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ABSTRACT

This thesis deals with n-to-1 entanglement distillation protocols for bipartite quantum
systems in a group theoretical setting. The local operations in the protocols are restricted
to Clifford operations. An efficient representation of the elements of the Clifford group
in terms of binary matrices is presented. Moreover, a characterization of the subgroup of
the Clifford group which leaves the fidelity and the success probability invariant is given.
Based on this characterization, a novel approach for the optimization of distillation pro-
tocols is presented: instead of checking every element of the Clifford group individually,
it is sufficient to consider one element of every right coset of this subgroup. These new
insights are used to find optimal protocols for n = 2, 3, 4 and 5.

i



CONTENTS

1 Introduction 1

2 Introduction to Quantum Information Theory 3
2.1 Describing a quantum state . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Density operator . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Combining systems: tensor product . . . . . . . . . . . . . 5
2.1.3 Reduced density operator . . . . . . . . . . . . . . . . . . 7
2.1.4 Quantum measurements . . . . . . . . . . . . . . . . . . 7

2.2 Quantum circuits . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Single qubit operations . . . . . . . . . . . . . . . . . . . 9
2.2.2 Multiple qubit operations . . . . . . . . . . . . . . . . . . 10

3 Group Theoretical Framework 13
3.1 The Pauli group and the Clifford group . . . . . . . . . . . . . . . 13

3.1.1 Pauli group. . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 Clifford group . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Binary representation . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.1 Important Clifford operations in their symplectic form . . . 20
3.2.2 Characterization of the homomorphism φ . . . . . . . . . . 23

4 Entanglement Distillation 27
4.1 Characterization of bipartite entanglement . . . . . . . . . . . . . 27

4.1.1 Introduction to quantum entanglement . . . . . . . . . . . 27
4.1.2 Correspondence between Bell states and Pauli matrices . . . 30

4.2 Structure of distillation protocols . . . . . . . . . . . . . . . . . . 31
4.3 DEJMPS protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Bilocal Clifford circuits 36
5.1 Characterization of bilocal Clifford circuits . . . . . . . . . . . . . 36
5.2 Base and pillars . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Preservation of distillation statistics. . . . . . . . . . . . . . . . . 41

5.3.1 Generators of Dn . . . . . . . . . . . . . . . . . . . . . . . 42
5.3.2 Order of φ[Dn] . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.3 Further reduction for symmetric input states . . . . . . . . 52

6 Algorithms for optimization 54
6.1 Algorithm for finding a transversal . . . . . . . . . . . . . . . . . 54
6.2 Algorithm for calculating distillation statistics . . . . . . . . . . . 56

7 Results of optimization 57
7.1 Isotropic states . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

ii



CONTENTS iii

7.2 Bell diagonal states . . . . . . . . . . . . . . . . . . . . . . . . . 60

8 Conclusion 63

References 65

A Equivalent quantum circuits 67
A.1 Proof that CZi j ∈ 〈SD〉 . . . . . . . . . . . . . . . . . . . . . . . . 67

B Implementations in SageMath 69
B.1 Finding a transversal . . . . . . . . . . . . . . . . . . . . . . . . 69
B.2 Calculating distillation statistics . . . . . . . . . . . . . . . . . . 70



1
INTRODUCTION

Entanglement is one of the fundamental concepts in quantum mechanics. It has been
the topic of many studies since it was first described by Einstein et al., 1935. Not only is
entanglement interesting from a theoretical point of view, but it also has a wide range of
applications. Within the field of quantum information theory, entanglement is broadly
used in for instance quantum cryptography (Deutsch et al., 1996) and quantum telepor-
tation (Bennett et al., 1996c).

Many of these applications exploit pure maximally entangled states. In practice, how-
ever, setting up entangled states never results in pure maximally entangled states. In-
stead, mixed states are created that have a certain probability of being the intended
maximally entangled state, but also have a nonzero probability of being a different, un-
wanted state. This is referred to as noise. A natural question that arises is how to deal
with this noise. This problem has first been considered by Bennett et al., 1996c. In their
paper, they established a framework for the distillation (or purification) of entanglement.
The starting point is a number of copies (n) of a mixed state, which is shared by a number
of parties. Using only local operations and classical communication, these noisy states
can be transformed into a smaller number of copies (m) of a state close to a maximally
entangled state. Such a set of local operations and classical communication is called an
n-to-m entanglement distillation protocol.

In this thesis n-to-1 entanglement distillation protocols for bipartite systems are studied.
In Deutsch et al., 1996, a 2-to-1 protocol was published, which has been proved to be
optimal for various input states, see for instance Dehaene et al., 2003b and Rozpędek
et al., 2018. Much is unknown, however, about n-to-1 protocols for larger values of
n. One of the difficulties of studying these protocols lies in the number of possible
local operations that can be performed, because this number increases rapidly with
the number of copies in the input state. Therefore, the main goal of this thesis is to
decrease the number of operations that needs to be considered when looking for an
optimal protocol.
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To this end, entanglement distillation protocols are studied in a group theoretical setting.
In this setting, quantum states are described in terms of Pauli matrices. These states are
acted upon by elements of the Clifford group, an important specific class of quantum
operations. Special attention is put to the equivalent description of the quantum states
and Clifford operations in terms of binary linear algebra. This description is based on
Dehaene and Moor, 2003a and Hostens, 2007, but is reformulated here in the context of
entanglement distillation protocols.

To decrease the number of operations that need to be considered, we search for elements
of the Clifford group that do not affect the outcome of the protocol. These elements
form a subgroup of the Clifford group that is referred to as the subgroup that preserves
the distillation statistics. The main novel contribution of this thesis is a characterization
of this subgroup in terms of its order and a generating set of operations. Moreover, it is
shown that every element of the Clifford group can be decomposed into an element of
the subgroup that preserves distillation statistics and an (other) element of the Clifford
group. As a result, in the optimization of the distillation protocols, it is sufficient to
consider only one element of every right coset of the subgroup in the Clifford group,
instead of checking every element of the Clifford group individually. These new insights
are used to find optimal protocols for n = 2, 3, 4 and 5.

In Chapter 2 and Chapter 3 the quantum mechanical and mathematical frameworks for
the remainder of this thesis are given. Firstly, in Chapter 2 the necessary concepts of
quantum information theory are introduced. Then, in Chapter 3 the group theoretical
framework to describe distillation protocols is given. This includes the representation
of the relevant group in terms of binary matrix algebra, which we reformulated in a way
that is more convenient to work with in the context of distillation protocols.

In Chapter 4 a general description of entanglement distillation protocols is given. This
includes an introduction to the concept of quantum entanglement and a description of
the structure of distillation protocols. As an example, the protocol published by Deutsch
et al., 1996 is considered. Starting from the general description of protocols, Chapter 5
describes the restrictions made to arrive at the bi-local Clifford circuits, which are the
protocols of interest in this thesis. We introduce the new concepts of base and pillars,
which allow for a visual way of thinking about distillation protocols. Keeping this visual-
ization in mind, we present and prove two theorems about the structure of the subgroup
that preserves the distillation statistics. Firstly, we come up with a generating set of
operations for the subgroup, and then we provide a proof for the order of the subgroup.
The latter indicates that for optimizing the distillation protocols it is indeed far more
efficient to consider only one element of every right coset of the subgroup

In Chapter 6 we provide an algorithm for finding a transversal of the cosets. Moreover,
it is explained how, using this transversal, optimal protocols can be found, based on a
variety of criteria. The results of this optimization for various input states are shown in
Chapter 7. Finally, Chapter 8 provides a conclusion on the main results achieved in this
thesis and a discussion on the implications of the research in this thesis.

This thesis has been written as part of the double bachelor’s degree Applied Mathematics
and Applied Physics at the Delft University of Technology.



2
INTRODUCTION TO QUANTUM

INFORMATION THEORY

In this chapter an introduction to the main concepts from quantum information theory
used in this thesis is provided. Firstly, in Section 2.1 the framework that is needed to
describe quantum systems is given. Then, in Section 2.2, the quantum circuit model is
explained. The quantum circuit model is a model to describe quantum computations.
It is used later on in this thesis to describe entanglement distillation protocols. This
chapter is mainly based on Nielsen and Chuang, 2016.

2.1. DESCRIBING A QUANTUM STATE
In this section the framework to describe the state of a quantum system is given. After
a general introduction, including the definition of a qubit, four different aspects of de-
scribing a quantum system are explained. Firstly in Section 2.1.1 the density operator
formulation is treated. In Section 2.1.2 the tensor product is introduced as a way to
describe composite quantum systems. In Section 2.1.3 the knowledge from these two
sections is combined to arrive at the reduced density operator. Finally, in Section 2.1.4
measurements on quantum systems are considered.

In quantum information theory the possible states of a quantum system are often repre-
sented by unit vectors in a Hilbert space.

Definition 2.1. (Driver, 2003) A (complex) Hilbert space (H ,〈·, ·〉) is a (complex) vector
space with inner product 〈·, ·〉 such that the induced norm ‖ ·‖ =p〈·, ·〉 is complete.

In this thesis, if H is used, a Hilbert space is implied. We will confine ourselves to finite
dimensional Hilbert spaces. Every finite dimensional Hilbert space of dimension n is
isomorphic to Cn (see for instance Triebel, 1986). In quantum information theory, the
‘bra-ket’ notation is often used to denote vectors. In this notation a vector is denoted
by |·〉 ∈ H (the ‘ket’). Its conjugate transpose is denoted by 〈·| ∈ H ∗ (the ‘bra’). In the
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‘bra-ket’ notation, inner products can be written as 〈·|·〉.
As mentioned before, a quantum system can be represented by a normalized vector |Ψ〉 ∈
H . The system that we will be most concerned with in this thesis is the qubit.

Definition 2.2. A qubit is a quantum state that can be represented by a vector |Ψ〉 ∈C2,

|Ψ〉 =
[
α

β

]
α,β ∈C, |α|2 +|β|2 = 1

Transformations of a closed quantum system (i.e., a system that is not interacting with its
surroundings) can be described by unitary operators U : H →H ,

∣∣ψ〉→U
∣∣ψ〉

.

2.1.1. DENSITY OPERATOR
The notation we have used so far can be used to describe pure states. However, some-
times the state of a quantum system is not exactly known. For example, a system is
prepared in state

∣∣ψ1
〉

with probability p1 an in state
∣∣ψ2

〉
with probability p2. The state

of such a system is called a mixed state. To describe a mixed state, a density operator can
be used. Density operators can also be used to describe an entangled state that is shared
by two parties that are separated in distance. Entanglement will be discussed in more
detail in Chapter 4.

Definition 2.3. Suppose a quantum system is in one of the states
∣∣ψi

〉
, each with prob-

ability pi . Then the density operator is given by

ρ =∑
i

pi
∣∣ψi

〉〈
ψi

∣∣
The density operator for a pure state

∣∣ψ〉
simply equals

∣∣ψ〉〈
ψ

∣∣. Theorem 2.4 gives a
characterization of general density operators.

Theorem 2.4. (Nielsen and Chuang, 2016) An operator ρ is a density operator associated
to an ensemble {pi ,

∣∣ψi
〉

} if and only if the following two conditions are satisfied.

1. Tr
(
ρ
)= 1

2. ρ is a positive semidefinite operator.

Proof. Suppose ρ =∑
i pi

∣∣ψi
〉〈
ψi

∣∣ is a density operator. Then

Tr
(
ρ
)= Tr

(∑
i

pi
∣∣ψi

〉〈
ψi

∣∣)=∑
i

pi Tr
(∣∣ψi

〉〈
ψi

∣∣)=∑
i

pi
〈
ψi

∣∣ψi
〉=∑

i
pi = 1.

To prove that ρ is positive semidefinite, first note that ρ is Hermitian. Indeed,

ρ† =
(∑

i
pi

∣∣ψi
〉〈
ψi

∣∣)†

=∑
i

pi
(∣∣ψi

〉〈
ψi

∣∣)† =∑
i

pi
∣∣ψi

〉〈
ψi

∣∣= ρ.
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Moreover, let
∣∣φ〉 ∈H be an arbitrary vector. Then〈

φ
∣∣ρ ∣∣φ〉=∑

i
pi

〈
φ

∣∣ψi
〉〈
ψi

∣∣φ〉=∑
i

pi |
〈
φ

∣∣ψi
〉 |2.

Since the pi are probabilities, they are larger than or equal to 0, so
〈
φ

∣∣ρ ∣∣φ〉≥ 0. Thus, ρ
is positive semidefinite.

Conversely, suppose ρ is a positive semidefinite operator satisfying Tr
(
ρ
) = 1. Since ρ is

positive semidefinite, it follows from the spectral decomposition theorem that

ρ =∑
j
λ j

∣∣ j
〉〈

j
∣∣ ,

where the vectors
∣∣ j

〉
are orthogonal and λ j are real and non-negative eigenvalues of ρ.

Because Tr
(
ρ
) = 1, it follows that

∑
j λ j = 1. Thus, ρ can be seen as the density operator

for the ensemble {λ j ,
∣∣ j

〉
}.

Suppose that the evolution of a closed quantum system in time is given by U . If the
system was originally in state

∣∣ψi
〉

with probability pi , then after the transformation it
is in state U

∣∣ψi
〉

with the same probability pi . Hence, the evolution in time of a density
operator is described by

ρ =∑
i

pi
∣∣ψi

〉〈
ψi

∣∣ U−→∑
i

piU
∣∣ψi

〉〈
ψi

∣∣U † =UρU † (2.1)

2.1.2. COMBINING SYSTEMS: TENSOR PRODUCT
In order to combine multiple quantum systems, the tensor product is widely used in
quantum mechanics. The definition that is used, was provided by Fulton and Harris,
2004. Before stating the definition, firstly a definition of a bilinear map is given.

Definition 2.5. Let V , W and U be vector spaces over the same field K . A function β :
V ×W → U is a bilinear map if for all w ∈ W the map v 7→ β(v, w) is linear and for all
v ∈V the map w 7→β(v, w) is linear.

A bilinear map β : V ×W → U thus satisfies the following two properties for all a,b ∈
K :

1. For all v1, v2 ∈V , w ∈W : β(av1 +bv2, w) = aβ(v1, w)+bβ(v2, w).

2. For all v ∈V , w1, w2 ∈W : β(v, aw1 +bw2) = aβ(v, w1)+bβ(v, w2).

Using this definition, the tensor product can now be defined as follows.

Definition 2.6. The tensor product of two vector spaces V and W (over a field K ) is a
vector space V ⊗W equipped with a bilinear map β : V ×W → V ⊗W, (v, w) 7→ v ⊗w
that is universal: for every bilinear map γ : V ×W → U to a vector space U , there is a
unique linear map γ̃ : V ⊗W →U that takes v ⊗w to γ(v, w).
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Figure 2.1: β is a universal map: for every bilinear map γ : V ×W →U , there is a unique linear map
γ̃ : V ⊗W →U such that (γ̃◦β)(v, w) = γ(v, w).

The picture to keep in mind for this rather abstract definition is shown in Figure 2.1. If
{ei } is a basis for V and { f j } is a basis for W , then {ei ⊗ f j } is a basis for V ⊗W . The
tensor product is associative: (U ⊗V )⊗W =U ⊗ (V ⊗W ) =U ⊗V ⊗W . The tensor power
V ⊗n of a vector space V is defined as the n-fold tensor product of V with itself: V ⊗n =
V ⊗·· ·⊗V .

For linear operators acting on V and W , the tensor product is defined as follows.

Definition 2.7. Let A and B be linear operators that act on V and W , respectively. Then
the tensor product of those operators is defined as

(A⊗B)

(∑
i

ai vi ⊗wi

)
=∑

i
ai A(vi )⊗B(vi ), ∀vi ∈V , ∀wi ∈W, ∀ai ∈ K

This rather abstract discussion can be made more concrete by looking at an example: the
Kronecker product. This is the form of the tensor product that will be used throughout
the rest of this thesis. The definition of the Kronecker product is based on Horn and
Johnson, 1991.

Definition 2.8. Let A = [ai j ] ∈ Mm×n(K ) B = [bi j ] ∈ Mp×q (K ). Then the Kronecker prod-
uct is defined as

A⊗B ≡


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

...
...

an1B an2B · · · annB


A useful property of the Kronecker product is the mixed-product property, which gives
a relation between the Kronecker product and the standard matrix multiplication. It is
proved in Horn and Johnson, 1991.

Theorem 2.9. Let A ∈ Mm×n(K ), B ∈ Mp×q (K ), C ∈ Mn×k (K ) and D ∈ Mq×l (K ) Then

(A⊗B)(C ⊗D) = (AC )⊗ (BD)
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2.1.3. REDUCED DENSITY OPERATOR
Suppose now that we have a composite system, consisting of the subsystems A and B ,
whose state is described by the density operator ρ. To go back to the description of either
system A or system B , we can use the reduced density operator.

Definition 2.10. Let ρ be the density operator describing a composite quantum system.
The reduced density operator for subsystem A is defined by

ρA = TrB (ρ),

where TrB (ρ) denotes the partial trace over system B . For a pure tensor product |a1〉〈a2|⊗
|b1〉〈b2|, it is defined as TrB (|a1〉〈a2| ⊗ |b1〉〈b2|) = |a1〉〈a2|TrB (|b1〉〈b2|). This can be
extended linearly for a general tensor product.

The partial trace is a trace-preserving completely positive map, meaning that, if ρ is
positive semidefinite, then TrB ρ is positive semidefinite too and that Tr

(
TrB ρ

) = Tr
(
ρ
)

(Hayashi, 2006). Consequently, ρA satisfies the conditions from Theorem 2.4, thus ρA

is a density operator. Of course, the roles of A and B can be switched in the discussion
above to derive a similar statement for ρB .

2.1.4. QUANTUM MEASUREMENTS
Suppose that we want to perform measurements on a quantum system. Measurements
imply interactions of the quantum system with the environment, which makes the sys-
tem no longer closed. Hence, these interactions are not necessarily described by unitary
operations. In this section a way to describe quantum measurements is provided.

