probabilistic, especially
Diffusion models, producing better deterministic predictions and generating better
ensembles.

These approaches can require large efforts and complexities (e.g. difficulties in the im-
plementation, training costs, data requirements, etc.). Therefore, another alternative
could be modifying the current PySTEPS ensemble generation procedure. Develop-
ing new ways of introducing context-dependent perturbations, might be interesting
to generate ensembles that adapt to each event. These can be based on, for exam-
ple, magnitude, motion and rain spatial structure or uncertainty in the prediction. For
that, a combination of Deep Learning algorithms could help in the spatial identification
of uncertainty (like U-Nets) but also in the required magnitude of the perturbations
(models with spatial and temporal inductive biases could be interesting to explore).

Furthermore, the reference used in this project, key in all the analyses performed, is
limited. There are no observations of motion but only wind observations. It would
be crucial to find a systematic way of assessing the quality of a motion method.
Nonetheless, the current evaluation and motion field dataset for the 10,000 events can
provide a good benchmark dataset to train future motion field estimation models. The
events of interest can be further analyzed to identify more case studies which could, for
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example, be part of a benchmark not only of motion but also rain. Outside the dataset,
the removed events can also give more clues on the possible issues that observations
can present, potentially using motion fields for detecting clutter or outliers.

This study demonstrated that integrating deep learning with traditional methods can
improve the accuracy of problematic areas in the rainfall nowcasting chain. By incor-
porating the MotioNNet model into PySTEPS, we achieved more precise motion field
forecasts, particularly for complex weather patterns. This hybrid approach leverages
the interpretability and reliability of traditional models alongside the adaptability and
high performance of machine learning. The success of this integration suggests that
future projects should continue to develop and refine these combined methodologies.
Advancements in this area promise to enhance the accuracy and reliability of rain-
fall nowcasting, which is crucial for society, especially in the context of increasingly
extreme high-intensity events.
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A Events

A.1 Relevant events

’2020-02-09-1550’,’2022-12-30-1225’,’2012-06-16-1755’,’2012-01-03-1410’,’2010-07-10-1800’,’2010-
07-14-1530’,’2009-05-26-0315’,’2009-05-26-0010’,’2020-02-16-1715’,’2021-10-21-0125’,’2015-
01-09-1610’,’2017-06-09-0720’,’2012-06-16-1020’,’2008-03-01-0145’,’2008-06-08-1355’,’2008-
06-08-1700’,’2008-07-28-0145’,’2020-02-20-1705’,’2019-06-04-1950’,’2013-11-04-0225’,’2012-
05-23-1530’

A.2 Removed events with cap

’2020-08-30-1535’,’2021-07-18-0005’,’2012-05-27-1530’,’2019-08-31-1450’,’2017-05-23-0125’,’2019-
09-25-1730’,’2021-07-11-1120’,’2022-07-22-2055’,’2018-01-17-1905’,’2021-07-07-0855’,’2021-
07-08-1025’,’2020-12-24-0935’,’2016-09-01-0635’,’2019-07-24-0635’,’2010-09-20-1855’,’2010-
03-29-0200’,’2021-06-30-1305’,’2017-11-02-1430’,’2019-09-27-1150’,’2019-09-22-1600’,’2017-
07-11-0115’,’2022-01-03-1155’,’2019-02-04-1105’,’2020-08-06-2230’,’2021-11-07-1245’,’2017-
10-03-1235’,’2020-08-21-1220’,’2017-03-11-0710’,’2020-09-06-1900’,’2014-09-28-0140’,’2021-
08-27-1330’,’2021-06-26-1205’,’2021-08-22-2045’,’2021-06-28-0900’,’2020-11-15-2040’,’2015-
08-19-1250’,’2021-02-05-1535’,’2020-02-16-2025’,’2016-01-28-0100’,’2017-07-07-2225’,’2016-
09-07-2125’,’2015-01-09-1915’,’2012-04-27-0125’,’2018-01-27-1715’,’2010-12-22-2340’,’2021-
10-15-0535’,’2020-09-21-0455’,’2020-06-23-0400’,’2021-08-20-0550’,’2014-09-03-0410’,’2016-
05-11-1350’,’2009-02-09-2125’,’2020-10-10-0910’,’2016-07-20-0525’,’2020-06-17-0355’,’2022-
08-05-0355’,’2020-10-05-1140’,’2017-03-19-1715’,’2020-11-15-1005’,’2022-07-08-2335’,’2008-
08-03-0010’,’2017-06-02-0240’,’2017-10-03-0615’,’2012-06-30-0710’,’2021-08-12-1700’,’2021-
08-27-0920’,’2019-09-27-0845’,’2017-06-07-1340’,’2017-12-10-0815’,’2020-10-21-1905’,’2016-
09-22-0245’,’2021-09-11-1055’,’2021-08-26-1710’,’2021-11-07-1550’,’2016-09-14-0135’,’2017-
10-19-2030’,’2019-08-11-1605’,’2022-09-23-0255’,’2017-05-27-2230’,’2011-04-24-1830’,’2022-
01-08-1215’,’2021-10-22-1125’,’2009-11-01-2130’,’2020-08-24-2045’,’2009-11-01-1455’,’2020-
07-26-1820’,’2020-09-05-0220’,’2021-10-22-1430’,’2011-02-04-0245’,’2012-01-04-1945’,’2021-
07-14-0705’,’2020-08-25-1830’,’2016-02-09-0815’,’2020-02-23-0915’,’2020-08-15-1840’,’2017-
07-08-0155’,’2020-09-06-0505’,’2020-09-07-0955’,’2017-02-27-0510’,’2019-06-21-1040’,’2020-
08-22-1500’,’2021-11-01-1440’,’2009-11-01-1150’,’2020-08-20-2010’,’2021-09-17-1135’,’2019-
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A. Events

