

Delft University of Technology

Semantic versioning and impact of breaking changes in the Maven repository

Raemaekers, Steven; van Deursen, Arie; Visser, Joost

DOI
10.1016/j.jss.2016.04.008
Publication date
2017
Document Version
Accepted author manuscript
Published in
Journal of Systems and Software

Citation (APA)
Raemaekers, S., van Deursen, A., & Visser, J. (2017). Semantic versioning and impact of breaking changes
in the Maven repository. Journal of Systems and Software, 129(July), 140-158.
https://doi.org/10.1016/j.jss.2016.04.008

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.jss.2016.04.008
https://doi.org/10.1016/j.jss.2016.04.008

Delft University of Technology
Software Engineering Research Group

Technical Report Series

Semantic Versioning and Impact of
Breaking Changes in the Maven

Repository

Steven Raemaekers, Arie van Deursen and Joost Visser

Report TUD-SERG-2016-011

SERG

TUD-SERG-2016-011

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Accepted for publication in the Journal of Systems and Software, 2016. DOI http://dx.doi.
org/10.1016/j.jss.2016.04.008.

This is a substantially extended and revised version of Steven Raemaekers, Arie van Deursen, Joost Visser:
Semantic Versioning versus Breaking Changes: A Study of the Maven Repository. SCAM 2014: 215-224,
IEEE, 2014.

c© 2016 This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://
creativecommons.org/licenses/by-nc-nd/4.0/

http://dx.doi.org/10.1016/j.jss.2016.04.008
http://dx.doi.org/10.1016/j.jss.2016.04.008
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Semantic Versioning and Impact of Breaking Changes
in the Maven Repository

S. Raemaekersa,b, A. van Deursenb, J. Visserc

aING, Haarlemmerweg, Amsterdam, the Netherlands
bTechnical University Delft, Delft, the Netherlands

cSoftware Improvement Group, Amsterdam, the Netherlands

Abstract

Systems that depend on third-party libraries may have to be updated when
updates to these libraries become available in order to benefit from new func-
tionality, security patches, bug fixes, or API improvements. However, often such
changes come with changes to the existing interfaces of these libraries, possibly
causing rework on the client system. In this paper, we investigate versioning
practices in a set of more than 100,000 jar files from Maven Central, spanning
over 7 years of history of more than 22,000 different libraries. We investigate to
what degree versioning conventions are followed in this repository. Semantic ver-
sioning provides strict rules regarding major (breaking changes allowed), minor
(no breaking changes allowed), and patch releases (only backward-compatible
bug fixes allowed). We find that around one third of all releases introduce at
least one breaking change. We perform an empirical study on potential rework
caused by breaking changes in library releases and find that breaking changes
have a significant impact on client libraries using the changed functionality. We
find out that minor releases generally have larger release intervals than major
releases. We also investigate the use of deprecation tags and find out that these
tags are applied improperly in our dataset.

Keywords: Semantic versioning, Breaking changes, Software libraries

1. Introduction

For users of software libraries or application programming interfaces (APIs),
backward compatibility is a desirable trait. Without backward compatibility,
library users will face increased risk and cost when upgrading their dependen-
cies. In spite of these costs and risks, library upgrades may be desirable or
even necessary, for example if the newer version contains required additional
functionality or critical security fixes. To conduct the upgrade, the library user
will need to know whether there are incompatibilities, and, if so, which ones.

Email addresses: stevenraemaekers@gmail.com (S. Raemaekers),
arie.vandeursen@tudelft.nl (A. van Deursen), j.visser@sig.eu (J. Visser)

Preprint submitted to Journal of Systems and Software February 20, 2016

SERG Semantic Versioning and Impact of Breaking Changes in the Maven Repository

TUD-SERG-2016-011 1

Determining whether there are incompatibilities, however, is hard to do for
the library user (it is, in fact, undecidable in general). Therefore, it is the li-
brary creator’s responsibility to indicate the level of compatibility of a library
update. One way to inform library users about incompatibilities is through ver-
sion numbers. As an example, semantic versioning1 (semver) suggests a ver-
sioning scheme in which three digit version numbers MAJOR.MINOR.PATCH
have the following semantics:

MAJOR: This number should be incremented when incompatible API changes
are made;

MINOR: This number should be incremented when functionality is added in
a backward-compatible manner;

PATCH: This number should be incremented when backward-compatible bug
fixes are made.

As an approximation of the (undecidable) notion of backward compatibility,
we use the concept of a binary compatibility as defined in the Java language
specification. The Java Language Specification2 states that a change to a type
is binary compatible with (equivalently, does not break binary compatibility with)
pre-existing binaries if pre-existing binaries that previously linked without error
will continue to link without error. This is an underestimation, since binary
incompatibilities are certainly breaking, but there are likely to be different (se-
mantic) incompatibilities as well. For the purpose of this paper, we define any
change that does not maintain binary compatibility between releases to be a
breaking change. Examples of breaking changes are method removals and re-
turn type changes3.

As a measurement for the amount of changed functionality in a release, we
will use the edit script size between two subsequent releases. Equipped with this,
we will study versioning practices in the Maven dataset, and contrast them with
the idealized guidelines as expressed in the semver specification. Even though
we do not expect that all developers that submit code to the Maven repository
are aware of the guidelines of semver, we still expect that most developers are
aware that most other developers perceive a difference in changing a patch, a
minor or a major version number when releasing a library.

Semantic versioning principles were formulated in 2010 by (GitHub founder)
Tom Preston-Werner, and GitHub actively promotes semver and encourages all
10,000,000 projects hosted by GitHub to adopt it. Similarly, the Maven Central
repository, the repository used to collect dependencies that are specified using
the build tool Maven, strongly recommends following semver when releasing
new library versions4.

1http://semver.org
2http://docs.oracle.com/javase/specs/jls/se7/html/jls-13.html
3For an overview of different types of binary incompatibilities and a detailed explanation,

see http://wiki.eclipse.org/Evolving_Java-based_APIs
4http://central.sonatype.org/pages/requirements.html

2

Semantic Versioning and Impact of Breaking Changes in the Maven Repository SERG

2 TUD-SERG-2016-011

Semantic versioning principles have also been embraced in the Javascript
community. An example of a Javascript project that explicitly announced to
follow semver is jQuery, which state that “the team has tried to walk the line
between maintaining compatibility with code from the past versus supporting the
best web development practices of the present”5. Another example is NPM
(Node Package Manager)6, a build tool for Javascript similar to Maven, which
requires users to follow semver when submitting a new version of a library7.

An example of a software project wich demonstrates that including breaking
changes in non-major releases causes problems for software developers is JUnit.
In its 4.12-beta-1 release, JUnit introduced breaking changes as compared to
its previous release. In version 4.12-beta-2, these breaking changes have been
reversed after complaints of library users8.

Another example of problems that can occur when backward compatibility
is ignored is NuGet9. NuGet is a build tool for .NET systems and a software
repository for software libraries, which automatically includes the latest version
of dependencies in software projects. This leads to problems when these releases
contain breaking changes10.

Although the NuGet build system ignores backward compatibility problems
of users of libraries, Microsoft suggests the following distinction between major
and minor releases11 for .NET software:

Major: “A higher version number might indicate a major rewrite of a product
where backward compatibility cannot be assumed.”

Minor: “If the name and major version number on two assemblies are the
same, but the minor version number is different, this indicates significant
enhancement with the intention of backward compatibility.”

Although not all developers of the projects mentioned before may be aware
of the semantic versioning standard or other official rules regarding incrementing
major, minor or patch versions, a lot of library users implicitly assume that non-
major releases should not include breaking changes. As argued in the semantic
versioning specification, “these rules are based on but not necessarily limited to
pre-existing widespread common practices in use in both closed and open-source
software.”

But how common are these practices in reality, in open-source Java libraries?
Are breaking changes just harmless, or do they actually hurt by causing rework?
Do breaking changes mostly occur in major releases, or do they occur in minor
releases as well? Furthermore, for the breaking changes that do occur, to what

5http://blog.jquery.com/2014/10/29/jquery-3-0-the-next-generations/
6http://www.npmjs.com
7https://docs.npmjs.com/getting-started/semantic-versioning
8https://groups.yahoo.com/neo/groups/junit/conversations/topics/24572
9https://www.nuget.org/

10http://blog.nuget.org/20141010/nuget-is-broken.html
11http://msdn.microsoft.com/en-us/library/system.version%28v=vs.110%29.aspx

3

SERG Semantic Versioning and Impact of Breaking Changes in the Maven Repository

TUD-SERG-2016-011 3

extent are they signalled through, e.g., deprecation tags? Does the presence
of breaking changes affect the time (delay) between library version release and
actual adoption of the new release in clients?

In this paper, we seek to answer questions like these. To do so, we make use
of seven years of versioning history as present in the collection of Java libraries
available through Maven’s central repository.12 Our dataset comprises around
150,000 binary jar files, corresponding to around 22,000 different libraries for
which we have 7 versions on average. Furthermore, our dataset includes cross-
usage of libraries (libraries using other libraries in the dataset), permitting us
to study the impact of incompatibilities in concrete clients as well.

This paper is a substantially revised version of our earlier analysis of seman-
tic versioning practices in maven. In this paper, we extend this analysis with
an assessment of the actual impact of breaking changes. To approximate this
impact, we introduce a new method to inject breaking changes in library clients
and analyze the prevalence and dispersion of compilation errors caused by these
changes. This results in estimates of the number of errors caused by each type
of breaking change.

This paper is structured as follows. We start out, in Section 2, by discussing
related work in the area of binary incompatibilities and change impact analysis.
In Section 3, we formulate the research questions we seek to answer. Then,
in Section 4, we describe our approach to answer these questions, and how
we measure, e.g., breaking changes, changed functionality, and deprecation.
In Sections 5–11 we present our analysis in full detail. We discuss the wider
implications and the threats to the validity of our findings in Sections 12 and 13,
after which we conclude the paper in Section 14.

2. Related Work

To the best of our knowledge, our work is the first systematic study of
versioning principles in a large collection of Java libraries. However, several case
studies on backward compatible and incompatible changes in public interfaces
as appearing in these libraries have been performed [1, 2, 3, 4, 5].

2.1. Manual investigations

Cossette et al. [4] perform a manual retroactive study on API incompatibil-
ities to determine the correct adaptations to migrate from an older to a newer
version of a library. They also aim to determine recommender techniques for
specific update types. In contrast, our method to inject breaking changes can
be performed automatically, and only gives a global indication of the amount
of work required to perform an update in terms of the number of compilation
errors and the number of places that have to be fixed. Our method does not
provide any guidance how to perform an update but can point to places where
work has to be performed.

12http://search.maven.org/

4

Semantic Versioning and Impact of Breaking Changes in the Maven Repository SERG

4 TUD-SERG-2016-011

Similarly, Dig et al. [1] investigate binary incompatibilities in five other li-
braries and conclude that most of the backward incompatible API changes are
behavior-preserving refactorings, which suggests that refactoring-based migra-
tion tools should be used to update applications. Dietrich et al. [3] have per-
formed an empirical study into evolution problems caused by library upgrades.
They manually detect different kinds of source and binary incompatibilities, and
conclude that although incompatibility issues do occur in practice, the selected
set of issues does not appear very often.

2.2. Automated suggestions

Another area of active research is to automatically detect refactorings based
on changes in public interfaces [6, 7, 8, 9, 10, 11, 12]. The idea behind these
approaches is that these refactorings can automatically be “replayed” to update
to a newer version of a library. This way, an adaptation layer between the old
and the new version of the library can automatically be created, thus shielding
the system using that library from backward incompatible changes. Dagenais et
al.[7], for example, present a recommendation system that suggests adaptations
to client programs by analyzing how a framework adapts to its own changes.
Similarly, the tool of Xing et al.[10] uses framework usage examples to propose
ways to upgrade to a new version of a library interface.

While our work investigates backward incompatibilities for given version
string changes, Bauml et al. [13] take the opposite approach, in the sense that
they propose a method to generate version number changes based on changes
in OSGi bundles. A comparable approach in the Maven repository would be
to create a plugin that automatically determines the correct subsequent version
number based on backward incompatibilities and the amount of new function-
ality present in the new release as compared to the previous one.

2.3. Maven repository

The Maven repository has been used in other work as well. Davies et al.
[14] use the same dataset to investigate the provenance of a software library, for
instance, if the source code was copied from another library. They deploy several
different techniques to uniquely identify a library, and find out its history, much
like a crime scene containing a fingerprint. Ossher et al. [15] also use the Maven
repository to reconstruct a repository structure with directories and version
based on a collection of libraries of which the groupId, artifactId and version
are not known. This can be useful because manually curating a repository such
as Maven Central is an error-prone and time-consuming process.

