

Delft University of Technology

Practical Secure Computation in the Client-Server Model

Vos, J.V.

DOI
10.4233/uuid:89791fc2-8d5e-4644-b4c9-810e4a69aa67
Publication date
2025
Document Version
Final published version
Citation (APA)
Vos, J. V. (2025). Practical Secure Computation in the Client-Server Model. [Dissertation (TU Delft), Delft
University of Technology]. https://doi.org/10.4233/uuid:89791fc2-8d5e-4644-b4c9-810e4a69aa67

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:89791fc2-8d5e-4644-b4c9-810e4a69aa67
https://doi.org/10.4233/uuid:89791fc2-8d5e-4644-b4c9-810e4a69aa67

P!"#$%#"& S’#(!’ C)*+($"$%),
%, $-’ C&%’,$-S’!.’! M)/’&

D%00’!$"$%),

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus Prof.dr.ir. T.H.J.J. van der Hagen
Chair of the Board for Doctorates

to be defended publicly on
Tuesday 17, June 2025 at 10:00 o’clock

by

Jelle VOS
Master of Science in Computer Science

Delft University of Technology, the Netherlands
born in Delft, the Netherlands

This dissertation has been approved by the promotors.
Composition of the doctoral committee:

Rector Magnificus chairperson
Dr. Z. Erkin Delft University of Technology, promotor
Prof.dr. M. Conti Delft University of Technology,

University of Padua, promotor

Independent members:
Prof.dr.ir. R.L. Lagend!k Delft University of Technology
Prof.dr. M.E. van D!k Vr!e Universiteit
Dr.ir. L.A.M. Schoenmakers Eindhoven University of Technology
Dr. S. Samardjiska Radboud Universiteit
Dr.ir. E. Makri Universiteit Leiden
Prof.dr. M.T.J. Spaan Delft University of Technology, reserve member

This work is licensed under CC BY-NC-ND cbed 4.0.
Cover design: Jelle Vos, inspired by De Correspondent books. The shape of the hand
was modeled after the pinch finger gesture designed by 588ku from pngtree.com/
freepng/pinching-finger-gesture-cartoon-illustration_4719807.html.
ISBN: 978-94-6518-075-5

2

https://creativecommons.org/licenses/by-nc-nd/4.0
pngtree.com/freepng/pinching-finger-gesture-cartoon-illustration_4719807.html
pngtree.com/freepng/pinching-finger-gesture-cartoon-illustration_4719807.html

Contents

Summary 7

Samenvatting 9

Introduction 11
Practical secure computation & existing techniques 12
Research questions . 16
Detailed thesis outline . 18
References . 21

A E!cient MPSO protocols in the star topology 25

1 SoK: Collusion-resistant Multi-party Private Set Intersections in the
Semi-honest Model 27
Published in IEEE Symposium on Security and Privacy 2024
1.1 Introduction . 27
1.2 Formal problem description . 30
1.3 Preliminaries . 32
1.4 Common constructions . 35
1.5 Proposed protocols . 43
1.6 Common pitfalls . 49
1.7 Analytical evaluation of computational costs 50
1.8 Discussion . 52
1.9 Conclusion . 53
References . 53
1.A Derived complexities . 61
1.B Derived operation counts . 63

2 On the Insecurity of Bloom Filter-Based Private Set Intersections 67
Submitted to the IACR Theory of Cryptography Conference 2025
2.1 Introduction . 67
2.2 Bloom Filters . 69
2.3 Definition of MPSI security . 70
2.4 An abstraction of Bloom filter-based PSI 73
2.5 Analysis of Bloom filter-based PSI 77
2.6 Practical attack on Bloom filter-based PSI 86
2.7 Mitigations . 90
2.8 Conclusion . 92
References . 93

3

2.A Conditions on the false positive probability 96
2.B Additional lemmas for proving upper bounds 97

3 Fast Multi-party Private Set Operations in the Star Topology from Secure
ANDs and ORs 99
Revision of a pre-print made available on the IACR Cryptology ePrint Archive in 2022
3.1 Introduction . 99
3.2 Related work . 102
3.3 Preliminaries . 108
3.4 Private ORs & ANDs . 109
3.5 Private set operations for small universes 117
3.6 Private set intersections for large universes 119
3.7 Private set unions for large universes 122
3.8 Conclusion . 126
References . 127
3.A Complexities of MPSI protocols . 132
3.B Complexities of MPSU protocols . 135

4 Privacy-Preserving Membership Queries for Federated Anomaly Detec-
tion 137
Published in Proceedings on Privacy Enhancing Technologies 2024
4.1 Introduction . 137
4.2 Related work . 140
4.3 Preliminaries . 145
4.4 Solution outline . 146
4.5 Private consistency queries . 148
4.6 Privacy analysis . 153
4.7 Performance analysis . 156
4.8 Limitations . 163
4.9 Conclusion . 164
References . 165
4.A Di"erentially-private discretization of InterimTime 170
4.B Changes in the malicious model . 171

B Automatic generation of HE circuits 173

5 Depth-Aware Arithmetization of Common Primitives in Prime Fields 175
Submitted to USENIX Security 2025
5.1 Introduction . 175
5.2 Notation and conventions . 178
5.3 Related work . 179
5.4 Arithmetization of Sums & Products 180
5.5 Arithmetization of Exponentiations 182
5.6 Arithmetization of Polynomial Evaluation 186
5.7 Arithmetization of ANDs and ORs 192
5.8 Depth-Aware Composition . 194
5.9 Conclusion . 198

4

References . 199

6 Oraqle: A Depth-Aware Secure Computation Compiler 205
Published in 12th Workshop on Encrypted Computing & Applied Homomorphic Cryptography
6.1 Introduction . 205
6.2 Homomorphic encryption compilers 208
6.3 Programming interface . 209
6.4 Depth-aware arithmetization . 212
6.5 Optimization of arithmetic circuits 215
6.6 Code generation . 216
6.7 Results . 217
6.8 Limitations . 218
6.9 Conclusion . 219
References . 220
6.A Code samples . 222

7 E!cient Circuits for Permuting and Mapping Packed Values Across
Leveled Homomorphic Ciphertexts 225
Published in European Symposium on Research in Computer Security 2022
7.1 Introduction . 225
7.2 Preliminaries & Notation . 227
7.3 Related Work . 229
7.4 Constructing Arbitrary Mapping Circuits 231
7.5 Performance of Special Mappings . 234
7.6 Results . 235
7.7 Conclusion . 238
References . 239

The road ahead 241

8 Oraqle Extended: Optimal Automated Protocol Design for Homomorphic
Encryption-based Multi-Party Private Set Intersections 243
Unpublished work
8.1 Introduction . 243
8.2 Beyond arithmetic circuits . 249
8.3 Encoding Booleans & sets . 252
8.4 Assignment and scheduling . 255
8.5 Initial results . 260
8.6 Conclusion . 262
References . 266

Discussion 271
Takeaways . 271
Societal impact . 275
Limitations . 275
Future work . 277

5

Acknowledgments 279

Curriculum Vitae 285

List of publications 287

6

Summary

To compute something securely is to do so in a way that does not reveal (some of) the
inputs, intermediate values, or outputs, to certain predetermined parties. For example, a
hospital might outsource the computation of patients’ medical analyses to the cloud without
the cloud provider being able to extract sensitive medical information. Researchers have
proposed cryptographic protocols capable of performing secure computation for any function
imaginable. However, there are still technical obstacles that hinder practical deployments
of secure computation protocols. In this thesis, we identify four such impracticalities and
propose techniques to address them.

A crucial building block that forms the basis of all protocols in this thesis is homomorphic
encryption. Like ‘regular’ encryption it protects the encrypted values from being seen.
However, it also allows one to perform computations on these encrypted values, without
decrypting them. We distinguish between partially-homomorphic encryption schemes,
which allow for some specific computations to be performed, and fully-homomorphic
encryption schemes, which can perform any computation imaginable.

In the first part of this thesis, we focus on secure multi-party computation, which are
protocols between multiple parties who each contribute an input to the computation. An
example is a private set intersection, in which each party contributes a private set and
the output reveals the elements they have in common. Such protocols may be used to
identify fraud in patients who collect certain medicine from multiple hospitals. Current
protocols often require the parties to perform many interactions or they require all the
parties to communicate with each other. In this part, we address these two impracticalities
by designing and analyzing private set operation protocols based on partially-homomorphic
encryption. Given that our protocols only require few rounds of communication between
each party and one central party, they are in line with the client-server model, which models
the architecture of conventional, non-secure computations.

In the second part, we focus on two impracticalities regarding fully-homomorphic
encryption, which may be used to securely outsource computations from lightweight
clients to powerful servers. Firstly, it is currently computationally expensive to use fully-
homomorphic encryption to compute complex functions. Secondly, doing so requires
expert knowledge. In this part, we provide algorithms that allow non-experts to securely
perform complicated computations using standard programming primitives, and to do so
more e#ciently than before. We implement these algorithms in a new secure computation
compiler called oraqle, and they are also being implemented in Google’s HEIR compiler.

Before wrapping up the thesis, we provide initial results on an extension of the
oraqle compiler that is capable of generating secure multi-party computation protocols
automatically. We show that this extension can generate one of the protocols that we
designed by hand in the first part of this thesis. We conclude that the techniques that we
propose are promising, but we cannot solve the impracticalities in all cases: depending
on the computation being performed, fully-homomorphic encryption techniques remain
computationally expensive. We propose several future directions that may further reduce
the computational cost of secure computation.

7

8

Samenvatting

Het op een veilige manier uitvoeren van berekeningen houdt in dat de ingevoerde data,
tussent!dse berekeningen, en de uitkomsten van de berekeningen geheim bl!ven voor een
groep aangewezen part!en. Een voorbeeld hiervan is een ziekenhuis dat haar berekeningen
uitbesteedt aan een cloud provider, maar op zo’n manier dat de cloud provider niet b! de
gevoelige medische data kan. Onderzoekers hebben al technieken ontwikkeld om elke
mogel!ke functie op een veilige manier te berekenen door middel van cryptografische
protocollen, alleen hebben deze technieken nog tekortkomingen die het gebruik in de
prakt!k belemmeren. In dit proefschrift benoemen w! vier van deze tekortkomingen en
ontwikkelen w! technieken om deze te verhelpen.

Aan de basis van alle protocollen die w! ontwikkelen in dit proefschrift ligt een bestaande
bouwsteen genaamd homomorfische versleuteling. Deze vorm van versleuteling voorkomt
dat versleutelde data zichtbaar is, en tegel!k staat het computers toe om berekeningen uit te
voeren op deze versleutelde data zonder deze te ontsleutelen. Gedeeltel!ke homomorfische
versleuteling laat men specifieke berekeningen uitvoeren, terw!l volledige homomorfische
versleuteling in staat is elke mogel!ke berekening uit te voeren.

In het eerste deel van dit proefschrift ligt de focus op protocollen waarin meerdere part!en
een invoer kunnen b!dragen. Een voorbeeld van zo’n multi-party computation protocol is een
private set intersection, waarin elke part! een geheime verzameling invoert. De uitvoer van
dit protocol is de doorsnede van al deze verzamelingen (de elementen die overeenkwamen
tussen alle verzamelingen). Zo’n protocol kan b!voorbeeld gebruikt worden om fraude in
ziekenhuizen tegen te gaan door patiënten op te sporen die bepaalde medic!nen opvragen
van meerdere ziekenhuizen. De huidige protocollen vereisen vaak dat de part!en veel en
allemaal met elkaar communiceren. In dit deel ontwikkelen en analyseren w! protocollen
voor private set operations gebaseerd op gedeeltel!ke homomorfische versleuteling waarvoor
dit niet geldt. Omdat part!en in deze protocollen minder communiceren, en slechts met
één centrale part!, passen deze protocollen in het client-servermodel dat overeenkomt met
de architectuur van veel huidige systemen voor conventionele (niet-veilige) berekeningen.

In het tweede deel ligt de focus op de bruikbaarheid van volledige homomorfische
versleuteling, wat gebruikt kan worden voor het uitbesteden van berekeningen van zwakke
client-computers aan krachtige servers. Op dit moment kost het veel computerkracht om
complexe berekeningen uit te voeren met dit soort versleuteling en vereist het de nodige
expertise. Daarom ontwikkelen w! algoritmes die het mogel!k maken om zonder deze
expertise alsnog ingewikkelde berekeningen uit te voeren, en zelfs e#ciënter dan voorheen.
W! hebben deze algoritmes geïmplementeerd in een nieuwe veilige berekenings-compiler
genaamd oraqle, en ze worden ook in Google’s HEIR compiler geïntegreerd.

Aan het eind van dit proefschrift behandelen w! een uitbreiding van de oraqle compiler
die in staat is om multi-party protocollen automatisch te genereren. Deze uitbreiding is zelfs
in staat één van de protocollen te genereren die w! in het eerste deel van dit proefschrift met
de hand ontwierpen. Onze conclusie is dat deze technieken veelbelovend z!n, maar nog
niet alle praktische problemen oplossen: Afhankel!k van de beoogde berekening kunnen
volledig homomorfische versleutelingstechnieken nog behoorl!k duur z!n om uit te voeren.
Om deze reden stellen w! enkele toekomstige richtingen voor die de kosten van veilige
berekeningen zouden kunnen drukken.

9

10

Introduction

Secure computation is the process of evaluating a function on secret inputs.
Consider, for example, a computer model that can predict medical conditions on a
patient’s medical scan such as a photo, an X-ray, or a CT scan. Now consider that
the patient does not wish for the model’s operators to see their medical information,
but they do intend to learn the model’s prediction. In other words, the patient
wants to evaluate the computer model (a function) on an input they intend to keep
hidden: The patient wants to securely compute the model’s output.

It seems paradoxical that one can decide how a computer should handle inputs
that it cannot see in plain. Indeed, for a long time, it was unknown how to securely
compute any possible function until Yao [Yao82] provided a general method in 1982.
This method is based on one-way functions; functions that are easy to compute
in one direction but hard to invert. Since then, many more secure computation
techniques have been proposed, and they have even been applied in practice in
several use cases. For example, Apple [App21] and Google [WPY19] use secure
computation to check if a user’s password is compromised, without leaking the
password to their servers.

Yao’s work described above can be classified as a means of realizing secure
multi-party computation (MPC). These secure computation techniques involve at
least two parties, say Alex and Blake, who collaborate to compute some function
𝐿 (𝑀, 𝑁) that incorporates both their inputs. In this function, 𝑀 represents Alex’
inputs and 𝑁 represents Blake’s.

Until recently, it was unknown whether it is also possible to securely outsource
the computation of a function on one party’s inputs to another party, ideally
without requiring multiple interactions between the two parties. In this setting,
called secure outsourced computation (SOC), Alex would perform minimal work,
while Blake computes 𝐿 (𝑀) on Alex’ behalf. In 2009, Gentry [Gen09] found a
theoretical solution to this problem in the form of a fully homomorphic encryption
(FHE) scheme. Such a scheme allows any function computation to be securely
outsourced by letting Alex encrypt their inputs, enabling Blake to compute the
function using homomorphisms (see Sec. 7.2.3) and returning the encrypted result.

At this point, we know how to theoretically securely compute any function
𝐿 (. . .). However, the challenge that remains is to do so e#ciently, or more generally,
in a way that is practical. By e#cient, we mean that these techniques may be such
that one is willing to pay the price of using them. In the real world, such a price
may be a combination of the computational cost, costs relating to the use of the
communication network, and the total run time of a secure computation protocol.
By practical, we mean that these techniques may be deployed in the real world
without facing significant technical obstacles. This thesis considers several of the
issues that currently make secure computation impractical and proposes initial
steps around these issues. Specifically, we consider four impracticalities:

11

1. The high number of interactions required in secure computation protocols.

2. The fact that many secure computation protocols require all parties to
communicate with each other.

3. The complexity of expressing desired computations using arithmetic opera-
tions by hand, which requires expert knowledge.

4. The high computational cost of fully homomorphic encryption.

We proceed to explain these impracticalities in more detail.

Practical secure computation & existing techniques
Given that we know how to compute any function securely, it is perhaps surprising
that secure computation techniques are not yet widely deployed. After all, there
are plenty of use cases:

• Researchers could compute statistics for medical studies without revealing
patients’ personal medical information.

• Users could query large language models from lightweight devices without
revealing their queries to the server.

• Countries could detect impending collisions between secret satellites without
revealing the location of other satellites.

• Organizations could run collaborative analyses to detect cyber threats without
revealing their customers’ information.

• Security agencies could prevent conflicting investigations without revealing
information about other investigations.

The reason why we have not seen secure computation applied to the these use
cases in the real world is that there are still challenges that make these techniques
impractical to deploy. We discuss these impracticalities in more detail for two
contexts: secure multi-party computation and secure outsourced computation. We
also briefly explain how existing techniques relate to these impracticalities (we
provide detailed overviews of prior work with respect to specific sub-problems in
later chapters of this thesis).

Impracticalities in secure multi-party computation
In the context of MPC, one of these issues was already noticed in 1990, namely
that many secure computation protocols require a large degree of interaction (i.e.
a large number of communication rounds) between the parties involved:

“ For many concrete computations, the resulting number of rounds
would be prohibitive; in distributed computation, the number of rounds
is generally the most valuable resource. ”

— Beaver, Micali, and Rogaway, 1990 [BMR90]

12

The reason that interactions are so expensive is twofold. First, interaction requires
synchronization, and any party’s asynchrony may lead to other parties idling.
Secondly (and more importantly), every interaction causes delays between the
time that a message is sent and when it is received. The only way to reduce this
time is to speed up communication lines or increase their bandwidth, but they are
inevitably constrained by the speed of light: even in a vacuum, each interaction in
a protocol between Europe and the USA will take at least 20 milliseconds.

In other words, our first major impracticality is 1: High interactivity. Figure 1a
presents an example in which multiple parties have to interact in many rounds
with central party →1. Unfortunately, many multi-party computation techniques
require a large degree of interaction, as we will discuss later in more detail.

Another impracticality originates from the fact that MPC techniques do not
always follow the same architecture as conventional distributed computing tasks.
Specifically, conventional distributed applications such as private messaging, e-
commerce, or online video games, typically follow the client-server model, in which
computations are centralized around one or more powerful servers acting in unison.
The clients in such a system deploy lightweight computer systems that strictly
communicate with a server. This is in stark contrast to information-theoretic MPC,
which requires parties to communicate with all or at least a sizeable subset of other
parties. Figure 1b illustrates that, whereas the client-server model implies a star
topology, MPC techniques often assume a full-mesh topology. As a result, clients
must be significantly more powerful and available, and existing infrastructure
built around the client-server must be overhauled. In other words, a second major
impracticality is 2: Full-mesh topology.

→2

→3

→4 →5

→6

→1

(a) Impracticality #1, many MPC techniques re-
quire a large number of interactions.

→2

→3

→4 →5

→6

→1

(b) Impracticality #2, many MPC techniques re-
quire a full-mesh topology.

Figure 1: Impracticalities originating in secure multi-party computation techniques.

Next, we briefly underline why current techniques su"er from these two imprac-
ticalities. While there are many techniques for secure multi-party computation, the
term ‘generic MPC’ has become synonymous with information-theoretic MPC. In
these techniques, parties split their secrets into shares that do not reveal anything
about the secrets when viewed in isolation. They send these shares to multiple
other parties, who can then perform computations between shares, obtaining new
shares. Typically, secret shares encode plaintext messages in the ring Z𝑂 . A simple

13

secret sharing scheme would be to split such a message 𝑃1 into 𝑄 random shares
𝑅1 , . . . , 𝑅𝑄 in a way that 𝑅1 + · · · + 𝑅𝑄 = 𝑃1. Say that we also have another message
𝑃2 that is split into shares 𝑆1 , . . . , 𝑆𝑄 , then we can perform additions between them
by adding the individual shares:

(𝑅1 + 𝑆1) + · · · + (𝑅𝑄 + 𝑆𝑄) = 𝑃1 + 𝑃2 .

It turns out that performing multiplications in this scheme requires at least one
interaction between all the involved parties. As such, these techniques su"er both
from 1: High interactivity and 2: Full-mesh topology.

Other generic MPC approaches circumvent some of these impracticalities
by relying on cryptographic hardness assumptions. For example, a protocol
that requires a full-mesh topology may be transformed into a protocol in the
star topology by using symmetric-key cryptography to route all communication
confidentially through the central server. However, this creates a bottleneck, and
while it solves 2: Full-mesh topology, it does not solve 1: High interactivity. On the
other hand, there are secure computation techniques in the form of homomorphic
secret sharing that realize two-round protocols for all functions [BGI16; Boy+18],
but they require expensive asymmetric-key cryptography and their e#ciency
strongly depends on the computed function. Other techniques for MPC include
function secret sharing [BGI15], multi-party garbling [BMR90], and threshold
partially-homomorphic cryptosystems [CDN01]. These techniques either require
many parties to communicate with each other, or they require a large number of
interactions (a high round complexity) to evaluate complex functions.

In other words, current generic techniques typically su"er from the aforemen-
tioned impracticalities, or they are ine#cient. That said, for specific functionalities,
it may be possible to find a practical trade-o" between these three properties.

Impracticalities in secure outsourced computation
Secure multi-party computation techniques do not generally translate to secure
outsourced computation techniques: since they typically involve the e"orts of
multiple parties, the e"orts cannot be easily centralized to one powerful server.
For this reason, low-round homomorphic secret sharing schemes are not suitable
in the context of SOC. Of course, one may still distribute these computations
across multiple servers, but this is at odds with the client-server model. Moreover,
distributing the computation across two or three servers typically involves a
non-collusion assumption that is hard to realize in practice.

A more suitable secure outsourced computation technique comes in the form of
homomorphic encryption, which is an encryption scheme that permits one or more
homomorphisms between the ciphertext and plaintext spaces. In other words, a
client could outsource a plaintext computation to a server by encrypting it, sending
it to the server, who applies a certain computation to the ciphertext domain to
reflect the intended computation in the plaintext domain. A fully-homomorphic
encryption scheme allows any computation to be outsourced in this fashion, which
addresses both impracticalities 1: High interactivity and 2: Full-mesh topology.
This makes it ‘the Holy Grail of cryptography’:

14

“ The idea of fully homomorphic encryption schemes was first proposed
by Rivest, Adleman, and Dertouzos in the late 1970s, but remained a
mirage for three decades, the never-to-be-found Holy Grail of cryp-
tography. At least until 2008, when Craig Gentry announced a new
approach to the construction of fully homomorphic cryptosystems. ”

— Micciancio, 2010 [Mic10]

Since their invention, fully-homomorphic encryption (FHE) schemes have seen
significant developments in virtually all aspects, such as computational e#ciency,
key sizes, and user-friendly implementations. Unfortunately, FHE still su"ers
from impracticalities. First, while writing programs in conventional programming
languages is widely practiced with the necessary tools for automation and support,
it is notoriously hard to design cryptographic protocols for secure computation tasks
that are correct, secure, and e#cient. This is not a task that is easily tackled by a non-
expert, because current FHE schemes require programs to be expressed in terms
of additions and multiplications (and automorphisms) in some algebraic structure.
There are already major e"orts to automate this process called arithmetization in the
context of FHE in the form of homomorphic encryption compilers (see Sec. 6.2 for an
overview of these compilers), but many compilers leave arithmetization to the user,
while the ones that do perform automatic arithmetization only consider a fraction
of the parameter space. We summarize this impracticality as 3: Arithmetization,
as portrayed in Figure 2a.

The second and most straightforward impracticality is that FHE is computa-
tionally expensive: non-linear operations take orders of magnitude longer than
equivalent non-secure operations. For example, as shown in Figure 2b, a homo-
morphic encryption scheme computing an equality check between two sequences
of 64 bits requires 3.28 seconds to compute (see Table 6.2), whereas a modern
computer can perform such an equality check on plaintext values in the order of
nanoseconds. We denote this with 4: Compute-intensive.

if x < 3:
 y &= z
else:
 y = (a==b)

×

+

+
arithmetize

hard to

(a) Impracticality #3, arithmetization beyond Boolean or LUT
circuits requires expert knowledge.

a

=

b
64 bits 64 bits

Boolean

Boolean circuit
requires 3.28 s

(b) Impracticality #4, evaluating HE
circuits is computationally expensive.

Figure 2: Impracticalities originating in secure outsourced computation techniques.

The reason why 3: Arithmetization in general is a hard problem, is that these
homomorphic encryption schemes tend to have a plaintext algebra of the form Z𝑂 ,
where 𝑂 is some natural number, or some polynomial ring. The existing techniques
for synthesizing arithmetic circuits, which are comprised of additions and mul-
tiplications, are based on Boolean circuits, because these are used for hardware

15

design. Operations such as comparisons (i.e. 𝑅 < 𝑆) have no formal definition
in these plaintext algebras and potential arithmetizations strongly depend on
the algebra. For this reason, homomorphic encryption compilers typically only
perform Boolean circuit synthesis. Alternatively, compilers generate LUT circuits
consisting of additions and look-up tables (LUTs), which can be conveniently
computed using homomorphic encryption schemes such as TFHE [Chi+18]. How-
ever, these look-up tables can only be applied to one element at a time, whereas
other homomorphic encryption schemes such as BGV [BGV12] allow the e#cient
evaluation of arithmetic circuits on many elements in parallel.

The homomorphic encryption schemes that are currently in use by homo-
morphic encryption compilers are based on (variants of) the learning with errors
assumption [Reg05]. A newly-encrypted ‘fresh’ ciphertext in these schemes con-
tains two parts: uniform randomness and a noisy linear combination of this
randomness as determined by the secret key. The reason why non-linear opera-
tions on such a ciphertext are expensive is that they cause the ciphertext to grow
in the number of parts, requiring an expensive process called ‘relinearization’ to
reduce the number of parts back to two.

Another computationally-expensive operation in these schemes is called re-
encryption or bootstrapping, which is necessary due to the fact that ciphertexts are
noisy. After performing homomorphic operations, and especially after performing
multiplications, the noise may grow and eventually overwrite the encrypted
plaintext, hindering successful decryption. Before the ciphertext reaches this point,
one may use a bootstrapping key to non-interactively refresh the noise level in
the ciphertext. Bootstrapping and relinearization operations are the main factors
contributing to impracticality 4: Compute-intensive, and both are a consequence
of homomorphic multiplications.

An alternative to FHE that requires a single interaction (thereby optimally
solving impracticality 1: High interactivity) is called functional encryption [SW05].
Like any other encryption schemes, functional encryption allows a party to encrypt
some plaintext 𝑅. However, their decryption di"ers in that they require a function-
specific decryption key 𝑇𝑈 𝐿 that allows the decrypter to non-interactively obtain
𝐿 (𝑅) without learning anything else about 𝑅. Some functional encryption schemes
can securely compute any function [Gol+13; GVW13], however these schemes
internally use similar constructions to the aforementioned fully-homomorphic
encryption schemes based on the learning with errors assumption. As a result,
they su"er from the same impracticalities. Other schemes like the scheme by Garg
et al. [Gar+13] rely on hard-to-realize primitives like multilinear maps.

Research questions

We started this introduction with a rather imprecise definition of secure computa-
tion. To properly define the aim of this thesis, we first refine this definition. In
its broadest form, secure computation can be defined as any computation that
involves operands that must remain confidential. In this thesis, we consider a
stricter definition of what makes a computation secure: we require the computation
to remain confidential in the presence of (augmented) honest-but-curious colluding

16

parties. Such parties faithfully execute their role in a protocol, but they attempt to
learn whatever additional information they can (see Sec. 1.2.3). In other words, due
to the collusion-resistance requirement, we do not consider secure computation
protocols in which a trusted third party performs the computation under the
promise that they will indeed keep secrets secret. Similarly, we do not consider
secure enclaves, in which a party must place their trust in hardware and software
to protect secret keys.1

Within this scope, the goal of this thesis is to address the four major impracti-
calities mentioned above. We answer the following research question:

How can we make collusion-resistant confidential computation between
honest-but-curious parties more practical?

For secure multi-party computation, the open problem is to design e#cient
protocols in the client-server model that require few interactions for operations
that are currently impractical. In other words, we aim to address the problems
related to communication. For secure outsourced computation, the open problem
is that high-level functions are currently impractical to evaluate: this requires
expert knowledge and current approaches lead to ine#cient circuits.

Addressing impracticalities in MPC
A general rule in secure computation is that the simpler the function, the more
practical and e#cient it is to compute. For example, there are practical protocols for
computing a summation between multiple values, such as Prio [CB17]. However,
more complex functions quickly become impractical to evaluate. In this thesis, we
aim to address the aforementioned impracticalities for functions with potential
real world applications that are more complex than summations.

One such class of functions, is the class of set operations such as intersections,
unions, and membership queries. This class has been studied for more than 20
years under the name multi-party private set operations (MPSO) [KS05]. We
present a detailed overview of multi-party private set intersection protocols in
Chapter 1, and other private set operations in Chapters 3 & 4. These protocols use
a wide variety of multi-party computation techniques. However, there is still a gap
in the literature when it comes to designing e#cient protocols in the client-server
model that require few interactions.

In Part A of this thesis, we aim to fill this gap by proposing low-round
homomorphic-encryption based protocols. Using homomorphic encryption allows
us to address impracticality 2: Full-mesh topology. We answer the following
sub-question:

What are computationally-e#cient, low-round, collusion-resistant
multi-party private set operation protocols between honest-but-curious
parties in the client-server model?

As such, we limit our scope from multi-party computation to multi-party private
set operations.

1A secure enclave can be seen as a non-colluding key holder, where collusion entails extracting the
key or other hidden data from the enclave.

17

Addressing impracticalities in SOC
As mentioned previously, homomorphic encryption compilers have already made
it significantly easier for non-experts to evaluate high-level circuits using homo-
morphic encryption. However, these compilers typically leave arithmetization to
the user. We aim to democratize the use of homomorphic encryption by propos-
ing algorithms for the arithmetization of several high-level operations, so that
homomorphic encryption becomes practical for non-experts, too.

An impracticality that has arguably received more attention from the re-
search community is impracticality 4: Compute-intensive. Since Gentry’s ini-
tial work [Gen09], the computational cost of FHE has been reduced signifi-
cantly [GMT23]. Research still continues to reduce the computational costs
of individual homomorphic encryption operations, for example, through special-
ized hardware [Gee+23] or new software implementation techniques [Bel+24].
However, further reductions can also be achieved by eliminating homomorphic
operations in the first place. We aim to do so by generating arithmetic circuits
that require fewer or less expensive homomorphic encryption operations. For
example, by considering a di"erent plaintext space or computational model, and
by exploiting implicit parallelization.

In short, our aim in Part B is to address impracticalities 3: Arithmetization and
4: Compute-intensive by proposing methods for generating arithmetic circuits
that are computationally cheaper to evaluate than current proposals. We answer
the following sub-question:

Given a high-level circuit, how can one e#ciently generate an arith-
metic circuit that is computationally cheap to evaluate using fully
homomorphic encryption?

As such, we limit the scope from secure outsourced computation in general, to
homomorphic encryption-based secure outsourced computation.

Addressing impracticalities in general
Ideally, our work does not only address the impracticalities of MPC and SOC in
isolation, but also together. After all, even when multiple parties contribute inputs
(MPC), it is in the spirit of the client-server model to outsource most of these
computations to a server (SOC). While a significant amount of research e"ort has
gone into tools for generic MPC protocols and homomorphic encryption compilers,
we aim to unify these tools. This is the aim for the last part of this thesis, titled ‘The
road ahead’. In this part, we provide initial answers to the following sub-question:

Given a high-level circuit, a description of parties’ knowledge, and a
secure computation technique, how can one generate a corresponding
e#cient secure multi-party computation protocol?

Detailed thesis outline
Table 1 provides an overview of the parts in this thesis. The columns indicate
whether a part concerns secure outsourced computation or secure multi-party

18

computation. The rows indicate whether we consider protocols that were man-
ually designed and optimized, or whether we provide algorithms for doing so
automatically. We continue by outlining each chapter in the order in which they
appear in this thesis: this thesis is made up of eight chapters that are adaptations
from existing research article. Some of these articles have been published, whereas
others have not yet been accepted or have only been made available as a pre-print.
An exception is Chapter 8, which has not been made available before. We note
that, because the adapted articles are independent, notation between chapters may
sometimes be inconsistent. Moreover, while we took care to minimize repetition,
some concepts may be introduced multiple times. The end of this thesis is marked
by the discussion chapter.

Table 1: Overview of the parts in this thesis. Our third part titled ‘The road ahead’ combines
insights from both Part A and Part B.

Computation

Outsourced Multi-party

Generation
Manual - Part A

Automatic Part B The road ahead

Part A: E!cient MPSO protocols in the star topology
In Part A, we analyze and propose secure multi-party computation protocols
for set operations, such as multi-party private set intersection (MPSI) protocols
computing 𝐿 (𝑉1 , . . . ,𝑉𝑄) = 𝑉1 ↑ · · · ↑ 𝑉𝑄 , set membership queries computing
𝐿 (𝑅 ,𝑉1 , . . . ,𝑉𝑄) = 𝑅 ↓ (𝑉1 ↔ · · · ↔ 𝑉𝑄), and multi-party private set union (MPSU)
protocols computing 𝐿 (𝑉1 , . . . ,𝑉𝑄) = 𝑉1 ↔ · · · ↔ 𝑉𝑄 , where 𝑉1 , . . . ,𝑉𝑄 are all sets
and 𝑅 is a single element.

Chapter 1: SoK: Collusion-resistant MPSI in the semi-honest model
Published in IEEE Symposium on Security and Privacy 2024

We provide a systematization for multi-party private set intersection protocols that
resist passive attacks from a given number of colluding parties.

Chapter 2: On the insecurity of Bloom filter-based PSI
Submitted to the IACR Theory of Cryptography Conference 2025

We demonstrate that while small Bloom filters are useful data structures for
constructing low-round and e#cient private set intersection protocols, they are
unsuitable for achieving confidentiality. We show that previous security proofs
were incorrect, showing that it is impossible to achieve a tight security proof, and
by proposing practical attacks. We provide several mitigations.

19

Chapter 3: Fast MPSO in the star topology from secure ANDs and ORs
Revision of a pre-print made available on the IACR Cryptology ePrint Archive in 2022

We provide a collection of e#cient protocols for multi-party private set intersections
and unions, based on the decisional Di#e-Hellman assumption.

Chapter 4: Privacy-preserving membership queries for federated anomaly
detection
Published in Proceedings on Privacy Enhancing Technologies 2024

We introduce the concept of repeated membership queries, allowing a party to
query membership of single element in static sets held by multiple other parties,
without revealing the query nor the contents of the sets. Along the way we propose
a new abstract primitive akin to oblivious key-value stores called encrypted
membership query filters (EMQFs) that may be of independent interest.

Part B: Automatic generation of HE circuits
In Part B, we consider that designing e#cient secure outsourced computation
protocols currently requires expert knowledge. We address this problem by
proposing algorithms that generate e#cient circuits of primitive operations for
high-level tasks.

Chapter 5: Depth-aware arithmetization of common primitives in prime fields
Submitted to USENIX Security 2025

We propose the concept of depth-aware arithmetization, which translates high-level
circuit specifications into e#cient arithmetic circuits, while at the same time
exploring the trade-o" between the number of multiplications and squarings in
an arithmetic circuit and the number of multiplications on any path through the
circuit.

Chapter 6: A depth-aware secure computation compiler
Published in 12th Workshop on Encrypted Computing & Applied Homomorphic Cryptography

We propose the oraqle compiler, which implements depth-aware arithmetization.
By implementing several heuristics and integrating previous work for parameter
selection and the evaluation of homomorphic encryption circuits, it allows one to
e#ciently generate homomorphic encryption circuits.

Chapter 7: E!cient circuits for permuting and mapping packed values across
leveled homomorphic ciphertexts
Published in European Symposium on Research in Computer Security 2022

We propose an algorithm based on graph coloring that generates e#cient ho-
momorphic encryption circuits for permuting elements across multiple packed
ciphertexts. We also extend it to perform mappings of any kind.

20

The road ahead
The final part in this thesis aims at unifying the ideas proposed in parts A & B.

Chapter 8: Optimal automated protocol design for HE-based MPSI

In the final technical chapter of this thesis, which has not been published before, we
demonstrate a future direction for practical secure computation in the client-server
model: the automatic realization and optimization of HE-based MPC protocols. In
this chapter, we provide extensions to the oraqle compiler that allow it to generate
multi-party private set intersection protocols that achieve competitive performance
with those that were manually designed.

References
[App21] Apple Inc. Password Monitoring. https://support.apple.com/

guide/security/password- monitoring- sec78e79fc3b/web. Ac-
cessed: 2024-10-04. 2021.

[Bel+24] Mariya Georgieva Belorgey et al. “Revisiting Key Decomposition
Techniques for FHE: Simpler, Faster and More Generic”. In: Advances
in Cryptology - ASIACRYPT 2024 - 30th International Conference on the
Theory and Application of Cryptology and Information Security, Kolkata, In-
dia, December 9-13, 2024, Proceedings, Part I. Ed. by Kai-Min Chung and
Yu Sasaki. Vol. 15484. Lecture Notes in Computer Science. Springer,
2024, pp. 176–207. /)%: 10.1007/978- 981- 96- 0875- 1_6. (!&:
https://doi.org/10.1007/978-981-96-0875-1%5C_6.

[BGI15] Elette Boyle, Niv Gilboa, and Yuval Ishai. “Function Secret Sharing”. In:
Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II. Ed. by Elisabeth
Oswald and Marc Fischlin. Vol. 9057. Lecture Notes in Computer
Science. Springer, 2015, pp. 337–367. /)%: 10.1007/978- 3- 662-
46803-6_12. (!&: https://doi.org/10.1007/978-3-662-46803-
6%5C_12.

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. “Breaking the Circuit
Size Barrier for Secure Computation Under DDH”. In: Advances
in Cryptology - CRYPTO 2016 - 36th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings,
Part I. Ed. by Matthew Robshaw and Jonathan Katz. Vol. 9814. Lecture
Notes in Computer Science. Springer, 2016, pp. 509–539. /)%: 10.1007/
978-3-662-53018-4_19. (!&: https://doi.org/10.1007/978-3-
662-53018-4%5C_19.

21

https://support.apple.com/guide/security/password-monitoring-sec78e79fc3b/web
https://support.apple.com/guide/security/password-monitoring-sec78e79fc3b/web
https://doi.org/10.1007/978-981-96-0875-1%5C_6
https://doi.org/10.1007/978-981-96-0875-1%5C_6
https://doi.org/10.1007/978-3-662-46803-6%5C_12
https://doi.org/10.1007/978-3-662-46803-6%5C_12
https://doi.org/10.1007/978-3-662-46803-6%5C_12
https://doi.org/10.1007/978-3-662-46803-6%5C_12
https://doi.org/10.1007/978-3-662-53018-4%5C_19
https://doi.org/10.1007/978-3-662-53018-4%5C_19
https://doi.org/10.1007/978-3-662-53018-4%5C_19
https://doi.org/10.1007/978-3-662-53018-4%5C_19

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. “(Leveled)
fully homomorphic encryption without bootstrapping”. In: Innovations
in Theoretical Computer Science 2012, Cambridge, MA, USA, January 8-
10, 2012. Ed. by Shafi Goldwasser. ACM, 2012, pp. 309–325. /)%:
10.1145/2090236.2090262. (!&: https://doi.org/10.1145/
2090236.2090262.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. “The Round
Complexity of Secure Protocols (Extended Abstract)”. In: Proceedings
of the 22nd Annual ACM Symposium on Theory of Computing, May 13-17,
1990, Baltimore, Maryland, USA. Ed. by Harriet Ortiz. ACM, 1990,
pp. 503–513. /)%: 10.1145/100216.100287. (!&: https://doi.org/
10.1145/100216.100287.

[Boy+18] Elette Boyle et al. “Foundations of Homomorphic Secret Sharing”.
In: 9th Innovations in Theoretical Computer Science Conference, ITCS
2018, January 11-14, 2018, Cambridge, MA, USA. Ed. by Anna R. Karlin.
Vol. 94. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2018, 21:1–21:21. /)%: 10.4230/LIPICS.ITCS.2018.21. (!&: https:
//doi.org/10.4230/LIPIcs.ITCS.2018.21.

[CB17] Henry Corrigan-Gibbs and Dan Boneh. “Prio: Private, Robust, and
Scalable Computation of Aggregate Statistics”. In: 14th USENIX
Symposium on Networked Systems Design and Implementation, NSDI
2017, Boston, MA, USA, March 27-29, 2017. Ed. by Aditya Akella and
Jon Howell. USENIX Association, 2017, pp. 259–282. (!&: https:
//www.usenix.org/conference/nsdi17/technical- sessions/
presentation/corrigan-gibbs.

[CDN01] Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. “Multi-
party Computation from Threshold Homomorphic Encryption”. In:
Advances in Cryptology - EUROCRYPT 2001, International Conference
on the Theory and Application of Cryptographic Techniques, Innsbruck,
Austria, May 6-10, 2001, Proceeding. Ed. by Birgit Pfitzmann. Vol. 2045.
Lecture Notes in Computer Science. Springer, 2001, pp. 280–299. /)%:
10.1007/3-540-44987-6_18. (!&: https://doi.org/10.1007/3-
540-44987-6%5C_18.

[Chi+18] Ilaria Chillotti et al. “TFHE: Fast Fully Homomorphic Encryption
over the Torus”. In: IACR Cryptol. ePrint Arch. (2018), p. 421. (!&:
https://eprint.iacr.org/2018/421.

[Gar+13] Sanjam Garg et al. “Attribute-Based Encryption for Circuits from
Multilinear Maps”. In: Advances in Cryptology - CRYPTO 2013 - 33rd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22,
2013. Proceedings, Part II. Ed. by Ran Canetti and Juan A. Garay.
Vol. 8043. Lecture Notes in Computer Science. Springer, 2013, pp. 479–
499. /)%: 10.1007/978-3-642-40084-1_27. (!&: https://doi.org/
10.1007/978-3-642-40084-1%5C_27.

22

https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/100216.100287
https://doi.org/10.1145/100216.100287
https://doi.org/10.1145/100216.100287
https://doi.org/10.4230/LIPICS.ITCS.2018.21
https://doi.org/10.4230/LIPIcs.ITCS.2018.21
https://doi.org/10.4230/LIPIcs.ITCS.2018.21
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/corrigan-gibbs
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/corrigan-gibbs
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/corrigan-gibbs
https://doi.org/10.1007/3-540-44987-6%5C_18
https://doi.org/10.1007/3-540-44987-6%5C_18
https://doi.org/10.1007/3-540-44987-6%5C_18
https://eprint.iacr.org/2018/421
https://doi.org/10.1007/978-3-642-40084-1%5C_27
https://doi.org/10.1007/978-3-642-40084-1%5C_27
https://doi.org/10.1007/978-3-642-40084-1%5C_27

[Gee+23] Robin Geelen et al. “BASALISC: Programmable Hardware Accelerator
for BGV Fully Homomorphic Encryption”. In: IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2023.4 (2023), pp. 32–57. /)%: 10.46586/TCHES.
V2023.I4.32-57. (!&: https://doi.org/10.46586/tches.v2023.
i4.32-57.

[Gen09] Craig Gentry. “Fully homomorphic encryption using ideal lattices”. In:
Proceedings of the 41st Annual ACM Symposium on Theory of Computing,
STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009. Ed. by Michael
Mitzenmacher. ACM, 2009, pp. 169–178. /)%: 10.1145/1536414.
1536440. (!&: https://doi.org/10.1145/1536414.1536440.

[GMT23] Charles Gouert, Dimitris Mouris, and Nektarios Georgios Tsoutsos.
“SoK: New Insights into Fully Homomorphic Encryption Libraries via
Standardized Benchmarks”. In: Proc. Priv. Enhancing Technol. 2023.3
(2023), pp. 154–172. /)%: 10.56553/POPETS-2023-0075. (!&: https:
//doi.org/10.56553/popets-2023-0075.

[Gol+13] Shafi Goldwasser et al. “Reusable garbled circuits and succinct func-
tional encryption”. In: Symposium on Theory of Computing Conference,
STOC’13, Palo Alto, CA, USA, June 1-4, 2013. Ed. by Dan Boneh, Tim
Roughgarden, and Joan Feigenbaum. ACM, 2013, pp. 555–564. /)%:
10.1145/2488608.2488678. (!&: https://doi.org/10.1145/
2488608.2488678.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. “Attribute-
based encryption for circuits”. In: Symposium on Theory of Computing
Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013. Ed. by Dan
Boneh, Tim Roughgarden, and Joan Feigenbaum. ACM, 2013, pp. 545–
554. /)%: 10.1145/2488608.2488677. (!&: https://doi.org/10.
1145/2488608.2488677.

[KS05] Lea Kissner and Dawn Xiaodong Song. “Privacy-Preserving Set Op-
erations”. In: Advances in Cryptology - CRYPTO 2005: 25th Annual
International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 14-18, 2005, Proceedings. Ed. by Victor Shoup. Vol. 3621. Lecture
Notes in Computer Science. Springer, 2005, pp. 241–257. /)%: 10.1007/
11535218_15. (!&: https://doi.org/10.1007/11535218%5C_15.

[Mic10] Daniele Micciancio. “A first glimpse of cryptography’s Holy Grail”.
In: Commun. ACM 53.3 (2010), p. 96. /)%: 10.1145/1666420.1666445.
(!&: https://doi.org/10.1145/1666420.1666445.

[Reg05] Oded Regev. “On lattices, learning with errors, random linear codes,
and cryptography”. In: Proceedings of the 37th Annual ACM Symposium
on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005. Ed. by
Harold N. Gabow and Ronald Fagin. ACM, 2005, pp. 84–93. /)%:
10.1145/1060590.1060603. (!&: https://doi.org/10.1145/
1060590.1060603.

23

https://doi.org/10.46586/TCHES.V2023.I4.32-57
https://doi.org/10.46586/TCHES.V2023.I4.32-57
https://doi.org/10.46586/tches.v2023.i4.32-57
https://doi.org/10.46586/tches.v2023.i4.32-57
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.56553/POPETS-2023-0075
https://doi.org/10.56553/popets-2023-0075
https://doi.org/10.56553/popets-2023-0075
https://doi.org/10.1145/2488608.2488678
https://doi.org/10.1145/2488608.2488678
https://doi.org/10.1145/2488608.2488678
https://doi.org/10.1145/2488608.2488677
https://doi.org/10.1145/2488608.2488677
https://doi.org/10.1145/2488608.2488677
https://doi.org/10.1007/11535218%5C_15
https://doi.org/10.1007/11535218%5C_15
https://doi.org/10.1007/11535218%5C_15
https://doi.org/10.1145/1666420.1666445
https://doi.org/10.1145/1666420.1666445
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1060590.1060603

[SW05] Amit Sahai and Brent Waters. “Fuzzy Identity-Based Encryption”. In:
Advances in Cryptology - EUROCRYPT 2005, 24th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Aarhus, Denmark, May 22-26, 2005, Proceedings. Ed. by Ronald Cramer.
Vol. 3494. Lecture Notes in Computer Science. Springer, 2005, pp. 457–
473. /)%: 10.1007/11426639_27. (!&: https://doi.org/10.1007/
11426639%5C_27.

[WPY19] Amanda Walker, Sarvar Patel, and Moti Yung. Helping organizations
do more without collecting more data. https://security.googleblog.
com/2019/06/helping-organizations-do-more-without-collecting-
more-data.html. Accessed: 2024-10-04. June 2019.

[Yao82] Andrew Chi-Chih Yao. “Protocols for Secure Computations (Extended
Abstract)”. In: 23rd Annual Symposium on Foundations of Computer
Science, Chicago, Illinois, USA, 3-5 November 1982. IEEE Computer
Society, 1982, pp. 160–164. /)%: 10.1109/SFCS.1982.38. (!&: https:
//doi.org/10.1109/SFCS.1982.38.

24

https://doi.org/10.1007/11426639%5C_27
https://doi.org/10.1007/11426639%5C_27
https://doi.org/10.1007/11426639%5C_27
https://security.googleblog.com/2019/06/helping-organizations-do-more-without-collecting-more-data.html
https://security.googleblog.com/2019/06/helping-organizations-do-more-without-collecting-more-data.html
https://security.googleblog.com/2019/06/helping-organizations-do-more-without-collecting-more-data.html
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1109/SFCS.1982.38

Part A
E#cient MPSO protocols in the star topology

Chapter 1

SoK: Collusion-resistant Multi-party Private Set
Intersections in the Semi-honest Model

Multi-party private set intersection protocols have been around for
more than 20 years. As a result, there are many di"erent protocols
with di"erent characteristics. This chapter provides an overview of
these protocols and their characteristics: It proposes a systematization
that captures all collusion-resistant MPSI protocols. In doing so, it
also discusses to what degree they are hindered by impracticalities
1: High interactivity and 2: Full-mesh topology.
Our main conclusions are that older protocols are still competitive
with more recent protocols, at least with regards to their asymptotic
complexity. More generally, almost all of the protocols that we
analyzed excel in specific contexts. However, with the current lack of
practical use cases for MPSI, it is not certain what context is realistic
in practice, and therefore, if there is a specific protocol that we can
consider to be the state of the art.

This chapter is an adaptation of the work with the same title that has been
published in IEEE Symposium on Security and Privacy 2024, authored by
Jelle Vos, Mauro Conti, and Zekeriya Erkin.

1.1 Introduction
In 2004, Freedman et al. [FNP04] proposed the first custom protocol for privately
computing the intersection between multiple sets of data. Since then, private set
intersection protocols have received a great deal of attention from the research
community. Most notably, many concretely e#cient two-party protocols have been
proposed, which currently perform intersections over sets of 1 million elements in
less than 6 seconds over a 100 MBit/s communication channel [KBM22]. However,
when protocols must scale to an arbitrary number of parties, performance degrades
rapidly [Kol+17]. In this work, we systemize and summarize the current body
of literature on such multi-party private set intersections (MPSI), and identify
opportunities for future work.

More formally, an MPSI protocol solves the problem where 𝑄 parties →1 , . . . ,→𝑄

with respective private sets 𝑉1 , . . . ,𝑉𝑄 , want to confidentially compute the inter-
section 𝑉1 ↑ · · · ↑ 𝑉𝑄 . They do so in the presence of at most 𝑊 adversaries that may
collude with one another. In this work, as for many previous works [Kol+17; HV17;
Bay+22], one party →1 learns the intersection. We refer to this party as the leader,
and the other parties →2 , . . . ,→𝑄 as assistants.

27

Motivating applications

One motivating application of multi-party private set intersections is that of finding
a set of suitable meeting dates between multiple private calendars. Here, 𝑉𝑋 would
be a set of dates at which party →𝑋 is available. At the end of the protocol, the leader
→1 receives the set of meeting dates at which all parties are available. Several other
applications have been mentioned in previous works. We highlight several below.

Miyaji & Nishida [MN15] and Kolesnikov et al. [Kol+17] mention an applica-
tion where multiple shop owners or digital services want to launch a collective
promotion campaign. To do so, these shops must identify their mutual set of
customers, without violating the privacy of the other customers.

Kissner & Song [KS05], Inbar et al. [IOP18] and Kolesnikov et al. [Kol+17]
mention cyber security applications. They consider a problem between several
organizations who want to catch an intruder in a common network. The idea is
that each organization keeps a list of suspicious IP addresses, and by computing
the intersection, they narrow them down. Since IP addresses reveal personal
information, it is important that the other IP addresses remain private. Similarly,
Ghosh et al. [GN19] mention that MPSI can be applied to detect botnets.

Wang et al. [WBU21] discuss an application where an investigative agency
needs to narrow down a list of suspects by cooperating with multiple other agencies.
Since none of the agencies can share plain data with each other, they engage in an
MPSI protocol to only consider relevant suspects.

Freedman et al. [FNP04] and Li & Wu [LW07] also mention that MPSI proto-
cols may be used in online recommendation services, dating services, medical
databases, and data mining in general. Kissner & Song discuss further applica-
tions, including detecting fraudulent sales from pharmacies, enforcing no-fly lists
privately, combining the results of multiple surveys, and governments checking if
their ill citizens are actually receiving aid [KS05]. Finally, Poddar et al. [Pod+21]
discuss the application of MPSI for private database join operations.

We note that while PSI protocols are called private set intersections, this does not
necessary imply that no personal data is being revealed. Instead, such protocols
only ensure that the intersection is computed confidentially. If the input sets
contain data that may never be revealed, the final intersection can still violate data
privacy requirements. In other words, MPSI protocols do not necessarily alleviate
every service that requires an intersection from possible privacy violations.

Focus of this paper

This paper restricts itself to protocols that do not require any external parties to
collaborate. Moreover, we focus on protocols in the semi-honest model, and only
mention whether extensions exist to the malicious model. The reasons are as
follows:

A trivial way to tackle the MPSI problem is by selecting some trusted third
party, who receives all private sets, computes the intersection, and sends the result
to the leader. While such a protocol is extremely e#cient, the third party sees all
the private input sets. To prevent this, some works provide a slightly stronger
notion of security assuming that the third party does not collude with any of the
other parties, i.e. 𝑊 = 1. As long as this assumption holds, the private information

28

stays confidential, even from this third party. These protocols are often referred
to as server-aided protocols. Note however, that this non-colluding assumption,
like the trusted third party assumption, severely restricts the capabilities of an
adversary. Moreover, such a protocol may not be trivially altered to allow for 𝑊 > 1.
It is for this reason that we consider only MPSI protocols with no external parties,
and that support colluding parties.

When it comes to the security model, we only consider semi-honest adversaries.
Not only is the semi-honest model often a crucial intermediate step to the malicious
model, but typically the main insight behind a custom protocol does not change in
the malicious model. We see this in the underlying set encodings used in MPSI
protocols, such as polynomial roots, bitsets, garbled Bloom filters, and oblivious
key-value stores. These encodings shape the protocol more so than the choice of
cryptographic primitives.

State of MPSI

At present, there exist tens of works on MPSI protocols using a variety of underlying
encodings, cryptographic primitives, and network topologies. However, many of
these works only consider a small amount previous works in their comparison.
Many older receive fewer attention in recent works as they are considered irrelevant
due to performance comparisons, while this does not consider all possible points
of comparison.

At the moment, the fastest works when the number of elements grows large
are based on oblivious key-value stores and vector oblivious linear evaluations.
However, these works require several interactions between each pair of parties
and a large bandwidth cost. It remains an open question to analyze how these
protocols behave for di"erent network conditions. Some alternatives only require
assistants to communicate with the leader and require a lower total bandwidth.
They are typically based on partially homomorphic encryption, at the cost of more
computation. The cheapest protocols computation-wise are based on secret sharing,
but they su"er from a large bandwidth cost. No current works are comparable
in performance and practicality when 𝑄 > 2, compared to the setting with 𝑄 = 2:
there is still a demand for more e#cient protocols with regards to communication,
computation, and the degree of interaction.

Contributions and outline of this paper

The remainder of this paper is structured as follows. In Section 1.2, we formalize
the requirements for semi-honest MPSI protocols. In Section 1.3, we go over some
preliminaries that form the foundations of these protocols. Then, in Section 1.4 we
provide three high-level constructions that fit all protocols, and discuss possible
set representations for each of them. After that, in Section 1.5, we provide a
comprehensive overview of currently unbroken MPSI protocols based on these set
representations. In Section 1.6, we highlight the problems in works that have been
broken and analyze common security issues. Finally, in Section 1.7 we present a
theoretical performance comparison of the most recent MPSI protocols in each
category, and in Sections 1.8 and 1.9 we discuss the results, identify remaining

29

research directions, and conclude this work. Appendices 1.A and 1.B contain
derivations of the performance aspects of the considered MPSI protocols.