A quantum measurement is described by a collection of operators {Ma} acting on H .
Here a refers to the possible outcomes of the measurement. If the system is in state |Ψ〉
before the measurement, the probability of obtaining outcome a is given by

p(a) = 〈
ψ

∣∣M †
a Ma

∣∣ψ〉
. (2.2)

If the measurement yields the outcome a, then the new state (the state after the mea-
surement) is described by ∣∣ψa〉= Ma

∣∣ψ〉√〈
ψ

∣∣M †
a Ma

∣∣ψ〉 . (2.3)

The measurement operators must satisfy the completeness relation∑
a

M †
a Ma = I . (2.4)

This relation ensures the fact that the probabilities associated to the measurement out-
comes sum to one: ∑

a
p(a) =∑

a

〈
ψ

∣∣M †
a Ma

∣∣ψ〉= 〈
ψ

∣∣ψ〉= 1. (2.5)

An important example of a measurement is the measurement of a qubit in the compu-
tational basis. This measurement is defined by the measurement operators M0 = |0〉〈0|
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and M1 = |1〉〈1|. Suppose that the state that is being measured is
∣∣φ〉=α |0〉+β |1〉. The

probability of obtaining the outcome 0 then equals

p(0) = 〈
ψ

∣∣M †
0 M0

∣∣ψ〉= |α|2. (2.6)

If the outcome 0 is obtained, the state after the measurement is

M0
∣∣φ〉

|α| = α

|α| |0〉 , (2.7)

which is equal to the state |0〉 up to a phase factor. Similarly, the probability of obtaining

the outcome 1 equals p(1) = |β|2 and the state after the measurement is β
|β| |1〉.

Measurements can also be expressed in terms of density operators. If the system was
originally in state

∣∣ψi
〉

, then it follows from equation (2.2) that the probability of mea-
suring the outcome a is equal to

p(a|i ) = 〈
ψi

∣∣M †
a Ma

∣∣ψi
〉

. (2.8)

Hence, the probability of obtaining outcome a is given by

p(a) =∑
a

p(a|i )pi

=∑
a

pi
〈
ψi

∣∣M †
a Ma

∣∣ψi
〉

=∑
a

pi Tr
(
M †

a Ma
∣∣ψi

〉〈
ψi

∣∣)
= Tr

(
Ma M †

aρ
)

.

(2.9)

Using equation (2.3) it can be derived that the state after the measurement can be de-
scribed by

ρa =∑
i

p(i |a)
∣∣ψa

i

〉〈
ψa

i

∣∣
=∑

i
p(i |a)

Ma
∣∣ψi

〉〈
ψi

∣∣M †
a〈

ψ
∣∣M †

a Ma
∣∣ψ〉 .

(2.10)

It follows from Bayes’ theorem that p(i |a) = p(i , a)/p(a) = p(a|i )pi /p(a). By equations
(2.8) and (2.9) we can thus conclude that

ρa =∑
i

pi
Ma

∣∣ψi
〉〈
ψi

∣∣M †
a

Tr
(
Ma M †

aρ
)

= MaρM †
a

Tr
(
Ma M †

aρ
) .

(2.11)
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2.2. QUANTUM CIRCUITS
In this section a model to describe quantum computations, the quantum circuit model,
is explained. This section includes the introduction of important transformations of sin-
gle qubit states (Section 2.2.1) and of multiple qubit states (Section 2.2.2). The quantum
circuit model will be used later on to describe entanglement distillation protocols.

Classical computation is based upon the concept of a bit, which can take the value ‘0’
or ‘1’. Similarly, quantum computation is based on the concept of a qubit. As we saw in
Definition 2.2, a qubit can have many different states. It is customary to associate the
classical bits with qubits as follows

0 →|0〉 =
[

1
0

]
, 1 →|1〉 =

[
0
1

]
Note that |0〉 and |1〉 form a basis for the Hilbert space C2. This basis is referred to as the
standard basis or computational basis. The state of a general qubit can now be described
by

α |0〉+β |1〉 , α,β ∈C, |α|2 +|β|2 = 1. (2.12)

2.2.1. SINGLE QUBIT OPERATIONS
We start off with operations on a single qubit. In Section 2.1 we saw that transformations
of quantum states can be described by unitary operations. For a one-qubit system,
these transformations are thus represented by 2×2 unitary matrices. In the context of
quantum computation, we will often refer to the transformation operators as gates. For
a general gate U , the gate can visually be represented as shown in Figure 2.2.

α |0〉+β |1〉 U αU |0〉+βU |1〉

Figure 2.2: Visual representation of a single qubit gate.

Important examples of such gates are the Pauli gates:

I =
[

1 0
0 1

]
Y =

[
0 −i
i 0

] X =
[

0 1
1 0

]
Z =

[
1 0
0 −1

] (2.13)

The action of the X and Z gate on a qubit is shown in Figure 2.3. Note that Y = i X Z ,
so the action of Y can be derived from the actions of X and Z , up to a factor i . This
factor i only results in a multiplication of the whole state with i , which will show to
be irrelevant in the context of entanglement distillation protocols, as explained in more
detail in Chapter 5.
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α |0〉+β |1〉 X α |1〉+β |0〉
α |0〉+β |1〉 Z α |0〉−β |1〉

Figure 2.3: Action of the X and the Z gate on a single qubit.

Another gate that we will encounter more often is the Hadamard gate.

H = 1p
2

[
1 1
1 −1

]
(2.14)

The action of the Hadamard gate on a single qubit is shown in Figure 2.4.

α |0〉+β |1〉 H α |0〉+|1〉p
2

+β |0〉−|1〉p
2

Figure 2.4: Action of the Hadamard gate on a single qubit.

The final single qubit gate that we discuss here is the phase gate.

S =
[

1 0
0 i

]
(2.15)

The action of the phase gate on a single qubit is shown in Figure 2.5.

α |0〉+β |1〉 S α |0〉+ iβ |1〉

Figure 2.5: Action of the phase gate on a single qubit.

In the rest of this thesis, we will use the notation Ui to indicate a U gate that acts on
qubit i .

2.2.2. MULTIPLE QUBIT OPERATIONS
Now let us continue with generalizing to operations on multiple qubits. One of the most
used operations in classical computing is the controlled operation: If A is true, then do B.
In quantum circuits this type of operations can be implemented as well. For an arbitrary
unitary operation U we can define the controlled-U operation as an operation on two
qubits, one of which will be referred to as the control qubit and the other one as the
target qubit. If the control qubit is in state |0〉, then the target qubit is left alone. If the
control qubit is in state |1〉, then U is applied to the target qubit.

An example of a controlled-U gate is the controlled-X or controlled-NOT gate (CNOT).
In terms of the computational basis it acts as follows: if the control qubit is in the state
|1〉, the target qubit is flipped. Otherwise, the target qubit is left alone. The matrix
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representation (in the computational basis) is given by

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (2.16)

We will use the notation CNOTi j to indicate a CNOT gate with control qubit i and target
qubit j . The visual representation of the CNOT gate together with its action on a two-
qubit state is shown in Figure 2.6.

|a〉 • |a〉
|b〉 |a ⊕b〉

Figure 2.6: Action of the CNOT gate on a two-qubit system. The qubits are originally is states |a〉 and |b〉. After
applying the CNOT gate, the target qubit is in state |a ⊕b〉, where ⊕ denotes addition modulo 2.

Another important example of a two-qubit gate is the controlled-Z gate (CZ). In the
computational basis, this gate can be represented as follows.

CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (2.17)

The visual representation of a CZ gate is shown in Figure 2.7a. If the control qubit is
in state |0〉, then the target qubit does not change. If the control qubit is in state |1〉,
then the CZ gate acts as a Z gate on the target qubit. As a result, the CZ gate acts as the
identity on |00〉, |10〉 and |01〉 and changes |11〉 to −|11〉. Thus, the CZ gate is symmetric
in the control and the target qubit. Therefore, it is often represented by two controls, as
is shown in Figure 2.7b.

•
Z

(a)

•
•

(b)

Figure 2.7: Two visual representations of the CZ gate.

We will use the notation CZi j to indicate a CZ gate between qubits i and j . We will end
this section with two useful circuit identities that will be used frequently in the rest of this
thesis. Firstly, by noting that X = H Z H , it follows that the CNOT gate can be rewritten
into a CZ gate and vice versa. This equivalence is shown in Figure 2.8.
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• •
=

H • H

(a)

• •
=

• H H

(b)

Figure 2.8: CNOT gate rewritten in terms of a CZ gate and two H gates on the target qubit (a) and vice versa
(b).

Secondly, using 3 CNOT gates a SWAP gate can be made. The SWAP gates permutes the
two qubits that it acts on. The SWAP gate is represented by a cross on the two qubits. It
can be built from CNOT gates as shown in Figure 2.9.

× • • •
= =

× • • •

Figure 2.9: SWAP gate written in terms of 3 CNOT gates.



3
GROUP THEORETICAL

FRAMEWORK

This chapter describes the group theoretical framework for the description of distillation
protocols. In Section 3.1, we start with the introduction of the Pauli group, which will be
used to describe the state of a quantum system, as will be explained in Section 4.1.2. The
other group that plays an important role in this thesis is the Clifford group. This is the
group that consists of all local operations in distillation protocols that are considered in
this thesis (see Chapter 5).

After these groups are introduced, in Section 3.2 an alternative representation of the
Pauli group and the Clifford group in terms of binary matrices is presented. It is shown
that every Clifford operation can be represented as an element of the symplectic group
Sp(2n,Z2). The main result of this section is the characterization of the homomorphism
from the Clifford group to the symplectic group. In Theorem 3.12 it is shown that the
homomorphism is surjective. That is, all symplectic matrices correspond to a Clifford
operation. Moreover, in Theorem 3.13, a description of the kernel of the homomorphism
is provided.

3.1. THE PAULI GROUP AND THE CLIFFORD GROUP
In this section, the Pauli group and the Clifford group are introduced and some of their
properties are discussed.

13
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3.1.1. PAULI GROUP
We begin this section with a recap of the definition of the Pauli matrices

σ0 = I =
[

1 0
0 1

]
,

σ2 = Y =
[

0 −i
i 0

]
,

σ1 = X =
[

0 1
1 0

]
,

σ3 = Z =
[

1 0
0 −1

]
,

(3.1)

which are widely used in quantum mechanics. The Pauli matrices, including the multi-
plicative factors ±1, ±i , form a group under matrix multiplication:

P1 = {±I ,±i I ,±X ,±i X ,±Y ,±i Y ,±Z ,±i Z }. (3.2)

The group P1 is referred to as the Pauli group on one qubit and has order |P1| = 16. The
group P1 can be extended to Pn , the Pauli group on n qubits. The group Pn contains
all 2n × 2n matrices of the form λP1 ⊗ ·· · ⊗Pn with λ ∈ {±1,±i } and Pi ∈ {I , X ,Y , Z } for
all i ∈ {1, ...,n}. An element of this form will be referred to as a Pauli string of length n or
a Pauli string if n is clear from the context. The Pauli strings of length n form a group
under standard matrix multiplication, which can be carried out using the mixed-product
property (see Theorem 2.9). The order of Pn equals |Pn | = 4n+1.

The commutator of two matrices is defined as

[A,B ] = AB −B A, (3.3)

and the anti-commutator is defined as

{A,B} = AB +B A. (3.4)

It can be easily verified that the identity matrix σ0 commutes with all Pauli matrices.
Furthermore, the Pauli matrices σ1, σ2 and σ3 obey the following commutation rela-
tions:

[σ j ,σk ] = 2i
3∑

l=1
ε j klσl , j ,k, l ∈ {1,2,3}, (3.5)

where ε j kl is the Levi-Civita symbol for three indices:

ε j kl =


1, ( j ,k, l ) ∈ {(1,2,3), (2,3,1), (3,1,2)},
−1, ( j ,k, l ) ∈ {(3,2,1), (2,1,3), (1,3,2)},
0, otherwise.

(3.6)

Moreover, they obey the following anti-commutation relations:

{σ j ,σk } = 2δ j kσ0, j ,k ∈ {1,2,3}, (3.7)

where δ j k is the Kronecker delta:

δ j k =
{

1, j = k,
0, j 6= k.

(3.8)

Using the mixed-product property of the Kronecker product (Theorem 2.9), these com-
mutation relations can be extended to general Pauli strings.
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3.1.2. CLIFFORD GROUP
In this section the Clifford group, which will be extensively used in the remainder of this
thesis, is introduced. The Clifford group is a group of unitary matrices that maps the set
of the Pauli group to itself under conjugation. Let U (n) denote the group of all unitary
n×n matrices. Observe that the Pauli group Pn is contained in the unitary group U (2n).
The normalizer of Pn in U (2n) is defined as

NU (2n )(Pn) = {C ∈U (2n) : ∀P ∈Pn C PC † ∈Pn}. (3.9)

Note that NU (2n )(Pn) has an infinite center {e2πiθ I ,θ ∈ R}. Although quantum mechan-
ically, a factor e2πiθ makes no difference (e2πiθPe−2πiθ = P for all θ ∈ R, P ∈ Pn), we
prefer to work with a finite group. For this reason, in some literature the Clifford group is
defined as {C ∈U (2n) : ∀P ∈Pn C PC † ∈Pn}/{e2πiθ I ,θ ∈R} (see for instance Ozols, 2008).
However, we prefer to work with matrices instead of equivalence classes of matrices,
which is why a different definition is adopted here. In accordance with the definition
provided by Calderbank et al., 1998, the Clifford group is defined as follows:

Definition 3.1. The Clifford group on n qubits is the subgroup of NU (2n )(Pn) whose
elements are matrices with entries from the fieldQ(η), with η= 1+ip

2
. 1

The fieldQ(η) is the smallest field which containsQ and η. It consists of the elements
{a +bη+ cη2 +dη3 : a,b,c,d ∈Q}. The motivation behind this restriction to entries from
Q(η) is that it is the smallest field such that Cn contains the Pauli matrices, the phase gate,
the Hadamard gate and, for n > 1, the CNOT gate. The Clifford group from Definition

3.1 is known to have order |Cn | = 2n2+2n+3 ∏n
j=1

(
4 j −1

)
(see Calderbank et al., 1998).

Moreover, it is proved in Section 5.6 and 5.8 of Gottesman, 1997 that Cn is generated
by the set of phase and Hadamard gates on every qubit and CNOT gates on every pair of
qubits.

The next theorem tells us something about the structure of these Clifford operations.

Theorem 3.2. Let C ∈ Cn be a Clifford operation. Then σ : Pn → Pn defined as σ(P ) =
C PC † is an automorphism.

Proof. Let P,Q ∈ Pn . By definition, C is unitary, so CC † = C †C = I . Thus, σ(PQ) =
C PQC † = C PC †CQC † = σ(P )σ(Q), so σ is a homomorphism. This directly implies that
σ is an endomorphism. To show that σ is an automorphism, it is now enough to show
that σ is injective, since Pn is finite. We have

σ(P ) = I =⇒ C PC † = I

=⇒ C †C PC †C =C †IC

=⇒ P = I .

Thus, ker(σ) = {I} and σ is indeed injective.

1In the definition from Calderbank et al., 1998 the ring Q[η] is used, which is the smallest ring that contains Q
and η. However, because η is an algebraic number, we haveQ[η] =Q(η).
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It follows from Theorem 3.2 that conjugation by Clifford operations preserves the com-
mutation relations of the Pauli strings. Indeed, suppose that P,Q ∈ Pn commute. Then
σ(P )σ(Q) = σ(PQ) = σ(QP ) = σ(Q)σ(P ), so σ(P ) and σ(Q) commute. Similarly, if P and
Q anti-commute, then σ(P )σ(Q) = σ(PQ) = σ(−QP ) = −σ(QP ) = −σ(Q)σ(P ), so σ(P )
and σ(Q) anti-commute.

Since σ is a homomorphism, it is fully determined by the image of a generating set of
Pn . In Theorem 3.4 it is proved that this determines C up to a phase factor, but first a
preliminary lemma is proved.

Lemma 3.3. The elements from the group Pn span the matrix space M(2n ,C).

Proof. Firstly, we show that the Pauli matrices I , X ,Y and Z form a basis for the matrix
space M2×2(C). Because dim(M2×2(C)) = 4, it is sufficient to show that the four Pauli
matrices are linearly independent. Let c0, c1, c2, c3 ∈C such that

c0I + c1X + c2Y + c3Z = 0.

Then [
c0 + c3 c1 − i c2

c1 + i c2 c0 − c3

]
=

[
0 0
0 0

]
,

so c0 = c1 = c2 = c3 = 0. Thus indeed, the set {I , X ,Y , Z } is a basis for M2×2(C). As a
consequence, the set of n-fold tensor products of I , X ,Y and Z is a basis for M2n×2n (C).
Because Pn contains these tensor products, it follows that Pn spans M2n×2n (C) too.

Theorem 3.4. Let C ∈ Cn such that C PC † = P for all P ∈Pn . Then C =λI with λ ∈C.

Proof. Note that C PC † = P implies that C P = PC for all P ∈Pn . Thus, C commutes with
all elements of Pn . From Lemma 3.3 it follows that C must commute with all elements
of M(2n ,C). We show that this implies that C =λI with λ ∈C.

Let Ei j ∈ M2n×2n (C) denote the matrix with a 1 on position (i , j ) and 0 elsewhere. Note
that every matrix in M2n×2n (C) is a linear combination of matrices Ei j with i , j ∈ {1, ...,2n}.
Hence, C must commute with Ei j for all i , j ∈ {1, ...,2n}.

Note that we can write

C =
2n∑

k=1

2n∑
l=1

ckl Ekl .

It follows that

C Ei j =
2n∑

k=1
= cki Ek j ,

and that

Ei j C =
2n∑

l=1
= c j l Ei l .

To satisfy C Ei j = Ei j C it must thus hold that ci i = c j j and that cki = 0 and cl j = 0 for all
k, l 6= i , j . Since this must hold for all i , j ∈ {1, ...,n}, it follows that C =λI for a λ ∈C.
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From Theorem 3.4 it follows that C is fixed up to a scalar once the image of a generating
set of Pauli matrices under conjugation by C is known.