2.4. Change impact analysis techniques

The methodology that we use to inject breaking changes and determine the
impact of these changes can be regarded as a change impact analysis technique,
for which there already exist several alternative approaches [16, 17, 18]. For
instance, call graph analysis techniques can obtain a graph that can point de-
velopers to places where rework is expected, such as done by Ren et al [16].

5

SERG Semantic Versioning and Impact of Breaking Changes in the Maven Repository

TUD-SERG-2016-011 5

Other techniques use correlations of file properties or historically changed file
pairs as a basis to determine files that are likely to change together, as in [19].
For an overview of change impact analysis techniques, see [20].

Our automated change injection mechanism also bears similarities to ap-
proaches applied in the field of automated software testing and, more specifi-
cally, error injection. Error injection techniques inject faults to find out if the
resulting errors are covered by test cases. The goal of this paper is different,
however: we want to determine the amount of rework caused by applying library
updates. For an overview of error injection techniques, see [21].

2.5. Other work

Issues with backward incompatibilities can also be found in web interfaces.
Romano et al. [22] investigate changes in the context of service oriented ar-
chitectures, in which a web interface is considered to be a contract between
subscribers and providers. These interfaces are shown to suffer from the same
type of problems as investigated in this paper, which leads to rework on the side
of the subscribers of these interfaces. The authors propose a tool that compares
subsequent versions of these web interfaces to automatically extract changes.

Developer reactions to API deprecations has been investigated for the Smalltalk
language and ecosystem by Robbes et al. [23]. They have investigated a set
of more than 2,600 distinct Smalltalk systems which contained 577 deprecated
methods and 186 deprecated classes, and found that API changes caused by
deprecation can have a large impact on developers using that API.

Complete migrations to other libraries providing similar functionality has
been investigated by [24]. In contrast to our work, Teyton et al. are concerned
with a migration between different libraries performing similar functionality,
rather than a migration between different versions of the same library.

In previous work [25], we empirically investigated the relationship between
changes in dependencies and changes in systems using these dependencies. The
difference with our previous approach is that we distinguish between different
types of library updates, and that we use the edit script size as a measure for
rework, which more accurately measures the difference between methods than
the difference in LOC as used in our previous work.

3. Research Questions

The overall goal of this paper is to understand to what degree developers
of software libraries use versioning conventions in the development of these li-
braries, and what the impact of unstable interfaces is on clients using these
libraries. We investigate instability of interfaces through the number of com-
pilation errors caused by breaking changes and the dispersion of these errors
through libraries using the changed interfaces.

Even though not all developers might be aware of the semver standard, we
still regard semver as a formalization of principles that are considered to be best
practices, even before the manifesto was released in 2010. As mentioned before,

6

Semantic Versioning and Impact of Breaking Changes in the Maven Repository SERG

6 TUD-SERG-2016-011

the prime example of such a best practice is not to include breaking changes in
major releases.

In this paper, we seek to answer the following research questions:

• RQ1: How are semantic versioning principles applied in practice in the
Maven repository in terms of breaking changes?

• RQ2: What is the impact of breaking changes in terms of compilation
errors?

• RQ3: Has the adherence to semantic versioning principles increased over
time?

• RQ4: How are dependencies actually updated in practice, what are typ-
ical properties of new library releases, and do these properties influence
the speed with which dependencies get updated?13

• RQ5: Which library characteristics are shared by libraries which fre-
quently introduce a large number of breaking changes, and as a result,
cause compilation errors?

• RQ6: How are deprecation tags applied to methods in the Maven repos-
itory?

• RQ7: What is the impact of breaking changes in terms of the spread of
errors caused by these changes?

to answer these questions, a wide range of different kinds of data is required.
This data is gathered from our repository using different methods, which are
described in the next section.

4. Maven Analysis Approach

In this paper, we analyze a snapshot of the Maven’s Central Repository,
dated July 11, 2011.14 Maven is an automated build system that manages the
entire “build cycle” of software projects. To use Maven in a software project, a
pom.xml file is created that specifies the project structure, settings for different
build steps (e.g. compile, package, test) as well as libraries that the project
depends on. These libraries are automatically downloaded by maven, from
specified repositories. These repositories can be private as well as public. For
open source systems, the Central Repository is typically used, which contains
jar files and sources for the most widely used open source Java libraries.

Our dataset extracted from this central repository contains 144,934 Java
binary jar files and 101,413 Java source jar files for a total of 22,205 different
libraries. This gives an average of 6.7 releases per library. For more information
on our dataset, we refer to [25].

13In this paper, an included library in a client system is called a dependency.
14Obtained from http://juliusdavies.ca/2013/j.emse/bertillonage/maven.tar.gz

based on [14, 26]

7

SERG Semantic Versioning and Impact of Breaking Changes in the Maven Repository

TUD-SERG-2016-011 7

4.1. Determining backward incompatible API changes

Determining full backward compatibility amounts to determining equiva-
lence of functions, which in general is undecidable. Instead of such semantic
compatiblity, we will rely on binary incompatibilities.

To detect breaking changes between each subsequent pair of library versions,
we use Clirr15. Clirr is a tool that takes two jar files as input and returns a list
of changes in the public API. Clirr is capable of detecting 43 API changes in
total, of which 23 are considered breaking and 20 are considered non-breaking.
Clirr does not detect all binary incompatibilities that exist, but it does detect
the most common ones (see Table 5). We executed Clirr on the complete set of
all subsequent versions of releases in the Maven repository.

In this paper, we only investigate differences between subsequent releases
of a library and we do not compare previous major releases or minor releases
with each other. For instance, when a library has released version 3,0, 3.1, 3.2,
4.0, and 4.1, respectively, we investigate the differences between 3.1 and 3.0,
between 3.2 and 3.1, between 4.0 and 3.2 and between 4.1 and 4.0. We do not
compare version 4.0 and 3.0 with each other. This is done because we assume
that library developers typically do not update from major release to major
release but rather from previous release to next release.

Whenever Clirr finds a binary incompatibility between two releases, those
releases are certainly not compatible. However, if Clirr fails to find a binary
incompatibility, the releases can still be semantically incompatible. As such,
our reports on e.g., the percentage of releases introducing breaking changes is
an underestimation: The actual situation may be worse, but not better.

4.2. Determining the impact of breaking changes

To detect the actual impact of breaking changes on client libraries using
them, we inject breaking changes in the source code of a software library, link
code of client libraries, and compile the code. Figure 1 shows an example of a
library update and its impact.

A library class is shown, Lib1, and a system class that uses it, System1.
Two changes have been introduced in version 2 of Lib1: method foo added
a parameter bar and method doStuff changed its return type from int to
String. If we upgrade the depency of Lib1 from version 1 to version 2 in
System1, this causes two errors: Calling c1.foo() now gives a compilation
error since it expects an integer as parameter, and c1.doStuff() returns a
String instead of an int, which also gives a compilation error.

The two changes to Lib1 are both breaking, and require adaptation and
recompilation of a client using the changed functionality. We investigate both
libraries as released by developers as well as other libraries using these releases
in the same repository. To distinguish between these two, we refer to any library
that includes another library as (system) Sx, and we refer to the included library

15http://clirr.sourceforge.net

8

Semantic Versioning and Impact of Breaking Changes in the Maven Repository SERG

8 TUD-SERG-2016-011

1. // Version 1 of Lib1
1. public class Lib1 {
2. public void foo() {...}
3. public int doStuff() {...}
4. }

1. // method2 uses foo & doStuff
1. public class System1 {
2. public void method2() {
3. Lib1 c1 = new Lib1();
4. c1.foo();
5. int x = c1.doStuff();
6. anUnrelatedChange();
7. }}

1. // Version 2 of Lib1
1. public class Lib1 {
2. public void foo(int bar) {...}
3. public String doStuff() {...}
4. }

1. // method2 uses foo & doStuff
1. public class System1 {
2. public void method2() {
3. Lib1 c1 = new Lib1();
4. c1.foo();
5. int x = c1.doStuff();
6. }
7. }

Fig. 1: Example of a library update and impact on a system. Lib1 contains two changes,
method foo with a new parameter int bar, and method doStuff with a return type of String
instead of int. The compilation errors as a Java compiler would detect them are underlined
in red.

as Ly. Although we denote a next version of L with Ly+1, this does not mean
that Ly+1 has to be an immediate successor version of Ly. Any version of L
which has an release date after Ly is included in the set of next versions of Ly.

To determine the impact of breaking changes (binary incompatibilities), we
follow the general process as outlined in Figure 2. First, source code of a client
system (Sx) is scanned and compiled with source code of a single dependency
Ly of Sx (denoted with 1).

Next, all breaking changes between Ly and its next version Ly+1 are calcu-
lated, as well as the edit script (see Section 4.4) to convert the first version into
the second (∆Ly,y+1, denoted with 2). Third, each breaking change is inserted
individually in Ly. Errors appearing in Sx after inserting these changes are then
stored. The edit script size and breaking changes in ∆Ly,y+1 are combined to
estimate the number of changed statements per breaking change (denoted with
3).

Furthermore, Sx+1 denotes a next version of Sx, which could have updated
Ly to Ly+1. Any breaking change in ∆Ly,y+1 would lead to work in the update
from Sx to Sx+1, if the changed code is actually used in Sx. The amount of work
done in ∆Ly,y+1 for clients with and without breaking changes in dependencies
(denoted with 4) is analyzed as part of RQ1.

The procedure to inject library changes is formally described in Algorithm 1
and can be explained in more detail as follows. For each library L (e.g. “JUnit”),
all versions are collected (line 3). For each of these versions, a list of all libraries
using Ly is obtained (usingLy, line 5). For each library version Ly (e.g., “Junit
3.8.1”) in the repository, a list of all future versions is created (line 6). For
each pair of current and next version U〈Ly, Ly+1〉 (the transitive closure over
all next versions of Ly), all public API changes are determined (∆Ly,y+1, line
10). Each change C ∈ ∆Ly,y+1 is inserted into Ly and the compilation errors
are collected in all systems Sx that use Ly (lines 11-22). First, all files in Sx

9

SERG Semantic Versioning and Impact of Breaking Changes in the Maven Repository

TUD-SERG-2016-011 9

Sx+1 Ly+1

Sx

ΔSx,x+1

Ly

ΔLy,y+1

Parsed for error injection

uses

next version

Dependency

Breaking
library
changes

Edit scripts

Estimated
change
impact

1

1

2

3

23

4

4

possible
update

3

Fig. 2: Conceptual overview of our breaking change impact determination approach.

and Ly are compiled and linked together (Sx-Ly, line 13). Then, pre-existing
errors in Sx-Ly are stored in errStart (line 14).

A single change is then injected in the code of Sx-Ly (line 15). Code is
recompiled with the inserted change (line 16). Errors are again collected in
errEnd (line 17), and pre-existing errors are removed from errEnd (line 18).
The remaining errors are stored for this combination of a change, system, library
and library update (line 19), and can later be grouped by change types, versions
and libraries. Afterwards, the change is reverted (line 20).

From the build scripts (pom.xml) of each jar file, dependencies on other jar
files were extracted. Source code in each source jar was automatically extracted
and was compiled with the Eclipse JDT Core API16, which is the compiler
of the Eclipse IDE. The Maven build system itself was used to obtain a list of
other libraries that Sx and Ly need to compile succesfully. The binary class files
for each of these dependencies where added to the classpath of the compiler.
Visitors for classes, methods and parameters were used to obtain data. The
entire repository was processed on the DAS-3 Supercomputer17 using 100 nodes
in parallel in approximately 20 days, for an aggregate running time of 5.5 years.

In this paper, we perform several analyses on the same dataset but with a
different number of observations. This is due to different selection criteria and
exclusion of observations because of missing data, which depends on the specific
analysis performed.

