
Beyond Traditional Lexing
Exploiting SIMD Instructions for Tokenizing C

Alexandru Bolfa

Supervisor(s): Soham Chakraborty, Dennis Sprokholt

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Alexandru Bolfa
Final project course: CSE3000 Research Project
Thesis committee: Soham Chakraborty, Dennis Sprokholt, Burcu Kulahcioglu Ozkan

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Over the past decades, Single Instruction, Multiple
Data (SIMD) instructions have become common-
place in conventional hardware. Lexical analysis,
the first stage of compilation, can take advantage of
this by splitting its workload across sub lexers that
identify groups of tokens with similar structures.
Each sub lexer can leverage SIMD to search for
these structures across multiple characters in paral-
lel and extract token positions efficiently. This pa-
per presents a lexer with this architecture for the C
programming language, along with implementation
details for x86/x64 processors. Benchmark results
show a 12x speed up in throughput compared to the
lexer found in GCC, a state-of-the-art compiler.

1 Introduction

Compilers play a crucial role in software development,
but prolonged compilation times can impact developer
productivity due to frequent context switches. Lexical
analysis/tokenization, commonly referred to as ”lexing”,
is the first stage of compilation, converting raw text into
a sequence of meaningful tokens that are more easily pro-
cessed by subsequent stages. For example, the line of C code:

a += b

is broken down into identifiers a and b, with the addition as-
signment operator += in-between them.

Lexing time constitutes for approximately 10%1 of compi-
lation time in compilers like GCC [1] and should not be ig-
nored. Optimizing this stage is desirable as faster compilers
reduce waiting times and conserve computational resources,
contributing to a more efficient software development pro-
cesses.

Traditionally, lexers process source code character by char-
acter following a finite state machine. While some modern
lexers employ SIMD operations to a limited extent, often for
tasks like locating the end of comments, they generally han-
dle one character at a time. While effective, this approach
does not fully leverage modern hardware capabilities which
can allow for parsing as many as 64 characters at once [2].

In this paper, we aim to answer the question: ”To what ex-
tent can SIMD instructions accelerate lexical analysis?”
To address this, we introduce a SIMD-oriented lexer archi-
tecture that revolves around the concept of sub-lexers, each
responsible for identifying subsets of the original grammar.
Our implementation specifically leverages SIMD instructions
on the x86 architecture. We achieve quantifiable results by
applying the proposed approach to the grammar of the C17
programming language [3]. Performance metrics, such as
throughput, are measured during benchmarks and used for
comparison with other designs.

1Based on empirical studies.

2 Background
Since 1996, SIMD instructions have been widely deployed to
general purpose computers, starting with Intel’s MMX2 [4]
extensions to the x86 architecture [5]. They are designed to
process multiple elements simultaneously using a single in-
struction. Consider the task of adding two vectors of integers:

A = [a1, a2, a3, a4]

B = [b1, b2, b3, b4]

Using SIMD instructions (e.g., SSE, AVX), you can add
these vectors in parallel in one clock cycle:

C = [a1 + b1, a2 + b2, a3 + b3, a4 + b4]

Subsequent extensions beyond MMX, such as SSE
(Streaming SIMD Extensions) [6], SSE2, SSE3, AVX (Ad-
vanced Vector Extensions) [7], and AVX-512, have contin-
ued to expand SIMD capabilities. These advancements have
increased the width of SIMD registers, introduced more in-
structions, and enhanced performance across a broader range
of applications.

Vectorization is the process of converting scalar operations,
which process a single element at a time, into vector opera-
tions. Modern compilers attempt to automatically vectorize
code to take advantage of SIMD. However, most SIMD in-
structions execute simple arithmetic and data movement op-
erations that work best when elements act independently. As
such, achieving optimal performance often requires writing
code in a SIMD-friendly manner. This involves structuring
data and devising algorithms to ensure that elements can be
processed independently.

3 Related Work
Bernecky [8] notes that ”There appears to be a commonly-
held feeling among the research community that non-numeric
computations ... do not offer much parallelism.” to which
he refers as ”An Embarrassment of Riches”. In his work,
he proposes a parallel SIMD lexer for the A Programming
Language (APL)3, implemented in APL. Unlike C, which is
scalar-centric, APL operates on arrays, making it well-suited
for SIMD applications. Consequently, the APL lexer em-
ploys specific vector operations that do not translate directly
to x86/x64 SIMD without a comprehensive understanding of
APL.