3.2. BINARY REPRESENTATION
As an alternative to the notation used above, Pauli strings and Clifford operations can
be described efficiently in terms of binary matrices. A disadvantage of this binary rep-
resentation is that we lose the information about any multiplicative factor in front of a
Pauli string. However, as we will discuss in more detail in Chapter 5, this information is
not important in the context of entanglement distillation protocols. In this section it is
shown how Pauli strings and Clifford operations can be represented as binary matrices.
This representation is adjusted from Dehaene et al., 2003b.

Firstly, the Pauli matrices defined in equation (3.1) can be represented by binary vectors.
Let

τ00 = I , τ10 = X , τ11 = i Y , τ01 = Z . (3.10)

Neglecting the multiplicative factor ±1,±i , a Pauli string can be denoted by

τa = τv1w1 ⊗·· ·⊗τvn wn , a =
[

v
w

]
, v, w ∈Zn

2 . (3.11)

For example, the Pauli string I ⊗X ⊗Y ⊗Z is equal to τ00 ⊗τ10⊗τ11 ⊗τ01 up to a factor i .
For this Pauli string, we thus have

v = [
0 1 1 0

]T
, w = [

0 0 1 1
]T

.

So, in the binary notation, the Pauli string I⊗X⊗Y ⊗Z is represented by the vector

a = [
0 1 1 0 0 0 1 1

]T
.

Recall that the Pauli strings form a group under matrix multiplication. What does this
matrix multiplication look like in the binary representation? To determine this, suppose
that we have two Pauli strings τa1 ,τa2 ∈Z2n

2 , with

a1 =
[

v1

w1

]
= [

v11 . . . v1n w11 . . . w1n
]T

and a2 =
[

v2

w2

]
= [

v21 . . . v2n w21 . . . w2n
]T

. Then

τa1τa2 = (τv11w11 ⊗·· ·⊗τv1n w1n )(τv21w21 ⊗·· ·⊗τv2n w2n )

=
n⊗

k=1
τv1k w1kτv2k w2k .

(3.12)

For all k ∈ {1, . . . ,n} we have

τv1k w1kτv2k w2k = X v1k Z w1k X v2k Z w2k

= X v1k (−1)v2k w1k X v2k Z w1k Z w2k

= (−1)v2k w1k X v1k+v2k Z w1k+w2k

= (−1)v2k w1kτv1k+v2k ,w1k+w2k .

(3.13)
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As a result,

τa1τa2 =
n⊗

k=1
(−1)v2k w1kτv1k+v2k ,w1k+w2k

= (−1)
∑n

k=1 v2k w1k τv1+v2,w1+w2

= (−1)v2·w1τv1+v2,w1+w2 .

(3.14)

Here v2 ·w1 is the standard vector dot product. We can rewrite this dot product in terms
of the vectors a1 and a2:

v2 ·w1 = aT
2 Ξa1, Ξ=

[
0 In

0 0

]
. (3.15)

Hence, the product of two Pauli strings is given by

τa1τa2 = (−1)aT
2 Ξa1τa1+a2 . (3.16)

In the binary representation, the matrix product of Pauli strings can thus be calculated
by adding the corresponding binary vectors, where the addition is performed modulo 2.
This completes the binary representation of Pauli strings.

Next, let us look at the Clifford operations. Let C ∈ Cn be a Clifford operation andσ :Pn →
Pn , σ(p) =C pC † be the corresponding automorphism. We are looking for a representa-
tion π : Z2n

2 → Z2n
2 of this automorphism in the binary picture. Let a,b ∈ Z2n

2 . Then we

know that Cτa+bC † = (−1)bTΞaCτaτbC † = (−1)bTΞaCτaC †CτbC †. In the binary repre-

sentation, the prefactor (−1)bTΞa does not make a difference. Thus,π(a+b) =π(a)+π(b),
so π is a linear map. Because the vector space over Z2n

2 has finite dimension, it follows
that there is a (binary) 2n ×2n-matrix M such that π(a) = M a for all a ∈Z2n

2 .

Furthermore, by Theorem 3.2 we know that σ preserves the commutation relations be-
tween Pauli strings. Thus, π must preserve the commutation relations too. By equation

(3.16) we have τaτb = (−1)bTΞaτa+b and τbτa = (−1)aTΞbτa+b , so that

τaτb = (−1)bTΞa+aTΞbτbτa . (3.17)

Note that aTΞb = (aTΞb)T = bTΞT a. Thus

τaτb = (−1)bTΞa+bTΞT aτbτa = (−1)bTΩaτbτa , Ω=Ξ+ΞT =
[

0 In

In 0

]
. (3.18)

Similarly, it can be derived that

τM aτMb = (−1)(Mb)TΩM aτMbτM a . (3.19)

In order to preserve the (anti-)commutation relations, it must hold that bT M TΩM a =
bTΩa for all a,b ∈ Z2n

2 , so M TΩM =Ω. The matrices M that satisfy this condition form
a group known as the symplectic group over Z2. The symplectic group can be defined
over an arbitrary ring R.
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Definition 3.5. Let n ∈N, let R be a ring andΩ=
[

0 In

−In 0

]
. The symplectic group is de-

fined as the set Sp(2n,R) = {M ∈ M2n×2n(R) : M TΩM =Ω} under matrix multiplication.

The elements of a symplectic group are referred to as symplectic matrices. The following
proposition gives a useful characterization of the symplectic matrices.

Proposition 3.6. Let n ∈N and let R be a ring. If we write M =
[

A B
C D

]
for M ∈ Sp(2n,R)

with A,B ,C ,D ∈ Mn×n(R), then A,B ,C and D must obey the following relations:

B T D −DT B = 0,

AT C −C T A = 0,

AT D −C T B = In ,

B T C −DT A =−In .

Proof. The proposition follows immediately from substitution of M =
[

A B
C D

]
into the

equation M TΩM =Ω and working out the matrix multiplications.

Note that, if M is symplectic, then M is invertible. Indeed, from M TΩM = Ω it fol-
lows that det(Ω) = det

(
M T

)
det(Ω)det(M). Because det(Ω) = 1, we have det(M)2 = 1,

so det(M) 6= 0 and M is invertible. Proposition 3.7 provides a way to calculate the inverse
of a symplectic matrix.

Proposition 3.7. Let n ∈N and let R be a ring. Let M ∈ Sp(2n,R), M =
[

A B
C D

]
. Then

M−1 =
[

DT −B T

−C T AT

]
.

Proof. From M TΩM =Ω it follows that

M−1 =Ω−1M TΩ=
[

0 −In

In 0

][
AT C T

B T DT

][
0 In

−In 0

]
=

[
DT −B T

−C T AT

]
.

Note that it follows from Proposition 3.7 that a symplectic group can indeed by defined
over any ring and not only over fields, as one might expect in the first place, since the en-
tries of the matrices do not necessarily need to have a multiplicative inverse in R.
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As mentioned earlier, Clifford operations can be represented as binary matrices, so R =
Z2. The order of the symplectic group over Z2 is well-known to be equal to

|Sp(2n,Z2)| = 2n2
n∏

j=1
(4 j −1). (3.20)

A proof of this formula can be found in Artin, 1957.

Let φ : Cn → Sp(2n,Z2) denote the function that maps C ∈ Cn to the symplectic matrix
M that satisfies τM a = CτaC † for all a ∈ Z2n

2 . In Theorem 3.9 it is proved that φ is a
homomorphism, but first it is shown in Lemma 3.8 that φ is well-defined.

Lemma 3.8. The function φ : Cn → Sp(2n,Z2) that maps C ∈ Cn to the symplectic matrix
M that satisfies τM a =CτaC † for all a ∈Z2n

2 is well-defined.

Proof. Let C1,C2 ∈ Cn , with φ(C1) = M1 and φ(C2) = M2. Suppose that C1 = C2. Then
τM1a = C1τaC †

1 = C2τaC †
2 = τM2a for all a ∈ Z2n

2 . Using equations (3.10) and (3.11) it
follows that M1a = M2a for all a ∈ Z2n

2 . In particular, it holds that M1ei = M2ei for all
standard basis vectors ei ∈ Z2n

2 . Because M1ei and M2ei are equal to the i th column of
the matrices M1 and M2, respectively, and the equality must hold for all i ∈ {1, ...,n}, it
follows that M1 = M2. So indeed, φ is well-defined.

Theorem 3.9. The functionφ : Cn → Sp(2n,Z2) that maps C ∈ Cn to the symplectic matrix
M that satisfies τM a =CτaC † for all a ∈Z2n

2 is a homomorphism.

Proof. Let C1,C2 ∈ Cn with φ(C1) = M1, φ(C2) = M2. Because C1C2τaC †
2C †

1 ∼C1τM2aC †
1 ∼

τM1M2a , where ∼ indicates equality up a phase factor, it follows that φ(C1C2) = M1M2 =
φ(C1)φ(C2). So, φ is indeed a homomorphism.

3.2.1. IMPORTANT CLIFFORD OPERATIONS IN THEIR SYMPLECTIC FORM
As proved in Section 3.1.2, an element C ∈ Cn is fixed, up to an overall phase factor, once
we know the image of a generating set of Pn . This notion is used in this section to com-
pute the binary representation of the Clifford operations H , S, CNOT and CZ. Moreover,
two results to represent combinations of those Clifford operations in the binary picture
are presented.

We start off by determining the images of the generators H , S, CNOT and CZ under φ. As
generating set we use the union of the Pauli strings X̃i = I1⊗·· ·⊗ Ii−1⊗Xi ⊗ Ii+1⊗·· ·⊗ In ,
with one X matrix on the i th position and identity matrices on every other position, and
similar Pauli strings Z̃i = I1 ⊗ ·· · ⊗ Ii−1 ⊗ Zi ⊗ Ii+1 ⊗ ·· · ⊗ In with one Z matrix. Thus as
generating set, the following union is used:

{X̃i : i ∈ {1, ...,n}}∪ {Z̃i : i ∈ {1, ...,n}}. (3.21)

From equation (3.11) it follows that the string X̃i is represented by the standard basis
vector ei ∈ Z2n

2 and that Z̃i is represented by en+i . Note that since we are interested in
the binary representation and we cannot represent an overall phase there, it is indeed
enough to consider the generators from equation (3.21).
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Firstly, let us consider the Hadamard gate. This is a single qubit gate, so φ(H) is a 2×2
matrix and we only need to consider X and Z . Using equation (2.14) it can be easily
verified that H X H † = Z and H Z H † = X . In the binary representation, this boils down
to

φ(H)

[
1
0

]
=

[
0
1

]
, φ(H)

[
0
1

]
=

[
1
0

]
. (3.22)

From equation (3.22) it can be concluded that

φ(H) =
[

0 1
1 0

]
. (3.23)

For the phase gate, which again is a single qubit gate, it can be verified using equation
(2.15) that SX S† = Y and SZ S† = Z . Thus we have

φ(S)

[
1
0

]
=

[
1
1

]
, φ(S)

[
0
1

]
=

[
0
1

]
, (3.24)

from which it follows that

φ(S) =
[

1 0
1 1

]
. (3.25)

The CNOT gate is a two qubit gate, thus φ(CNOT) is a 4×4 matrix. Using equation (2.16)
the following relations can be verified:

CNOT12(X ⊗ I )CNOT12
† = (X ⊗X ),

CNOT12(I ⊗X )CNOT12
† = (I ⊗X ),

CNOT12(Z ⊗ I )CNOT12
† = (Z ⊗ I ),

CNOT12(I ⊗Z )CNOT12
† = (Z ⊗Z ).

(3.26)

Thus, φ(CNOT) must satisfy

φ(CNOT12)


1
0
0
0

=


1
1
0
0

 , φ(CNOT12)


0
1
0
0

=


0
1
0
0

 ,

φ(CNOT12)


0
0
1
0

=


0
0
1
0

 , φ(CNOT12)


0
0
0
1

=


0
0
1
1

 .

(3.27)

From equation (3.27) it follows that

φ(CNOT12) =


1 0 0 0
1 1 0 0
0 0 1 1
0 0 0 1

 . (3.28)
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Similary, it can be derived that

φ(CNOT21) =


1 1 0 0
0 1 0 0
0 0 1 0
0 0 1 1

 . (3.29)

Finally, for the CZ gate it can be derived from equation (2.17) that the following relations
hold.

CZ12(X ⊗ I )CZ12
† = (X ⊗Z ),

CZ12(I ⊗X )CZ12
† = (Z ⊗X ),

CZ12(Z ⊗ I )CZ12
† = (Z ⊗ I ),

CZ12(I ⊗Z )CZ12
† = (I ⊗Z ).

(3.30)

In a similar way as for the CNOT gate it can be derived that

φ(CZ12) =


1 0 0 0
0 1 0 0
0 1 1 0
1 0 0 1

 . (3.31)

Using equation (3.11) the binary representation of the Kronecker product can be de-
rived.

Proposition 3.10. (Hostens, 2007) Let C1,C2 ∈ Cn such that

φ(C1) =
[

M11 M21

M12 M22

]

φ(C2) =
[

M̃11 M̃21

M̃12 M̃22

]
Then the Kronecker product C1 ⊗C2 is represented by

φ(C1 ⊗C2) =


M11 0 M21 0

0 M̃11 0 M̃21

M12 0 M22 0
0 M̃12 0 M̃22



Note that if C is the identity Clifford operation, then φ(C ) is the identity matrix. Thus the
following statement is an immediate consequence of Proposition 3.10.

Corollary 3.11. (Hostens, 2007) A Clifford operation C ∈ Cn with binary representation
φ(C ) that acts on a subset of the qubits S ⊆ {1, ...,n} is represented by the 2n ×2n identity
matrix, with the rows and columns with indices in S ∪ (S +n) replaced by the rows and
columns of φ(C ).
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3.2.2. CHARACTERIZATION OF THE HOMOMORPHISM φ
In the previous section it was explained how the image of an element C ∈ Cn under the
homomorphism φ : Cn → Sp(2n,Z2) can be determined. In this section, these images
are used to obtain more information about the homomorphism φ.

Suppose that M ∈ Sp(2n,Z2). Using Corollary 3.11 and equations (3.25), (3.28) and (3.29)
the action of left multiplication by φ(H), φ(S) and φ(CNOT) gates on M can be de-
rived:

• A Hadamard gate on qubit i results in swapping row i and n + i .

• A phase gate on qubit i results in the addition of row i to row n + i .

• A CNOT gate from qubit i to qubit j results in the addition of row i to row j and of
row n + j to row n + i .

In Theorem 3.12 these notions are used to prove that the homomorphism that maps
the Clifford group Cn to the symplectic group Sp(2n,Z2) is surjective. Although used
to prove a slightly different statement, the structure of this proof is based on Hostens,
2007.

Theorem 3.12. The homomorphism φ : Cn → Sp(2n,Z2) that maps C ∈ Cn to the sym-
plectic matrix M that satisfies τM a =CτC † for all a ∈Z2n

2 is surjective.

Proof. We know that Cn is generated by the set of H and S gates on all qubits and CNOT
gates on every pair of qubits. Thus φ[Cn] is generated by the images of H , S and CNOT
under φ. We prove that any M ∈ Sp(2n,Z2) can be written in terms of these generators
by showing that M can be transformed to the identity through left multiplication by (a
part of) the generators. M is then equal to the product of the inverses of these generators
in reverse order, so M ∈φ[Cn].

Let M ∈ Sp(2n,Z2). We first look at the first column M1 of M . We take the following steps,
where we keep on referring to intermediate stages as M .

1. Make sure that M11 = 1. Suppose that M11 = 0. If there is a qubit i > 1 such that
Mi 1 = 1, then we apply a CNOT gate from qubit i to qubit 1. If the upper half
of M1 contains only zeros, then we first apply a Hadamard gate to a qubit i with
M(n+i )1 = 1 and then apply the CNOT gate from i to 1. Note that there must always
be at least one entry of M1 which is equal to 1, otherwise M is not invertible.

2. For all i with Mi 1 = 1, apply a CNOT gate from qubit 1 to qubit i . This ensures that
all entries Mi 1 with i ∈ {2, ...,n} are equal to zero.

3. If M(n+1)1 = 1, apply a phase gate to qubit 1. As a result, M(n+1)1 = 0.

4. Apply a Hadamard gate to qubit 1.

5. For all i with M(n+i )1 = 1, apply a CNOT gate from qubit i to qubit 1.
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Steps 1 to 5 are schematically summarized below.

M1
1−−→



1
·
·
·
·
·


2−−→



1
0
0
·
·
·


3−−→



1
0
0
0
·
·


4−−→



0
0
0
1
·
·


5−−→



0
0
0
1
0
0


After steps 1 to 5, M1 is thus transformed to the standard basis vector en+1. Since M
is a symplectic matrix and it is multiplied by symplectic matrices only, the transformed
matrix is still symplectic. As a consequence, it must satisfy M T

1 ΩMn+1 = 1. Because
M1 = en+1, it follows that M1(n+1) = 1. We proceed with the transformation as follows:

6. For all i with Mi (n+1) = 1, apply a CNOT gate from qubit 1 to qubit i . This results in
all entries Mi (n+1) with i ∈ {2, ...,n} being equal to zero, without changing M1.

7. If M(n+1)(n+1) = 1, apply a phase gate to qubit 1. This ensures that M(n+1)(n+1) = 0.

8. Apply a Hadamard gate to qubit 1 to switch rows 1 and n +1.

9. For all i with M(n+i )(n+1) = 1, apply a CNOT gate from qubit i to qubit 1.

Steps 6 to 9 are schematically depicted below.

M1 =



0
0
0
1
0
0


6−−→



0
0
0
1
0
0


7−−→



0
0
0
1
0
0


8−−→



1
0
0
0
0
0


9−−→



1
0
0
0
0
0



Mn+1 =



1
·
·
·
·
·


6−−→



1
0
0
·
·
·


7−−→



1
0
0
0
·
·


8−−→



0
0
0
1
·
·


9−−→



0
0
0
1
0
0


The columns M1 and Mn+1 now equal the corresponding columns of the 2n×2n identity
matrix. Using Proposition 3.6 it can be derived that also the rows 1 and n +1 of M are
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equal to the corresponding rows of the identity matrix. That is,

M =



1 0 · · · 0 0 0 · · · 0
0 0
... MA

... MB

0 0
0 0 · · · 0 1 0 · · · 0
0 0
... MC

... MD

0 0


.