4.3. Determining subsequent versions and update types

In the Maven repository, each library version (a single jar file) is uniquely
identified by its groupId, artifactId, and version, for instance “junit”,
“junit” and “4.8.1”. To determine subsequent version pairs, we sort all ver-
sions with the same groupId and artifactId based on their version string. We

16http://www.eclipse.org/jdt/core
17http://www.cs.vu.nl/das3

10

Semantic Versioning and Impact of Breaking Changes in the Maven Repository SERG

10 TUD-SERG-2016-011

1: errStored ← ∅
2: for each library L do
3: allVersions ← all versions of L
4: for each version Ly ∈ allVersions do
5: usingLy ← all source jars Sx using Ly ∈ repository
6: possibleUpdates ← all possible updates
7: {U〈Ly, Ly+1〉|Ly+1 ∈allVersions,
8: Ly+1 newer than Ly}
9: for each update U〈Ly, Ly+1〉 ∈ possibleUpdates do

10: ∆Ly,y+1 ← all changes between Ly and Ly+1

11: for each Sx ∈ usingLy do
12: for each change C ∈ ∆Ly,y+1 do
13: Compile code of Sx-Ly
14: errStart ← collect compile errors in Sx-Ly
15: Inject C in code of Ly
16: Recompile code of Sx-Ly with C injected
17: errEnd ← collect compile errors in Sx-Ly
18: errors(Sx,Ly,Ly+1,C) ← errEnd − errStart
19: errStored ← errStored ∪ errors(Sx,Ly,Ly+1,C)
20: Revert C in code of Ly
21: end for
22: end for
23: end for
24: end for
25: end for

Algorithm 1: Change injection algorithm.

11

SERG Semantic Versioning and Impact of Breaking Changes in the Maven Repository

TUD-SERG-2016-011 11

used the Maven Artifact API18 to compare version strings with each other, tak-
ing into account the proper sorting given the major, minor, patch and prerelease
in a given version string. The result is that each pair of subsequent versions is
marked as either a major, a minor or a patch update.

Since semver applies only to version numbers containing a major, minor and
patch version number, we only investigate pairs of library versions which are
both structured according to the format “MAJOR.MINOR.PATCH” or “MA-
JOR.MINOR”. In the latter case, we assume an implicit patch version number
of 0.

Semantic versioning also permits prereleases, such as 1.2.3-beta1 or (as
commonly used in a maven setting) 1.2.3-SNAPSHOT. We exclude prereleases
from our analysis since semver does not provide any rules regarding breaking
changes or new functionality in these release types.

4.4. Detecting changed functionality and edit script size

In order to compare major, minor, and patch releases in terms of size, we
look at the amount of changed functionality between releases. To do so, we look
at the edit script between each pair of subsequent versions, and measure the size
of these scripts. We do so by calculating differences between abstract syntax
trees (ASTs) of the two versions. Hence, we can see, for example, the total
number of statements that needs to be inserted, deleted, updated or moved
to convert the first version of the library into the second. We use the static
code analysis tool ChangeDistiller 19 to calculate edit scripts between library
versions. For more information on ChangeDistiller, we refer to [27].

Figure 3 shows an example of two pieces of code and the steps as determined
by ChangeDistiller to convert the first version of the method into the second
one. ChangeDistiller detects that the statement int x = 1; (line 2) is updated
with a new value of 2. Also, it detects that the if-statement on line 4 of version
1 is deleted, and the statement x-- (line 5) is moved. Altogether, the size of
the edit script to convert the first version into the second is 5: one update, two
delete, one insert and one move operation.

We use edit script script as representation of changed functionality for the
following reasons:

1. It closely resembles the actual work developers have performed between
two releases;

2. It is not sensitive to changes in layout, whitespace, and comments;

3. It can be obtained automatically, which is a requirement given the large
size of the repository.

18http://maven.apache.org/ref/3.1.1/maven-artifact
19https://bitbucket.org/sealuzh/tools-changedistiller

12

Semantic Versioning and Impact of Breaking Changes in the Maven Repository SERG

12 TUD-SERG-2016-011

// version 1
1. public void m1() {
2. int x = 1;
3. while (true) {
4. if (x > 0)
5. x--;
6. }
7. }

// version 2
1. public void m1() {
2. int x = 2;
3. x += 3;
4. while (true) {
5. x--;
6. }
7. }

while

if

m1()

x > 0 x--;

true

while

m1()

x--;true

int x
= 1;

int x
= 2;

x +=
3;

insert

update

move

delete

delete

Fig. 3: An example of the calculation of an edit script between two version of a method. The
resulting edit script has size of 5: one update, two delete, one insert and one move operation.

To assess the amount of work that a library developer performs when break-
ing changes are introduced, we calculate the size of the edit script to convert Ly
into Ly+1. The size of the edit script represents the total number of statements
that must be inserted, deleted, moved or updated to transform Ly into Ly+1.
The size of the edit script cannot be directly translated into effort in terms of
man-hours since two edit scripts of the same length can each take a different
time to implement, but it can nonetheless serve as an indicator for this effort.
The edit script size is used as follows. First, the number of different change
types in each update ∆Ly,y+1 is determined. Then, we calculate the edit script
size to update Ly to Ly+1. From this data, we estimate the amount of work
that is associated with a single breaking change with a regression model.

Algorithm 2 formally describes our approach to obtain edit script size data.
The procedure to obtain all possible update pairs (lines 1-7) is similar to Al-
gorithm 1. The algorithm calculates the edit script size and the number of
breaking changes for all library updates.

To calculate the edit script size (lines 16-24), the following steps are taken.
For each java file in Ly, the corresponding next version of the file is found in
Ly+1 (line 19). The edit script to convert fy into fy+1 is calculated (line 20),
and the size of this edit script is added to the total edit script size of 〈Ly, Ly+1〉
(line 21). This data serves as dependent variable in the regression model of
rework estimation. Finally, the number of times the 10 different update types
occur in ∆Ly,y+1 is calculated and stored (line 10). These numbers serve as the
independent variables in our regression model.

ChangeDistiller was used to calculate edit scripts in ∆Ly,y+1 [27]. Fig-
ure 3 shows an example of two pieces of code and the steps as determined by
ChangeDistiller to convert the first version of the method into the second one.
ChangeDistiller detects that the statement int x = 1; (line 2) is updated with
a new value of 2. Also, it detects that the if-statement on line 4 of version 1
is deleted, and the statement x--- (line 5) is moved. Altogether, the size of

13

SERG Semantic Versioning and Impact of Breaking Changes in the Maven Repository

TUD-SERG-2016-011 13

1: for each library L do
2: allVersions ← all versions of L
3: for each version Ly ∈ allVersions do
4: possibleUpdates ← all possible updates
5: {U〈Ly, Ly+1〉|Ly+1 ∈allVersions,
6: Ly+1 newer than Ly}
7: for each {U〈Ly, Ly+1〉 ∈ possibleUpdates do
8: ess(Ly, Ly+1) ← calcEditScriptSize(Ly, Ly+1)
9: for each change type c ∈ changeTypes do

10: nrChanges(c, Ly, Ly+1) ← |{c|c ∈ ∆Ly,y+1}|
11: end for
12: end for
13: end for
14: end for
15:

16: function calcEditScriptSize(Ly,Ly+1)
17: editScriptSizeLy,y+1

← 0
18: for each java file ∈ Ly do
19: f y+1 ← find match for fy in Ly+1

20: editScriptfy,y+1 ← calculate ∆fy,y+1

21: editScriptSizeLy,y+1
+= |editScriptfy,y+1

|
22: end for
23: return editScriptSizeLy,y+1

24: end function
Algorithm 2: Procedure to obtain edit script size data.

14

Semantic Versioning and Impact of Breaking Changes in the Maven Repository SERG

14 TUD-SERG-2016-011

the edit script to convert the first version into the second is 5: one update, two
delete, one insert and one move operation.

ChangeDistiller works on the level of individual source files, but was adapted
to work on the level of jar files. This can be seen in lines 22-27 of Algorithm 2.
For each two versions of a java source file, ChangeDistiller calculates the edit
script to convert the first version into the second. In our approach, we see each
jar file as a collection of java files. Each java file in the jar file is iterated and the
corresponding next version of that file is found in Ly+1. the length of the edit
script to convert f y into f y+1 is added to the total edit script size for the jar
file. To match versions of files, filenames that matched directly are considered
to be two versions of the same file (for instance, two files with a filename ending
in java/src/foo/bar/Bar.java are considered direct matches). Files that did
not have a direct counterpart in the other version, meaning they were deleted,
added, or moved, were matched using a token-based similarity algorithm similar
as used by ChangeDistiller itself. When two file pairs exceeded the default
token-based similarity threshold of 0.8, these files where considered to be moved.
Our adaptation of ChangeDistiller returns a single number that represents the
length of the edit script to convert Sx into Sx+1. For each update in the Maven
repository, this number is stored in our database.

4.5. Obtaining release intervals and dependencies

To calculate release intervals, we collect upload dates for each jar file in
the Maven Central Repository. Upload dates were obtained for 129,183 out of
144,934 (89.1%) of libraries. A small number of libraries have the same date as
release date (November 11th, 2005), which is suspected to be a default value,
and these were left out of the analysis.

4.6. Obtaining deprecation patterns

For API developers, the Java language offers the possibility to warn about
future incompatibilities by means of the “@Deprecated” annotation 20 By mark-
ing old methods as deprecated, backward compatibility is retained while still
providing library users with a signal to stop using that method. In semver, the
use of such annotations is required, before methods are actually removed. To
detect deprecation tags, we scan the source code for the text “@Deprecated”.
By building an abstract syntax tree by using the Java Development Tools Core
library21, we match the deprecation tags to update types from Section 4.3 to
make it possible to distinguish between different types of deprecation patterns.

In the next sections, we answer each of our research questions.

20http://docs.oracle.com/javase/1.5.0/docs/guide/javadoc/deprecation/

deprecation.html
21http://www.eclipse.org/jdt/core

15

SERG Semantic Versioning and Impact of Breaking Changes in the Maven Repository

TUD-SERG-2016-011 15

Pattern Example #Single #Pairs Incl.
1 MAJOR.MINOR 2.0 20,680 11,559 yes
2 MAJOR.MINOR.PATCH 2.0.1 65,515 50,020 yes
3 #1 or #2 with nonnum. chars 2.0.D1 3,269 2,150 yes
4 MAJOR.MINOR-prerelease 2.0-beta1 16,115 10,756 no
5 MAJOR.MINOR.PATCH-pre. 2.0.1-beta1 12,674 8,939 no
6 Other versioning scheme 2.0.1.5.4 10,930 8,307 no

Total 129,138 91,731

Table 4: Version string patterns and frequencies of occurrence in the Maven repository.

5. RQ1: Application of semantic versioning

We first investigate different version string patterns that can be found in our
repository. After this, we determine how many major, minor and patch releases
actually occur in our dataset, and differences between these update types in
terms of release cycle and average number of breaking changes.

5.1. Version string patterns

Table 4 shows the six most common version string patterns that occur in the
Maven repository. For each pattern, the table shows the number of libraries with
version strings that match that pattern (#Single) and the number of subsequent
versions that both follow the same pattern (#Pairs) – we will use the latter
to identify breaking changes between subsequent releases. The table shows
that most libraries follow the version string pattern as prescribed by semantic
versioning, which enables automated analysis of adherence to this standard as
performed in this paper.

The first three versioning schemes correspond to actual semver releases,
whereas the remaining ones correspond to prereleases. Since prereleases can
be more tolerant in terms of breaking changes (semver does not state what
the relationship between prereleases and non-prereleases in terms of breaking
changes and new functionality is)22 we exclude prereleases from our analysis.

The table shows that the majority of the version strings (69.3%) is formatted
according to the first two schemes, and 22.3% of the version strings contains a
prerelease label (patterns 4 and 5). The difference between the single and the
pair frequency is due to two reasons: (1) the second version string of an update
can follow a different pattern than the first; and (2) a large number of libraries
only has a single release (6,442 out of 22,205 libraries, 29%).

This shows that most libraries follow a version string pattern that is compat-
ible with semantic versioning guidelines, even though these guidelines may not
have been followed intentionally.

22Pre-releases in maven correspond to -SNAPSHOT releases, which should not be
distributed via Maven’s Central Repository (see https://docs.sonatype.org/display/

Repository/Sonatype+OSS+Maven+Repository+Usage+Guide)

16

Semantic Versioning and Impact of Breaking Changes in the Maven Repository SERG

16 TUD-SERG-2016-011

Breaking changes
Change type Frequency
1 Method has been removed (MR) 177,480
2 Class has been removed (CR) 168,743
3 Field has been removed (FR) 126,334
4 Parameter type change (PTC) 69,335
5 Method return type change (MRC) 54,742
6 Interface has been removed (IR) 46,852
7 Number of arguments changed (NPC) 42,286
8 Method added to interface (MAI) 28,833
9 Field type change (FTC) 27,306

10 Field removed, previously constant (CFR) 12,979
11 Removed from the list of superclasses 9,429
12 Field is now final 9,351
13 Accessibility of method has been decreased 6,520
14 Accessibility of field has been weakened 6,381
15 Method is now final 5,641
16 Abstract method has been added 2,532
17 Added final modifier 1,260
18 Field is now static 726
19 Added abstract modifier 564
20 Field is now non-static 509
Non-breaking changes
1 Method has been added 518,690
2 Class has been added 216,117
3 Field has been added 206,851
4 Interface has been added 32,569
5 Method removed, inherited still exists 25,170
6 Field accessibility increased 24,954
7 Value of compile-time constant changed 16,768
8 Method accessibility increased 14,630
9 Addition to list of superclasses 13,497

10 Method no longer final 9,202

Table 5: The most common breaking and non-breaking changes in the Maven repository as
detected by Clirr.