Kartzke and Donegan [10] study a similar approach on
the CDC STAR-100 4 which boasts an ISA similar to that
of x86/x64. However, the input source code that it parses
is heavily restricted (according to modern standards). Input
is assumed to consist either of comment or arithmetic state-
ments and identifiers are no longer than 6 characters.

2Unofficially standing for MultiMedia eXtension.
3APL (named after the book A Programming Language) is a pro-

gramming language developed in the 1960s by Kenneth E. Iverson
[9].

4The CDC STAR-100 is a vector supercomputer from 1974 that
was designed, manufactured, and marketed by Control Data Corpo-
ration (CDC) [11].

Steven R. House [12] has put forward the idea of splitting
the lexer into multiple sub lexers for a mini programming lan-
guage. The language provided only allows for integers and,
to avoid ambiguities between identifiers and keywords, the
latter are prefixed by the double-quotes.

Stepping outside the realm of compilers, JSON [13] pars-
ing shares the same objective as lexing, that of organizing
raw data into a structured format. State-of-the-art JSON
parsers such as simdjson [14] rely on SIMD instructions to
speed up text processing and gain four times performance
over RapidJSON, ”the fastest traditional state-machine-based
parser available” [15]. Although the JSON grammar is much
simpler than that of C, it still shares common problems such
as identifying escaped double quotes inside strings. There-
fore, the impressive results achieved by simdjson on modern
hardware suggests that leveraging SIMD in lexers can have
similar results.

4 Lexer Scope and Responsibilities
The boundaries of a lexer’s responsibilities are not rigidly de-
fined and can vary depending on the architecture of the com-
piler in which it is used. Before discussing any implementa-
tion details we need to highlight the extent to which raw text
is going to be processed:

• Preprocessing-related grammar such as the syntax for
directives like #include, #define, and conditional
directives (#ifdef, #ifndef, #if, #elif, #else,
#endif) will not be considered and are assumed to be
handled beforehand by a preprocessor. The same as-
sumption is made about digraph and trigraph replace-
ments.

• Token contents are processed under the assumption of
syntactical correctness, with validation and error han-
dling deferred to subsequent stages. Consequently, a
token like 1not a number2 would be recognized as a
legal numeric constant5.

• Input source code is limited to ASCII characters; Uni-
code and extended character sets are not within the
lexer’s intended functionality.

Moreover, the lexer utilizes token definitions closely re-
sembling those used by Clang.

5 Architecture and Implementation
One way to enable SIMD acceleration in lexical analysis is
to split processing in multiple, smaller, vectorizable sub tasks
whose results are then combined. This leads to the idea of
sub lexers, smaller lexers which identify a subset of tokens
that share structural similarities. Different sub lexers can find
overlapping tokens, in which case we prioritize certain token
types over others, given an ordering scheme.

We focus on AVX2 and earlier instructions which work
on vectors of 32 characters at a time to speed up the lexing
process. These instructions are widely supported on modern

5Clang is an example of a modern compiler exhibiting similar
behavior.

CPUs across different platforms, ensuring compatibility and
future-proofing.

After loading the source code into memory, we process it in
batches of 32 characters (a full vector), which are then passed
to the sub-lexers. Each sub lexer generates a vector of tags
that marks each character as either the beginning of a token
or part of a token’s body.

The results from different sub lexers are merged using a
prioritization scheme, and tokens are extracted from the tag
vector by identifying the leading characters. This iterative
process continues until all characters have been processed.
Finally, an End of File (EOF) token is appended to signify
the end of the token sequence. A diagram of this process can
be seen in Figure 1.

Figure 1: Architecture

We split the C17 grammar into nine SIMD-friendly lexical
groups. These groups include:

• Four categories of simple tokens (which are always the
same and do not require additional storage beyond their
type):

– Whitespaces
– One-byte punctuators (+, ;, ...)
– Two-byte punctuators (+=, >>, ...)
– Three-byte punctuators ((>>=, ...)

• Six categories of complex tokens (which contain addi-
tional data):

– Identifiers (foo, ...)
– Keywords (int, auto, ...)
– Numbers (2024, 21.06, ...)
– Strings ("foo", ...)
– Characters (’a’, ...)
– Comments (// c, /* c */, ...)