1.2 Formal problem description
An MPSI protocol 𝜑 is a multi-party protocol that computes the intersection
between private sets 𝑉1 , . . . ,𝑉𝑄 with overwhelming probability:

𝑉1 ↑ · · · ↑ 𝑉𝑄 ↗ 𝜑(𝑉1 , . . . ,𝑉𝑄) . (1.1)

These sets are all subsets of the universe of possible elements ↘ . Moreover, we
establish an upper bound 𝑈, so |𝑉𝑋 | ≃ 𝑈 for all 𝑋 = 1, . . . , 𝑄. Each set 𝑉𝑋 is held
by a party →𝑋 that is semi-honest. In other words, the party faithfully follows the
protocol description, but tries to learn as much as possible in the process. For the
protocols studied in this work, we consider it su#cient for only the leader →1 to
receive the computed intersection. We present the ideal functionality of such a
protocol below.

Definition 1 (MPSI protocol). An MPSI protocol correctly and privately computes
the following ideal functionality:

𝐿 (𝑉1 , . . . ,𝑉𝑄) = (𝑉1 ↑ · · · ↑ 𝑉𝑄 ,ω, . . . ,ω) ,

where ω is the empty string. The upper bound 𝑈 may be provided as auxiliary
information.

Remark 1. Some works consider a case where all parties receive the result. In the
semi-honest model it is trivial to transform a protocol where only the leader learns
the result to one where all parties do: the leader simply forwards its result to all
parties. It is not straightforward to do so in the malicious model [GHL22].

Note that MPSI protocols typically require the elements in the input sets to be
mapped to some cryptographic object. For example, the protocol by Kissner &
Song [KS05] maps elements to some group to be encrypted as Paillier ciphertexts.
As a result, one must select cryptographic parameters that ensure the group is
large enough to contain all distinct elements from ↘ .
Remark 2. One way to circumvent choosing larger parameters when ↘ is too
large is to hash elements of the input sets onto the cryptographic object, thereby
supporting a larger universe at the risk of collisions. The chance of collisions is
negligible for a su#ciently large cryptographic object.

1.2.1 Correctness requirements
In (1.1) and in the remainder of this paper we write↗ to denote that this result could
be an approximation. In fact, due to the properties of cryptographic protocols, all
schemes considered in this paper are in some way approximations, albeit that they
can be arbitrarily accurate. For example, the scheme by Kolesnikov et al. [Kol+17]
achieves a failure probability of 2⇐𝜒, where 𝜒 is a customizable statistical security
parameter. Typically, 𝜒 = 40, and in the remainder of this paper we will consider
any probability lower than 2⇐40 to be negligible:

30

Definition 2 (Exact MPSI protocol). The probability that the output of an exact
MPSI protocol does not equal the actual intersection does not exceed 2⇐40:

Pr [𝑉1 ↑ · · · ↑ 𝑉𝑄 ε 𝜑(𝑉1 , . . . ,𝑉𝑄)] ≃ 2⇐40
.

We say that an MPSI protocol is approximate if the chosen parameters cause
it to su"er from a higher probability of being wrong than 2⇐40. We measure the
accuracy of approximate protocols more precisely by determining the probability
𝜓 that a random element 𝑅 is wrongly claimed to be included or excluded in the
computed intersection. Note that in some protocols, 𝑅 can only be falsely included
and never be falsely excluded. We refer to those protocols as satisfying superset
correctness. We refer to protocols that only false exclude elements of the intersection
as satisfying subset correctness.

1.2.2 Privacy in the semi-honest model
Since this work considers protocols in the semi-honest model and since the
output of an MPSI protocol is deterministic, one can prove that a protocol is
privacy-preserving if it is simulatable [Lin17]. The strongest notion of privacy for
semi-honest MPSI protocols is called size-hiding, which means that the size of each
party’s set stays secret:

Definition 3 (Size-hiding MPSI). For each party →𝑋 in MPSI protocol 𝜑, there
exists a simulator ⇒𝑋 that generates an indistinguishable view for all possible
combinations of inputs. The simulator receives its input 𝑉𝑋 and the intersection
𝑉1 ↑ · · · ↑ 𝑉𝑄 . It must hold that:

{⇒𝑋(1𝜒 ,𝑉𝑋 ,𝑉1 ↑ · · · ↑ 𝑉𝑄)}𝑉1 ,...,𝑉𝑄 ⇑↘
𝑌⇓

{view𝜑
𝑋
(𝑉1 , . . . ,𝑉𝑄 ,𝜒)}𝑉1 ,...,𝑉𝑄 ⇑↘ . (1.2)

Note that here we provide the assistants with the intersection as well, because
even though they are not required to output it, they are allowed to learn this
information.

If the size of each party’s set is not private, we have the following definition:

Definition 4 (Size-revealing MPSI). For each party →𝑋 in MPSI protocol 𝜑, there
exists a simulator ⇒𝑋 that generates an indistinguishable view for all possible
combinations of inputs. The simulator receives its input 𝑉𝑋 , set sizes |𝑉1| , . . . , |𝑉𝑄 | ,
and the intersection 𝑉1 ↑ · · · ↑ 𝑉𝑄 . It must hold that:

{⇒𝑋(1𝜒 ,𝑉𝑋 , |𝑉1| , . . . , |𝑉𝑄 | ,𝑉1 ↑ · · · ↑ 𝑉𝑄)}𝑉1 ,...,𝑉𝑄 ⇑↘
𝑌⇓

{view𝜑
𝑋
(𝑉1 , . . . ,𝑉𝑄 ,𝜒)}𝑉1 ,...,𝑉𝑄 ⇑↘ . (1.3)

Remark 3. Size-revealing MPSI protocols can typically be turned into size-hiding
MPSI protocols by letting users submit dummy elements in their input sets to
always pad their set to size 𝑈. These can either be repetitions of other elements in
the set or random elements which have a negligible probability of appearing in the
resulting intersection.

31

We consider the privacy definitions above in the presence of 1 < 𝑊 < 𝑄 colluding
parties. These colluding parties are still semi-honest but they share their views
with one another to learn as much private information as possible. When we say
that a protocol has a collusion resistance of 𝑊, this means that even 𝑊 colluding
adversaries cannot break the claimed notion of privacy.

There are protocols that achieve statistical (𝑇⇓) rather than computational (𝑌⇓)
indistinguishability in (1.2) or (1.3). These protocols are information-theoretically
secure; they do not rely on any computational hardness assumptions. Note that
such protocols can only achieve a collusion threshold 𝑊 < 𝑄

2 [BGW88]. In the best
case, computationally-secure protocols can withstand 𝑊 = 𝑄 ⇐ 1 colluding parties.

1.2.3 Privacy in the augmented semi-honest model
Some MPSI protocols consider the augmented semi-honest model, which allows
an adversary to choose a di"erent input than its actual input immediately before
running the protocol [HL10]. While this may seem like a stronger form of security,
it is not necessarily compatible with the semi-honest model. That is, a protocol
proven to be secure in the augmented semi-honest model may not be secure in
the semi-honest model. The reason is that the augmented semi-honest model
empowers simulators to choose a convenient input for themselves, while a semi-
honest simulator must work for every input. Counter-ituitively, this also implies
that protocols secure in the malicious model are not necessarily secure in the
semi-honest model. On the contrary, protocols in the malicious model are always
secure in the augmented semi-honest model. For this reason, we include protocols
that adopt this model in this work.

Concretely, the benefit of the augmented model to the design of MPSI protocols
is that certain precomputations can be done before the start of the protocol. For
example, Inbar et al. [IOP18] perform secret sharing ahead of time, after which
parties only have to change their local shares during the actual protocol execution.

1.3 Preliminaries
We briefly recall the background for MPSI protocols. In the remainder of this paper,
we work over sets of integers. Where an ordering is necessary, we use 1, 2, 3, . . .
implicitly. Table 1.1 summarizes the symbols in this work.

1.3.1 Network topologies
The network topology defines the structure of communication channels between
the parties involved in a protocol.

In a star topology, each assistant only shares one bidirectional communication
channel with the leader, and none with other assistants. Such a topology resembles
the ideal world scenario, and thereby provides the minimal number of commu-
nication channels necessary to realize an MPSI protocol. The drawback of this
topology is that if a malicious leader refuses to communicate, no communication
is possible. The number of channels grows as 𝑍(𝑄).

32

In a mesh topology, each party has a bidirectional communication channel with
all other parties. As a result, each party has the ability to broadcast. Such a topology
has maximum redundancy when malicious parties refuse to communicate. The
number of channels grows as 𝑍(𝑄2).

All other topologies sit in between star and mesh topologies. One topology
used in earlier MPSI protocols [KS05] combines a star and ring structure where
each assistant shares a communication channel with the leader as well as one other
assistant in a circular fashion. We refer to this as a ‘wheel’ topology. Another
topology, which is used by Qiu et al. [Qiu+22], resembles a binary tree.

1.3.2 Building blocks for secure MPC
Partially-homomorphic encryption

A partially-homomorphic encryption (PHE) scheme is a collection of methods to
securely encrypt and decrypt data, which still allows parties to manipulate the
underlying data while it is encrypted. For example, the Paillier cryptosystem [Pai99]
allows one to encrypt some integers 𝑅 , 𝑆 ↓ Z𝑎𝑂 , and then homomorphically
combine the two resulting ciphertexts to compute a ciphertext that encrypts the
sum 𝑅+ 𝑆. This makes the Paillier cryptosystem additively homomorphic. Another
cryptosystem comes in the form of the ElGamal [Gam84] cryptosystem, which is
multiplicatively homomorphic in its standard form. It works over any cyclic group
G in which the decisional Di#e-Hellman assumption holds. By encoding values
in the exponent, the cryptosystem becomes additive in some sense. Moreover, by
using an elliptic curve group for G, all operations become significantly faster than
over the integers [VCE22]. MPSI protocols use threshold versions of homomorphic
cryptosystems, which require 𝑊 + 1 parties to work together to decrypt a ciphertext.

Secret sharing

Secret sharing is an information-theoretically secure method of storing data among
multiple parties, without individual parties being able to access it. To do so, a
secret is split up into multiple shares that combine to retrieve the original secret.
One example is XOR-sharing, which splits a secret 𝑅 into shares 𝑇1 , . . . , 𝑇𝑄 so that
𝑅 = 𝑇1 ⇔ · · ·⇔ 𝑇𝑄 . Other secret sharing schemes allow for arithmetic operations to be
performed over the underlying secrets by manipulating the shares. For example, a
simple additive secret sharing scheme with 𝑅 = 𝑇1 + · · · + 𝑇𝑄 (mod 𝑂) allows parties
to compute the sum of two shared secrets, by adding their respective shares. By
interacting with the other parties, it is also possible to privately multiply additive
secret shares [BGW88].

Oblivious transfers

An oblivious transfer (OT) is a two-party protocol between a sender and a receiver.
In its simplest form, the receiver chooses one of two messages 𝑇0 and 𝑇1 to receive
using bit 𝑏 ↓ Z2. The sender sends message 𝑇𝑏 as requested. Crucially, the sender
may not learn 𝑏 and the receiver may not learn the other message 𝑇1⇐𝑏 . Oblivious
transfers are computationally cheap to evaluate in large quantities due to the

33

existence of OT extensions. OT extensions execute a small amount of full-fledged
oblivious transfers in the opposite direction, after which the received data can be
used to perform future transfers with minimal computational e"ort.

Oblivious linear evaluation

An oblivious transfer can be seen as a protocol that privately computes 𝑇𝑏 =
𝑇0 + (𝑇1 ⇐ 𝑇0)𝑏 for 𝑏 ↓ Z2. In other words, it computes a linear function over 𝑏,
which is binary. Oblivious linear evaluations (OLEs) extend oblivious transfers to
compute linear functions over elements from larger groups Z𝑂 . More precisely, the
sender holds values 𝑐 and 𝑑, and the receiver learns 𝑒 = 𝑐𝑅 + 𝑑 for some 𝑅 of its
choosing [Sch+19]. In some cases, a receiver might want to perform a large amount
of OLEs with the same input 𝑅. There exist custom protocols for this special case
called vector oblivious linear evaluations (VOLEs), which are significantly cheaper
to evaluate.

Oblivious pseudorandom functions

Another primitive for evaluating functions obliviously is an oblivious pseudoran-
dom function (OPRF). Such a protocol allows a receiver to compute a pseudorandom
function over an input 𝑅 of its choosing, while the sender chooses which key 𝑓

is used to compute the output [CM20]. Importantly, the receiver does not learn
𝑓 and the sender does not learn 𝑅, nor the output of the PRF. A multi-point
OPRF evaluates multiple OPRFs at the same time on the same key 𝑓 for di"erent
inputs [CM20]. It does so more e#ciently than it is to execute multiple single point
OPRFs. The most e#cient schemes currently rely on oblivious transfers.

1.3.3 Common methods in cryptographic protocols
Finally, we explain three common techniques at the core of several MPSI protocols.

Secure AND operations

In many MPSI protocols there is a need to compute an AND operation between
multiple bits 𝑅1 , . . . , 𝑅𝑄 . While a simple approach is to compute the product, the
multiplications are expensive to execute privately. Instead, a typical alternative
is to compute some aggregate based on the input bits that is 0 when all bits were
0, and random otherwise. Kolesnikov et al. [Kol+17], for example, achieve this
using XOR-based secret sharing. Other works [Bay+22; VCE22] privately compute a
randomized sum r(𝑅1 + · · · + 𝑅𝑄), where r is some random number unknown to
any set of colluding parties. In both cases, the result of the AND operation is 1 when
the aggregate equals 0.

Arithmetic on encrypted polynomials

Many MPSI protocols (e.g. [FNP04; KS05; HV17]) rely on arithmetic over private
polynomials. One can do so using any method that privately performs arithmetic
over integers, such as secret sharing or additively homomorphic encryption.

34

By working over the coe#cients of the polynomial, adding polynomials only
requires one to add the coe#cients of the two polynomials in element-wise
fashion. Multiplying one private and one plaintext polynomial can be done
using school-book multiplication [KS05]. Evaluating the polynomial at a plaintext
value 𝑅 requires computing the plaintext powers 𝑅

2
, . . . , 𝑅

𝑔 up to degree 𝑔 and
performing a dot product. Instead of working over the coe#cients, Cheon et
al. [CJS12] translate the polynomials to a point-value representation, which makes
polynomial multiplication computationally cheaper. We discuss this in more detail
in Section 1.5.1.

Binning techniques

If an MPSI protocol does not scale linearly with the number of elements 𝑈, binning
techniques can improve the over-all e#ciency by splitting the problem into several
small MPSI problems; one for each bin. There are two kinds of binning techniques:
those where a bin can have at most one element, and those where bins can have any
number of elements, but preferably as small as possible. One popular technique
for assigning a bin at most one element is that of Cuckoo hashing [PR01], which
populates a set of 𝑃 bins by repeatedly inserting an element into a bin selected
by a hash function. If that bin was occupied, the element is placed into another
bin, evicting the element that was previously there and must now be re-inserted.
A suitable set of parameters makes this process highly likely to terminate and
succeed. If multiple elements may occupy the same bin, one does not have to
consider eviction. One technique called balanced allocations [Aza+94] distributes
𝑈 elements over 𝑃 = 𝑈

ln ln 𝑈
bins by repeatedly selecting two random bins and

assigning the element to the most empty bin. The number of elements in each bin
is then bounded by 𝑍(ln ln 𝑈) with overwhelming probability.

1.4 Common constructions
All MPSI schemes thus far can be expressed as a series of membership checks.
This is possible because the result of a set intersection is always a subset of each
party’s input. Since privacy-preserving set intersections may not leak any of the
intermediate computations, not all constructions are possible. We identify three
remaining general constructions that are used to construct MPSI protocols.

In the first construction, the parties represent their sets so that they can be
combined, and the resulting representation can be revealed to the leader. In this
case, the membership queries can be done in plain text. In the second construction,
the resulting representation is queried by the leader, because revealing it would
leak information about the input sets. In the third construction, the leader queries
each other set separately, then combines the outcomes to only reveal that an element
is in the intersection if it was in all input sets.

Since these methods rely on ways of encoding sets into new, convenient repre-
sentations, we introduce the following notation: �̂� ↖ Enc(𝑉) is a representation of
set 𝑉 by some encoding Enc. The encoded set can be extracted using 𝑉 ↖ Dec(�̂�),
but note that this function sometimes requires knowledge of a compact superset

35

Table 1.1: Summary of the notation in this work

Symbol Description
𝑄 Number of parties
𝑊 Maximum number of colluding parties

→𝑋 ,𝑉𝑋 The 𝑋th party and its input set
𝑈 Maximum set size
↘ Universe
⇒ Simulator

view𝑋 View of party →𝑋

𝑇⇓, 𝑌⇓ Statistical and computational indistinguishability
𝜒 Statistical security parameter

{. . . } Some unordered (multi)set
[. . .] Some ordered vector
↙ Multiset sum

�̂� ,𝑃 Set representation of set 𝑉 and its number of bins
Enc,Dec Encodes or decodes a set in a set representation

∝ Homomorphism of the set representation

of 𝑉. It is always possible to use the universe ↘ for this purpose, but this is not
e#cient when it contains many elements. In the remainder of this section we
present the currently used set representations for each general construction in the
same order as above.

1.4.1 Private homomorphic set representations
Private homomorphic set representations are set representations that can be homo-
morphically combined using some operation ∝ to compute the set intersection:

𝑉1 ↑ · · · ↑ 𝑉𝑄 ↗ Dec(Enc(𝑉1) ∝ · · · ∝ Enc(𝑉𝑄)) . (1.4)

Crucially, the resulting representation does not reveal anything about the original
inputs. In other words, the result is computationally indistinguishable from the
actual encoding of the intersection.

Enc(𝑉1) ∝ · · · ∝ Enc(𝑉𝑄)
𝑌⇓ Enc(𝑉1 ↑ · · · ↑ 𝑉𝑄) . (1.5)

Given such a private homomorphic set representation, one can design an MPSI
protocol given that ∝ can be e#ciently computed in private. We discuss four such
representations.

Bitsets

Bitsets are binary vectors that represent a set 𝑉 by indicating for each element
of the universe 𝑅 ↓ ↘ whether 𝑅 ↓ 𝑉. To do so, there must exist some ordering

36

over all elements in ↘ . Two bitsets can be homomorphically combined when
their orderings agree. The homomorphism ∝ is then simply an element-wise AND
operation.
Example 1. Given ↘ = {1, 2, 3, 4} with ordering [1, 2, 3, 4]:

{1, 3, 4} Enc⇐⇐⇐⇐⇐⇐⇐′ [1, 0, 1, 1]
↑ {1, 2, 3} Enc⇐⇐⇐⇐⇐⇐⇐′ ∞ [1, 1, 1, 0]

{1, 3} Dec↖⇐⇐⇐⇐⇐⇐⇐ [1, 0, 1, 0]

There is a clear drawback to using bitsets for MPSI: the representation requires
|↘ | bits to encode a set, even if it is empty. On the other hand, bitsets always exactly
represent the original set, even when combined. In other words, the condition in
(1.5) actually holds under equality.

Hash sets

Another example of private homomorphic set representations comes in the form
of hash sets. Like a bitset, a hash set is a binary vector. It has 𝑃 bits, referred to
as bins, initially set to 0, and a hash function : ↘ ∈′ {1, . . . ,𝑃}. To encode set
𝑉, one computes the index (𝑅) for each element 𝑅 ↓ 𝑉 and sets the bin at that
index to 1. If two hash sets agree on the hash function, they can also be combined
homomorphically using an AND operation. Decoding is not straightforward since it
requires computing the inverse of a hash function

⇐1. However, given a superset
𝑖 of the elements possibly contained in the hash set, one can instead check for each
element 𝑇 ↓ 𝑖 whether it is in the hash set.
Example 2. For some common :

{1, 3, 4} Enc⇐⇐⇐⇐⇐⇐⇐′ [1, 1, 1, 0]
↑ {1, 2, 3} Enc⇐⇐⇐⇐⇐⇐⇐′ ∞ [0, 1, 1, 1]

{1, 3} Dec↖⇐⇐⇐⇐⇐⇐⇐ [0, 1, 1, 0]

Note that the encoded 1s are not in the same position as in a bitset; the positions
are selected by hash function .

Hash sets can be seen as Bloom filters with only one hash function; see
Section 1.4.2. Note, however, that by increasing the number of hash functions, the
representation opens up a mechanism for information leakage. Another way of
looking at hash sets is as a bitset with Remark 2 applied to it. As such, (1.5) holds
under equality.

The hash function allows hash sets to require only 𝑃 bits to represent a set,
rather than |↘ | . However, as a consequence, they do not exactly represent the
original set. This occurs when maps multiple elements to the same bin by .
If one of these elements is encoded in the hash set, all those other elements will
falsely appear to be in the set. Using (1.7) with 𝑗 = 1, such false positives can
happen for each query with probability 𝜓 ↗ 1 ⇐ 𝑘

𝑈

𝑃 , where 𝑈 is the number of
elements encoded in the hash set, assuming that the output of is statistically
uniform. False negatives never occur in hash sets.

37

Sorted multisets

Blanton & Aguiar [BA16] propose sorted multisets to combine sets and compute
their sorted intersection. The key idea is to combine multiple sets 𝑉1 , . . . ,𝑉𝑄 into
multiset 𝑉1 ↙ · · · ↙ 𝑉𝑄 , and then isolate those elements with multiplicity 𝑄. By
sorting the resulting multiset, there is a straightforward way of identifying those
elements that appear 𝑄 times. By also sorting the input sets, the sorted multiset
can be computed without performing a full sort operation. Instead, sets can be
combined using a simpler merging operation. To achieve this, Enc simply sorts the
set. The homomorphism ∝ can then be computed by merging the sets, checking
for elements that appear 𝑄 times, and removing the other elements. This last step
is dubbed ‘monotonizing’ by Poddar et al. [Pod+21]. Note that for a set to be sorted,
a partial ordering must exist within ↘ .

A general way of merging two sorted sets is a bitonic sorter [Bat68]. Such
a circuit merges two sets of total length 𝑈 = 2𝑎 in 𝑎 steps. After that, selecting
elements that appear 𝑄 times can be done by checking equality for all elements that
are 𝑄 places apart. In currently known protocols [BA16; Pod+21] the result then
contains the elements of the intersection as well as 0s. To go back to a sorted set,
those 0s can be removed using a monotonization circuit [Pod+21]. If the output
must be revealed but does not have to be a sorted set without 0s, the output can be
sorted [BA16] or shu$ed [Pod+21] instead.
Example 3. Computing the homomorphism between two (𝑄 = 2) sorted multisets
[1, 3, 4] ↖ Enc({1, 3, 4}) and [1, 2, 3] ↖ Enc({1, 2, 3}) goes as follows:

[1, 3, 4] ∝ [1, 2, 3]=Mono(Check(Merge([1, 3, 4], [1, 2, 3]))),
=Mono(Check([1, 1, 2, 3, 3, 4])) ,
=Mono([1, 0, 0, 3, 0]) ,
= [1, 3] .

A drawback of this representation is that the homomorphism is more complex
to compute than the AND operations required to combine two bitsets or hash sets.
However, some complexity is reduced by sorting the sets in advance. The benefit
of sorted multisets is that they are both compact and exact: the representation’s
size is similar to the original set.

Polynomial roots

The roots of a polynomial form a multiset, so they can be used to compute
intersections. To encode a set 𝑖 in the roots of a polynomial in Z𝑂 , a mapping must
exist from ↘ to Z𝑂 . The polynomial encoding of 𝑖 is:

Enc(𝑖) = 𝑙(𝑅) =
∏
𝑇↓𝑖

(𝑅 ⇐ 𝑇) , (1.6)

which is a polynomial of degree |𝑖| . Checking membership of a single element 𝑇 is
possible by evaluating the polynomial and checking if 𝑙(𝑇) = 0.

Computing the polynomial that encodes the intersection of two polynomial set
encodings requires computing the greatest common divisor, after which the roots

38

of the resulting polynomial represent the multiset intersection of the original roots.
The resulting polynomial does not contain any information other than the roots in
the intersection, so this is a private homomorphic set representation [KS05].

One problem with applying the previous approach to MPSI protocols is that
the homomorphism requires the parties to privately compute the greatest common
divisor of two polynomials. Instead, Kissner & Song [KS05] show that one can
still satisfy (1.5) when computing �̂�1 ∝ �̂�2 as 𝑚1�̂�1 + 𝑚2�̂�2 = r gcd(�̂�1 , �̂�2), where 𝑚1
and 𝑚2 are random polynomials. To achieve this, we adapt the earlier encoding
function, multiplying by some random polynomial 𝑚. This randomization also
helps reduce false positives, which are now spread uniformly over the range of the
coe#cients.

In the following example, we demonstrate that addition of two polynomials
indeed retains the common roots, even when they are not randomized.

Example 4. Consider the following without randomization:

Enc({1, 3, 4}) ∝ Enc({1, 2, 3})
= (𝑅 ⇐ 1)(𝑅 ⇐ 3)(𝑅 ⇐ 4) + (𝑅 ⇐ 1)(𝑅 ⇐ 2)(𝑅 ⇐ 3)
= 2(𝑅 ⇐ 1)(𝑅 ⇐ 3)2 .

Indeed, the roots are 1 and 3. Note that the root 3 appears twice, which is technically
a false positive.

Polynomials are convenient set representations because they grow linearly with
the size of the encoded set 𝑈, and the false positives are spread uniformly randomly
over the space. A drawback is that polynomial multiplications by default scale
quadratically with 𝑈.

1.4.2 Leaky homomorphic set representations

Leaky homomorphic set representations are set representations that satisfy (1.1),
but for which (1.5) does not necessarily hold. In other words, the result of
the homomorphism may leak information about the original sets. As such,
these representations cannot be revealed to any of the parties, and instead, need
to be privately queried to ensure that the parties only learn the intersection.
Consequently, the representation must support an e#cient way to perform private
membership queries.

Bloom filters

A Bloom filter is a hash set with multiple hash functions1 , . . . ,𝑗 , see Section 1.4.1.
The benefit of using 𝑗 > 1 is that the number of bins 𝑃 can be lower for the same
false positive rate 𝜓. As a consequence however, computing the intersection
between two or more Bloom filters through an AND operation may leak more
information about the original sets than just their intersection. In other words,
(1.5) does not hold.

39

The probability 𝜓 that a query falsely returns a positive result is approximately
given by [GG10]:

𝜓 ↗
(
1 ⇐

(
1 ⇐ 1

𝑃

)
𝑗𝑈

)
𝑗

↗
(
1 ⇐ 𝑘

⇐𝑗𝑈
𝑃

)
𝑗

. (1.7)

So the minimal number of bins 𝑃 for a Bloom filter with at most 𝑈 elements and a
false positive rate of 𝜓 is:

𝑃 = ⇐ 𝑈 ln 𝜓

ln2 2
, 𝑗 = ⇐ log2 𝜓 . (1.8)

The false positive rate after computing ∝ is bound by the false positive rate of
the original Bloom filters [PSN10]. Instead of using the approximation (1.7), one
can also use the upper bound by Goel & Gupta [GG10] to choose parameters as
described by Vos et al. [VCE22].

The reason that Bloom filter intersections leak information is that a bin can be
set to 1 even if it does not contribute to the intersection. The probability of this
happening grows with the number of hash functions 𝑗. In the following example
we show a situation where the filter of the actual intersection does not match the
filter computed using ∝.
Example 5. Consider a Bloom filter with 𝑃 = 6 and 𝑗 = 2. The bins are indexed
using 0, . . . ,𝑃 ⇐ 1. The first hash function behaves as 1(2) = 2, 1(3) = 1,
1(4) = 1. The second as 2(2) = 3, 2(3) = 2, 2(4) = 5.

Now, given sets 𝑉1 = {2, 3} and 𝑉2 = {4}, we have:

Enc(𝑉1 ↑ 𝑉2) ε Enc(𝑉1) ∞ Enc(𝑉2) ,
Enc(∋) ε [0, 1, 1, 1, 0, 0] ∞ [0, 1, 0, 0, 0, 1] ,

[0, 0, 0, 0, 0, 0] ε [0, 1, 0, 0, 0, 0] .

The benefit of Bloom filters is that they scale linearly with the size of the set 𝑈.
However, the drawback is that the constant factor of 𝑍(𝑈) can be large if 𝜓 must be
small. For example, if 𝜓 ↗ 2⇐40 then 𝑃 ↗ 57.7𝑈. In other words, it takes almost 58
bins to represent each element with negligible failure rate. A bitset requires |↘ |
bins and has zero failure rate, so it stands to reason that one would then better
choose a bitset representation if |↘ | ≃ 57.7𝑈.

Garbled Bloom filters

In a garbled Bloom filter, the bins selected by the hash functions 1 , . . . ,𝑗 are not
set to 1, but to an XOR-sharing of some value. This makes a garbled Bloom filter a
key-value store (see Section 1.4.3). The bins in such a filter are bitstrings of length
𝜒. Garbled Bloom filters were first proposed by Dong et al. [DCW13].

Let 𝑏𝑋 denote the 𝑋th bin of a garbled Bloom filter. Kolesnikov et al. [Kol+17]
provide the following algorithm to encode a set of key-value pairs in such a filter:

1. Initialize all bins 𝑏𝑋 for 𝑋 = 1, . . . ,𝑃 to △.

40

2. For each key-value pair (𝑅 , 𝑆), select indices 𝑛𝑜 = 𝑜(𝑅) for 𝑜 = 1, . . . , 𝑗. For
empty bins (𝑏𝑛𝑜 = △), choose random 𝜒-bit strings so that 𝑏𝑛1 ⇔ · · · ⇔ 𝑏𝑛𝑗

= 𝑆.

3. Replace empty bins (𝑏𝑋 =△) with a random 𝜒-bit string.

A simple way of using garbled Bloom filters to encode sets for performing set
intersections is to encode the set elements as the keys of the filter, and set the values
to 0 . . . 0, or some other well-formed value. The filter representing the intersection
can be computed using an element-wise XOR operation. Only the bins pertaining
to elements in the intersection then XOR to 0 . . . 0. Garbled Bloom filters inherit
their false negative probability from the false positive probability Bloom filters. They
also incur a chance of false positives, which occur when randomly chosen bins
accidentally XOR to 0 . . . 0. This happens with probability 2⇐𝜒.

In the following example we show why these filters leak information through
the homomorphism.
Example 6. Consider a garbled Bloom filter with 𝑃 = 5 bins, 𝑗 = 3 hash functions
and 𝜒 = 3. The hash functions behave like 1(1) = 0,2(1) = 1,3(1) = 2, and
1(4) = 2,2(4) = 4,3(4) = 3. Then, the set intersection between {1, 4} and {1}
can be computed like:

{1, 4} Enc⇐⇐⇐⇐⇐⇐⇐′ [010, 011, 001, 010, 011]
↑ {1} Enc⇐⇐⇐⇐⇐⇐⇐′ ⇔ [001, 100, 101, 110, 110]

{1} Dec↖⇐⇐⇐⇐⇐⇐⇐ [011, 111, 100, 100, 101]

Notice that the party holding the second set can infer that the other party has 4
in its set with high probability. It can do so because the sum of the bins pertaining
to 4 sum to the same value in its own garbled Bloom filter as well as the result:
101 ⇔ 110 ⇔ 110 = 101 = 100 ⇔ 100 ⇔ 101.

The most significant benefit of garbled Bloom filters over regular Bloom filters
is their ability to be used as oblivious key-value stores. That is, if the values they
encode are statistically random, then it is unknown which keys are encoded into
them. Moreover, the number of bins 𝑃 decides the probability of false negatives
rather than false positives.

1.4.3 Aggregatable membership queries
A third construction for MPSI protocols performs membership queries on the
encoded sets and combines the results of these queries. As such, no homomorphism
is required over the set representation. Instead, we require an aggregation method
∝ for which it holds that:

𝑄∧
𝑋=1

𝑅 ↓ 𝑉𝑄 = Reveal(!ery
𝑅
(�̂�1) ∝ · · · ∝ !ery

𝑅
(�̂�𝑄)) , (1.9)

where �̂�𝑋 ↖ Enc(𝑉𝑋) conveniently encodes set 𝑉𝑋 .
Essentially, these approaches execute two-party protocols between the leader

and the assistants, and combine the results. Since this high-level construction

41

requires that the output of the two-party protocols remains private, all three
approaches discussed here output a value linked to the queried element rather
than a Boolean. For example, MPSI protocols could return a secret share of 0 for
each of the elements in the queried party’s set, and randomness otherwise. If so, ∝
is simply the reconstruction operation of the secret sharing scheme.

Embedding payloads in polynomial roots

In Section 1.4.1, we saw that polynomials encoding a set in their roots can be
homomorphically combined. The same encoding can also be used to return
aggregatable query results from a polynomial 𝑎(𝑅) by privately computing 𝑚𝑎(𝑅)+𝑙,
where 𝑙 is the payload and 𝑅 is the queried element. The result is 𝑙 only when
evaluated over any of the roots of 𝑎 with overwhelming probability, or randomness
otherwise. This method is particularly useful in protocols based on homomorphic
encryption, because it allows the leader to locally evaluate the assistant’s encrypted
polynomial. Consequently, the leader can decide on the payload 𝑙. The leader can
generate secret shares of zeroes to embedded as payloads without communicating
with the assistants.

Oblivious programmable PRFs

Proposed by Kolesnikov et al. [Kol+17], an oblivious programmable PRF (OPPRF)
is an oblivious PRF that contains hardcoded values in the form of key-value pairs.
In other words, given a secret input 𝑅▽, if 𝑅▽ matches one of the key-value pairs
(𝑅 , 𝑆) so that 𝑅 = 𝑅

▽, then the output is 𝑆. Otherwise, the output is randomness.
The approach in Section 1.4.3 already satisfies a form of this, where the keys are
given by the roots of the polynomial and the values are decided on by the evaluator
of the polynomial. OPPRFs, however, are more specific: the sender decides on the
hardcoded key-value pairs. Importantly, the receiver is only allowed to perform a
limited number of queries.

Kolesnikov et al. [Kol+17] propose three instantiations of OPPRFs. The first
design interpolates a polynomial over the hardcoded key-value pairs, the second
uses a garbled Bloom filter (see Section 1.4.2), and the third returns a key generated
by a pseudo-random function that can be used to decrypt one of a set of encryptions
if it pertains to one of the hardcoded keys. The authors also show how to extend
the OPPRFs to be queried multiple times using cuckoo filters. The polynomial
roots approach in Section 1.4.3 requires the polynomial to be evaluated in private,
which is expensive, while these OPPRFs only rely on symmetric primitives.

Oblivious key-value stores

Garimella et al. [Gar+21] describe a primitive similar to OPPRFs called oblivious
key-value stores (OKVS), which perform the same functionality but they can be
transmitted in plain text. The polynomial-based OPPRF described above is an
example of such an OKVS. In fact, this is the most compact OKVS possible, as
it takes 𝑌 polynomial coe#cients to hard-code 𝑌 key-value pairs. Crucially, the
hardcoded values must be randomly distributed to hide which keys are encoded

42

in the data structure. While it is compact, a drawback of this polynomial-based
OKVS is that encoding it is computationally expensive.

Garimella et al. [Gar+21] propose an OKVS that is significantly cheaper to encode
based on cuckoo hashing. While it is not optimally compact, it is approximately
1.5 to 2.5 times larger than the polynomial-based OKVS [NTY21]. Moreover, by
the way this OKVS is constructed, one can guarantee that encoding succeeds with
overwhelming probability (1 ⇐ 2⇐40). One of the most significant advantages of
OKVSs over OPPRFs is that they reduce the communication needed for MPSI
protocols in the malicious model.

This primitive originates from the garbled Bloom filters by Dong et al. [DCW13],
after which they were applied to two-party protocols under the name of ‘PaXoS’ [Pin+20].
In parallel, the field of structured linear functions studies similar data structures.
One example is the frayed ribbon filter [Ham20].

1.5 Proposed protocols
In this section, we provide a comprehensive overview of collusion-resistant MPSI
protocols in the semi-honest model. We established this body of literature by
exploring the references and citations of an initial set of works on MPSI protocols.
In this process, we disregard works that rely on di"erential privacy as they do
not satisfy the privacy requirements established in Section 1.2. We also do not
consider server-aided protocols, which rely on a non-colluding assumption. Note
that we only consider set intersection protocols, so we omit variants such as
threshold-intersections [GS19] from the overview.

We summarize all protocols that do not have any known security flaws in
Table 1.2. This table sorts the works by their high-level construction as discussed
in the previous section and the set representation. Within these categories, the
protocols are sorted chronologically. For each work, we state their communication
and computation complexity, as well as the number of rounds of interaction. We
provide derivations of these complexities in Appendix 1.A. We also state the
network topologies, the maximum collusion resistance, and whether there also
exists a maliciously-secure version of the protocol (yes ! or no "). We do not
consider whether a protocol is size-hiding, see Remark 3 in Section 1.2.2. Note that
complexities using �̃�-notation omit logarithmic terms.
Remark 4. Note that in the semi-honest model, any protocol with a mesh topology
can be converted to a star topology by encrypting all messages for the intended
receiver and routing them through the leader at the cost of more interactions.

43

Table
1.2:O

verview
ofsem

i-honestM
PSIprotocolsw

ith
no

know
n

attacks,resisting
m

ultiple
colluders

W
ork

Technique
C

om
m

unication
C

om
putation

Security
Firstauthor

Year
Encoding

Prim
itive

Topology
Leader

A
ssistant

Rounds
Leader

A
ssistant

C
ollusion

M
alicious

Privatehom
om

orphicsetrepresentations

K
issner[K

S05]
2005

Polynom
ial

roots

PH
E

M
esh

𝑍
(
𝑄
𝑈)

𝑍
(
𝑊
𝑈)

3
𝑍
(
𝑊
𝑈 2)

𝑍
(
𝑊
𝑈 2)

𝑄
⇐

1
!

Sang
[San+06]

2006
PH

E
M

esh
𝑍
(
𝑄
𝑈)

𝑍
(
𝑄
𝑈)

3
𝑍
(
𝑄

2
𝑈)

𝑍
(
𝑄

2
𝑈)

𝑄
⇐

1
[SS07]

Li[LW
07]

2007
-

M
esh

𝑍
(
𝑄
𝑊
𝑈 2)

𝑍
(
𝑄
𝑊
𝑈 2)

3
𝑍
(
𝑄
𝑊
𝑈 2)

𝑍
(
𝑄
𝑊
𝑈 2)

̸
𝑄⇐12

↦
!

Sang
[SS09]

2009
PH

E*
M

esh
𝑍
(
𝑄
𝑈)

𝑍
(
𝑄
𝑈)

2
𝑍
(
𝑄
𝑈 2)

𝑍
(
𝑄
𝑈 2)

𝑄
⇐

1
!

C
heon

[C
JS12]

2012
PH

E
M

esh
𝑍
(
𝑄
𝑈)

𝑍
(
𝑄
𝑈)

3
𝑍
(
𝑄
𝑈)

𝑍
(
𝑄
𝑈)

𝑄
⇐

1
!

G
hosh

[G
N

19]
2019

O
LE

Star
𝑍
(
𝑄
𝑈)

𝑍
(
𝑈)

6
𝑍
(
𝑄
𝑈)

𝑍
(
𝑈)

𝑄
⇐

1
!

G
ordon

[G
H

L22]
2022

O
LE

Star
𝑍
(
𝑄
𝑈+

𝑄
𝑊)

—
5

—
—

𝑄
⇐

1
!

Blanton
[BA

16]
2016

Sorted
m

ultiset
-

M
esh

𝑍
(
𝑊
𝑈)

𝑍
(
𝑊
𝑈)

𝑍
(log

𝑈)
𝑍
(
𝑊
𝑈)

𝑍
(
𝑊
𝑈)

̸
𝑄⇐12

↦
!

Poddar[Pod+21]
2021

G
C

M
esh

—
—

—
—

—
𝑄
⇐

1
!

Bay
[Bay+21]

2021
Bitset

PH
E

Star
𝑍
(
𝑊
𝑈)

𝑍
(|↘

|)
3

𝑍
(
𝑄
𝑈)

𝑍
(|↘

|)
𝑄
⇐

1
"

Vos[VC
E22](C

hp
3)

2022

Leaky
hom

om
orphicsetrepresentations

Inbar[IO
P18]

2018
G

arbled
Bloom

filter
O

T
Star

𝑍
(
𝑄
𝑈
𝑗)

𝑍
(
𝑄
𝑈
𝑗)

3
𝑍
(
𝑄
𝑈
𝑗)

𝑍
(
𝑄
𝑈
𝑗)

𝑄
⇐

1
[Ben+22]

K
avousi[K

M
S21]

2021
O

T
W

heel
𝑍
(
𝑄
𝑈)

𝑍
(
𝑈
𝑗)

4
𝑍
(
𝑄
𝑈)

𝑍
(
𝑈
𝑗)

𝑄
⇐

1
"

Bay
[Bay+22]

2022
Bloom

filter
PH

E
Star

𝑍
(
𝑊
𝑈)

𝑍
(
𝑈)

3
𝑍
(
𝑄
𝑈
𝑗)

𝑍
(
𝑈)

𝑄
⇐

1
"

Vos[VC
E22](C

hp
3)

2022

Aggregatablem
em

bership
queries

Freedm
an

[FN
P04]

2004
Polynom

ial
payloads

-
M

esh
𝑍
(
𝑄

2
𝑈 2)

𝑍
(
𝑄

2
𝑈 2)

4
𝑍
(
𝑄

2
𝑈 2)

𝑍
(
𝑄

2
𝑈 2)

𝑄
⇐

1
"

H
azay

[H
V

17]
2017

PH
E

Star
𝑍
(
𝑄
𝑈)

𝑍
(
𝑈)

4
𝑍
(
𝑄
𝑈)

𝑍
(
𝑈)

𝑄
⇐

1
!

Kolesnikov
[Kol+17]

2017
O

PPRF
O

T
M

esh
𝑍
(
𝑄
𝑈)

𝑍
(
𝑊
𝑈)

4
𝑍
(
𝑄)

𝑍
(
𝑊
𝑈)

𝑄
⇐

1
[G

ar+21]
C

handran
[C

ha+21]
2021

O
T

Star
𝑍
(
𝑄
𝑈)

𝑍
(
𝑈)

8
𝑍
(
𝑄
𝑈)

𝑍
(
𝑈)

̸
𝑄⇐12

↦
"

G
arim

ella
[G

ar+21]
2021

O
K

VS
O

T
Star

𝑍
(
𝑄
𝑈)

𝑍
(
𝑈)

4
𝑍
(
𝑈)

𝑍
(
𝑄
𝑈)

𝑄
⇐

1
!

N
evo

[N
TY21]

2021
O

T
M

esh
𝑍
(
𝑊
𝑈)*

𝑍
(
𝑈)

4
𝑍
(
𝑄
𝑈⇐

𝑊
𝑈)

𝑍
(
𝑊
𝑈)

𝑄
⇐

1
!

44

1.5.1 Private homomorphic set representations
Using polynomial roots

Kissner & Song [KS05] propose an MPSI protocol based on the polynomial roots
representation. After encoding their set in the roots of a polynomial, each party uses
an additively homomorphic cryptosystem (the Paillier cryptosystem) to encrypt
the coe#cients and sends them to 𝑊 other parties. Each party locally randomizes
the received polynomials, after which the parties sum up the result in a circular
fashion, and finally decrypt. Li & Wu [LW07] propose a similar approach, except
they use secret sharing. This lowers the maximum collusion threshold from 𝑄⇐1 to
̸ 𝑄⇐1

2 ↦, but the computation is significantly cheaper. Patra et al. [PCR09a; PCR09b]
show that the malicious version of Li & Wu’s protocol requires more operations
than claimed in the original paper, and they provide alternatives with a higher
maximum collusion threshold and better e#ciency.

After this, Sang et al. [San+06] discuss several steps in optimizing the ran-
domized aggregation operation necessary to compute the intersection in the
semi-honest model. In [SS07], they propose a malicious extension of this protocol.
The protocols use degree 1 polynomials when randomizing to save computations,
and provide proof that this is indeed still resistant against collusion attacks given
that the coe#cients are multiplied by a non-singular matrix. In later works, Sang &
Shen [SS08; SS09] describe a second protocol based on bilinear pairings. However,
the pairings are only necessary in the malicious model. We note that it su#ces to
use elliptic curve-based ElGamal in the semi-honest model, for example. The idea
behind this protocol is that it su#ces to randomize each polynomial once using a
single scalar instead of 𝑊+1 times by di"erent parties if we only reveal the evaluation
of the resulting polynomial. Importantly, this is only secure for cryptosystems
where parties cannot determine the discrete log of the final decryption. For this
reason, we mark PHE with an asterisk in Table 1.2.

Instead of eliminating polynomial multiplications, some other works focus on
lowering their computational cost. Cheon et al. [CJS12], for example, propose
a protocol based on that of Kissner & Song [KS05] where polynomials are in
point-value representation: instead of encrypting a polynomial by its coe#cients,
the parties first evaluate the polynomial locally on a set of public points, and
encrypt the resulting values. Multiplication of polynomials in this representation
scales linearly with the degree rather than quadratically. However, one must
ensure there are at least as many encrypted values as the degree of the resulting
polynomial. Focusing on the two-party setting, Kim et al. [KK17] propose several
other techniques to perform computationally cheaper polynomial multiplications
and evaluations.

Ghosh & Nilges [GN19] use the same point-value representation as above, but
they show how to compute the randomized sum without the need for homomorphic
encryption. Instead, they propose to have every assistant perform a series of OLEs
with the leader. In the setting with two parties →1 and →2 where only →1 receives
the result, the parties compute 𝑚�̂�1 + �̂�2 using an OLE, where 𝑚 is chosen by →2. In
the multi-party setting, the authors propose to use an OLE between each assistant
and the leader in both directions, to achieve a secret sharing of the resulting
polynomial. By clever use of masking and a non-interactive secret sharing scheme,

45

the authors make sure that the leader must aggregate all randomized polynomials
before being able to reveal the intersection. Note that recently, Abadi et al. [AMZ21]
identified multiple attacks against the version of the protocol that was claimed
to withstand malicious adversaries. The authors compare the bandwidth cost of
their protocol with that by Kolesnikov et al. [Kol+17]. For 𝑈 = 220 and 𝑊 = 𝑄 ⇐ 1,
the bandwidth per party is ↗ 1.25 GB for the protocol by Ghosh & Nilges, and
(𝑄 ⇐ 1) · 467 MB for the previous work.

The latest work in this category comes from Gordon et al. [GHL22], who
propose an MPSI protocol secure in the malicious model. They also propose a
version where all parties receive the result. The protocols use OLEs to compute
the randomized polynomial sum:

�̂�↑ =

(
𝑄∑
𝑋=1

𝑚𝑋

)
�̂�1 +

𝑄∑
𝑋=2

(𝑇𝑋1 + 𝑇𝑋)�̂�𝑋 . (1.10)

Here, 𝑚𝑋 and 𝑇𝑋 are random polynomials selected by each party, and 𝑇
𝑋

1 are 𝑄 ⇐ 1
polynomials sampled by the leader. For each set element, each assistant performs
four OLEs with the leader. For 𝑈 = 220 and 𝑊 = 𝑄 ⇐ 1, the malicious protocol by
Gordon et al. consistently outperforms Kolesnikov et al. in the semi-honest model.
Care must be taken to interpret these numbers as the experiments were run on
di"erent hardware (3.60GHz CPUs versus 2.30GHz).

Using sorted multisets

Huang et al. [HEK12] use sorted multisets to perform a private set intersection
between two parties, and Poddar et al. [Pod+21] provide an extension to any
number of parties. Both works use garbled circuits (GC) to privately compute the
intersection between sorted multisets. While garbled circuits by default o"er a
way to privately perform a two-party computation, Poddar et al. use the method
by Wang et al. [WRK17], which first uses an expensive o$ine phase to build a
garbled circuit that can be used for secure multi-party computation. Since the
MPSI operation is part of a large compiler pipeline, it is hard to state any asymptotic
complexities for the resulting protocol.

Before the work by Poddar et al., Blanton et al. [BA16] used the same represen-
tation to compute intersections and other set and multiset operations using secret
sharing. The benefit of this method is that computation is extremely e#cient, but
the protocol does not run in a constant number of rounds due to the merging
operations: it scales logarithmically with the size of the sets 𝑈. For 𝑄 = 3, 𝑊 = 1,
𝑈 = 2048 and with a 1Gb Ethernet connection, the protocol takes 25 seconds.

Using bitsets

Ruan et al. [Rua+19] proposed the first bitset-based private set intersection protocol.
Their protocol is restricted to two parties, so Bay et al. [Bay+21] provide an
extension to the multi-party setting, achieving up to 𝑄 ⇐ 1 collusion resistance. The
protocol uses additively homomorphic encryption to compute an element-wise
AND operation between all bitsets using the method described in Section 1.3.3. Vos

46

et al. [VCE22] (see Chapter 3) show how to perform this operation in a way that is
significantly cheaper. By using ElGamal over an elliptic curve group, operations
are less computationally demanding, and the ciphertext size is restricted to 64
bytes. Another improvement comes from reordering the randomization, so that
the leader has to perform fewer plaintext multiplications. Without considering
communication, these optimizations reduce run time from 100 seconds to 3 seconds
for 𝑈 = 212, 𝑄 = 5 and 𝑊 = 4.

1.5.2 Leaky homomorphic set representations

Using garbled Bloom filters

The first protocol based on garbled Bloom filters was a two-party private set
intersection by Dong et al. [DCW13]. Inbar et al. [IOP18] provided three protocols
that extend this protocol to the multi-party setting. The first protocol is in the
server-aided model, relying on a non-colluding third party, while the next two
protocols are collusion-resistant and secure in the semi-honest and augmented
semi-honest model, respectively. The latter two protocols rely on oblivious transfers
so each party only learns the contents of the garbled Bloom filter bins that they
should learn. The augmented semi-honest model allows the parties to perform
fewer OT extensions while realizing the same functionality. While OTs are cheap
to compute, the protocols require all pairs of parties to perform them, causing
the communication to scale quadratically with the number of parties. Recently,
Ben-Efraim et al. [Ben+22] provided an extension of this work to the malicious
model. They also show how to reduce the number of OTs by 25% by choosing
other parameters for the garbled Bloom filter. Their results for 𝑊 = 𝑄 ⇐ 1 show
that regardless of 𝑈 and 𝑄, Kolesnikov et al. and Ben-Efraim et al. consistently
outperform the work by Inbar et al. Moverover, for 𝑄 ∀ 10 and 𝑈 ∀ 216 the
malicious protocol by Ben-Efraim et al. consistently outperforms the semi-honest
protocol by Kolesnikov et al.

A protocol by Kavousi et al. [KMS21] uses garbled Bloom filters di"erently,
extending the two-party work of Chase & Miao [CM20], who propose a highly
e#cient OPRF that can be queried in multiple points at once using OTs. Bay &
Kayan [BK22] also propose a multi-party extension, but without a garbled Bloom
filter and therefore require the asisstants to send the PRF of the hash of each
element to the leader. We argue that this renders the protocol insecure, as the
leader can enumerate the universe ↘ to identify preimages.

Using Bloom filters

Bay et al. [Bay+22] propose a collusion-resistant version of the protocol by Miyaji &
Nishida [MN15]. Their protocol uses the Paillier cryptosystem to compute the AND
operation between each party’s encrypted Bloom filter following the technique
described in Section 1.3.3. Vos et al. [VCE22] provide a similar improvement as
described in Section 1.5.1 to significantly reduce the computation and communica-
tion cost of the protocol, although it does not impact the asymptotic complexities.
These protocols satisfy superset correctness: they only incur false positives with

47

non-negligible probability. Vos et al. show that for 𝜓 ∀ 0.01%, 𝑊 = 𝑄 ⇐ 1 and 𝑄 ∀ 3,
the protocol consistently outperforms Kolesnikov et al. [Kol+17].

1.5.3 Aggregatable membership queries
Embedding payloads in polynomial roots

Freedman [FNP04] proposed the first MPSI protocol. This secret sharing-based
protocol uses the polynomial set encoding to embed payloads in shares containing
the evaluation of the polynomial in the elements of the leader’s set. This payload
is a secret share, so when all polynomials contain a root at this element, the secret
can be reconstructed. Hazay & Venkitasubramaniam propose another protocol
using PHE, which allows the leader to evaluate the polynomials, instead of the
assistants. The leader only inserts payloads of 0. After randomizing and decrypting
(reminiscent to Section 1.3.3), the leader receives a result of 0 when the element is
in the intersection with overwhelming probability.

Using oblivious programmable PRFs

Kolesnikov et al. [Kol+17] introduce OPPRFs and show how they can be used to
instantiate an MPSI protocol. The first part of the protocol is expensive, establishing
an XOR-sharing of zero for each element that could be in the intersection. After that,
the parties hardcode those values in their OPPRF for each element in their set. The
leader then queries all assistants’ OPPRFs and reconstructs the secret. Chandran
et al. [Cha+21] create three modifications of the protocol by Kolesnikov et al.,
removing the expensive construction of secret shares that XOR to zero, replacing
it with Shamir’s secret sharing scheme. As a consequence, collusion resistance is
halved. In their results, this leads to a 1.2 to 6.2 times speedup over Kolesnikov
et al. in di"erent settings. For 𝑄 = 15, 𝑊 = 7, and 𝑈 = 220, protocol C took 244.8
seconds to complete over WAN, while Kolesnikov et al. took 1524.5 seconds.

Using oblivious key-value stores

Garimella et al. [Gar+21] propose OKVSs as a way of reducing the communication
cost required in OPPRF-based protocols. The authors show how to use VOLEs to
optimize previous protocols, and they instantiate them with oblivious transfers.
They show that in slow networks, this approach leads to faster protocol executions.
Nevo et al. [NTY21] lower both the computational and communication cost
compared to previous protocols. They do so by cleverly using a set of ‘pivot’ parties
that hold the OKVSs, reducing the overall cost. At the same time these pivot
parties directly decide the protocols resistance to collusions. For this reason, when
𝑊 = 𝑄 ⇐ 1, the protocol converges with that of Garimella et al. [Gar+21]. In Table 1.2
we mark the leader’s communication complexity with an asterisk: When 𝑊 ≃ 𝑄

2 , the
leader’s communication is instead given by 𝑍(𝑄𝑈⇐ 𝑊𝑈). Qiu et al. [Qiu+22] consider
the protocol by Garimella et al. in a tree-shaped network topology and provide a
maliciously-secure protocol. This lowers the computational cost while changing
the number of rounds to 2̸ log2(𝑄 + 1)↦. Nevo et al. consistently outperform the
works by Kolesnikov et al., Ben-Efraim et al., and Chandran et al. in terms of

48

required bandwidth and run time. An exception is when 𝑊 = 𝑄 ⇐ 1, the run time is
then the same as that of Kolesnikov et al. The authors report that when 𝑄 = 15,
𝑊 = 7, and 𝑈 = 220, the protocol takes 3 minutes to execute and 1416.9 MB of
bandwidth.

1.6 Common pitfalls
In this section, we put forward several common pitfalls in designing MPSI protocols
and analyze the ways that these vulnerabilities occur.

1.6.1 Leakage from set representations
As we established in Section 1.4, there are two classes of homomorphic set
representations: those that remain private when revealed and those that leak
information about the inputs. While it is not always obvious how leaky set
representations expose private data, the leakage is not negligible. A common
mistake is that a Bloom filter representing the intersection is revealed to some
of the parties. This happens for example in the work by Many et al. [MBD12].
Another work by Lai et al. [Lai+06] even uses Bloom filters in plain text, but this
allows an attacker to brute force all possible elements encoded within it. In other
cases, the protocol involuntarily leaks information about the Bloom filter or its
queries. For example, the protocols by Debnath et al. [Deb+21b; Deb+21a] leak the
sum of the queried bins, which reveals information about how many parties have
a given element in their sets.