Let

M ′ =
[

MA MB

MC MD

]
,

then we can repeat the procedure described above for M ′. Finally, this results in the
identity matrix. So indeed, M ∈φ[Cn] and φ[Cn] = Sp(2n,Z2).

Thus, the homomorphism φ : Cn → Sp(2n,Z2) is surjective. From the first isomorphism
theorem it now follows that Cn/ker(φ) ∼= Sp(2n,Z2). This isomorphism is used in Theo-
rem 3.13 to characterize the kernel of φ.

Theorem 3.13. Let φ : Cn → Sp(2n,Z2) be the homomorphism that maps C ∈ Cn to the
symplectic matrix M that satisfies τM a =CτC † for all a ∈Z2n

2 . Then ker(φ) = 〈Pn ,ηI 〉.

Proof. Firstly, we show that 〈Pn ,ηI 〉 ⊆ ker(φ). Note that C ∈ Cn is contained in ker(φ) if
and only if C PC † ∼ P for all P ∈Pn , where ∼ denotes equality up to an overall phase.

Recall from Section 3.1.1 that the Pauli group on n qubits consists of all 2n ×2n matrices
of the form λP1 ⊗ ·· ·⊗Pn with λ ∈ {±1,±i } and Pi ∈ {I , X ,Y , Z }. It can easily be verified
that 〈Pn ,ηI 〉 consists of all 2n ×2n of the form κP1⊗·· ·⊗Pn with κ ∈ {±1,±i ,±η,±iη} and
Pi ∈ {I , X ,Y , Z }.

Let C ∈ 〈Pn ,ηI 〉, then C = κC̃ with κ ∈ {±1,±i ,±η,±iη} and C̃ = P1 ⊗ ...⊗Pn with Pi ∈
{I , X ,Y , Z }. It follows that, for all P ∈Pn ,

κC̃ P (κC̃ )† = κκ†C̃ PC̃ † = C̃ PC̃ †.

Moreover, by equation (3.7) it follows that

C̃ P =±PC̃ ,

so that
C̃ PC̃ † =±P. (3.32)

Thus indeed, C = κC̃ ∈ ker(φ). It follows that 〈Pn ,ηI 〉 ⊂ ker(φ).
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To prove the equality of 〈Pn ,ηI 〉 and ker(φ), recall that |Cn | = 2n2+2n+3 ∏n
j=1(4 j −1) and

that |Sp(2n,Z2)| = 2n2 ∏n
j=1(4 j−1). BecauseCn/ker(φ) ∼= Sp(2n,Z2) it follows that |ker(φ)| =

|Cn |
|Sp(2n,Z2)| = 22n+3.

By counting the elements of the form κP1 ⊗ ·· · ⊗Pn with κ ∈ {±1,±i ,±η,±iη} and Pi ∈
{I , X ,Y , Z } for i = 1, ...,n, it follows that the order of 〈Pn ,ηI 〉 is equal to 8 · 4n = 22n+3,
which is the same as the order of the kernel. Thus indeed, ker(φ) = 〈Pn ,ηI 〉.

From Theorem 3.12 and Theorem 3.13 it can be concluded that Cn/〈Pn ,ηI 〉 ∼= Sp(2n,Z2).
This is the group of operations that is considered in the distillation protocols in this
thesis, as will be explained in more detail in Section 5.3.

Finally, observe that the steps in the proof of Theorem 3.12 can be used to find a circuit
of Clifford gates that corresponds to a given symplectic matrix. These steps will be used
in Chapter 7 to find Clifford operations that correspond to optimal symplectic matri-
ces.



4
ENTANGLEMENT DISTILLATION

This chapter describes the framework for entanglement distillation. The system that is
considered, is a bipartite quantum system that is shared by two parties. These parties
are referred to as Alice and Bob or A and B .

In Section 4.1 the basic characterizations of bipartite entanglement that are relevant in
the context of distillation protocols are given. These include the concepts of entangle-
ment and fidelity, based on the definitions provided by Nielsen and Chuang, 2016. In
this section the Bell states are introduced and it is argued why we focus on Bell diagonal
states in the remainder of this thesis. In Section 4.2 the general structure of entangle-
ment distillation protocols is explained. This explanation is illustrated in Section 4.3 by
the description of a protocol known as the DEJMPS protocol, which was published by
Deutsch et al., 1996.

4.1. CHARACTERIZATION OF BIPARTITE ENTANGLEMENT
In this section a characterization of bipartite entanglement is given. In Section 4.1.1 an
introduction to the concept of entanglement is given. After introducing the Bell states as
maximally entangled states, the concept of fidelity is introduced. In this thesis, fidelity
of an arbitrary state and a Bell state is used to quantify the entanglement of the arbitrary
state. In Section 4.1.2, a correspondence between the Bell states and the Pauli matrices is
introduced. This correspondence gives rise to an alternative description of our system,
which will be used in the remainder of this thesis.

4.1.1. INTRODUCTION TO QUANTUM ENTANGLEMENT
A central topic in this thesis is the topic of entanglement. Quantum entanglement is the
phenomenon that two or more systems are connected in such a way that they cannot
be described independently from each other. For instance, if we have two entangled
photons and measure the polarization of one photon, then immediately the polarization
of the second photon is known, even if the photons are physically separated. Albert

27
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Einstein called this phenomenon ‘spooky action at a distance’. He believed that this
apparent non-local behaviour could be explained by classical correlations between local
hidden variables (Einstein et al., 1935). These local hidden variables are unobservable
hypothetical variables that satisfy the concept of local realism, which is the principle
that a system is only influenced by its immediate surroundings. This principle implies
that an event at one point cannot simultaneously cause a result at another point, since
information cannot travel faster than the speed of light.

However, in Bell, 1964 an inequality known as Bell’s inequality was presented. It was
shown that this inequality cannot be violated if there are local hidden variables in the
system. This inequality and variations of it were experimentally tested and violated
many times, for instance by Aspect et al., 1982, hereby contradicting Einstein.

Entanglement can be seen as ‘the amount of non-locality’ in a quantum system consist-
ing of multiple subsystems. It is usually defined as the negation of separability.

Definition 4.1. A state ρAB is said to be separable with respect to the parties A and B if
it can be written as

ρAB =∑
i

piρ
(i )
A ⊗ρ(i )

B ,

where ρ(i )
A and ρ(i )

B are the density matrices for the systems A and B and {pi } is a proba-
bility distribution. If a state is not separable, it is said to be entangled.

If the parties are only allowed to use local operations and classical communication (LOCC),
it is not possible to create an entangled state from a separable state. Moreover, the
amount of entanglement does not increase under LOCC. This gives rise to a certain
ordering of entanglement: one state contains at least as much entanglement as another
state if it can be transformed into the other state under LOCC (Plenio and Virmani,
2007).

The entanglement of a pure state can be quantified by its entropy of entanglement.

Definition 4.2. The entropy of entanglement of a pure state
∣∣ψ〉

is defined as

E(
∣∣ψ〉

) =−Tr
(
ρA log2ρA

)=−Tr
(
ρB log2ρB

)
.

Here ρA and ρB are reduced density operators (see Definition 2.10). Because ρA is a den-
sity matrix, it is Hermitian and thus diagonalizable. Hence, we can write ρA = V AV −1,
where V is a matrix that consists of the eigenvectors of ρA and A = V −1ρAV is a diag-
onal matrix. Because A is a diagonal matrix, log2 A can be obtained by replacing each
diagonal element of A by the log2 of this element. The quantity log2ρA is then equal
to

log2ρA =V log2 AV −1. (4.1)

Of course, log2ρB can be calculated in a similar manner. The quantity S(ρ) =−Tr
(
ρ log2ρ

)
is known as the Von Neumann entropy. The entropy of entanglement ranges from zero
for separable states to one for so-called maximally entangled states (Bennett et al., 1996a).
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Well-known examples of such maximally entangled states for a bipartite system are the
Bell states: ∣∣Φ+〉= 1p

2
(|00〉+ |11〉) ,

∣∣Ψ+〉= 1p
2

(|01〉+ |10〉) ,

|Ψ−〉 = 1p
2

(|01〉− |10〉) ,

|Φ−〉 = 1p
2

(|00〉− |11〉) .

(4.2)

To illustrate the computation of the entropy of entanglement and show that the Bell
states are indeed maximally entangled, E(

∣∣Φ+〉
) is calculated below. From Definition

2.3 it follows that the density matrix corresponding to
∣∣Φ+〉

is equal to

ρ = ∣∣Φ+〉〈
Φ+∣∣= 1

2
(|00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |11〉〈11|) .

The reduced density operator ρA is thus equal to

ρA = 1

2
(|0〉〈0|TrB (|0〉〈0|)+|0〉〈1|TrB (|0〉〈1|)+|1〉〈0|TrB (|1〉〈0|)+|1〉〈1|TrB (|1〉〈1|))

= 1

2
(|0〉〈0| 〈0|0〉+ |0〉〈1| 〈1|0〉+ |1〉〈0| 〈0|1〉+ |1〉〈1| 〈1|1〉)

= 1

2
(|0〉〈0|+ |1〉〈1|)

= 1

2
I2.

Because ρA is a diagonal matrix, it follows that log2ρA can be obtained by taking the
logarithm of the elements on the diagonal. Thus

E
(∣∣Φ+〉)=−Tr

(
1

2
I2 log2

(
1

2
I2

))
=−Tr

([
1/2 0

0 1/2

][−1 0
0 −1

])
=−

(
−1

2
− 1

2

)
= 1.

So indeed, we see that
∣∣Φ+〉

is maximally entangled. Similar calculations can be per-
formed for the other three Bell states.

Any other two-qubit state, including the Bell states themselves, can be created from a
Bell-state under LOCC. It therefore is a legitimate choice to use the Bell states as standard
unit of entanglement for a bipartite system. The measure of entanglement that will be
used in this thesis is the fidelity to one of the Bell states. The fidelity of two arbitrary
states is defined as follows.

Definition 4.3. Let σ and ρ be two density operators. Then the fidelity is defined as

F (σ,ρ) = Tr

(√
σ1/2ρσ1/2

)2

.
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The fidelity is a measure for how close two arbitrary quantum states are. It yields a
number between 0 and 1, where F (σ,ρ) = 1 corresponds to the situation where σ = ρ.
Note that for a pure state σ= |Ψ〉〈Ψ| we have σ1/2 =σ. Thus

F (|Ψ〉〈Ψ| ,ρ) = Tr
(√|Ψ〉〈Ψ|ρ |Ψ〉〈Ψ|

)2 = 〈Ψ|ρ |Ψ〉Tr
(√

〈Ψ|Ψ〉
)2 = 〈Ψ|ρ |Ψ〉 . (4.3)

4.1.2. CORRESPONDENCE BETWEEN BELL STATES AND PAULI MATRICES
The Bell states, which were introduced in equation (4.2), form a basis for the Hilbert
space of a two-qubit system. In this thesis we will focus on initial states of the protocol
that are diagonal in the Bell basis:

ρ = A
∣∣Φ+〉〈

Φ+∣∣+B
∣∣Ψ+〉〈

Ψ+∣∣+C |Ψ−〉〈Ψ−|+D |Φ−〉〈Φ−| , (4.4)

where A = 〈
Φ+∣∣ρ ∣∣Φ+〉

, B = 〈
Ψ+∣∣ρ ∣∣Ψ+〉

, C = 〈Ψ−|ρ |Ψ−〉 and D = 〈Φ−|ρ |Φ−〉.
A two-qubit state that is not Bell diagonal can be be transformed into a Bell diagonal
state through twirling. Twirling is a technique in which each of the unitary operations
in a set T = {Ui } is applied with equal probability to an input state. In the case that T is
finite, this results in the transformation

ρ→ 1

|T |
∑

Ui∈T
UiρU †

i . (4.5)

To transform an arbitrary two-qubit state into a Bell diagonal state, twirling over the set
T = {I ⊗ I , X ⊗X ,Y ⊗Y , Z ⊗Z } can be applied (Bennett et al., 1996b).

Using equations (3.1) and (4.2), it can be derived that∣∣Ψ+〉= (I ⊗X )
∣∣Φ+〉

,

|Ψ−〉 = (I ⊗Y )
∣∣Φ+〉

,

|Φ−〉 = (I ⊗Z )
∣∣Φ+〉

.

(4.6)

This results in an alternative description for 4.4:

ρ =p I
∣∣Φ+〉〈

Φ+∣∣+pX (I ⊗X )
∣∣Φ+〉〈

Φ+∣∣ (I ⊗X )+pY (I ⊗Y )
∣∣Φ+〉〈

Φ+∣∣ (I ⊗Y )

+pZ (I ⊗Z )
∣∣Φ+〉〈

Φ+∣∣ (I ⊗Z ).
(4.7)

Note that the coefficients p I , pX , pY and pZ are equal to A,B ,C and D in 4.4, respectively,
but are renamed here for convenience. One way of interpreting this formula is that Alice
prepares a qubit pair in the state

∣∣Φ+〉
. Then she transmits one qubit of each pair to Bob,

possibly introducing errors. These errors on Bob’s qubits can be modelled as letting a
Pauli operator P act on the qubit with a certain probability pP .

Note that Pauli operations are performed on Bob’s qubits only. We will shorten the
notation by writing P instead of I ⊗P and writing P1P2 for the tensor product (I ⊗P1)⊗
(I ⊗P2).

If we have n independent two-qubit states, their combined state can be fully described
by the probabilities pP1P2...Pn = pP1 · ... · pPn that the system is in the state obtained by
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applying P1P2...Pn to the initial state
∣∣Φ+〉⊗n . Note that for states that are not indepen-

dent, the joint probabilities are in general not equal to products of the probabilities of
the separate states. In this thesis, however, we will focus on protocols with independent
input states.

For a system that consists of two qubit pairs, for example, these probabilities are given
in Figure 4.1a. Vertically written is the Pauli operation that acts on Bob’s qubit of the first
pair, horizontally the operation on the second pair. This can be extended to a cube for
three dimensions (Figure 4.1b) and a hypercube for higher dimensions.

(a) (b)

Figure 4.1: Probabilities that describe the state of a 2-pair system (a) and a 3-pair system (b). Each dimension
corresponds with one qubit pair.

4.2. STRUCTURE OF DISTILLATION PROTOCOLS
This section gives a general description of the structure of distillation protocols that are
considered in this thesis. As mentioned before, we will consider a system that consists
of two parties, Alice and Bob. Alice and Bob have access to n independent, known input
states. These states may be mixed or pure states, and are entangled. Of each pair, Alice
and Bob possess one qubit. In the protocol, only LOCC is used by Alice and Bob. Firstly,
Alice and Bob perform local (unitary) operations on their qubits, which we denote by
UA and UB . Then, they perform a measurement on n −m of the qubit pairs, with n −m
strictly smaller than n. Alice and Bob report their measurement results to each other via
a classical communication channel. Based on the outcomes, they either keep or discard
the remaining m qubit pairs. In Figure 4.2, this procedure is visualised for n = 2 and
m = 1.

If Alice and Bob keep the qubit pairs, the protocol is called successful. The precise details
of this decision depend on the chosen protocol, but the result is always that success-
ful measurements result in states that have entanglement greater than or equal to the
entanglement of the input states.
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Figure 4.2: Structure of distillation protocols for n = 2 and m = 1. We start with two independent two-qubit
states described by density operators ρ1 and ρ2 (left). Alternatively, the states can be described in terms of

Pauli matrices on Bob’s qubits that act on the state ρ = ∣∣Ψ+〉〈
Ψ+∣∣, as explained in Section 4.1.2 (right). Alice

and Bob both perform unitary operations on their qubits, given by UA and UB respectively. Finally, one of the
qubit pairs is measured. The outcomes are communicated via classical communication.

Since the protocol starts with n qubit pairs and it outputs m qubit pairs, it is called n → m
distillation. Figure 4.3 gives a schematic overview of n → m distillation.

Figure 4.3: Quantum entanglement distillation for two parties, Alice and Bob. They measure n −m of the
qubits. If the protocol is successful, Alice and Bob are left with m pairs with higher entanglement than the

input states.

To further increase the entanglement, it is possible to use a recurrence scheme. For
instance, for arbitrary n > 1 and m = 1, the protocol is performed n times. The n in-
dependent output states are used as input for the next iteration. Of course, it is possible
to do more than two iterations. Recurrence schemes that use a protocol with m 6= 1
are also possible, but then the input for the second iterations no longer consists of n
independent pairs.

In the limit of high output fidelity, however, the yield of using a recurrence scheme
approaches zero, because in each iteration at least half of the qubit pairs is lost: the
pairs that are measured are always discarded and the pairs that are not measured are
discarded in case of unsuccessful measurements. The yield can be improved by switch-
ing from a recurrence scheme to a hashing protocol, as soon as doing so results in more
good qubit pairs then doing another iteration of the recurrence scheme.
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Suppose that we have n copies of a Bell diagonal state described by the four probabil-
ities p = {p I , pX , pY , pZ }. In the limit of large n, the m output states approach perfect
maximally entangled states and the yield m

n approaches 1−H(p). The quantity H(p) is
known as the Shannon entropy and is given by

H(p) =− ∑
pi∈p

pi log2 pi . (4.8)

The details of the hashing method can be found in Bennett et al., 1996b. The yield in a
hashing protocol can be used as a measure to compare distillation protocols. For this,
we first perform one round of the n-to-1 distillation protocol and then we use the output
of this distillation protocol as input for the hashing protocol. For a fair comparison
of the distillation protocols, the number of copies used in the n-to-1 protocol and the
probability of success of this protocol should be taken into account. Altogether, this
results in a measure that we will refer to as the rate.

Definition 4.4. The rate of an n-to-1 protocol with success probability psuc and output
state described by p = {p I , pX , pY , pZ } is defined as

r = (1−H(p))psuc

n
.