By their nature, complex tokens can span across multi-
ple vectors which introduces horizontal data dependency be-
tween batches, something that SIMD struggles with. How-
ever, focusing solely on the leading characters of tokens al-
lows us to interpret complex tokens like numbers, identi-
fiers, and strings as implicit sequences of bytes with varying
lengths. Figure 2 illustrates this concept.

int x += 1.E0;/* "c" */x>>= ’0’;
// Tags:
I__0I_200N___4_________i1000C004

Figure 2

This is referred as in-situ6 and we do it by keeping point-
ers7 to the start of tokens.

Since simple tokens are already defined by their types and
do not need the in-string memory anymore after lexing. We
can convert them to null-bytes to make complex-token null-
terminated. This makes it easier for subsequent compiling
stages to handle them, as in figure 3

// Before:
int x += 1.E0;/* "c" */x>>= ’0’;
// After:
int@x@@@@1.E0@@@@@@@@@@x@@@@’0’@

Figure 3: Input with simple tokens replaced by null-bytes (here rep-
resented by @).

For the remainder of this section we will describe in-depth
all sub lexers and provide implementation details for the
x86/x64 architecture.

5.1 Lookaround
SIMD code operates on vectors whose size depends on the
CPU architecture. Consequently, tokens may span multiple
vectors. However, for simplicity, the algorithms described in
the following sections work as if data resides in a single large
vector. This can be done because all sub lexers are designed to
require minimal lookaround (i.e. lookahead and lookbehind),
with the three-byte punctuator requiring the most (specifi-
cally, two bytes of lookahead). Using lookaround we abstract
lexing from vector sizes.

5.2 White spaces
White spaces, such as spaces, tabs, and newline characters
(line feed and carriage return), serve as delimiters between
tokens but are not tokens themselves. To get a mask of these
we do one comparison using vpcmpeqb (compare equal) for
every type and the combine the results using vpor (logical
OR).

After applying the mask, the vector tags is modified by re-
placing the masked positions with the white space tag. Figure
4 illustrates the updated vector.

int x += 1.E0;/* "c" */x>>= ’0’;
// Tags:
___0____0_______0___0______0____

Figure 4: The updated vector after the white spaces sub lexer, with
0 being the white space tag.

5.3 Punctuators
Punctuators are tokens whose syntactic and semantic mean-
ing depends on the context [16]. For example, the asterisk
(*) can represent both multiplication (a * b), pointer type
definition (int *x), or dereferencing (*ptr).

6In-situ means processing or modifying data directly in its orig-
inal location. In the context of tokenization, this approach involves
not copying tokens to a separate data structure.

7We actually remember integer position in the original string as
opposed to pointers to have a more compact memory layout.

Since some punctuators can contain other punctuators
within them, we categorize punctuators by their length into
one-byte, two-byte, and three-byte groups for lexing. To pre-
vent conflicts, we prioritize the longest punctuators over the
shorter ones.

Three Byte Punctuators
Three-byte punctuators are defined by the shift assign oper-
ators (<<=, >>=) and the ellipsis (...). They can be lexed
by using vector comparisons to create four masks for each
unique character and then do a combination of shifting and
merging them to produce the a mask of the leading characters
of each token.

To ensure that the remaining characters in the token do not
get assigned to another token, we temporarily assign them the
white space character as seen in figure 5.

int x += 1.E0;/* "c" */x>>= ’0’;
// Tags:
___0____0_______0___0___9000____

Figure 5: The updated vector after the three byte punctuator sub
lexer.

Two Byte Punctuators
There are 19 two-byte punctuators (excluding preprocess-
ing directives), including the arithmetic assignment operators
(+=, -=, *=, /=, %=), the increment and decrement op-
erators (++, --), the bitwise assignment operators (&=, |=,
ˆ), the logical operators (&&, ||), the shift operators (<<,
>>), the relational operators (<=, >=, ==, !=), and the ar-
row operator (->).

We identify them by applying the same logic as for the
three-byte punctuators, getting a mask of the leading char-
acter of each token. We then keep only the leading charac-
ters whose positions have unassigned tags to not overwrite
three-byte punctuators. Because writing to the tags vector has
lower throughput than merging the masks, we found it faster
to combine the masks of all two-byte punctuators and update
the vector in one instruction using vpblendvb (blend packed
bytes). Given a common mask we cannot differentiate be-
tween different token types, but by assigning each token the
sum of the ASCII values of its characters minus two, we get
tags that do not overlap with other token types.