1.6.2 Unsafe randomness during aggregation
As mentioned in Section 1.3.3, many MPSI protocols rely on privately computing
an AND operation. For bits 𝑅1 , . . . , 𝑅𝑄 , one way is to compute r(𝑅1 + · · · + 𝑅𝑄), where
r is some randomness unknown to any set of colluding parties.

One might think that the requirement above is met when we let the parties
compute 𝑚1(1 ⇐ 𝑅1) + · · · + 𝑚𝑄(1 ⇐ 𝑅𝑄), where 𝑚𝑋 is some randomness only known to
party →𝑋 . However, whether parties know r now depends on the inputs. Notice,
for example, that when 𝑅1 = 0 and 𝑅2 , . . . , 𝑅𝑄 = 1, r = 𝑚1, which is known to party
→1 and anyone they collude with. This allows a set of colluding parties to tell if
they are the only parties with an input bit of 1.

A related error was made in the protocol by Wei et al. [Wei+22], which privately
computes:

𝑆 = (𝑇1𝑅1 + 𝑚
▽
1(1 ⇐ 𝑅1)) + · · · + (𝑇𝑄𝑅𝑄 + 𝑚

▽
𝑄
(1 ⇐ 𝑅𝑄)) , (1.11)

where 𝑇𝑋 is a secret share of 0 encoded in the exponent of a generator, so it holds that
𝑇1 + · · · + 𝑇𝑄 = 0. A share is privately constructed as follows: 𝑇𝑋 =

∑
𝑋⇐1
𝑜=1 𝑚𝑜 ⇐

∑
𝑄

𝑜=𝑋+1 𝑚𝑜 ,
where 𝑚1 , . . . , 𝑚𝑄 is randomness generated by parties →1 , . . . ,→𝑄 , respectively.
Importantly, a party does not know its share until (1.11) is computed. At first
sight, this seems to solve the earlier issue. However, since party →𝑜 knows the
randomness 𝑚𝑜 that they contributed, they can remove their contribution from

49

other parties shares 𝑇𝑜▽ for 𝑜
▽ ε 𝑜. This allows a party to tell that it is the only party

with an input bit of 1.
Another mistake is to only let one party contribute randomness. Doing so

reduces the maximum collusion resistance to 1. This mistake was made in the
protocol by Miyaji & Nishida [MN15], and was patched by Bay et al. [Bay+22]. In
this protocol, only the leader →1 randomized the sum. In other words, the parties
compute 𝑚1(𝑅1 + · · · + 𝑅𝑄). As a result, the leader can invert this randomization at
the end of the protocol to extract the number of input bits set to 1.

1.6.3 Adapting to the malicious model
While this paper focuses on the semi-honest model, one should note that translating
protocols from this model to the malicious model comes with its own set of
challenges. For example, the polynomial set representation as described in
Section 1.4.1 is susceptible to manipulation by malicious adversaries [AMZ21].
While the first two attacks discussed by Abadi et al. are specific to the protocol
of Gordon et al. [GN19], the third attack highlights a problem inherent to the
point-value representation. Specifically, it allows an adversary to omit elements
from the intersection by multiplying each element of the point-value representation
by a scalar.

Qiu et al. [Qiu+22] propose a di"erent type of attack against the protocol by
Garimella et al. [Gar+21] for returning the output of the MPSI to all parties. The
attack allows an adversary to learn information about the elements held by honest
parties. The attack does not a"ect the security of the OKVS.

1.7 Analytical evaluation of computational costs
The performance of MPSI protocols is a"ected by many parameters, including: its
hardness assumptions, the security parameter, the network topology, collusion
threshold 𝑊, the number of interactions, the number of parties 𝑄, the number
of elements 𝑈, the error probability 𝜓, latency, throughput, the distribution of
computer power over di"erent parties, and the number of available threads. As
a result, any concrete comparison that makes assumptions about any of these
parameters unfairly puts certain schemes at an advantage (in fact, almost any
scheme can win in a specific setting), and without established public uses of MPSI
protocols, it remains unclear what realistic sets of parameters look like.

Instead, we study the theoretical computational cost of MPSI protocols. We
consider PHE-based protocols separately from protocols based on aggregatable
membership queries, which rely on two-party computations (2PCs). For brevity,
we denote 𝑝 = ln(𝜓⇐1). At the end of this section we nevertheless try to describe
what reasonable parameter sets might look like, and discuss which protocols suit
them.

1.7.1 E!ciency of PHE-based protocols
We instantiate the latest version of each PHE-based protocol discussed in Section 1.5
using elliptic curve-based ElGamal, as used by Vos et al. [VCE22]. Next, we analyze

50

Table 1.3: Number of primitive operations in the worst case

Leader Assistant Total
Elliptic curve multiplications per element

Sang 1.5 + 2𝑄 + 2𝑈 1.5 4𝑄 + 2𝑈 + 𝑊 + 1
Cheon 4𝑄 + 3 4𝑄 + 3 5𝑄 + 4𝑄𝑊 + 2𝑊 + 2
Hazay 10𝑄 ⇐ 7 3.5 12𝑄 ⇐ 6 + 3𝑊
Vos 3 1.04𝑝 + 3 1.04(𝑄 ⇐ 1)𝑝 + 3𝑊 + 3

Oblivious transfers
Inbar 2.08(𝑄 ⇐ 1)𝑝𝑈 2.08𝑝𝑈 2.08(𝑄 ⇐ 1)𝑝𝑈
Kolesnikov 7(𝑄 ⇐ 1)𝑈 3.5(𝑄 ⇐ 1)𝑈 3.5(𝑄 + 1)(𝑄 ⇐ 1)𝑈
Chandran 8.96(𝑄 ⇐ 1)𝑈 8.96𝑈 8.96(𝑄 ⇐ 1)𝑈
Kavousi 588(𝑄 ⇐ 1) 588 588(𝑄 ⇐ 1)𝜒
Garimella — — —
Nevo 3.5𝑊𝑈 3.5𝑈 3.5𝑊𝑈

Oblivious linear evaluations
Ghosh 2(𝑄 ⇐ 1)𝑈 2𝑈 2(𝑄 ⇐ 1)𝑈
Gordon (𝑄 ⇐ 1)𝑈 𝑈 (𝑄 ⇐ 1)𝑈

the computational cost of these protocols by counting the number of elliptic
curve multiplications required to evaluate them. Since it is possible for one
curve point to precompute a basepoint table, we distinguish between regular and
precomputed multiplications: precomputed multiplications are approximately four
times cheaper. We report the results in Table 1.3. Note that these equations di"er
from the asymptotic complexities, because they do not consider homomorphic
addition, which is negligible compared to multiplications.

Based on this, it depends on the use case which protocol is more computationally
e#cient. For example, if the assistants have low computational power, the protocol
by Hazay et al. [HV17] is faster. Sang et al. [SS09] is also cheap for an assistant, but
scales quadratically with 𝑈 for the leader. If there is no di"erence in computational
power and 𝑊 is small, Cheon et al. [CJS12] is faster. If 𝑊 is close to 𝑄 and 𝜓 can be
high, then Vos et al. [VCE22] may be cheaper.

1.7.2 E!ciency of 2PC-based protocols

In Table 1.3, we state the number of calls to the sub-protocols of the 2PC-based
protocols from Section 1.5. Where possible we analyzed the protocols in the
augmented semi-honest model. We ignore setup operations, such as the initial OT
phase. It is important to note that we expressed these in terms of the sub-protocols
used in the respective papers. However, one might also instantiate the protocol by
Kolesnikov et al. [Kol+17], for example, with a VOLE-based OPPRF. Also note that
Kavousi et al. [KMS21] requires the parties to take part in a constant number of
OTs, regardless of 𝑈. Other parts of the protocol do scale with 𝑈.

51

1.7.3 Analysis towards potential use cases

Use case Setting 𝑄 𝑊 𝑈 𝜓

(1) Mutual customers Mesh ≃ 5 𝑄 ⇐ 1 ≃ 220 5%
(2) Common IP addresses Star ≃ 50 𝑄

2 ∃ 210 1%
(3) Consensus voting Star ∀ 100 𝑄

10 ≃ 28 2⇐40

We briefly analyze which protocols would be suitable for three highlighted
applications. We present potential parameters in the table above. Application
(1) involves some companies that want to identify mutual customers for an ad
campaign, (2) involves cyber security organizations that want to identify suspicious
IP addresses for investigation, and (3) involves a consensus vote between many
parties. The companies in (1) run few multi-threaded servers that are always online.
A good fit seems to be the work by Nevo et al. [NTY21], which outperforms other
2PC approaches, supports 𝑊 = 𝑄 ⇐ 1, and is fast for large sets with few parties. With
𝑄 ≃ 50, (2) requires a lowly-interactive protocol in the star topology like Ghosh,
Gordon, Chandran, Vos, Inbar, Hazay, or Garimella. For 𝜓 = 1% and 𝑄 = 50, Vos
only takes 313 multiplications compared to Hazay’s 669. The same applies to (3),
but it does not permit approximations. Depending on the network, one might
choose Ghosh, Gordon, Chandran, or Hazay, as assistants’ computation does not
scale with 𝑄.

1.8 Discussion
Based on Sections 1.5 and 1.7 we observe that older works are still relevant today.
Specifically, when instantiating PHE-based protocols with modern cryptosystems
such as elliptic curve-based ElGamal, their performance becomes competitive
with the latest proposals. Moreover, while it may be convenient to designate one
protocol as the state of the art, this is not possible for MPSI protocols: it is possible
for each protocol to find application settings where they require fewer calls to
sub-protocols or fewer EC operations than other works. This also begs the question
what real-life application settings look like: what are common parameters for 𝑄,
𝑊, and 𝑈, and what are the network settings like? Until then, direct comparisons
cannot be considered conclusive.

When looking at how MPSI protocols come to be, the process sometimes starts
with a two-party protocol, which is extended to a semi-honest protocol, and finally
to a version that is maliciously secure. We see a trend where more recent works only
propose a multi-party maliciously-secure protocol, skipping the semi-honest model
where it might be explained more plainly and nuances are better understood.

When it comes to technical advances, we identify improvements in OKVSs and
homomorphic cryptosystems as the most impactful. OKVSs can be optimized
in isolation of the protocols that use them so they do not require significant
knowledge of cryptography, and more e#cient versions would immediately
increase performance of the latest 2PC-based protocols. So far, we are not aware

52

of any collusion-resistant MPSI protocols that use lattice-based homomorphic
encryption, or which use leveled/fully-homomorphic encryption to outperform
PHE-based protocols.

Finally, when comparing PHE-based MPSI protocols to 2PC-based protocols,
we note that the first are easier to analyze for di"erent application settings.
This complexity in analyzing 2PC-based protocols comes from having to choose
cryptographic parameters, which do not correlate in a straightforward manner
with 𝑈, for example. Moreover, multiple sets of cryptographic parameters are
suitable for each instance. At the same time, it is this flexibility that also allows
the user of a protocol to tune between computation and communication, a feature
that is not typical of PHE-based protocols. Future research could elaborate on
how to choose these parameters, easing the analysis and deployment of 2PC-based
protocols.

1.9 Conclusion
This work provides a systematization of collusion-resistant MPSI protocols, focusing
on the semi-honest model. We describe the formal requirements that MPSI
protocols must satisfy, and present high-level constructions that describe all
published MPSI protocols. Next to that, we provide a comprehensive overview of
collusion-resistant MPSI protocols and broken protocols, as well as an analytical
evaluation of their computational cost. This evaluation shows that there is no such
thing as a single state of the art, but rather that each protocol outperforms the
others depending on the application setting. We highlight several future research
directions, intending to bring the performance of MPSI protocols closer to that of
two-party PSIs.

References
[AMZ21] Aydin Abadi, Steven J. Murdoch, and Thomas Zacharias. “Polynomial

Representation Is Tricky: Maliciously Secure Private Set Intersection
Revisited”. In: Computer Security - ESORICS 2021 - 26th European Sym-
posium on Research in Computer Security, Darmstadt, Germany, October
4-8, 2021, Proceedings, Part II. Ed. by Elisa Bertino, Haya Shulman,
and Michael Waidner. Vol. 12973. Lecture Notes in Computer Science.
Springer, 2021, pp. 721–742. /)%: 10.1007/978-3-030-88428-4_35.
(!&: https://doi.org/10.1007/978-3-030-88428-4%5C_35.

[Aza+94] Yossi Azar et al. “Balanced allocations (extended abstract)”. In: Proceed-
ings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing,
23-25 May 1994, Montréal, Québec, Canada. Ed. by Frank Thomson
Leighton and Michael T. Goodrich. ACM, 1994, pp. 593–602. /)%:
10.1145/195058.195412. (!&: https://doi.org/10.1145/195058.
195412.

53

https://doi.org/10.1007/978-3-030-88428-4%5C_35
https://doi.org/10.1007/978-3-030-88428-4%5C_35
https://doi.org/10.1145/195058.195412
https://doi.org/10.1145/195058.195412
https://doi.org/10.1145/195058.195412

[BA16] Marina Blanton and Everaldo Aguiar. “Private and oblivious set and
multiset operations”. In: Int. J. Inf. Sec. 15.5 (2016), pp. 493–518. /)%:
10.1007/s10207-015-0301-1. (!&: https://doi.org/10.1007/
s10207-015-0301-1.

[Bat68] Kenneth E. Batcher. “Sorting Networks and Their Applications”. In:
American Federation of Information Processing Societies: AFIPS Conference
Proceedings: 1968 Spring Joint Computer Conference, Atlantic City, NJ,
USA, 30 April - 2 May 1968. Vol. 32. AFIPS Conference Proceedings.
Thomson Book Company, Washington D.C., 1968, pp. 307–314. /)%:
10.1145/1468075.1468121. (!&: https://doi.org/10.1145/
1468075.1468121.

[Bay+21] Aslí Bay et al. “Multi-Party Private Set Intersection Protocols for
Practical Applications”. In: Proceedings of the 18th International Con-
ference on Security and Cryptography, SECRYPT 2021, July 6-8, 2021.
Ed. by Sabrina De Capitani di Vimercati and Pierangela Samarati.
SCITEPRESS, 2021, pp. 515–522. /)%: 10.5220/0010547605150522.
(!&: https://doi.org/10.5220/0010547605150522.

[Bay+22] Aslí Bay et al. “Practical Multi-Party Private Set Intersection Protocols”.
In: IEEE Trans. Inf. Forensics Secur. 17 (2022), pp. 1–15. /)%: 10.1109/
TIFS.2021.3118879. (!&: https://doi.org/10.1109/TIFS.2021.
3118879.

[Ben+22] Aner Ben-Efraim et al. “PSImple: Practical Multiparty Maliciously-
Secure Private Set Intersection”. In: ASIA CCS ’22: ACM Asia Conference
on Computer and Communications Security, Nagasaki, Japan, 30 May 2022
- 3 June 2022. Ed. by Yuji Suga et al. ACM, 2022, pp. 1098–1112.
/)%: 10.1145/3488932.3523254. (!&: https://doi.org/10.1145/
3488932.3523254.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. “Complete-
ness Theorems for Non-Cryptographic Fault-Tolerant Distributed
Computation (Extended Abstract)”. In: Proceedings of the 20th Annual
ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois,
USA. Ed. by Janos Simon. ACM, 1988, pp. 1–10. /)%: 10.1145/62212.
62213. (!&: https://doi.org/10.1145/62212.62213.

[BK22] Aslı Bay and Anıl Kayan. “A new multi-party private set intersection
protocol based on OPRFs”. In: Mugla Journal of Science and Technology
8.1 (2022), pp. 69–75.

[Cha+21] Nishanth Chandran et al. “E#cient Linear Multiparty PSI and Ex-
tensions to Circuit/Quorum PSI”. In: CCS ’21: 2021 ACM SIGSAC
Conference on Computer and Communications Security, Virtual Event,
Republic of Korea, November 15 - 19, 2021. Ed. by Yongdae Kim et al.
ACM, 2021, pp. 1182–1204. /)%: 10.1145/3460120.3484591. (!&:
https://doi.org/10.1145/3460120.3484591.

54

https://doi.org/10.1007/s10207-015-0301-1
https://doi.org/10.1007/s10207-015-0301-1
https://doi.org/10.1007/s10207-015-0301-1
https://doi.org/10.1145/1468075.1468121
https://doi.org/10.1145/1468075.1468121
https://doi.org/10.1145/1468075.1468121
https://doi.org/10.5220/0010547605150522
https://doi.org/10.5220/0010547605150522
https://doi.org/10.1109/TIFS.2021.3118879
https://doi.org/10.1109/TIFS.2021.3118879
https://doi.org/10.1109/TIFS.2021.3118879
https://doi.org/10.1109/TIFS.2021.3118879
https://doi.org/10.1145/3488932.3523254
https://doi.org/10.1145/3488932.3523254
https://doi.org/10.1145/3488932.3523254
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/3460120.3484591
https://doi.org/10.1145/3460120.3484591

[CJS12] Jung Hee Cheon, Stanislaw Jarecki, and Jae Hong Seo. “Multi-Party
Privacy-Preserving Set Intersection with Quasi-Linear Complexity”.
In: IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 95-A.8 (2012),
pp. 1366–1378. /)%: 10.1587/transfun.E95.A.1366. (!&: https:
//doi.org/10.1587/transfun.E95.A.1366.

[CM20] Melissa Chase and Peihan Miao. “Private Set Intersection in the
Internet Setting from Lightweight Oblivious PRF”. In: Advances in
Cryptology - CRYPTO 2020 - 40th Annual International Cryptology
Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21,
2020, Proceedings, Part III. Ed. by Daniele Micciancio and Thomas
Ristenpart. Vol. 12172. Lecture Notes in Computer Science. Springer,
2020, pp. 34–63. /)%: 10.1007/978-3-030-56877-1_2. (!&: https:
//doi.org/10.1007/978-3-030-56877-1%5C_2.

[DCW13] Changyu Dong, Liqun Chen, and Zikai Wen. “When private set
intersection meets big data: an e#cient and scalable protocol”. In:
2013 ACM SIGSAC Conference on Computer and Communications Security,
CCS’13, Berlin, Germany, November 4-8, 2013. Ed. by Ahmad-Reza
Sadeghi, Virgil D. Gligor, and Moti Yung. ACM, 2013, pp. 789–800.
/)%: 10.1145/2508859.2516701. (!&: https://doi.org/10.1145/
2508859.2516701.

[Deb+21a] Sumit Kumar Debnath et al. “Post-quantum secure multi-party private
set-intersection in star network topology”. In: J. Inf. Secur. Appl. 58
(2021), p. 102731. /)%: 10.1016/j.jisa.2020.102731. (!&: https:
//doi.org/10.1016/j.jisa.2020.102731.

[Deb+21b] Sumit Kumar Debnath et al. “Secure and e#cient multiparty private
set intersection cardinality”. In: Adv. Math. Commun. 15.2 (2021),
pp. 365–386. /)%: 10.3934/amc.2020071. (!&: https://doi.org/10.
3934/amc.2020071.

[FNP04] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. “E#cient
Private Matching and Set Intersection”. In: Advances in Cryptology -
EUROCRYPT 2004, International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004,
Proceedings. Ed. by Christian Cachin and Jan Camenisch. Vol. 3027.
Lecture Notes in Computer Science. Springer, 2004, pp. 1–19. /)%:
10.1007/978-3-540-24676-3_1. (!&: https://doi.org/10.1007/
978-3-540-24676-3%5C_1.

[Gam84] Taher El Gamal. “A Public Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms”. In: Advances in Cryptology, Proceedings
of CRYPTO ’84, Santa Barbara, California, USA, August 19-22, 1984,
Proceedings. Ed. by G. R. Blakley and David Chaum. Vol. 196. Lecture
Notes in Computer Science. Springer, 1984, pp. 10–18. /)%: 10.1007/3-
540-39568-7_2. (!&: https://doi.org/10.1007/3-540-39568-
7%5C_2.

55

https://doi.org/10.1587/transfun.E95.A.1366
https://doi.org/10.1587/transfun.E95.A.1366
https://doi.org/10.1587/transfun.E95.A.1366
https://doi.org/10.1007/978-3-030-56877-1%5C_2
https://doi.org/10.1007/978-3-030-56877-1%5C_2
https://doi.org/10.1007/978-3-030-56877-1%5C_2
https://doi.org/10.1145/2508859.2516701
https://doi.org/10.1145/2508859.2516701
https://doi.org/10.1145/2508859.2516701
https://doi.org/10.1016/j.jisa.2020.102731
https://doi.org/10.1016/j.jisa.2020.102731
https://doi.org/10.1016/j.jisa.2020.102731
https://doi.org/10.3934/amc.2020071
https://doi.org/10.3934/amc.2020071
https://doi.org/10.3934/amc.2020071
https://doi.org/10.1007/978-3-540-24676-3%5C_1
https://doi.org/10.1007/978-3-540-24676-3%5C_1
https://doi.org/10.1007/978-3-540-24676-3%5C_1
https://doi.org/10.1007/3-540-39568-7%5C_2
https://doi.org/10.1007/3-540-39568-7%5C_2
https://doi.org/10.1007/3-540-39568-7%5C_2
https://doi.org/10.1007/3-540-39568-7%5C_2

[Gar+21] Gayathri Garimella et al. “Oblivious Key-Value Stores and Amplifica-
tion for Private Set Intersection”. In: Advances in Cryptology - CRYPTO
2021 - 41st Annual International Cryptology Conference, CRYPTO 2021,
Virtual Event, August 16-20, 2021, Proceedings, Part II. Ed. by Tal Malkin
and Chris Peikert. Vol. 12826. Lecture Notes in Computer Science.
Springer, 2021, pp. 395–425. /)%: 10.1007/978-3-030-84245-1_14.
(!&: https://doi.org/10.1007/978-3-030-84245-1%5C_14.

[GG10] Ashish Goel and Pankaj Gupta. “Small subset queries and bloom
filters using ternary associative memories, with applications”. In:
SIGMETRICS 2010, Proceedings of the 2010 ACM SIGMETRICS In-
ternational Conference on Measurement and Modeling of Computer Sys-
tems, New York, New York, USA, 14-18 June 2010. Ed. by Vishal Misra,
Paul Barford, and Mark S. Squillante. ACM, 2010, pp. 143–154. /)%:
10.1145/1811039.1811056.

[GHL22] S. Dov Gordon, Carmit Hazay, and Phi Hung Le. “Fully Secure
PSI via MPC-in-the-Head”. In: Proc. Priv. Enhancing Technol. 2022.3
(2022), pp. 291–313. /)%: 10.56553/popets-2022-0073. (!&: https:
//doi.org/10.56553/popets-2022-0073.

[GN19] Satrajit Ghosh and Tobias Nilges. “An Algebraic Approach to Mali-
ciously Secure Private Set Intersection”. In: Advances in Cryptology -
EUROCRYPT 2019 - 38th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Darmstadt, Germany,
May 19-23, 2019, Proceedings, Part III. Ed. by Yuval Ishai and Vincent
R!men. Vol. 11478. Lecture Notes in Computer Science. Springer,
2019, pp. 154–185. /)%: 10.1007/978- 3- 030- 17659- 4_6. (!&:
https://doi.org/10.1007/978-3-030-17659-4%5C_6.

[GS19] Satrajit Ghosh and Mark Simkin. “The Communication Complexity
of Threshold Private Set Intersection”. In: Advances in Cryptology -
CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 18-22, 2019, Proceedings, Part II. Ed. by
Alexandra Boldyreva and Daniele Micciancio. Vol. 11693. Lecture
Notes in Computer Science. Springer, 2019, pp. 3–29. /)%: 10.1007/
978-3-030-26951-7_1. (!&: https://doi.org/10.1007/978-3-
030-26951-7%5C_1.

[Ham20] Mike Hamburg. Compressed maps without the keys, based on frayed
ribbon cascades. 2020. (!&: https://github.com/bitwiseshiftleft/
compressed%5C_map.

[HEK12] Yan Huang, David Evans, and Jonathan Katz. “Private Set Intersec-
tion: Are Garbled Circuits Better than Custom Protocols?” In: 19th
Annual Network and Distributed System Security Symposium, NDSS
2012, San Diego, California, USA, February 5-8, 2012. The Internet So-
ciety, 2012. (!&: https://www.ndss- symposium.org/ndss2012/
private - set - intersection - are - garbled - circuits - better -
custom-protocols.

56

https://doi.org/10.1007/978-3-030-84245-1%5C_14
https://doi.org/10.1007/978-3-030-84245-1%5C_14
https://doi.org/10.1145/1811039.1811056
https://doi.org/10.56553/popets-2022-0073
https://doi.org/10.56553/popets-2022-0073
https://doi.org/10.56553/popets-2022-0073
https://doi.org/10.1007/978-3-030-17659-4%5C_6
https://doi.org/10.1007/978-3-030-17659-4%5C_6
https://doi.org/10.1007/978-3-030-26951-7%5C_1
https://doi.org/10.1007/978-3-030-26951-7%5C_1
https://doi.org/10.1007/978-3-030-26951-7%5C_1
https://doi.org/10.1007/978-3-030-26951-7%5C_1
https://github.com/bitwiseshiftleft/compressed%5C_map
https://github.com/bitwiseshiftleft/compressed%5C_map
https://www.ndss-symposium.org/ndss2012/private-set-intersection-are-garbled-circuits-better-custom-protocols
https://www.ndss-symposium.org/ndss2012/private-set-intersection-are-garbled-circuits-better-custom-protocols
https://www.ndss-symposium.org/ndss2012/private-set-intersection-are-garbled-circuits-better-custom-protocols

[HL10] Carmit Hazay and Yehuda Lindell. “A Note on the Relation be-
tween the Definitions of Security for Semi-Honest and Malicious
Adversaries”. In: IACR Cryptol. ePrint Arch. (2010), p. 551. (!&: http:
//eprint.iacr.org/2010/551.

[HV17] Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. “Scal-
able Multi-party Private Set-Intersection”. In: Public-Key Cryptography
- PKC 2017 - 20th IACR International Conference on Practice and Theory
in Public-Key Cryptography, Amsterdam, The Netherlands, March 28-31,
2017, Proceedings, Part I. Ed. by Serge Fehr. Vol. 10174. Lecture Notes
in Computer Science. Springer, 2017, pp. 175–203. /)%: 10.1007/978-
3-662-54365-8_8. (!&: https://doi.org/10.1007/978-3-662-
54365-8%5C_8.

[IOP18] Roi Inbar, Eran Omri, and Benny Pinkas. “E#cient Scalable Multiparty
Private Set-Intersection via Garbled Bloom Filters”. In: Security and
Cryptography for Networks - 11th International Conference, SCN 2018,
Amalfi, Italy, September 5-7, 2018, Proceedings. Ed. by Dario Catalano
and Roberto De Prisco. Vol. 11035. Lecture Notes in Computer Science.
Springer, 2018, pp. 235–252. /)%: 10.1007/978-3-319-98113-0_13.
(!&: https://doi.org/10.1007/978-3-319-98113-0%5C_13.

[KBM22] Florian Kerschbaum, Erik-Oliver Blass, and Rasoul Akhavan Mahdavi.
“Faster Secure Comparisons with O$ine Phase for E#cient Private Set
Intersection”. In: CoRR abs/2209.13913 (2022). /)%: 10.48550/arXiv.
2209.13913. arXiv: 2209.13913. (!&: https://doi.org/10.48550/
arXiv.2209.13913.

[KK17] Myungsun Kim and Benjamin Z. Kim. “An experimental study of
encrypted polynomial arithmetics for private set operations”. In: J.
Commun. Networks 19.5 (2017), pp. 431–441. /)%: 10.1109/JCN.2017.
000075. (!&: https://doi.org/10.1109/JCN.2017.000075.

[KMS21] Alireza Kavousi, Javad Mohajeri, and Mahmoud Salmasizadeh. “E#-
cient Scalable Multi-party Private Set Intersection Using Oblivious
PRF”. In: Security and Trust Management - 17th International Workshop,
STM 2021, Darmstadt, Germany, October 8, 2021, Proceedings. Ed. by
Rodrigo Roman and Jianying Zhou. Vol. 13075. Lecture Notes in
Computer Science. Springer, 2021, pp. 81–99. /)%: 10.1007/978-3-
030-91859-0_5. (!&: https://doi.org/10.1007/978-3-030-
91859-0%5C_5.

[Kol+16] Vladimir Kolesnikov et al. “E#cient Batched Oblivious PRF with
Applications to Private Set Intersection”. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016. Ed. by Edgar R. Weippl et al.
ACM, 2016, pp. 818–829. /)%: 10.1145/2976749.2978381. (!&: https:
//doi.org/10.1145/2976749.2978381.

57

http://eprint.iacr.org/2010/551
http://eprint.iacr.org/2010/551
https://doi.org/10.1007/978-3-662-54365-8%5C_8
https://doi.org/10.1007/978-3-662-54365-8%5C_8
https://doi.org/10.1007/978-3-662-54365-8%5C_8
https://doi.org/10.1007/978-3-662-54365-8%5C_8
https://doi.org/10.1007/978-3-319-98113-0%5C_13
https://doi.org/10.1007/978-3-319-98113-0%5C_13
https://doi.org/10.48550/arXiv.2209.13913
https://doi.org/10.48550/arXiv.2209.13913
https://arxiv.org/abs/2209.13913
https://doi.org/10.48550/arXiv.2209.13913
https://doi.org/10.48550/arXiv.2209.13913
https://doi.org/10.1109/JCN.2017.000075
https://doi.org/10.1109/JCN.2017.000075
https://doi.org/10.1109/JCN.2017.000075
https://doi.org/10.1007/978-3-030-91859-0%5C_5
https://doi.org/10.1007/978-3-030-91859-0%5C_5
https://doi.org/10.1007/978-3-030-91859-0%5C_5
https://doi.org/10.1007/978-3-030-91859-0%5C_5
https://doi.org/10.1145/2976749.2978381
https://doi.org/10.1145/2976749.2978381
https://doi.org/10.1145/2976749.2978381

[Kol+17] Vladimir Kolesnikov et al. “Practical Multi-party Private Set Intersec-
tion from Symmetric-Key Techniques”. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2017,
Dallas, TX, USA, October 30 - November 03, 2017. Ed. by Bhavani Thu-
raisingham et al. ACM, 2017, pp. 1257–1272. /)%: 10.1145/3133956.
3134065. (!&: https://doi.org/10.1145/3133956.3134065.

[KS05] Lea Kissner and Dawn Xiaodong Song. “Privacy-Preserving Set Op-
erations”. In: Advances in Cryptology - CRYPTO 2005: 25th Annual
International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 14-18, 2005, Proceedings. Ed. by Victor Shoup. Vol. 3621. Lecture
Notes in Computer Science. Springer, 2005, pp. 241–257. /)%: 10.1007/
11535218_15. (!&: https://doi.org/10.1007/11535218%5C_15.

[Lai+06] Pierre K. Y. Lai et al. “An E#cient Bloom Filter Based Solution for
Multiparty Private Matching”. In: Proceedings of the 2006 International
Conference on Security & Management, SAM 2006, Las Vegas, Nevada,
USA, June 26-29, 2006. Ed. by Hamid R. Arabnia and Selim Aissi.
CSREA Press, 2006, pp. 286–292.

[Lin17] Yehuda Lindell. “How to Simulate It - A Tutorial on the Simulation
Proof Technique”. In: Tutorials on the Foundations of Cryptography. Ed. by
Yehuda Lindell. Springer International Publishing, 2017, pp. 277–346.
/)%: 10.1007/978-3-319-57048-8_6. (!&: https://doi.org/10.
1007/978-3-319-57048-8%5C_6.

[LW07] Ronghua Li and Chuankun Wu. “An Unconditionally Secure Protocol
for Multi-Party Set Intersection”. In: Applied Cryptography and Network
Security, 5th International Conference, ACNS 2007, Zhuhai, China, June
5-8, 2007, Proceedings. Ed. by Jonathan Katz and Moti Yung. Vol. 4521.
Lecture Notes in Computer Science. Springer, 2007, pp. 226–236. /)%:
10.1007/978-3-540-72738-5_15. (!&: https://doi.org/10.
1007/978-3-540-72738-5%5C_15.

[MBD12] Dilip Many, Martin Burkhart, and Xenofontas Dimitropoulos. “Fast
private set operations with sepia”. In: ETZ G93 (2012).

[MN15] Atsuko Miyaji and Shohei Nishida. “A Scalable Multiparty Private Set
Intersection”. In: Network and System Security - 9th International Confer-
ence, NSS 2015, New York, NY, USA, November 3-5, 2015, Proceedings. Ed.
by Meikang Qiu et al. Vol. 9408. Lecture Notes in Computer Science.
Springer, 2015, pp. 376–385. /)%: 10.1007/978-3-319-25645-0_26.
(!&: https://doi.org/10.1007/978-3-319-25645-0%5C_26.

[NTY21] Ofri Nevo, Ni Trieu, and Avishay Yanai. “Simple, Fast Malicious
Multiparty Private Set Intersection”. In: CCS ’21: 2021 ACM SIGSAC
Conference on Computer and Communications Security, Virtual Event,
Republic of Korea, November 15 - 19, 2021. Ed. by Yongdae Kim et al.
ACM, 2021, pp. 1151–1165. /)%: 10.1145/3460120.3484772. (!&:
https://doi.org/10.1145/3460120.3484772.

58

https://doi.org/10.1145/3133956.3134065
https://doi.org/10.1145/3133956.3134065
https://doi.org/10.1145/3133956.3134065
https://doi.org/10.1007/11535218%5C_15
https://doi.org/10.1007/11535218%5C_15
https://doi.org/10.1007/11535218%5C_15
https://doi.org/10.1007/978-3-319-57048-8%5C_6
https://doi.org/10.1007/978-3-319-57048-8%5C_6
https://doi.org/10.1007/978-3-319-57048-8%5C_6
https://doi.org/10.1007/978-3-540-72738-5%5C_15
https://doi.org/10.1007/978-3-540-72738-5%5C_15
https://doi.org/10.1007/978-3-540-72738-5%5C_15
https://doi.org/10.1007/978-3-319-25645-0%5C_26
https://doi.org/10.1007/978-3-319-25645-0%5C_26
https://doi.org/10.1145/3460120.3484772
https://doi.org/10.1145/3460120.3484772

[Pai99] Pascal Paillier. “Public-Key Cryptosystems Based on Composite De-
gree Residuosity Classes”. In: Advances in Cryptology - EUROCRYPT
’99, International Conference on the Theory and Application of Crypto-
graphic Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding.
Ed. by Jacques Stern. Vol. 1592. Lecture Notes in Computer Science.
Springer, 1999, pp. 223–238. /)%: 10.1007/3-540-48910-X_16. (!&:
https://doi.org/10.1007/3-540-48910-X%5C_16.

[PCR09a] Arpita Patra, Ashish Choudhary, and C. Pandu Rangan. “Informa-
tion Theoretically Secure Multi Party Set Intersection Re-visited”.
In: Selected Areas in Cryptography, 16th Annual International Workshop,
SAC 2009, Calgary, Alberta, Canada, August 13-14, 2009, Revised Se-
lected Papers. Ed. by Michael J. Jacobson Jr., Vincent R!men, and
Reihaneh Safavi-Naini. Vol. 5867. Lecture Notes in Computer Science.
Springer, 2009, pp. 71–91. /)%: 10.1007/978-3-642-05445-7_5. (!&:
https://doi.org/10.1007/978-3-642-05445-7%5C_5.

[PCR09b] Arpita Patra, Ashish Choudhary, and C. Pandu Rangan. “Round
E#cient Unconditionally Secure MPC and Multiparty Set Intersection
with Optimal Resilience”. In: Progress in Cryptology - INDOCRYPT 2009,
10th International Conference on Cryptology in India, New Delhi, India,
December 13-16, 2009. Proceedings. Ed. by Bimal K. Roy and Nicolas
Sendrier. Vol. 5922. Lecture Notes in Computer Science. Springer,
2009, pp. 398–417. /)%: 10.1007/978-3-642-10628-6_26. (!&:
https://doi.org/10.1007/978-3-642-10628-6%5C_26.

[Pin+20] Benny Pinkas et al. “PSI from PaXoS: Fast, Malicious Private Set
Intersection”. In: Advances in Cryptology - EUROCRYPT 2020 - 39th
Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part
II. Ed. by Anne Canteaut and Yuval Ishai. Vol. 12106. Lecture Notes
in Computer Science. Springer, 2020, pp. 739–767. /)%: 10.1007/978-
3-030-45724-2_25. (!&: https://doi.org/10.1007/978-3-030-
45724-2%5C_25.

[Pod+21] Rishabh Poddar et al. “Senate: A Maliciously-Secure MPC Platform
for Collaborative Analytics”. In: 30th USENIX Security Symposium,
USENIX Security 2021, August 11-13, 2021. Ed. by Michael Bailey
and Rachel Greenstadt. USENIX Association, 2021, pp. 2129–2146.
(!&: https://www.usenix.org/conference/usenixsecurity21/
presentation/poddar.

[PR01] Rasmus Pagh and Flemming Friche Rodler. “Cuckoo Hashing”. In:
Algorithms - ESA 2001, 9th Annual European Symposium, Aarhus, Den-
mark, August 28-31, 2001, Proceedings. Ed. by Friedhelm Meyer auf
der Heide. Vol. 2161. Lecture Notes in Computer Science. Springer,
2001, pp. 121–133. /)%: 10.1007/3-540-44676-1_10. (!&: https:
//doi.org/10.1007/3-540-44676-1%5C_10.

59

https://doi.org/10.1007/3-540-48910-X%5C_16
https://doi.org/10.1007/3-540-48910-X%5C_16
https://doi.org/10.1007/978-3-642-05445-7%5C_5
https://doi.org/10.1007/978-3-642-05445-7%5C_5
https://doi.org/10.1007/978-3-642-10628-6%5C_26
https://doi.org/10.1007/978-3-642-10628-6%5C_26
https://doi.org/10.1007/978-3-030-45724-2%5C_25
https://doi.org/10.1007/978-3-030-45724-2%5C_25
https://doi.org/10.1007/978-3-030-45724-2%5C_25
https://doi.org/10.1007/978-3-030-45724-2%5C_25
https://www.usenix.org/conference/usenixsecurity21/presentation/poddar
https://www.usenix.org/conference/usenixsecurity21/presentation/poddar
https://doi.org/10.1007/3-540-44676-1%5C_10
https://doi.org/10.1007/3-540-44676-1%5C_10
https://doi.org/10.1007/3-540-44676-1%5C_10

[PSN10] Odysseas Papapetrou, Wolf Siberski, and Wolfgang Nejdl. “Cardinal-
ity estimation and dynamic length adaptation for Bloom filters”. In:
Distributed Parallel Databases 28.2-3 (2010), pp. 119–156. /)%: 10.1007/
s10619-010-7067-2. (!&: https://doi.org/10.1007/s10619-010-
7067-2.

[Qiu+22] Zhi Qiu et al. “Maliciously Secure Multi-party PSI with Lower Band-
width and Faster Computation”. In: Information and Communications
Security - 24th International Conference, ICICS 2022, Canterbury, UK,
September 5-8, 2022, Proceedings. Ed. by Cristina Alcaraz et al. Vol. 13407.
Lecture Notes in Computer Science. Springer, 2022, pp. 69–88. /)%:
10.1007/978-3-031-15777-6_5. (!&: https://doi.org/10.1007/
978-3-031-15777-6%5C_5.

[Rua+19] Ou Ruan et al. “New Approach to Set Representation and Practical
Private Set-Intersection Protocols”. In: IEEE Access 7 (2019), pp. 64897–
64906. /)%: 10.1109/ACCESS.2019.2917057. (!&: https://doi.org/
10.1109/ACCESS.2019.2917057.

[San+06] Yingpeng Sang et al. “E#cient Protocols for Privacy Preserving
Matching Against Distributed Datasets”. In: Information and Com-
munications Security, 8th International Conference, ICICS 2006, Raleigh,
NC, USA, December 4-7, 2006, Proceedings. Ed. by Peng Ning, Sihan
Qing, and Ninghui Li. Vol. 4307. Lecture Notes in Computer Sci-
ence. Springer, 2006, pp. 210–227. /)%: 10.1007/11935308_15. (!&:
https://doi.org/10.1007/11935308%5C_15.

[Sch+19] Phillipp Schoppmann et al. “Distributed Vector-OLE: Improved Con-
structions and Implementation”. In: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS
2019, London, UK, November 11-15, 2019. Ed. by Lorenzo Cavallaro
et al. ACM, 2019, pp. 1055–1072. /)%: 10.1145/3319535.3363228. (!&:
https://doi.org/10.1145/3319535.3363228.

[SS07] Yingpeng Sang and Hong Shen. “Privacy Preserving Set Intersection
Protocol Secure against Malicious Behaviors”. In: Eighth International
Conference on Parallel and Distributed Computing, Applications and Tech-
nologies (PDCAT 2007), 3-6 December 2007, Adelaide, Australia. Ed. by
David S. Munro et al. IEEE Computer Society, 2007, pp. 461–468. /)%:
10.1109/PDCAT.2007.59. (!&: https://doi.org/10.1109/PDCAT.
2007.59.

[SS08] Yingpeng Sang and Hong Shen. “Privacy preserving set intersection
based on bilinear groups”. In: Computer Science 2008, Thirty-First
Australasian Computer Science Conference (ACSC2008), Wollongong, NSW,
Australia, January 22-25, 2008. Ed. by Gillian Dobbie and Bernard Mans.
Vol. 74. CRPIT. Australian Computer Society, 2008, pp. 47–54. (!&:
https://dl.acm.org/citation.cfm?id=1378290.

60

https://doi.org/10.1007/s10619-010-7067-2
https://doi.org/10.1007/s10619-010-7067-2
https://doi.org/10.1007/s10619-010-7067-2
https://doi.org/10.1007/s10619-010-7067-2
https://doi.org/10.1007/978-3-031-15777-6%5C_5
https://doi.org/10.1007/978-3-031-15777-6%5C_5
https://doi.org/10.1007/978-3-031-15777-6%5C_5
https://doi.org/10.1109/ACCESS.2019.2917057
https://doi.org/10.1109/ACCESS.2019.2917057
https://doi.org/10.1109/ACCESS.2019.2917057
https://doi.org/10.1007/11935308%5C_15
https://doi.org/10.1007/11935308%5C_15
https://doi.org/10.1145/3319535.3363228
https://doi.org/10.1145/3319535.3363228
https://doi.org/10.1109/PDCAT.2007.59
https://doi.org/10.1109/PDCAT.2007.59
https://doi.org/10.1109/PDCAT.2007.59
https://dl.acm.org/citation.cfm?id=1378290

[SS09] Yingpeng Sang and Hong Shen. “E#cient and secure protocols for
privacy-preserving set operations”. In: ACM Trans. Inf. Syst. Secur.
13.1 (2009), 9:1–9:35. /)%: 10.1145/1609956.1609965. (!&: https:
//doi.org/10.1145/1609956.1609965.

[VCE22] Jelle Vos, Mauro Conti, and Zekeriya Erkin. “Fast Multi-party Private
Set Operations in the Star Topology from Secure ANDs and ORs”. In:
IACR Cryptol. ePrint Arch. (2022), p. 721. (!&: https://eprint.iacr.
org/2022/721.

[WBU21] Zhusheng Wang, Karim Banawan, and Sennur Ulukus. “Multi-Party
Private Set Intersection: An Information-Theoretic Approach”. In:
IEEE J. Sel. Areas Inf. Theory 2.1 (2021), pp. 366–379. /)%: 10.1109/
JSAIT.2021.3057597. (!&: https://doi.org/10.1109/JSAIT.2021.
3057597.

[Wei+22] Lifei Wei et al. “E#cient and Collusion Resistant Multi-party Private
Set Intersection Protocols for Large Participants and Small Sets Set-
ting”. In: Cyberspace Safety and Security - 14th International Symposium,
CSS 2022, Xi’an, China, October 16-18, 2022, Proceedings. Ed. by Xi-
aofeng Chen, Jian Shen, and Willy Susilo. Vol. 13547. Lecture Notes
in Computer Science. Springer, 2022, pp. 118–132. /)%: 10.1007/978-
3-031-18067-5_9. (!&: https://doi.org/10.1007/978-3-031-
18067-5%5C_9.

[WRK17] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. “Global-Scale
Secure Multiparty Computation”. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, CCS
2017, Dallas, TX, USA, October 30 - November 03, 2017. Ed. by Bhavani
Thuraisingham et al. ACM, 2017, pp. 39–56. /)%: 10.1145/3133956.
3133979. (!&: https://doi.org/10.1145/3133956.3133979.

1.A Derived complexities

Using polynomial roots

The protocol by Kissner & Song first requires each party to send encrypted
polynomials to 𝑊 other parties. The leader must also send the final encrypted
polynomial to all 𝑄 ⇐ 1 assistants. The polynomials grow with a constant factor
so the communication complexity for an assistant is 𝑍(𝑊𝑈) bits, and 𝑍(𝑄𝑈) for
the leader. Computation-wise, the most expensive part of the protocol is when
each party computes the dot product of 𝑊 + 1 encrypted polynomials with random
polynomials. This takes 𝑍(𝑊𝑈2) cryptographic operations. The protocol takes 3
rounds: encryption, randomization and addition, and decryption.

The most expensive part of the protocol by Li & Wu is the computation phase.
Here, each party sends 𝑍(𝑄(𝑈 + 1)(𝑈 + 2)) secret values to 𝑊 other parties, which
takes 𝑍(𝑄𝑊𝑈2) bits. The computation required is at least equal to this complexity.
Note that in this protocol, all parties receive the output, so there is no actual notion
of a leader. We only consider the semi-honest case here, which takes 3 rounds.

61

https://doi.org/10.1145/1609956.1609965
https://doi.org/10.1145/1609956.1609965
https://doi.org/10.1145/1609956.1609965
https://eprint.iacr.org/2022/721
https://eprint.iacr.org/2022/721
https://doi.org/10.1109/JSAIT.2021.3057597
https://doi.org/10.1109/JSAIT.2021.3057597
https://doi.org/10.1109/JSAIT.2021.3057597
https://doi.org/10.1109/JSAIT.2021.3057597
https://doi.org/10.1007/978-3-031-18067-5%5C_9
https://doi.org/10.1007/978-3-031-18067-5%5C_9
https://doi.org/10.1007/978-3-031-18067-5%5C_9
https://doi.org/10.1007/978-3-031-18067-5%5C_9
https://doi.org/10.1145/3133956.3133979
https://doi.org/10.1145/3133956.3133979
https://doi.org/10.1145/3133956.3133979

We derive complexities from the analysis by Sang et al. [San+06]. Each party
performs 𝑍(𝑄2

𝑈) computations. The total communication is 𝑍(𝑄2
𝑈), which we

divide by 𝑄 to get the complexity per party. There are 3 rounds of interaction.
The second protocol by Sang & Shen [SS09] takes 𝑍(𝑄𝑈2) computations in step 2.2
for all parties, and 𝑍(𝑄𝑈) communicated bits in step 2.3. This takes 2 rounds of
interaction.

The protocol by Cheon et al. is similar to Kissner & Song’s, but with the
encrypted polynomial multiplications taking 𝑍(𝑈) rather than 𝑍(𝑈2). It is designed
so that all parties receive the result, but we change steps 2-4 so only the leader
receives the result. In step 2, assistants send their randomized polynomials only to
the leader, step 3 is then computed by the leader, and the threshold decryption
continues with only 𝑊 parties. Then, each party performs 𝑍(𝑄𝑈) computations
in step 2 and each party sends its encrypted polynomial to all others, which
takes 𝑍(𝑄𝑈) bits. This takes 3 rounds of online communication: encryption,
randomization in steps 2 & 3, then threshold decryption.

For the protocol by Ghosh et al. we use the complexities from their paper:
the computation complexity for the leader is 𝑍(𝑄𝑈 log 𝑈) = �̃�(𝑄𝑈) and for the
assistant it is identical to the two-party case �̃�(𝑈). The communication complexity
is 𝑍(𝑄𝑈) for the leader, 𝑍(𝑈) for the assistant. The setup takes 1 interaction, share
computation takes 4 given that an OPA takes 2 interactions, the output takes 1
interaction.

The protocol by Gordon et al. requires one interaction for the input sharing
phase, one interaction for the coin toss, one interaction for the output aggregation,
and one interaction for the OLE if it is instantiated using an e#cient OT. We
copy the leader’s communication complexity from the paper: �̃�(𝑄𝑈 + 𝑄𝑊). The
other complexities are non-trivial as they depend on the choice of primitives and
parameters.

Sorted multisets

There is no concept of a leader in the protocol by Blanton & Aguiar. We assume
the parties pre-sort their sets, which allows the multiset to be sorted using a merge
operation requiring 𝑍(𝑈 log 𝑈) operations (Section 7.1) rather than a full sort. Next,
the parties perform 𝑍(𝑈) multiplications and secure equality operations. Since
each multiplication requires at least 𝑊 parties to communicate, this requires 𝑍(𝑊𝑈)
bits for each party. The total communication and computation complexity for one
party is at least 𝑍(𝑈 log 𝑈 + 𝑊𝑈). For brevity, we denote this by �̃�(𝑊𝑈). As mentioned
in Section 8 of their paper, the protocol runs in 𝑍(log 𝑈) rounds due to the merge
operation at the start.

Using bitsets

The protocol by Bay et al. requires each assistant to send their encrypted bitset
to the leader, which takes 𝑍(|↘ |) bits. After that, communication is restricted to
the leader’s 𝑈 bits, which the leader sends to 𝑊 assistants for randomization and
decryption, taking 𝑍(𝑊𝑈) bits. For each assistant, computation is dominated by
encryption, which takes 𝑍(|↘ |) operations. The leader’s most expensive step is in
aggregating the bitsets, but it only has to consider the 𝑈 elements in its own set,

62

taking 𝑍(𝑄𝑈) operations. In total, the protocol requires 3 rounds of interactions:
encryption and aggregation, randomization, and decryption. The protocol by Vos
et al. is asymptotically equivalent when using the composed logic sub-protocol.
Otherwise, the leader incurs a factor |↘ | in computation and communication.

Using Garbled Bloom filters

For the protocol by Inbar et al., we use the complexities reported by the original
paper in the semi-honest model. Assuming a two-round OT protocol, the protocol
requires 3 rounds of interaction. For the protocol by Kavousi et al. we extract
the complexities from Table 2 in the original paper. Assuming a two-round OT
protocol, the protocol requires 4 rounds of interaction.

Using Bloom filters

The protocol by Bay et al. requires each assistant to send an encrypted Bloom
filter to the leader, which takes 𝑍(𝑈). The leader only has to consider its own 𝑈

elements, which it sends for randomization and decryption to 𝑊 assistants, taking
𝑍(𝑊𝑈) bits. Each assistant encrypts their entire Bloom filter, taking 𝑍(𝑈) operations.
The leader must aggregate 𝑍(𝑄𝑈𝑗) bins. In total, this protocol requires 3 rounds
of interactions, as in Section 1.A. The protocol by Vos et al. is asymptotically
equivalent to this work.

Using polynomial payloads

The work of Freedman et al. [FNP04] uses the trick from Section 1.5 to transform
the protocol to the star topology. For a fair comparison, we consider their scheme
without this transformation, requiring private channels between all parties. The
complexities are then 𝑍(𝑄2

𝑈
2) in each aspect, and the protocol requires 4 rounds.

Using OPPRFs and OKVSs

Nevo et al. [NTY21] provide detailed complexities for the works of Chandran et
al. [Cha+21], Garimella et al. [Gar+21], Kolesnikvo et al. [Kol+17], and their own.

1.B Derived operation counts

1.B.I Elliptic curve multiplications
We refer to multiplications with precomputations as PMULs, and to regular ones
as MULs. We assume MUL ↗ 4PMUL and that the leader always takes part
in decryption. In elliptic curve ElGamal, a homomorphic multiplication with a
plaintext requires two elliptic curve multiplications.

Sang & Shen

We alter the protocol by Sang & Shen [SS09] to only let the leader receive the result.

1. 𝑄 parties encrypt their polynomial: 2𝑈 PMULs.

63

2. The leader multiplies 𝑄𝑈 coe#cients by a scalar, which takes 2𝑄𝑈 MULs.

3. The leader evaluates the polynomial 𝑈 times, each time multiplying 𝑈 coef-
ficients by a scalar, which takes 2𝑈2 MULs in total. Next, 𝑊 + 1 parties each
decrypt the 𝑈 resulting encryptions, which takes 𝑈 MULs in total.

The leader performs 2
4 𝑈+2𝑄𝑈+2𝑈2+𝑈 = 1.5𝑈+2𝑄𝑈+2𝑈2 MULs. In the worst case,

an assistant performs 2
4 𝑈+𝑈 = 1.5𝑈 MULs. The total cost is 2𝑄𝑈+2𝑄𝑈+2𝑈2+(𝑊+1)𝑈 =

4𝑄𝑈 + 2𝑈2 + 𝑊𝑈 + 𝑈 MULs.

Cheon et al

We alter the protocol to only let the leader receive the result and to make the
collusion resistance variable. The polynomials use the point-value representation,
so an encrypted polynomial contains 2𝑈 ciphertexts.

This protocol has two phases. The input data conversion:

1. 𝑄 parties each encrypt their polynomial: 4𝑈 PMULs.

2. No MULs.

The online phase is as follows:

1. No computations (polynomials are sent to 𝑊 + 1 parties).

2. 𝑊 + 1 parties randomize all polynomials: 4𝑄𝑈 MULs.

3. The leader sums all randomized polynomials: which takes no MULs.

4. 𝑊 + 1 parties each decrypt the resulting polynomial, which takes 2𝑈 MULs.

Worst-case, the leader performs the same e"ort as an assistant: 4
4 𝑈 + 4𝑄𝑈 + 2𝑈 =

4𝑄𝑈+3𝑈 MULs. The total cost is 4
4𝑄𝑈+4𝑄(𝑊+1)𝑈+2(𝑊+1)𝑈 = 5𝑄𝑈+4𝑄𝑊𝑈+2𝑊𝑈+2𝑈.

Hazay & Venkitasubramaniam

The protocol has two phases. Note that it uses the coe#cient representation, so
polynomial multiplication scales quadratically with the degree. The 2PC phase
has two steps:

1. 𝑄 ⇐ 1 assistants encrypt 𝑈 coe#cients: 2𝑈 PMULs.

2. The leader evaluates 𝑄 ⇐ 1 polynomials 𝑈 times, and randomizes (scalars can
be multiplied in advance), which takes (𝑄 ⇐ 1)𝑈(2𝑈) = 2(𝑄 ⇐ 1)𝑈2 MULs.

Concluding the intersection goes as follows:

1. 𝑊 + 1 parties each randomize the summed ciphertext which takes 2𝑈 MULs.

2. The leader adds them up, which takes no MULs.

3. 𝑊 + 1 parties each decrypt, which takes 𝑈 MULs.

4. The leader performs additions and zero-checks, which takes no MULs.

64

An assistant performs 0.5𝑈 + 3𝑈 = 3.5𝑈 MULs in the worst case. The leader
performs 2(𝑄 ⇐ 1)𝑈2 + 2𝑈 + 𝑈 = 2(𝑄 ⇐ 1)𝑈2 + 3𝑈 MULs. Now consider the balanced
allocation optimization. Here, the maximum number of elements in one bin is at
most 5 with overwhelming probability. Now, the leader receives 𝑁 = 𝑈

log log 𝑈
bins

in the 2PC part, where each set element is assigned to only one bin. So it evaluates
𝑄⇐1 polynomials of degree 5 𝑈 times. Each homomorphic multiplication also costs
two EC multiplications. So, the leader’s total is 10(𝑄 ⇐ 1)𝑈 + 2𝑈 + 𝑈 = 10𝑄𝑈 ⇐ 7𝑈
MULs. This totals 2(𝑄 ⇐ 1)𝑈 + 10𝑄𝑈 ⇐ 7𝑈 + 2(𝑊 + 1)𝑈 + (𝑊 + 1)𝑈 = 12𝑄𝑈 ⇐ 6𝑈 + 3𝑊𝑈.