4.3. DEJMPS PROTOCOL
An example of a distillation protocol is the DEJMPS-protocol, which was published by
Deutsch et al., 1996. The DEJMPS protocol is a protocol for 2 → 1 distillation. The mea-
sure of entanglement used in the DEJMPS protocol is the fidelity F

(∣∣Φ+〉〈
Φ+∣∣ ,ρ

)
of the

Bell state
∣∣Φ+〉

and an arbitrary stateρ. It can be proved that the DEJMPS-protocol, yields
the best possible fidelity that can be achieved through one iteration for input states with
p I > pX ≥ pZ ≥ pY . Such an ordering of the coefficients can be achieved using single-
qubit operations. In a recurrence scheme, this reordering of the probabilities can be
done after every iteration (Dehaene et al., 2003b). In this section we give a description of
the DEJMPS protocol.

We start with two qubit pairs, whose density operators we denote by ρ and ρ′. The whole
system is assumed to be in the state ρ⊗ρ′. Firstly, Alice performs a unitary operation
given by

UA : |0〉 7→ 1p
2

(|0〉− i |1〉) ,

|1〉 7→ 1p
2

(|1〉− i |0〉) .
(4.9)

Bob performs the inverse of this operation, which is given by

UB : |0〉 7→ 1p
2

(|0〉+ i |1〉) ,

|1〉 7→ 1p
2

(|1〉+ i |0〉) .
(4.10)
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Then Alice and Bob both perform a CNOT operation on their qubits. Here, the two
control qubits belong to the same pair ρ. Finally Alice and Bob both measure the target
qubit in the Z basis. This is equivalent to the measurement in the computational basis,
which was described in Section 2.1.4. If the outcomes of Alice and Bob coincide, they
keep the control pair. The control pair can be used in further iterations of the protocol.
However, if the outcomes do not coincide, the protocol was unsuccessful and the control
pair is disregarded. The target pair is disregarded in both cases. The DEJMPS protocol is
graphically summarized in Figure 4.4.

Figure 4.4: Quantum circuit of the DEJMPS protocol. Alice and Bob share two qubit pairs ρ and ρ′. They first
perform a unitary operation given by equations (4.9) and (4.10), respectively. Then Alice and Bob both apply a

CNOT operation and finally they perform a measurement of the target qubits in the σz basis.

Using equations (4.2) and (4.6) the result of the operations UA , UB and the CNOT oper-
ations can be translated to permutations of the probabilities from Figure 4.1a. These
permutations are shown in Figure 4.5. In each step the probabilities in bold are the
probabilities that have changed in that step.

Figure 4.5: Overview of the permutations of the probabilities due to UA and UB (first to second table) and the
CNOT operations (second to third table). The probabilities in bold are the probabilities that have changed in

that step.

Keeping in mind that the protocol is successful if the measurements of Alice and Bob
coincide, it can be derived from equation (4.2) that the protocol is successful if the mea-
sured qubit pair (pair 2) is in state

∣∣Φ+〉
or |Φ−〉. From (4.6) we know that these states

correspond to the Pauli I and Z matrices, respectively. The probability that qubit pair 2
is described by either I or Z after applying the protocol can be read from the third table
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of Figure 4.5: it is equal to the sum of the elements of the first and the last column. That
is, the success probability is equal to

psuc = p I I +pX X +pZ X +pY I +pY Y +pZ Z +pX Z +p I Y . (4.11)

Moreover, the fidelity of the remaining control pair is equal to the probability that the
remaining pair (pair 1) is in state

∣∣Φ+〉
, which is described by I . Taking into account that

pair 1 is discarded if pair 2 is in the X or Y column, it follows that the fidelity is propor-
tional to the sum of the probabilities in the bottom corners. Finally, since all probabilities
of the remaining state must add up to 1, the probability should be normalized by dividing
by the probabilities of all possible states. That is,

F = p I I +pY Y

psuc
. (4.12)



5
BILOCAL CLIFFORD CIRCUITS

In this thesis we restrict ourselves to Clifford circuits. Clifford circuits are circuits that
are composed of the Hadamard gate (H), the Phase gate (S) and the controlled-NOT
gate (CNOT). The Hadamard and Phase gate are allowed on every qubit and the CNOT
gate is allowed on every set of two qubits. Note that this set of operations is exactly equal
to the Clifford set that was defined in Section 3.1.2. It is a well-known result, known as
the Gottesman-Knill theorem, that these Clifford circuits can be simulated in polynomial
time on a classical computer (Gottesman, 1998).

In Section 5.1 the structure of the Clifford circuits is explained in more detail. The start-
ing point for this discussion is the general structure that was explained in Section 4.2.
From here, Clifford circuits are characterized by putting restrictions on the operations
and the measurements.

Then, in Section 5.2 the concepts base and pillars are introduced. The introduction of
these concepts yields a more visual and intuitive way to think about distillation proto-
cols.

Finally, in Section 5.3 a characterization of the subgroup of all Clifford operations that
preserves the distillation statistics (the fidelity and the success probability) is given. In
this section, two important new results are proved. Firstly, a generating set (Theorem
5.9) for the subgroup is given and proved and then, the order of the subgroup is deter-
mined (Theorem 5.13).

5.1. CHARACTERIZATION OF BILOCAL CLIFFORD CIRCUITS
This section covers the structure of the bilocal Clifford circuits. The general structure of
these protocols is the same as the structure explained in Section 4.2, but restrictions are
put on the operations and the measurements.

Firstly, Alice and Bob perform only Clifford operations. These are operations that can

36
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be decomposed into Hadamard gates (H), Phase gates (S) and Controlled-NOT gates
(CNOT). The Clifford gates that Alice and Bob use are strongly correlated. Suppose that
Alice uses a gate C , then Bob uses the Hermitian conjugate of this gate, C∗. Note that
C∗ is again a Clifford operation, because H∗ = H , CNOT∗ =CNOT and S∗ = S3. For two
qubit pairs, the structure of a bilocal Clifford circuit is shown schematically in Figure
5.1a. In this figure, the representation of Bell diagonal states in terms of Pauli matrices is
used (see Section 4.1.2).

The following theorem yields a way to rewrite a bilocal Clifford circuit in terms of opera-
tions on Bob’s qubits only. Although in this thesis only qubits (d = 2) are considered, the
result holds for general d ≥ 2.

Theorem 5.1. Let |Ψ〉 = 1p
d

∑d−1
i=0 |i i 〉 be a maximally entangled quantum state, where

{|i 〉}d−1
i=0 denotes the standard computational basis. For every d ×d matrix A we have A ⊗

I |Ψ〉 = I ⊗ AT |Ψ〉.

Proof. Let A be a d ×d matrix. Then we can write A = ∑d−1
i=0

∑d−1
j=0 ai j |i 〉

〈
j
∣∣. Let k, l ∈

{0, ...d −1}. Then

(|k〉〈l |⊗ I ) |Ψ〉 = 1p
d

d−1∑
i=0

|k〉〈l |i 〉⊗ |i 〉 = 1p
d

d−1∑
i=0

δl i |k〉⊗ |i 〉 = 1p
d
|k〉⊗ |l〉 .

By linearity of A it follows that A⊗ I |Ψ〉 = 1p
d

∑d−1
k=0

∑d−1
l=0 akl |k〉⊗ |l〉.

On the other hand, note that AT =∑d−1
i=0

∑d−1
j=0 ai j

∣∣ j
〉〈i |. Again, let k, l ∈ {0, ...,d−1}. Then

(I ⊗|l〉〈k|) |Ψ〉 = 1p
d

d−1∑
i=0

|i 〉⊗ |l〉〈k|i 〉 = 1p
d

d−1∑
i=0

|i 〉⊗δki |l〉 = |k〉 |l〉 ,

and thus I ⊗ AT |Ψ〉 = 1p
d

∑d−1
k=0

∑d−1
l=0 akl |k〉⊗ |l〉. So indeed, A⊗ I |Ψ〉 = I ⊗ AT |Ψ〉.

Note that we can indeed apply this theorem if we use the Pauli description of the Bell
states, because the two-qubit states are then equal to the maximally entangled state ρ =∣∣Φ+〉〈

Φ+∣∣ acted on by some Pauli operations on Bob’s qubits. Thus if Alice performs the
Clifford operation C and Bob performs the operation C∗, then this is effectively the same
as Bob performing C T (·)C∗. Note that C T is again a Clifford operation itself, because
H T = H , CNOTT =CNOT and ST = S, so instead of C T we can write C̃ or just C . As a
result, C∗ →C †. The resulting circuit is shown in Figure 5.1b.

Note that the operations on Bob’s qubits, C (·)C †, are exactly the automorphisms on the
Pauli group that were discussed in theorem 3.2.

Now that we have discussed the unitary operations performed by Alice and Bob, we
arrive at the measurements. In this thesis, the choice is made to aim at increasing the
fidelity of the input state and the

∣∣Φ+〉
state. Note that it does not matter which of the

Bell states we chose, since the amount of entanglement of all four Bell states is equal and
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(a) (b)

Figure 5.1: Bilocal Clifford circuit for two-qubits. Figure (a) shows the original description of the circuit, figure
(b) shows the description after applying Theorem 5.1. Alice and Bob both perform a measurement in the

computational basis on one qubit.

maximal. However, a choice should be made, because this influences the measurements
that should be performed.

In our protocols, measurements in the computational basis are performed. The possible
outcomes of the measurements thus are 1 (corresponding to |0〉) or −1 (corresponding
to |1〉). Hence, the measurements are successful if the measured state is either

∣∣Φ+〉
or

|Φ−〉.

5.2. BASE AND PILLARS
To illustrate the characterization of bilocal Clifford circuits in the previous section, in this
section we consider the examples of two and three qubit pairs. These examples give rise
to the introduction of the definitions of the base and pillars, which will allow for a more
efficient description of the distillation protocols.

Firstly, we will consider the simplest non-trivial situation, namely the situation with
two qubit pairs. We look at the results of the measurements in terms the probabilities
described in Section 4.1.2. In Figure 4.1a a visualisation of these probabilities was given
in the form a square. Which elements of the square do now correspond to a successful
protocol? Keeping in mind that the protocol is successful if the second qubit pair is in
state

∣∣Φ+〉
or |Φ−〉, that correspond with the Pauli matrices I and Z , respectively, we see

that the protocol is successful if we are in the first or in the last column. These columns
are highlighted in Figure 5.2a.

We see that the probability of success is equal to the sum of the probabilities in the
highlighted columns. So in this case,

psuc = p I I +pX I +pY I +pZ I +p I Z +pX Z +pY Z +pZ Z . (5.1)

Note that the probabilities in Figure 5.2a are not permuted compared to the initial sit-
uation. Of course, due to performed Clifford operations, the probabilities may be per-
muted, resulting in different probabilities occupying the highlighted columns. In each
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(a) (b)

Figure 5.2: Probabilities that describe the state of a 2-pair system (a) and a 3-pair system (b). Each dimension
corresponds with one qubit pair. The light grey rectangles/cylinders highlight the probabilities that

correspond to the success probability (pillars).The darker circles highlight the probabilities that correspond
to the fidelity (base).

case, the success probability is equal to the sum of the probabilities occupying the high-
lighted columns.

Following as similar argumentation as above, it can be derived that in general the success
probability can be calculated as follows:

Lemma 5.2. Let S be an n-qubit bipartite quantum system. The success probability of
an n-to-1 bi-local Clifford protocol is given by

psuc =
∑

P∈{I ,X ,Y ,Z }, Q j ∈{I ,Z }
pPQ1Q2...Qn−1 .

For a three-qubit pair system, these probabilities are highlighted in light grey in Figure
5.2b.

Next to the success probability of the protocol, the fidelity of the remaining state is also
of great importance. Since we are interested in obtaining the

∣∣Φ+〉
state, the fidelity is

given by the probability that pair 1 is in the I -row. Because pair 1 is only kept if pair 2
is in the I - or Z -column, this probability is determined by the sum of p I I and p I Z , the
probabilities highlighted by darker circles in Figure 5.2a. (Again, this only holds for the
situation with no permutations.) Moreover, since the probabilities of all possible states
of pair 1 must add up to 1, we have to normalize p I I +p I Z by dividing it by the sum of all
relevant probabilities. Thus for this situation, the fidelity is given by

F
(
ρ′,

∣∣Φ+〉)= p I I +p I Z

psuc
. (5.2)

Again, this can be expanded to the general situation with n qubits, as is done in the
Lemma 5.3.
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Lemma 5.3. Let S be an n-qubit bipartite quantum system. The fidelity of the remaining
qubit pair and the

∣∣Ψ+〉
-state in an n-to-1 bi-local Clifford protocol is given by

F
(
ρ′,

∣∣Φ+〉)= ∑
Q j ∈{I ,Z } p IQ1Q2...Qn−1

psuc

We will refer to the fidelity and the success probability as the distillation statistics. More-
over, we will refer to the light grey columns as the pillars and to the darker circles as the
base. For an arbitrary number of qubit pairs, this implies the following definitions for the
base and the pillars.

Definition 5.4. The base of an n-qubits bipartite quantum system is given by

B = {IQ1Q2...Qn−1 ∈Pn : Q j ∈ {I , Z }∀ j ∈ {1, ...,n −1}}.

From equation (3.11) it follows that, in the binary representation, an element in the base
B is represented by a vector

b =
[

v
w

]
, v, w ∈Zn

2 , v = 0, w1 = 0. (5.3)

Definition 5.5. The pillars of an n-qubits bipartite quantum system are given by

P = {PQ1Q2...Qn−1 ∈Pn : P ∈ {I , X ,Y , Z },Q j ∈ {I , Z }∀ j ∈ {1, ...,n −1}}.

An element in the pillars P can be represented by a binary vector

p =
[

v
w

]
, v, w ∈Zn

2 , vi = 0 ∀i ∈ {2, ...,n}. (5.4)

Note that every element of the pillars can be seen as a combination of a base element
and a Pauli string P̃1 with a Pauli matrix P on the first position and identity matrices
on every other position. In the binary representation, p can thus be written as a linear
combination of a binary base vector b and a vector with zeros on every position, except
for, possibly, position 1 and n +1.

It is not hard to see that the probabilities that contribute to the success probability are
exactly those probabilities that correspond to the elements of the pillars. This minor, but
useful result is summarized in the following lemma.

Lemma 5.6. Let S be an n-qubit bipartite quantum system with pillars P , then the
success probability of an n-to-1 distillation protocol on this system is given by

psuc =
∑

P∈P

pP .
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Similarly, the following relation between the base, the pillars and the fidelity can easily
be seen.

Lemma 5.7. Let S be an n-qubit bipartite quantum system with base B and pillars P ,
then the fidelity of the remaining state after the distillation protocol is given by

F
(
ρ′,

∣∣Φ+〉)= ∑
P∈B pP∑
P∈P pP

.

The Clifford operators performed in the protocol cause a permutation of the probabili-
ties pP1P2...Pn . By choosing the right Clifford operators, we can thus increase the fidelity
or the success probability. However, as can be seen from Lemma 5.7, there is a trade-off
between the two quantities: a high success probability leads to a lower fidelity and vice
versa. Moreover, the probabilities of the base and pillar elements cannot be changed
independently, as can be seen from Theorem 5.8.

Theorem 5.8. Let S be an n-qubit bipartite quantum system with base B and pillars P .
Let σ : Pn → Pn , σ(P ) =C PC †, with C ∈ Cn , such that σ[B] =B. Then σ[P ] =P .

Proof. Let P̃ ∈ P . Then P̃ = PQ1...Qn−1 with P ∈ {I , X ,Y , Z } and Q j ∈ {I , Z } for all j ∈
{1, ...,n −1}. Note that P commutes with I and that for all j , Q j commutes with both I
and Z . As a result, P̃ commutes with all elements of B.

Now let R̃ ∈ Pn\P . Write R̃ = PR1R2...Rn−1, where P , R j ∈ {I , X ,Y , Z }. Note that there is
an i ∈ {1, ...,n −1} such that Ri 6∈ {I , Z }. As a result, R̃ does not commute with
I I1..Ii−1Zi Ii+1..In−1 ∈B. Hence, R̃ does not commute with all elements of B.

We see that the elements of the pillars are exactly those elements of Pn that commute
with all elements of the base. By Theorem 3.2 we know that σ is an automorphism on
Pn . Thus σ preserves the commutation relations between the Pauli strings. Let B̃ ∈ B

and P̃ ∈ P . Then B̃ and P̃ commute. Thus σ(B̃) and σ(P̃ ) must commute too. Thus by
the statement above σ(P̃ ) ∈ P . Finally, since σ is an automorphism, we know that it is
bijective and thus σ[P ] =P .

From Theorem 5.8 we can conclude that operations that leave the base invariant also
leave the pillars invariant and thus preserve the distillation statistics.

5.3. PRESERVATION OF DISTILLATION STATISTICS

Recall from Section 3.1.2 that the Clifford group has order |Cn | = 2n2+2n+3 ∏n
j=1(4 j −1).

The order thus increases really fast with n. A better understanding of the permutations
that preserve the distillation statistics significantly limits our search space of protocols.
Therefore, in this section a characterization of the subset Dn ⊂ Cn , that leaves the dis-
tillation statistics invariant, is given. Firstly, note that Dn actually is a subgroup of Cn .
Indeed, if two operations D1,D2 ∈Dn leave the base invariant, then their product D1D2

also leaves the base invariant. Moreover, the identity operation of course leaves the
base invariant. And finally, the inverse of an operation D ∈ Dn , which is an element
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of Cn , again leaves the base invariant, since D yields a permutation of the base ele-
ments.

In the trivial case that n = 1, we have D1 = C1. In this case, the only base element is
the identity I , which is always mapped to itself under an automorphism. For all n > 1,
however, Dn is a proper subgroup of Cn . Consider for instance the Hadamard gate on
the second qubit, which is an element of Cn . This gate induces the swap of X2 and Z2

and hereby changes the base.

The aim of this section is to prove two theorems about the structure of Dn . Firstly, in
Section 5.3.1 a generating set of quantum gates is given. Then, in Section 5.3.2 a formula
for the order of Dn in the binary representation is given and proved.

5.3.1. GENERATORS OF Dn
Theorem 5.9. Consider an n-to-1 distillation protocol with n > 1. The subgroup Dn of Cn

that preserves the distillation statistics is generated by the union of the sets

{H1} (Hadamard gate on first qubit),

{Si : i = 1, ...,n} (Phase gate on every qubit),

{CNOTi j : i , j = 2, ...,n, i 6= j } (CNOT gate with not the first qubit as control or target qubit),

{CZ1i : i = 2, ...,n} (CZ gate between the first qubit and every other qubit).