Applying the described technique on the example input but
with different tags for readability reasons is presented in fig-
ure 6.

int x += 1.E0;/* "c" */x>>= ’0’;
// Tags:
___0__200_______0___0___9000____

Figure 6: The updated vector after the two byte punctuator sub lexer.

One Byte Punctuators
There are 24 one-byte punctuators (excluding preprocessing
directives), including arithmetic (+, -, *, /, %), compar-
ison (<, >, =, !) and bitwise (&, |, ˆ, ˜) operators, as
well as grouping symbols like parentheses ((,)), brackets

([,]), and braces ({, }). Additionally, they include separa-
tors such as the comma (,), semicolon (;), colon (:), period
(.), and the ternary operator (?).

Although similar to white spaces in structure, due to the
large number of characters, doing one comparison per item
is very expensive. Lemire and Langdale [14] suggest a bet-
ter approach called vectorized classification which finds a
combined mask for a set of target characters. It utilizes the
vpshufb (byte shuffle given lower nibble) instruction, which
acts as lookup table, calling it twice to assign set member-
ships for the lower and upper nibbles of each character. Using
vpand (Logical AND), we combine the two results, giving us
a mask of one-byte punctuators in the input vector.

Before updating the tags vector, we remove from the mask
periods that represent decimal points. Decimal points are pe-
riods that are either directly followed or which follow a nu-
meric character. In syntactically correct C code, these periods
are always part of numeric constants and are not tokens on
their own and as such, we remove them from the mask. This
can be done by creating a mask of numeric characters and
one for periods. Using vpor (Logical OR) on a left shifted
numeric mask and a right shifted one, we get a mask of all po-
sitions which have at least one numeric character as a neigh-
bour. Combining this mask with the periods one gives us the
decimal points that we then remove from the one-byte punc-
tuators mask using vpxor (logical exclusive OR). In the case
of illegal C code, we expect subsequent stages to catch the
error.

Finally, using the mask created by vectorized classification,
the tags vector can updated by assigning to each punctuator
a token tag equivalent with the ASCII value of its character.
In figure 7 we assign a different value than the ASCII one for
improved readability.

int x += 1.E0;/* "c" */x>>= ’0’;
// Tags:
___0__200____45607_7065_10008_84

Figure 7: The updated vector after the one byte punctuator sub lexer.

5.4 Identifiers
Identifiers serve as names for variables, functions, constants,
and types, and they consist of letters, digits, and underscores.
Because identifiers have varied-length we lex them by mark-
ing only the starting character which in this case can be either
a letter or an underscore. A character is starting if it follows
a white space or punctuator token.

A mask of starting characters is get by merging a shifted
right mask of white spaces or punctuators with a mask of En-
glish letters or underscores. The first mask is get by com-
bining with vpor the white spaces mask with the punctua-
tors mask from before. The second mask we can get through
range searches in the input vector, specifically the range of
lower case (97 - 122) and upper case (65 - 90) English alpha-
bet letters.

Efficient range searches can be done using pcmpistrm in-
struction (compare implicit length strings return mask) which
takes a list of ranges and returns a mask of all bytes falling in
at least one of those ranges.

The updated tags vector is portrayed in figure 8.

int x += 1.E0;/* "c" */x>>= ’0’;
// Tags:
I__0I_200____45607I7065I1000_004

Figure 8: The updated vector after the one byte punctuator sub lexer.

Keywords
Keywords are identified by comparing tokens against a pre-
defined list of reserved words specific to the programming
language. Initially, all tokens are treated as identifiers. Each
token is subsequently examined against the list of reserved
words to check if it corresponds to any keywords; if a match
is found, it is designated as a keyword; otherwise, it retains
its status as an identifier.

For efficient token matching against the reserved words
list, Lemire [17] introduces a method employing a non-
collision hash function. This function maps the initial bytes
of each identifier to a 1-byte key. The reserved keywords are
stored in a lookup table indexed by these keys. Upon pro-
cessing each identifier, its hash key is computed, and the cor-
responding entry in the lookup table is checked to determine
if it matches the identifier, ensuring equality using vpcmpeqb.

5.5 Numbers
In the C programming language, numeric constants fall in
two categories: integers and floating point numbers. Inte-
gers are represented as continuous sequence of digits. Float-
ing point numbers can be written in decimal notation which
is described by an optional8 sequence of digits followed by
another sequence of digits with a decimal point in between.
Additionally, floating point numbers can accept different ex-
ponent notations such as scientific notation (e.g. 1E2).