5.2. Breaking and non-breaking changes

In total, 126,070 update pairs 〈Ly, Ly+1〉 have been extracted from the
Maven repository. Out of all these potential updates, 48,143 pairs contain an
Ly that is actually used by an Sx. Out of these 48,143 pairs, 3,260 pairs actually
contain breaking changes (6.8%).

Table 5 shows the top 20 breaking changes and top 10 non-breaking changes
in the Maven repository as detected by Clirr. The breaking changes in these
table are obtained from the 126,070 potential updates 〈Ly, Ly+1〉. The most
frequently occurring breaking change is the method removal, with 177,480 oc-
currences. A method removal is considered to be a breaking change because the
removal of a method leads to compilation errors in all places where this method
is used. The most frequently occurring non-breaking change as detected by Clirr
is the method addition, with 518,690 occurrences.

Table 6 shows the number of major, minor and patch releases containing
at least one breaking change. The table shows that 35.8% of major releases
contains at least one breaking change. We also see that 35.7% of minor releases
and 23.8% of patch releases contain at least one breaking change. This is in
sharp contrast to the best practice that minor and patch releases should be

17

SERG Semantic Versioning and Impact of Breaking Changes in the Maven Repository

TUD-SERG-2016-011 17

Contains at least 1 breaking change
Update type Yes % No % Total

Major 4,268 35.8% 7,624 64.2% 11,892
Minor 10,690 35.7% 19,267 64.3% 29,957
Patch 9,239 23.8% 29,501 76.2% 38,740
Total 24,197 30.0% 56,392 70.0% 80,589

Table 6: The number of major, minor and patch releases that contain breaking changes.

backward compatible. The overall number of releases that contain at least one
breaking change is 30.0%.

The table shows that there does not exist a large difference between the
percentage of major and minor releases that contain breaking changes. This
indicates that best practices such as encoded in semver are not adhered to in
practice with respect to breaking changes. The total number of updates in Table
6 (80,589) differs from the total number of pairs in Table 4 (91,731) because of
missing or corrupt jar files, which have a correct version string but cannot be
analyzed by Clirr.

We can thus conclude that breaking changes are common, even in non-major
releases.

5.3. Major vs. minor vs. patch releases

To understand the adherence of semantic versioning principles for major, mi-
nor, and patch releases, Table 7 shows the average number of breaking changes,
non-breaking changes, edit script size and number of days for the different release
types. Each release is compared to its immediate previous release, regardless of
the release type of this previous release.

As the table shows, on average there are 58 breaking changes in a major
release. Although there does seem to be some respect for semantic versioning
principles in the sense that minor and patch releases introduce fewer breaking
changes (around half as many as the major releases), 27 and 30 breaking changes
on average is still a substantial number (and clearly not 0 as semantic versioning
requires). The differences between the three update types are significant with F
= 7.31 and p = 0, tested with a nonparametric Kruskall-Wallis test, since the
data is not normally distributed23.

In terms of size, major releases are somewhat smaller than minor releases
(average edit script size of 50 and 52, respectively), with patch releases substan-
tially smaller (22), with F = 117.49 and p = 0. This provides support for the
rule in semver stating that patch releases should contain only bug fixes, which
overall would lead to smaller edit script sizes than new functionality.

With respect to release intervals, these are on average 2 (for major and patch
releases) to 2.5 months (for minor releases), with F = 115.47 and p = 0. It is

23Even if the data is not normally distributed, we still summarize the data with a mean
and standard deviation to provide insight in the data.

18

Semantic Versioning and Impact of Breaking Changes in the Maven Repository SERG

18 TUD-SERG-2016-011

#Breaking #Non-break. Edit script Days
Type µ σ2 µ σ2 µ σ2 µ σ2

Major 58.3 337.3 90.7 582.1 50.0 173.0 59.8 169.8
Minor 27.4 284.7 52.2 255.5 52.7 190.5 76.5 138.3
Patch 30.1 204.6 42.8 217.8 22.7 106.5 62.8 94.4
Total 32.0 264.3 52.2 293.3 37.2 152.3 67.4 122.9

Table 7: Analysis of the number of breaking and non-breaking changes, edit script size, and
release intervals of major, minor, and patch releases.

interesting to see that minor, and not major updates take the longest time to
release.

Care must be taken when interpreting the mean for skewed data. All data
in this table follows a strong power law, in which the most observations are
closer to 0 and there are a relative small amount of large outliers. Nonetheless,
a larger mean indicates that there are more large outliers present in the data.

Major releases are generally smaller in terms of work performed than minor
releases, and are released faster than minor releases. Major releases contain less
breaking changes on average than minor releases.

5.4. Median analysis

To find out how the number of days since the previous release relates to
the update type of the release, we perform a quantile regression that shows the
median number of days that an update in each category approximately takes.
Since the data is highly skewed, we perform a bootstrap to resample from the
skewed distributions, which provides normal distributions. To further prevent
the influence of extreme outliers, we estimate the median number of days instead
of the average number of days per group.

Table 8 shows the result of the analysis. Practically, the table shows us that
major releases are released at a median number of days of 42. Minor releases
are released at a median number of days of 42 + 10 = 52, and patch releases
take a median of 42 - 3 = 39 days to be released.

Release type Median
coeff.

Bootstr.
std. error

p-value 95% C.I.

Minor 10 1.319 0.000 7.416 - 12.584
Patch -3 1.353 0.027 -5.652 - -0.348

constant (major) 42 1.128 0.000 39.50 - 44.50

Table 8: ANOVA analysis to compare the number of breaking changes and the churn in major,
minor and patch releases.

This shows that minor releases tend to take longer to be released than major
releases. An ANOVA analysis based on averages (n = 58763, F = 0) gives 79
days for major, 84 days for minor and 61 days for patch releases, also showing
that minor releases tend to take longer on average to be released than major
releases. A possible explanation is that a major release contains less rework
that takes a large development effort but instead mainly contains changes to

19

SERG Semantic Versioning and Impact of Breaking Changes in the Maven Repository

TUD-SERG-2016-011 19

the interface instead of rework effort in the entire library, which would take
more time. An alternative explanation is that development on major releases
started on a separate branch earlier than the update dates in our data shows.

To answer RQ1: The version string conventions as prescribed by semantic
versioning are generally followed in the Maven repository. However, breaking
changes are widespread, even in non-major releases. Surprisingly, on average
minor releases contain more changes and take longer to release than major re-
leases.

6. RQ2: Breaking changes and Errors

To answer RQ2: “What is the impact of breaking changes in terms of
compilation errors?”, we investigate the number of breaking changes and the
relationship with compilation errors in this section.

Table 9 shows overview statistics for the 10 different types of breaking
changes detected by applying Algorithm 1 to the entire Maven repository.

Type Frequency #Errors #E/F #sys #uniq
1 MR 177,480 1,524,498 8.59 8,328 960
2 CR 168,743 1,645,518 9.75 3,983 505
3 FR 126,334 4,143,723 32.80 8,028 960
4 PTC 69,335 956,314 13.79 5,357 547
5 RTC 54,742 288,939 5.28 4,478 433
6 IR 46,852 95,250 2.03 1,657 130
7 NPC 42,286 533,741 12.62 5,701 713
8 MAI 28,833 126,427 4.38 4,746 562
9 FTC 27,306 1,233,095 45.16 4,324 485

10 CFR 12,979 677,234 52.18 3,354 317
Total 595,158 11,139,014 18.72

Table 9: The types of changes detected. Frequency = the number of times this change type
occurred in an update, #Errors = The number of errors this update type caused in all Sx,
#E/F = the average number of errors per breaking change, #sys = The number of distinct
Sx that contain errors because of this update, #uniq = The number of different updates of
Ly that contain this change.

The table shows the number of breaking changes and the number of com-
pilation errors these changes cause. For instance, class removals occur 168,743
times and cause a total of 1,645,518 compilation errors when applying the algo-
rithm to the entire repository. The most frequently occurring breaking change
is the method removal, occurring 177,480 times in the repository and causing
1,645,518 compilation errors in total. For method removals, there are 3,983
unique jar files that contain compilation errors caused by breaking changes in
505 unique jar files. Another type of frequently occurring breaking change is the
class removal, which appears 126,334 times in our dataset and causes 1,645,518
errors.

The average number of errors per breaking change is also shown in Table 9.
It shows that a constant field removal (CFR) has the highest average number of
errors per change: 52.18. Furthermore, field type changes (45.16), field removals

20

Semantic Versioning and Impact of Breaking Changes in the Maven Repository SERG

20 TUD-SERG-2016-011

(32.8) and parameter type changes (13.79) cause a relatively large number of
compilation errors as compared to other change types. On average, a breaking
change causes 18.72 errors.

Applying all possible library updates and collecting all compilation errors
gives a total of 595,158 breaking changes of the 10 most occurring change types
and a total of 11,139,014 compilation errors because of these changes. This thus
demonstrates that breaking changes are a real problem in the Maven repository,
since they cause a large number of compilation errors which would need to be
fixed before a newer version of a library can be used.

6.1. The relationship between breaking changes and errors

To further investigate the relationship between breaking changes and the
number of errors caused by these changes, we calculate the correlation between
these properties. The Spearman rank correlation between the number of break-
ing changes in ∆Ly,y+1 and the number of errors in Sx caused by these changes
is 0.65 (p = 0), indicating a significant positive relationship between breaking
changes and compilation errors caused by these changes, as expected.

To investigate further how many errors each breaking change introduces, we
perform the following regression analysis:

ln(NE)i = β1ln(NBC)i + εi

with NE being the number of errors in Sx and NBC being the number of
breaking changes in ∆Ly,y+1. We do not estimate a constant since each error
must be caused by a breaking change. Both NE and NBC are log-transformed
because the data is lognormally distributed. The results can be found in Table
10. The model is highly significant with a p-value of 0 and an adjusted R2 of
88.79%. The estimated slope coefficient of NBC is 1.683, indicating that if the
number of breaking changes increases by 1%, the number of errors is expected
to increase by 1.683%.

Dependent variable ln(NE)
Number of observations 2,269

R2 0.8879
Model p-value 0.0000

Independent Coeff. Std. Err p 95% C.I.
ln(NBC) 1.683 0.133 0 1.657 - 1.709

Table 10: Regression analysis to estimate the relationship between breaking changes and
errors.

We can thus conclude that breaking changes cause a significant amount of
compilation errors in client systems.

6.2. Average amount of work with and without breaking changes

To further investigate the relationship between edit script size and breaking
changes in libraries, we calculate the mean edit script size per method for library

21

SERG Semantic Versioning and Impact of Breaking Changes in the Maven Repository

TUD-SERG-2016-011 21

updates with and without breaking changes. We use the 3,260 library updates
which contain breaking changes as described in Section 4, but due to missing
data, only 2,106 systems can be used in this analysis. We denote the average
edit script size in this set as (µbc), which we compare to the average edit script
size in the entire Maven repository regardless of breaking changes, denoted as
(µmaven). The edit script size is divided by the number of methods in Ly+1 to
correct for the effect of library size. We compare these means to find out if the
amount of work in library updates with breaking changes is comparable to the
amount of work performed in general.

There are three possibilities:

1. µbc < µmaven: A library update containing breaking changes contains less
work as compared the work done in the average library release. This may
be caused by the fact that fixing breaking changes requires rework in the
library itself, as shown in Table 17, which may interfere with other work
performed in that update.

2. µbc ≈ µmaven: The average amount of work done in library updates which
include breaking changes is not significantly different from work done in
releases in general.

3. µbc > µmaven: A developer performs more work in a library update that
contains breaking changes than in library releases in general: breaking
changes are more frequently introduced in bigger updates.

To compare the means between these two groups, we perform an ANOVA
analysis, of which the results are shown in Table 11.