Throughout the rest of this section, the set {H1} ∪ {Si : i = 1, ...,n} ∪ {CNOTi j : i , j =
2, ...,n, i 6= j }∪ {CZ1i : i = 2, ...,n} is abbreviated as SD . Theorem 5.9 is proved at the end
of this section, but firstly some preliminary results are discussed and proved.

First of all, observe that 〈SD〉 is a subgroup of Dn . This can easily be checked by con-
sidering the permutations induced by the elements of SD . To prove equality of the two
subgroups 〈SD〉 and Dn , we claim that it is enough to show that 〈SD〉 is a maximal sub-
group of Cn . Indeed, suppose that 〈SD〉 is a maximal subgroup of Cn . Then there does
not exist a proper subgroup F ⊂ Cn , such that 〈SD〉 ⊂F is a proper subgroup. We already
showed that 〈SD〉 is a subgroup of Dn and that Dn is a proper subgroup of Cn . Thus if
〈SD〉 is maximal, then it must be equal to Dn . To prove that 〈SD〉 is a maximal subgroup,
we use the following lemma, which holds for general groups.

Lemma 5.10. Let G be a group and let H = 〈SH 〉 be a subgroup of G. The subgroup H is a
maximal subgroup of G if and only if for all g ∈G, 〈SH , g 〉 = H or 〈SH , g 〉 =G.

Proof. Suppose H = 〈SH 〉 is a maximal subgroup of G . Let g ∈G . Then g ∈ H or g ∈G\H .
If g ∈ H , then 〈SH , g 〉 = H . If g ∈ G\H then H = 〈SH 〉 is a proper subgroup of 〈SH , g 〉.
Because H is maximal, it then must hold that 〈SH , g 〉 =G .

On the contrary, suppose H is not a maximal subgroup of G . Then there exists a proper
subgroup F of G such that H ⊂ F ⊂ G . Define T = F \H . Let t ∈ T ⊆ G , then 〈SH 〉 ⊂
〈SH , t〉 ⊆ F ⊂G .
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The idea of the proof of Theorem 5.9 thus is to show that for every element C ∈ Cn ,
we either have 〈SD ,C〉 = 〈SD〉 or 〈SD ,C〉 = Cn . As mentioned before, every element in
Cn can be written in terms of Hadamard gates, phase gates and CNOT gates. Yet, this
still leaves many possible combinations of gates to consider. Therefore, before going
into the proof of Theorem 5.9, firstly a more efficient description of the Clifford gates is
introduced.

Our starting point for this description is the Bruhat decomposition of the Clifford group.
The Clifford group can be written as a disjoint union

Cn = ⊔
h∈{0,1}n

⊔
σ∈Sn

Bn

(
n∏

i=1
H hi

i

)
σBn . (5.5)

Here, Bn is the Borel subgroup of Cn , which is generated by the gates S, CZ and CNOT↓.
The notation CNOT↓ is used to indicate all CNOTi j gates with i < j . From equation (5.5)
it follows that every C ∈ Cn can be written as C = FW F ′, with F,F ′ ∈Bn and W a layer of
Hadamard gates followed by a permutationσ ∈Sn (Bravyi and Maslov, 2020; Maslov and
Roetteler, 2018).

Next we define the alternative Borel subgroup B̂n as the group generated by S, CZ and
CNOT↑, where CNOT↑ denotes the set of al CNOTi j gates with i > j . In the following

lemma, it is shown that Bn and B̂n are isomorphic.

Lemma 5.11. Let τ ∈ Sn , τ = (1 n)(2 n − 1)...
(⌈ n

2

⌉⌊ n
2 +1

⌋
)
)
. Let f : Bn → Cn , B 7→ τBτ.

Then f is a homomorphism and f [Bn] = B̂n . Moreover, f :Bn → B̂n is an isomorphism.

Proof. The permutation τ reverses the order of all qubits. That is, qubit n becomes the
first qubit, qubit n −1 the second qubit, and so on. Let B1,B2 ∈Bn . Because τ= τ−1, we
have f (B1B2) = τB1B2τ= τB1ττB2τ= f (B1) f (B2). So indeed, f is an homomorphism.

To prove that f [Bn] = B̂n , we show that the images of the generators of Bn are exactly the
generators of B̂n . Firstly, let us look at the phase gates. It can easily be checked that for
all i ∈ {1, ...,n} we have f (Si ) = Sn+1−i . As a consequence, f [{Si : i ∈ {1, ...,n}}] =
{Si : i ∈ {1, ...,n}}.

Now, let B = CZi j . Observe that f (CZi j ) = CZ j i = CZi j . So obviously,
f [{CZi j : i , j ∈ {1, ...,n}, i 6= j }] = {CZi j : i , j ∈ {1, ...,n}, i 6= j }.

Finally, for B = CNOTi j we have f (CNOTi j ) = CNOT j i . Thus,
f [CNOT↓] = {CNOT j i : i , j ∈ {1, ...,n}, i > j } = {CNOTi j : i , j ∈ {1, ...,n}, i < j } = CNOT↑. So

indeed f [Bn] = B̂n .

To show that f : Bn → B̂n is an isomorphism, we have to show that it is injective and
surjective. Since τBτ= I implies that Bτ= τ, which only holds for B = I , it follows that f
indeed is injective. Now let B ′ ∈ B̂n . Let B = τB ′τ. Then B ∈Bn and f (B) = B ′. Thus f is
surjective.
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From Lemma 5.11 it follows that Bn and B̂n are isomorphic. As a result, we can rewrite
equation (5.5) as

Cn = ⊔
h∈{0,1}n

⊔
σ∈Sn

τB̂nτ

(
n∏

i=1
H hi

i

)
στB̂nτ, (5.6)

or equivalently,

τCnτ=
⊔

h∈{0,1}n

⊔
σ∈Sn

B̂nτ

(
n∏

i=1
H hi

i

)
στB̂n . (5.7)

To further simplify this expression, observe that Cn = τCnτ. Indeed, we know that τCnτ

is the image of the function defined as f : Cn → Cn , G 7→ τGτ. Because τ = τ−1, this
map is equal to conjugation of Cn by τ, which is an isomorphism. Thus it follows that
τCnτ= Cn .

Regarding the middle part τ
(∏n

i=1 H hi
i

)
στ, note that the set

{(∏n
i=1 H hi

i

)
σ : h ∈ {0,1}n ,σ ∈Sn

}
is symmetric in all qubits. Thus this set is left invariant under a relabeling of the qubits,
as a consequence, the τ’s can be removed from the expression.

The result of the above discussion is that we can rewrite equation (5.5) in terms of the
alternative Borel subgroup B̂n :

Cn = ⊔
h∈{0,1}n

⊔
σ∈Sn

B̂n

(
n∏

i=1
H hi

i

)
σB̂n . (5.8)

It follows from equation (5.8) that every element C ∈ Cn can be written as C =GW G ′, with
G ,G ′ ∈ B̂n . The importance of this representation of Cn in terms of the alternative Borel
subgroup B̂n instead of the standard Borel subgroup Bn becomes clear from Lemma
5.12.

Lemma 5.12. B̂n is a subgroup of 〈SD〉

Proof. Since B̂n and 〈SD〉 are both groups, it is enough to show that all generators of B̂n

are contained in 〈SD〉. Recall that B̂n is generated by {Si : i = 1, ...,n}∪
{CZi j : i , j = 1, ...,n, i 6= j }∪ {CNOTi j : i , j = 1, ...,n, i > j }. Since Si ∈ SD for all i , it is clear
that Si ∈ 〈SD〉.
Next, we show that CZi j ∈ 〈SD〉 for i , j 6= 1. We use that CZ1i , CZ1 j , H1 ∈ SD . Then we can
rewrite CZi j as shown in Figure 5.3. An extended proof of this equivalence can be found
in the Appendix A.

1 1 H • H • H • H •
i • = i • •
j • j • •

Figure 5.3: C Zi j gate rewritten in terms of C Z1i , C Z1 j and H1.
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To conclude, we show that CNOTi j ∈ SD for all i > j . The set SD already contains the
CNOT gates between all qubits except for the first qubit, so the only thing left to show is
that CNOTi 1 is contained in SD for all i > 1. That this is the case, follows from the fact
that CZ1i , H1 ∈ SD and the equivalence of the ciruits in Figure 5.4.

1 1 H • H

=
i • i •

Figure 5.4: CNOTi 1 gate rewritten in terms of CZ1i and H1.

Thus indeed, all generators of B̂n are contained in SD and B̂n is a subgroup of 〈SD〉.

Note that unlike B̂n , Bn is not a subgroup of 〈SD〉. A CNOT12 gate, for instance, is con-
tained in Bn , but it is not contained in 〈SD〉. This motivates the reformulation of equa-
tion (5.5) to equation (5.8).

Finally, we have covered all tools needed to complete the proof of Theorem 5.9.

Proof. Let C ∈ Cn . Then we can write C =GW G ′ with G ,G ′ ∈ B̂n and

W =
(

n∏
i=1

H hi
i

)
σ,

with h ∈ {0,1}n , σ ∈ Sn . We consider the group 〈SD , C〉. Because G ,G ′ ∈ B̂n , it follows
from Lemma 5.12 that G ,G ′ ∈ 〈SD〉. Thus G−1,G ′−1 ∈ 〈SD〉 and W = G−1CG ′−1. As a
result, 〈SD , C〉 = 〈SD , W 〉.
It is left to show that for all W either 〈SD , W 〉 = 〈SD〉 or 〈SD , W 〉 = Cn . That is, we need
to show that either W ∈ 〈SD〉 or that by adding W to the generators we can ‘build’ a
Hadamard gate on every qubit i > 2 and a CNOT1i gate with i > 1. To prove this, it is
enough to show that we can a SWAP1i gate for one i > 1, because Hi can be built from
H1 and SWAP1i (Figure 5.5a) and CNOT1i can be built from CNOTi 1 and SWAP1i (Figure
5.5b). Moreover, for all qubits j > 1, H j and CNOT1 j can be obtained by swapping qubits
i and j . The SWAP operation of qubits i and j can be composed from CNOT gates that
are already in SD (see Figure 2.9).

1 1 × H ×
=

i H i × ×

(a)

1 • 1 × ×
=

i i × • ×
(b)

Figure 5.5: Hi gate rewritten in terms of two SWAP1i gate and an Hi gate (a) and a CNOT1i gate rewritten in
terms of two SWAP12 gates and a CNOTi 1 gate (b).
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Firstly, we consider the case where σ is the identity permutation, so that we only have
a column of Hadamard gates. Trivially, if hi = 0 for all i , then 〈SD , W 〉 = 〈SD〉. Suppose
that h1 = 1 and hi = 0 for all i > 1, then we have have the W = H1, so 〈SD ,W 〉 = 〈SD〉.
Now suppose that h1 is either 0 or 1, that there are k qubits q1, ..., qk > 1 such that
hqi = 1 for all i ∈ {1, ...,k} and that h j = 0 for all other elements. In Figure 5.6 it is
shown that the SWAP1q1 gate can be composed from W , H1 and C Z1q1 . It follows that for

W = H h1
1 Hq1 ...Hqk we indeed have 〈SD , W 〉 = Cn .

W W W W

1 H h1 H h1 • H h1 • H h1 • H h1 H h1

q1 H • H • H • H
...

qk H H H H

1 H h1 H h1 • • H h1 H h1

= q1 •
...

qk H H H H

1 ×
= q1 ×

...
qk

Figure 5.6: Composing the SWAP1q1 from H1, W = Hh1
1 Hq1 ...Hqk and C Z12.
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Next, consider the case that hi = 0 for all i , but let σ now be a non-identity permuta-
tion. Then σ can be written as one cycle or as a product of disjoint cycles. We distin-
guish two types of cycles, namely cycles that include the first qubit, (1 q1 ... qk ), and
cycles that do not include the first qubit, (q1 ... qk ). Here q1, ..., qk denote different,
arbitrary qubits other than 1. It is well-known that any such cycle can be written as a
product of transpositions (see for instance Rotman, 1995). In particular, (q1 ... qk ) =
(q1 q2)(q2 q3)...(qk−1 qk ). In terms of quantum gates, we can thus rewrite any permuta-
tion in terms of SWAP gates. Now for cycles of the form (q1 ... qk ) this only includes SWAP
gates between qubits i > 2, which are already included in 〈SD〉. On the other hand, if the
permutation includes a cycle of the form (1 q1 ... qk ), then it contains one SWAP1q1 gate.
All other SWAP gates that are part of the permutation can be removed by multiplying
with elements in 〈SD〉, leaving only the SWAP1q1 gate. Thus in this case, the whole group
Cn can be generated.

Finally, let us consider elements W that are combinations of permutations and Hadamard
gates. Note that if the permutation does not include a SWAP1i gate, we can rewrite the
element to a column of Hadamard gates, which was discussed earlier. Similarly, if the
Hadamard column only contains H1, then we are in the same situation as when there
is no Hadamard column. Now suppose that our element contains a SWAP1i gate and a
Hadamard gate H j , j > 1. By the arguments above, we can reduce such an element to a
single SWAP12 gate an a column of Hadamard gates. We distinguish two cases, with or
without a Hadamard gate on qubit i . Firstly, suppose that W has no Hi gate, but there is
an H j gate and possibly other Hk gates. This gate can be rewritten to a SWAP1 j gate by
adding H1 gates and a SWAPi j gate, as shown in Figure 5.7.

W W

1 H × × H 1 H × H 1 ×
i × × × = i = i

j H × H j H × H j ×

k H H k H H k

Figure 5.7: The combination of a SWAP1i gate and a column of Hadamard gates H j Hk without Hi can be
rewritten to SWAP1 j by adding two H1 gates and a SWAPi j gate.

Note that if W contains additional Hadamard gates on other qubits that 1, i , j and k, that
these will vanish, just as the Hk gates do.

Secondly, suppose W has a Hadamard gate on qubit i . Then by adding a H1 gate, we can
rewrite it as a SWAP1i gate, as shown in Figure 5.8. Note that if there are also Hadamard
gates on other qubits i > 2, that after rewriting as shown in Figure 5.8 this case reduces
to the first case (no Hi gate).
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W

1 H × 1 ×
=

i × H i ×

Figure 5.8: The combination of a SWAP1i gate and a Hi gate can be rewritten to SWAP1i by adding a H1 gate.

The results of the discussion above are summarized in Table 5.1.

Table 5.1: For all possible elements W that are a combination of a Hadamard column
∏n

i=1 H
hi
i and a

permutation σ either 〈SD ,W = 〈SD 〉 or 〈SD = Cn .

Hadamard Permutation 〈SD ,W 〉
None None 〈SD〉
None Does not permute qubit 1 〈SD〉
None Permutes qubit 1 Cn

Only H1 None 〈SD〉
Only H1 Does not permute qubit 1 〈SD〉
Only H1 Permutes qubit 1 Cn

Includes Hi , i 6= 1 None Cn

Includes Hi , i 6= 1 Does not permute qubit 1 Cn

Includes Hi , i 6= 1 Permutes qubit 1 Cn

We see that for all possible W =
(∏n

i=1 H hi
i

)
σ, indeed 〈SD ,W 〉 = 〈SD〉 or 〈SD ,W 〉 = Cn .

This completes the proof of Theorem 5.9.

We have thus found a characterization of the subgroup of Cn that preserves the distilla-
tion statistics. At the beginning of this section it was claimed that a better understanding
of this subgroupDn limits the search space of protocols. And indeed, consider a protocol
C ∈ Cn . Then we can freely add or remove elements from Dn at the end of this protocol,
without changing the fidelity and the success probability. That is, all elements in the
right coset DnC = {DC : D ∈Dn} yield the same distillation statistics. Instead of optimiz-
ing over all possible Clifford circuits it thus suffices to optimize over the right cosets of
Dn in Cn .

5.3.2. ORDER OF φ[Dn]
Recall from Section 3.2 that there is a homomorphism φ from the Clifford group Cn

to the symplectic group Sp(2n,Z2) that maps every Clifford operation to a binary ma-
trix. In Section 3.2.1 it was proved that this homomorphism is surjective. The Clifford
operations that are in the kernel 〈Pn ,ηI 〉 of φ map every Pauli string to itself, up to a
phase factor. However, since we are only interested in the outcomes of measurements
and we are working in the density operator formalism, this phase factor does not make
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a difference for the distillation statistics (see Section 2.1.1 and Section 2.1.4). For the
optimization of entanglement distillation protocols, it thus is sufficient to consider the
elements of the Clifford group in the binary representation.

Because φ is a group homomorphism, the image of the subgroup Dn , φ[Dn], is a sub-
group of φ[Cn] = Sp(2n,Z2). At the end of Section 5.3.1 it was shown that is is enough to
consider right cosets of Dn in Cn for the optimization of distillation protocols. Thus, in
the binary representation, it is sufficient to optimize over cosets of φ[Dn] in φ[Cn]. Note
that the right cosets of Dn translate to left cosets in the binary picture.

To see how much looking at (left) cosets of φ[Dn] in φ[Cn] limits the search space of
protocols, in this section a formula to compute the order of φ[Dn] is presented and
proved. As mentioned earlier, in the trivial case that n = 1 we have D1 = C1, so also
φ[D1] = φ[C1] and thus |φ[D1]| = |φ[C1]| = 6. For n > 2 the order of φ[Dn] is given in
Theorem 5.13.

Theorem 5.13. For an n-to-1 distillation protocol, with n > 1, the order of φ[Dn] is given
by

|φ[Dn]| = 6 ·2n2−1
n−1∏
j=1

(2 j −1).

Proof. Recall from Section 3.2.1 that X̃i , i ∈ {1, ...,n} denotes a Pauli string with an X -
matrix on the i th position and I matrices at all other positions and Z̃i denotes the similar
Pauli string with a Z -matrix on position i . Recall that an element D ∈Dn is fixed up to a
phase factor by the image of the generating Pauli strings X̃i and Z̃i under conjugation by
D . Since this phase factor vanishes in the binary representation,φ(D) is fully determined
by this image.