07-26-1540’,’2021-09-11-1400’,’2020-08-18-1540’,’2020-07-26-0925’,’2020-08-03-0850’,’2021-
07-05-1215’,’2022-06-07-1805’,’2010-11-04-0110’,’2016-07-19-0510’,’2021-07-26-0805’,’2022-
01-05-1010’,’2012-08-18-0335’,’2017-10-20-2025’,’2021-03-31-0820’,’2017-10-27-0240’,’2009-
05-28-0900’,’2021-07-18-0310’,’2021-07-13-0920’,’2017-07-03-0335’,’2017-05-29-0125’,’2017-
10-03-0255’,’2019-09-10-0310’,’2020-04-27-0330’,’2013-08-28-2055’,’2017-06-04-0945’,’2018-
01-17-1320’,’2017-11-16-1230’,’2020-11-15-1310’,’2017-03-03-1635’,’2021-04-19-0810’,’2013-
11-06-1500’,’2017-12-07-1815’,’2022-08-25-1605’,’2021-02-25-1810’,’2010-12-19-1750’,’2020-
10-23-1820’,’2009-08-21-1150’,’2021-08-20-1855’,’2020-09-15-0850’,’2009-11-02-0035’,’2019-
09-06-0135’,’2021-06-04-1250’,’2021-09-14-1325’,’2017-06-11-0410’,’2017-07-31-1110’,’2011-
03-31-0740’,’2018-01-10-1410’,’2021-04-12-0840’,’2020-09-25-1520’,’2020-09-07-0555’,’2022-
04-07-0650’,’2020-08-30-2125’,’2008-11-18-1355’,’2013-04-15-0830’,’2014-09-28-0650’,’2017-
09-19-0950’,’2017-08-31-0925’,’2022-08-18-1350’,’2021-10-06-1055’,’2017-05-21-2330’,’2017-
05-22-0235’,’2009-11-01-1800’,’2021-08-20-1550’

A.3 Examples: radar artefacts and outliers

Figure A.1.: Example event with radar artefacts.
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A.3. Examples: radar artefacts and outliers

Figure A.2.: Example event with clutter.

Figure A.3.: Example event removed with the cap.
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B Velocity and Displacement
Errors

B.1 Velocity Errors with all “valid” events

x-component y-component

Figure B.1.: MAE of Urt vs Uref for all the cases that contain rain including both the
x (left) and y (right) components. Different percentiles are shown indicating the
spread of the error in the different events.

Figures 4.1 and B.1 show similar distributions. However, filtering of Sec. 3.4 results in
a lower spread and a higher median. This indicates that extreme motion field errors,
caused by erroneous rainfall fields, are filtered out and relevant cases with high motion
errors are selected. This is expected as the cap aims to remove outliers and equation
3.4 sets the focus on motion error, shifting the distribution slightly to cases with larger
differences.