Vos et al

We go through the protocol step-by-step:

1. 𝑄 ⇐ 1 assistants each perform 2𝑃 PMULs.

2. The leader performs 2𝑈 MULs.

3. 𝑊 assistants each perform 2𝑈 MULs.

4. The leader performs no MULs.

5. 𝑊 + 1 parties each perform 𝑈 MULs.

6. The leader performs no MULs.

The leader performs 2𝑈 + 𝑈 = 3𝑈 MULs. An assistant performs 2𝑃 PMULs and
2𝑈 + 𝑈 = 3𝑈 MULs in the worst case. From (1.8) we have that 𝑃 ↗ 2.08𝑈 ln(𝜓⇐1), so
an assistant performs approximately 1.04𝑈 ln(𝜓⇐1)+3𝑈 MULs. Together, the parties
perform 2

4𝑃(𝑄 ⇐ 1) + 2𝑈 + 2𝑊𝑈 + (𝑊 + 1)𝑈 = 1.04(𝑄 ⇐ 1)𝑈 ln(𝜓⇐1) + 3𝑊𝑈 + 3𝑈 MULs.

1.B.II E!cient two-party subprotocols
We use the fact that one OPPRF costs one OPRF [Kol+17], and one OPRF costs
approximately 3.5 OTs [Kol+16]. Since OLEs can be instantiated using OT or based
on the learning with errors problem [GHL22], we count OLEs separately.

Inbar et al

In Table 1 of their work, Inbar et al. [IOP18] describe that the leader performs 𝑃𝑄

OT extensions in the augmented semi-honest model, which we reduce to 𝑃(𝑄 ⇐ 1)
as the leader does not interact with itself. From (1.8) we have that 𝑃 ↗ 2.08𝑈 ln(𝜓⇐1),
so the leader performs 2.08(𝑄 ⇐ 1)𝑝𝑈 OTs. An assistant performs 2.08𝑝𝑈 OTs. In
total, there are 2.08(𝑄 ⇐ 1)𝑝𝑈 OTs (the leader is involved in each of those).

Kolesnikov et al

The protocol first requires each party to perform 𝑈 OPPRFs with 𝑄 ⇐ 1 other parties.
After that, the leader performs 𝑈 additional OPPRFs with the 𝑄 ⇐ 1 assistants. So,
the leader performs 2(𝑄⇐1)𝑈 OPPRFs and each assistant performs (𝑄⇐1)𝑈 OPPRFs.
In total, there are 𝑄(𝑄 ⇐ 1)𝑈 OPPRFs in the first part, and (𝑄 ⇐ 1)𝑈 in the second.
One OPPRF is 3.5 OTs.

65

Chandran et al

We derive the number of OTs for the ‘relaxed batch OPPRF‘ described in Appendix
B of Chandran et al. [Cha+21]. Here, a wPSM between two parties requires two
rounds of 𝜔 OPPRFs, where the authors select 𝜔 = 1.28𝑈. The wPSM protocol
is executed between every assistant and the leader. So, the leader performs
2.56(𝑄 ⇐ 1)𝑈 OPPRFs, and an assistant 2.56𝑈. In total: 2.56(𝑄 ⇐ 1)𝑈 OPPRFs.

Kavousi et al

In Section 3.3 of their work, Kavousi et al. [KMS21] explain how to choose parameter
𝑒. The authors propose to set 𝑃 = 𝑈 (where 𝑈 is the number of set elements). Now,
we show that 𝑎 scales regardless of 𝑈:

𝑎 =
(
1 ⇐ 1

𝑈

)
𝑈

↗ 1
𝑘

, (1.12)

which holds as 𝑈 grows to infinity, but the approximation is already accurate for
small 𝑈. As a result, 𝑒 can be a constant. The lowest value causing the probability
to fall below 2⇐40 is 𝑒 = 558. We note that if 𝑃 is variable, one might choose a
lower 𝑒, trading o" computation and communication.

Garimella et al

We consider the multi-party MPSI protocol in Section 7.2 of the work by Garimella
et al. [Gar+21] in the star topology. The authors defer an analysis to a full version
of the paper, but at the time of writing this paper is unavailable.

Nevo et al

The OPPRFs are executed in the final step of the protocol as part of the zeroXOR
functionality between 𝑊 + 1 parties. We consider the leader to be part of this group,
acting as the receiver. Here, 𝑊 assistants perform 𝑈 OPPRFs with the leader. This
comes down to 𝑊𝑈 OPPRFs for the leader, 𝑈 for an assistant, and 𝑊𝑈 in total.

Ghosh & Nilges

The OLEs are performed in the OPA subprotocol, which are performed between
each assistant and the leader on 𝑈 elements. Each OPA requires two calls to an
OLE. So, the leader performs 2(𝑄 ⇐ 1)𝑈 OLEs, an assistant performs 2𝑈 OLEs. In
total: 2(𝑄 ⇐ 1)𝑈 OLEs.

Gordon et al.

The main cost of this protocol comes from OLEs. For one-sided output, each
assistant only performs one OLE with the leader per input item. As a result, the
leader performs (𝑄 ⇐ 1)𝑈 OLEs, an assistant performs 𝑈 OLEs, and in total (𝑄 ⇐ 1)𝑈
OLEs are performed.

66

Chapter 2

On the Insecurity of Bloom Filter-Based Private Set
Intersections

In the previous chapter, we put forward a systematization of multi-
party private set intersections. Two methods that we discussed were
hash sets and Bloom filters, where hash sets are essentially Bloom
filters with one hash function. These methods are particularly promis-
ing, because they support low-round protocols in the star topol-
ogy, thereby addressing impracticalities 1: High interactivity and
2: Full-mesh topology. Following previous literature, we assumed
that hash sets realize private homomorphic set representations and
Bloom filters realize leaky homomorphic set representations.
In this chapter, we show that there are several problems with both
representations. We show that while both representations can be
private, this only happens when the parameters are prohibitively large.
We also show that Bloom filters cannot realize leaky homomorphic set
representations with smaller parameters without allowing for attacks
that undermine the privacy properties of MPSI protocols.

This chapter is an adaptation of the work with the same title that has been
submitted to IEEE Symposium on Security and Privacy 2025, authored by
Jelle Vos, Jorrit van Assen, Tjitske Koster, Evangelia Anna Markatou, and
Zekeriya Erkin.

2.1 Introduction
Private set intersection protocols (PSI) and their multi-party equivalent are pro-
tocols for computing the intersection between 𝑄 parties’ private sets, without
revealing any other information about those private sets. These protocols enable
information sharing in situations where revealing data would be undesirable, like
in financial transactions, or where information sharing must be limited, like in
threat intelligence or no-fly lists. More formally, a private set intersection protocol
is a protocol between 𝑄 parties →𝑋 for 𝑋 = 1, . . . , 𝑄. Each party has a private set
𝑉𝑋 ⇑ ↘ of at most 𝑈 elements. One party that we refer to as the leader (denoted →1)
obtains the intersection 𝑉1 ↑ · · · ↑ 𝑉𝑄 as the protocol’s output. All other attributes
of the private sets must remain hidden.

Approximate PSI schemes allow a trade-o" between the computational and
communicational cost of a protocol and the accuracy of the resulting intersection.
A common method for constructing e#cient approximate PSI protocols is to use
Bloom filters. Bloom filter-based PSI protocols let parties first encode their sets as

67

Bloom filters �̂�𝑋 ↖ Encode(𝑉𝑋) using 𝑗 hash functions 𝑜 for 𝑜 = 1, . . . , 𝑗. These
filters start out as an indexed set of 𝑃 Boolean bins that are all set to 0. Each
party →𝑋 uses the filter’s hash functions to map each of their elements in set 𝑉𝑋

to 𝑗 of the bins, setting them to 1. One can compute a Bloom filter representing
the intersection by combining the Bloom filters using an element-wise logical AND
operation. The AND operation must be performed on the Bloom filters, which
must remain private, using a secure computation technique such as homomorphic
encryption.

The approximation inherent to Bloom filters is caused by the possibility of
hash collisions: a hash of any two distinct elements may map to the same bin
(i.e. 𝑋(𝑅) = 𝑜(𝑅▽) where 𝑅 ε 𝑅

▽). As such, such a Bloom filter-based protocol
will never wrongfully exclude elements from the intersection (i.e. there are no
false negatives), but the result may include false positives with some probability.
Specifically, each negative element in the leader’s set may wrongfully appear in
the intersection with probability at most 𝑎. This makes Bloom filter-based MPSI
protocols suitable for use cases, in which false positives may be permissible with a
small but non-negligible probability.

Previous work [DCW13; VCE23] has shown that the Bloom filter representing
the intersection might leak information if it is revealed. This is because bins in the
intersection may be set to 1, even if the same bins are set to 0 when the Bloom filter
is obtained by directly encoding the intersection, Encode(𝑉1 ↑ · · · ↑ 𝑉𝑄). Instead of
revealing the combined Bloom filter �̂�↑ = �̂�1 ∞ · · · ∞ �̂�𝑄 , private set intersection
protocols use secure computation techniques to query the filter on every element
in the leader’s set and only reveal the result:

�̂�↑[1(𝑅)] ∞ · · · ∞ �̂�↑[𝑗(𝑅)] for 𝑅 ↓ 𝑉1 . (2.1)

One might think that this constitutes a secure Bloom filter-based private set
intersection protocol, as the leader would not be able to distinguish between false
positives and actual elements in the intersection, preventing it from exploiting �̂�↑
to learn anything about the private sets. However, this assumes that the leader has
no auxiliary knowledge about the private sets. Rindal & Rosulek [RR17] already
showed that Bloom filters lead to problems in security proofs in the malicious
setting, and other recent work by Liu et al. [LLT24] identifies problems with Bloom
filter-based private set unions. Egert et al. [Ege+15] showed that revealing a Bloom
filter with entries pertaining to a random unknown subset of hash functions allows
an attacker to perform membership attacks in the context of union-cardinality.

In this work, we show that the above approach is not su#cient to achieve secure
MPSI: the approximate nature of Bloom filters does, in fact, allow the leader to
learn information about the private sets that it could not from the exact intersection.
What is more, previous works do not take this approximation into account in their
security proofs. For example, several works prove security with respect to the ideal
functionality of an exact PSI to model the security of Bloom filter-based protocols,
as opposed to the ideal functionality of an approximate PSI. This gap caused
by approximation can only be closed if 𝑎 is negligible, but this, in turn, causes
parameters to grow significantly. In this work, we show that these parameters
are so large that they undo the performance benefit of choosing an approximate
protocol in the first place.

68

One might think that the gap can be easily closed by proving security with
respect to an ideal functionality for approximate set intersections. Unfortunately,
we show that Bloom filter-based PSI protocols are fundamentally flawed in this
regard. Wo do so by exploiting the fact that the actual false positive rate is not
constant; it depends on the elements in the private sets. The result is that the
existence of a false positive in the final intersection may reveal information about
any of the private sets. Consider the following minimal example (albeit slightly
contrived), which demonstrates that the false positive rate of a Bloom filter does
not only a"ect the correctness but also the security of the protocol. In other words,
even a perfectly secure Bloom filter-based PSI leaks information about the input
sets with non-negligible probability.
Example 7. Let us analyze the situation where 𝑗 = 1, 𝑄 = 2, and 𝑈 = 1. Assume that
we have two distinct party-specific universes, ↘1 = {a} and ↘2 = {b}, and we use
a Bloom filter-based PSI protocol in which the two parties input sets 𝑉1 and 𝑉2.
Then, in the ideal world corresponding to 𝜓fp-approximate PSI, the leader would
get a non-empty intersection with probability 𝜓fp, regardless of 𝑉2. However, in
the real world, the output is non-empty with probability 1

𝑃
if, and only if, 𝑉1 = {a}

and 𝑉2 = {b}, but is always empty otherwise. I.e. the leader learns the other
party’s set with probability 1

𝑃
.

The attacks described in this work are all in the augmented semi-honest model;
where parties can freely choose their inputs, after which they do not deviate from
the protocol. This is an augmentation of the semi-honest model, in which parties
that are not corrupted do not deviate from their predetermined inputs to the
protocol. It has been shown that this property of the semi-honest model leads
to counter-intuitive situations in which a protocol that is secure in the malicious
model cannot be proven to be secure in the semi-honest model [HL10].

As a result of the attacks we propose, Bloom filter-based private set intersection
protocols that use a non-negligible false positive probability will become slower.
The easiest mitigation is to lower the false positive probability, slowing down
the protocol due to the use of larger Bloom filters. Alternative solutions would
include using oblivious pseudo-random functions [CHL22] such that the hash
functions can remain secret, or switching to hash functions that are very expensive
to compute, such as password-based key derivation functions like PBKDF2 [Kal00].

The paper is organized as follows. We proceed with a description of Bloom
filters in Section 2.2. After that, in Section 2.3, we define the security model
for multi-party private set intersections that we use, including definitions for
approximate MPSI. Next, we present an abstraction of Bloom filter-based MPSI
protocols in Section 2.4. We present our main results in Sections 2.5 and 2.6, in
which we put forward our theoretical analysis and our practical attack. We finish
by discussing mitigations in Section 2.7, and we conclude in Section 2.8.

2.2 Bloom Filters
Recall from the previous chapter that Bloom filters are probabilistic data structures
for e#cient set membership queries. Bloom filters exploit the uniformity of 𝑗 hash
functions to each map an element 𝑅 ↓ ↘ to one of 𝑃 bins. Each bin contains one

69

bit that all start at 0. To encode an element 𝑅, we hash 𝑅 with 𝑗 hash functions
𝑋 for 𝑋 ↓ {1, 2, . . . , 𝑗}, which select bins of the Bloom filters to be set to 1. We
can encode a private set 𝑉 by encoding each element 𝑅 ↓ 𝑉 individually. We
define the notation �̂� ↖ Enc𝑉 to denote the Bloom filter encoding of set 𝑉 ⇑ ↘ .

One can test whether an element 𝑆 is contained in the Bloom filter �̂� by
computing all bins corresponding to 𝑆 and checking if indeed all bits are 1.False
negatives cannot occur, but when all of the bins of element 𝑆 are set to 1, it is not
sure that the element was indeed encoded in the Bloom filter, or that the bins were
set to 1 by encoding other elements. I.e. false positives can occur. We use 𝑎 to
denote an upper bound on the probability of a Bloom filter encoding 𝑈 distinct
elements returning a false positive. The probability 𝑎 depends on the number
𝑈 of elements inserted, the size of the Bloom filter 𝑃 and the number 𝑗 of hash
functions used. An upper bound was derived by Goel and Gupta [GG10].

𝑎 ≃
(
1 ⇐ 𝑘

⇐ 𝑗(𝑞+0.5)
𝑃⇐1

)
𝑗

. (2.2)

Given a desired false positive probability 𝜓fp and maximum set size 𝑈, we can
calculate the corresponding required number of hash functions 𝑗 and the minimal
number of bins 𝑃𝑟𝑎𝑊 as follows:

𝑗 = ⇐ log2(𝜓fp) , (2.3)

𝑃𝑟𝑎𝑊 ∀
⇐𝑗 (𝑈 + 0.5)
ln

(
1 ⇐ 𝑗

¬
𝑎

) + 1 . (2.4)

The protocols discussed in this work use Bloom filters to compute intersections.
One way in which Bloom filters are convenient for this purpose, is that di"erent
Bloom filters can be combined to generate a filter representing the intersection.
Specifically, two Bloom filters �̂�1 and �̂�2 can be combined using a bin-wise AND
operation to generate a Bloom filter �̂�↑ representing the intersection. Bloom filters
do not allow for e#cient extraction of the original elements, however, they do
allow for e#cient testing of the inclusion of a specified value 𝑅 ↓ ↘ , so one can
extract the intersection by querying the elements from one of the original sets.

2.3 Definition of MPSI security
The results in our work contradict the security proofs in previous work [Deb+21;
Bay+22]: we show that Bloom filter-based private set intersections with non-
negligible false positive probabilities cannot securely realize private set intersec-
tions, whereas previous work contains security proofs for the opposite. In this
section, we first discuss how the security definitions and analyses of previous work
and show how these are flawed. One of these flaws is that the security proofs
attempt to show that Bloom filter-based PSI realizes exact PSI, but this is clearly not
true when false positives occur. In the second part of this section, we propose new
definitions for approximate PSI. In Section 2.5, we show that Bloom filter-based PSI
also does not realize these weaker functionalities.

70

2.3.1 Definitions & flaws in existing security proofs
We now inspect the security proofs of Bloom filter-based PSI protocols more closely.
We specifically focus on works that use the approximation of a Bloom filter to
speed up the protocol. In other words; works that set the false positive probability
𝑎 to be non-negligible.

In their proof (Theorem 4.2), Debnath et al. [Deb+21] assume that the output is
the exact intersection, claiming that the protocol only fails with the false positive
probability 𝑎. However, in reality, the security proof does not hold the moment
that any false positive occurs. This can happen with probability 1⇐ (1⇐ 𝑎)𝑈 . Bay et
al. [Bay+22] also assume that the output is the exact intersection, so the proof does
not hold with probability this probability, but their proof is slightly di"erent. They
simulate the inputs of uncorrupted parties by choosing random input sets that
conform to the intersection. Given that the combined Bloom filter highly depends
on the input sets, this potentially skews the advantage even more.

Other works, like that by Vos et al. [VCE22] only prove that the aggregation
is secure, so the security proof does not extend to the final computation of the
intersection. The same goes for the work by Miyaji et al. [MNN17], which only
considers security for the protocol before decryption.

To summarize, all these proofs either use the MPSI functionality, thereby failing
to consider false positives, or the proofs are incomplete (because they do not
consider Bloom filters). There is an option for remedying these proofs, namely
including the approximate behaviour of the underlying protocol and showing that
false positives occur with a negligible probability, e.g. 𝑎 ≃ 2⇐40. However, for the
addressed schemes, this results in a significant decrease in performance. There are
already other works that take this approach, such as the work by Ben Efraim et
al. [Ben+22]. If false positives practically never occur, then the protocol behaves as
an exact intersection.

2.3.2 An exact ideal functionality
To treat two-party private set intersections and multi-party private set intersections
in general, we define an exact ideal functionality ∅MPSI for MPSI that roughly
follows the universal composability model. In this functionality, ⇒ is essentially an
external adversary that controls the communication channels. In this work, it is
su#cient to think of the ⇒ as an external influence that decides when the protocol
finishes. The ideal functionality is on the next page.

2.3.3 An approximate ideal functionality
As mentioned before, the exact ideal functionality is unsuitable for proving security
of Bloom filter-based MPSI when the false positive probability is not negligible.
After all, any false positive would allow a distinguisher to tell it apart from the
exact MPSI ideal functionality. Instead, we define an approximate MPSI ideal
functionality ∅aMPSI that returns an intersection based on the leader’s set with a
constant probability of false positives 𝜓fp and false negatives 𝜓fn. In the rest of
our paper, 𝜓fn = 0. We refer to an approximate MPSI protocol with false positive
probability 𝜓fp as 𝜓fp-approximate. The ideal functionality is on the next page.

71

∅MPSI

Let 𝑉↑ ↖ ↘ and 𝑙 = ∋.

On (inp,𝑉𝑋) from →𝑋 :

• Assert that this is the first input of →𝑋

• Assert that 𝑉𝑋 ⇑ ↘
• Assert that |𝑉𝑋 | ≃ 𝑈

• Store 𝑉↑ ↖ 𝑉↑ ↑ 𝑉𝑋

• Store 𝑙 ↖ 𝑙 ↔ {→𝑋}
• Send (inp,→𝑋) to ⇒

On (finish) from ⇒:

• Assert that this is the first finish request
• Assert that →𝑋 ↓ 𝑙 for all 𝑋 ↓ [1, 𝑄]
• Send (𝑉↑) to →1

∅aMPSI

Let 𝑉↑ ↖ ↘ and 𝑙 = ∋.

On (inp,𝑉𝑋) from →𝑋 :

• Assert that this is the first input of →𝑋

• Assert that 𝑉𝑋 ⇑ ↘
• Assert that |𝑉𝑋 | ≃ 𝑈

• Store 𝑉↑ ↖ 𝑉↑ ↑ 𝑉𝑋

• Store 𝑙 ↖ 𝑙 ↔ {→𝑋}
• Send (inp,→𝑋) to ⇒

On (finish) from ⇒:

• Assert that this is the first finish request
• Assert that →𝑋 ↓ 𝑙 for all 𝑋 ↓ [1, 𝑄]
• Initialize 𝑠 ↖ ∋
• For 𝑅 ↓ 𝑉↑: add 𝑅 to 𝑠 with prob. 1 ⇐ 𝜓fn

• For 𝑅 ↓ 𝑉1/𝑉↑: add 𝑅 to 𝑠 with prob. 𝜓fp

• Send (𝑠) to →1

72

∅waMPSI

Let 𝑉↑ ↖ ↘ and 𝑙 = ∋.

On (inp,𝑉𝑋) from →𝑋 :

• Assert that this is the first input of →𝑋

• Assert that 𝑉𝑋 ⇑ ↘
• Assert that |𝑉𝑋 | ≃ 𝑈

• Store 𝑉↑ ↖ 𝑉↑ ↑ 𝑉𝑋

• Store 𝑙 ↖ 𝑙 ↔ {→𝑋}
• Send (inp,→𝑋) to ⇒

On (finish) from ⇒:

• Assert that this is the first finish request
• Assert that →𝑋 ↓ 𝑙 for all 𝑋 ↓ [1, 𝑄]
• Initialize 𝑠 ↖ ∋
• 𝜓fn ↖ 𝐿fn(|𝑉1| , . . . , |𝑉𝑄 | , |𝑉1 ↑ · · · ↑ 𝑉𝑄 |)
• 𝜓fp ↖ 𝐿fp(|𝑉1| , . . . , |𝑉𝑄 | , |𝑉1 ↑ · · · ↑ 𝑉𝑄 |)
• For 𝑅 ↓ 𝑉↑: add 𝑅 to 𝑠 with prob. 1 ⇐ 𝜓fn

• For 𝑅 ↓ 𝑉1/𝑉↑: add 𝑅 to 𝑠 with prob. 𝜓fp

• Send (𝑠) to →1

2.3.4 A weaker ideal functionality
In Section 2.5, we show that Bloom filters with a non-negligible false positive
probability also cannot securely realize ∅aMPSI. One might argue that the only
reason why Bloom filters are not approximate MPSIs is that their false positive
probability varies, but that this variance is only induced by some values that can
be permitted to be leaked. E.g. one might argue that the size of the input sets
and the size of the exact intersection is not secret. As such, we define a weaker
functionality called ∅waMPSI in which 𝜓fp and 𝜓fn are functions of the sizes of the
sets: |𝑉𝑋 | for 𝑋 = 1, . . . , 𝑄 and |𝑉↑| . We denote these functions by 𝐿fp and 𝐿fn.

2.4 An abstraction of Bloom filter-based PSI
In this work, we set out to show that Bloom filters are fundamentally flawed. Instead
of going through each Bloom filter-based protocol individually and showing that
they su"er from security problems, we present an idealized abstraction of Bloom
filter-based PSI. After that, we discuss previously proposed protocols and how
each inherits the security problems from our idealized abstraction.

73

ϑBF

Let �̂�↑ ↖ 1𝑃 and 𝑙 = ∋.

On (inp,𝑉𝑋) from →𝑋 :

• Assert that this is the first input of →𝑋

• Assert that 𝑉𝑋 ⇑ ↘
• Assert that |𝑉𝑋 | ≃ 𝑈

• Store �̂�↑ ↖ �̂�↑ ∞ Enc𝑉𝑋

• Store 𝑙 ↖ 𝑙 ↔ {→𝑋}
• Send (inp,→𝑋) to ⇒

On (finish) from ⇒:

• Assert that this is the first finish request
• Assert that →𝑋 ↓ 𝑙 for all 𝑋 ↓ [1, 𝑄]
• Initialize 𝑠 ↖ ∋
• For 𝑅 ↓ 𝑉1: Add 𝑅 to 𝑠 if contains(�̂�↑ , 𝑅)
• Send (𝑠) to →1

2.4.1 Our idealized abstraction
The idea of our idealized abstraction is to model the behavior of Bloom filters
in isolation; without communication between individual parties or use of cryp-
tographic primitives. We present this abstraction ϑBF in such a way that it has
the same interface as the ideal functionalities defined in the previous section.
ϑBF is conceptually simple: instead of combining the private sets using an actual
intersection, it encodes sets as Bloom filters and combines those instead. It returns
the intersection to the leader by returning the leader’s elements that are contained
in the resulting Bloom filter.

2.4.2 Two-party private set intersections
We first consider two-party protocols, explaining the general workings of these
protocols and how it might be possible to create a simulator for them around ϑBF.
The idea is that any problems inherent to ϑBF are inherited by the protocols below.

Debnath and Dutta

Debnath & Dutta [DD15] propose a PSI protocol using Goldwasser-Micali en-
cryption and inverted Bloom filters. The client →1 and server →2 agree on 𝑈

hash functions to make the Bloom filter, and the client generates an inverted and
encrypted Bloom filter and sends it to the server. For each of its elements, the

74

server selects the bins that the element maps to and homomorphically XORs a hash
of the element onto these bins. So, if an element is contained in the inverted Bloom
filter of →1, the result is an encryption of a hash of the element. If the element is not
contained in it, the result is a distorted hash. The client can extract the intersection
by checking which elements match the hashes it receives.

We can simulate this protocol usingϑBF with high probability. Notice that while
ϑBF outputs {𝑅 ↓ 𝑉1 |contains(�̂�1∞�̂�2 , 𝑅)}, the protocol by Debnath & Dutta outputs
{𝑅 ↓ 𝑉2 | contains(�̂�1 , 𝑅)} with high probability. However, these are the same
because Bloom filters do not cause false negatives, so 𝑅 ↓ 𝑉2 =ℜ contains(�̂�2 , 𝑅).
Besides this, the simulator must still simulate the encryptions that are sent from
the client to the server and back.

Davidson and Cid

Davidson and Cid [DC17] also propose a private set intersection protocol based
on encrypted and inverted Bloom filters, which was reformulated by Bay et
al. [Bay+22]. We discuss this reformulation. 1 The client →1 encodes their elements
𝑉1 in a Bloom filter as usual and inverts it (i.e. flipping all bits of the filter) before
encrypting it. It then sends this filter to the server →2. For each element 𝑆 ↓ 𝑉2
of the servers set, the server calculates the corresponding bins in the encrypted
inverted Bloom filter and sums the values in these bins with outcome 𝑖. It then
adds 𝑖 to the encrypted value of 𝑆. It returns the pair (𝑖, 𝑖 + enc(𝑆)) to the client
who computes the intersection. For an element 𝑆 ↓ 𝑉2, all its corresponding bins
in the inverted Bloom filter have value 0, and thus 𝑖 is the encryption of 0. If this
encrypted value of 0 is added to the encrypted value of 𝑆 the decryption gives
0+ 𝑆. For any element not in the intersection, the decryption reveals nothing about
𝑆. 2 For each pair, the client checks whether the decryption of 𝑖 equals 0; if so, it
decrypts the second value of the pair and assumes it to be in the intersection.

One would roughly simulate this protocol using ϑBF as follows. The encrypted
inverted Bloom filter would be made up of 𝑃 random encryptions, and the server
returns 𝑈 pairs of specific encryptions to the client. The elements in the pair are
encryptions of 0 if the element is in the intersection returned by ϑBF, and random
otherwise.

2.4.3 Multi-party private set intersections
Next, we discuss several Bloom filter-based multi-party private set intersection
protocols and how they relate to ϑBF.

Bay, Erkin, Hoepman, Samardjiska, and Vos

The protocol proposed by Bay et al. [Bay+22] is an extension of [DC17] in the
multi-party variant. The di"erence is that the server learns the intersection instead

1There seems to be a mistake in the original work because when an element is in the Bloom filter,
the sum of the selected bins is 0, so the client would not learn the values that are in the intersection.

2That said, both versions of this protocol seemingly reveal the number of bins that were set in the
Bloom filter.

75

of the clients. The adjustments of the protocol are minor. All clients have a private
secret key, but the public key corresponding to all private keys is shared. All
clients calculate the encrypted inverted Bloom filter with the public key. The server
combines the Bloom filters to calculate the sum 𝑖 for all elements 𝑅 in its set. Here
𝑖 is the same as defined in Section 2.4.2. The clients jointly decrypt the encrypted
value so that the server can learn if 𝑅 is in the intersection. This protocol can be
simulated using ϑBF in a similar way as in Section 2.4.2. A similar protocol was
presented by Debnath et al. [Deb+21].

Vos, Conti, and Erkin

Vos et al. [VCE22] (see Chapter 3) propose a similar MPSI protocol for large
universes using ElGamal encryption. Each of the parties starts by computing a
Bloom filter for their input. Then they invert this Bloom filter so that an element 𝑅𝑋
is in set 𝑉𝑋 if all its corresponding bins have value 0. Then, the protocol securely
performs an OR operation on all inverted Bloom filters. The resulting Bloom filter
is inverted again, and then an element is in the intersection if all its corresponding
bins have value 1. This is equivalent to performing an AND operation on regular
Bloom filters. Vos et al. already show how to simulate the OR protocol, so the
simulation around ϑBF is straightforward.

Ruan, Yan, Zhou, and Ai

Ruan et al. [Rua+23] present an MPSI protocol for unbalanced scenarios where
the server →1 has a significantly larger set. Each of the clients →2 , ...,→𝑄 computes
a Bloom filter for their input set 𝑉𝑋 . The bins of the Bloom filter that contain 0
are randomized to any number but zero and one. This is needed to apply an
ElGamal encryption scheme that cannot encrypt 0. A trusted third-party generates
an ElGamal public-private key pair (𝑎𝑈 , 𝑇𝑈) and divides the secret key over the
clients 𝑇𝑈𝑋 . Each client →𝑋 for 𝑋 ∀ 2 generates a Bloom filter on their input set
𝑉𝑋 , randomizes the bins of value 0, and encrypts the filter with the public key.
The resulting filter is sent to the server →1. The server then selects the bins of
the Bloom filter �̂�𝑋 pertaining to its elements for each 𝑋 ∀ 2, homomorphically
aggregates them, and sends the results back to the clients. The clients each perform
a computation on the received Bloom filter such that the server is able to combine
all filters to decrypt the intersection. Simulation using ϑBF would be a multi-party
extension of the simulation described for the protocol by Debnath et al. [DD15].

Ruan and Ai

Ruan and Ai [RA23] made an MPSI protocol for the balanced scenario that is much
like the unbalanced scenario. All clients compute the encrypted Bloom filter in the
same manner as in [Rua+23]. The server does the exact same computation as the
clients. All these encrypted Bloom filters are sent to the server, which combines
them and sends the combined filter back to the clients. All clients decrypt this
Bloom filter using their own private key and send the result to the server. The
server then can combine all Bloom filters to find the decrypted Bloom filter of the

76

intersection �̂�↑. The server then performs the normal contains(�̂�↑ , 𝑅) function for
all its elements 𝑅 ↓ 𝑉1.

2.4.4 Outsourced private set intersections
Since the ideal functionalities nor the idealized abstraction ϑBF describe who
computes something, they also apply to the outsourced computation case, in which
most of the computations are performed by a server that does not take part in
the protocol. We cover two Bloom filter-based outsourced private set intersection
protocols.

Qiu, Zhang, Liu, Yan, and Cheng

Qiu et al. [Qiu+22] propose a PSI protocol where both clients →1 and →2 learn the
intersection, and the computation is done by a computational powerful server 𝑖.
Both clients compute a Bloom filter and encrypt this filter with a shared secret key.
They permute the filter with a secret shared permutation 𝜑 and forward it to the
server. The server then computes which indices of the received filters are equal
and forwards this set of indices to the clients. Both clients perform an inverted
permutation on this set of indices to obtain the indices of the original Bloom filter.
For each element 𝑅 in the set 𝑉1, →1 checks whether all bins in the Bloom filter are
set to 1 and indicated by the server. If so, the element 𝑅 is considered to be in the
intersection. →2 does the same computation. Due to the fact that the parties undo
the permutation, the resulting behavior is exactly the same as that in ϑBF. One
would still have to simulate the communication between the parties and the server.

Miyaji and Nishida

Miyaji and Nishida [MN15] propose a multiparty private set intersection based
on Bloom filters and a distributed ex-El Gamal encryption. For this protocol, they
use a dealer 𝑡 who does not participate in the intersection and only helps reduce
the computational power for the clients. Each client →𝑋 generates a secret key
𝑅𝑋 and a public key 𝑢

𝑅𝑋 . The jointly public key of the clients is constructed as
𝑎𝑈 =

∏
𝑄

𝑋=1 𝑢
𝑅𝑋 . Each of the clients computes their Bloom filter, encrypts it with the

public key 𝑎𝑈, and sends it to the dealer. The dealer aggregates the Bloom filters
by homomorphically adding them. To compute the Bloom filter of the intersection,
the dealer subtracts 𝑄 (the number of clients) from each entry of the Bloom filter.
It then sends the resulting Bloom filter to all the clients for joint decryption. If, for
an element, all its corresponding bins have the value 0, the element is considered
to be in the intersection. This is functionally the same as the protocol by Bay et
al. [Bay+22], but without inverting the Bloom filters.

2.5 Analysis of Bloom filter-based PSI
In this section we show that there are fundamental limitations to the security of
Bloom filter-based private set intersections. We do so by showing that a certain
indistinguishability notion cannot be met when the false positive probability

77

is not negligible. These problems are caused by the fact that a Bloom filter
becomes deterministic when its hash functions are fixed. We first discuss the
indistinguishability game that we use to define security, after which we present
a distinguisher that reliably tells apart ∅waMPSI from ϑBF when false positives
occur with non-negligible probability. Based on these results we conclude that the
upper bound on the false positive probability 𝑎 of a Bloom filter must be less than

0.5
|↘ |⇐𝑈 in practice. After that, we discuss how one can choose concrete Bloom filter
parameters to securely realize ∅waMPSI or ∅aMPSI for small values of 𝜓fp.

2.5.1 The indistinguishability game
In the universal composability (UC) framework [Can01], the security of a protocol
is defined by the advantage with which a distinguisher can tell it apart from the
ideal functionality that it is designed to realize. In this section, we present lower
bounds for this advantage, which allows us to show that there are many choices of
parameters for which Bloom filter-based private set intersection protocols cannot
be UC-secure (or the security guarantees would be broken with high probability).
To do so, we consider the advantage of a distinguisher ℑ in distinguishing the
abstract Bloom filter-based MPSI protocol ϑBF from some ideal functionality ∅ :

AdvϑBF
ind (ℑ) = 2

....Pr[ℑ(ϑ) = ϑ | ϑ ↓𝑠 {∅ ,ϑBF}] ⇐
1
2

.... (2.5)

Specifically, we are interested in analyzing the minimal advantage when distin-
guishing ϑBF from the weakest ideal functionality ∅waMPSI, which would allow us
to draw the strongest conclusions. In the remainder of this section, we propose
such a strong distinguisher, and we show that it only fails with low probability for
any value of 𝜓fp.

2.5.2 A reliable distinguisher
In this section, we show that the false positive probability of a Bloom filter denoted
by 𝑎 must be negligible for such a Bloom filter-based private set intersection
protocol to realize a (weakly-)approximate private set intersection. We do so
by showing that the idealized Bloom filter-based PSI ϑBF can be distinguished
with relative ease from ∅waMPSI by a distinguisher that learns the result (so →1 is
corrupted). Let 𝜓fp = 𝐿fp(𝑈 , 𝑈 , 0). We propose the following distinguisher:

ℑ(ϑ) ↖
{
ℑFPs(ϑ) If 𝑎(|↘ | ⇐ 𝑈) ∀ 𝜓fp𝑈

ℑTNs(ϑ) Otherwise
(2.6)

Note that this distinguisher would also apply to ∅aMPSI.
Depending on the parameters 𝑈, 𝑎, |↘ | , and 𝜓fp, this distinguisher calls ℑFPs

or ℑTNs. We define ℑFPs as follows:

1. ℑFPs chooses random 𝑉2 ⊤ ↘ such that |𝑉2| = 𝑈, and computes 𝑉2 ↖ Enc𝑉2.

2. ℑFPs chooses 𝑉1 ⇑ ↘/𝑉2 such that |𝑉1| = 𝑈, maximizing the number of
elements 𝑅 ↓ 𝑉1 for which it holds that contains(𝑅 ,𝑉2); false positives.

78

3. ℑFPs lets parties →1 and →2 input 𝑉1 and 𝑉2, respectively. It waits for ⇒ to
send (finish).

4. →1 is corrupted, so ℑ receives (𝑠). If 𝑠 matches the expected output of ϑBF,
ℑFPs guesses that ϑ = ϑBF. Otherwise, it guesses that ϑ = ∅waMPSI.

The other distinguisher, ℑTNs, follows ℑFPs but it maximizes the number of true
negatives, so step 2 is di"erent:

2. ℑTNs chooses 𝑉1 ⇑ ↘/𝑉2 such that |𝑉1| = 𝑈, maximizing the number of
elements 𝑅 ↓ 𝑉1 for which contains(𝑅 ,𝑉2) is false; true negatives.

It is easy to extend the distinguisher to more than two parties. The following
two lemmas express the probability with which these distinguishers fail. We use
these results to derive AdvϑBF

ind (ℑ), see (2.5).

Lemma 1. ℑFPs always correctly identifies ϑBF, but it sometimes misclassifies ∅waMPSI.
It does so with the following probability:

Pr[ℑFPs(∅waMPSI) = ϑBF] =
𝑈⇐1∑
𝑋=0

Pr[FPs = 𝑋]𝜓𝑋fp(1 ⇐ 𝜓fp)𝑈⇐1⇐𝑋

+ Pr[FPs ∀ 𝑈]𝜓𝑈fp
Proof. ℑFPs maximizes the number of false positives in 𝑉1, but it is not guaranteed
to find such elements in ↘/𝑉2. We use Pr[FPs = 𝑋] to denote the probability with
which ℑFPs finds 𝑋 false positives. The final probability is:

Pr[ℑFPs(∅waMPSI) = ϑBF] =
𝑈⇐1∑
𝑋=0

Pr[FPs = 𝑋] · Pr[ℑFPs(∅waMPSI) = ϑBF | FPs = 𝑋]

+ Pr[FPs ∀ 𝑈] · Pr[ℑFPs(∅waMPSI) = ϑBF | FPs ∀ 𝑈]

The probability that ℑFPs misclassifies ∅waMPSI is the probability that ϑBF would
return 𝑠 on inputs 𝑉1 and 𝑉2. So, each false positive in 𝑉1 is included in 𝑠, which
happens with probability 𝜓𝑋fp. Moreover, each true negative should not be in 𝑠,
which happens with probability (1 ⇐ 𝜓fp)𝑈⇐1⇐𝑋 . In other words:

Pr[ℑFPs(∅waMPSI) = ϑBF | FPs ∀ 𝑈] = 𝜓𝑋fp(1 ⇐ 𝜓fp)𝑈⇐1⇐𝑋

Notice that when FPs ∀ 𝑈, the distinguisher simply chooses 𝑈 false positives, so
Pr[ℑFPs(∅waMPSI) = ϑBF | FPs = 𝑜] = 𝜓𝑈fp for all 𝑜 ∀ 𝑈. This proves our lemma. ⊋

Lemma 2. ℑTNs always correctly identifies ϑBF, but it sometimes misclassifies ∅waMPSI.
It does so with the following probability:

Pr[ℑTNs(∅waMPSI) = ϑBF] =
𝑈⇐1∑
𝑋=0

Pr[TNs = 𝑋](1 ⇐ 𝜓fp)𝑋𝜓𝑈⇐1⇐𝑋
fp

+ Pr[TNs ∀ 𝑈](1 ⇐ 𝜓fp)𝑈 .

79

Proof. This proof follows similarly to that of Lemma 1. ⊋

The condition 𝑎(|↘ | ⇐ 𝑈) ∀ 𝜓fp𝑈 marks the point beyond which one expects
to find more false positives in ↘/𝑉2 than the number of false positives that one
expects ϑBF to output.

In the remainder of this section, we define three di"erent scenarios based on
two conditions, depending on the median of the binomial distribution of Pr[FPs].
These conditions are as follows (see Appendix 2.A for more details):

• When 𝑎 < 1
|↘ |⇐𝑈 , the median is at or below Pr[FPs = 0], so Pr[FPs = 0] ∀ 1

2 .
See Lemma 7.

• When 𝑎 > 𝑈⇐1
|↘ |⇐𝑈 , the median is at or above Pr[FPs = 𝑈], so Pr[FPs = 𝑈] ∀ 1

2 .
See Lemma 8.

2.5.3 Upper bounds on the failure probability
We want to obtain upper bounds on the failure probability independent of 𝜓fp.
This allows us to make statements about the security gap that arises when trying to
realize ∅waMPSI using a Bloom filter-based protocol regardless of the choice of 𝜓fp in
the ideal functionality. Our main result is an upper bound on the failure probability
of our distinguisher for all values of 𝑎, which we present in Theorem 6. We provide
a summary in Figure 2.1, showing among others, that the attack succeeds with
high probability when 1

|↘ |⇐𝑈 ≃ 𝑎 ≃ 𝑈⇐1
|↘ |⇐𝑈 , or when 𝑎 > 𝑈⇐1

|↘ |⇐𝑈 and 𝑈 is large.

Pr[ℑ(∅waMPSI) = ϑBF] ≃

𝑎

1
|↘ |⇐𝑈

𝑈⇐1
|↘ |⇐𝑈

62.5%

Pr[FPs = 0] if 𝑎 ∀
𝜓fp𝑈
|↘ |⇐𝑈(

1 ⇐ 𝑎(|↘ |⇐𝑈)
𝑈

)
𝑈⇐1

otherwise 2⇐(𝑈⇐1)

Lem. 3 Lem. 4 Lem. 5

Figure 2.1: Upper bounds on the distinguisher’s failure probability for di"erent values of
the false positive probability 𝑎. The bounds depend on the size of the input sets 𝑈, the size
of the universe |↘ | , and the false positive probability 𝜓fp ↖ 𝐿fp(𝑈 , 𝑈 , 0) of ∅waMPSI. The
attack success probability cannot be made negligible in the shaded area.

Our first lemma considers the case where 𝑎 is so small that Pr[FPs = 0] is the
most likely (and the same holds for Pr[TNs ∀ 𝑈]). We obtain di"erent bounds
depending on whether ℑ = ℑFPs or ℑ = ℑTNs. For the proofs we often use the
fact that 𝜓fp ≃ (1 ⇐ 𝜓fp) for 𝜓fp ≃ 1

2 .

80

Lemma 3. If 𝑎 < 1
|↘ |⇐𝑈 , 𝑈 ∀ 2, |↘ | ∀ 2𝑈, and 𝜓fp ≃ 1

2 , we can bound the failure
probability of ℑ from above:

Pr[ℑ(∅waMPSI) = ϑBF] ≃

Pr[FPs = 0] If 𝑎 ∀ 𝜓fp𝑈

|↘ |⇐𝑈(
1 ⇐ 𝑎(|↘ |⇐𝑈)

𝑈

)
𝑈⇐1

otherwise.

Proof. If 𝑎 ∀ 𝜓fp𝑈

|↘ |⇐𝑈 , then ℑ = ℑFPs (see (2.6)). By Lemma 7, we have that
Pr[FPs = 0] ∀ Pr[FPs = 𝑋] for 𝑋 = 1, 2, . . . , so (see Lemma 1):

Pr[ℑ(∅waMPSI) = ϑBF] ≃
𝑈⇐1∑
𝑋=0

Pr[FPs = 0] · 𝜓𝑋fp(1 ⇐ 𝜓fp)𝑈⇐1⇐𝑋

+ Pr[FPs = 0] · 𝜓𝑈

= Pr[FPs = 0] ·
𝑈∑

𝑋=0
𝜓𝑋fp(1 ⇐ 𝜓fp)𝑈⇐𝑋 .

Claim: the term
∑

𝑈

𝑋=0 𝜓
𝑋

fp(1 ⇐ 𝜓fp)𝑈⇐𝑋 is at most 1, which it achieves when 𝜓fp = 0.
This proves the first part of the lemma. To prove this claim, notice that this term
e"ectively models a sum of sequences of 𝑈 Bernoulli trials. Specifically, the sum of
probabilities that the first 𝑋 trials succeed with probability 𝜓fp each, and the next
𝑈 ⇐ 𝑋 trials fail with probability 1 ⇐ 𝜓fp (ignoring the cases where trials succeed and
fail in a di"erent pattern). This is a well-defined probability distribution, so the
term does not exceed 1.

In the other case, when 𝑎 <
𝜓fp𝑈

|↘ |⇐𝑈 , ℑ = ℑTNs. By 𝜓fp ≃ (1 ⇐ 𝜓fp), we have that
(1 ⇐ 𝜓fp)𝑈⇐1⇐𝑋𝜓𝑋fp ≃ (1 ⇐ 𝜓fp)𝑈⇐1 for 𝑋 = 0, 1, . . . , 𝑈 ⇐ 1, so (see Lemma 2):

Pr[ℑ(∅waMPSI) = ϑBF] ≃
𝑈⇐1∑
𝑋=0

Pr[TNs = 𝑋] · (1 ⇐ 𝜓fp)𝑈⇐1

+ Pr[TNs ∀ 𝑈] · (1 ⇐ 𝜓fp)𝑈⇐1

= (1 ⇐ 𝜓fp)𝑈⇐1
.

Recall that 𝑎 <
𝜓fp𝑈

|↘ |⇐𝑈 , so 𝜓fp is bounded from below:

𝜓fp >
𝑎(|↘ | ⇐ 𝑈)

𝑈

.

The largest value that Pr[ℑ(∅waMPSI) = ϑBF] can take occurs when 𝜓fp is as small
as possible. This proves the second part of the lemma. ⊋

In the first case, when 𝑎 ∀ 𝜓fp𝑈

|↘ |⇐𝑈 , the attack’s failure rate is bounded by the
probability that the distinguisher cannot find any false positives in ↘/𝑉2. This is
the same probability with which a distinguisher could tell apart ϑBF from an exact

81

MPSI ∅MPSI. In other words, in this scenario, Bloom filters are not suitable when
they approximate the intersection. In the other case, notice that:

(
1 ⇐

𝑎(|↘ | ⇐ 𝑈)
𝑈

)
𝑈⇐1

↗ 𝑘
⇐𝑎(|↘ |⇐𝑈) ≃ 2⇐𝑎(|↘ |⇐𝑈)

. (2.7)

So, for the attack to succeed with negligible probability (i.e., the attack to fail with
high probability), the exponent ⇐𝑎(|↘ | ⇐ 𝑈) must remain a small negative number.
For example, for the attack to fail with overwhelming probability, we must have
that 𝑎 ⊥ (|↘ | ⇐ 𝑈)⇐1.

Our second lemma considers the case where 𝑎 is neither very large nor small.
In this case, the attack succeeds with high probability.

Lemma 4. If 1
|↘ |⇐𝑈 ≃ 𝑎 ≃ 𝑈⇐1

|↘ |⇐𝑈 , 𝑈 ∀ 2, |↘ | ∀ 2𝑈, and 𝜓fp ≃ 1
2 , we can bound the failure

probability of ℑ from above:

Pr[ℑ(∅waMPSI) = ϑBF] ≃ 62.5% .

Proof. If 𝑎 ∀ 𝜓fp𝑈

|↘ |⇐𝑈 , then ℑ = ℑFPs (see (2.6)). Since 0 ≃ 𝜓fp ≃ 0.5, we have that
𝜓fp(1 ⇐ 𝜓fp)𝑈⇐1 ∀ 𝜓𝑋fp(1 ⇐ 𝜓fp)𝑈⇐𝑋 for 𝑋 = 1, 2, . . . , 𝑈, so (see Lemma 1):

Pr[ℑ(∅waMPSI) = ϑBF] ≃ Pr[FPs = 0] + (1 ⇐ Pr[FPs = 0]) · 𝜓fp(1 ⇐ 𝜓fp)𝑈⇐1
.

Next, we show that the supremum of 𝜓fp(1 ⇐ 𝜓fp)𝑈⇐1 occurs when 𝜓fp = 𝑈
⇐1, by

checking when its derivative equals 0:

0 = (1 ⇐ 𝜓fp)𝑈⇐1 ⇐ (𝑈 ⇐ 1)𝜓fp(1 ⇐ 𝜓fp)𝑈⇐2
,

= (1 ⇐ 𝜓fp)𝑈⇐2((1 ⇐ 𝜓fp) ⇐ (𝑈 ⇐ 1)𝜓fp) ,
= (1 ⇐ 𝜓fp)𝑈⇐2(1 ⇐ 𝑈𝜓fp) .

The only valid root occurs when the rightmost term is 0; i.e., 𝜓fp = 𝑈
⇐1. We ignore

the bound 𝑎 ∀ 𝜓fp𝑈

|↘ |⇐𝑈 , making our final upper bound looser. We get that:

Pr[ℑ(∅waMPSI) = ϑBF] ≃ Pr[FPs = 0]

+ (1 ⇐ Pr[FPs = 0])1
𝑈

(
1 ⇐ 1

𝑈

)
𝑈⇐1

≃ 0.5 + 0.5 · 1
𝑈

(
1 ⇐ 1

𝑈

)
𝑈⇐1

≃ 0.5 + 0.5 · 0.5(0.5)1 = 62.5% .

This works because Pr[FPs = 0] < 0.5 due to Lemma 7, and that 𝑈⇐1(1 ⇐ 𝑈
⇐1)𝑈⇐1 is

monotonically decreasing for 𝑈 = 2, 3, . . . (we do not prove this), so we fill in 𝑈 = 2.
This concludes the proof for ℑ = ℑFPs.

82

In the other case, when 𝑎 <
𝜓fp𝑈

|↘ |⇐𝑈 , ℑ = ℑTNs. We get a similar situation:

Pr[ℑ(∅waMPSI) = ϑBF] ≃ (1 ⇐ Pr[TNs ∀ 𝑈])(1 ⇐ 𝜓fp)𝑈⇐1𝜓fp

+ Pr[TNs ∀ 𝑈],

where Pr[TNs ∀ 𝑈] < 0.5 due to Lemma 8, so we obtain the same bound. ⊋

Our final lemma relating to these upper bounds is for the case where 𝑎 is large,
such that Pr[FPs ∀ 𝑈] is the most likely (and the same holds for Pr[TNs = 0]). In
this case, we do not obtain di"erent bounds depending on ℑ ; the only possible
case is ℑ = ℑFPs.

Lemma 5. If 𝑎 > 𝑈⇐1
|↘ |⇐𝑈 , 𝑈 ∀ 2, |↘ | ∀ 2𝑈, and 𝜓fp ≃ 1

2 , we can bound the failure
probability of ℑ from above:

Pr[ℑ(∅waMPSI) = ϑBF] ≃ 2⇐(𝑈⇐1)
.

Proof. If 𝑎(|↘ | ⇐ 𝑈) < 𝜓fp𝑈, then ℑ = ℑTNs (see (2.6)). However, we have that:

𝑎 <
𝜓fp𝑈

|↘ | ⇐ 𝑈

≃ 𝑈 ⇐ 1
|↘ | ⇐ 𝑈

< 𝑎 ,

which is a contradiction, so ℑ = ℑFPs.
When ℑ = ℑFPs we claim that an upper bound is 2⇐(𝑈⇐1) thus we will show that

𝑈⇐1∑
𝑋=0

Pr[FPs = 𝑋]𝜓𝑋fp(1 ⇐ 𝜓fp)𝑈⇐1⇐𝑋 + Pr[FPs ∀ 𝑈] · 𝜓𝑈fp ≃ 2⇐(𝑈⇐1)
.

Note that 𝜓fp ≃ 1
2 , thus the LHS is smaller than

∑
𝑈⇐1
𝑋=0 Pr[FPs = 𝑋]𝜓𝑋fp(1 ⇐ 𝜓fp)𝑈⇐1⇐𝑋 +

Pr[FPs ∀ 𝑈]2⇐𝑈 , which allows us to instead prove the following inequality:

𝑈⇐1∑
𝑋=0

Pr[FPs = 𝑋]𝜓𝑋fp(1 ⇐ 𝜓fp)𝑈⇐1⇐𝑋 ≃ 2⇐(𝑈⇐1)(1 ⇐ Pr[FPs ∀ 𝑈]) (2.8)

≃ 2⇐(𝑈⇐1) Pr[FPs < 𝑈]. (2.9)

By Lemma 9, the LHS is a monotonic increasing function, so it reaches its maximum
at the edge of the domain (𝜓fp = 1

2). The maximum is given by:

𝑈⇐1∑
𝑋=0

Pr[FPs = 𝑋]𝜓𝑋fp(1 ⇐ 𝜓fp)𝑈⇐1⇐𝑋 =
𝑈⇐1∑
𝑋=0

Pr[FPs = 𝑋]
(
1
2

)
𝑈⇐1

= 2⇐(𝑈⇐1)
𝑈⇐1∑
𝑋=0

Pr[FPs = 𝑋]

= 2⇐(𝑈⇐1) Pr[FPs < 𝑈].

This is equal to the bound in (2.9), so 2⇐(𝑈⇐1) is indeed an upper bound. ⊋

83

Our main result is the following theorem, which combines the above lemmas.
Theorem 6. Given 𝑈 ∀ 2, |↘ | ∀ 2𝑈, and 0 ≃ 𝜓fp ≃ 1

2 , we have the following upper
bounds for Pr[ℑ(∅waMPSI) = ϑBF], as summarized in Figure 2.1:

• Pr[ℑ(∅waMPSI) = ϑBF] ≃ 2⇐(𝑈⇐1) if 𝑎 > 𝑈⇐1
|↘ |⇐𝑈 .

• Pr[ℑ(∅waMPSI) = ϑBF] ≃ 62.5% if 1
|↘ |⇐𝑈 ≃ 𝑎 ≃ 𝑈⇐1

|↘ |⇐𝑈 .

• Otherwise, Pr[ℑ(∅waMPSI) = ϑBF] ≃ Pr[FPs = 0] if 𝑎 ∀ 𝜓fp𝑈

|↘ |⇐𝑈 .

• Otherwise, Pr[ℑ(∅waMPSI) = ϑBF] ≃
(
1 ⇐ 𝑎(|↘ |⇐𝑈)

𝑈

)
𝑈⇐1

.

Proof. We refer the reader to the following lemmas:

• If 𝑎 > 𝑈⇐1
|↘ |⇐𝑈 , then this holds by Lemma 5.

• If 1
|↘ |⇐𝑈 ≃ 𝑎 ≃ 𝑈⇐1

|↘ |⇐𝑈 , then this holds by Lemma 4.

• If 𝑎 < 1
|↘ |⇐𝑈 and 𝑎 ∀ 𝜓fp𝑈

|↘ |⇐𝑈 , then this holds by Lemma 3.

• If 𝑎 < 1
|↘ |⇐𝑈 and 𝑎 <

𝜓fp𝑈

|↘ |⇐𝑈 , this holds by Lemma 3. ⊋

2.5.4 Obtaining secure parameters
While the bounds we derive above provide lower bounds for the success probability
of the attack, they may underestimate it. Moreover, they quantify over all values of
𝜓fp, while in practice, one may wish to only choose small values (or there would be
many false positives). We now consider how to choose the smallest Bloom filter for
which our attack does not work. We formulate this as the following constrained
optimization problem, in which we want to realize ∅waMPSI with at most false
positive probability 𝜓ℵfp:

max 𝑎 s.t. AdvϑBF
ind (ℑ) ≃ 2⇐𝜒

0 ≃ 𝜓fp ≃ 𝜓ℵfp
𝑎 < 1

|↘ |⇐𝑈

(2.10)

After all, the larger the false positive probability 𝑎, the smaller the Bloom filter can
be. Note that the last constraint is implied by the first constraint when 𝑈 > 𝜒. We
assume this to be the case because 𝜒, the statistical security parameter that decides
the chance of the attack succeeding, is typically a value such as 40 or 128, whereas
the number of elements in a set 𝑈 can be orders of magnitude higher. We note that
the constraints imply that 𝜓ℵfp ≃ 1

𝑈
.