Dataset µ σ freq.
2,106 systems with breaking changes 0.657 4.055 2,106

Entire Maven repository 0.376 3.500 24,565

SS df MS
Between groups 40.99 1 40.99

Within groups 4,154.3 26,669 0.156
Total 4,195.30 26,670 0.157

Table 11: ANOVA analysis to compare the average edit script size in library updates in the
entire Maven repository and library updates with breaking changes in dependencies.

The analysis is significant with F = 12.16 and a p-value of 0, indicating that
there exists a significant difference in the amount of work performed in library
updates with breaking changes and library updates in general. The analysis
contains 24,565 libraries from the Maven repository and 2,106 libraries from the
rework estimation analysis we performed in Section 8.1. The mean edit script
size per method of the Maven repository group is 0.376 and the mean for the
2,106 systems is 0.657. This means that for two systems with 100 methods, the
edit script size for a system with breaking changes in library updates will be
65.7 and the edit script size for a library update in general will be 37.6, which

22

Semantic Versioning and Impact of Breaking Changes in the Maven Repository SERG

22 TUD-SERG-2016-011

1
0%

10
%

20
%

30
%

40
%

50
%

60
%

Pe
rc

en
ta

ge

2006 2007 2008 2009 2010 2011
Year

Major Minor
Patch Breaking
Breaking if non-major

Figure 12: The percentage of major, minor, patch, breaking, and breaking if non-major
releases through time.

is a difference of approximately 75%. The ANOVA analysis indicates that there
exists statistical support for the third scenario, µbc > µmaven, which means the
average edit script size per method tends to be larger for library updates with
breaking changes than for library updates in general. This means that break-
ing changes occur in library updates where a relatively large amount of code
is changed. This could indicate that developers pay less attention to backward
compatibility when they work on a large library update.

To answer RQ2: Breaking changes have a significant impact in terms of com-
pilation errors in client systems.

7. RQ3: Semantic Versioning Adherence Over Time

In this section, we answer RQ3: “Has the adherence to semantic versioning
principles increased over time?” To find this out, we plot the number of major,
minor and patch releases through time and the number of releases containing
breaking changes over time. This plot is shown in Figure 12.

The figure shows that the ratio of major, minor and patch releases is rela-
tively stable and around 15%, 30% and 50%, respectively. The percentage of
major releases per year seems to decrease slightly in later years.

Regardless of release type, one in every three releases contains breaking
changes. This percentage is relatively stable but slightly decreasing in later
years. One out of every four releases violates semver (“breaking if non-major”),
but this percentage also slightly decreases in later years: from 28.4% in 2006 to
23.7% in 2011.

23

SERG Semantic Versioning and Impact of Breaking Changes in the Maven Repository

TUD-SERG-2016-011 23

Update L
Update S Major Minor Patch Total

Major 543 189 82 814
Minor 651 791 227 1,669
Patch 150 54 297 501
Total 1,344 1,034 606 2,984

Table 13: The number of updates of different types of S and simultaneous updates of depen-
dency L.

To answer RQ3: The adherence to semantic versioning principles has increased
over time with a moderate decrease of breaking changes in non-major releases
from 28.4% in 2006 to 23.7% in 2011.

8. RQ4: Update Behavior

In this section, we answer RQ4: “How are dependencies actually updated
in practice, what are typical properties of new library releases, and do these
properties influence the speed with which dependencies get updated?”.

The key reason to investigate breaking changes is that they complicate up-
grading a library to its latest version. To what extent is this visible in the maven
dataset? What delay is there typically between a library release and the usage
of that release by other systems? Is this delay affected by breaking changes?

To investigate the actual update behavior of systems using libraries, we
collected all updates from the Maven repository that update one of their depen-
dencies. Thus, we investigate usage scenarios within the maven dataset.

We obtained a list of 2,984 updates from the Maven repository of the form
〈Sx, Sx+1, Ly, Ly+1〉, where L is a dependency of S which was updated from
version y to version y+1 in the update of S from x to x+1. For example, when
the Spring framework included version 3.8.1 of JUnit in version 2.0, but included
version 3.8.2 in version 2.1, Spring framework performed a minor update of
JUnit in a patch release.

Table 13 shows the number of updates of different types of S and L in
the Maven repository. When a system S is updated, a library dependency
L can be updated as well to a major, a minor, or a patch version. When
looking at each horizontal row in the table, it shows that most major updates
of dependencies (543) are performed in major updates of S, and most minor
updates of dependencies (791) are performed in minor updates of S. The same
is true for patch updates of dependencies, which are most frequently updated
in patch updates of S (297).

To further investigate update behavior of dependencies, we calculate the
number of versions of L that S lags behind, as illustrated in Figure 14. The
figure shows an example of three versions of S, and a dependency L of S. On
January 1, L1, a patch update, is released. S1 decides to use this version in its
system. On March 1, a major update of L is released, L2. The next release

24

Semantic Versioning and Impact of Breaking Changes in the Maven Repository SERG

24 TUD-SERG-2016-011

L1

uses

Jan 1 May 1Feb 1 Mar 1 Apr 1

S1

L2

S2 S3
next ver.

L3

Aug 1
S3-L Update lag

patch major minor

One minor
release lagging

Figure 14: An example of a timeline with a system S updating library L.

min p25 p50 p75 p90 p95 p99 max
Major 0 0 0 0 1 1 4 22
Minor 0 0 0 1 2 4 6 101
Patch 0 0 0 1 5 6 13 46

Table 15: Percentiles for the number of major, minor and patch dependency versions lagging.

of S, S2, happens on April 1. This release still includes L1, although L2 was
already available to include in S2. The same is true for S3, which could have
included L3 but still includes L2. The period that S has been using L1 is from
February 1, to April 1. The total time that S has a dependency on L is from
February 1 to August 1.

This example illustrates that there can exist a lag between the release of a
new version of L and the inclusion in S. In this example, S3 lags one minor
release behind, and could have included L3. The time S3 theoretically could
update to L3 is between May, 1 and August, 1.

For each system S and each of its dependencies L, we calculate the number
of major, minor and patch releases that version of S lags behind. The release
dates of Sx and Ly are used to determine the number of releases after Ly but
before Sx.

Table 15 shows percentiles for the number of major, minor and patch versions
that dependencies L of system S are lagging as compared to the latest releases
of L at the release date of S. For instance, when a system released a new version
at January 1, 2013 and that release included a library with version 4.0.1 but
there have been 10 minor releases of that library before January 1 and after the
release date of version 4.0.1 that could have been included in that release of S,
the number of minor releases lagging is 10 for that system-library combination.
These numbers are calculated for each system-library combination separately.

The table shows that the number of major releases that S lags on average

25

SERG Semantic Versioning and Impact of Breaking Changes in the Maven Repository

TUD-SERG-2016-011 25

Breaking changes Edit script size Changes
Major versions lagging 0.0772 -0.0701 -0.0465
Minor versions lagging 0.1440 0.1272 -0.0434
Patch versions lagging 0.0190 0.0199 0.3824

Table 16: Spearman correlations between the size of the update lag of L and breaking changes
and the edit script size in the next version of L.

tends to be smaller than the number of minor and patch releases lagging. The
distributions are highly skewed, with a median of 0 for all three release types and
a 75th percentile of 1 for minor and patch releases, indicating that the majority
of library developers include the latest releases of dependencies in their own
libraries. The numbers also indicate that developers tend to better keep up
with the latest major releases than with minor and patch releases, as indicated
by the 90th percentile of 1 for major releases and a 90th percentile of 5 for patch
releases.

To better understand the reasons underlying the update lag, we investigate
two properties of libraries that could influence the number of releases that sys-
tems are lagging: the edit script size and the number of breaking changes of
these dependencies. We hypothesize that people are reluctant to update to a
newer version of a dependency when it introduces a large number of breaking
changes or introduces a large amount of new or changed functionality. To test
this, we investigate whether a positive correlation exists between the number
of major, minor and patch releases lagging in libraries using a dependency and
the number of breaking changes and changed functionality in new releases of
that dependency. We calculate Spearman correlations between the number of
versions lagging and the number of breaking changes and edit script size in these
versions.

The results are shown in Table 16. The table shows Spearman correlations,
which are calculated on 13,945 observations and all have a p-value of 0. The
correlations are generally very weak, with the maximum correlation being 0.1440
between the number of minor versions lagging and the number of breaking
changes in these dependencies.

The numbers indicate that, in general, people are more reluctant to update
major, minor and patch releases with a larger number of breaking changes,
but the effects are very small. Alternatively, one could argue that people tend
to ignore breaking changes and changed functionality in new versions of de-
pendencies, perhaps because they do not even know a priori whether a release
introduces breaking changes. Thus, there exists a lag in these dependencies,
regardless of breaking changes or changed functionality.

The correlation between the edit script size and the number of major ver-
sions lagging is even negative with a value of -0.0701, which indicates that major
library versions with a larger amount of new or changed functionality are gener-
ally included slightly faster than releases with less changed or new functionality.
The correlation between the number of breaking changes and the edit script size
and the number of patch versions lagging is negligible with values of 0.0190 and

26

Semantic Versioning and Impact of Breaking Changes in the Maven Repository SERG

26 TUD-SERG-2016-011

0.0199, with significant p-values.
The results indicate that although the number of breaking changes and the

edit script size of a library does seem to have some influence on the number of
library releases systems are lagging, the influence generally is not very large.

8.1. Breaking Changes and Edit Script Size

To further investigate update behavior on the library side, we perform a
regression analysis, linking the edit script size of an update to different types
of breaking changes. This analysis shows what amount of work is typically
performed in a new release of a library and what edit script size is associated
with different breaking changes.

From the data acquired through Algorithm 2, we estimate the influence of
each breaking change type in ∆Ly,y+1 by including the number of occurrences
of each type as independent variables. The dependent variable is the size of the
edit script of ∆Ly,y+1. Table 17 shows the results of this regression, which is
based on the 3,260 pairs containing breaking changes as described in Section
4. The actual number of observations is only 2,447 due to the exclusion of
observations with missing data.

Dependent variable ess(Ly,y+1)
Number of observations 2,447

R2 58.83%

Adjusted R2 58.68%
Model p-value 0

Indep. # Coeff. Std.
Err

beta p 95% C.I.

constant 0 5.001 1.096 - 0 2.851 - 7.151
MR 1 2.415 0.110 0.346 0 2.200 - 2.630
CR 2 0.539 0.109 0.069 0 0.325 - 0.753
FR 3 0.818 0.187 0.059 0 0.451 - 1.184

PTC 4 1.921 0.141 0.208 0 1.646 - 2.197
RTC 5 2.021 0.221 0.141 0 1.587 - 2.454

IR 6 0.684 0.218 0.043 0 0.256 - 1.113
NPC 7 2.734 0.191 0.204 0 2.360 - 3.108
MAI 8 2.534 0.193 0.178 0 2.156 - 2.913
FTC 9 1.239 0.367 0.049 0 0.518 - 1.960
CFR 10 omitted due to collinearity

Table 17: Regression analysis on the edit script size and different change types in libraries.

As can be seen in Table 17, the model as a whole is highly significant (p
= 0) and has an adjusted R2 of 58.68%, indicating that more than 58% of
the variability in the edit script size between Ly and Ly+1 is explained by the
10 different change types in the model. The model shows that all variables
are significant at the 95% confidence interval, indicating that the all variables
contribute significantly to the total edit script size in ∆Ly,y+1. The coefficients
in the model indicate the size of the performed rework in terms of tree edit
operations to update a library from Ly to Ly+1. For instance, the change
type method removal (MR) has a coefficient of 2.415, indicating that a method
removal in ∆Ly,y+1 takes 2.415 edit script operations, on average.

27

SERG Semantic Versioning and Impact of Breaking Changes in the Maven Repository

TUD-SERG-2016-011 27

As the table shows, all 10 breaking change types are associated with a sig-
nificant edit script size, but some changes have a larger coefficient than others.
For instance, a class removal and an interface removal only represent an edit
script size of 0.539 and 0.684, respectively. This could be explained through the
average size of classes or interfaces that are removed, which could be smaller
than the average class. The constant of 5.0 indicates that the average library
update which contains breaking changes has a “base level” average of 5 edit
script lines.

As an example of the expected edit script size in a library update, consider a
library which removes a class with 10 methods and two private fields in its next
version. The predicted edit script size would then be 5.001+1∗0.539+5∗2.415+
2 ∗ 0.818 = 19.251. The constant of 5 indicates that a library change without
any of the included change types takes an edit script size of 5, on average.