Moreover, numbers can have trailing characters defining
their type (e.g. 1u being unsigned integer). In order to cover
the vast range of numeric constants and also allow for com-
piler extensions, we consider numbers all sequences starting
with a digit or period that are followed by alphanumeric char-
acters or other periods9. However, since we only mark the
leading character, it is enough to create a mask of digits and
all unassigned periods (which are decimal points) and keep
only the ones that follow directly either a white space or a
punctuator. We do this by using the previous punctuators and
white space masks, that we shift by one to the right and merge
with the digits-period mask using vpand.

Getting a digits mask can be done by range searching for
characters in digits range (from 48 until 57 in ASCII). For
range searches we use pcmpistrm.

By this stage, a representation of the tags vector can be
seen in figure 9, where we mark number tags with the letter
n.

5.6 Strings and Character constants
Strings are sequences of (escaped) characters surrounded by
double quotes, while character constants represent one (es-
caped) character surrounded by single quotes. In the context

8.1 is a legal floating point number with the value 0.1.
9Similar behaviour can be seen in Clang.

int x += 1.E0;/* "c" */x>>= ’0’;
// Tags:
I__0I_200N___45607I7065I10000N04

Figure 9: The updated vector after the numbers sub lexer.

of lexical analysis, character constants are not validated and
their length is not checked (for example ’ab’ will be a legal
token). For all intents and purposes, we treat characters as
strings with a different enclosing character. For the rest of
this section we explain string lexing but the same logic is ap-
plied for character constants.

Strings represent the most complex token type because
they can hold inside of them other tokens that should not
be extracted. Moreover, strings can contain escaped ending
characters which need to be detected beforehand. Lemire and
Langdale [14] proposed a fully branchless SIMD algorithm
for solving this problem. It first finds a mask of all double
quote characters by vector comparison. Then it finds a mask
of escaped characters using a formula10 that uses the mask
of even-indexed positions, odd-indexed positions and a mask
of backslashes. The second mask is used to remove escaped
double quotes from the first mask.

Lemire and Langdale [14] then show that to get a mask of
the strings, we can do prefix XOR on the unescaped double
quotes mask. Prefix XOR can be done in a SIMD manner
by doing pclmulqdq (carry-less multiplication) between the
mask and a vector full of 1’s.

If a string is longer than the vector size, then we assign
the first character of the next vector to a string so the string
continues. Similarly to identifiers and numbers, we assign
string tags to double quotes that follow white space character
and which are not part of the body of any strings.

In the end, we take the mask of strings and use it to mark
the start of the string with a tag but also to remove any tokens
found inside the string. To make sure that the body of the
string does not get assigned to another token, we temporarily
mark it with the white space tag as seen in figure 10.

We do the same process for character constants as well.

int x += 1.E0;/* "c" */x>>= ’0’;
// Tags:
i__0i_200n___4560S00065i1000C004

Figure 10: The updated vector after the string and character literals
sub lexers.

5.7 Comments
Comments represent text that is ignored by the compiler.
Usually they are used for improving code readability by ex-
plaining and clarifying code. Similar to strings, comments

10That is: (((B + (B &˜(B << 1)& E))& ˜B)& ˜E) | (((B
+ ((B &˜(B << 1))& O))& ˜B)& E). Here, B is the mask of
backslashes, E is the mask of even-indexed positions and O is the
mask of odd-indexed positions [14].

may include tokens that need to be discarded but unlike
strings, we do not store comments as different tokens.

There are two type of comments: line comments (starting
with //, ending with newline) and block comments (starting
with /*, ending with */). For both types of comments, we
create a mask of the starting and ending delimiters which are
not inside strings, and then apply prefix XOR on it. If the
comments do not contain starting delimiters in them, then a
mask of each comment has been created. If the comments
contain starting delimiters in them, then the mask considers
ill-formed comments that end at a starting delimiter. To fix
this, we remove the */ that comes after another */ and re-run
the process. That is, we remove all starting delimiters whose
position is 0 in the prefix XOR. After at most three runs, we
get a mask of the comments, however most code comments
do not include other comments inside and we expect that on
average this does not need any rerunning.