Since we only look for 𝑎 < 1
|↘ |⇐𝑈 , and since ℑ only misclassifies ∅waMPSI, we

get that:

AdvϑBF
ind (ℑ) =

....1 ⇐ 1
2

.... +
....1 ⇐ Pr[ℑ(∅waMPSI) = ϑBF] ⇐

1
2

....
= 1 ⇐ Pr[ℑ(∅waMPSI) = ϑBF] .

84

Table 2.1: Parameters for ∅waMPSI with 𝜓fp ≃ 𝑈
⇐1 and |↘ | = 232. Secure parameters are

larger by an order of magnitude.

Setting Old parameters ∅waMPSI parameters
𝜒 𝑈 𝑎 𝑗 𝑃 𝑎 𝑗 𝑃 Factor

40
256 2⇐6 6 2,962 2⇐72 72 26,645 9𝒜

4096 2⇐8 8 70,922 2⇐72 72 425,522 6𝒜
65536 2⇐12 12 1,512,788 2⇐72 72 6,807,543 4.5𝒜

80
256 2⇐6 6 2,962 2⇐112 112 41,447 13𝒜

4096 2⇐8 8 70,922 2⇐112 112 661,922 9.33𝒜
65536 2⇐12 12 1,512,788 2⇐112 112 10,589,510 7𝒜

128
256 2⇐6 6 2,962 2⇐160 160 59,210 20𝒜

4096 2⇐8 8 70,922 2⇐160 160 945,602 13.33𝒜
65536 2⇐12 12 1,512,788 2⇐160 160 15,127,871 10𝒜

This uses that Pr[ℑ(∅waMPSI) = ϑBF] ≃ 1
2 .

Instead of using the bounds described in Figure 2.1, we will use the equations
from Lemmas 1 & 2 as not to underestimate the distinguisher. That said, we use a
heuristic to decide for which 𝜓fp we have that Pr[ℑ(∅waMPSI) = ϑBF] is maximal.
Specifically, when ℑ = ℑFPs and 𝑎 tends to 0, most of the probability mass occurs
at Pr[FPs = 0] (see Lemma 7). It is easy to see that 𝜓fp = 0 maximizes the failure
probability. For the case when ℑ = ℑTNs, most of the probability mass occurs at
Pr[TNs ∀ 𝑈], so we also want to minimize 𝜓fp. However, when 𝜓fp = 0, we always
get that ℑ = ℑFPs. We get that:

AdvϑBF
ind (ℑ) ↗ 1 ⇐ Pr[FPs = 0] = 1 ⇐ (1 ⇐ 𝑎)|↘ |⇐𝑈

. (2.11)

This corresponds to the same scenario as exact MPSI (∅MPSI), in which any false
positive occurring is enough for the distinguisher to succeed. Notice that it is not
enough for the probability of a false positive to occur in a set of 𝑈 elements to be
negligible; this would only defend against semi-honest parties. In the augmented
semi-honest model and beyond, in which corrupt parties can choose their own
inputs, the false positive probability must decrease when the gap between |↘ | and
𝑈 increases.

Finally, given the largest 𝑎, we can generate Bloom filter parameters 𝑃 and 𝑗 as
described in Section 2.2. We provide examples of these parameters in Table 2.1
corresponding to |↘ | = 232, and compare them against old parameters, as used by
previous work. We generate these parameters by iterating over 𝑎 = 2⇐1

, 2⇐2
, . . .

until the constraints from (2.10) hold, using the approximation from (2.11). For the
old parameters we use 𝑎 = 1

𝑈
, because this would be expected to realize ∅waMPSI

with 𝜓fp = 1
𝑈
. Note that the parameters we propose only protect against this

distinguisher, but stronger attacks may exist.

85

2.5.5 A note on PSI-cardinality
While the distinguisher ℑ examines the set output by the protocol ϑ to determine
if it is interacting with ∅waMPSI or ϑBF, we note that it is also possible to base
this choice solely on the cardinality of the output. As such, this slightly weaker
distinguisher ℑ▽ would also apply to PSI-cardinality that protocols, which only
output the size of the resulting set |𝑠| . The condition at which ℑ▽ classifies ϑ
as ϑBF is when |𝑠| ε FPs. If 𝜓fp ↗ 0, then AdvϑBF

ind (ℑ▽) ↗ AdvϑBF
ind (ℑ). Since the

weakness originates in the Bloom filter, this security problem also a"ects quantum
PSI-cardinality protocols based on Bloom filters [Liu+21].

2.6 Practical attack on Bloom filter-based PSI
In this section, we study membership inference attacks performed by a corrupted
leader in the augmented semi-honest model. We present a practical attack on the
parameters used by many works [Bay+22; VCE22; Deb+21] discussed in Section 2.4.

2.6.1 Security game
An intuitive definition of a private set intersection’s security property is that a
leader should only learn about another party’s elements when they appear in the
intersection. In other words, a leader cannot infer information about the elements
that do not appear in the intersection. We formalize this using the concept of
membership inference attacks, in which the corrupted leader (the adversary) must
guess an element in the other party’s set. For simplicity, we only consider two
parties, but the concept extends beyond the two-party setting.

To incorporate the fact that the leader learns the result of the protocol, we
model membership inference against PSI as an adaptive security game in which the
adversary consists of two algorithms: ℬpre and ℬpost. The first algorithm inputs
↘2, which is a superset of the victim’s set 𝑉2, for which it holds that |𝑉2| = 𝑈. ℬpre
outputs the leaders input to the protocol ϑ and an element 𝑊 ↓ ↘2. The second
algorithm ℬpost inputs the element 𝑊 and the result of the protocol, and outputs the
guess of the adversary. We assume the adversary already has access to all public
parameters (for us, this includes the Bloom filter’s hash functions). We define an
adversary’s probability of beating the membership inference security game against
a PSI protocol ϑ as follows:

Pr[ℬ succeeds|𝑐] = Pr

(inp,𝑉1)⇐⇐⇐⇐⇐′ ϑ
(inp,𝑉2)↖⇐⇐⇐⇐⇐

(𝑠)↖⇐⇐
ℬpost(𝑊 , 𝑠) = 𝑏

...........

↘2 ⇑𝑠 ↘ s.t. |↘2| = 𝑐

(𝑉1 , 𝑊) ↖ ℬpre(↘2)
s.t. (𝑊 ↓ ↘2) ∞ (𝑊 ϖ 𝑉1)

𝑏 ↓𝑠 {0, 1}
𝑉2 ⇑𝑠 ↘2 s.t. (|𝑉2| = 𝑈)∞
(𝑊 ↓ 𝑉2 𝒞ℜ 𝑏 = 1)

(2.12)

The advantage of an adversary ℬ = (ℬpre ,ℬpost) over random guessing is:

Advϑ
memb(ℬ , |↘2|) = 2

....Pr[ℬ succeeds | 𝑐 = |↘2|] ⇐
1
2

.... (2.13)

86

If one can show that the advantage is negligible for all adversaries, then the protocol
is secure against membership inference attacks. In the next subsections, we present
attacks in which the advantage is non-negligible when the false positive probability
is non-negligible.

2.6.2 Proposed attack
The foundation of our proposed attack lies in two key observations: First, when a
Bloom filter’s hash functions are known, we may determine which elements in ↘
have overlapping bins when encoded in a Bloom filter. Second, for Bloom filter
encodings of most subsets of ↘ , there are bins that are set only by a single element
of this subset. We first expand on both observations.

We use the first observation to find probabilities of Bloom filter false positives.
Given a set 𝑉, and its Bloom filter encoding, �̂�, we observe that knowledge of the
hash functions collapses the false positive probability. Let us denote contains(�̂� , 𝑅)
by 𝑅 ↓ �̂�. For any 𝑆 ϖ 𝑉, we verify whether 𝑆 is a false positive in �̂� by
calculating 𝑋(𝑆), for 𝑋 ↓ 1, . . . , 𝑗, and verifying that each bin is set. If we know
𝑉, the conditional probabilities Pr[𝑆 ↓ �̂� | 𝑉] become deterministic. If we do not
know 𝑉, yet instead, we know the distribution of 𝑉 sampled from ↘ , we find
Pr[𝑆 ↓ �̂�] = ∑

𝑉 ,𝑆↓�̂� Pr[𝑉].
The second observation helps detect the target’s presence in the Bloom filter

encoding. Some bins may uniquely identify an element 𝑅 amongst a subset ↘2 of the
total universe. In other words, a bin 𝑏 may exist such that only one element 𝑅 ↓ ↘2
maps to this bin with any hash function. From Section 2.2, recall that one chooses
the parameters of a Bloom filter such that, for 𝑈 elements, the probability of any
element having no unique bin is at most 𝑎. However, an element 𝑆 not present in
↘2 may hash to this bin. When 𝑆 is a false positive in a Bloom filter encoding of a
subset of ↘2, we know that this subset contained 𝑅. The probability of finding any
element with a uniquely identifying bin depends on both ↘2 and 𝑈.

We define the adversary’s universe as ↘1 = ↘ \↘2. We realize 𝑀𝑎𝑚𝑘 by means
of the following steps:

1. We find an optimal target 𝑊 ↓ ↘2 which can be uniquely identified amongst
the other elements of ↘2,

2. we reduce ↘1 to 𝑣, leaving only elements that hash to the bins that are unique
to 𝑊 and which have a non-zero probability of occurring as a false positive,

3. we rank all elements 𝑆 ↓ 𝑣 based on the probability of appearing in the
Bloom filter encoding of 𝑉2,

4. we return 𝑊 and the top 𝑈 elements of 𝑣.

To determine the bit 𝑏, by testing the result of the protocol execution 𝑠. If 𝑠 is
non-empty, we successfully identified 𝑊 and ℬpost returns 1. Otherwise, ℬpost
guesses that 𝑊 is not part of 𝑉2 and returns 0.

87

Choosing the target

As the target 𝑊, we select an element from ↘2 with the least overlap with other
bins of other elements in ↘2. Bins that are unique to the target 𝑊 can be used to
conclusively decide whether the target is included in the input set 𝑉2 of the victim
→2. We find an optimal target 𝑊 ↓ ↘2 using an exhaustive search:

𝑊 = min
𝑅↓↘2

|{𝑅▽ ↓ ↘2 \ {𝑅} | 𝒟(𝑋 , 𝑜) : 𝑋(𝑅) = 𝑜(𝑅▽)}| . (2.14)

Filtering the attack universe

Given a target 𝑊 the adversary →1 searches for an attack input set 𝑉1 that maximizes
the detection rate of the target element 𝑊. We can filter any element from ↘1, which
does not contribute to detecting 𝑊. We use the following two criteria to narrow
down ↘1 to the candidate subset 𝑣: First, for any candidate 𝑆 ↓ 𝑣, at least one
hash function must exist such that 𝑆 is mapped to a bin that uniquely identifies 𝑊
from the other elements in ↘2. Second, for each hash function , maps 𝑆 to a
bin that at least one element in ↘2 hashes to.

Selecting the attack set

If for the number of candidates 𝑣 it holds that |𝑣| ≃ 𝑈, we set 𝑉1 = 𝑣. Otherwise,
we aim to find the input set 𝑉1 ⊤ 𝑣 with |𝑉1| = 𝑈 that is most likely to successfully
identify 𝑊. Calculating this ‘e"ectiveness’ of an input set 𝑉1 requires that we
assume knowledge of the distribution of 𝑉2 ⇑ ↘2. Ideally, we would maximize
the e"ectiveness by maximizing the probability that at least one of the elements
in 𝑉1 is contained in the Bloom filter �̂�2. Instead of carefully computing an
inclusion-exclusion, we approximate this probability by simply summing over the
probability with which each element in 𝑉1 is contained in �̂�2:

Pr[𝒟𝑆 ↓ 𝑉1 | 𝑆 ↓ �̂�2] ↗
∑
𝑆↓𝑉1

Pr[𝑆 ↓ �̂�2]. (2.15)

In other words, our objective is to maximize the probability with which the
intersection obtained by the leader is non-empty. For the remaining part of this
section, we assume that →2 uniformly samples its private input set 𝑉2 from ↘2.
This aligns with our definition of AdvϑBF

memb. The probability Pr[𝑆 ↓ 𝑉2] equals the
number of private input sets 𝑉2 that activate all bins of 𝑆, divided by the number
of di"erent input sets. We rank all elements in 𝑣 based on the number of 𝑉2 for
which 𝑆 ↓ �̂�2. Afterward, we select the 𝑈 elements with the highest probability of
appearing in the Bloom filter as the attack set.

Finding the number of 𝑉2 for which 𝑆 ↓ �̂�2

To find the number of 𝑉2 for which 𝑆 ↓ �̂�2 holds, we focus on finding a formula for
the number of possible input sets 𝑉2 that activate the bins of 𝑆. We can construct

88

lists 𝑏1 , .., 𝑏𝑗 , where each list 𝑏𝑋 contains the elements of ↘2 that hashes to bin
𝑋(𝑆), in other words:

𝑏𝑋 = {𝑅 ↓ ↘2 | 𝒟𝑜 ↓ 1..𝑗𝑜(𝑅) = 𝑋(𝑆)}.
We distinguish two cases: In the first case, all elements from all these lists 𝑏𝑋 are
distinct. In the second case, one or more elements appear in at least two bins. We
focus on the first case and later show how the second case can be reduced to the first.

All elements are distinct. For the first case, we emulate picking elements from ↘2 to
create 𝑉2. Let ↘▽ denote the universe we are picking from, and |↘▽| the number
of elements in this universe. The goal is to fill the 𝑈

▽ spots of the private input set
with elements from ↘▽ with the following restrictions:

• None of the elements can appear more than once.

• The order of the elements does not matter, i.e. “1 2" and “2 1" are the same.

• There are 𝑚 lists 𝑏1 , .., 𝑏𝑚 each consisting of a number of elements. These lists
are all pairwise distinct, i.e., for each 𝑋 , 𝑜 ≃ 𝑚 holds that 𝑏𝑋 ↑ 𝑏𝑜 = ∋. From
each of these lists, at least one element should be taken.

Example 8. Take ↘▽ = {1..6}, 𝑏1 = {1, 2}, 𝑏3 = {3} and 𝑈
▽ = 3. The order does not

matter. Therefore, we choose to first write the element of bin 1, then the element of
bin 2, and then fill the last spot.

1 3 2 2 3 1
1 3 4 2 3 4
1 3 5 2 3 5
1 3 6 2 3 6

See that 1 3 2 is equivalent to 2 3 1 and should not be counted. There are 7 options.
Example 8 shows that the elements we can choose for the last bin must not

occur in the sequence yet, and neither must create a sequence that has already
been counted. We solve this by creating 𝑚 + 1 di"erent lists. We use 𝑏0 to denote
↘▽ \ (𝑏1 ↔ 𝑏2 ↔ · · · ↔ 𝑏𝑚); The list that contains all elements that occur in no other.
This simplifies the problem to dividing 𝑈

▽ choices over 𝑚 + 1 lists, where for 𝑏𝑋

𝑋 = 1 . . . 𝑚 at least one element must be chosen. We calculate the answer to this
problem by expressing it as a product of the generating function, and then finding
the coe#cient of the term with degree 𝑈

▽.
For each list 𝑏𝑋 we find a corresponding generating function that expresses

in how many ways we can choose elements from that list. The exponent of the
variable 𝑤 denotes the number of elements chosen from the list 𝑏𝑋 . The coe#cient
of 𝑤 𝑜 tells us in how many ways 𝑜 elements can be chosen from 𝑏𝑋 . Since we pick
without replacement, choosing 𝑜 elements from 𝑏𝑋 can be done in

(|𝑏𝑋 |
𝑜

)
ways. Given

that we may pick no elements from 𝑏0, we find the following functions for 𝑏0 and
𝑏𝑋 with 𝑋 ε 0 respectively:

𝐿 (|𝑏0| , 𝑤) =
|𝑏0 |∑
𝑜=0

(
|𝑏0|
𝑜

)
𝑤
𝑜
, 𝑢(|𝑏𝑋 | , 𝑤) =

|𝑏𝑋 |∑
𝑜=1

(
|𝑏𝑋 |
𝑜

)
𝑤
𝑜
.

89

The combined formula allows us to determine the number of ways to pick 𝑈
▽

elements for 𝑉2 such that 𝑆 ↓ �̂�2, by calculating the coe#cient of the term 𝑤
𝑈
▽. The

formula for the number of combinations is as follows:

[𝑤𝑈▽] : 𝐿 (|𝑏0| , 𝑤) ·
𝑚∏

𝑋=1
𝑢 (|𝑏𝑋 | , 𝑤) . (2.16)

Not all elements are distinct. If an element 𝑅 ↓ ↘2 activates two bins of the Bloom
filter that the element 𝑆 hashes to, we lose the independence requirement and,
as such, Eq. (2.16) does not hold. We observe that given ↘▽

, 𝑈
▽
, {𝑏1 , . . . , 𝑏𝑚}, the

number of valid combinations is equal to the number of valid combinations with
𝑅 ↓ ↘▽ plus the number of valid combinations without x. We can define the
number of valid combinations with 𝑅 as the number of combinations of universe
↘▽ \ {𝑅}, spots 𝑈▽ ⇐ 1, and {𝑏𝑋 | 𝑅 ϖ 𝑏𝑋}. Likewise the number of valid combinations
where 𝑅 is not included is the number of combinations of universe ↘▽ \ {𝑅}, spots
𝑈
▽, and {𝑏1 \ {𝑅} , . . . , 𝑏𝑚 \ {𝑅}}. By reducing ↘2, 𝑈, and the lists to a summation of

Eq. (2.16) with di"erent arguments, we find an exact expression of the number of
𝑉2 for which 𝑆 ↓ �̂�2 holds.

2.6.3 Results
To evaluate our attack, we implement it in Rust.3 The experiments are run on
an AMD Ryzen Threadripper 7970X 32-core CPU at around 4.6 GHz. We use
constants hash seeds for each experiment and search an attack input set 𝑉1 and
target 𝑊 once. Afterward, we determine the advantage by uniformly sampling
𝑉2 ⊤ ↘2 1 million times with 𝑊 ↓ 𝑉2 and 1 million times with 𝑊 ϖ 𝑉2. We limit
the time for searching an attack input set to two hours. The results are shown in
Table 2.2. We indicate executions of our attack that took over two hours to compute
with ‘-’.

2.7 Mitigations
Our theoretical analysis and practical attack require protocol designers to choose
Bloom filter parameters that can easily be an order of magnitude larger, as
shown in Table 2.1. This may be acceptable in protocols that use oblivious
transfers [Ben+22], but this may significantly decrease the e#ciency of protocols
based on homomorphic encryption [Bay+22; VCE22; Deb+21]. Fortunately, one
may still design Bloom filter-based protocols that prevent these attacks in other
ways, without having to increase the size of the Bloom filter significantly. In this
section, we provide suggestions as to such mitigations.

2.7.1 Replacing hash functions with OPRFs
In all protocols discussed in Section 2.4, the parties have access to the hash functions
of the Bloom filter. However, this also allows corrupted parties to identify elements

3The source code is available at: Redacted for reviews.

90

Table 2.2: Overview of the results of our practical attack applied to di"erent false positive
rates 𝑎 and set sizes 𝑈. We evaluate the attack for |↘2| = 2𝑈 , 3𝑈 , 4𝑈. The attack succeeds
with non-negligible probability, even for 𝑎 = 2⇐20.

Setting Parameters Results

𝑎 𝑈 𝑗 𝑃opt Advϑ
memb(ℬ , 2𝑈) Advϑ

memb(ℬ , 3𝑈) Advϑ
memb(ℬ , 4𝑈)

2⇐5 256 5 1,852 1.00 1.00 1.00

2⇐10
256 10 3,702 1.00 0.82 0.61

4,096 10 59,102 1.00 - -
65,536 10 945,493 1.00 - -

2⇐20
256 20 7,403 0.15 0.01 2⇐8.9

4,096 20 118,202 0.98 - -
65,536 20 1,890,985 0.68 - -

2⇐30
256 30 11,103 0.03 2⇐15 -

4,096 30 177,302 0.02 - -
65,536 30 2,836,477 2⇐10 - -

they can exploit in an attack, as shown in Section 2.6. Instead, one could replace
the hash functions with oblivious pseudo-random functions (OPRFs) [CHL22]
with a secret seed. This would limit the parties in the number of queries they can
make to the hash functions. Specifically, we can limit each party to 𝑈 calls to each
OPRF, which may be significantly smaller than the number of calls |↘ | ⇐ 𝑈 that we
use in our attack.

Designing a protocol around OPRFs requires answering the question of which
parties can know the secret seed. We suggest to assign 𝑊 parties who choose their
own secret seed. Each party then engages in an OPRF protocol with each of these 𝑊

parties to generate 𝑊 pseudo-random values, from which one can derive a single
pseudo-random value for which one can only find the preimage if the 𝑊 parties
collude. This approach would add two rounds to the total protocol’s execution
because each party must first run 𝑈𝑊 parallel OPRF evaluations before they can
construct their Bloom filter.

2.7.2 Replacing hash functions with PBKDFs
Another approach is to replace the hash functions with extremely slow hash
functions, such as password-based key derivation functions [Kal00]. We note that
this approach does not prevent polynomial-time attackers because the evaluation
of the hash functions only increases with a polynomial factor. However, in practice,
it would be infeasible (or at least extremely expensive) for an attacker to make
|↘ | ⇐ 𝑈 queries to the PBKDF.

While this approach o"ers a simple patch to existing Bloom filter-based PSI
protocols, it is in stark contrast with the common choice of choosing extremely
fast statistical hash functions without cryptographic guarantees. As a result, the
protocol is also significantly slower to execute for honest parties. Depending on the

91

number of elements each party encodes in their Bloom filter, choosing larger Bloom
filter parameters may be cheaper. Next to that, it may be hard to parameterize the
PBKDF because one would have to estimate the concrete cost of the PBKDF and
the computational abilities of an attacker. One solution may be to balance the cost
of the hash function evaluation with larger Bloom filter parameters to find a set of
parameters that punish attackers without significantly slowing down the protocol
for honest parties.

2.7.3 Authorized private set intersections
If the parties running a Bloom filter-based PSI protocol trust a semi-honest third
party, this party may authorize their sets, preventing the elements in these sets from
being selected maliciously. An example of such a protocol is by Kerschbaum [Ker12],
who designed an authorized PSI protocol based on Bloom filters, in which a judge
prevents the client from picking elements that are likely to cause a false positive
in the Bloom filter of the server. To prevent a client from doing so, the elements
of the server 𝑉2 are encrypted before they are added to the Bloom filter. This
encryption ensures that the client does not have prior knowledge of the server’s
Bloom filter. In order to perform the intersection, however, the client’s elements
should be encrypted with the same key.

In practice, the judge takes the elements of the client →1 and raises them to
some secret power 𝑘. These elements are then stored in a Bloom filter by the
judge. The Bloom filter is encrypted using a public key and signed, after which the
encryption and signature are returned to the client. The client forwards the Bloom
filter and the signed Bloom filter to the server, which then can verify that the judge
signed this Bloom filter. Only the non-signed filter is used for the remainder of the
protocol.

Applying authorization to the sets may not be possible in practice because the
parties may not have a semi-honest third party they trust. Additionally, a judge
that inspects (a subset of) the private input sets also learns private elements from
the honest parties’ sets. In any case, it adds at least two rounds to the execution of
the protocol, as the clients have to submit their sets, and the judge has to approve
them.

2.8 Conclusion
In this work, we propose both theoretical and practical attacks against Bloom
filter-based private set intersection protocols. We show that secure parameters
must be an order of magnitude larger than parameters where the false positive
probability is not negligible. As a result, Bloom filter-based PSI cannot use the
approximation provided by Bloom filters to speed up the protocol. Alternatively,
one might consider consider replacing the hash functions with OPRFs or PBKDFs,
but both approaches cause the protocol to become slower.

With these results, we are not aware of any approximate (M)PSI protocols that
outperform exact (M)PSI protocols. As such, an open question is whether there are
e#cient alternatives for Bloom filter-based approximate (M)PSI protocols. Other

92

future work may look at the following questions:

• Is it possible to extend our attack to protocols like that by Zhu et al. [Zhu+18]
and those based on garbled Bloom filters that go beyond regular Bloom
filters?

• How are other deterministic approximate data structures such as approximate
membership query filters a"ected by these results?

On a positive note, we notice that Bloom filters still o"er useful characteristics for
designing (M)PSI protocols, even when their parameters must be large. Specifically,
it is still convenient to compute a Bloom filter representing the intersection.
For example, the work by Ben Efraim et al. [Ben+22] uses parameters that are
significantly larger than the parameters suggested in our work (our work considers
the augmented semi-honest model while theirs considers the malicious model),
but it is still concretely e#cient.

References
[Bay+22] Aslí Bay et al. “Practical Multi-Party Private Set Intersection Protocols”.

In: IEEE Trans. Inf. Forensics Secur. 17 (2022), pp. 1–15. /)%: 10.1109/
TIFS.2021.3118879. (!&: https://doi.org/10.1109/TIFS.2021.
3118879.

[Ben+22] Aner Ben-Efraim et al. “PSImple: Practical Multiparty Maliciously-
Secure Private Set Intersection”. In: ASIA CCS ’22: ACM Asia Conference
on Computer and Communications Security, Nagasaki, Japan, 30 May 2022
- 3 June 2022. Ed. by Yuji Suga et al. ACM, 2022, pp. 1098–1112.
/)%: 10.1145/3488932.3523254. (!&: https://doi.org/10.1145/
3488932.3523254.

[Can01] Ran Canetti. “Universally Composable Security: A New Paradigm for
Cryptographic Protocols”. In: 42nd Annual Symposium on Foundations
of Computer Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada,
USA. IEEE Computer Society, 2001, pp. 136–145. /)%: 10.1109/SFCS.
2001.959888. (!&: https://doi.org/10.1109/SFCS.2001.959888.

[CHL22] Sílvia Casacuberta, Julia Hesse, and Anja Lehmann. “SoK: Obliv-
ious Pseudorandom Functions”. In: 7th IEEE European Symposium
on Security and Privacy, EuroS&P 2022, Genoa, Italy, June 6-10, 2022.
IEEE, 2022, pp. 625–646. /)%: 10.1109/EUROSP53844.2022.00045.
(!&: https://doi.org/10.1109/EuroSP53844.2022.00045.

[DC17] Alex Davidson and Carlos Cid. “An e#cient toolkit for computing
private set operations”. In: Information Security and Privacy: 22nd
Australasian Conference, ACISP 2017, Auckland, New Zealand, July 3–5,
2017, Proceedings, Part II 22. Springer. 2017, pp. 261–278.

93

https://doi.org/10.1109/TIFS.2021.3118879
https://doi.org/10.1109/TIFS.2021.3118879
https://doi.org/10.1109/TIFS.2021.3118879
https://doi.org/10.1109/TIFS.2021.3118879
https://doi.org/10.1145/3488932.3523254
https://doi.org/10.1145/3488932.3523254
https://doi.org/10.1145/3488932.3523254
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/EUROSP53844.2022.00045
https://doi.org/10.1109/EuroSP53844.2022.00045

[DCW13] Changyu Dong, Liqun Chen, and Zikai Wen. “When private set
intersection meets big data: an e#cient and scalable protocol”. In:
2013 ACM SIGSAC Conference on Computer and Communications Security,
CCS’13, Berlin, Germany, November 4-8, 2013. Ed. by Ahmad-Reza
Sadeghi, Virgil D. Gligor, and Moti Yung. ACM, 2013, pp. 789–800.
/)%: 10.1145/2508859.2516701. (!&: https://doi.org/10.1145/
2508859.2516701.

[DD15] Sumit Kumar Debnath and Ratna Dutta. “Secure and E#cient Pri-
vate Set Intersection Cardinality Using Bloom Filter”. In: Information
Security - 18th International Conference, ISC 2015, Trondheim, Norway,
September 9-11, 2015, Proceedings. Ed. by Javier López and Chris J.
Mitchell. Vol. 9290. Lecture Notes in Computer Science. Springer,
2015, pp. 209–226. /)%: 10.1007/978-3-319-23318-5_12. (!&:
https://doi.org/10.1007/978-3-319-23318-5%5C_12.

[Deb+21] Sumit Kumar Debnath et al. “Secure and e#cient multiparty private
set intersection cardinality”. In: Adv. Math. Commun. 15.2 (2021),
pp. 365–386. /)%: 10.3934/amc.2020071. (!&: https://doi.org/10.
3934/amc.2020071.

[Ege+15] Rolf Egert et al. “Privately Computing Set-Union and Set-Intersection
Cardinality via Bloom Filters”. In: Information Security and Privacy
- 20th Australasian Conference, ACISP 2015, Brisbane, QLD, Australia,
June 29 - July 1, 2015, Proceedings. Ed. by Ernest Foo and Douglas
Stebila. Vol. 9144. Lecture Notes in Computer Science. Springer, 2015,
pp. 413–430. /)%: 10.1007/978-3-319-19962-7_24. (!&: https:
//doi.org/10.1007/978-3-319-19962-7%5C_24.

[GG10] Ashish Goel and Pankaj Gupta. “Small subset queries and bloom
filters using ternary associative memories, with applications”. In: SIG-
METRICS 2010, Proceedings of the 2010 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, New York,
New York, USA, 14-18 June 2010. Ed. by Vishal Misra, Paul Barford, and
Mark S. Squillante. ACM, 2010, pp. 143–154. /)%: 10.1145/1811039.
1811056. (!&: https://doi.org/10.1145/1811039.1811056.

[HL10] Carmit Hazay and Yehuda Lindell. “A Note on the Relation be-
tween the Definitions of Security for Semi-Honest and Malicious
Adversaries”. In: IACR Cryptol. ePrint Arch. (2010), p. 551. (!&: http:
//eprint.iacr.org/2010/551.

[Kal00] Burt Kaliski. RFC2898: Pkcs# 5: Password-based cryptography specification
version 2.0. 2000.

[Ker12] Florian Kerschbaum. “Outsourced private set intersection using ho-
momorphic encryption”. In: Proceedings of the 7th ACM Symposium
on Information, Computer and Communications Security. ASIACCS ’12.
Seoul, Korea: Association for Computing Machinery, 2012, pp. 85–86.
%01,: 9781450316484. /)%: 10.1145/2414456.2414506. (!&: https:
//doi.org/10.1145/2414456.2414506.

94

https://doi.org/10.1145/2508859.2516701
https://doi.org/10.1145/2508859.2516701
https://doi.org/10.1145/2508859.2516701
https://doi.org/10.1007/978-3-319-23318-5%5C_12
https://doi.org/10.1007/978-3-319-23318-5%5C_12
https://doi.org/10.3934/amc.2020071
https://doi.org/10.3934/amc.2020071
https://doi.org/10.3934/amc.2020071
https://doi.org/10.1007/978-3-319-19962-7%5C_24
https://doi.org/10.1007/978-3-319-19962-7%5C_24
https://doi.org/10.1007/978-3-319-19962-7%5C_24
https://doi.org/10.1145/1811039.1811056
https://doi.org/10.1145/1811039.1811056
https://doi.org/10.1145/1811039.1811056
http://eprint.iacr.org/2010/551
http://eprint.iacr.org/2010/551
https://doi.org/10.1145/2414456.2414506
https://doi.org/10.1145/2414456.2414506
https://doi.org/10.1145/2414456.2414506

[Liu+21] Bai Liu et al. “Quantum private set intersection cardinality based on
bloom filter”. In: Scientific Reports 11.1 (Aug. 30, 2021), p. 17332. /)%:
10.1038/s41598-021-96770-1. (!&: https://doi.org/10.1038/
s41598-021-96770-1.

[LLT24] Keyang Liu, Xingxin Li, and Tsuyoshi Takagi. “Review the Cuckoo
Hash-Based Unbalanced Private Set Union: Leakage, Fix, and Op-
timization”. In: Computer Security - ESORICS 2024 - 29th European
Symposium on Research in Computer Security, Bydgoszcz, Poland, Septem-
ber 16-20, 2024, Proceedings, Part II. Ed. by Joaquín García-Alfaro et
al. Vol. 14983. Lecture Notes in Computer Science. Springer, 2024,
pp. 331–352. /)%: 10.1007/978-3-031-70890-9_17. (!&: https:
//doi.org/10.1007/978-3-031-70890-9%5C_17.

[MN15] Atsuko Miyaji and Shohei Nishida. “A Scalable Multiparty Private
Set Intersection”. In: Network and System Security. Ed. by Meikang Qiu
et al. Cham: Springer International Publishing, 2015, pp. 376–385. %01,:
978-3-319-25645-0.

[MNN17] Atsuko Miyaji, Kazuhisa Nakasho, and Shohei Nishida. “Privacy-
Preserving Integration of Medical Data - A Practical Multiparty
Private Set Intersection”. In: J. Medical Syst. 41.3 (2017), 37:1–37:10. /)%:
10.1007/S10916-016-0657-4. (!&: https://doi.org/10.1007/
s10916-016-0657-4.

[Qiu+22] Shuo Qiu et al. “SE-PSI: Fog/Cloud server-aided enhanced secure and
e"ective private set intersection on scalable datasets with Bloom Filter”.
In: Mathematical Biosciences and Engineering 19.2 (2022), pp. 1861–1876.
%00,: 1551-0018. /)%: 10.3934/mbe.2022087. (!&: https://www.
aimspress.com/article/doi/10.3934/mbe.2022087.

[RA23] Ou Ruan and Chaohao Ai. “An e#cient multi-party private set
intersection protocols based on bloom filter”. In: Second International
Conference on Algorithms, Microchips, and Network Applications (AMNA
2023). Ed. by Kannimuthu Subramaniam and Arunkumar Palanisamy
Muthuramalingam. Vol. 12635. International Society for Optics and
Photonics. SPIE, 2023, p. 1263518. /)%: 10.1117/12.2678880. (!&:
https://doi.org/10.1117/12.2678880.

[RR17] Peter Rindal and Mike Rosulek. “Improved Private Set Intersection
Against Malicious Adversaries”. In: Advances in Cryptology - EU-
ROCRYPT 2017 - 36th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Paris, France, April 30 -
May 4, 2017, Proceedings, Part I. Ed. by Jean-Sébastien Coron and
Jesper Buus Nielsen. Vol. 10210. Lecture Notes in Computer Science.
2017, pp. 235–259. /)%: 10.1007/978- 3- 319- 56620- 7_9. (!&:
https://doi.org/10.1007/978-3-319-56620-7%5C_9.

[Rua+23] Ou Ruan et al. “A Practical Multiparty Private Set Intersection Protocol
Based on Bloom Filters for Unbalanced Scenarios”. In: Applied Sciences
13.24 (2023). %00,: 2076-3417. /)%: 10.3390/app132413215. (!&: https:
//www.mdpi.com/2076-3417/13/24/13215.

95

https://doi.org/10.1038/s41598-021-96770-1
https://doi.org/10.1038/s41598-021-96770-1
https://doi.org/10.1038/s41598-021-96770-1
https://doi.org/10.1007/978-3-031-70890-9%5C_17
https://doi.org/10.1007/978-3-031-70890-9%5C_17
https://doi.org/10.1007/978-3-031-70890-9%5C_17
https://doi.org/10.1007/S10916-016-0657-4
https://doi.org/10.1007/s10916-016-0657-4
https://doi.org/10.1007/s10916-016-0657-4
https://doi.org/10.3934/mbe.2022087
https://www.aimspress.com/article/doi/10.3934/mbe.2022087
https://www.aimspress.com/article/doi/10.3934/mbe.2022087
https://doi.org/10.1117/12.2678880
https://doi.org/10.1117/12.2678880
https://doi.org/10.1007/978-3-319-56620-7%5C_9
https://doi.org/10.1007/978-3-319-56620-7%5C_9
https://doi.org/10.3390/app132413215
https://www.mdpi.com/2076-3417/13/24/13215
https://www.mdpi.com/2076-3417/13/24/13215

[VCE22] Jelle Vos, Mauro Conti, and Zekeriya Erkin. “Fast Multi-party Private
Set Operations in the Star Topology from Secure ANDs and ORs”. In:
IACR Cryptol. ePrint Arch. (2022), p. 721. (!&: https://eprint.iacr.
org/2022/721.

[VCE23] Jelle Vos, Mauro Conti, and Zekeriya Erkin. “SoK: Collusion-resistant
Multi-party Private Set Intersections in the Semi-honest Model”. In:
IACR Cryptol. ePrint Arch. (2023), p. 1777. (!&: https://eprint.iacr.
org/2023/1777.

[Zhu+18] Hongliang Zhu et al. “Outsourcing set intersection computation based
on bloom filter for privacy preservation in multimedia processing”.
In: Security and Communication Networks 2018.1 (2018), p. 5841967.

2.A Conditions on the false positive probability

Lemma 7. Pr[FPs = 0] ∀ 1
2 if and only if 𝑎 < 1

|↘ |⇐𝑈 .

Proof. First, consider that the distribution of the number of false positives is
binomial Pr[FPs] ∃ ℰ(|↘ | ⇐ 𝑈 , 𝑎), because |↘/𝑉2| = |↘ | ⇐ 𝑈 and 𝑎 is the false
positive probability. The median is given by ̸(|↘ | ⇐ 𝑈)𝑎↦ or ℱ(|↘ | ⇐ 𝑈)𝑎𝒢.

Our lemma holds when the median 𝑥 is at or below FPs = 0. Since ̸(|↘ | ⇐
𝑈)𝑎↦ ≃ ℱ(|↘ | ⇐ 𝑈)𝑎𝒢, we get that:

𝑥 ≃ 0 (2.17)
̸(|↘ | ⇐ 𝑈)𝑎↦ ≃ 0 (2.18)
(|↘ | ⇐ 𝑈)𝑎 < 1 (2.19)

𝑎 <
1

|↘ | ⇐ 𝑈

⊋

Lemma 8. Pr[FPs = 𝑈] ∀ 1
2 if and only if 𝑎 > 𝑈⇐1

|↘ |⇐𝑈 .

Proof. Like in Lemma 7, the distribution of the number of false positives is binomial
Pr[FPs] ∃ ℰ(|↘ | ⇐ 𝑈 , 𝑎), and the median is given by ̸(|↘ | ⇐ 𝑈)𝑎↦ or ℱ(|↘ | ⇐ 𝑈)𝑎𝒢.

Our lemma holds when the median 𝑥 is at or above FPs = 𝑈. Since ̸(|↘ | ⇐
𝑈)𝑎↦ ≃ ℱ(|↘ | ⇐ 𝑈)𝑎𝒢, we get that:

𝑥 ∀ 𝑈 (2.20)
ℱ(|↘ | ⇐ 𝑈)𝑎𝒢 ∀ 𝑈 (2.21)
(|↘ | ⇐ 𝑈)𝑎 > 𝑈 ⇐ 1 (2.22)

𝑎 >
𝑈 ⇐ 1

|↘ | ⇐ 𝑈

⊋

96

https://eprint.iacr.org/2022/721
https://eprint.iacr.org/2022/721
https://eprint.iacr.org/2023/1777
https://eprint.iacr.org/2023/1777

2.B Additional lemmas for proving upper bounds

Lemma 9. Given 𝑎 > 𝑈⇐1
|↘ |⇐𝑈 and 0 ≃ 𝜓fp ≃ 1

2 , the following is monotonically increasing
with 𝜓fp:

𝑈⇐1∑
𝑋=0

Pr[FPs = 𝑋]𝜓𝑋fp(1 ⇐ 𝜓fp)𝑈⇐1⇐𝑋

Proof. We show that the derivative is non-negative for the entire interval 𝜓fp ↓ [0, 1
2):

0 ≃ 𝜕
𝜕𝜓fp

𝑈⇐1∑
𝑋=0

Pr[FPs = 𝑋]𝜓𝑋fp(1 ⇐ 𝜓fp)𝑈⇐1⇐𝑋
, (2.23)

=
𝑈⇐1∑
𝑋=0

Pr[FPs = 𝑋]
(
𝑋𝜓𝑋⇐1

fp (1 ⇐ 𝜓fp)𝑈⇐1⇐𝑋 + 𝜓𝑋fp(⇐𝑋 ⇐ 𝑈 + 1)(1 ⇐ 𝜓fp)𝑈⇐2⇐𝑋
)
, (2.24)

=
𝑈⇐1∑
𝑋=0

Pr[FPs = 𝑋]𝜓𝑋⇐1
fp (1 ⇐ 𝜓fp)𝑈⇐2⇐𝑋 (

𝑋(1 ⇐ 𝜓fp) + 𝜓fp(𝑋 ⇐ 𝑈 + 1)
)
, (2.25)

=
𝑈⇐1∑
𝑋=0

Pr[FPs = 𝑋]𝜓𝑋⇐1
fp (1 ⇐ 𝜓fp)𝑈⇐2⇐𝑋 (

𝑋 ⇐ 𝑋 · 𝜓fp + 𝑋 · 𝜓fp ⇐ 𝑈 · 𝜓fp + 𝜓fp
)
, (2.26)

=
𝑈⇐1∑
𝑋=0

Pr[FPs = 𝑋]𝜓𝑋⇐1
fp (1 ⇐ 𝜓fp)𝑈⇐2⇐𝑋 (

𝑋 + (1 ⇐ 𝑈) · 𝜓fp
)
, (2.27)

∀
𝑈⇐1∑
𝑋=0

Pr[FPs = 𝑋]𝜓𝑋⇐1
fp (1 ⇐ 𝜓fp)𝑈⇐2⇐𝑋

(
𝑋 + (1 ⇐ 𝑈) · 1

2

)
. (2.28)

At this point, it remains to show that (2.28) is non-negative. Notice that half of
the terms in this sum are positive, and half of them are negative. Specifically, it
is the rightmost clause that determines the sign: the sign is positive if and only
if 𝑋 ∀ 𝑈⇐1

2 . To ensure that the derivative is always positive, we proceed to show
that the magnitude of the positive terms is at least as large as the magnitude of the
negative terms. That is:

𝑈⇐1∑
𝑋=ℱ 𝑈⇐1

2 𝒢

Pr[FPs = 𝑋]𝜓𝑋⇐1
fp (1 ⇐ 𝜓fp)𝑈⇐2⇐𝑋

(
𝑋 + (1 ⇐ 𝑈) · 1

2

)
, (2.29)

must be at least as large as:......
̸ 𝑈⇐1

2 ↦∑
𝑋=0

Pr[FPs = 𝑋]𝜓𝑋⇐1
fp (1 ⇐ 𝜓fp)𝑈⇐2⇐𝑋

(
𝑋 + (1 ⇐ 𝑈) · 1

2

)...... = (2.30)

̸ 𝑈⇐1
2 ↦∑

𝑋=0
Pr[FPs = 𝑋]𝜓𝑋⇐1

fp (1 ⇐ 𝜓fp)𝑈⇐2⇐𝑋
(
(𝑈 ⇐ 1) · 1

2 ⇐ 𝑋

)
. (2.31)

97

It is su#cient to show that each term in (2.31) has a unique dominating term
in (2.29). We do so by comparing the 𝑋th term in (2.31) with the 𝑋

▽th term in (2.29),
where 𝑋

▽ = 𝑈 ⇐ 1 ⇐ 𝑋, and showing that the term for 𝑋▽ dominates the term of 𝑋:

Pr[FPs = 𝑋
▽]𝜓𝑋▽⇐1

fp (1 ⇐ 𝜓fp)𝑈⇐2⇐𝑋▽
(
𝑋
▽ + (1 ⇐ 𝑈) · 1

2

)
∀ (2.32)

Pr[FPs = 𝑋]𝜓𝑋⇐1
fp (1 ⇐ 𝜓fp)𝑈⇐2⇐𝑋

(
(𝑈 ⇐ 1) · 1

2 ⇐ 𝑋

)
. (2.33)

We already know that Pr[FPs = 𝑋] is monotonically increasing with 𝑋 for 𝑋 ↓ [0, 𝑈],
so it remains to show that:

𝜓𝑋
▽⇐1

fp (1 ⇐ 𝜓fp)𝑈⇐2⇐𝑋▽
(
𝑋
▽ + (1 ⇐ 𝑈) · 1

2

)
∀ 𝜓𝑋⇐1

fp (1 ⇐ 𝜓fp)𝑈⇐2⇐𝑋
(
(𝑈 ⇐ 1) · 1

2 ⇐ 𝑋

)
. (2.34)

Next, we have that: (
𝑋
▽ + (1 ⇐ 𝑈) · 1

2

)
=
(
(𝑈 ⇐ 1) · 1

2 ⇐ 𝑋

)
, (2.35)

𝑈 ⇐ 1 ⇐ 𝑋 + 1
2 ⇐ 𝑈 · 1

2 = 𝑈 · 1
2 ⇐ 1

2 ⇐ 𝑋 , (2.36)

𝑈 ⇐ 1 ⇐ 𝑋 = 𝑈 ⇐ 1 ⇐ 𝑋 . (2.37)

Finally, we must show that:

𝜓𝑋
▽⇐1

fp (1 ⇐ 𝜓fp)𝑈⇐2⇐𝑋▽ ∀ 𝜓𝑋⇐1
fp (1 ⇐ 𝜓fp)𝑈⇐2⇐𝑋

. (2.38)

We give a proof by induction to show that 𝜓𝑅⇐1
fp (1⇐𝜓fp)𝑈⇐2⇐𝑅 decreases monotonically

with 𝑅. This implies that the LHS of (2.38) is greater than or equal to the RHS
because 𝑋

▽ is larger than 𝑋. Incrementing 𝑅 by 1 yields:

𝜓𝑅fp(1 ⇐ 𝜓fp)𝑈⇐3⇐𝑅 = 𝜓fp(1 ⇐ 𝜓fp)⇐1

𝜓𝑅⇐1

fp (1 ⇐ 𝜓fp)𝑈⇐2⇐𝑅

. (2.39)

This factor 𝜓fp(1 ⇐ 𝜓fp)⇐1 ≃ 1, because 𝜓fp ↓ [0, 1
2] and (1 ⇐ 𝜓fp)⇐1 ↓ [1, 2].

We note that when 𝑈 is odd, the sum in (2.28) has 𝑈⇐1
2 positive and negative

terms (covered by our analysis), while the last term 𝑋 = 𝑈⇐1
2 always equals zero, so

we do not need to consider it. This concludes the proof. ⊋

98

Chapter 3

Fast Multi-party Private Set Operations in the Star
Topology from Secure ANDs and ORs

Previous homomorphic encryption-based multi-party private set op-
eration protocols are all instantiated with integer-based homomorphic
encryption. In this chapter, we propose low-round homomorphic
encryption-based protocols in the star topology that are instantiated
over elliptic curves, reducing the computational cost and bandwidth
required for these protocols to complete. While the previous chapters
focused on set intersections, we also present multi-party private set
union protocols in the star topology. In the first part of this chapter,
we use the bitset representation to propose e#cient intersections and
unions when the universe is small.
When the universe is large, bitset-based set operations no longer
perform e#ciently as the representation grows linearly with the
number of elements in the universe. In the second part of this chapter,
we put forward alternative ways of performing set intersections
and unions in the star topology for large universes. Specifically,
we use Bloom filters to perform intersections, and we use a divide-
and-conquer approach to exponentially reduce the size of the bitset
representation at the cost of introducing more interactions for set
unions.
In the previous chapter, we showed that there are security problems
with small Bloom filters. This required us to revisit the parameteri-
zation of our multi-party private set intersection protocol for large
universes when compared to the original version of this work.

This chapter is a revised version of the work with the same title that has been
made available on the IACR ePrint Archive in 2022, authored by Jelle Vos,
Mauro Conti, and Zekeriya Erkin.

3.1 Introduction
Our increasingly digital society is making a growing amount of data available
to computers, networks, and third parties. As a consequence, our sensitive
data is in danger of getting exposed. The field of multi-party computation
attempts to mitigate this by studying protocols that enable parties to perform their
operations digitally without the risk of privacy-violating data leaks. Among those
operations are multi-party private set operations. We consider multi-party private

99

set intersections (MPSI) and unions (MPSU): Consider 𝑄 parties →1 , . . . ,→𝑄 , who
each have a set 𝑉1 , . . . ,𝑉𝑄 , respectively. For MPSIs, the task is to privately compute
𝑉1↑ · · ·↑𝑉𝑄 . For MPSUs, the parties must compute 𝑉1↔ · · ·↔𝑉𝑄 . Each set contains
at most 𝑈 elements from a finite universe ↘ , so |𝑉𝑋 | ≃ 𝑈. In our setting, we select a
leader who receives the result of the operation, but all parties are allowed to learn
it. We refer to the other parties as assistants. We denote →1 as the leader, without
loss of generality.

MPSI and MPSU protocols serve many di"erent applications, as set operations
form a fundamental building block in day-to-day functionality. For example, by
using a private set intersection on possible dates for a meeting, multiple colleagues
can select a meeting date at which they are all available without revealing other
information about their calendar. A use case of private set unions is the creation
of no-fly lists: Several agencies can prevent passengers from flying, but it would
leak information if an agency knew which individuals the other agencies were
investigating. The result of a private set union reveals the complete set of banned
passengers, but without reference to which or how many agencies are investigating
them. Other use cases of MPSIs include confidential data sharing on security
incident information and botnet detection [Bay+21]. At the same time, MPSUs
form the basis of other privacy-preserving protocols such as private data mining
and graph algorithms [Fri07].

These MPSI and MPSU protocols have been studied for almost two decades
now, but the current state of the art still su"ers from significant costs when the
number of elements 𝑈 in the set or the number of parties 𝑄 grows, making these
protocols prohibitively expensive in practice. For example, protocols using integer-
based homomorphic encryption require 𝑍(𝑈) 3072-bit ciphertexts [Bar20] and long
run times due to the expensive public-key operations. Oblivious transfer-based
protocols o"er performance gains by o$oading public-key operations to an initial
phase, but they require all involved parties to send messages to all other parties.

Interestingly, several homomorphic encryption-based protocols for MPSIs [MN15;
Bay+21; Deb+21a; Bay+22] and MPSUs [Bay+21] implicitly rely on secure multi-
party logic in the form of private AND and OR operation. So, e#cient protocols for
these building blocks directly lead to e#cient MPSI and MPSU protocols. In a
private logic protocol, parties →1 , . . . ,→𝑄 submit input bits 𝑅1 , . . . , 𝑅𝑄 to privately
compute 𝑅1 ℋ · · · ℋ 𝑅𝑄 . Through DeMorgan’s law one can transform the same
protocol to compute 𝑅1 ∞ · · · ∞ 𝑅𝑄 . In this work we also consider the notion of
‘composed’ ORs and ANDs, where the parties submit multiple bits at once, and a
leader chooses the bits to compute these logical operations over. While private
logic protocols have been studied before [HZ06], current solutions either provide
weak privacy guarantees or require a high degree of interaction between all parties.

In this paper, we propose e#cient protocols for performing these private
AND and OR operations. Instead of o$oading public key operations to an ear-
lier phase like oblivious-transfer based protocols do, we make the operations
significantly cheaper by using elliptic curve cryptography [Ber06]. In this way,
we decrease the computational overhead of homomorphic encryption while the
parties communicate strictly in a star topology with minimal overhead.

We compare our work against four works that represent the state of the art of
MPSI and MPSU protocols [Kol+17; Bay+21; Bay+22; BA16]. The MPSI protocol by

100

Kolesnikov et al. [Kol+17] scales e#ciently with the number of elements 𝑈, but scales
quadratically with the number of parties 𝑄 as it requires communication between
all pairs of parties. This protocol scales largely independent of the size of the
universe |↘ | , and it is suitable for smaller numbers of parties. Bay et al. [Bay+21],
on the other hand, propose e#cient MPSI and MPSU protocols that scale linearly
with the number of parties 𝑄 but also with the size of the universe |↘ | . Therefore,
these protocols are suitable for many parties so long as the universe remains small;
they would be unsuitable to represent IP elements, where |↘ | = 232 ↗ 4 𝒜 109.
Bay et al. [Bay+22] also propose another protocol that would be suitable for many
parties and large universes, but the final result can contain false positives, and it
only outperforms Kolesnikov et al. when the number of parties is relatively large.
For example, when 𝑈 = 128, the number of parties must exceed 65. We consider
the current state of the art of MPSU protocols for large universes to be Blanton
& Aguiar’s [BA16]. Their secret sharing-based protocol is concretely e#cient for
small set sizes 𝑈, but the round complexity is 𝑍(log2

𝑈).
We propose to instantiate the protocols by Bay et al. [Bay+21; Bay+22] with our

secure logic, providing improvements in computation and communication over
previous MPSIs and MPSUs. Firstly, we achieve a run time improvement of two
orders of magnitude compared to the original integer-based homomorphic MPSI
protocol by Bay et al. [Bay+21], as we demonstrate in Section 3.5. We also provide
run time results for our MPSU protocol that are similar to the work by Blanton
& Aguiar [BA16] but with a constant round complexity. We claim that with these
improvements and the fact that our protocols runs in the star topology, they are
more practical to deploy than previous protocols that are slower or require a full
mesh topology. Concretely, our contributions are as follows:

• We present two private OR protocols in the star topology, namely a standard
and composed variant, both of which can be transformed into private AND
protocols. We prove our protocols to be secure in the semi-honest model
using a simulation-based proof and experimentally demonstrate that their
run time is constant.

• We use this private logic to instantiate MPSI and MPSU protocols based on
previous work [Bay+21] that compute the exact set intersection and union
e#ciently for small universes. The MPSI protocol is two orders of magnitude
faster.

• We instantiate an approximate MPSI protocol based on previous work [Bay+22]
that scales independently from the size of the universe.

• We present a novel e#cient MPSU protocol that scales only logarithmically
with the size of the universe for a chosen constant number of interactions.1

The rest of the paper is organised as follows. We discuss related work in Section
3.2, and elliptic curve cryptography and Bloom filters in Section 3.3. In Section
3.4 we propose our private OR and AND protocols. Then, we use these protocols
in Section 3.5 to construct an MPSI and and MPSU protocol for small universes.

1Our implementations are at DOI 10.4121/5db7b31f-61f4-4b81-94e4-ab92ece86a7c and GitHub

101

https://github.com/jellevos/private-logic-and-mpso

After that, we construct an MPSI protocol for large universes in Section 3.6, and an
MPSU protocol for large universes in Section 3.7. Finally, we state opportunities
for future work and conclude our paper in Section 3.8.

3.2 Related work
In this section, we first highlight previous works on multi-party private logic,
and continue with multi-party private set operations. For MPSI and MPSU
protocols, there are solutions based on Oblivious Transfer (OT) [Kol+17; IOP18],
homomorphic encryption [KS05], and secret sharing [LW07; SCK12], among others.
For both MPSI and MPSU protocols, we provide an overview of recent works
with their characteristics in Table 3.1, along with our constant-time protocols and
the first works on in this field. In the table, 𝑊 represents the maximum resistance
to collusion attacks. In other words, how large can a group of colluding parties
be before the protocol’s privacy guarantees fail. For a fair comparison, we take
𝑊 = 𝑄 ⇐ 1.

3.2.1 Multi-party private logic
While oblivious transfer and garbled circuits provide fast solutions for two-party
private logic operations, they do not extend straightforwardly to the multi-party
case. In this subsection, we discuss previous works about multi-party private
AND and OR operations. Here, parties →1 , . . . ,→𝑄 with input bits 𝑅1 , . . . , 𝑅𝑄 want to
compute either 𝑅1 ∞ · · · ∞ 𝑅𝑄 or 𝑅1 ℋ · · · ℋ 𝑅𝑄 , respectively.