B.2 Displacement Errors
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B. Velocity and Displacement Errors

x-component y-component

Figure B.2.: MAE of the displacement error associated to Urealtime vs Uref for the top
10000 events selected based on eq. 3.4 with a at 35 km/h including both the x (left)
and y (right) components. Different percentiles are shown indicating the spread of
the error in the different events.

x-component y-component

Figure B.3.: MAE of the displacement error associated to Urealtime vs Uref for all
the cases that contain rain including both the x (left) and y (right) components.
Different percentiles are show indicating the spread of the error in the different
events.
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C Events of Interest Results

C.1 Extra Squall Line Event

This event from 2012-01-03-1410 presents a squall line embedded inside a larger rain
field, all of it moving east. The squall line moves with the rain field to the east but
also slightly southward. Over 90 min, the rain before the line dissipates and the one at
the back increases in intensity and slightly move north. This embedding of the squall
line inside the larger rain fields prevents Uref from identifying its correct movement,
as the surrounding rain becomes predominant in the motion calculation.

C.1.1 PySTEPS Analysis on Extra Squall Line

Figure C.1.: Representation of the event of interest from 2012-01-03-1410 related to
squall lines. It contains the rain observation at 0 and 90 min., Urt, Uref at 90 min.,
their difference at 90 min. and the observed and extrapolated cumulative rainfall
over 90 min. using the static and the dynamic approach for the latter.
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C. Events of Interest Results

Eventhough Uref optical flow calculation do not fully capture the correct displacement
of the squall line, in the extrapolation based on Uref , the structure of the segments
related to the squall line are more accurate than the nowcast using Urt, showing more
horizontal and centred stripes (see Fig. C.1). The biggest difference between the
motion fields comes from an area with no rain, as this area changes significantly once
the rain moves east but there is a clear segment of error identified where the rain is
located at the end of the event.

C.1.2 Motion Field Estimation on Squall Line Event

Figure C.2.: Analysis of the event of interest from 2012-01-03-1410 related to squall
lines. It contains Uref , Urt, and the prediction at 90 min., the difference of both
with respect to Uref at 90 min. and the spatially averaged error over lead time.

In the extra squall line event (see Fig. C.2), MNN overall provides an improvement in
the prediction (average error 13.2 km/h) compared to Urt (average error 15.98 km/h).
This can be seen in the temporal evolution which starts being equal and diverges with
lead times but is not homogeneous in space. Focusing on 90 min. lead time, it can be
seen that, in general, the regions with bigger errors are identified and improved. The
magnitude of this can go up to several tens of km/h. The only exception is the north
middle section that gets worsened, as the models seem to overextend the horizontal
section at the NE westward. The regions without rain in the west and the areas covered
by rain at the end of the prediction are the ones with the biggest improvement, and
in the centre, a small advection for motion field can be appreciated to the east.
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C.1. Extra Squall Line Event

Figure C.3.: Representation of the event of interest from 2012-01-03-1410 related to
squall lines. The top row contains the difference to Uref at 90 min. of the average
prediction of the PySTEPS ensemble, the lower and the upper bound. The bottom
row is the same for the model with a drop probability of 0.2. On the right, the
spatially averaged MAE of those 3 predictions for PySTEPS and dropouts of 0.1,
0.2 and 0.5 are shown together with the average CRPS for each model. The shaded
area of the MAE plot is the error gap between the bounds.

C.1.3 Probabilistic Comparison on Squall Line Event

For the probabilistic results on the extra squall line event (see Fig. C.3), there are
changes compared to the deterministic results. The temporal evolution of the error
gets worsened for all the dropout probabilities. In all the events, the model with 0.5
dropout lies in between PySTEPS and the other cases which are very close together.
For the first 10 minutes, PySTEPS performs better, as the new ensemble modifies too
much the starting PySTEPS prediction (not shown but visually inspected). From 10 to
65 min. the performance is very similar but around 75 min there is a peak that makes
PySTEPS and the dropout prediction equal. This is due to the sudden changes in the
reference created by noisy fluctuations at the top of the domain in the rainfall field (not
shown but visually inspected). The deterministic prediction gets less affected but the
ensemble predictions have bigger issues, penalizing the error. The rest of the domain
presents clear improvements with a much closer average error to the deterministic
prediction. The spread of the averaged error increases in the dropout cases with time,
whereas for PySTEPS, it increases and decreases. This is produced by changes in
space that compensate for each other, making the real spread per pixel much bigger.
The mean lies approximately in the middle of the spread for both approaches, which
implies that the mean is not a better prediction. On the spatial side, one of the main
changes is that the model correctly identifies the areas with bigger errors and makes
modifications but now the centre blob is substantially better, the large area at the left
is improved less and the section at the right of the image covered by rain at the end
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C. Events of Interest Results