Comparing the standardized coefficients (beta) for each of the 10 change
types, it can be seen that the method removal (MR) and the parameter type
change (PTC) have the largest influence on the total edit script size, with a beta
of 0.346 and 0.208, respectively. Field removals, class removals and field type
changes turn out to have relatively little influence on the total edit script size,
with beta’s of 0.059, 0.069, and 0.049, respectively. The constant field removal
CFR correlates too much with other change types and is therefore excluded
automatically from the regression.

To answer RQ4: updates of dependencies to major releases are most often per-
formed in major library updates. There exists a lag between the latest versions
of dependencies and the versions actually included, with the gap being the largest
for patch releases and the smallest for major releases. There exists a small in-
fluence of the number of backward incompatibilities and of the amount of change
in new versions on this lag. Method removals and parameter type changes are
two changes which are typically associated with the largest changes in library
code.

9. RQ5: Library characteristics associated with large impact

In this section, we answer RQ5: “Which library characteristics are shared
by libraries which frequently introduce a large number of breaking changes, and
as a result, cause compilation errors?”

To assess which library characteristics cause a large number of compilation
errors in dependent systems, we investigate the correlation of breaking changes
and errors with two library properties: the maturity and the size of a library.

We use the index of a release (any release, major, minor or patch) as a proxy
for the maturity of a library, starting with 1 from the oldest release. We assume
that the more releases a certain library had before the current release, the more
mature it is. Alternative measures, such as the number of days since the first
release, were considered inferior since a library can have a single release and
another release 2 years later, which would indicate a mature library. The size
of a library is measured as the number of methods in a library.

28

Semantic Versioning and Impact of Breaking Changes in the Maven Repository SERG

28 TUD-SERG-2016-011

These properties are investigated for the following reason. We expect that
the size of a library increases as the library matures. For this reason, the number
of methods and the release index are expected to be positively correlated. We
also expect that it becomes increasingly hard for library developers to maintain
backward compatibility as the maturity of a library increases, simply because
the library has a larger interface that can be broken. Therefore, the correlation
between the maturity and the number of breaking changes in a release is ex-
pected to be positive as well. The number of compilation errors is expected to
have comparable correlations with these two properties, because of the direct
relationship between breaking changes and the number of errors caused by these
changes.

0.65 (p = 0)
#Breaking changes #Errors

0.0278 (p = 0)
of methods 0.3291 (p = 0) 0.3392 (p = 0)
Release index -0.015 (p = 0.153) 0.1078 (p = 0)

Table 18: Spearman rank correlations between the number of breaking changes, number of
errors, number of methods, and the release index of a library.

Spearman rank correlation coefficients of these properties can be found in
Table 18. There is a correlation of 0.3291 between the number of methods in a
library and the number of breaking changes in that library, meaning that bigger
libraries indeed tend to introduce more breaking changes.

The correlation between the release index and the number of methods in
that library turns out to be only marginally positive with a value of 0.0278,
meaning that there is practically no correlation between these two properties:
most libraries do not seem to grow in the number of methods through time.
This is contrary to our expectation. There is a negligible correlation between
the number of breaking changes and the release index, indicating that libraries
do not introduce more breaking changes when they become more mature, which
is also contrary to our expectation. The correlation between the number of er-
rors and the number of methods is also positive, indicating that larger libraries
cause more compilation errors.

To answer RQ5: Bigger libraries tend to introduce more breaking changes and
errors. Libraries do not grow when they become more mature, on average, and
more mature libraries do not introduce more breaking changes.

10. RQ6: Deprecation Patterns

In this section, we answer RQ6: “How are deprecation tags applied to meth-
ods in the Maven repository?”

As we have seen, breaking changes are common. To deal with breaking
changes, the Java language offers deprecation annotations. For the use of such
annotations, semantic versioning provides the following rules for deprecation of
methods in public interfaces: “a new minor release should be issued when a

29

SERG Semantic Versioning and Impact of Breaking Changes in the Maven Repository

TUD-SERG-2016-011 29

Correct patterns
v1 (maj.) v2 (min.) v3 (min.) v4 (maj.) c i Freq. %
1 pr m1 pr m1 pr m1 pr m1 y n 63,698 24.34
2 pr m2 pr m2 pr @d m2 pr @d m2 y n 113 0.04
3 pu m3 pu m3 pu m3 pu m3 y n 110,613 42.27
4 pu m4 pu @d m4 pu @d m4 pu @d m4 y y 793 0.30
5 pu m5 pu @d m5 pu @d m5 - y y 0 0

Table 19: Correct method deprecation patterns. @d = deprecated tag, c = correct, i =
interesting; pr = private; pu = public; – = method deleted.

Incorrect patterns
v1 (maj.) v2 (min.) v3 (min.) v4 (maj.) c i Freq. %
6 pu m6 pu m6 - - n y 86,449 33.03
7 pu m7 pu @d m7 - - n y 0 0
8 pu m8 pu m8 pu m8 pu @d m8 n y 0 0
9 pu m9 pu @d m9 pu m9 pu m9 n y 16 0.01

Table 20: Incorrect method deprecation patterns. @d = deprecated tag, c = correct, i =
interesting; pr = private; pu = public; – = method deleted.

new deprecation tag is added. Before the functionality is removed completely in
a new major release, there should be at least one minor release that contains
the deprecation so that users can smoothly transition to the new API.”24 Thus,
whenever there is a breaking change (which must be in a major release), this
should be preceded by a deprecation (which can be in a minor release).

In this section, we investigate whether this principle is adhered to in practice.
We investigate how many libraries actually deprecate methods, and if they do,
how many releases it takes before these methods get deleted, if at all. We
also find out if there is indeed at least one minor change in between before the
method is removed, as semver prescribes.

In total, 1196 out of 22,205 artifacts (5.4%) contain at least one method
deprecation tag. Given our observation that 1 in 3 releases introduces breaking
changes, this number immediately appears to be too low.

Tables 19 and 20 show different correct and incorrect deprecation patterns.
The columns with headers v1 to v4 contain possible deprecation patterns in
a subsequent major, minor, minor and major release, respectively. For each
pattern in the table, we count its frequency in the maven data set. As the table
shows, there are a couple of different ways to deprecate and delete methods in
major or minor releases, some of which are correct according to semver (column
c).

Cases 1 and 2 in Table 19 show an example of a private method with and
without deprecation tags. As the table shows, the first case occurs in 24.24%
of all methods. Since semver is only about versioning and changes in public
interfaces, these cases are therefore not investigated further. Case 3 shows a
public method that is neither deleted nor deprecated, which is the most common

24http://semver.org/spec/v2.0.0.html

30

Semantic Versioning and Impact of Breaking Changes in the Maven Repository SERG

30 TUD-SERG-2016-011

life cycle for a method (42% of the cases). Case 4 shows a public method that is
deprecated, but is never removed in later versions. According to the principles
regarding deprecation as stated in semver, this is correct behavior. As the table
shows, this is the most common use of the deprecation tag, even though it is
used in just 793 methods. Case 5 shows an example of deprecation by the book,
exactly as prescribed by semver. The method is declared deprecated in a minor
release, there is another minor release that also declares the method deprecated
and in the next major release, the method is removed. This correct pattern
does not occur at all in the maven data set.

Table 20 shows examples of incorrect deprecation patterns. Case 6 shows a
public method that is removed from the interface but never declared deprecated,
which is not correct: This is the typical case of introducing a breaking change
in a minor release. Case 7 deprecates the method, but deletes it in a minor
release, which would not be correct. This case does not occur. Case 8 declares
the method deprecated in a major release, which would also be incorrect (and
which does not occur). Case 9 shows a method that is undeprecated, about
which semver does not explicitly contain a statement.

As the table further shows, public methods without a deprecated tag in
their entire history are in the majority with 42.27%. Surprisingly, the number
of public methods that ever get deprecated in their entire history is only 793,
or 0.30%. The number of public methods that get deleted without a deprecated
tag is 86,449, or 33.03%. The number of methods that get deleted after adding
a deprecated tag to an earlier version is 0 (cases 6 and 8). Finally, the number
of methods that get “undeprecated” is 0.01%.

These results are surprising since they suggest that developers do not apply
deprecation patterns in the way they are supposed to be used. In fact, develop-
ers do not seem to use the deprecated tag for methods very often at all. Most
public methods get deleted without applying a deprecated tag first (case 5), and
methods that do get a deprecated tag are almost never deleted (case 4). This
suggests that developers are reluctant to remove deprecated functionality from
new releases, possibly because they are afraid to break backward compatibility.
Case 8 is, according to semver, the only proper way to deprecate and delete
methods. However, the pattern was not found in the entire Maven repository.

To answer RQ6: Developers do not follow deprecation guidelines as suggested
by semantic versioning. Most public methods are deleted without applying a
deprecated tag first, and when these tags are applied to methods, these methods
are never deleted in later versions. Deprecation tags are never applied correctly
in the Maven repository as described by semantic versioning.

11. RQ7: Dispersion Estimation

In this section, we answer RQ7: “What is the impact of breaking changes
in terms of the spread of errors caused by these changes?”

31

SERG Semantic Versioning and Impact of Breaking Changes in the Maven Repository

TUD-SERG-2016-011 31

11.1. Explanation

When fixing compilation errors caused by a library update, not only the
number of errors is relevant in the estimation of total rework, but the dispersion
of these errors across different places in the code is relevant as well. We expect
that a change that causes 10 errors inside a single file is easier to fix than a
change that causes 10 errors in 10 different files, since the code and context of
each file has to be understood separately before its errors can be fixed. Fixing
errors in multiple different files is therefore expected to take more time than
fixing errors inside a single file.

For instance, a software library that is typically used in a limited set of places
in code, such as JUnit or a database library, is expected to cause less work to
change since code is localized in a small set of places. In contrast, a change in a
base class library of Java itself, such as in the String class, is expected to have
a large impact because its usage is so pervasive: there is a large chance that a
class uses an instance of a String.

Figure 21 shows the concept underlying this analysis. As can be seen in this
figure, Ly+1 is used by three different libraries, Sx1, Sx2 and Sx3. Library Sx1

calls a method that was changed in ∆Ly,y+1, and as a result, 2 compilation
errors in one distinct method are introduced. Library Sx2 calls a method that
was added, but this does not introduce any errors.

 Sx3 x
x

x

 Sx2

r

c
a

 Sx1 x
x

Release index: 4
Popularity: 100
#API methods: 4

#errors: 2
1 distinct method

#errors: 3
2 distinct methods

#errors: 0
0 distinct methods

c = changed
a = added
r = removed
x = error

Ly+1

Fig. 21: Example of a library Ly+1 and three libraries (Sx1, Sx2, Sx3) that use it. The update
from Ly to Ly+1 contains 3 changes to interface methods: a method header was changed (c),
a method was removed (r), and a method was added (a).

Library Sx3 calls a method that was removed, and therefore, 3 errors in 2
distinct methods are introduced. One error in Sx3 is not directly related to the
call to Ly+1 but is a cascading error, caused by the other method that directly
calls Ly+1. Overall, there are 3 distinct methods that are impacted because of
the update of Ly to Ly+1.

We perform a regression analysis to test factors influencing the dispersion of
errors in different libraries Sx with changes in a dependency Ly. As a measure
of the dispersion of compilation errors across systems, we count the number of

32

Semantic Versioning and Impact of Breaking Changes in the Maven Repository SERG

32 TUD-SERG-2016-011

distinct files of all Sx that use Ly and which contain one or more compilation
error after the update to Ly+1.

11.2. Explanation of independent variables

We include 3 independent variables in our analysis, which are expected to
explain a part of the variability in error dispersion across systems. These factors
are the release index of Ly, the number of methods in Ly and the relative usage
frequency of Ly in the Maven repository. The rationale for inclusion of these
independent variables is as follows. The number of methods in Ly is a measure
of the size of that library. We expect that a larger size of Ly causes methods of
this library to be used at more separate places in Sx, because it is expected to
contain more separate pieces of functionality.

We include the release index as independent variable to measure maturity
for the same reason it was included in the analysis in Section 10: we expect that
libraries tend to increase the amount of functionality they provide over time as
the library matures, which would lead to a larger scattering of errors across Sx.
With the inclusion of both the release index and library size as independent
variables, we can test for the influence of both independent variables separately,
while keeping the others constant.

We include the popularity as independent variable to correct for usage fre-
quency of libraries, which is defined as the number of libraries that use Ly
divided by the total number of libraries in the repository (144,934). When a
library Ly is used more frequently, it will cause more errors in systems using
it simply because it is used more. This independent variable corrects for that
effect.