Private OR operations have been studied under the name veto voting. At the
same time, previous MPSI protocols implicitly use similar constructions as veto
voting schemes but inversely to compute AND operations.

One of the first veto voting schemes came in the form of anonymous veto
networks (AV-nets) [HZ06], which are closely related to the dining cryptographers
problem [Cha88]. In an AV-net, any set of parties can veto some decision without
the other parties identifying them. However, this requirement is not su#cient
to guarantee a private OR operation. Specifically, a party can locally perform the
second round of the protocol on a di"erent input to examine the result had they
changed their mind. Essentially, this means that an AV-net securely computes an
OR operation between the parties outside of each colluding set, but that makes
it unusable for multi-party private set operations. PriVeto [BAH19] fixes these
privacy problems using NIZKs, but as a consequence, this requires a full mesh
topology.

Another veto voting scheme by Kiayias & Yung [KY03] computes 𝑅
▽
1 + · · · + 𝑅

▽
𝑄
,

where 𝑅
▽
𝑋
= 0 if 𝑅 = 0, and otherwise 𝑅

▽
𝑋

is some random element. Debnath et
al. [Deb+21a] use a similar approach for an MPSI protocol, where 𝑅

▽
𝑋
is either 0 or 1.

The problem with the former scheme is that a party can tell if it is the only one who
submitted a one [Boy+19]. The latter also leaks the number of ones in the output.

The MPSI protocol of Miyaji et al. [MN15] implicitly performs a private AND
operation by computing 𝑚1(𝑅1 + · · · + 𝑅𝑄) homomorphically, and checking if the
result is the identity element. The randomness 𝑚1 is generated by the leader to

102

prevent revealing the number of submitted ones. However, since the leader knows
this randomization, it can revert it. A secure version of the protocol comes from
Bay et al. [Bay+21], which computes (𝑚1 + · · · + 𝑚𝑄)(𝑅1 + · · · + 𝑅𝑄). This scheme is
conceptually identical to the veto voting scheme by Brandt [Bra05].

More generally, these MPSI protocols compute an AND operation as r(𝑅1+· · ·+𝑅𝑄)
and then check equality with the identity element, where r is some randomness
not known to any set of colluding parties. One can also perform this arithmetic
using general-purpose multi-party computation techniques such as secret sharing,
but this has two major shortcomings. First, providing collusion resistance for up
to 𝑄 ⇐ 1 parties requires each party to communicate in a full mesh topology. This
would require significant bandwidth for an assistant, especially when 𝑄 is large.
Secondly, it is not trivial to perform composed operations, where the leader selects
the inputs to perform the logical operation on, keeping this choice private.

An alternative arithmetic circuit for the AND operation is 𝑅1 𝒜 · · · 𝒜 𝑅𝑄 . Also, by
the inclusion-exclusion principle, the OR operation can be expressed as:

(𝑅1 + · · · + 𝑅𝑄) + · · ·

other
terms

· · · ⇐ 1𝑄+1(𝑅1 𝒜 · · · 𝒜 𝑅𝑄) , (3.1)

but both operations require an 𝑄-degree multiplication. As a result, instead of a
constant-round protocol, the parties need at least 𝑍(log 𝑄) rounds of communica-
tion.

In this work, we propose private AND and OR protocols that strictly function in a
star topology and run in a constant number of rounds. We also provide composed
versions. Instead of computing the aforementioned circuit for r = 𝑚1 + · · · + 𝑚𝑄 , we
compute r = 𝑚1𝑚2 + 𝑚1𝑚3 + · · · + 𝑚1𝑚𝑄 , allowing for further optimizations.

3.2.2 Multi-party private set intersections
In this subsection, we highlight several of the latest works on MPSI, but we omit
developments in two-party set intersections and threshold intersections, as these
works pertain to a di"erent setting.

Kissner & Song [KS05] proposed one of the first MPSI protocols in 2005, along
with protocols that perform more complex set operations. Their approach involves
encoding set elements as the roots of a polynomial. Then, using a threshold version
of the Paillier cryptosystem, they add and randomize encrypted polynomials by
passing them around the group of parties. The resulting polynomial only reveals
the elements that were in each input set, along with a negligible probability of
false positives. In Table 3.1 we refer to the topology as a ‘wheel’, because next to a
channel between each assistant and the leader, each assistant has a channel to one
other assistant, creating the shape of a wheel. After Kissner & Song [KS05], Li &
Wu [LW07] proposed a similar protocol based on Shamir’s secret sharing. Later
works used the same set encoding [SS09; CJS12].

103

Table
3.1:C

om
parison

ofselected
w

orksin
term

sofcom
m

unication,com
putation

and
security

using
the

notation
from

Table
3.2.Fora

m
ore

com
prehensive

overview
ofcollusion-resistantM

PSIprotocols,see
Table

1.2
in

C
hapter1.

W
e

presentourprotocols
w

ith
𝑊
=

𝑄
⇐

1,butitis
possible

to
reduce

the
collusion

threshold
𝑊,w

hich
low

ersthe
com

m
unicationalcom

plexity.
*W

e
adapted

these
com

plexitiesfrom
the

originalw
orks,see

A
ppendix

3.A
&

3.B.

W
ork

C
om

m
unication

C
om

putation
Security

Ref.
Year

Topology
Leader

A
ssistant

Rounds
Leader

A
ssistant

C
ollusion

A
ssum

ption
M

ulti-party
Private

SetIntersection
(M

PSI)protocols
[K

S05]
2005

W
heel

𝑍
(
𝑄
𝑈)*

𝑍
(
𝑊
𝑈)*

𝑍
(
𝑄)

𝑍
(
𝑊
𝑈 2)*

𝑍
(
𝑊
𝑈 2)*

𝑄
⇐

1
D

C
R

[H
V

17]
2017

Star
𝑍
(
𝑄
𝑈)

𝑍
(
𝑈)

𝑍
(1)

𝑍
(
𝑄
𝑈 2)*

𝑍
(
𝑈)*

𝑄
⇐

1
D

C
R

[Kol+17]
2017

Fullm
esh

𝑍
(
𝑄
𝑈)

𝑍
(
𝑊
𝑈)

𝑍
(1)

𝑍
(
𝑄)

𝑍
(
𝑊)

𝑄
⇐

1
TD

P
[IO

P18]
2018

Fullm
esh

𝑍
(
𝑄
𝑈)*

𝑍
(
𝑄
𝑈)*

𝑍
(1)

𝑍
(
𝑄
𝑈)*

𝑍
(
𝑄
𝑈)*

𝑄
⇐

1
TD

P
[Bay+21]

2021
Star

𝑍
(
𝑄
𝑈)

𝑍
(|↘

|)
𝑍
(1)

𝑍
(
𝑄
𝑈
𝑗)

𝑍
(|↘

|)
𝑄
⇐

1
D

C
R

[D
eb+21b]

2021
Star

𝑍
(
𝑄
𝑈)*

𝑍
(
𝑈)*

𝑍
(1)

𝑍
(
𝑄
𝑈
𝑗)*

𝑍
(
𝑈)*

𝑄
⇐

1
D

D
H

[C
ha+21]

2021
Fullm

esh
𝑍
(
𝑄
𝑈log

𝑈)
𝑍
(
𝑈log

𝑈)
𝑍
(1)

𝑍
(
𝑄
𝑈)

𝑍
(
𝑈)

𝑄
⇐

1
TD

P
[N

TY21]
2021

Fullm
esh

𝑍
(
𝑈m

ax(
𝑊
,
𝑄
⇐
𝑊))

𝑍
(
𝑈)

𝑍
(1)

𝑍
(
𝑈(
𝑄
⇐
𝑊))

𝑍
(
𝑊
𝑈)

𝑄
⇐

1
TD

P
[Bay+22]

2022
Star

𝑍
(
𝑄
𝑈)*

𝑍
(
𝑈)*

𝑍
(1)

𝑍
(
𝑄
𝑈
𝑗)*

𝑍
(
𝑈)*

𝑄
⇐

1
D

C
R

M
PSIsm

all
Star

𝑍
(
𝑄|↘

|)
𝑍
(|↘

|)
𝑍
(1)

𝑍
(
𝑄|↘

|)
𝑍
(|↘

|)
𝑄
⇐

1
EC

D
D

H
M

PSIlarge
Star

𝑍
(
𝑄
𝑈)

𝑍
(
𝑈)

𝑍
(1)

𝑍
(
𝑄
𝑈
𝑗)

𝑍
(
𝑈)

𝑄
⇐

1
EC

D
D

H
M

ulti-party
Private

SetU
nion

(M
PSU

)protocols
[Fri07]

2007
W

heel
𝑍
(
𝑄
𝑈)*

𝑍
(
𝑄
𝑈)*

𝑍
(
𝑄)

𝑍
(
𝑄
𝑈 2)*

𝑍
(
𝑄
𝑈 2)*

𝑄
⇐

1
D

C
R

[SCK
12]

2012
Fullm

esh
𝑍
(
𝑄

3
𝑈 2)

𝑍
(
𝑄

3
𝑈 2)

𝑍
(1)

𝑍
(
𝑄

4
𝑈 2)*

𝑍
(
𝑄

4
𝑈 2)*

̸
𝑄2 ↦

-
[BA

16]
2016

Fullm
esh

𝑍
(
𝑄
𝑈log

𝑈+
𝑄

2)
𝑍
(log

𝑈)
𝑍
(
𝑄
𝑈log

𝑈+
𝑄

2)
̸
𝑄2 ↦

-
M

PSU
sm

all
Star

𝑍
(
𝑄|↘

|)
𝑍
(|↘

|)
𝑍
(1)

𝑍
(
𝑄|↘

|)
𝑍
(|↘

|)
𝑄
⇐

1
EC

D
D

H
M

PSU
large

Star
𝑍
(
𝑄

2
𝑈log|↘

|)
𝑍
(
𝑄
𝑈log|↘

|)
𝑍
(1)

𝑍
(
𝑄

2
𝑈log|↘

|)
𝑍
(
𝑄
𝑈log|↘

|)
𝑄
⇐

1
EC

D
D

H

104

Later, Miyaji & Nishida [MN15] proposed a Bloom filter-based MPSI that
yields the filter representing the intersection, extending the idea of Kerschbaum et
al. [Ker12] to multiple parties. They encrypt the Bloom filters using a threshold
version of exponential ElGamal.

In 2017, Hazay et al. [HV17] proposed a protocol that uses the polynomial
set encoding. They evaluate the polynomials obliviously using an additive
homomorphic threshold cryptosystem, and provide an extension of the protocol
secure in the malicious model.

Kolesnikov et al. [Kol+17] propose a protocol that uses an OT-based primitive
called oblivious programmable pseudo-random functions (OPPRFs), which return
a pre-programmed value when queried on elements in the receiver’s set. The
authors provide a public implementation with which they set speed records, but
the protocol requires each pair of parties to interact with each other.

Inbar et al. [IOP18] propose another OT-based protocol that uses garbled Bloom
filters. Their protocol is a multi-party version of a similar 2-party protocol [DCW13].
While in a regular Bloom filter one checks if the selected bins are set to 1, in a
garbled Bloom filter one performs an XOR operation between those bins to check if
the result is some specific value. The protocol requires all parties to interact.

Since then, Abadi et al. [ATD20] proposed an MPSI protocol in the delegated
setting, where the majority of computation is outsourced to a semi-honest third
party that cannot collude with any of the other parties participating in the protocol.
Thus, this setting is di"erent from ours, as we are interested in defending against
any collusion. For this reason, we exclude that work.

Bay et al. [Bay+21; Bay+22] propose multi-party private set operations based
on bitsets and Bloom filters using the threshold Paillier cryptosystem, extending
the ideas of Ruan et al. [Rua+19] and fixing the security problem of Miyaji &
Nishida [MN15]. The bitset-based protocols scale linearly with the size of the
universe, while the Bloom filter-based MPSI scales with the number of elements 𝑈

in exchange for a chance of false positives. Debnath et al. [Deb+21b] proposed a
similar Bloom filter-based protocol using a threshold version of ElGamal.

Finally, Chandran et al. [Cha+21] and Nevo et al. [NTY21] published pre-prints
that propose protocols inspired by Kolesnikov et al. [Kol+17], using OPPRFs as a
core functionality. The work by Nevo et al. is secure in the malicious model and it
outperforms both Chandran et al. and Kolesnikov et al. in their experiments. In
the case when the collusion resistance 𝑊 = 𝑄 ⇐ 1, their protocol is equivalent to the
protocol by Kolesnikov et al. that is secure in the (augmented) semi-honest model.
For this reason, we do not compare their concrete performance, but we list their
complexities in Table 3.1.

All of the papers above fall into one of two categories. Those in the first
category use integer-based homomorphic encryption, do not require pairwise
communication, and generally scale linearly with the number of parties. These
protocols incur high computational costs for large numbers of elements 𝑈. The
second category contains secret sharing and oblivious transfer-based protocols that
scale quadratically with the number of parties since the complexity for an assistant
scales with 𝑄 or 𝑊, and require a full mesh topology. While they are concretely
e#cient for small numbers of parties, the protocols become prohibitively expensive
for large 𝑄.

105

3.2.3 Multi-party private set unions
Frikken [Fri07] presents one of the first MPSU protocols. Each party represents its set
as an encrypted polynomial. In turn, each party receives an encrypted polynomial,
multiplies it with their polynomial, and evaluates it for their elements. The
parties shu$e and decrypt the resulting ciphertexts so that for each corresponding
element, there is only one ciphertext that does not decrypt to 0. Since parties pass
their ciphertexts around in a circular fashion, the number of rounds in the protocol
scales with the number of parties.

While the work by Shishido & Miyaji [SM18] refers to a set union in its title, the
actual functionality reflects that of a multiset union as it reveals the multiplicity
of each element in the resulting set. For this reason, we omit this work from
our comparison. The MPSU protocol by Seo et al. [SCK12] does not have this
problem, as the parties compute the least common multiple of the polynomials
that represent their sets, removing any multiplicities from the polynomial roots.
After this operation, the polynomials must be factored. The authors use reversed
Laurent series to speed up this step. The protocol revolves around arithmetic on the
rational randomized polynomials, which are shared using Shamir’s secret sharing.
As a result, the protocol is information-theoretically secure, but the multiplication
sub-protocol requires all parties to communicate with each other. Consequently,
the protocol scales poorly with the number of parties 𝑄, and quadratically with the
set size 𝑈.

Blanton & Aguiar [BA16] propose multi-party private set and multiset opera-
tions using general multi-party computation techniques based on secret sharing.
Their protocols involve sorting the elements, after which there exist e#cient algo-
rithms for computing the set operations. While their MPSI protocol does not reach
the same level of performance as other solutions, their MPSU protocol outperforms
other solutions, running in the order of seconds for small problem instances. The
protocol is dominated by the oblivious sorting protocol, but if the parties already
sort their sets, the round complexity is 𝑍(log 𝑈). In Table 3.1 we assume this
scenario.

Finally, the only multi-party private set operation relying on elliptic curve
cryptography is the union-cardinality protocol by Vos et al. [VED21]. Their
protocol approximates the cardinality of an aggregated Bloom filter by shu$ing it
and counting the number of ones. The operation di"ers from an MPSU protocol.

106

Table 3.2: Description of symbols in this work.

Symbol Description
Secure logic

𝑄 Number of parties
𝑊 Collusion resistance, for us 𝑊 = 𝑄 ⇐ 1
→𝑋 Party 𝑋

𝑅𝑋 Party →𝑋 ’s input bit
pk Public key
sk𝑋 Secret key of party →𝑋

𝐿
𝑅

𝑋
𝑅th evaluation pattern over party →𝑋 ’s bits

Sets
𝑈 Maximum set size, so |𝑉𝑋 | ≃ 𝑈

↘ Universe of elements
𝑉𝑋 The set of party →𝑋

�̂�𝑋[𝑜] Bin 𝑜 of party 𝑋’s set representation
Bloom filters

𝑞 Number of elements in a Bloom filter
𝑃 Number of bins in a Bloom filter
𝑗 Number of hashes in a Bloom filter
𝜓 Error rate of a membership query

Divide-and-conquer
𝑞 Length of a vector of bits
𝑦 Number of ones in a vector of bits
𝑠 Maximum number of iterations
𝑡 Number of splits per iteration

Security
𝑌⇓ Computationally indistinguishable
𝑇⇓ Statistically indistinguishable
𝑣 Indices of colluding parties
G Elliptic curve subgroup for which DDH holds
𝑧 Generator of group G

ℐ(G) Freshly random element from G
view𝑋 An actual view of party →𝑋

Security assumptions
DCR Decisional Composite Residuosity
TDP Trapdoor Permutations
DDH Decisional Di#e-Hellman

ECDDH Elliptic-Curve Decisional Di#e-Hellman

107

3.3 Preliminaries
In this section, we give a short introduction about ElGamal over elliptic curves and
Bloom filters. The notation that we use here and in the remainder of this paper
can be found in Table 3.2.

3.3.1 Elliptic curve ElGamal
The ElGamal cryptosystem allows the use of any group G in which the DDH
assumption holds [ElG84]:

Definition 5 (Decisional Di#e-Hellman). Given J𝑧 and 𝑏𝑧 for some random
J , 𝑏 ↓ Z|G| , J𝑏𝑧 is computationally indistinguishable from some 𝑠 ↓𝑠 G, which we
write as ℐ(G).

We use the additive notation, as is common for elliptic curve cryptography.
For some elliptic curve groups, DDH is assumed to hold: in this work, we use
Curve25519 [Ber06]. This curve has a co-factor of 8, which means that the prime
order subgroup that we actually use in cryptographic applications is one eighth
of the size of the total group. To prevent issues related to this co-factor, we
use a highly-optimized encoding that realizes a true prime-order group [Ham15;
VLA21b], eliminating the co-factor. Additionally, this technique allows for faster
equality checks [VLA21a]. Compressed elements are only 32 bytes in size, so a
single ElGamal ciphertext takes 64 bytes.

3.3.2 Bloom filters
A Bloom filter is an approximate data structure for representing sets. It consists
of 𝑃 bins initially set to 0. When inserting an element into the Bloom filter,
the values of several bins selected by 𝑗 hash functions are changed to 1. We
denote such a hash function by 𝒥𝑋 , where 𝑋 is the seed. The function maps
elements uniformly to {0, . . . ,𝑃⇐1}. In our implementation, we use the xxh3 hash
function [Col21], which is a fast statistical hash function. We map the results to
the correct range using a modulo operation. Note that the hash function does not
have to be cryptographically secure, as the security of Bloom filter-based private
set operations does not rely on the security of the hash function. Algorithm 1
describes how to create the Bloom filter of a set 𝑉.

Algorithm 1 Creates a Bloom filter for set 𝑉
1: procedure C!’"$’BF(𝑉 ,𝑃 , 𝑗)
2: �̂� ↖ [0, . . . , 0] 𝜖 Bit vector of length 𝑃

3: for 𝑅 ↓ 𝑉 do
4: for 𝑋 = 1, . . . , 𝑗 do
5: �̂�[𝒥𝑋(𝑅)] ↖ 1
6: return �̂�

To check whether a Bloom filter contains a given element, we check whether
the corresponding bins chosen by the hash functions are indeed all set to 1. This

108

operation is approximate because it might falsely conclude that an element is
contained in the Bloom filter when the bins were set to 1 by coincidence through
the insertion of other elements. Fortunately, this problem is well-studied, and
Goel & Gupta [GG10] provide an upper bound for the probability of such a false
positive 𝜓 when 𝑞 elements have been inserted in a Bloom filter:

𝜓 ≃
(
1 ⇐ 𝑘

⇐ 𝑗(𝑞+0.5)
𝑃⇐1

)
𝑗

. (3.2)

In practice, we only tolerate a maximum probability of false positives 𝜓. So, we
want to select the most compact Bloom filter to satisfy this constraint, which leads
to a convex minimization problem:

min
𝑗∀1

⇐ 𝑗(𝑞 + 0.5)

ln 1 ⇐ 𝑗

¬
𝜓

+ 1 . (3.3)

Finally, one can combine multiple Bloom filters to construct a filter representing
the intersection or union using logical operations. For example, computing an AND
operation between the bins of two respective filters yields a third filter representing
their intersection, where 𝜓 is equal to that of the original Bloom filters [PSN10].

3.4 Private ORs & ANDs
In this section, we present a new protocol for privately performing OR or AND
operations among multiple parties. That is, each party has an input bit, and
the leader outputs the result of the logical operation over all these bits without
revealing them or how many bits were true. The intuition behind our protocol is
that the OR operation can be modeled as a summation by outputting 0 only when
the sum of all inputs is 0. When at least one of the inputs is 1, the leader retrieves
randomness instead, preventing the sum from revealing how many inputs were 1.
By leveraging the fact that parties can submit any randomness when the input is 1,
we introduce optimizations. In this section, we propose our OR protocol. An AND
protocol follows by DeMorgan’s law:

𝑅1 ∞ · · · ∞ 𝑅𝑄 = 𝑅1 ℋ · · · ℋ 𝑅𝑄 . (3.4)

3.4.1 Protocol description
Before executing any of our protocols, the parties →𝑋 for 𝑋 = 1, . . . , 𝑄 execute a short
distributed setup operation over public authenticated channels. We assume that
the identities of the parties are known, and a leader has been chosen beforehand.
The parties aim to generate 𝑄 secret ElGamal keys sk𝑋 and a corresponding public
key pk. Each party chooses their secret key randomly sk𝑋 ↓𝑠 Z𝑂 . Then, they
send pk

𝑋
↖ sk𝑋 𝑧 to the leader →1, where 𝑧 is the public generator element. 𝑧

is typically chosen by the same authority that chooses group G. Eventually, the
leader computes and broadcasts public key pk ↖ ∑

𝑄

𝑋=1 pk
𝑋
. This setup operation

can also take place in a distributed fashion, where each party broadcasts pk
𝑋
. The

result is a threshold version of ElGamal that requires all parties to decrypt, denoted

109

by (𝑄 , 𝑄)-ElGamal. One can also use a custom (𝑊 , 𝑄) setup, although this would
lower the protocol’s collusion resistance to 𝑊. We present our private OR operation
in Protocol 1.

Instead of expressing this protocol as ElGamal operations, we use raw curve
elements to perform multiple optimizations. First, we alter the encryption operation
in step 1 of the protocol; since parties only have to encrypt the identity 𝒦 when
𝑅𝑋 = 0, or any randomness when 𝑅𝑋 = 1, we let parties either create a valid
encryption of 𝒦 or simply choose two random curve points. To ensure that
the protocol takes a constant run time, the parties perform two fixed-basepoint
multiplications.

A second optimization that is particularly relevant for our composed private
logic comes by letting the leader randomize the summation in step 2 rather
than step 3 like the assistants. In doing so, the aggregated ciphertext does not
reveal its constituent ciphertexts without having to perform a rerandomization
operation by adding a fresh encryption of 𝒦 . Finally, instead of performing a full
ElGamal decryption, the leader sums all 𝜗𝑋 and checks if it equals 𝜔, saving a point
subtraction in the process. We also optimize point compression when performing
multiple OR operations in parallel. We elaborate on this in Section 3.4.5, where we
summarize the cost in elliptic curve operations.

Note that it is technically possible in the semi-honest model to let parties
generate random encryptions for which they do not know the plaintext value, and
replace steps 1 to 3 of the protocol. Since the parties are semi-honest, they would
follow this protocol faithfully. However, it is not possible to distinguish between
those randomly-generated encryptions and encryptions for which the plaintext
is known. So, such a protocol does not translate to the malicious model using
zero-knowledge proofs. We pose that our current protocol does not su"er from
such caveats.

110

Private OR protocol

1. Each party →𝑋 for 𝑋 = 1, . . . , 𝑄 computes ℒ𝜘𝑋 , 𝜔𝑋ℳ, where 𝑆𝑋 , 𝑆
▽
𝑋
↓𝑠 Z𝑂 :

ℒ𝜘𝑋 , 𝜔𝑋ℳ ↖
{
ℒ𝑆𝑋𝑧, 𝑆𝑋 pkℳ if 𝑅𝑋 = 0
ℒ𝑆𝑋𝑧, 𝑆

▽
𝑋
pkℳ if 𝑅𝑋 = 1

,

and each assistant →𝑋 for 𝑋 = 2, . . . , 𝑄 sends compressed ℒ𝜘𝑋 , 𝜔𝑋ℳ to the
leader →1.

2. The leader →1 computes ℒ𝜘, 𝜔ℳ, where 𝑚1 ↓𝑠 Z𝑂 :

ℒ𝜘, 𝜔ℳ ↖

𝑚1

𝑄∑
𝑋=1

𝜘𝑋 , 𝑚1

𝑄∑
𝑋=1

𝜔𝑋

,

and sends compressed ℒ𝜘, 𝜔ℳ to the assistants.

3. Each assistant →𝑋 for 𝑋 = 2, . . . , 𝑄 replies with compressed ℒ𝜘𝑋 , 𝜔𝑋ℳ,
where 𝑚𝑋 ↓𝑠 Z𝑂 :

ℒ𝜘𝑋 , 𝜔𝑋ℳ ↖

𝑚𝑋 𝜘, 𝑚𝑋 𝜔

.

4. The leader →1 computes ℒ𝜘, 𝜔ℳ:

ℒ𝜘, 𝜔ℳ ↖

𝑄∑
𝑋=2

𝜘𝑋 ,

𝑄∑
𝑋=2

𝜔
𝑋

,

and sends compressed 𝜘 to the assistants.

5. Each party →𝑋 for 𝑋 = 1, . . . , 𝑄 computes 𝜗𝑋 :

𝜗𝑋 ↖ sk𝑋 𝜘,

and each assistant →𝑋 for 𝑋 = 2, . . . , 𝑄 sends compressed 𝜗𝑋 to the
leader →1.

6. The leader →1 returns the result 𝑤:

𝑤 ↖
𝑄∑
𝑋=1

𝜗𝑋
?
ε 𝜔 .

Protocol 1: Our multi-party private OR protocol.

111

3.4.2 Composed logic

In the previous protocol, each party →𝑋 contributes one bit 𝑅𝑋 and the leader outputs
𝑅1 ℋ · · · ℋ 𝑅𝑄 . The parties can also perform multiple parallel operations, where
each party submits 𝑈 bits, and the leader outputs the 𝑈 results of the OR operations.
An interesting case arises when the leader wants to compute an OR operation over
bits of its choosing, which is a generalization of the former functionality. In this
section, we propose Protocol 2 for this purpose. We show that this protocol is also
privacy-preserving, and that the assistants do not learn the pattern of bits selected
by the leader.

Private composed OR protocol

1. Each party →𝑋 for 𝑋 = 1, . . . , 𝑄 computes ℒ𝜘 𝑜

𝑋
, 𝜔 𝑜

𝑋
ℳ, where 𝑆

𝑜

𝑋
, 𝑆

▽𝑜
𝑋
↓𝑠 Z𝑂

and 𝑜 = 1, . . . ,𝑃:

ℒ𝜘 𝑜

𝑋
, 𝜔 𝑜

𝑋
ℳ ↖

{
ℒ𝑆𝑜

𝑋
𝑧, 𝑆

𝑜

𝑋
pkℳ if 𝑅𝑜

𝑋
= 0

ℒ𝑆𝑜

𝑋
𝑧, 𝑆

▽𝑜
𝑋

pkℳ if 𝑅𝑜

𝑋
= 1

,

and each assistant →𝑋 for 𝑋 = 2, . . . , 𝑄 sends compressed ℒ𝜘 𝑜

𝑋
, 𝜔 𝑜

𝑋
ℳ to the

leader →1.

2. The leader →1 computes ℒ𝜘 𝑜
, 𝜔 𝑜ℳ, where 𝑚

𝑊

1 ↓𝑠 Z𝑂 and 𝑊 = 1, . . . , 𝑈:

ℒ𝜘𝑊
, 𝜔𝑊ℳ ↖

𝑚
𝑊

1

𝑄∑
𝑋=1

∑
𝑜↓ 𝐿

𝑊

𝑋

𝜘 𝑜

𝑋
, 𝑚

𝑊

1

𝑄∑
𝑋=1

∑
𝑜↓ 𝐿

𝑊

𝑋

𝜔 𝑜

𝑋

,

and sends compressed ℒ𝜘𝑊
, 𝜔𝑊ℳ to the assistants.

The parties continue the remaining steps in the same way as they did in
Protocol 1, albeit as 𝑈 parallel runs over ℒ𝜘𝑊

, 𝜔𝑊ℳ for 𝑊 = 1, . . . , 𝑈. The leader
outputs results 𝑤

𝑊 .

Protocol 2: Our composed OR protocol, where the leader chooses the bits to perform
the logic over.

More formally, we let the leader select an evaluation pattern 𝐿
𝑊

𝑋
that is a subset of

{1, . . . , 𝑈}, representing the index of the bits of party→𝑋 that should be incorporated
in the 𝑊th logic operation. For example, 𝒩𝑋 𝐿

1
𝑋
= {1, . . . , 𝑈} would denote that the

first logic operation incorporates all parties’ bits, so the leader would learn the
OR over all submitted bits. If 𝐿

𝑊

1 = ∋, this 𝑊th evaluation does not incorporate any
of the leader →1’s bits. The equivalent private composed AND protocol achieved
through DeMorgan’s law forms the basis for the Bloom filter-based MPSI protocol
in Section 3.6.

112

3.4.3 Correctness
For correctness, protocol 2 must output 𝑅1ℋ · · ·ℋ𝑅𝑄 with overwhelming probability,
which also implies the correctness of Protocol 1. In other words, the output is 0
only when all inputs were 0, otherwise it is 1:
Theorem 10. With overwhelming probability, 𝑤𝑊 = 0 if and only if 𝒩𝑄

𝑋=1𝒩𝑜↓ 𝐿
𝑊

𝑋

𝑅
𝑋

𝑜
= 0.

Proof. We first prove the su#cient condition, so 𝑤
𝑊 = 0 when 𝒩𝑄

𝑋=1𝒩𝑜↓ 𝐿
𝑊

𝑋

𝑅
𝑋

𝑜
= 0.

Following the protocol’s last step, it must hold:

𝜔
𝑊

=
𝑄∑
𝑋=1

𝜗𝑊 =
𝑄∑
𝑋=1

sk𝑋 𝜘𝑊 = sk 𝜘𝑊

, (3.5)

where sk =
∑

𝑄

𝑋=1 sk𝑋 , the underlying key of the threshold cryptosystem. After
substituting steps 3 and 4 from the original protocol and 1 and 2 from the
composed protocol, we get the following identities:

𝜔
𝑊

=
𝑄∑
𝑋=2

𝜔
𝑊

𝑋
=

𝑄∑
𝑋=2

𝑚
𝑊

𝑋
𝜔𝑊 , (3.6)

=
𝑄∑
𝑋=2

𝑚
𝑊

𝑋

DE
F
𝑚
𝑊

1

𝑄∑
𝑋=1

∑
𝑜↓ 𝐿

𝑊

𝑋

𝜔 𝑜

𝑋

GH
I
, (3.7)

=
𝑄∑
𝑋=2

𝑚
𝑊

𝑋

DE
F
𝑚
𝑊

1

𝑄∑
𝑋=1

∑
𝑜↓ 𝐿

𝑊

𝑋

𝑆
𝑜

𝑋
pkGH
I
. (3.8)

sk 𝜘𝑊 = sk
𝑄∑
𝑋=2

𝜘𝑊

𝑋
= sk

𝑄∑
𝑋=2

𝑚
𝑊

𝑋
𝜘𝑊

, (3.9)

= sk
𝑄∑
𝑋=2

𝑚
𝑊

𝑋

DE
F
𝑚
𝑊

1

𝑄∑
𝑋=1

∑
𝑜↓ 𝐿

𝑊

𝑋

𝜘 𝑜

𝑋

GH
I
, (3.10)

= sk
𝑄∑
𝑋=2

𝑚
𝑊

𝑋

DE
F
𝑚
𝑊

1

𝑄∑
𝑋=1

∑
𝑜↓ 𝐿

𝑊

𝑋

𝑆
𝑜

𝑋
𝑧
GH
I
, (3.11)

=
𝑄∑
𝑋=2

𝑚
𝑊

𝑋

DE
F
𝑚
𝑊

1

𝑄∑
𝑋=1

∑
𝑜↓ 𝐿

𝑊

𝑋

𝑆
𝑜

𝑋
pkGH
I
. (3.12)

This last step works because pk = sk𝑧. This completes the first part of the proof.
Next, we prove the necessary condition, so 𝑤

𝑊 = 1 when
𝒟𝑄

𝑋=1𝒟𝑜 ↓ 𝐿
𝑊

𝑋
𝑅
𝑜

𝑋
= 1 with overwhelming probability. Since some 𝑅

𝑜

𝑋
= 1, the

corresponding 𝑆
𝑜

𝑋
in Equation (3.11) will be replaced by some 𝑆

▽𝑜
𝑋
↓𝑠 Z𝑂 . As a

result the equality only holds with a uniformly random probability of 1
𝑂
, which is

negligible. ⊋

113

3.4.4 Privacy
We now provide a simulation-based proof to formally show that our protocols
are indeed private in the semi-honest model, following the requirements for a
deterministic functionality as described in [Lin17]. Notice that when 𝐿

𝑊

𝑋
= {𝑊} for

𝑊 = 1, . . . , 𝑈 and 𝑋 = 1, . . . , 𝑄, Protocol 2 reduces down to 𝑈 parallel executions of
Protocol 1. In other words, proving security of the first implies security of the
latter. For this reason we only provide such a proof for Protocol 2. We pose that
our protocol is secure against 𝑄 ⇐ 1 colluding parties, so two cases arise:

1. The leader is honest and up to 𝑄 ⇐ 1 assistants are colluding.

2. The leader is colluding with up to 𝑄 ⇐ 2 assistants.
Multiple parts of our proof rely on the following lemma:
Lemma 11. Consider group G for which the decisional Di!e-Hellman (DDH) assumption
is assumed to hold. Given element 𝑧▽ ↓ G, unknown randomness 𝑚 ↓𝑠 Z𝑂 , and 𝑎 = 𝑇𝑧

▽

for the unknown 𝑇 ↓ Z𝑂 , it holds that:

ℒ𝑚𝑧▽
, 𝑚𝑇𝑧

▽ℳ 𝑌⇓ ℒℐ(G),ℐ(G)ℳ .
Proof. The first term is statistically indistinguishable from randomness, since
𝑚 ↓𝑠 Z𝑂 , so 𝑚𝑧

▽ 𝑇⇓ ℐ(G). The second term 𝑚𝑇𝑧
▽ is computationally indistinguishable

by the DDH assumption in Definition 5 by taking J ↖ 𝑚, 𝑏 ↖ 𝑇, 𝑧 ↖ 𝑧
▽ (so

𝑏𝑧 ↖ 𝑎). So, 𝑚𝑇𝑧▽ 𝑌⇓ ℐ(G). ⊋

We first prove that a simulator exists for the first case, which generates a view
for up to 𝑄 ⇐ 1 colluding assistants that is indistinguishable from their own, given
these parties’ inputs.
Theorem 12. For a set of colluding parties 𝑣 ⇑ {2, . . . , 𝑄} there exists a simulator ⇒1 so
that:

⇒1()
𝑌⇓
⋃
𝑌↓𝑣

view𝑌(𝑅𝑌) . (3.13)

Proof. We construct simulator ⇒1. The simulator takes no inputs because in this
case, we can generate an indistinguishable view without explicitly incorporating
them. Since the colluding parties are all assistants, the simulator also does not
consider any output of the protocol. The view generated by the simulator is a
complete set of simulated messages from the honest parties, because the channels
are public: {𝜘𝑊

, 𝜔𝑊 , 𝜘𝑊} and {𝜘 𝑜

𝑋
, 𝜔 𝑜

𝑋
, 𝜘𝑊

𝑋
, 𝜔

𝑊

𝑋
, 𝜗𝑊

𝑋
} for all honest →𝑋 , in other words 𝑋 ↓ 𝑣.

Simulator ⇒1 generates the view by sampling random elements from the curve
group for all the aforementioned messages except for 𝜘𝑊 and 𝜔

𝑊 , which it computes
by executing step 4.We show that such a view is indeed indistinguishable from the
actual views.

For step 1 of the protocol, we must show that it holds that ℒ𝜘 𝑜

𝑋
, 𝜔 𝑜

𝑋
ℳ 𝑌⇓ ℒℐ(G),ℐ(G)ℳ,

or more specifically:

ℒ𝑆𝑜

𝑋
𝑧, 𝑆

▽𝑜
𝑋

pkℳ 𝑇⇓ ℒℐ(G),ℐ(G)ℳ , (3.14)

ℒ𝑆𝑜

𝑋
𝑧, 𝑆

𝑜

𝑋
pkℳ 𝑌⇓ ℒℐ(G),ℐ(G)ℳ . (3.15)

114

Equation 3.14 holds because 𝑆
𝑜

𝑋
and 𝑆

▽𝑜
𝑋

are sampled randomly, covering the case
where 𝑅

𝑜

𝑋
= 1. Next, Equation 3.15 holds by Lemma 11 where 𝑇 ↖ sk, 𝑧▽ ↖ 𝑧, and

𝑚 ↖ 𝑆
𝑜

𝑋
, covering the case 𝑅

𝑜

𝑋
= 0.

For step 2 of the protocol we must show ℒ𝜘𝑊
, 𝜔𝑊ℳ 𝑌⇓ ℒℐ(G),ℐ(G)ℳ. To simplify

notation, we say that:

𝑑
▽𝑜
𝑋
=

{
𝑆
𝑜

𝑋
if 𝑅𝑜

𝑋
= 0

𝑆
▽𝑜
𝑋

if 𝑅𝑜

𝑋
= 1

. (3.16)

Then, our former statement holds by Lemma 11, where:

𝑚 ↖ 𝑚
𝑊

1 , 𝑧
▽ ↖

𝑄∑
𝑋=1

∑
𝑜↓ 𝐿

𝑊

𝑋

𝜘 𝑜

𝑋
, 𝑇 ↖ sk

𝑄∑
𝑋=1

∑
𝑜↓ 𝐿

𝑊

𝑋

𝑑
𝑜

𝑋

𝑆
𝑜

𝑋

,

and 𝑇 is unknown because it is a factor of the unknown key sk.
For step 3 of the protocol we must show ℒ𝜘𝑊

𝑋
, 𝜔

𝑊

𝑋
ℳ 𝑌⇓ ℒℐ(G),ℐ(G)ℳ. Again, this

holds by Lemma 11, where 𝑚 ↖ 𝑚𝑋 , 𝑧▽ ↖ 𝑚1𝑧
▽, and 𝑇 ↖ 𝑚1𝑇. Here we reuse the

values from our previous argument.
For step 4 of the protocol, the simulator executes the step as usual for 𝜘𝑊 . For

corrupted parties 𝑌 ↓ 𝑣, the simulator samples ℒ𝜘𝑊

𝑌
, 𝜔

𝑊

𝑌
ℳ ↖ ℒℐ(G),ℐ(G)ℳ, which is

statistically indistinguishable from the actual view.
For step 5 of the protocol we must show that 𝜗𝑋

𝑌⇓ ℐ(G). This holds because sk𝑋
is unknown to the corrupted parties and is sampled uniformly from G. ⊋

We also prove that a simulator exists that generates a view for a colluding leader
and up to 𝑄 ⇐ 2 colluding assistants in Theorem 13, which is indistinguishable
from their own, given these parties’ inputs and the protocol’s output:

Theorem 13. For a set of colluding parties 𝑣 = {1} ↔ 𝑣
▽
𝑣
▽ ⊤ {2, . . . , 𝑄} there exists a

simulator ⇒2 so that:
⇒2(𝑤)

𝑌⇓
⋃
𝑌↓𝑣

view𝑌(𝑅𝑌) . (3.17)

Proof. We construct simulator ⇒2, which takes the protocol’s output 𝑤. The simula-
tor takes no inputs because we can generate an indistinguishable view without
explicitly incorporating them. The output of the simulator is a complete set of sim-
ulated incoming messages from the remaining honest assistants: {𝜘 𝑜

𝑋
, 𝜔 𝑜

𝑋
, 𝜘𝑊

𝑋
, 𝜔

𝑊

𝑋
, 𝜗𝑊

𝑋
}

for all honest →𝑋 , in other words 𝑋 ↓ 𝑣.
First, the simulator randomly samples ℒ𝜘 𝑜

𝑋
, 𝜔 𝑜

𝑋
ℳ ↖ ℒℐ(G),ℐ(G)ℳ and ℒ𝜘𝑊

𝑋
, 𝜔

𝑊

𝑋
ℳ ↖

ℒℐ(G),ℐ(G)ℳ, which are computationally indistinguishable from actual views as
argued in Theorem 12.

The simulator then generates 𝜗𝑊

𝑋
, which depends on the expected output 𝑤.

If 𝑤 = 1, the simulator randomly samples 𝜗𝑊

𝑋
↖ ℐ(G). However, if 𝑤 = 0, the

simulated output would be incorrect with overwhelming probability, as shown
at the end of Theorem 10. Instead, the simulator will choose one honest assistant

115

 ↓ 𝑣 for which it generates another 𝜗𝑊

. For the other assistants 𝑌 ↓ 𝑣 \ {}, the

simulator samples 𝜗𝑊

𝑌
↖ ℐ(G). The simulator computes:

𝜗 ↖ 𝜔
𝑊 ⇐ DE

F
∑
𝑌↓𝑣

𝜗𝑌 +
∑

𝑌↓𝑣\{}

𝜗𝑌
GH
I
. (3.18)

It is clear to see that
∑

𝑄

𝑋=1 𝜗
𝑊

𝑋
= 𝜔

𝑊 , so the output is 0.
Finally, we show that 𝜗𝑊

𝑋
is indeed indistinguishable from the actual views. If it

was sampled randomly, then it holds that 𝜗𝑊

𝑋

𝑇⇓ sk𝑋 𝜘𝑊 , because sk𝑋 is an unknown
value sampled randomly from Z𝑂 . Moreover, since we only choose assistant ↓ 𝑣

when 𝑤 = 0, its 𝜗𝑊

is also statistically indistinguishable from an actual view since

the other values in the summation are statistically indistinguishable and the output
is known to be 0. ⊋

Finally, we show that our implemented protocol runs in constant-time in the
next subsection.

3.4.5 E!ciency
When presenting the protocol, we hinted that we can optimize the point compres-
sion step when performing multiple OR operations in parallel. The reason is that
the compression operation is batchable, if we allow the compressed point to be
doubled. Note that for steps 1 to 4 of this protocol, this has no impact on the
encrypted value, but for steps 5 and 6 there will be a factor 2 discrepancy between
𝜗 and 𝜔. Fortunately, one can compensate for this in the secret keys. In short, after
generating the public key pk, each party divides their secret key by 4 o"setting the
factor induced by batch-compressions, so the actual key becomes sk ↖ 1

4 sk𝑋 .
We summarize the computational cost of our protocol in Table 3.3 as the

number of elliptic curve operations performed, and compare it against the naive
approach of computing (𝑚1 + · · · + 𝑚𝑄)(𝑅1 + · · · + 𝑅𝑄) using additively homomorphic
encryption. Communication-wise, the leader must send four compressed points to
each assistant, while each assistants sends five compressed points to the leader.
Given our choice of Curve25519, this means that for one private logic operation, the
leader sends 128(𝑄⇐1) bytes and an assistant sends 160 bytes. Asymptotically, both
the computational and communicational complexities are 𝑍(𝑄) for the leader and
𝑍(1) for an assistant, although the number of point multiplications stays constant,
regardless of 𝑄. As described in Section 3.2.1, one can also perform this arithmetic
circuit using secret sharing. However, the total communication cost would scale
quadratically with 𝑄 since it requires all parties to communicate. We analytically
compare the communication cost of this approach with our protocol in Figure 3.1,
where shares are 5 bytes in size and the parties compute the multiplication using
pre-distributed Beaver triplets. For 𝑄 ∀ 10, the communication overhead of this
approach would exceed that of our protocol.

While we described our private OR protocol to function on single-bit inputs,
the parties can perform this operation on many bits in parallel. We explicitly use
this technique to perform e#cient MPSI and MPSU protocols. We provide an

116

Figure 3.1: Communication in one private OR computation

open-source implementation of such parallel ORs and ANDs. In our implementation,
we do not simulate communication delays, but we do route the messages through
Unix streams. Figure 3.2 shows the run time of our private OR protocol on 1024
bits in parallel for an increasing number of inputs that are 1. The figure underlines
that the run time of our protocol indeed does not depend on the input. In the
remainder of this work we perform all our experiments on a Unix machine with 30
virtual Intel® Xeon® Cascade Lake CPUs at 3100 MHz. We assign each party one
execution thread to run on. The machine also has 120 GB of memory allocated to
it, but in our experiments we only use a fraction of this. All our implementations
are written in Rust.

3.5 Private set operations for small universes
One approach for computing a set intersection is to check for each element in the
universe that it is present in all the sets. For the union, one checks if an element
occurs in at least one of the sets. This is the idea behind the protocols of Bay et
al. [Bay+21], which use the bitset representation. A bitset represents a set as a vector
of bits corresponding to each element in the universe. When an element is in the
set, the corresponding bit is set to 1; otherwise, it is 0. Computing the intersection
then constitutes an element-wise AND operation, and the union constitutes an OR

Table 3.3: EC operations for our private OR protocol on one bit.

Addition Fixed mult. Variable mult.

Naive Leader 5𝑄 ⇐ 1 4 3
Assistant 1 2 3

Ours Leader 5𝑄 ⇐ 7 2 3
Assistant - 2 3

117

Figure 3.2: The run time of 1024 private ORs is constant w.r.t. the number of 1s. The shaded
area is the 99% confidence interval.

operation. In this section, we instantiate such bitset-based protocols using our
private AND and OR protocols, as presented in Protocol 3.

MPSI protocol for small universes

1. All parties →𝑋 for 𝑋 = 1, . . . , 𝑄 compute the bitset �̂�𝑋 of their set 𝑉𝑋 :

�̂�𝑋[𝑜] =
{

1 if 𝑜 ↓ ↘
0 otherwise

2. All parties →𝑋 for 𝑋 = 1, . . . , 𝑄 take part in a private AND protocol on �̂�𝑋 ,
so the leader →1 retrieves K̂.

3. The leader →1 returns the result K:

K = { 𝑜 ↓ ↘ | K̂[𝑜] = 1}

Protocol 3: A bitset-based MPSI protocol. An MPSU protocol would use a private
OR protocol instead.

This MPSI protocol inherits its security properties from the private AND protocol
since the private data is only accessed during the execution of that sub-protocol.
The same holds for the MPSU protocol. The e#ciency of these protocols is also
decided by the private logic protocols as they dominate the computation required.
Since the parties perform one private logic operations for each element in the
universe, the computational complexity is 𝑍(𝑄 |↘ |) for the leader and 𝑍(|↘ |) for
an assistant.

118

We experimentally compare the run time of this MPSI protocol with the
implementation by Bay et al. [Bay+21] using the same setup as before. Note,
however, that the original work uses a 1024 bit modulus to instantiate the Paillier
cryptosystem, which corresponds to a legacy security strength of 80 bits. To ensure
a fair comparison and cryptographic security, we instead choose a 3072 bit modulus
as per NIST’s standard [Bar20], corresponding to 128 bits of security. The results
of this experiment are in Figure 3.3.

For 𝑄 = 2 and |↘ | = 256, this protocol outperforms the implementation by Bay
et al. by almost two orders of magnitude. While, the implementation by Bay et al.
seems to be hardly a"ected by the number of parties in Figure 3.3, this is an artifact
of the logarithmic axis. The absolute increase in run time when the number of
parties grows is comparable to ours: for |↘ | = 256, Bay et al. takes 9.47, 9.62, 9.73
seconds for 𝑄 = 2, 5, 10, while this protocol takes 0.12, 0.20, 0.34 seconds.

Finally, notice that Protocol 3 can actually be further optimized by instantiating
it with a composed AND protocol, in exchange for leaking the leader’s set size. The
initial steps of this protocol would still scale with |↘ | , but the remaining steps
would scale with 𝑈.

Figure 3.3: Run time comparison between our MPSI protocol and [Bay+21]. The numbers
over the bars indicate the number of parties 𝑄 and the error bars the 99% confidence interval.

3.6 Private set intersections for large universes
In practice, the size of a party’s set is often significantly smaller than the size of the
universe, meaning 𝑈 ⊥ |↘ | . In this section, we instantiate an MPSI protocol with
our private logic that scales only with 𝑈 rather than |↘ | in exchange for a false
positive rate 𝜓 that must be so small that it is negligible.

The di"erence between this protocol and the MPSI protocol for small universes
is that parties represent their set as a Bloom filter rather than a bitset. As we discuss
in Section 3.6.3, this causes the protocol to scale independently of the size of the

119

universe. We aggregate the Bloom filters similarly to bitsets, but using our private
composed AND protocol. We adapt this idea from Bay et al. [Bay+22], although the
same idea has been applied more often in MPSI protocols, such as by Miyaji &
Nishida [MN15] and Debnath et al. [Deb+21b], but these su"er from security flaws
as described in Section 3.2.1.

We present the updated Protocol 4, where 𝑉1[𝑊] represents the 𝑊th element
of the leader’s set. Here, the parties engage in a private composed logic protocol
to ensure that no information is leaked from the resulting Bloom filter. In other
words, the leader computes an AND operation between the bins corresponding to
each of its elements, essentially performing at most 𝑈 private membership checks.
The privacy of the leader’s elements in turn relies on the assistants not learning
the evaluation pattern 𝐿

𝑅

𝑋
. We provide more details on the security properties of

the protocol in Section 3.6.2.

MPSI protocol for large universes

1. All parties →𝑋 for 𝑋 = 1, . . . , 𝑄 compute the Bloom filter �̂�𝑋 of their set
𝑉𝑋 :

�̂�𝑋 = C!’"$’BF(𝑉 ,𝑃 , 𝑗)

2. All parties →𝑋 for 𝑋 = 1, . . . , 𝑄 take part in a private composed AND
protocol on �̂�𝑋 with 𝐿

𝑊

𝑋
= {𝒥𝑜(𝑉1[𝑊]) | 𝑊 = 1, . . . , 𝑈 , 𝑜 = 1, . . . , 𝑗}, so

that the leader →1 retrieves K̂.

3. The leader →1 returns the result K:

K =
{
𝑉1[𝑊] | K̂[𝑊] = 1 for 𝑊 = 1, . . . , 𝑈

}

Protocol 4: A Bloom filter-based MPSI protocol.

3.6.1 Correctness
There are three properties that must hold with overwhelming probability for the
protocol to be correct:

• When all parties have an element 𝑉1[𝑊] = 𝑅 it must hold that K̂[𝑊] = 1.

• When the leader has an element 𝑉1[𝑊] = 𝑅 but at least one other party does
not have 𝑅 in their set K̂[𝑊] = 0 must hold.

• When an element 𝑅 ϖ 𝑉1 it must hold that 𝑅 ϖ K.

For the first case, notice that �̂�𝑋[𝑜] = 1 for all parties 𝑋 = 1, . . . , 𝑄 and 𝑜 =
𝒥1(𝑅), . . . ,𝒥𝑗(𝑅) after the parties create their Bloom filters. Since 𝑉1[𝑊] = 𝑅, it

120

holds that:
K̂[𝑊] =

∧
𝑜

�̂�1[𝑜] ∞ · · · ∞ �̂�𝑄[𝑜] = 1 . (3.19)

In the second case, there is a probability 𝜓 that all bins corresponding to the
element 𝑅 are set to 1. However, as explained in Section 3.3.2, we can choose
parameters so that 𝜓 is negligible. Then, with overwhelming probability, there is
at least one party 𝑋

▽ and Bloom filter bin 𝑜
▽ for which it holds that �̂�𝑋

▽[𝑜▽] = 0. Now:

K̂[𝑊] = · · · ∞ �̂�𝑋
▽[𝑜▽] ∞ · · · = 0 . (3.20)

In the last case, for each 𝑊 = 1, . . . , 𝑈 it also holds with overwhelming probability
that at least for one bin �̂�1[𝑜▽] = 0 with 𝑜

▽ ↓ {𝒥1(𝑅), . . . ,𝒥𝑗(𝑅)}. As a result:

K̂[𝑊] = · · · ∞ �̂�1[𝑜▽] ∞ · · · = 0 . (3.21)

3.6.2 Privacy
Since the leader chooses the evaluation pattern to reflect the operation of checking
whether an element is contained in the Bloom filter, the protocol’s entire security
again relies on the private logic primitive. Note that if we had not used the composed
AND protocol and therefore exposed the entire resulting Bloom filter, the protocol
would leak information that is inherent to the way Bloom filters combine under
intersections. This problem was also hinted at in previous works [Bur+10; DCW13].
This leakage arises because it does not necessarily hold that:

C!’"$’BF(𝑉1 ↑ · · · ↑ 𝑉𝑄 ,𝑃 , 𝑗) =
C!’"$’BF(𝑉1) AND . . . AND C!’"$’BF(𝑉𝑄) ,

(3.22)

which occurs when 1s in the input Bloom filters not belonging to the actual
intersection align by accident.

Moreover, in Chapter 2, we showed that the approximate nature of Bloom
filter also leads to other exploitable weaknesses when using small Bloom filters.
Specifically, one can use the non-negligible probability of false positives in such a
small Bloom filter to learn information about elements that are not strictly in the
intersection. Consequently, for our protocol to be secure, one must choose large
enough parameters, for example according to (2.10) in Section 2.5.4.

3.6.3 E!ciency
We rewrite Equation 3.2 to isolate 𝑃:

𝜓 ≃
(
1 ⇐ 𝑘

⇐ 𝑗(𝑞+0.5)
𝑃⇐1

)
𝑗

(3.23)

𝑃 ∀ ⇐ 𝑗(𝑞 + 0.5)
ln (1 ⇐ 𝑗

¬
𝜓)

+ 1 (3.24)

𝑃 ∀
(

⇐𝑗
ln (1 ⇐ 𝑗

¬
𝜓)

)
𝑞 ⇐

(
0.5𝑗

ln (1 ⇐ 𝑗

¬
𝜓)

)
+ 1 (3.25)

121

As such, for a constant 𝑗 and 𝜓, it holds that the minimal number of bins 𝑃 scales
linearly with 𝑞 . In short, 𝑃 = 𝑍(𝑞). In practice we choose 𝑗 depending on 𝜓
and 𝑞 to choose the smallest 𝑃 in that situation. In the protocol, the private AND
operations dominate the run time. Each party takes part in 𝑗 of such operations
over 𝑃 bits, so the computational complexity for the leader is 𝑍(𝑄𝑃𝑗), and for an
assistant is 𝑍(𝑃). Since 𝑃 = 𝑍(𝑞) and 𝑞 = 𝑈, we write the final complexities as
𝑍(𝑄𝑈𝑗) for the leader and 𝑍(𝑈) for an assistant. For concrete parameter choices,
we refer the reader to Table 2.1 in Chapter 2.

3.7 Private set unions for large universes

When 𝑈 ⊥ |↘ | , a bitset representation would be filled almost entirely with 0s, but
we are only interested in searching for the 1s. To prevent wasting computations on
this sparse vector, we propose a divide-and-conquer algorithm that isolates these
1s. The intuition is as follows: Each party splits their bit vector into 𝑡 partitions
and locally computes the logical OR of the bits in each partition. After that, the
parties take part in our private OR protocol on the aggregated bits. In this way, they
can discard all partitions for which the result is 0, as none of the original bits in
the partition is a 1. As a concession, this approach allows the assistants to learn
information about the final set union, but they do not learn more than the leader.
The parties repeat this process until a partition only contains one bit. We provide
an example of this process in Figure 3.4. Instead of running 27 private OR protocols,
the example only requires 15 runs. For larger universes, the di"erence will be even
greater. We provide a formal description in Protocol 5, but first, we discuss its
underlying algorithms.