We count how many transformations of X̃i and Z̃i are possible. Let us start by looking
at Z̃n . The Pauli string Z̃n is a base element, thus it must again be transformed to a base
element, because D preserves the distillation statistics. There are 2n−1 base elements,
but the identity element I⊗n is always mapped to itself under conjugation. Thus there
are 2n−1−1 possibilities for the transformation of Z̃n . That all transformations are indeed
possible, is proved by giving a construction in a similar way as was done in the proof of
Theorem 3.12. Recall that Z̃n is represented in the binary representation by a vector aZ ∈
Z2n

2 with aZ
2n = 1 and zeros on every other position. Suppose that Z̃n is mapped to a base

element b ∈B. We show that b can be transformed to aZ through left multiplication by
elements of φ[Dn]. The transformation from aZ to b can then be obtained by taking the
product of the inverses of these generators in reverse order.

Recall that the action of left multiplication by φ(S) and φ(CNOT) gates is as follows:

• A phase gate on qubit i results in the addition of row i to row n + i .

• A CNOT gate from qubit i to qubit j results in the addition of row i to row j and of
row n + j to row n + i .
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Moreover, using equation (3.31) it can be derived that the action of left multiplication by
a CZ gate is as follows.

• A CZ gate on qubit i and j results in the addition of row i to row n + j and the
addition of row j to row n + i .

Note that b1, ...,bn+1 = 0. The vector b can be transformed to a by taking the following
steps.

1. If b2n = 0, apply a CNOTni gate with i chosen such that bn+i = 1. Note that there
always is a i > 2 such that this is possible, because otherwise b is the zero vector,
which corresponds to the identity element I⊗n . This ensures that b2n = 1.

2. For all i ∈ {2, ...,n} with bn+i = 1, apply a CNOTi n gate. As a result, bn+i = bn+i +
b2n = 1+1 = 0.

Steps 1 and 2 are visually summarized below.

b =



0
0
0
0
·
·


1−−→



0
0
0
0
·
1


1−−→



0
0
0
0
0
1

= aZ

Regarding X̃n , we know that conjugation preserves the commutation relations between
Pauli strings, so D X̃nD† must anti-commute with D Z̃nD†. Observe that every element
P ∈ Pn\{I⊗n} anti-commutes with exactly half of the elements of Pn

1. Thus there are
|Pn |

2 = 4n

2 = 22n−1 possibilities for the transformation of X̃n .

Recall that X̃n is represented in the binary representation by a vector aX ∈Z2 with aX
n = 1

and zeros on every other position. Suppose that D maps X̃n to a Pauli string whose
binary representation is equal to c. Because X̃n and Z̃n anti-commute, it follows that
steps 1 and 2 map c to a string that anti-commutes with aZ . By equation (3.19) it follows
that then cn = 1. Now c can be transformed to aX without affecting aZ by taking the
following steps.

3. For all i with ci = 1 apply a CNOTni gate. This ensures that the upper half of c
contains only zeros.

4. For all i 6= n with cn+i = 1, apply a CZi n gate.

5. If c2i = 1, apply an S gate on qubit n.

1Let P ∈ Pn \{I⊗n }. Let k be a position where P does not have an identity matrix. Then the Pauli strings that
anti-commute with P can be constructed by selecting random Pauli matrices for all positions but position k
and then choosing the Pauli matrix on position k such that the string anti-commutes with P .
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Steps 3 to 5 are visually summarized below.

c =



·
·
1
·
·
·


3−−→



0
0
1
·
·
·


4−−→



0
0
1
0
0
·


5−−→



0
0
1
0
0
0

= aX

The gates used in this construction are CNOTni , CNOTi n with i > 1, CZi n and Sn , which
are indeed all contained in Dn . Thus in total there are 22n−1(2n−1 −1) possible transfor-
mations for X̃n and Z̃n .

The elements of φ[Dn] that leave X̃n and Z̃n invariant form a subgroup that is isomor-
phic to φ[Dn−1], with the number of cosets in φ[Dn] equal to 22n−1(2n−1 −1). Thus

|φ[Dn]| = 22n−1(2n−1 −1)|φ[Dn−1]|.

By induction on n it follows that

|φ[Dn]| = |φ[D1]|
n∏

j=2
22 j−1(2 j−1 −1)

= 6 ·2
∑n

j=2(2 j−1)
n∏

j=2
(2 j −1)

= 6 ·2n2−1
n−1∏
j=1

(2 j −1).

Corollary 5.14. The index of φ[Dn] in φ[Cn] is given by

[
φ[Cn] :φ[Dn]

]= 1

3
(2n −1)

n∏
j=1

(2 j +1).
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Proof. Recall that |φ[Cn]| = 2n2 ∏n
j=1(4 j −1). As a consequence,

[
φ[Cn] :φ[Dn]

]= |φ[Cn]|
|φ[Dn]|

=
2n2 ∏n

j=1(4 j −1)

6 ·2n2−1 ∏n−1
j=1 (2 j −1)

=
∏n

j=1(2 j −1)(2 j +1)

3
∏n−1

j=1 (2 j −1)

=
∏n

j=1(2 j −1)(2 j +1)

3
∏n

j=1(2 j −1)
(2n −1)

= 1

3
(2n −1)

n∏
j=1

(2 j +1).

5.3.3. FURTHER REDUCTION FOR SYMMETRIC INPUT STATES
In Section 5.3.1 it was explained that all elements in a right coset of Dn in Cn yield
the same distillation statistics when applied to a general input state. In literature on
quantum information theory, often input states that possess some sort of symmetry are
considered. A frequently used input state, for instance, is the n-fold tensor product ρ⊗n

of a single qubit pair ρ. Because all qubit pairs are initially equal, we can freely choose
which qubits we measure and which one we keep, without changing the distillation
statistics. In other words, we can apply a permutation to the qubit pairs at the beginning
of the protocol without changing the results. As a result, all distillation protocols in a left
coset CSn in Cn , with C ∈ Cn and Sn the group of permutations of {1, ...,n}, yield the same
distillation statistics.

Another type of state that is often considered in quantum information theory is the
isotropic state. Isotropic states are states that are invariant under any unitary operation
of the form U ⊗U∗:

ρAB = (U ⊗U∗)ρAB (U † ⊗ (U∗)†). (5.9)

An isotropic state has the form

ρAB = p
∣∣Φ+〉〈

Φ+∣∣+ 1−p

4
I

= 3p −1

4

∣∣Φ+〉〈
Φ+∣∣+ 1−p

4

(∣∣Ψ+〉〈
Ψ+∣∣+|Ψ−〉〈Ψ−|+ |Φ−〉〈Φ−|) .

(5.10)

An isotropic state is invariant under the permutation of |Φ−〉, ∣∣Ψ+〉
and |Ψ−〉. Again, it

follows that all distillation protocols in a left coset CS , with S a permutation group, yield
the same distillation statistics.

Suppose that the input state indeed possesses some form of symmetry. Let S be the per-
mutation group that leaves the input state invariant. Then it follows from the previous
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section and the discussion above that all distillation protocols in the double coset DnCS
in Cn yield the same distillation statistics. As a consequence, we only need to optimize
over the double cosets. Especially for input states that possess a lot of symmetry, such as
the n-fold tensor product of an isotropic state, this may result in a large reduction of the
search space of protocols.

However, it is not clear yet how much this would limit the search space of protocols. In
contrast to right (or left) cosets, double cosets do not necessarily all have the same order.
Because Cn , Dn and Sn are finite, the order of DnCCn is equal to

|DnCSn | = |Dn ||Sn |
|Dn ∩CSnC−1| . (5.11)

This expression depends on C and is thus not necessarily equal for all double cosets.



6
ALGORITHMS FOR OPTIMIZATION

This chapter provides algorithms for the optimization over cosets of Cn . In Section 1 it is
described how a tranversal for the cosets can be found. Using this transversal, in Section
6.2 it is explained how the distillation statistics can be calculated. An implementation in
SageMath can be found in Appendix B.

6.1. ALGORITHM FOR FINDING A TRANSVERSAL
In this section an algorithm for finding a transversal of the right cosets of Dn in Cn is
described. This algorithm uses the binary representation of the Clifford operations that
was explained in Section 3.2. The transversal is found by sampling random elements
from the symplectic group Sp(2n,Z2), which is already implemented in SAGEMATH. 1

For every new sampled element, it is checked whether or not the coset that this element
belongs to is already represented in the transversal. If the coset is not represented yet,
then the sampled element is added to the transversal.

For this approach to work, it is thus necessary to be able to check if two elements belong
to the same coset. Recall that two elements belong to the same coset if and only if they
result in the same distillation statistics (for a general input state). This is the case if the
same Pauli strings are mapped to the base and the pillars (see Section 5.2). By Theorem
5.8 it is enough to check if the same Pauli strings are mapped to the base.

More formally, consider an n-qubit pairs bipartite system with base B. Let M1, M2 ∈
Sp(2n,Z2). Let σ1, σ2 denote the permutations of the Pauli strings induced by M1 and
M2, respectively. Let V denote the set of Pauli strings that are mapped to the base under
the permutation σ1 and let W denote the set of Pauli strings that are mapped to the base

1The definition of the symplectic group that is implemented in SAGEMATH slightly differs from the definition
used in this thesis. In SAGEMATH the symplectic matrices are defined as the matrices M ∈ M2n×2n (Z2) such
that MT P M = P with P the anti-diagonal identity matrix. These matrices M can be transformed to matrices
from the symplectic group from definition 3.5 via the transformation M → T MT−1 with T chosen such that
P = T TΩT .

54
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under σ2. Then M1 and M2 belong to the same coset if and only if V = W . Because
σ1 and σ2 are permutations, this is equivalent to σ−1

1 [B] = σ−1
2 [B]. To check if M1

and M2 belong to the same coset, it thus suffices to check if the image B under σ−1
1

and σ−1
2 is the same. In terms of the binary representation, we thus need to check that

left multiplication of the binary base vectors by M−1
1 and M−1

2 results in the same set of
vectors.

Of course, this can be calculated by simply carrying out the matrix multiplications. We
propose a more efficient manner below. Let M ∈ Sp(2n,Z2). Firstly, using Proposition
3.7, the matrix M−1 can be efficiently calculated. Note that the base element I⊗n , the
zero vector in the binary representation, is always mapped to itself under left multiplica-
tion by a matrix. Since the image of the zero vector is the same for all symplectic matri-
ces, it can be omitted when comparing the images of the base under left multiplication
by different symplectic matrices. The image of the other binary base vectors under left
multiplication by M−1 can be calculated as follows. Firstly, the image of simplest non-
trivial base element is calculated: a Pauli string Z̃i with i ∈ {2, ...,n}, with a Z matrix on
position i and identity matrices at every other position. From equation (3.11) it follows
that, in the binary representation, Z̃i is represented by a vector a ∈ Z2n

2 with an+i = 1
and zeros at every other position. It follows that M−1a is equal to the (n + i )th column
of M−1. By linearity of M−1, the image of a base element with a Z matrix on position i
and j can be obtained by adding the image of Z̃i and Z̃ j modulo 2. This can be extended
to calculate the image of an arbitrary base element. Thus the image of the binary base
vectors under M−1 is equal to the set that consists of the zero vector of length 2n, the
columns n +1, ...,2n of M−1 and all linear combinations of these columns.

The algorithm used to find a transversal is summarized in Algorithm 1.

Algorithm 1: Finding a transversal

input : Number of copies n in the input state of the distillation protocol.
output: A transversal for the right cosets of Dn in Cn in the binary representation.

1 Transversal = {}
2 while length(Transversal) < [φ[Cn] :φ[Dn]] do
3 Sample a random element M from Sp(2n,Z2).
4 Calculate M−1 using Proposition 3.7.
5 Calculate the image Mbase of the base under M−1. This is equal to the set

containing columns n +1, ...,2n of M−1 and all linear combinations of these
columns.

6 if there is no N ∈ Transversal with Nbase = Mbase , where Nbase is the image of the
base under N−1 then

7 Add M to Transversal.
8 end

Note that, when calculating the distillation statistics, the inverse of M is needed again.
Therefore, in the implementation of this algorithm in SageMath, the matrix M−1 is added
to the transversal instead of M .



6.2. ALGORITHM FOR CALCULATING DISTILLATION STATISTICS

6

56

6.2. ALGORITHM FOR CALCULATING DISTILLATION STATISTICS
In this section an algorithm to calculate the distillation statistics of a specific protocol
applied to an initial state is described. Recall from Lemma 5.6 that the success probabil-
ity of a distillation protocol can be calculated from the pillars P as follows:

psuc =
∑

P∈P

pP . (6.1)

Similarly, by Lemma 5.7, the fidelity can be calculated from the base B and the pillars P

as follows:

F
(
ρ′,

∣∣Φ+〉)= ∑
P∈B pP∑
P∈P pP

. (6.2)

The first step towards calculating the fidelity and the success probability thus is to cal-
culate which Pauli strings are mapped to the base and to the pillars by application of the
operation with binary representation M . Recall from Section 6.1 that this is the same
as calculating where the binary vectors corresponding to the base and the pillars are
mapped to by the inverse matrix M−1. In Section 6.1 it was described how this image
can be determined for the base elements. For the pillars, recall from Section 5.2 that
the binary representation of each pillar element is a linear combination of a binary base
vector and a vector with zeros on every position, except for, possibly, position 1 and n+1.
Thus, once the image of the base is known, the image of the pillars can be calculated by
taking all linear combinations that consist of the image of one base vector and the image

one vector
[
x1 0 . . . 0 z1 0 . . . 0

]T
with x1, z1 ∈Z2. The latter is equal to

x1M−1
1 + z1M−1

n+1, where M−1
1 and M−1

n+1 denote the first and (n + 1)th column of M−1,
respectively.

The input for this algorithm is a Bell diagonal input state, specified by the four prob-
abilities p I , pX , pY , pZ . Firstly, the n-fold tensor product is calculated to obtain the
hypercube of coefficients (see Figure 4.1). For a given protocol M , the success probability
can now be found by adding the coefficients from the array that correspond to the image
of the pillars. The fidelity can be found in a similar way, namely by adding the coefficients
from the array that correspond to the image of the base and then dividing this by the
success probability.

In Section 4.2 another measure of the quality of entanglement distillation statistics was
discussed, namely the rate. To calculate the rate, not only the fidelity is needed, but also
the other three coefficients that describe the output state are needed. To calculate these
coefficients, observe that the pillars can be seen as four ’layers’: one that corresponds
to the I matrix on the first qubit, one that corresponds to X on the first qubit, one that
corresponds to Y and one that corresponds to Z . The coefficients of the output state can
be obtained by adding the coefficients in each layer of the pillars and dividing it by the
success probability. Then, the rate can be calculated using Definition 4.4.

Using the algorithm described above, either a list of all possible distillation statistics can
be obtained or the best achievable fidelity, success probability or rate can be calculated.
If it is desired, the symplectic matrices can be translated back to a Clifford circuit by
following the steps from the proof of Theorem 3.12.



7
RESULTS OF OPTIMIZATION

In this chapter the results of the optimization using the algorithms described in the
previous chapter are shown.

7.1. ISOTROPIC STATES
Let us start by considering isotropic input states. Recall that an isotropic state has the
form

ρAB = Fi n
∣∣Φ+〉〈

Φ+∣∣+ 1−Fi n

3

(∣∣Ψ+〉〈
Ψ+∣∣+|Ψ−〉〈Ψ−|+ |Φ−〉〈Φ−|) , (7.1)

where Fi n is the fidelity of the input state. Because of their symmetry, isotropic states are
widely considered in quantum information theory.

As input states we consider n copies of an isotropic state. In Figure 7.1 the fidelity of the
output state is plotted against the success probability for different input fidelities.

Note that for larger n the maximal achievable fidelity increases, but the success proba-
bility decreases. The latter is due to the fact that a protocol is called successful if and
only if all measurements yield the same outcome. Of course, when more states are
measured, the probability of all measurement outcomes being the same decreases. If
a higher success probability is desired, one can always perform a protocol on only a part
of the qubits instead of all of them. For n = 4, for instance, a 3-to-1 protocol can be
performed, leaving the fourth qubit pair untouched.

In Figure 7.1 it can also be seen that there is only a small number of possible outcomes.
Recall that the distillation statistics are calculated for 1

3 (2n −1)
∏n

j=1(2 j +1) cosets. For
n = 2, 3, 4 and 5 this is equal to 15, 315, 11475 and 782595 cosets, respectively. However,
as can be seen in Figure 7.1, there are only 2, 4, 12 and 31 different outcomes for n = 2,
3, 4 and 5. This supports the discussion in Section 5.3.3 and is worth further investiga-
tion.
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(a) (b)

(c) (d)

Figure 7.1: Possible distillation statistics of an n-to-1 distillation protocol applied to the n-fold tensor product
of an isotropic state with input fidelity Fi n .

In Figure 7.1 it can be seen that there are many protocols that are not optimal: they are
dominated by other protocols that yield a higher fidelity and a higher success probability.
In the end, however, we are interested in the best achievable distillation statistics. These
distillation statistics are shown in Figure 7.2, where the Pareto front (the set of points that
are not dominated by other points) is plotted in combination with linear interpolation
between the points. The distillation statistics of the DEJMPS protocol are plotted as well.
It can be seen that DEJMPS yields the best achievable fidelity for an n = 2 protocol and
obtains this fidelity with the highest possible success probability.
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(a) (b)

(c) (d)

Figure 7.2: Best achievable distillation statistics of an n-to-1 distillation protocol applied to the n-fold tensor
product of an isotropic state with input fidelity Fi n .

In Figure 7.3 the highest achievable rate in a hashing protocol is plotted for isotropic
states with different input fidelities. The results for n = 5 are not shown here, because
the calculations were too computationally intensive. It can be seen that for low input
fidelity (Fi n . 0.77), distillation protocols for larger n result in a higher rate than a 2-
to-1 protocol or no protocol. For higher input fidelities, however, the best rate can be
obtained by not performing any n-to-1 protocol at all. Apparently, the larger number of
copies needed in the n-to-1 protocol and the lower success probability for higher values
of n significantly decrease the rate.