In a similar fashion, for line comments newlines that start
comments need to be removed. That is, newlines whose pre-
fix XOR value is 1 (one). A mask of all comments is then
formed by merging the two masks and it is used to remove all
tags found inside it as shown in figure 11

If a comment is longer than the vector size, then we as-
sign the first character of the next vector to a comment so the
comment continues.

int x += 1.E0;/* "c" */x>>= ’0’;
// Tags:
I__0I_200N___4_________i1000S004

Figure 11: The updated vector after the comments sub lexer.

5.8 Token extraction
After all sub lexers finish, there is a vector of tags marking
the start of all tokens. We use it to extract token values and
then store them in an Structure of Arrays (SoA)11.

Using a vector of positions and pext (parallel bits extract)
we can extract all tokens and their positions in a SIMD man-
ner like in figure 12 and 13. The extracted values can then be
stored efficiently in memory using vmovdqu (move unaligned
packed integer values).

int x +=
// Tags:
I___i_2_
// Positions:
01234567

Figure 12: First 8 characters.

After the last batch of tokens was extracted, the EOF (end
of file) token is appended, finalising the lexing phase.

6 Experiments
Experiments are conducted to evaluate the performance of the
proposed architecture and analyze its behaviour dealing with

11The Structure of Arrays (SoA) layout stores data in separate
arrays which allows for SIMD loading and processing.

// Tags:
Ii2_____
// Positions (’d’ means "do not care"):
046ddddd

Figure 13: First 8 characters after pext.

different types of input. Lastly, they allow for a better under-
standing of its role compared to alternative implementations.

Input source code is loaded into memory and pre processed
(as outlined in Section 4) before running any experiments. By
isolating I/O operations, we obtain more accurate and reliable
benchmark results, focusing only on the lexer’s processing
efficiency. Additionally, the preprocessing stage in essential
to avoid feeding unknown characters to the lexer (such as #
used in the context of directives). For the purpose of this
paper, we use GCC’s preprocessor and its output as printed
by the flags -E -C12 from which we remove preprocesser’s
comments that start with #, using grep -v ˆ#.

The effectiveness of SIMD instructions relies heavily on
the specific hardware they are executed on. For these experi-
ments we will run the lexers on an AMD processors with the
specifications in table 3.

Table 1: Hardware

Processor Microarchitecture Base Hz Max Hz

AMD Ryzen 9 5900HS Zen 3 3 GHz 4.6 GHz

The lexer is written in C11 (CLANG 18) using SIMD in-
trinsics. The code is compiled with the -O3 flag for maximum
performance. We use the AVX2 instruction set and 256-bit
vector registers and we call SIMD instructions using intrin-
sics. In each benchmark we time using clock the period of
time spent lexing.

To have a better understanding of the results, we compare
them to existing solutions. For this we picked a collection
of three lexers covering the most prominent active imple-
mentations. CHIBICC [18] is a toy compiler with a tradi-
tional lexer implementation, following a finite state machine.
Simd-lexer (to which we will refer to as Mateuszd6/simd-
lexing) written by Mateusz Dudziński (with GitHub tag: Ma-
teuszd6) [19] represents an alternative SIMD implementation
that uses SIMD for lookahead. GCC is a state-of-the art com-
piler whose lexer can be accessed through various command
line flags. Their exact version is referenced in table 2. From
now on, we will refer to the implementation of the method
proposed in Section 5 as simd-lex.

6.1 Throughput
Throughput in the context of lexing refers to the rate at which
a lexer processes input data. Calculating throughput is crucial
as it provides insights into the efficiency and performance of
the lexer implementation.

Throughput of different designs is closely linked with the
input provided as some approaches deal better with certain

12The -E flag instructs GCC to stop after the preprocessing stage,
and the -C flag retains comments in the preprocessed output.

Table 2: Comparison lexers

Lexers used for comparison.

Lexer Snapshot

https://github.com/Mateuszd6/simd-lexing June 23, 2024
https://github.com/rui314/chibicc June 23, 2024
GCC 13.1

peculiarities of input (such as heavily commented code or
very short variable names). For this reason, we benchmark
results of the lexers outlined in table 2 against a set of pub-
licly available C single compilation units listed in 3.

Table 3: Files

Single compilation unit files used for benchmarking and the
number of lines of code (LoC) after the preprocessing stage.