0 1 0 0 0 0 0

1 = 1 ∨ 0 0 = 0 ∨ 0 1 = 0 ∨ 1

0 0 0 0 0 0 0 0 0

1 0 0

0 0 1

0 0 1 0

0 0 0 1 0 0 0 0 0

0 1 0

0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0

Figure 3.4: Example of the divide-and-conquer approach with two parties, 𝑞 = 27, 𝑦 = 2
and 𝑡 = 3.

122

3.7.1 Underlying algorithms

We provide pseudocode for the underlying algorithms of the divide-and-conquer
approach for multi-party private set unions on bitsets. Algorithm 2 provides the
functionality to split a range up into 𝑡 similarly sized partitions.

Algorithm 2 Selects the indices of 𝑡 partitions
1: procedure S+&%$(min,max,𝑡)
2: 𝑇 ↖ max⇐min

𝑡

3: indices ↖ []
4: 𝑋 ↖ min
5: while 𝑋 < max do
6: 𝑜 ↖ 𝑋 + 𝑇

7: Append (̸ 𝑋𝒢 , ̸ 𝑜𝒢) to indices
8: 𝑋 ↖ 𝑜

9: return indices

Algorithm 3 in turn uses the splitting algorithm to run the actual recursive
MPSU protocol.

Algorithm 3 Divide-and-conquer approach for one party
1: procedure D%.%/’A,/C),2(’!(�̂� ,𝑡)
2: result ↖ [0, . . . , 0] 𝜖 Bit vector of length |↘ |
3: 𝑛prev ↖ [(0, |↘ |)]
4: while | 𝑛prev| > 0 do
5: 𝑛curr ↖ [S+&%$(𝑋 , 𝑜 ,𝑡) 𝒩(𝑋 , 𝑜) ↓ 𝑛prev]
6: 𝑛prev ↖ []
7: 𝜖 This for loop can be performed in parallel
8: for (𝑋 , 𝑜) ↓ 𝑛curr do
9: 𝑅 ↖ �̂�[𝑋] ℋ · · · ℋ �̂�[𝑜]

10: Take part in a private OR protocol with 𝑅

11: Receive result 𝑤 from the leader →1
12: if 𝑜 ⇐ 𝑋 = 1
13: result[𝑋] = 1
14: else if 𝑤 = 1
15: Append (𝑋 , 𝑜) to 𝑛prev
16: return result

Finally, we provide a derivation for finding that the optimal partition number
𝑡 = 𝑘. For 𝑞 > 1 we have the following minimization problem:

min
𝑡>1

𝑡 log
𝑡
𝑞 . (3.26)

We find the optimum by di"erentiating for 𝑡 and determining when the
derivative is 0:

123

0 =
𝑔

𝑔𝑡

𝑡 log
𝑡
𝑞 , (3.27)

=
𝑔

𝑔𝑡

𝑡

ln 𝑞

ln𝑡

, (3.28)

=
ln(𝑞)(ln(𝑡) ⇐ 1)

ln2
𝑡

. (3.29)

Since 𝑞 > 1, the only solution is 𝑡 = 𝑘.

MPSU protocol for large universes

1. All parties →𝑋 for 𝑋 = 1, . . . , 𝑄 compute the bitset �̂�𝑋 of their set 𝑉𝑋 :

�̂�𝑋[𝑜] =
{

1 if 𝑜 ↓ ↘
0 otherwise

2. All parties →𝑋 for 𝑋 = 1, . . . , 𝑄 execute D%.%/’A,/C),2(’!(�̂�𝑋 ,𝑡),
computing the bit-wise OR between their bitsets so that the leader →1
retrieves K̂.

3. The leader →1 returns the result K:

K = { 𝑜 ↓ ↘ | K̂[𝑜] = 1}

Protocol 5: Our multi-party private set union protocol, relying on Algorithms 2 & 3.

3.7.2 Choosing the number of divisions
Consider a vector with 𝑞 = 16 bits, of which only one is 1. When the number of
ones 𝑦 = 1 and the number of divisions 𝑡 = 2, we must perform four iterations
of the divide-and-conquer approach to reach partitions containing only one bit.
Notice that since 𝑦 = 1, we always discard all but one division. In the general case,
we require log

𝑡
𝑞 iterations of 𝑡 runs of the OR protocol, so we require 𝑡 log

𝑡
𝑞

private ORs in total. When 𝑦 > 1, we can extend this to a loose upper bound of
𝑦𝑡 log

𝑡
𝑞 . After all, in the worst case, each 1 ends up in a separate partition at

each iteration.
While the optimal choice of 𝑡 is Euler’s constant 𝑘 (see previous subsection),

this is not practically attainable:

• For ease of implementation, we want 𝑡 to be an integer.

• For a small 𝑡 and large |↘ | , we require many iterations.

124

• For a constant number of rounds, 𝑡 cannot be constant.

Instead of choosing 𝑡 = 𝑘, we select a suitable number of divisions based on a
specified maximum number of iterations 𝑠. Let us define the function ORs that
returns the expected number of private ORs; then choosing 𝑡 comes down to a
minimization problem:

min
𝑡 ∀ 𝑠

¬
𝑞

ORs(𝑦 ,𝑞 ,𝑡) . (3.30)

The reason that 𝑡 ∀ 𝑠

¬
𝑞 is that splitting a vector into 𝑡 parts for 𝑠 iterations

allows us to reach exactly 𝑞 = 𝑡
𝑠 partitions of size 1 in the final round.

To describe ORs, we analyze the cost of each iteration. The first iteration
requires 𝑣0 = 𝑡 OR operations. We can view this as a balls and bins problem, in
which 𝑦 balls are divided among 𝑡 bins. Only those bins that contained at least
one ball continue in the protocol. Assuming that such a bin has a limitless capacity,
we express the expected number of filled bins by:

spread(balls, bins) = bins
(
1 ⇐ exp⇐balls

bins

)
. (3.31)

We derive this function from Equation 1 in [VED21] when 𝑗 = 1. Given this
equation, we express the expected cost of iteration 𝑋 by 𝑣𝑋 = 𝑡 spread(𝑦 , 𝑣𝑋⇐1),
since each iteration splits the number of filled bins of the previous iteration again
into 𝑡 partitions. This expected cost holds for all but the last iteration, where
there may not be as many bits 𝑞 as the number of partitions we can form. We
compensate for this by computing the expected number of partitions that remain
as:

𝑁 =
𝑞

𝑞 ⇐ 𝑡
̸ log

𝑡
𝑞↦ . (3.32)

Now, the expected number of private OR operations is:

ORs(𝑦 ,𝑞 ,𝑡) = 𝑁 spread(𝑦 , 𝑣̸ log
𝑡
𝑞↦𝑁) +

̸ log
𝑡
𝑞↦∑

𝑋=0
𝑣𝑋 , (3.33)

As mentioned before, in the final iteration, we may form more partitions than
there are bits. This is only the case when log

𝑡
𝑞 is not a whole number. As such,

we reduce the optimal choice for 𝑡 that leads to the least OR operations to searching
for 𝑡 = 𝑜

¬
𝑞 , where:

min
𝑜=2,...,𝑠

ORs(𝑦 ,𝑞 ,
𝑜

¬
𝑞) . (3.34)

Here, 𝑜 is the required number of iterations which is less than or equal to the pre-
defined maximum 𝑠. To determine 𝑜, we evaluate all possible values 𝑜 = 2, . . . , 𝑠.
For the MPSU protocol, the other parameters are 𝑦 = 𝑄𝑈 and 𝑞 = |↘ | . We note
that we are optimizing for the average case, where 1s are randomly distributed,
but ideally the 1s are bundled together. So, if there is some structure in the set
elements, one can achieve performance gains by increasing the probability that
ones end up together in the same partition.

125

3.7.3 Privacy
We argue that assuming our MPSU protocol for small universes is privacy-
preserving, the same holds for this protocol. Consider two parties →1 and →2 with
bitsets:

�̂�1 =

𝑅

1
1 , 𝑅

2
1 , . . . , 𝑅

|↘ |
1

, �̂�2 =

𝑅

1
2 , 𝑅

2
2 , . . . , 𝑅

|↘ |
2

.

Then, in our previous MPSU protocol, these parties would learn:

(𝑅1

1 ℋ 𝑅
1
2), (𝑅2

1 ℋ 𝑅
2
2), . . . , (𝑅

|↘ |
1 ℋ 𝑅

|↘ |
2)

. (3.35)

Let us say that the first two bits end up in one partition, then the parties learn:

(𝑅1
1 ℋ 𝑅

2
1) ℋ (𝑅1

2 ℋ 𝑅
2
2) = (𝑅1

1 ℋ 𝑅
1
2) ℋ (𝑅2

1 ℋ 𝑅
2
2) . (3.36)

So the two parties only learn the logical OR of bits they would have learned
regardless in our previous MPSU protocol. In other words, the information they
learn is a function of the output, rather than their private inputs. Regarding timing
attacks, the divide-and-conquer approach does not strictly run in constant time.
Instead, the run time is correlated with the size of the output set.

3.7.4 E!ciency
An upper bound for the number of OR operations, which dominate the per-
formance of the protocol, is 𝑄𝑈𝑡 log

𝑡
|↘ | . So, when 𝑡 is constant, both the

computational and communication complexities are 𝑍(𝑄2
𝑈 log |↘ |) for the leader,

and 𝑍(𝑄𝑈 log |↘ |) for an assistant. The concrete run time scales with the size of
the resulting union.

3.7.5 Results
To the best of our knowledge, there are no public implementations of other MPSU
protocols. Comparing against the MPSU protocol for small universes is also
infeasible, as the run time would exceed hours for larger universes. Instead, we
evaluate the run time of this protocol for a growing maximum number of iterations
𝑠 in Figure 3.5, where the universe has the size of the IPv4 space. Since the decrease
in run time tapers o" at 8 iterations, we consider this the optimal choice in this
instance. In our experiment we do not simulate additional communication delays,
however, one might trade-o" this delay with a party’s computational e"ort. We
note that the actual run time of the protocol does not scale linearly with set size, as
the probability increases for two elements to map to the same partition, allowing
the protocol to discard more partitions.

3.8 Conclusion
In this work, we instantiate existing MPSI and MPSU protocols with elliptic curve-
based private logic protocols to perform fast set operations on any size of universe.

126

Figure 3.5: Run time of our MPSU protocol for large universes when the number of iteration
increases. Here, 𝑄 = 5, 𝑈 = 32 and |↘ | = 232. The error bars denote the standard deviation.
The decrease in run time tapers o" around 𝑠 = 8.

Our novel private logic protocols may also be of independent interest. Most
previous MPSI and MPSU protocols either use significantly slower integer-based
homomorphic encryption or oblivious transfers that require interactions between
all parties. Our protocols, however, enjoy the low computational cost of elliptic
curve operations and function in the star topology. Moreover, we propose a novel
MPSU protocol for large universes that uses a divide-and-conquer approach to
significantly reduce computation at the cost of more interactions. Still, it remains
an open question to design an exact elliptic curve-based MPSI or MPSU that does
not depend on the size of the universe.

We open-source a proof-of-concept implementation of all protocols. We also
demonstrate that the protocols’ run times are constant and we underline their
security using a simulation-based proof. The MPSI protocol for small universes is
two orders of magnitude faster than the protocol by Bay et al. [Bay+21].

References
[ATD20] Aydin Abadi, Sotirios Terzis, and Changyu Dong. “Feather: Lightweight

Multi-party Updatable Delegated Private Set Intersection”. In: IACR
Cryptol. ePrint Arch. (2020), p. 407. (!&: https://eprint.iacr.org/
2020/407.

[BA16] Marina Blanton and Everaldo Aguiar. “Private and oblivious set and
multiset operations”. In: Int. J. Inf. Sec. 15.5 (2016), pp. 493–518. /)%:
10.1007/s10207-015-0301-1. (!&: https://doi.org/10.1007/
s10207-015-0301-1.

127

https://eprint.iacr.org/2020/407
https://eprint.iacr.org/2020/407
https://doi.org/10.1007/s10207-015-0301-1
https://doi.org/10.1007/s10207-015-0301-1
https://doi.org/10.1007/s10207-015-0301-1

[BAH19] Samiran Bag, Muhammad Ajmal Azad, and Feng Hao. “PriVeto:
a fully private two-round veto protocol”. In: IET Inf. Secur. 13.4
(2019), pp. 311–320. /)%: 10.1049/iet-ifs.2018.5115. (!&: https:
//doi.org/10.1049/iet-ifs.2018.5115.

[Bar20] Elaine Barker. Recommendation for Key Management: Part 1 – General.
Tech. rep. SP 800-57 Part 1 Rev. 5. NIST, May 2020.

[Bay+21] Aslí Bay et al. “Multi-Party Private Set Intersection Protocols for
Practical Applications”. In: Proceedings of the 18th International Con-
ference on Security and Cryptography, SECRYPT 2021, July 6-8, 2021.
Ed. by Sabrina De Capitani di Vimercati and Pierangela Samarati.
SCITEPRESS, 2021, pp. 515–522. /)%: 10.5220/0010547605150522.
(!&: https://doi.org/10.5220/0010547605150522.

[Bay+22] Aslí Bay et al. “Practical Multi-Party Private Set Intersection Protocols”.
In: IEEE Trans. Inf. Forensics Secur. 17 (2022), pp. 1–15. /)%: 10.1109/
TIFS.2021.3118879. (!&: https://doi.org/10.1109/TIFS.2021.
3118879.

[Ber06] Daniel J. Bernstein. “Curve25519: New Di#e-Hellman Speed Records”.
In: Public Key Cryptography - PKC 2006, 9th International Conference on
Theory and Practice of Public-Key Cryptography, New York, NY, USA, April
24-26, 2006, Proceedings. Ed. by Moti Yung et al. Vol. 3958. Lecture
Notes in Computer Science. Springer, 2006, pp. 207–228. /)%: 10.1007/
11745853_14. (!&: https://doi.org/10.1007/11745853%5C_14.

[Boy+19] Colin Boyd et al. “A Blind Coupon Mechanism Enabling Veto Voting
over Unreliable Networks”. In: Progress in Cryptology - INDOCRYPT
2019 - 20th International Conference on Cryptology in India, Hyderabad,
India, December 15-18, 2019, Proceedings. Ed. by Feng Hao, Sushmita Ruj,
and Sourav Sen Gupta. Vol. 11898. Lecture Notes in Computer Science.
Springer, 2019, pp. 250–270. /)%: 10.1007/978-3-030-35423-7_13.
(!&: https://doi.org/10.1007/978-3-030-35423-7%5C_13.

[Bra05] Felix Brandt. “E#cient Cryptographic Protocol Design Based on Dis-
tributed El Gamal Encryption”. In: Information Security and Cryptology
- ICISC 2005, 8th International Conference, Seoul, Korea, December 1-2,
2005, Revised Selected Papers. Ed. by Dongho Won and Seungjoo Kim.
Vol. 3935. Lecture Notes in Computer Science. Springer, 2005, pp. 32–
47. /)%: 10.1007/11734727_5. (!&: https://doi.org/10.1007/
11734727%5C_5.

[Bur+10] Martin Burkhart et al. “SEPIA: Privacy-Preserving Aggregation of
Multi-Domain Network Events and Statistics”. In: 19th USENIX Secu-
rity Symposium, Washington, DC, USA, August 11-13, 2010, Proceedings.
USENIX Association, 2010, pp. 223–240. (!&: http://www.usenix.
org/events/sec10/tech/full%5C_papers/Burkhart.pdf.

[Cha+21] Nishanth Chandran et al. E!cient Linear Multiparty PSI and Extensions
to Circuit/Quorum PSI. Cryptology ePrint Archive, Report 2021/172.
https://ia.cr/2021/172. 2021.

128

https://doi.org/10.1049/iet-ifs.2018.5115
https://doi.org/10.1049/iet-ifs.2018.5115
https://doi.org/10.1049/iet-ifs.2018.5115
https://doi.org/10.5220/0010547605150522
https://doi.org/10.5220/0010547605150522
https://doi.org/10.1109/TIFS.2021.3118879
https://doi.org/10.1109/TIFS.2021.3118879
https://doi.org/10.1109/TIFS.2021.3118879
https://doi.org/10.1109/TIFS.2021.3118879
https://doi.org/10.1007/11745853%5C_14
https://doi.org/10.1007/11745853%5C_14
https://doi.org/10.1007/11745853%5C_14
https://doi.org/10.1007/978-3-030-35423-7%5C_13
https://doi.org/10.1007/978-3-030-35423-7%5C_13
https://doi.org/10.1007/11734727%5C_5
https://doi.org/10.1007/11734727%5C_5
https://doi.org/10.1007/11734727%5C_5
http://www.usenix.org/events/sec10/tech/full%5C_papers/Burkhart.pdf
http://www.usenix.org/events/sec10/tech/full%5C_papers/Burkhart.pdf
https://ia.cr/2021/172

[Cha88] David Chaum. “The Dining Cryptographers Problem: Unconditional
Sender and Recipient Untraceability”. In: J. Cryptol. 1.1 (1988), pp. 65–
75. /)%: 10.1007/BF00206326. (!&: https://doi.org/10.1007/
BF00206326.

[CJS12] Jung Hee Cheon, Stanislaw Jarecki, and Jae Hong Seo. “Multi-Party
Privacy-Preserving Set Intersection with Quasi-Linear Complexity”.
In: IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 95-A.8 (2012),
pp. 1366–1378. /)%: 10.1587/transfun.E95.A.1366. (!&: https:
//doi.org/10.1587/transfun.E95.A.1366.

[Col21] Yann Collet. xxHash. 2021. (!&: https://cyan4973.github.io/
xxHash/.

[DCW13] Changyu Dong, Liqun Chen, and Zikai Wen. “When private set
intersection meets big data: an e#cient and scalable protocol”. In:
2013 ACM SIGSAC Conference on Computer and Communications Security,
CCS’13, Berlin, Germany, November 4-8, 2013. Ed. by Ahmad-Reza
Sadeghi, Virgil D. Gligor, and Moti Yung. ACM, 2013, pp. 789–800.
/)%: 10.1145/2508859.2516701. (!&: https://doi.org/10.1145/
2508859.2516701.

[Deb+21a] Sumit Kumar Debnath et al. “Post-quantum secure multi-party private
set-intersection in star network topology”. In: J. Inf. Secur. Appl. 58
(2021), p. 102731. /)%: 10.1016/j.jisa.2020.102731. (!&: https:
//doi.org/10.1016/j.jisa.2020.102731.

[Deb+21b] Sumit Kumar Debnath et al. “Secure and e#cient multiparty private
set intersection cardinality”. In: Adv. Math. Commun. 15.2 (2021),
pp. 365–386. /)%: 10.3934/amc.2020071. (!&: https://doi.org/10.
3934/amc.2020071.

[ElG84] Taher ElGamal. “A Public Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms”. In: Advances in Cryptology, Proceedings
of CRYPTO ’84, Santa Barbara, California, USA, August 19-22, 1984,
Proceedings. Ed. by G. R. Blakley and David Chaum. Vol. 196. Lecture
Notes in Computer Science. Springer, 1984, pp. 10–18. /)%: 10.1007/3-
540-39568-7_2. (!&: https://doi.org/10.1007/3-540-39568-
7%5C_2.

[Fri07] Keith B. Frikken. “Privacy-Preserving Set Union”. In: Applied Cryp-
tography and Network Security, 5th International Conference, ACNS 2007,
Zhuhai, China, June 5-8, 2007, Proceedings. Ed. by Jonathan Katz and
Moti Yung. Vol. 4521. Lecture Notes in Computer Science. Springer,
2007, pp. 237–252. /)%: 10.1007/978-3-540-72738-5_16. (!&:
https://doi.org/10.1007/978-3-540-72738-5%5C_16.

[GG10] Ashish Goel and Pankaj Gupta. “Small subset queries and bloom
filters using ternary associative memories, with applications”. In:
SIGMETRICS 2010, Proceedings of the 2010 ACM SIGMETRICS In-
ternational Conference on Measurement and Modeling of Computer Sys-
tems, New York, New York, USA, 14-18 June 2010. Ed. by Vishal Misra,

129

https://doi.org/10.1007/BF00206326
https://doi.org/10.1007/BF00206326
https://doi.org/10.1007/BF00206326
https://doi.org/10.1587/transfun.E95.A.1366
https://doi.org/10.1587/transfun.E95.A.1366
https://doi.org/10.1587/transfun.E95.A.1366
https://cyan4973.github.io/xxHash/
https://cyan4973.github.io/xxHash/
https://doi.org/10.1145/2508859.2516701
https://doi.org/10.1145/2508859.2516701
https://doi.org/10.1145/2508859.2516701
https://doi.org/10.1016/j.jisa.2020.102731
https://doi.org/10.1016/j.jisa.2020.102731
https://doi.org/10.1016/j.jisa.2020.102731
https://doi.org/10.3934/amc.2020071
https://doi.org/10.3934/amc.2020071
https://doi.org/10.3934/amc.2020071
https://doi.org/10.1007/3-540-39568-7%5C_2
https://doi.org/10.1007/3-540-39568-7%5C_2
https://doi.org/10.1007/3-540-39568-7%5C_2
https://doi.org/10.1007/3-540-39568-7%5C_2
https://doi.org/10.1007/978-3-540-72738-5%5C_16
https://doi.org/10.1007/978-3-540-72738-5%5C_16

Paul Barford, and Mark S. Squillante. ACM, 2010, pp. 143–154. /)%:
10.1145/1811039.1811056.

[Ham15] Mike Hamburg. “Decaf: Eliminating Cofactors Through Point Com-
pression”. In: Advances in Cryptology - CRYPTO 2015 - 35th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015,
Proceedings, Part I. Ed. by Rosario Gennaro and Matthew Robshaw.
Vol. 9215. Lecture Notes in Computer Science. Springer, 2015, pp. 705–
723. /)%: 10.1007/978-3-662-47989-6_34. (!&: https://doi.org/
10.1007/978-3-662-47989-6%5C_34.

[HV17] Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. “Scal-
able Multi-party Private Set-Intersection”. In: Public-Key Cryptography
- PKC 2017 - 20th IACR International Conference on Practice and Theory
in Public-Key Cryptography, Amsterdam, The Netherlands, March 28-31,
2017, Proceedings, Part I. Ed. by Serge Fehr. Vol. 10174. Lecture Notes
in Computer Science. Springer, 2017, pp. 175–203. /)%: 10.1007/978-
3-662-54365-8_8. (!&: https://doi.org/10.1007/978-3-662-
54365-8%5C_8.

[HZ06] Feng Hao and Piotr Zielinski. “A 2-Round Anonymous Veto Protocol”.
In: Security Protocols, 14th International Workshop, Cambridge, UK, March
27-29, 2006, Revised Selected Papers. Ed. by Bruce Christianson et
al. Vol. 5087. Lecture Notes in Computer Science. Springer, 2006,
pp. 202–211. /)%: 10.1007/978-3-642-04904-0_28. (!&: https:
//doi.org/10.1007/978-3-642-04904-0%5C_28.

[IOP18] Roi Inbar, Eran Omri, and Benny Pinkas. “E#cient Scalable Multiparty
Private Set-Intersection via Garbled Bloom Filters”. In: Security and
Cryptography for Networks - 11th International Conference, SCN 2018,
Amalfi, Italy, September 5-7, 2018, Proceedings. Ed. by Dario Catalano
and Roberto De Prisco. Vol. 11035. Lecture Notes in Computer Science.
Springer, 2018, pp. 235–252. /)%: 10.1007/978-3-319-98113-0_13.
(!&: https://doi.org/10.1007/978-3-319-98113-0%5C_13.

[Ker12] Florian Kerschbaum. “Outsourced private set intersection using homo-
morphic encryption”. In: 7th ACM Symposium on Information, Compuer
and Communications Security, ASIACCS ’12, Seoul, Korea, May 2-4, 2012.
Ed. by Heung Youl Youm and Yoojae Won. ACM, 2012, pp. 85–86.
/)%: 10.1145/2414456.2414506. (!&: https://doi.org/10.1145/
2414456.2414506.

[Kol+17] Vladimir Kolesnikov et al. “Practical Multi-party Private Set Intersec-
tion from Symmetric-Key Techniques”. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2017,
Dallas, TX, USA, October 30 - November 03, 2017. Ed. by Bhavani Thu-
raisingham et al. ACM, 2017, pp. 1257–1272. /)%: 10.1145/3133956.
3134065. (!&: https://doi.org/10.1145/3133956.3134065.

130

https://doi.org/10.1145/1811039.1811056
https://doi.org/10.1007/978-3-662-47989-6%5C_34
https://doi.org/10.1007/978-3-662-47989-6%5C_34
https://doi.org/10.1007/978-3-662-47989-6%5C_34
https://doi.org/10.1007/978-3-662-54365-8%5C_8
https://doi.org/10.1007/978-3-662-54365-8%5C_8
https://doi.org/10.1007/978-3-662-54365-8%5C_8
https://doi.org/10.1007/978-3-662-54365-8%5C_8
https://doi.org/10.1007/978-3-642-04904-0%5C_28
https://doi.org/10.1007/978-3-642-04904-0%5C_28
https://doi.org/10.1007/978-3-642-04904-0%5C_28
https://doi.org/10.1007/978-3-319-98113-0%5C_13
https://doi.org/10.1007/978-3-319-98113-0%5C_13
https://doi.org/10.1145/2414456.2414506
https://doi.org/10.1145/2414456.2414506
https://doi.org/10.1145/2414456.2414506
https://doi.org/10.1145/3133956.3134065
https://doi.org/10.1145/3133956.3134065
https://doi.org/10.1145/3133956.3134065

[KS05] Lea Kissner and Dawn Xiaodong Song. “Privacy-Preserving Set Op-
erations”. In: Advances in Cryptology - CRYPTO 2005: 25th Annual
International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 14-18, 2005, Proceedings. Ed. by Victor Shoup. Vol. 3621. Lecture
Notes in Computer Science. Springer, 2005, pp. 241–257. /)%: 10.1007/
11535218_15. (!&: https://doi.org/10.1007/11535218%5C_15.

[KY03] Aggelos Kiayias and Moti Yung. “Non-interactive Zero-Sharing with
Applications to Private Distributed Decision Making”. In: Financial
Cryptography, 7th International Conference, FC 2003, Guadeloupe, French
West Indies, January 27-30, 2003, Revised Papers. Ed. by Rebecca N.
Wright. Vol. 2742. Lecture Notes in Computer Science. Springer,
2003, pp. 303–320. /)%: 10.1007/978-3-540-45126-6_22. (!&:
https://doi.org/10.1007/978-3-540-45126-6%5C_22.

[Lin17] Yehuda Lindell. “How to Simulate It - A Tutorial on the Simulation
Proof Technique”. In: Tutorials on the Foundations of Cryptography. Ed. by
Yehuda Lindell. Springer International Publishing, 2017, pp. 277–346.
/)%: 10.1007/978-3-319-57048-8_6. (!&: https://doi.org/10.
1007/978-3-319-57048-8%5C_6.

[LW07] Ronghua Li and Chuankun Wu. “An Unconditionally Secure Protocol
for Multi-Party Set Intersection”. In: Applied Cryptography and Network
Security, 5th International Conference, ACNS 2007, Zhuhai, China, June
5-8, 2007, Proceedings. Ed. by Jonathan Katz and Moti Yung. Vol. 4521.
Lecture Notes in Computer Science. Springer, 2007, pp. 226–236. /)%:
10.1007/978-3-540-72738-5_15. (!&: https://doi.org/10.
1007/978-3-540-72738-5%5C_15.

[MN15] Atsuko Miyaji and Shohei Nishida. “A Scalable Multiparty Private Set
Intersection”. In: Network and System Security - 9th International Confer-
ence, NSS 2015, New York, NY, USA, November 3-5, 2015, Proceedings. Ed.
by Meikang Qiu et al. Vol. 9408. Lecture Notes in Computer Science.
Springer, 2015, pp. 376–385. /)%: 10.1007/978-3-319-25645-0_26.
(!&: https://doi.org/10.1007/978-3-319-25645-0%5C_26.

[NTY21] Ofri Nevo, Ni Trieu, and Avishay Yanai. Simple, Fast Malicious Mul-
tiparty Private Set Intersection. Cryptology ePrint Archive, Report
2021/1221. https://ia.cr/2021/1221. 2021.

[PSN10] Odysseas Papapetrou, Wolf Siberski, and Wolfgang Nejdl. “Cardinal-
ity estimation and dynamic length adaptation for Bloom filters”. In:
Distributed Parallel Databases 28.2-3 (2010), pp. 119–156. /)%: 10.1007/
s10619-010-7067-2. (!&: https://doi.org/10.1007/s10619-010-
7067-2.

[Rua+19] Ou Ruan et al. “New Approach to Set Representation and Practical
Private Set-Intersection Protocols”. In: IEEE Access 7 (2019), pp. 64897–
64906. /)%: 10.1109/ACCESS.2019.2917057. (!&: https://doi.org/
10.1109/ACCESS.2019.2917057.

131

https://doi.org/10.1007/11535218%5C_15
https://doi.org/10.1007/11535218%5C_15
https://doi.org/10.1007/11535218%5C_15
https://doi.org/10.1007/978-3-540-45126-6%5C_22
https://doi.org/10.1007/978-3-540-45126-6%5C_22
https://doi.org/10.1007/978-3-319-57048-8%5C_6
https://doi.org/10.1007/978-3-319-57048-8%5C_6
https://doi.org/10.1007/978-3-319-57048-8%5C_6
https://doi.org/10.1007/978-3-540-72738-5%5C_15
https://doi.org/10.1007/978-3-540-72738-5%5C_15
https://doi.org/10.1007/978-3-540-72738-5%5C_15
https://doi.org/10.1007/978-3-319-25645-0%5C_26
https://doi.org/10.1007/978-3-319-25645-0%5C_26
https://ia.cr/2021/1221
https://doi.org/10.1007/s10619-010-7067-2
https://doi.org/10.1007/s10619-010-7067-2
https://doi.org/10.1007/s10619-010-7067-2
https://doi.org/10.1007/s10619-010-7067-2
https://doi.org/10.1109/ACCESS.2019.2917057
https://doi.org/10.1109/ACCESS.2019.2917057
https://doi.org/10.1109/ACCESS.2019.2917057

[SCK12] Jae Hong Seo, Jung Hee Cheon, and Jonathan Katz. “Constant-Round
Multi-party Private Set Union Using Reversed Laurent Series”. In:
Public Key Cryptography - PKC 2012 - 15th International Conference on
Practice and Theory in Public Key Cryptography, Darmstadt, Germany, May
21-23, 2012. Proceedings. Ed. by Marc Fischlin, Johannes Buchmann,
and Mark Manulis. Vol. 7293. Lecture Notes in Computer Science.
Springer, 2012, pp. 398–412. /)%: 10.1007/978-3-642-30057-8_24.
(!&: https://doi.org/10.1007/978-3-642-30057-8%5C_24.

[SM18] Katsunari Shishido and Atsuko Miyaji. “E#cient and Quasi-accurate
Multiparty Private Set Union”. In: 2018 IEEE International Confer-
ence on Smart Computing, SMARTCOMP 2018, Taormina, Sicily, Italy,
June 18-20, 2018. IEEE Computer Society, 2018, pp. 309–314. /)%:
10.1109/SMARTCOMP.2018.00021. (!&: https://doi.org/10.1109/
SMARTCOMP.2018.00021.

[SS09] Yingpeng Sang and Hong Shen. “E#cient and secure protocols for
privacy-preserving set operations”. In: ACM Trans. Inf. Syst. Secur.
13.1 (2009), 9:1–9:35. /)%: 10.1145/1609956.1609965. (!&: https:
//doi.org/10.1145/1609956.1609965.

[VED21] Jelle Vos, Zekeriya Erkin, and Christian Doerr. Compare Before You Buy:
Privacy-Preserving Selection of Threat Intelligence Providers. Cryptology
ePrint Archive, Report 2021/1260. https://ia.cr/2021/1260. 2021.

[VLA21a] Henry de Valence, Isis Lovecruft, and Tony Arcieri. Testing Equality.
2021. (!&: https://ristretto.group/formulas/equality.html.

[VLA21b] Henry de Valence, Isis Lovecruft, and Tony Arcieri. The Ristretto Group.
2021. (!&: https://ristretto.group/why_ristretto.html.

3.A Complexities of MPSI protocols
In this section we provide our reasoning for the altered complexities in Table 3.1.
We use the notation from Table 3.2. In the final complexities we substitute 𝑃 with
𝑍(𝑈), as explained in Section 3.6.

3.A.I Kissner & Song [KS05]
The authors already provide a computational and communication complexity but
we are interested in the complexity per party rather than the total complexity.

1. Each party sends their encrypted polynomial to 𝑊 other parties, which takes
𝑍(𝑊𝑈) bits.

2. Each party sends another encrypted polynomial to one other party, which
takes 𝑍(𝑈) bits.

3. The leader sends the final encrypted polynomial to all other parties, which
takes 𝑍(𝑄𝑈) bits.

4. Each party participates in a group decryption (for each coe#cient) by sending
the their decrypted shares to 𝑊 other parties, which takes 𝑍(𝑊𝑈) bits.

132

https://doi.org/10.1007/978-3-642-30057-8%5C_24
https://doi.org/10.1007/978-3-642-30057-8%5C_24
https://doi.org/10.1109/SMARTCOMP.2018.00021
https://doi.org/10.1109/SMARTCOMP.2018.00021
https://doi.org/10.1109/SMARTCOMP.2018.00021
https://doi.org/10.1145/1609956.1609965
https://doi.org/10.1145/1609956.1609965
https://doi.org/10.1145/1609956.1609965
https://ia.cr/2021/1260
https://ristretto.group/formulas/equality.html
https://ristretto.group/why_ristretto.html

The final communication complexity is 𝑍(𝑄𝑈) for the leader and 𝑍(𝑊𝑈) for an
assistant.

1. Each party generates an encrypted polynomial, which takes 𝑍(𝑈).
2. Each party homomorphically multiplies 𝑊 + 1 polynomials, which takes

𝑍(𝑊𝑈2).
3. Each assistant adds two encrypted polynomials together, which takes 𝑍(𝑈).
4. Each party participates in a group decryption (for each coe#cient), which

takes 𝑍(𝑊𝑈).

This leads to a computational complexity of 𝑍(𝑊𝑈2) for both the leader and an
assistant.

3.A.II Hazay et al. [HV17]
1. Each assistant encodes their set as encrypted polynomial coe#cients, which

takes 𝑍(𝑈).
2. The leader evaluates the 𝑄 ⇐ 1 encrypted polynomials with its 𝑈 elements,

which takes 𝑍(𝑄𝑈2).
3. The leader sums up the 𝑄 ⇐ 1 ciphertexts per element, which takes 𝑍(𝑄𝑈).
4. Several assistants help in the decrypt-to-zero of 𝑈 ciphertexts, which takes

𝑍(𝑈).
5. The leader combines the resulting shares to compute the final intersection,

which takes 𝑍(𝑈).

So the computational complexity for the leader is𝑍(𝑄𝑈2) and for an assistant is𝑍(𝑈).
At the cost of bandwidth the authors also propose a computation optimization
which takes the leader only 𝑍(𝑄𝑈 log2 𝑈).

3.A.III Inbar et al. [IOP18]
1. Each party performs an OT interaction with each other party to share an

XOR-secret share, receiving a constant number of bits for each bin in the
Bloom Filter, which takes 𝑍(𝑄𝑃) bits.

2. Each assistant sends its share of the final aggregated Garbled Bloom Filter to
the leader, which takes 𝑍(𝑃) bits.

This results in a communication complexity of 𝑍(𝑄𝑃) for assistants and the leader
alike. The original paper reports a complexity of 𝑍(𝑄𝑗𝑈), where we pose 𝑍(𝑗𝑈)
might have been a substitution for 𝑍(𝑃).

1. Each party builds a Bloom Filter and a t-shared Garbled Bloom Filter, which
takes 𝑍(𝑄𝑃).

2. Each party performs an OT interaction with each other party for every bin in
the Bloom Filter, which takes approximately 𝑍(𝑄𝑃).

133

3. Each party XORs their received secret shares from the OT interaction, which
takes 𝑍(𝑄𝑃).

4. The leader XORs their received secret shares, which takes 𝑍(𝑄𝑃).

This results in a computational complexity that is also 𝑍(𝑄𝑃) for every party.

3.A.IV Bay et al. [Bay+21]
1. Each assistant sends an encrypted bitset, which takes 𝑍(|↘ |) bits.
2. The leader sends all assistants at most 𝑈 aggregated bits, which takes 𝑍(𝑈)

bits.
3. Each assistant partially decrypts at most 𝑈 aggregated bits, which takes 𝑍(𝑈)

bits.

This results in a communication complexity of 𝑍(𝑄𝑈) for the leader and 𝑍(|↘ |)
for an assistant.

1. Each assistant generates an encrypted bitset, which takes 𝑍(|↘ |).
2. The leader aggregates the results using homomorphic addition for the bins

corresponding to its set elements, which takes 𝑍(𝑄𝑈𝑗).
3. Each assistant partially decrypts at most 𝑈 aggregated bins, which takes 𝑍(𝑈).

As a result, the leader performs 𝑍(𝑄𝑈𝑗) operations, while the assistants perform
𝑍(|↘ |) operations.

3.A.V Debnath et al. [Deb+21b] & Bay et al. [Bay+22]
1. Each assistant sends an encrypted Bloom filter, which takes 𝑍(𝑃) bits.
2. The leader sends all assistants at most 𝑈 aggregated bins, which takes 𝑍(𝑈)

bits.
3. Each assistant partially decrypts at most 𝑈 aggregated bins, which takes 𝑍(𝑈)

bits.

This results in a communication complexity of 𝑍(𝑄𝑈) for the leader and 𝑍(𝑈) for
an assistant.

1. Each assistant generates an encrypted Bloom filter, which takes 𝑍(𝑈 + 𝑃).
2. The leader aggregates the results using homomorphic addition for the bins

corresponding to its set elements, which takes 𝑍(𝑄𝑈𝑗).
3. Each assistant partially decrypts at most 𝑈 aggregated bins, which takes 𝑍(𝑈).

As a result, the leader performs 𝑍(𝑄𝑈𝑗) operations, while the assistants perform
𝑍(𝑈) operations.

134

3.B Complexities of MPSU protocols

3.B.I Frikken [Fri07]
Following the author’s complexity analysis, the parties each share 𝑍(𝑄𝑈) tuples
with two ciphertexts in step 2b of the protocol, so the communication complexity
for each individual party is 𝑍(𝑄𝑈) bits. Each party must be online at least once in
steps 1a, 1b, 1c, 2b, 3 and 4, so the protocol requires at least 6 stages.

1. Each party encodes their set as encrypted polynomial coe#cients, which
takes 𝑍(𝑈).

2. Each party →𝑋 homomorphically multiplies 𝑋 encrypted polynomials together,
which takes at most 𝑍(𝑄𝑈2).

3. Each party →𝑋 encrypts 2𝑈 values and homomorphically multiplies 𝑋 ⇐ 1
encrypted polynomials together, which takes at most 𝑍(𝑄𝑈2).

4. Each party →𝑋 homomorphically multiplies 𝑋 ciphertexts together, which
takes at most 𝑍(𝑄𝑈).

5. Each party takes part in a secure shu$e protocol with at most 𝑄𝑈 tuples,
which we assume to be linear with the number of parties and tuples.

6. All parties work together to decrypt at most 𝑄𝑈 tuples, which scales linearly
with 𝑄 and 𝑈.

So, the overall computational complexity is 𝑍(𝑄𝑈2) for each party.

3.B.II Seo et al. [SCK12]
In this work, 𝑎 is the order of the finite field used in secret sharing. It needs to hold
that 𝑎 ≃ |↘ | , so the computational complexity becomes 𝑍(𝑄4

𝑈
2 + 𝑄

2
𝑈

2 log |↘ |).
For brevity, we omit the logarithmic term: �̃�(𝑄4

𝑈
2).

135

136

Chapter 4

Privacy-Preserving Membership Queries for Federated
Anomaly Detection

While multi-party private set intersection have received significant
attention from the research community, we are not aware of practical
deployments. Instead, deployed private set operations often consider
versions of private membership queries. For example, to check
whether a password has been found in a leaked password file, without
revealing the password nor the complete password file. In this chapter,
we apply similar elliptic curve-based techniques as we proposed in
the previous chapters in the context of private membership queries.

The use case that we consider in this chapter is that of federated
anomaly detection. A specific example is when a payment network
system that routes payments between banks wants to perform fraud
detection without compromising user privacy. We propose privacy-
preserving multi-party repeated membership queries for this purpose,
which allow the payment network system to check whether all the
credentials pertaining to a transaction match the user data stored
by both banks, without revealing the query or the user data to
the other parties. Our protocol is strictly in the star topology and
requires only two rounds for each query, addressing impracticalities
1: High interactivity and 2: Full-mesh topology.

This chapter is an adaptation of the work with the same title that has been
published in Proceedings on Privacy Enhancing Technologies 2024, authored
by Jelle Vos, Sikha Pentyala, Steven Golob, Ricardo Maia, Dean Kelley,
Zekeriya Erkin, Martine De Cock, and Anderson Nascimento. This work
was originally a submission to the U.K.-U.S. PETs prize challenge, where it
won the 2nd place.

4.1 Introduction

Privacy-preserving membership query protocols allow a centralized entity ⇒ to
find out whether a given element is contained in the data sets of other parties
→1 , . . . ,→𝑄 without learning anything about the other elements in those sets. In
the multi-party case, such a membership query will only return positively when
the queried element is contained in the set of each other party. This work proposes
a protocol to perform privacy-preserving membership queries that is particularly
e#cient when performing multiple parallel and sequential queries on the same sets.

137

We refer to such queries as repeated membership queries. The key to making this
e#cient is to use encrypted membership query filters (EMQFs), see Section 4.5.1.

Repeated privacy-preserving membership queries occur in large-scale sys-
tems, which are often comprised of many user-facing entities and one or a few
centralized entities serving as the backbone. Such federations arise for various
reasons: to increase scalability, for political and operational reasons, or simply
because that is how these systems functioned historically, and reorganizations
are costly. Examples include (1) financial systems such as the global payment
system orchestrated by SWIFT and distributed among banks, (2) governmental
systems such as tax authorities controlled by national governments but supported
by states or municipalities, and (3) health care guided by insurers while provided
by many medical institutions. All these systems are prone to fraud because the
centralized entities have little knowledge of the users, while the other entities do
not have a global view of the system. Typical approaches that address fraud in
such a federated setting come at the cost of the users’ privacy, and not addressing
it is not an option due to its high societal cost. Privacy-preserving membership
queries allow us to address fraud while preserving users’ privacy.

We demonstrate the e"ectiveness of our solution in the financial domain. As
illustrated in Fig. 4.1, we assume a cross-silo federated architecture in which a
centralized entity (the backbone) has labeled data to train a machine learning (ML)
model for detecting anomalous instances. The other entities in the federation
are data-augmenting entities (the user-facing entities), which collaborate with the
centralized entity to extract feature values to improve the utility of the model. In the
financial domain, the centralized entity would, for instance, be a payment network
system like SWIFT that holds information about financial transactions, and the
data-augmenting entities are partner banks that hold additional information about
the ordering and beneficiary accounts appearing in financial transactions. The task
is to use the sensitive information residing with all the entities, e.g. the payment
network system and the banks, to train a ML model to detect anomalies. A large
body of research has already studied ways to train such a model with output privacy
guarantees: by training the model using di"erential privacy (DP) techniques, any
inferences made with the model can be made public while guaranteeing plausible
deniability about the existence of any specific instance in the training data. The
challenge is to also provide input privacy, which guarantees that the information
held by any data-augmenting entities and the information held by any centralized
entity is not disclosed to any other entity. We propose a new cryptographic
protocol tailored to this setting to e#ciently and privately extract a Boolean feature
indicating whether the data relating to a specific instance is consistent between the
centralized entity and that of one or more data-augmenting entities.

Throughout this paper, we use⇒ to denote the centralized entity and→1 , . . . ,→𝑄

to denote the data-augmenting entities. We assume that ⇒ has a training dataset in
which each instance is labeled with a value denoting whether it is anomalous or not.
To provide output privacy, ⇒ can train a ML 𝒪 over its data with any of a variety of
supervised DP model training algorithms that have been proposed in the literature,
including for logistic regression, tree ensembles, and neural networks [Aba+16;
CM08; CMS11; FI17]. We note that this choice of model is completely free, and we
do not expand on it in this work. The emphasis in this paper is on improving the

138

PrS Ps

[z(qr + qs)]

[z zr (qr + qs)]

[z (zr + zs) (qr + qs)] [z (zr + zs) (qr + qs)]

Answer

Query [qr] , [qs]

[z zs (qr + qs)]

[z (zr + zs) (qr + qs)]

.
 .

 .

(a) Federated Setup.
One time setup for creation of EMQF

(Protocol 1)

P2

Pn

P5

P4

P1

P3

S

(b) Inference Phase.
Privacy-preserving membership queries

(Protocol 2)

pkn, Dn

 pk5, D5

 pk4, D4
 pk3, D3

 pk2, D2

pk1, D1

Privacy-Preserving Feature Extraction for Federated Anomaly Detection

private communication channel

private database of the entity

S - centralized entity
Pi - ith data-augmenting entity
Ps - The entity to be queried for membership
Pr - The entity to be queried for membership

[z(qr + qs)]

[z (zr + zs) (qr + qs)] [z (zr + zs) (qr + qs)]

z (zr + zs) (qr + qs) = 0?

pki - public key of Pi
Di - EMQF of Pi
qr - query result from the EMQF for Pr
qs - query result from the EMQF for Ps
z - randomness from S
zi - randomness from Pi

Figure 4.1: (a) Architecture diagram of the federation; (b) A private consistency check
involving two data-augmenting clients

139

utility of 𝒪 by extracting feature values that represent whether information held
by ⇒ is consistent with information held by one or more of the →𝑋 ’s, e.g. whether
the information about the ordering and beneficiary accounts listed in a transaction
known to a payment network system is consistent with the information known by
the respective sending and receiving banks.

From a technical point of view, our private feature extraction protocol is built
on top of a novel private set membership protocol that is especially e#cient
when performing many sequential queries. To make the protocol e#cient, we
instantiated the cryptosystem over an elliptic curve and implemented it in Rust
(with a Python wrapper). The resulting protocol has low computational and
communication demands. Moreover, typical protocols for private set membership
or private set intersection based on oblivious key-value stores [Gar+21] and built
using OT extension protocols [Ash+17] reveal the protocol’s output in the clear.
This is problematic when the result of the protocol needs to be used in other
private computations. We provide an extension of our protocol that overcomes
this limitation by outputting ElGamal encryptions of the data and using a custom
private equality test that uses its homomorphic properties. We are not aware of
similar constructions in the literature.

Motivated by the 2023 PETs prize challenge,1 which is a collaborative e"ort of
the US and UK governments, we demonstrate the e"ectiveness of our approach
in the financial domain. We show that the private queries significantly increase
the precision and recall of the otherwise centralized system and argue that this
improvement translates to other use cases as well.

Our contributions can be summarized as follows:

• We propose a new multi-party private set membership protocol that is also of
independent interest (e.g., for multi-party private set intersections), in which we
formalize the concept of an EMQF.

• We propose a secure equality protocol over elliptic curve-based ElGamal cipher-
texts, also of independent interest.

• To the best of our knowledge, we discuss the first concretely e#cient distributed
anomaly detection system in a federated star topology that preserves both input
and output privacy.

After describing related work in Sec. 4.2 and preliminaries in Sec. 4.3, we
provide a high level description of our solution in Sec. 4.4. We follow up with
a detailed description for private consistency queries in Sec. 4.5 and a privacy
proof in Sec. 4.6. In Sec. 4.7 we document experiments that demonstrate the utility
and scalability of our method, which was a prize finalist in the 2023 PETs prize
challenge.

4.2 Related work
We go over previous works that tackle similar (sub-)problems. First, we discuss
previous works for performing private membership queries by studying private set

1https://www.drivendata.org/competitions/group/nist-federated-learning/

140

https://www.drivendata.org/competitions/group/nist-federated-learning/

intersection protocols. After that, we analyze solutions related to our application
in the field of privacy-preserving federated learning, which also tackle learning in
federations while providing privacy guarantees.

4.2.1 Private Membership Queries
Private membership queries form the basis of private set intersection protocols,
which have been studied extensively. In this work, we are interested in the
multi-party case, where a querier can check the membership of an element with
multiple parties at once and only receive a positive result if each set contains the
element. We briefly provide an overview of some of the most recent work on
these protocols. We distinguish between multi-party private membership queries
and multi-party private set intersections (MPSI). In the latter case, we discuss two
categories: protocols based on multiple instances of two-party computation (2PC)
and protocols based on homomorphic encryption (HE). Note that while some
of the protocols discussed here are e#cient when it comes to computation and
communication, each individual query has a large cost associated to it. In other
words, these protocols are not concretely e#cient for performing many queries in
parallel or sequentially.

Private set intersections using 2PC This type of MPSI protocols combines multi-
ple executions of two-party computations that inherently perform membership
queries to find the intersection of all separate sets. This closely resembles our
protocol, except these protocols do not rely on homomorphic encryption. The
most recent protocol in this category is that by Nevo et al. [NTY21]. This protocol
uses OKVSs encoding secret shares in combination with oblivious transfers to
perform the membership checks. A similar approach was proposed before that
by Garimella et al. [Gar+21]. These protocols are among the most e#cient for
multi-party private set intersections over large sets. Another protocol in this
category is by Kavousi et al. [KMS21], which relies on oblivious pseudo-random
functions (OPRFs) as the two-party computation and functions strictly in the star
topology. In this work, each party encodes their set as a garbled Bloom filter. Since
OPRFs are e#cient building blocks, the Bloom filter can have many bins before
computations become prohibitively expensive. Note that in all three works, the
party receiving the final output must perform computation and communication
with the other parties scaling linearly with their set size every time the protocol is
executed.

Private set intersections using HE We discuss the three of the most recent MPSI
protocols based on homomorphic encryption. All three protocols function in the
star topology, which makes them suitable for in a federation, where there is a
centralized entity and multiple other entities. The protocol by Bay et al. [Bay+22],
and subsequently by Vos et al. [VCE22] uses encrypted Bloom filters to perform
one membership query for each of the elements in the centralized entity’s set.
While the former uses Paillier encryption, the latter uses elliptic curve-based
ElGamal, similar to this work. These protocols are concretely e#cient for small
set sizes, but they are less e#cient than the 2PC-based MPSI protocols as the set

141

size grows. Hazay et al. [HV17] present a di"erent protocol, in which each party
other than the centralized entity represents their set as the roots of an encrypted
polynomial. Performing the membership query then involves privately evaluating
this polynomial on the queried element. In these three works, the centralized entity
may keep the encrypted Bloom filters or encrypted polynomials locally to speed
up future queries, but these methods remain e#cient. For Bloom filters, this is the
case because the filters must be large in size not to introduce false positives, which
makes them prohibitively expensive for larger set sizes. For encrypted polynomials,
each invocation requires cryptographic operations on every encrypted coe#cient,
which requires a great deal of computation.

Private membership queries The protocol by Chielle et al. [CGM21] is similar to
many HE-based MPSI protocols as it is based on encrypted Bloom filters. However,
Bloom filters typically need to grow large in size in order to press the false positive
rate. As a result, precise queries involve a large amount of cryptographic operations.
This paper uses the BFV leveled-homomorphic encryption scheme. Unfortunately,
the protocol leaks information as it exposes all bits of the Bloom filter selected
by the hash functions (see [VCE22], Section 6.2). Ramezanian et al. [Ram+20]
propose a more complex protocol that decreases this cost by using Cuckoo filters,
which are also more common in MPSI protocols. The most recent custom protocol
for performing private membership queries is that by Garg et al. [Gar+23]. This
protocol provides stronger security than regular membership queries because it
is hard for the party holding the queried set to fool the other party of a positive
query result. However, this protocol is restricted to two parties.

In this work, we are interested in performing multiple sequential queries
on the same sets. We refer to a protocol that is designed for this case as a
privacy-preserving repeated membership query protocol. MPSI protocols can
be naively turned into such repeated membership query protocols, but this is
highly ine#cient: While an MPSI protocol allows performing multiple membership
queries in parallel, they are not necessarily e#cient for performing multiple queries
sequentially. We provide an overview incorporating the number of sequential
queries as 𝑂 in Table 4.1. Here, 𝑈 represents the maximum size of the parties’ sets
and 𝑄 is the number of involved parties. We also use 𝑊 to denote the number of
parties that can collude before the security guarantees no longer hold, and 𝑗 to
denote the number of hash functions in a Bloom filter.

In Table 4.1, we give two examples of MPSI protocols (Hazay et al. [HV17]
and Vos et al. [VCE22], see Chapter 3) that can be easily adapted (indicated with
an asterisk) so that parties only have to encode and send their set once. Their
asymptotic communication complexities are identical to the protocol presented in
this work. In fact, these adapted protocols can all be seen as instantiations of our
protocol with a di"erent EMQF. However, encrypted polynomials and Bloom filters
are significantly larger in size and require orders of magnitude more computations
to both encode and decode. We provide a concrete comparison of this in Sec. 4.7.
Note that the extra factor 𝑄 incurred in the computation of an assistant is because
our work uses a di"erent setup; the involved parties do not share a single public
key.

142

Our solution enjoys the benefits of the HE-based MPSI protocols we discussed,
running in the star topology and not having to recompute the set representation
at every invocation, along with the benefits of the 2PC-based MPSI protocols,
which scale well with the size of the sets. By using elliptic curve-based ElGamal
rather than a partially homomorphic encryption scheme such as Paillier, the size
of the OKVS stays compact, the cryptographic operations are fast to execute, and
the bandwidth cost in subsequent membership queries decreases by an order of
magnitude.

Table 4.1: Comparison of our privacy-preserving membership query protocol when ex-
pressed as a repeated multi-party private set intersection, derived from [VCE24].