Note that these three variables are all properties of Ly+1, and not of Sx,
although the errors appear in Sx. We include properties of Ly+1 in this analysis
since we expect that the error dispersion in Sx is, to a degree, a property of the
library causing the errors. Since error dispersion is also expected to be influenced
by properties of Sx itself, we do not expect that the included properties are fully
able to explain all variability in the model, which would lead to a relatively low
R2.

We include the natural logarithm of the number of distinct files and the
number of methods in Ly because data analysis shows that the natural logarithm
of these variables has a linear relationship.

11.3. Regression results

Table 22 shows the result of this analysis.
The model has an adjusted R2 of 0.1333, which is significant with a p-value

of 025. The release index and the natural logarithm of the number of methods
in Ly are significant but the popularity of Ly is not. The beta coefficients show
that the size of Ly is the most important factor in explaining the dispersion

25For an explanation of this low R2, see Section 13.7.

33

SERG Semantic Versioning and Impact of Breaking Changes in the Maven Repository

TUD-SERG-2016-011 33

Dependent variable ln(#distinct
files with error
in Sx)

Number of observations 3,690

R2 0.1354

Adjusted R2 0.1333
Model p-value 0.0000

Independents Coeff. beta Std.Err p-value 95% C.I.
Release index (Ly) -0.007 -0.075 0.003 0.006 -0.013 - -0.002

ln(nr. methods (Ly)) 0.313 0.381 0.022 0 0.269 - 0.357
Popularity (Ly) -47.68 -0.019 67.26 0.478 -179.6 - 84.27

constant -0.262 - 0.131 0.045 -0.519 - -0.006

Table 22: Regression analysis to analyze factors associated with a large error dispersion.

of errors across Sx, with a beta of 0.381. The release index of a library has a
coefficient that is significant but practically not significantly different from 0.

This means that, after correcting for library popularity and maturity, the
number of methods in a library is a significant predictor for the dispersion of
errors in client systems. This could be explained by our theory that larger li-
braries contain more separate pieces of functionality, which have a bigger chance
of ending up at different places in client systems.

To answer RQ7: The size of a library tends to increase the dispersion of errors
in client systems.

12. Discussion

The results of this study indicate that the stability of interfaces and mecha-
nisms to signal this instability to developers leaves much to be desired. One in
every three interfaces contains breaking changes, and additionally, one in three
interfaces that should not contain breaking changes actually does. The usage of
the deprecation tag and the deletion of methods in the Maven repository show
that the average developer tends to disregard the effects his actions have on
clients of a library.

12.1. Signaling interface instability

Our results show that developers do not tend to follow the best practices
encoded in semver, even though the used versioning schemes suggest a seman-
tic pattern. If developers would adhere completely to semver and their releases
contain the same amount of breaking changes as found in the Maven repository,
the number of major releases should be much larger than is currently the case.
This low adherence is surprising since there are no other mechanisms available,
except versioning schemes and deprecation tags, which signal interface instabil-
ity. Possible explanations are that library developers are not aware of existing
semantic versioning practices, they are not aware that they have introduced
breaking changes, they do not expect that the changes they make have actual

34

Semantic Versioning and Impact of Breaking Changes in the Maven Repository SERG

34 TUD-SERG-2016-011

impact on client systems, or they simply do not care. Either way, we argue
that the principles set out by semver should be followed by every developer of
software libraries, or any piece of software of which the interface is used by other
developers.

In our opinion, ultimately, better designed and more stable interfaces leads
to a lower maintenance burden of software in general. When a library user,
or a user of any piece of publicly available functionality knows that there are
expected changes when upgrading to a newer version, the developer can antic-
ipate this and choose to postpone or include the update. Strict adherence to
semantic versioning principles also forces library developers to think hard about
the functionality they release, and about the design of the public interface they
are releasing. It is increasingly hard for library developers to change their over-
all design of their interface after it has been published. This problem becomes
worse the more users actually use the interface. Releasing a new major release
can effectively signal that continuity of the old interface should not be expected
and that radical changes may be present. However, when this mechanism is
only partially used, which we have shown is the case in the Maven repository,
it becomes unclear what exactly a major release means.

The concept of an interface can be seen as a set of mathematical func-
tions, which are by definition immutable. Daily software engineering practice,
however, is different, since changes to these functions are common. By using
semantic versioning principles, interface consumers are signaled that the normal
expectation that they might have regarding the stability of interface functions
does not hold in a particular case.

Another explanation for the lack of discipline in interface versioning is that
the Java modularization mechanism is not suited to provide all visibility levels
as desired by developers. For instance, developers sometimes release “internal”
packages. These are packages that should be hidden from outside developers
and are only meant to be used by the developers themselves. The problem
with internal packages is that they are publicly visible, meaning that outside
developers have complete access to these packages, just like regular packages.

What is missing from the Java language is another layer of visibility, which
hides internal packages from outside users. An example of a mechanism that
does provide this level of visibility is the modularization structure of the OSGi
framework. Additionally, entire libraries are sometimes released that are only
meant to be used by the developers themselves, even without the use of internal
packages. Java or the Maven repository also do not provide support to prevent
external users from using these libraries. In fact, these libraries should have
never been released in the Maven repository to begin with.

The low number of methods that use the deprecation tag in the entire Maven
repository was surprising. A possible explanation for this is that classes can
also be deprecated completely, without individually deprecating all methods in
that class. Our analysis will not detect these cases. Future work could further
investigate whether developers deprecate entire classes instead of deprecating
only single methods.

35

SERG Semantic Versioning and Impact of Breaking Changes in the Maven Repository

TUD-SERG-2016-011 35

12.2. Other versioning standards

Semantic versioning is not the only standard for versioning software libraries.
For instance, the OSGi alliance has released their own semantic versioning man-
ifesto26 and contains comparable guidelines as the ones in semver. Further-
more, there exist several alternative versioning approaches27, but the versioning
schemes described in these approaches do not seem to be used in the Maven
repository, as can be seen in Table 4. For this reason, only adherence to the
principles stated by semver was checked in this paper.

12.3. Actual usage frequencies

In our research, we do not take into account the difference between internal
and non-internal packages. The number of internal packages as compared to the
number of non-internal packages is negligible, and are therefore not expected to
influence our analyses in a material way.

We also do not take into account the actual usage of packages, classes and
methods with breaking changes. It makes a difference whether a public method
in the interface of a library is used frequently by other developers, such as
AssertEquals in JUnit, or the method is not used at all by other developers.
We consider the impact of breaking changes on libraries using that function-
ality outside the scope of this paper. However, semantic versioning principles
generally do not state that breaking changes in major releases can only occur in
parts of the library that are never used, but instead states that breaking changes
should never be present in minor and patch releases, regardless of actual usage.
The same is true for breaking changes in internal and non-internal packages.

Future work could investigate the difference in the occurrence of breaking
changes in functionality that is actually used by other developers and breaking
changes in internal packages. Also, the adherence to semver in libraries that use
the OSGi framework could be investigated. We expect that the adherence to
semver is higher in packages that use OSGi since OSGi provides an additional
layer of visibility which would prevent counting breaking changes in internal
packages.

12.4. Release interval and edit script size

Table 7 showed that major releases have smaller release intervals and also
contain less functional change. We expected that major releases have larger
release intervals instead. This could be explained by the fact that developers
often start working on a major release alongside the minor or patch release (by
creating a branch) of the previous version, which would decrease the actual
release interval.

26http://www.osgi.org/wiki/uploads/Links/SemanticVersioning.pdf
27http://en.wikipedia.org/wiki/Software_versioning

36

Semantic Versioning and Impact of Breaking Changes in the Maven Repository SERG

36 TUD-SERG-2016-011

The table also shows that major releases generally contain less changed func-
tionality than minor releases, as measured by edit script size. A possible ex-
planation for this is that developers create a new major release especially for
backward incompatible changes in its API, and new functionality is added later.

Seen this way, a major release can be interpreted as a signal that gives
information on significant changes in the interface of a library, while saying
nothing about the amount of changed functionality in the release.

12.5. Major version 0 releases

Semver states that “Major version zero (0.y.z) is for initial development.
Anything may change at any time. The public API should not be considered
stable.”. We did not consider whether the effects as tested in this paper also
hold for releases with a major version of zero. The number of releases having a
major version of 0 is 10.44% (13,162 / 126,070), which is a substantial part of all
releases. Future work could investigate whether the principles as tested in this
paper are also visible in releases with a major version of 0. We expect that the
number of breaking changes in these releases will be considerably higher than
other releases.

12.6. Edit scripts as rework measure

The edit script size to convert a library into one of its next versions was
chosen to represent the performed rework in that update. It was preferred over
other measurements of rework, such as the difference between the number of
lines of code (LOC) between two library versions, because we consider it to
be the most detailed representation of changes available. Differences in LOC
have the problem that when the contents of a method or file completely changes
but the LOC stays exactly the same, no difference is detected. Differencing as
used by version control systems was also considered to be inaccurate for the
purpose of this analysis since it is sensitive to irrelevant changes in whitespace
and comments.

12.7. Other applications of change impact analysis

The approach to inject breaking changes as described in this paper can
be used to perform general change impact analysis as well, without breaking
changes or libraries. For instance, the Eclipse compiler could also be used in a
similar way to perform a “mutation analysis” of public interfaces, where random
changes are injected in the public API to determine how systems using that API
would react. This is similar to the work performed in this paper, but would not
be limited to breaking changes that actually occur. The data as obtained by our
approach could also be used to construct a “profile” for a library, which would
indicate the expected amount and spread of errors when updating a certain
library. We expect that different libraries will have different profiles and some
libraries are easier to update than others, partly due to design and partly due
to the problem the library solves.

37

SERG Semantic Versioning and Impact of Breaking Changes in the Maven Repository

TUD-SERG-2016-011 37

13. Threats to Validity

13.1. Transitive closure of update pairs
A potential issue of internal validity of our approach is the calculation of

the transitive closure of all future versions of each library. This was done for
three reasons. First, in practice, developers can update to any later version of a
library from their current version and can skip versions “in between”. Second,
the number of breaking changes between, for example, version 1 and version 3
of a library is not the sum of the breaking changes between version pairs 1-2
and 2-3. This also gives rise to the need to consider each update pair separately.
Third, the regression analyses as performed in this paper are not influenced by
the larger amount of data since, statistically, estimated coefficients will not be
influenced by the possible duplication in the data. We use robust regression and
robust standard errors to mitigate any risk rising from data duplication, which
are common statistical methods to deal with this type of problem [28].

13.2. Error counting
Another issue of internal validity is the “masking” of compilation errors,

which happens when compiling Java code with Eclipse and the JDT. If a package
import cannot be found, for instance, the compiler will never reach compilation
errors further down the file because it stops compiling. It is unknown how
many times this happens in our dataset. It would mean, however, that the true
amount of rework to fix “masking” compilation errors would be underestimated
using our approach since since fixing these errors would reveal new, previously
unreported compilation errors which would have to be fixed in turn. On the
other hand, collections of compilation errors can be manifestations of a change
in the same object, such as a removed method, field or parameter. Fixing such
errors would be faster than fixing the same amount of unrelated errors, for
instance with a global search-and-replace action. More research is needed to
assess the strength of over- or underestimation of the rework effect due to these
two reasons.

13.3. Release dates
The release dates of libraries as obtained from the central Maven repository

are sometimes incorrect, as demonstrated by the disproportionally large number
of libraries with a release date of November 5th, 2005 (2,321, 1.5%). These data
points were excluded from our analysis, but we do not have absolute certainty of
the correctness of the remaining release dates. Another indication that release
dates were not always correct is the fact that an ordering based on release
dates and an ordering based on version numbers of a single artifact does not
always give the same rankings. In these cases, the ordering in version numbers
was assumed to be correct. These possibly invalid data points do influence
our analysis on the number of days between releases, however, but we assume
that on average, our statistical analyses provides us with a robust average. A
manually checked sample of 50 random library versions and their release dates
on the corresponding websites were all correct. This sample gives us confidence
in the overall reliability of the release dates in the repository.

38

Semantic Versioning and Impact of Breaking Changes in the Maven Repository SERG

38 TUD-SERG-2016-011

13.4. Version strings

We only investigated the changes in subsequent library versions which both
have a “proper” version string, i.e. a specified major and minor release num-
ber. When a prerelease string was included in the version number, no analysis
was performed on the number of breaking changes since semver does not state
whether prereleases can contain breaking changes. This does not introduce a
bias in our study since we want to test whether libraries that do have a proper
versioning scheme adhere to semver.