The rate achieved by applying the DEJMPS protocol is plotted as well. It can be seen that
the DEJMPS protocol yields the highest achievable rate for n = 2.
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Figure 7.3: Best achievable rate in a hashing protocol for different input fidelities in an n-to-1 protocol with
n = 2, 3 and 4. The rate achieved by applying DEJMPS is plotted as well.

7.2. BELL DIAGONAL STATES
Next, let us consider general Bell diagonal states. As mentioned earlier, any two-qubit
state can be brought into this form by twirling. We consider Bell diagonal states of the
form

ρAB = p1
∣∣Φ+〉〈

Φ+∣∣+p2
∣∣Ψ+〉〈

Ψ+∣∣+p3 |Φ−〉〈Φ−|+ (1−p1 −p2 −p3) |Ψ−〉〈Ψ−| , (7.2)

with p1 > 0.5 and p1 ≥ p2 ≥ p3 ≥ 1 − p1 − p2 − p3. Any Bell diagonal state with one
coefficient larger than 0.5 can be transformed into this form by using local operations
only. This ordering of the Bell coefficients allows us to obtain the best achievable fidelity
(see Dehaene et al., 2003b).

The input state was randomly generated, which resulted in the coefficients p1 = 0.7526,
p2 = 0.1057, p3 = 0.0938. In Figure 7.4a the possible outcomes of distillation protocols
are shown. It can be seen that there are a lot more different outcomes compared to
the isotropic states in Figure 7.1. However, it cannot be said with certainty how many
different outcomes there are, because it is difficult to determine which outcomes are
really different and which outcomes are only different due to the computations of the
computer.

In Figure 7.4b the best achievable distillation statistics are plotted. The DEJMPS protocol
is indicated here as well. It can be seen that for n = 2, DEJMPS yields the best achievable
fidelity (Fout = 0.8356) and that it is obtained with the highest possible success probabil-
ity (psuc = 0.6806).
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(a) (b)

Figure 7.4: Possible outcomes for distillation protocols applied to an initial state that is the n-fold tensor
product of a Bell diagonal state with p1 = 0.7526, p2 = 0.1057, p3 = 0.0938 (a) and the best achievable

distillation statistics for this input state (b).

For n = 3 the best achievable fidelity for this input states is equal to Fout = 0.8763. It can
be obtained with success probability psuc = 0.4895. One of the protocols that results in
this fidelity and success probability is

M̂n=3 =



1 0 0 0 0 1
0 1 1 1 1 0
1 1 0 0 1 1
0 1 1 0 0 1
1 1 1 1 1 0
1 1 0 0 0 0

 . (7.3)

In terms of Clifford gates, it can be implemented as

C =CNOT13S1H1CNOT21CNOT31CNOT12S1H1CNOT21CNOT12H1CNOT21

S1H1CNOT21S1.
(7.4)

For n = 4 the best achievable fidelity equals Fout = 0.9228. It can be obtained with
success probability psuc = 0.3494. One of the corresponding protocols is

M̂n=4 =



0 0 0 0 1 1 1 1
1 1 1 1 0 0 0 0
1 1 0 0 1 0 0 1
1 0 1 0 0 1 1 0
1 1 0 1 0 0 1 1
1 0 0 1 0 0 0 1
0 1 0 1 0 0 1 1
1 0 0 1 0 0 1 1


. (7.5)
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It can be implemented as

C =CNOT21CNOT12CNOT13CNOT14H1CNOT41CNOT12CNOT14H1CNOT41H2

CNOT21CNOT12CNOT13S1H1CNOT21CNOT31CNOT12CNOT13S1H1H2

CNOT21CNOT12H1CNOT21CNOT12H1CNOT21H1.

(7.6)

Finally, for n = 5 the best achievable fidelity is Fout = 0.9621, which can be achieved
with success probability psuc = 0.2515. A Clifford circuit with which these results can be
obtained, can be found in the same way as the n = 3 and n = 4 circuits were found. This
circuit, however, consists of many Clifford gates and does not provide any new insights,
thus it is omitted here.



8
CONCLUSION

In this thesis bilocal Clifford circuits were studied from a group theoretical point of view.
The main goal was to limit the search space for an optimal protocol by getting a bet-
ter understanding of the structure of the Clifford group. This was achieved by finding
a characterization of the subgroup of the Clifford group that preserves the distillation
statistics. Starting from the Bruhat decomposition of the Clifford group, a generating
set of gates for the subgroup was found. It was shown that, when optimizing the distil-
lation statistics, it is sufficient to consider only one element of every right coset of this
subgroup in the Clifford group, instead of every element of the Clifford group, which is
an improvement upon previous work on the optimization of entanglement distillation
protocols. By establishing a formula for the order of the subgroup, it was proved that this
indeed significantly limits the search space.

Special emphasis was put to the representation of Clifford operations in terms of bi-
nary matrices from the symplectic group. This representation was proved to be ’onto’:
every element from the symplectic group corresponds to an element from the Clifford
group. This result was used to develop an algorithm that calculates a transversal of
the right cosets. For n ≥ 5, however, this algorithm requires a very high random access
memory. As an alternative, a probabilistic approach could be used, were protocols are
sampled randomly and directly applied to an initial state. If the number of samples is
high enough, an optimal protocol can be obtained with a certain probability. Time-wise,
this takes about the same time as first calculating a transversal and then applying it to
one initial state, but it requires less memory. However, once the transversal is calculated,
the application to an initial state can be performed rather fast. Because various initial
states were used in this thesis, the approach of first calculating the transversal was cho-
sen.

For isotropic input states and a Bell diagonal state, the possible distillation statistics were
calculated. Remarkably, it was found that for isotropic states the number of possible
outcomes is much lower than the number of cosets. Although it is not very surpris-
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ing that for a symmetric input state the number of outcomes decreases, the degree to
which this happens indicates that there is great potential in further investigation of this
problem. A better understanding of the consequences of this symmetry for distillation
protocols can lead to a more efficient optimization for isotropic input states and may
enable optimization for larger values on n. For the Bell diagonal state, a decrease in
possible outcomes was found as well. However, this decrease was a lot less significant
than the decrease that was found for isotropic states.

Lastly, the best achievable distillation statistics were calculated. For n = 2 it was found
that the DEJMPS protocol yields the highest achievable fidelity with the best success
probability possible. For n = 3 and n = 4 protocols that result in the highest achievable
fidelity with the best success probability possible are given in both their symplectic form
and as a Clifford circuit. Possibly, for these protocols a shorter Clifford circuit can be
found, for instance using the Bruhat decomposition, but this is not further investigated
in this thesis.
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A
EQUIVALENT QUANTUM CIRCUITS

A.1. PROOF THAT CZi j ∈ 〈SD〉
It was claimed in Figure 5.3 that a CZi j gate can be rewritten in terms of CZ1i , CZ1 j and
H1 gates. The equivalence of the circuits of Figure 5.3 is proved here. In the proof the
distributed CNOT operation (Figure A.1a) is used. A proof of this equality can be found
in Garcia-Escartin and Chamorro-Posada, 2008. Moreover the CNOT-CZ transformation
rule (Figure A.1b) is used. Although this rule has been used before in this thesis, it is
repeated here for convenience.

• • •
= • •

(a)

• •
=

H • H

(b)

Figure A.1: Distributed CNOT operation (a) and a CNOT gate rewritten in terms of two Hadamard gates and a
CZ gate (b).

A proof of the equivalence in Figure 5.3 is shown in Figure A.2.
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1 1

i • = i •
j • j H H

1 • •
= i • •

j H H

1 H • H • H • H •
= i • •

j H H • H H • H H

1 H • H • H • H •
= i • •

j • •

Figure A.2: Proof that C Zi j can be rewritten in terms of H1, C Z1i and C Z1 j .



B
IMPLEMENTATIONS IN SAGEMATH

In this appendix implementations in SageMath of the algorithms described in Chapter 6
can be found. All implementations, including the code used for the figures of Chapter 7,
can also be found at https://github.com/sarahjansen08/optimization-entanglement-distillation.

B.1. FINDING A TRANSVERSAL
import numpy as np
import i t e r t o o l s as i t

def base (M) :
# c a l c u l a t e the image of the base under a matrix M
s = l i s t ( [M[ 0 : 2 * n , i ] for i in range (n+1 , 2*n) ] )
powerset = i t . chain . from_iterable ( i t . combinations ( s , r ) for r in range

( 1 , len ( s ) +1) )
base_map = set ( )
for i in powerset :

v = vector (sum( i ) )
v . set_immutable ( )
base_map . add ( v )

return frozenset (base_map)

# number of qubits (n > 1)
n = 2
# c a l c u l a t e number of c o s e t s
prod = 1
for i in range ( 1 ,n+1) :

prod = prod * ( 2 * * i + 1)
index = 1/3 * ( 2 * *n − 1) * prod
# load symplectic group
Cn = Sp(2*n , GF( 2 ) )
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# c a l c u l a t e matrix needed f o r transformation from ‘ sage symplectic ’ to \ \ ‘
l i t e r a t u r e symplectic ’

a n t i _ i d e n t i t y = matrix . i d e n t i t y (n)
for i in range ( 0 , (n/2) . c e i l ( ) ) :

a n t i _ i d e n t i t y . swap_rows ( i , n−i −1)
T = block_matrix (GF( 2 ) , [ [ matrix . i d e n t i t y (n) , zero_matrix (n , n) ] , [

zero_matrix (n , n) , a n t i _ i d e n t i t y ] ] , subdivide = False )

transversal_inv = { }
while len ( transversal_inv ) <index :

# generate random element of symplectic group
M = T * Cn. random_element ( ) * T
# calculating M inverse
A = M[ 0 : n , 0 :n]
B = M[ 0 : n , n: 2 *n]
C = M[n: 2 * n , 0 :n]
D = M[n: 2 * n , n: 2 *n]
M_inv = block_matrix ( [ [D. transpose ( ) ,−B . transpose ( ) ] ,[ −C. transpose ( ) ,A .

transpose ( ) ] ] , subdivide=False )
M_basecol = base ( M_inv )
# check whether c o s e t i s already in t r a n s v e r s a l
i f M_basecol not in transversal_inv :

transversal_inv [ M_basecol ] = M_inv

B.2. CALCULATING DISTILLATION STATISTICS
import numpy as np
import i t e r t o o l s as i t

m = 2
# Load t r a n s v e r s a l
transversal_inv = load ( ’ 2 _transversal_inv . sobj ’ )

# FUNCTIONS

def base (M, n) :
# c a l c u l a t e the image of the base under a matrix M
s = [ ]
for i in range (n+1 , 2*n) :

s . append(M[ 0 : 2 * n , i ] )
powerset = i t . chain . from_iterable ( i t . combinations ( s , r ) for r in range

( 1 , len ( s ) +1) )
res = [ vector (GF( 2 ) ,2*n) ]
for i in powerset :

v = vector (sum( i ) ) # c a l c u l a t e the sum of the elements of each
combination ( e . g IZZ = IZI + IIZ )

res . append( v )
return res

def p i l l a r s (M, n) :
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# c a l c u l a t e the image of the p i l l a r s under a matrix M
X1 = vector (M[ 0 : 2 * n , 0 ] )
Z1 = vector (M[ 0 : 2 * n , n ] )
Y1 = X1 + Z1
pI = base (M, n)
pX = [ ( X1 + b) for b in pI ]
pY = [ ( Y1 + b) for b in pI ]
pZ = [ ( Z1 + b) for b in pI ]
return [ pI , pX, pY , pZ]

def tensor (A , n) :
# c a l c u l a t e the n fold tensor product of a matrix A
kron = A
count = 1
while count < n :

kron = np . kron ( kron , A)
count = count + 1

i f n == 2 :
res = np . reshape ( kron , ( 4 , 4 ) )

e l i f n == 3 :
res = np . reshape ( kron , ( 4 , 4 , 4 ) )

e l i f n == 4 :
res = np . reshape ( kron , ( 4 , 4 , 4 , 4 ) )

e l i f n == 5 :
res = np . reshape ( kron , ( 4 , 4 , 4 , 4 , 4 ) )

def d i s t _ s t a t ( i n i t i a l , M, n) :
# returns the su ccess probabil i ty , f i d e l i t y and rate
p i l = p i l l a r s (M, n)
out = [ ]
for layer in p i l :

coef = 0
for e l t in layer :

i f n == 2 :
coef = coef + i n i t i a l [ int ( e l t [ 0 ] ) + 2* int ( e l t [n ] ) , int ( e l t

[ 1 ] ) + 2* int ( e l t [n+1]) ]
i f n == 3 :

coef = coef + i n i t i a l [ int ( e l t [ 0 ] ) + 2* int ( e l t [n ] ) , int ( e l t
[ 1 ] ) + 2* int ( e l t [n+1]) , \

int ( e l t [ 2 ] ) + 2* int ( e l t [n+2]) ]
i f n == 4 :

coef = coef + i n i t i a l [ int ( e l t [ 0 ] ) + 2* int ( e l t [n ] ) , int ( e l t
[ 1 ] ) + 2* int ( e l t [n+1]) , \

int ( e l t [ 2 ] ) + 2* int ( e l t [n+2]) , int ( e l t
[ 3 ] ) + 2* int ( e l t [n+3]) ]

i f n == 5 :
coef = coef + i n i t i a l [ int ( e l t [ 0 ] ) + 2* int ( e l t [n ] ) , int ( e l t

[ 1 ] ) + 2* int ( e l t [n+1]) , \
int ( e l t [ 2 ] ) + 2* int ( e l t [n+2]) , int ( e l t
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[ 3 ] ) + 2* int ( e l t [n+3]) , \
int ( e l t [ 4 ] ) + 2* int ( e l t [n+4]) ]

out . append( coef )
sp = sum( out )
f i d = out [ 0 ] / sp
r = 1
for i in out :

r = r + f l o a t ( i * log ( i ) / log ( 2 ) )
r = r * sp/n
return sp , f id , r
return res

def best_protocol ( i n i t i a l , transversal_inv , n , measure = " f i d e l i t y " ) :
# c a l c u l a t e s the best protocol from a dictionary of i n v e r s e s of

protocols ( transversal_inv ) applied to an i n i t i a l s t a t e ; as quality
measures the f i d e l i t y ( " f i d e l i t y " ) , su ccess p r o b a bi l i t y ( " sucprob " )
or rate ( " rate " ) can be chosen

i f measure == "sucprob" :
res = 0
for key , M in transversal_inv . items ( ) :

s = ( d i s t _ s t a t ( i n i t i a l , M, n) ) [ 0 ]
i f s > res :

res = s
opt_inv = M

i f measure == " f i d e l i t y " :
res = 0
for key , M in transversal_inv . items ( ) :

f = ( d i s t _ s t a t ( i n i t i a l , M, n) ) [ 1 ]
i f f > res :

res = f
opt_inv = M

i f measure == " rate " :
res = −100
for key , M in transversal_inv . items ( ) :

r = ( d i s t _ s t a t ( i n i t i a l , M, n) ) [ 2 ]
i f r > res :

res = r
opt_inv = M

# Calculate inverse of optimal protocol
A = opt_inv [ 0 : n , 0 :n]
B = opt_inv [ 0 : n , n: 2 *n]
C = opt_inv [n: 2 * n , 0 :n]
D = opt_inv [n: 2 * n , n: 2 *n]
opt = block_matrix ( [ [D. transpose ( ) ,−B . transpose ( ) ] ,[ −C. transpose ( ) ,A .

transpose ( ) ] ] , subdivide=False )
return res , opt

def s u c p r o b _ f i d _ l i s t s ( i n i t i a l , transversal_inv , n) :
# c a l c u l a t e the p o s s i b l e d i s t i l l a t i o n s t a t i s t i c s ( su ccess p r o b a bi l i t y &
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f i d e l i t y ) of the protocols in a t r a n s v e r s a l applied to an i n i t i a l
s t a t e

f i d = [ ]
sp = [ ]
f s l i s t = [ ]
for key , M in transversal_inv . items ( ) :

s = d i s t _ s t a t ( i n i t i a l , M, n) [ 0 ]
f = d i s t _ s t a t ( i n i t i a l , M, n) [ 1 ]
i f ( s , f ) not in f s l i s t :

sp . append( s )
f i d . append( f )
f s l i s t . append ( ( s , f ) )

return sp , f i d

# INPUT STATES

# i s o t r o p i c input s t a t e
f i d _ i n = [ 0 . 5 5 , 0.575 , 0 . 6 , 0.625 , 0.65 , 0.675 , 0 . 7 , 0.725 , 0.75 , 0.775 ,

0 . 8 , 0.825 , 0.85 , 0.875 , 0 . 9 , 0.925 , 0.95 , 0.975]
i n i t _ i s o = [ ]
for f in f i d _ i n :

i n i t _ i s o . append( vector ( [ f , (1− f ) /3 , (1− f ) /3 , (1− f ) / 3 ] ) )

# B e l l diagonal s t a t e
p0 = np . random . uniform ( 0 . 5 , 1)
p1 = np . random . uniform ( 0 , 1−p0 )
p2 = np . random . uniform ( 0 , 1−p0−p1 )
p3 = 1 − p0 − p1 − p2
l s t = [ p0 , p1 , p2 , p3 ]
l s t . sort ( )
i n i t _ b e l l = vector ( [ l s t [ 3 ] , l s t [ 2 ] , l s t [ 1 ] , l s t [ 0 ] ] )
print ( i n i t _ b e l l )
# i n i t _ b e l l = vector ([0.752604752074101 , 0.10567340022267524 ,

0.0938043735551225 , 0.04791747414810121])

for i in i n i t _ i s o :
print ( s u c p r o b _ f i d _ l i s t s ( tensor ( i , m) , transversal_inv , m) )

print ( s u c p r o b _ f i d _ l i s t s ( tensor ( i n i t _ b e l l , m) , transversal_inv , m) )

r _ l i s t = [ ]
for i in i n i t _ i s o :

r _ l i s t . append ( ( best_protocol ( tensor ( i , m) , transversal_inv , m, measure =
" rate " ) ) [ 0 ] )

print ( r _ l i s t )
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