File Preprocessed LoC

GCC 734k
oggenc 73k
gzip 21k

people.csail.mit.edu/smcc/projects/single-file-programs

CHIBICC and Mateuszd6/simd-lexing and simd-lex are
timed by recording the clock time at the start of lexing and
at the end. Due to it’s complex nature, timing GCC is
more complicated. However, using the flags -ftime-report
-fsyntax-only we get a report of how much time it was
spent in each stage of the compiler’s frontend. We will use
”lexical analysis” wall time as measurement for the speed of
GCC’s lexer. These experiments were run 100 times and on
the device covered in table 3 and their results can be seen in
figure 14.

Figure 14: Throughput on AMD Zen 3 (higher is better).

Moreover, input size can have an impact into algorithmic
performance. To check for this, we determine the through-
put of different synthetically created source code of varying
sizes. Figure 15 plots such data. From it we observe a speed
increase as input grows in the beginning, but converges by the

end. The initial growth can be attributed to ramp up13.

Figure 15: Throughput on synthetic data (higher is better).

7 Responsible Research
7.1 Proof of correctness
C programs are prone to bugs due to the language’s low-level
operations and lack of built-in safety features. This vulnera-
bility is particularly concerning given the widespread use of C
in embedded software, which has led to several catastrophic
bugs. For instance, in 2009, a stack overflow in the software
of a Toyota car caused unintended acceleration, resulting in
the deaths of four people [20] [21].

Compilers are crucial in ensuring the correctness of code
logic. A flawed compiler can misinterpret correct code, lead-
ing to unintended behavior. In this context, lexical analysis
is vital to ensure that tokens are correctly identified and pro-
cessed.

Formal proofs are ideal for validating the techniques dis-
cussed in this paper, however, time constraints led to the use
of empirical testing to assess correctness. This means that it
is up to engineers to consider worst-case scenarios and make
responsible decisions on whether the proposed ideas fits their
project.

7.2 Reproducibility
To ensure the transparency and reliability of our research
findings, all tests conducted throughout this study were auto-
mated14, allowing for consistent and repeatable results. Fur-
thermore, an implementation of the proposed technique has
been made publicly available on GitHub15, accessible to all
interested parties for review and replication.

8 Conclusion and Future Work
In this paper we aimed to see the extent to which SIMD
instructions found in conventional x86/x64 hardware can

13Ramp up is the process of filling up the CPU’s pipeline.
14https://github.com/alexbolfa/simd-lex-experiments
15https://github.com/alexbolfa/simd-lex

improve lexical analysis. Given the results from our experi-
ment we draw the conclusion that significant speeds ups can
be seen over mainstream lexers such as that employed by
GCC (by a 12x speed up). While results are promising, it
is important to keep in mind that the proposed architecture is
more complex than what is currently used by other lexers.

Similar SIMD-oriented lexer architectures can be devel-
oped for other programming languages, particularly those
with grammars similar to that of C, such as Java and C++.
We expect achieving comparable improvements in these con-
texts.

To get a better understanding of the lexer’s performance it
is important to test it across different processor architectures
and micro-architectures16. This should provide generalizabil-
ity of our findings and even boost performance with the ad-
vent of AVX512, which introduces larger registers and new
instructions.

Looking ahead, future efforts could focus on paralleliz-
ing lexing using Multiple Instruction Multiple Data (MIMD)
techniques, such as multithreading. This approach could
potentially enhance performance by executing multiple sub-
lexers in parallel, with results aggregated at the token extrac-
tion stage. This should be possible as multiple sub-lexers run
independently of each other.

Additionally, extending these optimizations to the ARM
architecture family presents a compelling avenue for future
research, in which we expect to achieve similar performance
gains to those observed in x86/x64 architectures.

8.1 Acknowledgements
We would like to express our gratitude to Daniel Lemire and
Geoff Langdale for their significant contributions in advanc-
ing SIMD capabilities in test processing. Additionally, we
extend our thanks to Arav Khanna for his valuable insights in
using SIMD.

References
[1] Free Software Foundation, GNU Compiler Collection

(GCC) Manual. Free Software Foundation, 2024.
[2] I. Corporation, “Intel® Advanced Vector Extensions

512 (Intel® AVX-512),” Intel Corporation, 2017.
[3] “Programming languages – C,” 2018. ISO/IEC

9899:2018.
[4] I. Corporation, “Intel architecture mmx technology,”

1996. Accessed: 2024-06-20.
[5] Wikipedia contributors, “Single instruction, multiple

data — Wikipedia, the free encyclopedia.” https://en.
wikipedia.org/wiki/Single instruction, multiple data,
2024. Accessed: May 8, 2024.