Not all subsequent versions of methods could be recognized while scanning
for the deprecation patterns in Section 10. Library versions were parsed sepa-
rately, leaving the problem that different objects representing the same method
in different versions should be connected with each other. For performance
reasons, this was done by text matching of method names and the number of
parameters. Overloaded methods with the same number of parameters were
not taken into account in this analysis. Future work could further investigate
whether deprecation patterns are different for methods with overloaded versions
with the same number of parameters.

13.5. Deprecation tags

The low number of deprecation tags detected in the Maven repository is
surprising. To make sure all deprecation tags were recognized, we scanned
these tags in two different ways. First, a textual search was performed to search
for literal occurences of the string “@Deprecated”. Second, when a deprecated
tag was found in a library, the complete library was parsed and and AST’s
were created. This approach therefore makes it impossible to miss a deprecated
tag. In future work, we could further investigate causes for the low number of
deprecated tags.

13.6. Selection of independent variables

With respect to construct validity, we chose a set of independent variables in
our analysis, such as maturity, size, and the popularity of a library as variables
that could influence rework effort and dispersion of errors across systems. We
did not have the goal to create an exhaustive list of all possible variables that
could influence rework effort and dispersion. There are possibly other variables
at work that influence rework and dispersion besides the ones investigated in
this paper, which could significantly alter our analysis and conclusions. The
restriction to investigate only the 10 most frequently occurring change types
could also influence our conclusions. In future work, the influence of other
variables can be investigated further.

13.7. Small R2

The regression analysis in Table 17 has an R2 of 58.68%, while the regression
analysis in Table 22 has an R2 of only 13.33%. Concerns may rise about the
limited explanatory power of these models. The first model only includes 10
most frequently occurring breaking changes, which means that any change that

39

SERG Semantic Versioning and Impact of Breaking Changes in the Maven Repository

TUD-SERG-2016-011 39

cannot be explained by the independent variables is not taken into account.
In other words, 40% of the edit script is explained by changes that cannot be
related to the 10 breaking change types. This is expected since it is likely
that there will be a large amount of changes which are not associated with any
breaking change, such as methods that have a changed implementation without
changing their method headers.

The other model has an even lower R2, but this is expected given the setup
of the experiment. The model incorporates factors associated with Ly to explain
the dispersion of errors in Sx. The most important factors that would explain
this dispersion can likely be found in Sx. For instance, a modular design of
Sx with better encapsulation could mean that the calls to a certain library,
for instance a database library, are located in a single class. Measuring these
factors, however, are not the goal of the model. The p-value of the model (0)
indicates that the model is highly significant. Because of the low R2 of the
model, the model should only be used for explanatory purposes, and not for
prediction.

13.8. External validity & generalizability

Our findings are based on an exploration of semantic versioning principles
in the Maven repository. It is unknown whether the results can be reproduced
in other software repositories mentioned before, such as NuGet, OSGi bundles,
Ruby gems28, or, for example, the GitHub repository. We have already seen
that NuGet has a different approach to update dependencies than Maven, but
how often this actually introduces breaking changes with compilation errors is
unknown. As mentioned before, other guidelines similar to semver have been
released, so adherence to these guidelines can be investigated in a similar way
as done in this paper. Further research is needed to determine whether the
patterns as found in this paper hold in (industrial) sofware systems instead of
open-source software libraries.

14. Conclusion

In this paper, we have looked at semantic versioning principles as adopted
by over 100,000 open source libraries distributed through Maven Central. We
investigated to what degree the semantic versioning scheme as used by library
developers provide library users with signals about breaking changes in that
release. Semantic versioning provides developers with a clear set of rules re-
garding the use of major, minor and patch version numbers, and we have tested
these rules on our dataset.

Our findings are as follows:

• The introduction of breaking changes is widespread: Around one third of
all releases introduce at least one breaking change. We see little difference

28http://www.rubygems.org

40

Semantic Versioning and Impact of Breaking Changes in the Maven Repository SERG

40 TUD-SERG-2016-011

between major and minor releases with regards to the number of breaking
changes: One third of the major as well as one third of the minor releases
introduce at least one breaking change (RQ1).

• Breaking changes have a significant impact on client libraries by introduc-
ing compilation errors that need to be fixed before a library upgrade can
be performed (RQ2).

• The number of breaking changes in non-major releases has only decreased
marginally over time (RQ3).

• Updates of dependencies to major releases are most often performed in
major library updates, and similarly for updates of minor and patch re-
leases and dependencies. Major releases of dependencies tend to take
longer to be upgraded than minor or patch releases. There exists a small
influence of the number of backward incompatibilities and of the amount
of change in new versions on this lag (RQ4).

• Bigger libraries tend to introduce more breaking changes and errors. Li-
braries do not grow when they become more mature, on average, and more
mature libraries do not introduce more breaking changes (RQ5).

• Developers do not follow deprecation guidelines as suggested by semantic
versioning. Most public methods are deleted without applying a depre-
cated tag first, and when these tags are applied to methods, these methods
are never deleted in later versions (RQ6).

• The size of a client library can influence the dispersion of errors in client
systems when breaking changes are introduced in the library (RQ7).

We can conclude that in general, developers spend little effort to communi-
cate backward incompatibilities or deprecated methods in releases to users of
their libraries. This manifests itself through a large number of breaking changes
in major releases and also becomes visible in the unstructured way of label-
ing and removing deprecated methods. This leads to a significant number of
compilation errors in client systems using these libraries.

Although one can argue that not all developers may be aware of semantic
versioning principles in specific, we have assumed that most developers are aware
of the intent of these principles: providing information about the amount of work
done in a release and providing information about the stability of the interface
of the library.

We have demonstrated what the impact can be when developers ignore
backward compatibility. We therefore argue that semantic versioning princi-
ples should be embraced more widely by the developer community.

15. References

[1] D. Dig, R. Johnson, How Do APIs Evolve? A Story of Refactoring: Re-
search Articles, J. Softw. Maint. Evol. 18 (2) (2006) 83–107.

41

SERG Semantic Versioning and Impact of Breaking Changes in the Maven Repository

TUD-SERG-2016-011 41

[2] E. Tempero, G. Bierman, J. Noble, M. Parkinson, From Java to UpgradeJ:
An Empirical Study, in: Proceedings of the 1st International Workshop on
Hot Topics in Software Upgrades, HotSWUp ’08, 1:1–1:5, 2008.

[3] J. Dietrich, K. Jezek, P. Brada, Broken promises: An empirical study
into evolution problems in Java programs caused by library upgrades, in:
CSMR-WCRE, IEEE, 64–73, 2014.

[4] B. E. Cossette, R. J. Walker, Seeking the ground truth: a retroactive study
on the evolution and migration of software libraries, in: Proceedings of
the ACM SIGSOFT 20th International Symposium on the Foundations of
Software Engineering, FSE ’12, ACM, New York, NY, USA, 55:1–55:11,
2012.

[5] T. McDonnell, B. Ray, M. Kim, An Empirical Study of API Stability and
Adoption in the Android Ecosystem, 2013 IEEE International Conference
on Software Maintenance 0 (2013) 70–79, ISSN 1063-6773.

[6] I. Şavga, M. Rudolf, Refactoring-based Support for Binary Compatibility
in Evolving Frameworks, in: Proceedings of the 6th International Confer-
ence on Generative Programming and Component Engineering, GPCE ’07,
ISBN 978-1-59593-855-8, 175–184, 2007.

[7] B. Dagenais, M. P. Robillard, Recommending adaptive changes for frame-
work evolution, in: Proceedings of the 30th international conference on
Software engineering, ICSE ’08, 481–490, 2008.

[8] D. Dig, C. Comertoglu, D. Marinov, R. Johnson, Automated detection of
refactorings in evolving components, in: Proceedings of the 20th European
conference on Object-Oriented Programming, ECOOP’06, 404–428, 2006.

[9] J. Henkel, A. Diwan, CatchUp!: capturing and replaying refactorings to
support API evolution, in: Proceedings of the 27th international conference
on Software engineering, ICSE ’05, 274–283, 2005.

[10] Z. Xing, E. Stroulia, API-Evolution Support with Diff-CatchUp, IEEE
Trans. Softw. Eng. 33 (12) (2007) 818–836.

[11] I. Balaban, F. Tip, R. Fuhrer, Refactoring Support for Class Library Mi-
gration, SIGPLAN Not. 40 (10) (2005) 265–279.

[12] P. Kapur, B. Cossette, R. J. Walker, Refactoring References for Library
Migration, SIGPLAN Not. 45 (10) (2010) 726–738, ISSN 0362-1340.

[13] J. Bauml, P. Brada, Automated Versioning in OSGi: A Mechanism for
Component Software Consistency Guarantee, in: Proceedings of the 2009
35th Euromicro Conference on Software Engineering and Advanced Appli-
cations, SEAA ’09, 428–435, 2009.

42

Semantic Versioning and Impact of Breaking Changes in the Maven Repository SERG

42 TUD-SERG-2016-011

[14] J. Davies, D. M. German, M. W. Godfrey, A. Hindle, Software Bertillonage:
Finding the Provenance of an Entity, in: Proceedings of the 8th Working
Conference on Mining Software Repositories, MSR ’11, 183–192, 2011.

[15] J. Ossher, H. Sajnani, C. Lopes, Astra: Bottom-up Construction of Struc-
tured Artifact Repositories, in: Reverse Engineering (WCRE), 2012 19th
Working Conference on, 41–50, 2012.

[16] X. Ren, B. G. Ryder, M. Stoerzer, F. Tip, Chianti: a change impact analysis
tool for java programs., in: ICSE, ACM, 664–665, 2005.

[17] L. Badri, M. Badri, D. St-Yves, Supporting predictive change impact anal-
ysis: a control call graph based technique, in: Software Engineering Con-
ference, 2005. APSEC ’05. 12th Asia-Pacific, 2005.

[18] Y. Zhou, M. Wursch, E. Giger, H. Gall, J. Lu, A Bayesian Network Based
Approach for Change Coupling Prediction, in: Reverse Engineering, 2008.
WCRE ’08. 15th Working Conference on, 27–36, 2008.

[19] T. Zimmermann, A. Zeller, P. Weissgerber, S. Diehl, Mining version his-
tories to guide software changes, Software Engineering, IEEE Transactions
on 31 (6) (2005) 429–445.

[20] S. Lehnert, A Review of Software Change Impact Analysis, Tech. Rep.,
Ilmenau University of Technology, Department of Software Systems / Pro-
cess Informatics, 2011.

[21] J. A. Duraes, H. S. Madeira, Emulation of Software Faults: A Field Data
Study and a Practical Approach, IEEE Trans. Softw. Eng. 32 (11) (2006)
849–867.

[22] D. Romano, M. Pinzger, Analyzing the Evolution of Web Services Using
Fine-Grained Changes, in: ICWS, 392–399, 2012.

[23] R. Robbes, M. Lungu, D. Röthlisberger, How Do Developers React to
API Deprecation?: The Case of a Smalltalk Ecosystem, in: Proceedings of
the ACM SIGSOFT 20th International Symposium on the Foundations of
Software Engineering, FSE ’12, 56:1–56:11, 2012.

[24] C. Teyton, J.-R. Falleri, M. Palyart, X. Blanc, A Study of Library Migration
in Java Software, Tech. Rep., 2013.

[25] S. Raemaekers, A. v. Deursen, J. Visser, The maven repository dataset of
metrics, changes, and dependencies, in: Proceedings of the 10th Working
Conference on Mining Software Repositories, MSR ’13, 221–224, 2013.

[26] J. Davies, D. M. Germán, M. W. Godfrey, A. Hindle, Software Bertillonage
- Determining the provenance of software development artifacts, Empirical
Software Engineering 18 (6) (2013) 1195–1237.

43

SERG Semantic Versioning and Impact of Breaking Changes in the Maven Repository

TUD-SERG-2016-011 43

[27] B. Fluri, M. Wuersch, M. Pinzger, H. Gall, Change Distilling: Tree Dif-
ferencing for Fine-Grained Source Code Change Extraction, IEEE Trans.
Softw. Eng. 33 (11) (2007) 725–743.

[28] R. Andersen, Modern Methods for Robust Regression, SAGE Publications,
Inc, 2008.

44

Semantic Versioning and Impact of Breaking Changes in the Maven Repository SERG

44 TUD-SERG-2016-011

TUD-SERG-2016-011
ISSN 1872-5392 SERG