of the prediction is worsened. The bounds with respect to the mean are quite similar
for both PySTEPS and dropout, where the spatial structure is very similar in both
and well preserved, although the dropout case is more consistent, especially looking
at regions with lower error but making smaller modifications as well.

C.2 Cyclonic Rotation Event

Cyclonic storms are highly structured and stable systems. They have a characteristic
cyclonic rotation combined with a displacement to the east. This movement is very
structured but the combined dynamic in its movement makes it hard to capture in
non-dynamic approaches.

C.2.1 PySTEPS Analysis on Cyclonic Event

Figure C.4.: Representation of the event of interest from 2021-10-21-0125 related to
cyclonic rotations. It contains the rain observation at 0 and 90 min., Urt, Uref at
90 min., their difference at 90 min. and the observed and extrapolated cumulative
rainfall over 90 min. using the static and the dynamic approach for the latter.

As the storm moves (see Fig. C.4), the southwards movement at the west of the storm,
the slower centre and the northward movement at the east have to displace eastward
as a whole. Urt fails to capture this and only portrays the rotation in the past at
a single location with no translation of the rotation. In the extrapolation done with
Uref compared to Urt (see Fig. C.4) the left side of the storm deepens south more
than the static case and the horizontal distribution of the interior cell with the highest
intensity is well preserved, very similarly to the observation. The regions at the NE
seem more erratic but this is due to big changes of the growth and decay that are not
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C.2. Cyclonic Rotation Event

considered in these nowcasts. It is clear that in this example, similarly to the squall
line cases, the magnitude of the error in the motion field is significant.

C.2.2 Motion Field Estimation on Cyclonic Event

Figure C.5.: Representation of the event of interest from 2021-10-21-0125 related to
cyclonic rotations. It contains Uref , Urt, and the prediction at 90 min., the difference
of both with respect to Uref at 90 min. and the spatially averaged error over lead
time.

The cyclonic rotation event (see Fig. C.5) shows the biggest improvement out of
all (7.6 compared to 13.7 km/h average error). The temporal evolution is the same
as in the previous examples but the divergence over time is greater. Spatially, the
improvement can be seen everywhere. There is an advection of the entire movement
to the east although not as prominent as in the reference. The same happens with the
characteristic structure of the rotation, which is preserved and captured in the model
although the southward movement at the west and the static centre have still issues.

C.2.3 Probabilistic Comparison on Cyclonic Event

The rotation event (see Fig. C.6) results show the same behaviour as the squall line
event in the main results. The temporal evolution is worse in the dropout models
than the deterministic prediction, but still better than any of the PySTEPS members.
Although wider, the spread has a similar behaviour and the same relationship between
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C. Events of Interest Results

Figure C.6.: Representation of the event of interest from 2021-10-21-0125 related to
cyclonic rotations. The top row contains the difference to Uref at 90 min. of the
average prediction of the PySTEPS ensemble, the lower and the upper bound. The
bottom row is the same for the model with a drop probability of 0.2. On the right,
the spatially averaged MAE of those 3 predictions for PySTEPS and dropouts of
0.1, 0.2 and 0.5 are shown together with the average CRPS for each model. The
shaded area of the MAE plot is the error gap between the bounds.

the mean and the bounds. Spatially, the characteristics mentioned in the previous
examples apply, with bigger changes in PySTEPS but a very similar spatial structure,
without unrealistic changes. These examples, with structured and stable convective
events, show that the improved predictions of the motion field are the most important
factor. Even with a worsening of each member and a smaller spread, the performance
is superior. The ensemble generation of PySTEPS for events with such big errors
behaves well, similarly to the dropout examples but with a larger spread, which could
be interesting to enhance in the new approach.
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