[6] I. Corporation, “Intel architecture sse technology,”
1999. Accessed: 2024-06-20.

[7] I. Corporation, “Intel advanced vector extensions (intel
avx),” 2011. Accessed: 2024-06-20.

16Microarchitecture refers to the specific design or implementa-
tion of a CPU at the internal level.

https://github.com/alexbolfa/simd-lex-experiments
https://github.com/alexbolfa/simd-lex
https://en.wikipedia.org/wiki/Single_instruction,_multiple_data
https://en.wikipedia.org/wiki/Single_instruction,_multiple_data

[8] R. Bernecky, “An spmd/simd parallel tokenizer for
apl,” in Proceedings of the 2003 Conference on APL:
Stretching the Mind, APL ’03, (New York, NY, USA),
p. 21–32, Association for Computing Machinery, 2003.

[9] Wikipedia contributors, “APL (program-
ming language).” https://en.wikipedia.org/wiki/
APL (programming language), 2024. [Online; ac-
cessed 3-June-2024].

[10] M. K. Donegan and S. W. Kartzke, “Lexical analysis
and parsing techniques for a vector machine,” SIGPLAN
Not., vol. 10, p. 138–145, jan 1975.

[11] W. contributors, “Cdc star-100.” https://en.wikipedia.
org/wiki/CDC STAR-100, [year when the page was last
updated, or n.d. if not available]. Accessed [Access
Date].

[12] S. R. House, “Compiling in parallel,” in Conpar
81 (W. Brauer, P. B. Hansen, D. Gries, C. Moler,
G. Seegmüller, J. Stoer, N. Wirth, and W. Händler, eds.),
(Berlin, Heidelberg), pp. 298–313, Springer Berlin Hei-
delberg, 1981.

[13] T. Bray, “The JavaScript Object Notation (JSON) Data
Interchange Format.” RFC 8259, Dec. 2017.

[14] G. Langdale and D. Lemire, “Parsing gigabytes of json
per second,” The VLDB Journal, vol. 28, p. 941–960,
Oct. 2019.

[15] S. Palkar, F. Abuzaid, P. Bailis, and M. Zaharia, “Fil-
ter before you parse: faster analytics on raw data with
sparser,” Proceedings of the VLDB Endowment, vol. 11,
pp. 1576–1589, 07 2018.

[16] IBM, “Ibm xl c/c++ for aix documentation: Tokens,
punctuators, and operators,” 2022.

[17] D. Lemire, “Recognizing string prefixes with simd in-
structions,” 2023. Accessed: 2024-06-12.

[18] rui314, “Chibicc: A Small C Compiler,” 2024. Ac-
cessed: June 16, 2024.

[19] Mateuszd6, “simd-lexing: SIMD Lexer Implementa-
tion,” 2024. Accessed: June 16, 2024.

[20] S. A. Bowen and Y. Zheng, “Auto recall crisis, framing,
and ethical response: Toyota’s missteps,” Public Rela-
tions Review, vol. 41, no. 1, pp. 40–49, 2015.

[21] Wikipedia contributors, “2009–2011 toyota vehicle
recalls.” https://en.wikipedia.org/wiki/2009%E2%80%
932011 Toyota vehicle recalls, 2023. Accessed: 2024-
05-24.

https://en.wikipedia.org/wiki/APL_(programming_language)
https://en.wikipedia.org/wiki/APL_(programming_language)
https://en.wikipedia.org/wiki/CDC_STAR-100
https://en.wikipedia.org/wiki/CDC_STAR-100
https://en.wikipedia.org/wiki/2009%E2%80%932011_Toyota_vehicle_recalls
https://en.wikipedia.org/wiki/2009%E2%80%932011_Toyota_vehicle_recalls

	Introduction
	Background
	Related Work
	Lexer Scope and Responsibilities
	Architecture and Implementation
	Lookaround
	White spaces
	Punctuators
	Three Byte Punctuators
	Two Byte Punctuators
	One Byte Punctuators

	Identifiers
	Keywords

	Numbers
	Strings and Character constants
	Comments
	Token extraction

	Experiments
	Throughput

	Responsible Research
	Proof of correctness
	Reproducibility

	Conclusion and Future Work
	Acknowledgements