Work Communication Computation
Authors Leader Assistant Rounds Leader Assistant

Hazay [HV17] 𝑍(𝑂𝑄𝑈) 𝑍(𝑂𝑈) 4𝑂 𝑍(𝑂𝑄𝑈) 𝑍(𝑂𝑈)
Inbar [IOP18] 𝑍(𝑂𝑄𝑈𝑗) 𝑍(𝑂𝑄𝑈𝑗) 3𝑂 𝑍(𝑂𝑄𝑈𝑗) 𝑍(𝑂𝑄𝑈𝑗)
Ghosh [GN19] 𝑍(𝑂𝑄𝑈) 𝑍(𝑂𝑈) 6𝑂 𝑍(𝑂𝑄𝑈) 𝑍(𝑂𝑈)
Chandran [Cha+21] 𝑍(𝑂𝑄𝑈) 𝑍(𝑂𝑈) 8𝑂 𝑍(𝑂𝑄𝑈) 𝑍(𝑂𝑈)
Garimella [Gar+21] 𝑍(𝑂𝑄𝑈) 𝑍(𝑂𝑈) 4𝑂 𝑍(𝑂𝑈) 𝑍(𝑂𝑄𝑈)
Gordon [GHL22] 𝑍(𝑂𝑄𝑈 + 𝑂𝑄𝑊) — 5𝑂 — —
Vos [VCE22] (Ch. 3) 𝑍(𝑂𝑊𝑈) 𝑍(𝑂𝑈) 3𝑂 𝑍(𝑂𝑄𝑈𝑗) 𝑍(𝑂𝑈)
Hazay* [HV17] 𝑍(𝑂𝑊) 𝑍(𝑈 + 𝑂) 1 + 2𝑂 𝑍(𝑂𝑄𝑈) 𝑍(𝑂𝑈)
Vos* [VCE22] (Ch. 3) 𝑍(𝑂𝑊) 𝑍(𝑈 + 𝑂) 1 + 2𝑂 𝑍(𝑂𝑄𝑈𝑗) 𝑍(𝑂𝑈)
This work 𝑍(𝑂𝑊) 𝑍(𝑈 + 𝑂) 1 + 2𝑂 𝑍(𝑂𝑄𝑈) 𝑍(𝑂𝑄𝑈)

4.2.2 Privacy-preserving federated learning
Federated learning (FL) [McM+17] has emerged as a popular paradigm to train
global machine learning models over data held by multiple entities, which are
typically referred to as clients. Nearly all state-of-the-art FL algorithms and
applications assume scenarios in which the data is horizontally partitioned, i.e. each
client holds one or more instances. In the cross-silo federated architecture that we
consider (see Fig. 4.1), the data is split both horizontally and vertically, making
the mainstream FL paradigm di#cult to use and analyze [Kai+21]. Orthogonal
to this, it is also well understood that FL is not privacy-preserving by default, as
information about the clients’ training data may leak from the gradients or model
parameters (see e.g. [Kai+21; Boe+21; So+21; Elk+22]). Existing works that use a
combination of privacy-enhancing technologies in the context of FL to provide
end-to-end privacy address, to the best of our knowledge, only the scenario of
horizontally distributed data [Jay+18; PRR10; Cha+17; BP20; Tru+19; GLX21].

A relevant technique for cross-silo FL is secure multi-party computation (MPC),
an umbrella term for cryptographic approaches that allow two or more parties to
jointly compute a specified output from their private information in a distributed
fashion without revealing this private information to each other [CDN15]. While
MPC typically comes with a substantial computation and communication overhead,

143

a major advantage is that it can be readily applied to scenarios where the data is
partitioned horizontally, vertically, or in any other mixed way. Nearly all of the
MPC protocols proposed in the literature for model training (e.g. [Ada+22; Aga+19;
MZ17; WGC19; De +21; Guo+20; KS22]) however only protect input privacy, i.e. they
enable training of a model over data that is distributed among data holders without
requiring those data holders to disclose the data. In isolation, these approaches do
not provide su#cient protection if the trained model is to be made publicly known,
or even if it is only made available for closed-box query access, because information
about the model and its training data is leaked through the ability to query the
model (see e.g. [FJR15; Tra+16; SRS17; Car+19]). Formal privacy guarantees, in this
case, can be provided by di"erential privacy [DR+14]. It is, however, well known
that local di"erential privacy, where each client adds noise to their data before
sending it out, causes severe utility loss. In contrast, global di"erential privacy,
where each client sends its data to a trusted curator responsible for adding the
noise, introduces a single point of failure (namely the curator) and violates input
privacy.

Input and output privacy can simultaneously be achieved in FL by combining
MPC with di"erential privacy by replacing the trusted curator from the global
DP paradigm with an MPC protocol (run across multiple mutually distrustful
parties) to generate noise to perturb the model parameters, providing di"erential
privacy guarantees. Existing methods leveraging this idea can handle data that
is arbitrarily partitioned. However, such solutions are not directly applicable to
our scenario because they assume that all feature values are readily available in
the federation [Pen+22]. In our case, however, some features carry a high signal
but have yet to be constructed by combining information from the centralized and
data-augmenting entities.

While using a general-purpose MPC protocol for such joint feature extraction
provides the necessary privacy guarantees, it requires significant computation and
communication since MPC generic solutions for such tasks heavily depend on the
circuit size (which is very high for our specific joint feature extraction task).

This work proposes a custom cryptographic protocol based on elliptic curve-
based homomorphic ElGamal and oblivious key-value stores (OKVS) [Gar+21].
With almost all of the attention in the privacy-preserving machine learning (PPML)
literature going to the model training phase, our proposal fills a critical gap
concerning data preprocessing, namely private feature extraction. A recent work
by Kadhe et al. [Kad+23] uses generic MPC and specifically avoids this private
feature extraction step. This makes their protocol significantly more expensive in
computation and communication.

We discuss three more recent works that tackle similar problems. Asif et
al. [Asi+23] use a similar method to ours, where ⇒ performs membership queries
on →𝑋 ’s data, but the data is encoded as unencrypted Bloom filters. The authors
wrongfully assume that this provides privacy to the users whose data is encoded.
This form of information leakage is discussed in the work by Vos et al. ([VCE22],
Sec. 4.2.1). The work titled HyFL [Zha+23] solves the same problem but in a
weaker threat model, where data is only encrypted against outside attackers, but
⇒ decrypts →𝑋 ’s data and trains on it in plain text. Finally, a recent work titled
Starlit [Aba+24] extracts a similar feature as in our work, except that it is computed

144

by performing a one-time private set intersection between the ⇒’s data and →𝑇 and
→𝑚 ’s data. This reveals significantly more private information than our protocol: ⇒
learns the result of performing membership queries with each row in their dataset
on each individual →𝑋 ’s dataset. This is essentially the worst-case leakage of our
protocol.

4.3 Preliminaries
We briefly discuss cryptographic primitives used in our protocols and introduce
the definition of di"erential privacy.

Oblivious key-value stores Conceptually, an OKVS is a dictionary that outputs a
random-looking value for each key. If the key was encoded in the OKVS, then the
value always corresponds to the value that went with it. We choose to work with
the PaXoS [Pin+20] OKVS with the xxh3 statistical hash function [Col21]. Note that
this hash function does not have to be cryptographically secure, as the security of
OKVSs only relies on the statistical indistinguishability of the encoded values. The
OKVS function decode(𝑡 , 𝑂) returns the value corresponding to the key 𝑂 in OKVS
𝑡. Regardless if the key was encoded in the OKVS, the properties of the OKVS
ensure that the returned value is indistinguishable from randomness.

Curve25519 In our protocols, we work over Curve25519 [Ber06]. We denote
the identity by 𝒦, the scalar group by Z𝑂 , and the curve group by 𝑝(Z𝑂). Here,
𝑂 = 2255 ⇐ 19 and |𝑝(Z𝑂)| > 2252.

All parties have access to a generator 𝑧. While Curve25519 is defined as a
Montgomery curve, it is birationally equivalent to a twisted Edwards curve. Unless
specified, we use the twisted Edwards model. We also introduce two functions
ToMontgomery(𝑅) and ToEdwards(𝑅 , 𝑇), which switch 𝑅 between the two curve
models. Here, 𝑇 denotes the sign of the twisted Edwards point, as the Montgomery
point only contains the 𝑉-coordinate of the point.

Elligator maps The main challenge when encoding curve points in an OKVS
is that the OKVS requires those points to be indistinguishable from random bits.
The typical compressed representation of curve points certainly does not satisfy
this requirement. For example a compressed Montgomery point is simply its 𝑉

coordinate, which must satisfy the strict curve equation. As a result, not every set
of random bits is interpretable as the scalar representation of 𝑉. Instead, we use
the Elligator2 map [Ber+13] to map between random-looking bits and curve points.
Consequently, we work over Montgomery and twisted Edwards curves. We use
the Montgomery model to apply the Elligator2 map given by the function 𝜙 : Z𝑂

∈′ 𝑝(Z𝑂) and its inverse 𝜙⇐1. The inverse only returns a representative for half of
the points in 𝑝(Z𝑂); otherwise, it returns △.

Di"erential privacy A randomized algorithm ∅ provides (𝜚, 𝜕)-DP if for all
pairs of neighboring datasets 𝑡 and 𝑡

▽ (i.e. datasets that di"er in one entity), and

145

for all subsets 𝑖 of ∅ ’s range:

P(∅ (𝑡) ↓ 𝑖) ≃ 𝑘
𝜚 · P(∅ (𝑡▽) ↓ 𝑖) + 𝜕 [DR+14]. (4.1)

The parameter 𝜚 ∀ 0 denotes the privacy budget or privacy loss, while 𝜕 ∀ 0 denotes
the probability of violation of privacy, with smaller values indicating stronger
privacy guarantees in both cases. In our context, 𝑡 and 𝑡

▽ are datasets with
instances, and ∅ is an algorithm to induce an ML model from a dataset, or a
method to compute a statistic (like the mean) over a dataset. An DP algorithm ∅
is usually created out of an algorithm ∅ ℵ by adding noise that is proportional to
the sensitivity of ∅ ℵ, in which the sensitivity measures the maximum impact a
change in the underlying dataset can have on the output of ∅ ℵ.

4.4 Solution outline

4.4.1 Threat model
We model all parties as polynomial-time Turing machines (PPT).

For the elliptic curve cryptography, we assume the decisional Di#e-Helman
problem to hold over Curve25519 [Ber06] and Elligator2 [Ber+13] to be statistically
indistinguishable from randomness.

We implement authenticated and private communication channels between
the centralized entity ⇒ and the data-augmenting clients →1 , . . . ,→𝑄 by using the
authenticated encryption mode of operation EAX and AES, which we treat as a
pseudorandom function. To do so, we predistribute symmetric keys among the
respective parties. Alternatively, the parties can run Di#e-Helman key exchange
protocols to establish such common keys.

We assume the adversaries to be honest-but-curious. That means they follow
the protocol specifications, but try to obtain as much information as possible
about private information from their inputs, messages exchanged, and internal
randomness. Our protocols (Sec. 4.4.3) are designed to prevent adversaries from
learning such information (see Sec. 4.6 for the proofs). We work with static
adversaries. Our solutions can be generalized to stronger adversarial models
(fully malicious/active adversaries) at the cost of having reduced e#ciency. See
Appendix 4.B for an initial discussion.

In our solution, the centralized entity ⇒’s training data never leaves ⇒, not
even in encrypted form. The privacy of the centralized entity’s data is guaranteed
even if the result of the classification (the predicted probability that an instance
is anomalous) is made public. This privacy guarantee follows directly from the
fact that the model is generated from the data with an algorithm that provides
di"erential privacy (DP) guarantees (Sec. 4.4.2). This means that the probability
that the algorithm generates a specific model from the data is very similar to the
probability of generating that model if a particular instance had been left out of
the data. The latter implies that what the model has memorized about individual
instances is negligible. Obviously, if the result of the classification is not made
public by ⇒, no information whatsoever leaks about the centralized entity’s data
(a result that follows from our secure distributed feature extraction protocol in
Sec. 4.5).

146

In our solution, data never leaves the data-augmenting clients in plaintext
form. In the feature extraction protocol in Sec. 4.5, the data-augmenting clients
encrypt their data as ElGamal ciphertexts and encode the ciphertexts in oblivious
key-value stores (OKVS), which they send to ⇒. The centralized entity ⇒ and the
data-augmenting clients perform computations over this data while it is stays
encrypted. At the end of the protocol, (1) the centralized entity and the data-
augmenting clients can jointly decrypt the result (Sec. 4.4.3) and open it to ⇒, or (2)
use a protocol extension to compute linear functions (such as generalized linear
machine learning models) on the encrypted data. We use the former approach, so
⇒ learns one bit of information, which is 1 if any inconsistency is detected.

We do not consider side channel attacks in our proposal, but Protocols 6
and 8 have been designed using constant-time primitives, and the only variable-
time operations do not reveal information about the inputs. However, we do not
investigate the security of our solution against these attacks, and give no guarantees
about our current implementation’s resistance to them.

Moreover, our threat model does not take into account model inversion attacks.
We perceive this as a separate issue, requiring its own countermeasures, as
highlighted by [FJR15].

4.4.2 Model training
We recall that the entities in our solution are the centralized entity ⇒, and the
data-augmenting entities →1 , . . . ,→𝑄 . ⇒ has a training dataset in which each
instance is labeled whether it is an anomalous instance or not. ⇒ trains a classifier
𝒪 over this training data. For a query instance !, i.e. a new instance that needs to
be classified as anomalous or not, the model 𝒪 outputs a predicted probability
𝒪(!) ↓ [0, 1] that the instance is anomalous.

To prevent leakage of information from the predicted probabilities about the
instances in the training data, we use an ML model training algorithm that provides
di"erential privacy. In this way, our solution provides formal guarantees that the
trained model 𝒪, and hence predictions made with 𝒪, are negligibly a"ected
by the inclusion of any particular instance in the training data, thereby o"ering
output privacy through plausible deniability [DR+14]. A variety of (𝜚, 𝜕)-DP ML
model training algorithms have been proposed in the literature, including for
logistic regression, tree ensembles, and neural networks [Aba+16; CM08; CMS11;
FI17]. Our overall solution is general enough to allow for any (𝜚, 𝜕)-DP ML model
training algorithm to be used by ⇒ to train its model 𝒪. In Sec. 4.7, we compare
the performance of several DP model training algorithms.

4.4.3 Inference
During inference, ⇒ has to infer the probability to which each new instance !
is anomalous. Our solution leverages information held by the data-augmenting
entities →1 , . . . ,→𝑄 to improve the accuracy of the predictions made by model
𝒪. To this end, ⇒ and the data-augmenting entities work together to perform
a consistency check that yields 𝑁(!) = 1 if there is any inconsistency between

147

fields from 𝑅 as known to ⇒ versus as known by the data-augmenting entities, and
𝑁(!) = 0 if everything is consistent.

In the financial domain, ⇒ could be a payment network system interacting with
banks →1 , . . . ,→𝑄 to check the validity of a financial transaction !. The consistency
check in this case would involve verifying that the names and addresses of the
sender and receiver accounts in the transaction ! as known to ⇒ match the names
and addresses of the account holders as known by the sending bank →𝑇 and
receiving bank →𝑚 . In Sec. 4.5 we describe a protocol for performing such a
consistency check without requiring ⇒, →𝑇 , or →𝑚 to disclose their data to each other
in an unencrypted manner. At the end of the protocol, we open the value of 𝑁(!)
to ⇒. We note that in this way, ⇒ learns only whether there was an inconsistency
or not, and not from which field in ! or from which data-augmenting client an
inconsistency originated. We also note that the protocol in Sec. 4.5 is generic and
supports any number of data-augmenting entities in a single query and not just two
as illustrated in the example above. Moreover, the protocol in Sec. 4.5 supports any
disjunction of equality constraints, i.e. it applies to any situation where one must
check whether a database contains an entry (such as a single field or a combination
of fields) that matches exactly.

The final inference result for ! is computed by ⇒ as max(𝒪(!), 𝑁(!)), in which
𝒪(!) denotes the probability predicted by the model trained by a DP algorithm
(see Sec. 4.4.2) and 𝑁(!) denotes the Boolean consistency feature jointly extracted
by ⇒ and the data-augmenting clients. In the next section, we explain how to
compute 𝑁(!) in a privacy-preserving manner.

4.5 Private consistency queries

The underlying functionality of the private consistency queries is that of a pri-
vate membership query. After all, we are testing whether each involved data-
augmenting entity has a row in their dataset that matches our query. Suppose
first that such a consistency query only involves the centralized entity ⇒ and one
data-augmenting entity →𝑋 . It is easy to see that we can perform private consistency
queries if we can realize a protocol that returns an encryption of zero (or rather the
additive identity 𝒦) if the membership check passes and randomness otherwise.
We refer to this primitive as an encrypted membership query filter. The key insight
in our protocol is that we can let each data-augmenting entity perform an expensive
one-time setup that scales linearly with the size of their dataset, after which queries
take a significantly shorter time.

4.5.1 Encrypted membership query filters

We introduce encrypted membership query filters (EMQFs), which are non-
interactive encrypted filters for querying set membership. When queried, with
high likelihood, an EMQF only returns an encryption of the identity when the
element is encoded in it. It implements and satisfies the following functions and
properties:

148

• Build(pk, 𝑠) ∈′ EMQF: Constructs an EMQF encoding 𝑠 using encryption
key pk.

• !eryEMQF, 𝑂 ∈′ 𝑣: Queries the EMQF on element 𝑂 returning a ciphertext.

Correctness We require that Pr[Dec(!eryEMQF, 𝑂 , sk) ε 𝒦 | 𝑂 ↓ 𝑠] ≃ 𝜛 and
Pr[Dec(!eryEMQF, 𝑂 , sk) = 𝒦 | 𝑂 ϖ 𝑠] ≃ 𝜛, where sk is the secret key for
the pk used to build the EMQF and 𝜛 denotes a negligible value.

Privacy It must hold that Build(pk, 𝑠) 𝑌⇓ Build(pk, 𝑠▽) given |𝑠| = |𝑠▽| .

A naive way to instantiate an EMQF using partially-homomorphic encryption
is to encrypt every row of the set. Then, for a query, privately subtract every
row with the query. However, this requires returning more than one ciphertext.
Hazay et al. [HV17] implicitly provide an instantiation by encoding set elements as
the roots of a compact but expensive-to-query encrypted polynomial and Vos et
al. [VCE22] encode the set as a large but cheap-to-query encrypted inverted Bloom
filter. Both use partially-homomorphic encryption.

The idea of our paper is to encode a set as an oblivious key-value store (OKVS),
which is both compact and cheap to query. We choose to work over an elliptic curve
group to speed up computation, decrease the key size, and to minimize the size of
the OKVS. As explained next, encoding these ciphertexts is not straightforward.

4.5.2 Encoding ciphertexts in the OKVS
The security of the oblivious key-value stores depends entirely on the requirement
that its values are computationally indistinguishable from randomness. Note,
however, that elliptic curve points by default are easily distinguishable from a
uniformly random bitstring by checking whether it conforms to the curve equations.
Instead, we rely on the Elligator2 map denoted by 𝜙 to encode and decode curve
points. In Algorithm 4 and 5 we show how to use this mapping to represent a
point as a bitstring and vice versa. We refer to Sec. 4.3 for a description of the
building blocks.

Algorithm 4 Encodes a twisted Edwards point 𝑎 in 32 bytes indistinguishable from
randomness.

1: procedure ToBytes(𝑎)
2: 𝑎𝒫 ↖ ToMontgomery(𝑎)
3: 𝑇 ↓

𝑠
{+,⇐} 𝜖 Choose + or - representative for 𝑎

4: 𝑁 ↓ 𝜙⇐1(𝑎𝒫 , 𝑇)
5: if 𝑁 = △ return △
6: if FromBytes(𝑁) = 𝑎 return 𝑁

7: 𝑁[31] ↖ 𝑁 ℋ 128 𝜖 Encode the sign in the MSB
8: return 𝑁

A data-augmenting entity can now safely generate an OKVS that realizes an
EMQF using Protocol 6, where steps 2 and 3 represent theBuild(pk, 𝑠) function. The
EMQF’s privacy is implied by the OKVS’s obliviousness property. This protocol
also generates a key pair. After that, the data-augmenting entity sends the OKVS

149

Algorithm 5 Decodes a twisted Edwards point from 32 bytes 𝑁.
1: procedure FromBytes(𝑁)
2: 𝑇 ↖ 𝑁[31] 𝒬 7 𝜖 Extract the sign from the MSB
3: return ToEdwards(𝜙(𝑁), 𝑇)

and the public key to ⇒. The centralized entity generates a keypair in the same
way, but it does not need to generate an OKVS.

Input: Set 𝑠
𝑋

containing the rows of →
𝑋
’s database.

Output: Public key pk
𝑋
↓ 𝑝(Z𝑂), secret key sk

𝑋
↓ Z𝑂 , OKVS 𝑡

𝑋
.

1. →
𝑋

randomly generates sk
𝑋
↓
𝑠
Z𝑂 and computes pk

𝑋
↖ sk

𝑋
𝑧 ↓ 𝑝(Z𝑂).

2. →
𝑋

generates 𝑑
𝑜
↖ ToBytes(𝑚

𝑜
𝑧) | | ToBytes(𝑚

𝑜
pk

𝑋
) where 𝑚

𝑜
↓
𝑠

Z𝑂 for 𝑜 =
1, . . . , |𝑠

𝑋
| . If ToBytes returns △, resample.

3. →
𝑋

encodes OKVS 𝑡
𝑋

where the keys are the rows in 𝑠
𝑋
, and the values are 𝑑

𝑜

for 𝑜 = 1, . . . , |𝑠
𝑋
| .

4. →
𝑋

sends pk
𝑋

and 𝑡
𝑋

to ⇒.

Protocol 6: One-time setup for each data-augmenting entity: generating keys and
an OKVS.

4.5.3 Performing a query
Next, we explain how the centralized entity can perform a membership query with
multiple data-augmenting entities. We present this in Protocol 7 for the case where
each query involves two data-augmenting entities, but we note that the protocol
can easily be extended to an arbitrary number of entities. This case involving one
centralized entity and two data-augmenting entities resembles that of a federation
where the centralized entity routes transactions between two data-augmenting
entities.

Protocol 7 uses a variant of ElGamal ciphertexts to perform arithmetic under
encryption. The goal of this protocol is for the centralized party to learn whether
element 𝑂𝑋 is included in both the sender’s and receiver’s EMQF. Putting encryption
aside, the protocol starts by querying the sender’s →𝑇 and receiver’s →𝑚 EMQF
on 𝑂𝑋 , which is as simple as decoding and calling FromBytes on the OKVS in our
OKVS-based EMQF. The EMQF of →𝑋 outputs an encryption of the identity 𝒦
when the query matches a row in →𝑋 ’s database, otherwise the resulting ciphertext
encrypts a random curve point. In steps 2–4 of the protocol, the centralized entity
⇒ computes the sum of the OKVS outputs, lets →𝑇 and →𝑚 multiply the result by a
random scalar, and then sums those results again. Note that if both OKVS output
encrypted the identity 𝒦 , then the result of these steps is still 𝒦 . In steps 5–6, the
entities collaboratively decrypt the result such that only ⇒ receives the output.

Protocol 7 does not use standard ElGamal ciphertexts, as each EMQF encodes
ciphertexts related to di"erent secret keys. Instead, in step 2, ⇒ creates a threshold

150

ciphertext (J , 𝑏 , 𝑌 , 𝑔) that keeps separate terms for each of those secret keys. To
decrypt, →𝑇 must multiply J by sk𝑇 , →𝑚 must do so for 𝑏, and ⇒ for 𝑌. Next to that,
the OKVS encode pairs of curve points in Montgomery form, while the operations
in this protocol require them to be in twisted Edwards form. For these reasons,
we present the protocol in terms of curve points rather than ElGamal ciphertexts.
We note that whenever curve points are sent between the entities, they can be
compressed to a single 𝑉 coordinate for space e#ciency.

Our OKVS-based EMQF is correct because the OKVS always returns an en-
cryption of the identity for elements in the set. In the case where the element is
not in the set, 𝜛 ↗ 2⇐252 as explained in Sec. 4.6.1. This protocol, however, can be
understood without consideration of the specific instantiation of the EMQF or the
OKVS. In Sec. 4.7.4, we consider the aforementioned alternatives for EMQFs and
compare them to our OKVS-based EMQF using PaXoS [Pin+20].

Input: EMQFs 𝑡
𝑋

relating to 𝑠
𝑋

and queries 𝑂
𝑋

for 𝑋 ↓ {𝑇 , 𝑚}.
Output: True if [𝑂𝑇 ↓ 𝑠𝑇] ∞ [𝑂𝑚 ↓ 𝑠𝑚], or false (high probability).
1. ⇒ computes �̂�

𝑋
| | �̂�

𝑋
↖ decode(𝑡

𝑋
, 𝑂

𝑋
) for 𝑋 ↓ {𝑇 , 𝑚}. It transforms them into a set

of Edwards points:
𝑅𝑇 ↖ FromBytes(�̂�𝑇) , 𝑆𝑇 ↖ FromBytes(�̂�𝑇) ,
𝑅𝑚 ↖ FromBytes(�̂�𝑚) , 𝑆𝑚 ↖ FromBytes(�̂�𝑚) .

2. ⇒ generates 𝑤 ↓
𝑠
Z𝑂 and computes:

J ↖ 𝑤𝑅𝑇 , 𝑏 ↖ 𝑤𝑅𝑚 , 𝑌 ↖ 𝑤𝑧 , 𝑔 ↖ 𝑤(𝑆𝑇 + 𝑆𝑚 + pk⇒) .
It sends (J , 𝑏 , 𝑌 , 𝑔) to all entities →

𝑋
for 𝑋 ↓ {𝑇 , 𝑚}.

3. →
𝑋

for 𝑋 ↓ {𝑇 , 𝑚} generates 𝑤
𝑋
↓
𝑠
Z𝑂 and computes:

Ĵ
𝑋
↖ 𝑤

𝑋
J , 𝑏

𝑋
↖ 𝑤

𝑋
𝑏 , 𝑌

𝑋
↖ 𝑤

𝑋
𝑌 , �̂�

𝑋
↖ 𝑤

𝑋
𝑔 .

They then send (Ĵ
𝑋
, 𝑏

𝑋
, 𝑌

𝑋
, �̂�

𝑋
) to ⇒.

4. ⇒ computes:

𝜘 ↖ Ĵ𝑇 + Ĵ𝑚 , 𝜔 ↖ 𝑏𝑇 + 𝑏𝑚 , 𝑔 ↖ 𝑌𝑇 + 𝑌𝑚 , 𝜕 ↖ �̂�𝑇 + �̂�𝑚 .

It sends 𝜘 to →𝑇 and 𝜔 to →𝑚 .
5. →𝑇 computes �̂� ↖ sk𝑇𝜘, →𝑚 computes �̂� ↖ sk𝑚𝜔, and they send �̂� and �̂� to ⇒.

6. ⇒ checks if 𝜕 ?= �̂� + �̂� + sk⇒ 𝑔.

Protocol 7: Checks a record’s consistency between ⇒ and two data-augmenting
entities →𝑇 and →𝑚 .

4.5.4 Keeping the output encrypted
In the protocol above, ⇒ receives the Boolean result of the computed feature,
revealing whether an inconsistency was detected. While in Sec. 4.6 we provide
an argument why the leaked Boolean feature is permissible with regard to the

151

privacy of a data-augmenting entity and the users they are serving, in this section
we propose an extension of our approach to further minimize the leakage. We
note, however, that the extended approach does not allow our inference step (see
Sec. 4.4.3) to output a probability score between 0 and 1. Instead, with the adjusted
method, our inference step outputs 0 or 1. This is an inherent limitation of the
functionality.

In the extended approach, we change the inference computation from max(𝒪(!), 𝑁(!))
to (𝒪(!) ∀ 𝑊) ℋ 𝑁(!) for some pre-defined threshold 𝑊. Apart from 𝒪(!) ∀ 𝑊, the
inference can be entirely computed under encryption by simply adding 𝒪(!) ∀ 𝑊

in encrypted form to the ElGamal ciphertext in step 2 of Protocol 7.
⇒ can also perform inference entirely in the encrypted domain by training

a DP model on both the Boolean feature and some other features. It would do
so by omitting steps 5–6 of Protocol 7 and instead performing a secure equality
operation that checks if the ElGamal ciphertext encrypts the identity 𝒦 , returning a
ciphertext encrypting 𝒦 in the positive case and 𝑧 otherwise.. We present a custom
secure equality protocol for this purpose in Protocol 8. Unlike typical equality
protocols, it does not require full decryptions (we only check if the decryption is
the identity) and no conversions to secret shares. It functions in the multi-party
setting and scales linearly with the number of parties. After running this protocol,
⇒ can run any quantized linear model over the resulting ElGamal ciphertext (linear
over the Boolean feature, the other features are plaintexts). Alternatively, ⇒ can
collaborate with the other parties to evaluate a non-linear model by introducing
more interactions. The three parties proceed to finish the protocol using steps 5–6
in Protocol 7 to decrypt the final result.

The intuitive understanding of the above protocol is that each party either
adds an even or odd number of encryptions of 𝒦 to the set 𝑣. So long as one
party does not collude, it is not clear from the decrypted ciphertexts whether
the remaining party added an even or odd number of identity encryptions. The
security is determined by the number of ciphertexts 𝑈 that each party adds. Let us
look at a toy-sized example with two parties and 𝑈 = 5. We disregard encryption
and instead work with coins. Party →1 creates collection 𝑣 ↖ {𝑌}, containing coin
𝑌, of which we do not know if it is head or tails, which we wish to find out. Let 𝑌0
and 𝑌1 be coins that we know to be head and tails 𝑦, respectively. Now, →1 flips
𝑈 random coins that it can observe. If there is an odd number of tails, it switches
𝑌0 and 𝑌1, otherwise it leaves them be. Next, →1 adds the coins to 𝑣. At this point,
𝑣 may contain { ,𝑦 , 𝑌 ,𝑦 ,𝑦 ,}, 𝑌0 = 𝑦, and 𝑌1 = . Party →2 performs the same
process, after which we may have 𝑣 = {𝑦 ,𝑦 , , ,𝑦 , ,𝑦 , , 𝑌 ,𝑦 ,}, and 𝑌0 and
𝑌1 remain unchanged because →2 rolled an even number of tails. When all parties
are finished, →1 inspects 𝑣, counting the number of tails 𝑊. It returns coin 𝑌

𝑊 (mod 2).
If 𝑌 = , 𝑊 = 5 in our example, so →1 returns coin 𝑌1 = . If 𝑌 = 𝑦, 𝑊 = 6, and →1
returns 𝑌0 = 𝑦.

We explain the correctness of this protocol in more detail in Sec. 4.6, along with
our choice of 𝑈 and its impact on the protocol’s security. The key idea here is that if
𝑈 is large enough, the set of ‘coins’ looks uniform, regardless of how 𝑌 is distributed.
Note that unlike in Protocol 7, this protocol becomes significantly slower when
the number of involved entities grows. The reason is that the set of ciphertexts
grows by 𝑈 ciphertexts for each entity. For applications such as verifying bank

152

Input: Ciphertext 𝑌 encrypting either the identity 𝒦 or another point in 𝑝(Z𝑂).
Output: Ciphertext 𝑌▽ encrypting 𝒦 if 𝑌 encrypted 𝒦 , otherwise 𝑌

▽ encrypts 𝑧.
1. The first party →1 creates a set 𝑣 ↖ {𝑌} and ciphertexts 𝑌0 and 𝑌1 encrypting 𝒦

and 𝑧, respectively.
2. Each party →

𝑋
for 𝑋 = 1, . . . , 𝑎, in turn, does the following:

• It flips 𝑈 coins 𝑚
𝑋 , 𝑜

↓
𝑠
{0, 1}.

• It swaps and randomizes 𝑌0 and 𝑌1 if 𝑚
𝑋
=
∑

𝑈

𝑜=1 𝑚𝑋 , 𝑜 = 1 (mod 2), setting
𝑌0 ↖ 𝑌𝑚𝑋

and 𝑌1 ↖ 𝑌1⇐𝑚𝑋 .
• For 𝑜 = 1, . . . , 𝑈, it appends a ciphertext encrypting 𝒦 to 𝑣 if 𝑚

𝑋 , 𝑜
= 0. Else,

a ciphertext encrypting randomness.
• It multiplies each ciphertext in 𝑣 by some random scalar from Z𝑂 .
• It shu$es set 𝑣 and sends the elements to party →

𝑋+1.

3. Parties →1 , . . . ,→𝑎 collaboratively decrypt the ciphertexts in 𝑣 and count the
number of non-identity elements as 𝑊.

4. The first party →1 outputs ciphertext 𝑌▽ ↖ 𝑌
𝑊 (mod 2) (without decrypting it).

Protocol 8: Secure equality protocol between multiple parties →1 , . . . ,→𝑎 for thresh-
old additively homomorphic encryptions of points in 𝑝(Z𝑂).

transactions this is not a problem as they only involve three entities in the equality
protocol.

4.6 Privacy analysis
At the core of feature extraction is Protocol 7. We note that, in practice, this
protocol can perform multiple queries in parallel. Here, we first provide a proof
of correctness of this protocol and then show that it is secure in the semi-honest
model. We also provide a short security argument for the secure equality operation
presented in Protocol 8. We focus on our OKVS-based EMQF but the analysis
works similarly for any other EMQF.

4.6.1 Proof of correctness
Claim 1. Protocol 7 returns true when 𝑂𝑇 ↓ 𝑠𝑇 ∞ 𝑂𝑚 ↓ 𝑠𝑚 .

Proof. Working backwards through the protocol:

𝜕 = sk𝑇𝜘 + sk𝑚𝜔 + sk⇒𝑔 ,

�̂�𝑇 + �̂�𝑚 = sk𝑇(Ĵ𝑇 + Ĵ𝑚) + sk𝑚(𝑏𝑇 + 𝑏𝑚) + sk⇒(𝑌𝑇 + 𝑌𝑚) ,
!!!!(𝑤𝑇 + 𝑤𝑚)𝑔 = sk𝑇!!!!(𝑤𝑇 + 𝑤𝑚)J + sk𝑚!!!!(𝑤𝑇 + 𝑤𝑚)𝑏 + sk⇒!!!!(𝑤𝑇 + 𝑤𝑚)𝑌 ,

"𝑤(𝑆𝑇 + 𝑆𝑚 + pk⇒) = sk𝑇"𝑤𝑅𝑇 + sk𝑚"𝑤𝑅𝑚 + sk⇒"𝑤𝑧 .

153

Since 𝑂𝑇 ↓ 𝑠𝑇 and 𝑂𝑚 ↓ 𝑠𝑚 , then 𝑆𝑇 = sk𝑇 𝑅𝑇 and 𝑆𝑚 = sk𝑚 𝑅𝑚 by the functionality of
an OKVS. Moreover, the setup implies pk⇒ = sk⇒𝑧:

𝑆𝑇 + 𝑆𝑚 + pk⇒ = sk𝑇 𝑅𝑇 + sk𝑚 𝑅𝑚 + sk⇒𝑧 , (4.2)
𝑆𝑇 + 𝑆𝑚 + pk⇒ = 𝑆𝑇 + 𝑆𝑚 + pk⇒ . (4.3)

Claim 2. Protocol 7 returns false with overwhelming probability when 𝑂𝑇 ϖ 𝑠𝑇 ℋ 𝑂𝑚 ϖ 𝑠𝑚 .
Proof. From (4.2) it follows that:

𝑆𝑇 + 𝑆𝑚 + pk⇒ ε sk𝑇 𝑅𝑇 + sk𝑚 𝑅𝑚 + sk⇒𝑧 ,

must hold with overwhelming probability. Let us assume that 𝑂𝑇 ϖ 𝑠𝑇 (the
argument follows the same when 𝑂𝑚 ϖ 𝑠𝑚). Then, 𝑅𝑇 ε sk𝑇 J with probability
1 ⇐ |𝑝(Z𝑂)|⇐1, where |𝑝(Z𝑂)| > 2252. As a result, (4.3) only holds with negligible
probability. ⊋

4.6.2 Proof of privacy
In Protocol 6 the banks only encode an OKVS and generate an ElGamal keypair.
The security of this keypair, which ⇒ also generates, is implied by the decisional
Di#e-Hellman assumption (or more precisely, by the discrete log problem). The
security of the OKVS is defined by its indistinguishability from randomness. We
achieve this by encoding curve points as strings that are indistinguishable from
random bytes, as proposed in Algs. 4 and 5.

Given that Protocol 7 is correct (see above) and the ideal functionality is
deterministic, what remains is to show that the protocol privately computes the
ideal functionality in the semi-honest model [Lin17]. We do so by showing that
there exists a simulator that given the input and output can replicate the view of a
party without having access to the data of other parties. To be precise, the family of
simulated views is computationally indistinguishable from those of actual protocol
executions. Our protocol relies on the Di#e-Hellman assumption:
Lemma 14. The decisional Di!e-Hellman assumption implies that, for a generator point
𝑧, unknown scalars J , 𝑏 ↓𝑠 Z𝑂 , and random point 𝑣 ↓𝑠 𝑝(Z𝑂): (J 𝑧, 𝑏 𝑧, J𝑏 𝑧) 𝑌⇓
(J 𝑧, 𝑏 𝑧, 𝑣).

We provide two privacy proofs: one that proves⇒’s view view⇒ to be simulatable
and one for a →𝑋 ’s view view→ . We keep these proofs short. We direct the reader to
the work by Vos et al. [VCE22] for a more detailed proof of a comparable protocol.
To simplify notation, we do not explicitly pass the source of randomness as an input
to the simulator. For the purpose of our arguments, we consider the OKVSs 𝑡𝑋 for
𝑋 ↓ L to be public. Given that their contents are statistically indistinguishable from
randomness, this only leaks their size. This first proof shows that the protocol
remains private when ⇒ is corrupted.
Claim 3. There exists a simulator Sim⇒ for PNS in Protocol 7, s.t.:

{Sim⇒(1𝜒 , 𝑂𝑇 , 𝑂𝑚 , 𝑟)}𝑂𝑇↓L , 𝑂𝑚↓L , 𝑟↓{0,1}
𝑌⇓

{view⇒(𝑂𝑇 , 𝑂𝑚 ,𝜒)}𝑂𝑇↓L , 𝑂𝑚↓L , 𝑟↓{0,1} ,

for security parameter 𝜒 = 128, queries 𝑂𝑇 and 𝑂𝑚 from query space L, and output 𝑟.

154

Proof. Function view⇒ returns inputs 𝑂𝑇 and 𝑂𝑚 , output 𝑟, and all incoming messages
. Simulator Sim⇒ generates an indistinguishable view by outputting the inputs and
output, and randomly sampling messages Ĵ𝑇 , 𝑏𝑇 , 𝑌𝑇 , �̂�𝑇 , Ĵ𝑚 , 𝑏𝑚 , 𝑌𝑚 , �̂�𝑚 , �̂�, �̂� ↓𝑠 𝑝(Z𝑂).
These messages are indistinguishable from those received in actual executions:
• In step 3, Ĵ𝑋 = 𝑤𝑋 J = 𝑤𝑋𝑎J𝑧 for some 𝑎J unknown to ⇒. Given Lemma 14, Ĵ𝑋 is

computationally indistinguishable from randomness, even when given J = 𝑎J𝑧

and 𝑤𝑋𝑧 (the latter is not actually given). The same argument applies to 𝑏𝑋 , 𝑌𝑋 ,
and �̂�𝑋 .

• In step 5, ⇒ receives �̂� = sk𝑇𝜘 = sk𝑇 𝑎𝜘𝑧 and �̂� = sk𝑚𝜔 = sk𝑚 𝑎𝜔𝑧. Given
Lemma 14, 𝜘 is computationally indistinguishable from randomness, even when
given pk

𝑚
= sk𝑚𝑧 and 𝜔 = 𝑎𝜔𝑧. The same argument applies to �̂�. ⊋

Next, we prove that the protocol remains private when a data-augmenting
entity is corrupted.

Claim 4. There exists a simulator Sim→ for →𝑇 in Protocol 7, s.t.:

{Sim→ (1𝜒)}
𝑌⇓ {view→𝑋

(𝜒)} ,

for security parameter 𝜒 = 128 (the data-augmenting entities do not output anything).

Proof. Function view→𝑋
returns all incoming messages of bank →𝑋 . Simula-

tor Sim→ generates an indistinguishable view by randomly sampling messages
J , 𝑏 , 𝑌 , 𝑔, 𝜘 ↓𝑠 𝑝(Z𝑂). These messages are indistinguishable from those received in
actual executions:
• In step 2, →𝑋 receives J = 𝑤𝑅𝑇 = 𝑤𝑎J𝑧, 𝑏 = 𝑤𝑅𝑚 = 𝑤𝑎𝑏𝑧, 𝑌 = 𝑤𝑧, and 𝑔 =

𝑤(𝑆𝑇+𝑆𝑚+pk⇒) = 𝑤𝑎𝑔𝑧. Given Lemma 14, J is computationally indistinguishable
from randomness, even when given 𝑌 = 𝑤𝑧 and 𝑎J𝑧 (which may be guessed
by →𝑋). The same argument applies to 𝑏 and 𝑔. Since 𝑤 is random, 𝑌 = 𝑤𝑧 is
statistically indistinguishable from randomness.

• In step 4, →𝑋 receives 𝜘 = Ĵ𝑇 + Ĵ𝑚 , which is indistinguishable from randomness
since Ĵ𝑚 is unknown to →𝑋 given that the queried banks are not colluding. ⊋

We note that one might also give a proof that proves that the protocol remains
private when two of the three parties collude. This would require a more sophisti-
cated simulator, which looks similar to that in the work by Vos et al. [VCE22].

4.6.3 Security of the equality protocol
Finally, we prove the security of our secure equality protocol 8.

Claim 5. Protocol 8 correctly and privately computes an equality.

Proof. Verifying correctness of the secure equality protocol (Protocol 8) comes
down to verifying its behavior depending on whether a party’s coin tosses come
out to an even or odd number of 1s. We study the case where there is one party,
but the argument extends trivially to multiple parties.
• If 𝑚1 = 0, then 𝑌0 encrypts 𝒦 and 𝑌1 encrypts 𝑧. If 𝑌 encrypts 𝒦, then 𝑌

▽ = 𝑌0.
Otherwise, 𝑌▽ = 𝑌1. Both are correct.

155

• If party →𝑋 has 𝑚𝑋 = 1, then 𝑌0 encrypts 𝑧 and 𝑌1 encrypts 𝒦. If 𝑌 encrypts 𝒦,
then 𝑌

▽ = 𝑌1. Otherwise, 𝑌▽ = 𝑌0. Both are correct.
Next, we analyze the security of Protocol 8. We do not consider the security of

the ElGamal scheme, which we discussed previously. In the protocol, each party
randomizes and shu$es the set of ciphertexts 𝑣. As a result, the only meaningful
information that is revealed when the set is decrypted is the number of identity
points. We refer to the number of non-identity points as 𝑊.

If a party would only perform random coin flips, the number of non-identity
points 𝑊 is given by 𝑙(" = 𝑊) =

(
𝑈

𝑊

)
0.5𝑈 . However, since we are inserting ciphertext

𝑌, this changes to 𝑙(" = 𝑊) = 𝑙(𝑌 = 𝒦)
(
𝑈⇐1
𝑊

)
0.5𝑈⇐1 + 𝑙(𝑌 ε 𝒦)

(
𝑈⇐1
𝑊⇐1

)
0.5𝑈⇐1, where we

use 𝑌 ε 𝒦 to denote that 𝑌 does not encrypt 𝒦 . Using this, we derive the posterior
probability that 𝑌 ε 𝒦 given the number of points 𝑊.

𝑙(𝑌 ε𝒦 |" = 𝑊) = 𝑙(" = 𝑊|𝑌 ε 𝒦)𝑙(𝑌 ε 𝒦)
𝑙(" = 𝑊) ,

=

(
𝑈⇐1
𝑊⇐1

)
!!!0.5𝑈⇐1

𝑙(𝑌 ε 𝒦)
(1⇐𝑙(𝑌 ε𝒦))

(
𝑈⇐1
𝑊

)
!!!0.5𝑈⇐1+𝑙(𝑌 ε𝒦)

(
𝑈⇐1
𝑊⇐1

)
!!!0.5𝑈⇐1

,

=

(
𝑈⇐1
𝑊⇐1

)
𝑙(𝑌 ε 𝒦)

(1 ⇐ 𝑙(𝑌 ε 𝒦))
(
𝑈⇐1
𝑊

)
+ 𝑙(𝑌 ε 𝒦)

(
𝑈⇐1
𝑊⇐1

) .

The strongest attack is to guess 𝑌 = 𝒦 when 𝑙(𝑌 ε 𝒦 |" = 𝑊) < 1
2 and 𝑌 ε 𝒦

otherwise. The expected guessing chance is then:

𝑈∑
𝑊=0

𝑙(" = 𝑊)
(
1
2 +

....12 ⇐ 𝑙(𝑌 ε 𝒦 |𝑊 = 𝑊)
....
)

︸⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︷︷⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︸
Guess based on the posterior

. (4.4)

An adversary who does not have access to the protocol’s result can only guess
using its knowledge about the prior probability of 𝑌, so it will succeed with
probability 1

2 +
.. 1
2 ⇐ 𝑙(𝑌 = 𝒦)

... Using (4.4), we formulate the advantage of an
adversary using our Protocol 8, and restrict it to 2⇐40, which we deem negligible:

(
𝑈∑

𝑊=0
𝑙(" = 𝑊)

(
1
2+

....12⇐𝑙(𝑅=1|𝑊= 𝑊)
....
))

⇐
(
1
2+

....12⇐𝑙(𝑌ε𝒦)
....
)
≃ 2⇐40

. (4.5)

The choice of 𝑈 then depends on the probability of anomalies occurring. Let us
consider 𝑙(𝑌 ε 𝒦) ≃ 0.05 as an example. Then, the first 𝑈 for which (4.5) holds is
𝑈 = 44. ⊋

4.7 Performance analysis
We empirically evaluated the utility and scalability of our solution for the detection
of anomalies among millions of financial transactions in a federated setup with

156

a payment network system (the centralized entity) and partner banks (the data-
augmenting clients). To this end, we implemented our solution in Flower, a
well-known framework for federated learning [Beu+20]. Flower assumes a star
topology in which all data holders, including our centralized entity ⇒ and the
data-augmenting clients, are connected to an aggregator that can only perform
simple tasks like averaging and message passing. Since it does not support client
peer-to-peer communication, we route all communication between ⇒ and the data-
augmenting clients through the aggregator. We note that this is an implementation
detail rather than a requirement originating from our protocol. We implemented
Protocol 7 in Rust (with a Python wrapper).2

4.7.1 Experimental setup
Data We use synthetic data provided by SWIFT to participants in the 2023 PETs
prize challenge.3 The data consists of two parts:

1. Transaction data held by ⇒ (payment network system): a dataset of financial
transactions that are labeled as anomalous (positive) or not. This dataset is
split into a train dataset with 2,990,349 negative and 3,521 positive instances,
and a test dataset with 1,002,395 negative and 1,279 positive instances. Each
transaction known to⇒ has, apart from other information, details of the ordering
and beneficiary accounts, and the financial institutions involved in making
the transaction. These financial institutions are the centralized entity’s partner
banks which hold information about the ordering and beneficiary accounts.

2. Bank account data held by the data-augmenting clients →1 , . . . , →𝑄 : information
about bank accounts. To test scalability, we distribute this data among a varying
number of clients.

Features for model training by ⇒ We train model 𝒪 (see Sec. 4.4.2) on the
following features that are held by ⇒:

• Unexpected currency. Most transactions in the train data have the same Instruct-
edCurrency and SettlementCurrency. The few transactions that involve two
di"erent currencies are all anomalous. We include SameCurrency as a feature.

• Unusual timestamps. We found the Timestamp and the SettlementDate to be
strong indicators of anomalous transactions in the training data. We encode
this as a feature InterimTime which is the Timestamp subtracted from the
SettlementDate.

Consistency checks for Boolean feature extraction by ⇒ and the banks We
assume that ⇒ has a list of unique IDs pertaining to →1 , . . . ,→𝑄 . In our implementa-
tion, ⇒ receives this information from the clients in a setup phase. For a transaction
! involving a valid sending bank →𝑇 and receiving bank →𝑚 (i.e., ⇒ holds their IDs),
⇒ and the banks engage in a cryptographic protocol to compute a Boolean feature
𝑁(!) derived from:

2The code can be found at DOI 10.4121/4e1739c5-f743-47cc-aa01-df52481e3fb3 or on GitHub.
3https://www.drivendata.org/competitions/group/nist-federated-learning/

157

https://github.com/steveng9/PETsChallenge
https://www.drivendata.org/competitions/group/nist-federated-learning/

• Information from sending bank →𝑇 indicating...
– whether the account ID of the ordering entity as listed in the transaction ! is a

valid ID known to the ordering bank.
– whether the name of the ordering entity as listed in the transaction ! is the

same as the name known to the ordering bank.
– whether the street address of the ordering entity as listed in ! is the same as

the street address known to the ordering bank.
– whether the country/city/zip of the ordering entity as listed in ! is the same

as that known to the ordering bank.
– whether the ordering bank has flagged the ordering entity’s account for any

reason (e.g. account closed, account frozen,. . .).
• Information from receiving bank →𝑚 indicating the same as above, but for the

account of the beneficiary entity.
The Boolean feature 𝑁(!) is 0 if the account information appears correct and 1 if
there is any indication of inconsistency or unusual account information in either
the sender or the receiver account.

During the setup phase, each data-augmenting client sets up a single OKVS
and key pair using Protocol 6. This protocol generalizes to any type of data as its
only requirement is that the data is hashable. In our implementation, we let bank
→𝑋 encode 𝑠𝑋 in the OKVS, which contains the ["Account", "Name", "Street",
"CountryCityZip"] columns. The bank omits any flagged entries from 𝑠𝑋 (that is,
where flag != "0"). ⇒ performs a di"erent setup, only generating a single key
pair.

During inference, ⇒ must check whether the ordering bank’s dataset contains
a row for the ordering user, and whether the beneficiary bank contains a row
for the beneficiary. It does so using one invocation of Protocol 7. The selected
fields are ["OrderingAccount", "OrderingName", "OrderingStreet", "Orde-
ringCountryCityZip"] and["BeneficiaryAccount", "BeneficiaryName", "Be-
neficiaryStreet", "BeneficiaryCountryCityZip"].

4.7.2 Utility-privacy tradeo"s
The utility results in Tab. 4.2 are obtained by fitting models on the train dataset
and evaluating them on the test dataset in terms of AUPRC (area under the
precision-recall curve). We compare two kinds of models: Random Forest (RF)
and Logistic Regression (LR). The models in Tab. 4.2 are trained on the feature set
consisting of SameCurrency and InterimTime. However, the LR uses a discretized
version of the InterimTime feature, as we explain in more detail below. In Tab. 4.2,
we provide predictions made by all the models themselves, as well as when they
are augmented with the Boolean feature representing the consistency check with
the data-augmenting clients, denoted <model>𝑟𝑈𝑑𝑇 (Sec. 4.4.3).

The models are trained with algorithms that provide DP guarantees, under
varying privacy budgets 𝜚, corresponding to the di"erent columns in Tab. 4.2.
For comparison, in the last column we include results for models trained with an
infinite privacy budget, i.e. with no DP guarantee at all. These models are trained
with sklearn [Ped+11], using default values for the hyperparameters, with the
exception of the use of 20 trees and max_depth = 10 for RF.

158

Table 4.2: Utility-privacy tradeo" of models augmented with the consistency feature
extracted jointly by ⇒ and the banks, averaged over 5 runs. Higher 𝜚 implies less privacy.
The AUPRC results are independent of the number of clients. Anomaly detection consistently
improves the AUPRC, even when the base model was already performing well.

Model 𝜚 = 0.5 𝜚 = 1.0 𝜚 = 5.0 𝜚 = ℛ
RF 0.648 0.645 0.669 0.963
RFEMQF 0.716 0.727 0.743 0.979
LR 0.869 0.908 0.915 0.943
LREMQF 0.892 0.925 0.935 0.964

with DP (𝜚 < ℛ):
⇐ RF-DP: Fletcher et al. [FI17]
⇐ LR-DP: DP-SGD [Aba+16]
without DP (𝜚 = ℛ):
⇐ RF, LR: sklearn [Ped+11]

For ease of reference, in the text below we denote the models that we trained with
a DP algorithm by appending “-DP” to indicate that they are di"erentially private.
To train the RF-DP models in Tab. 4.2 we used the di"privlib library [Hol+19], while
for LR-DP we used the implementation of DP-SGD in TensorFlow Privacy [Mar+21].
Similar to the non-private setting ("𝜚 = ℛ") from the last column in Tab. 4.2, the
RF-DP models are trained with 20 trees and max_depth = 10. The way in which
trees are constructed in this RF-DP approach [FI17] is quite di"erent from the
standard RF algorithm in sklearn that we used in the non-private approach. While
in the standard RF algorithm each node in each tree is selected by evaluating it
against the data, in the RF-DP approach, intermediate nodes and threshold values
for these nodes are generated at random, to limit the number of queries needed
against the data and stretch the privacy budget further. While in the non-private
setting we obtained our best results with RF, this was no longer the case with RF-DP
because the InterimTime feature only really pays o" for well chosen thresholds.
As mentioned earlier, the RF algorithm in the non-private setting was able to
find and pick up those thresholds, while the RF-DP approach with all its random
guessing of thresholds was not. As a result, in the federated setting, the LR-DP
(on DP-SGD [Aba+16]) approach took over in terms of better utility, and, as we
observed, was most stable across di"erent runs.

DP discretization of InterimTime We observed the InterimTime to be crucial for
identifying anomalous transactions. Based on our observations in the non-private
setting (the last column in Tab. 4.2), non-DP RF yields high AUPRC because
the underlying decision tree learning algorithm has a built-in technique to find
good thresholds for dynamic discretization of the InterimTime feature during
tree construction. The DP training algorithms cannot detect such thresholds
with the same ease. To mitigate this, we statically discretize the InterimTime
feature into bins. We replace the InterimTime feature in each transaction with its
corresponding bin number and one-hot-encode the bin numbers in the training
set. In Appendix 4.A, we explain how to achieve this while satisfying di"erential
privacy.

Utility of consistency checks As demonstrated in Tab. 4.2, there is a clear boost
in accuracy when augmenting the centralized entity’s model with the EMQF-based
feature extraction protocol. The lower the accuracy of the model trained by ⇒,

159

Table 4.3: E#ciency and scalability results on development data. The e#ciency of the
clients stays consistent as the partitions change, while ⇒’s e#ciency increases. The client
communication cost grows superlinearly as communication depends on the number of
client pairs in our experiments.

Time Memory Communication
Total ⇒ →

𝑋
⇒ →

𝑋
⇒ →

𝑋

⇒ + 2 clients 1596s 1198s 228s 3.50GB 1.95GB 1052B 1584B
⇒ + 4 clients 1581s 1173s 234s 3.92GB 2.01GB 1200B 3168B
⇒ + 9 clients 2701s 2215s 243s 4.36GB 1.85GB 2236B 7128B

the greater the benefit of the data-augmenting feature extraction. Predicting
anomalous instances solely from the feature extraction protocol (i.e. without
training on the centralized entity’s data) yielded an AUPRC of .294.

4.7.3 E!ciency and scalability
We performed e#ciency and scalability experiments on a desktop Intel i7 6700k at
4.2GHz, 64GB memory, and GTX1080 GPU. The results in Tab. 4.3 are based on
training a model, and running the consistency checks using three di"erent client
partitioning scenarios. In these scenarios, the average number of accounts per
client is 561,935; 280,968; and 124,874; respectively. The runtimes, memory usages,
and communication costs for ⇒ and clients change with the partition. Included in
these metrics is the federated set-up, done in a privacy-preserving manner with
the protocols from Sec. 4.4.3.

It can be seen in Tab. 4.3 that as the number of clients increases, the e#ciency of
the ⇒ decreases. This is expected since ⇒’s computation cost is largely dependent
on the number of sender-receiver client pairs, which grows superlinearly with the
amount of clients. However, the results also show that the total client runtime
and memory resources remain fairly constant, and are mostly a function of the
amount of client data rather than number of partitions. This can be explained by
the fact that each clients’ computational load is proportional to its data size. The
total clients’ communication cost on the other hand scales superlinearly with the
amount of clients, since in our experiments, like in ⇒, this computation depends
more on the amount of sender-receiver pairs.

Computational cost of the setup We evaluated the run time of the setup by
measuring how long it takes for a bank to create an OKVS. Since many parts of
the PaXoS [Pin+20] OKVS algorithm can be parallelized, we ran this experiment
on 8 threads. We present the results in Fig. 4.2. The run time scales linearly with
the bank’s dataset size. We note that while it takes approximately 90 seconds to
generate an OKVS for 250,000 rows, this operation has to be computed only once
(or whenever the dataset needs to change).

Cost of consistency checks We also evaluated the run time of performing 128
consistency checks, split by the entities that take part in the protocol. We present
the results in Fig. 4.3, where solid bars represent the measured computation

160

Figure 4.2: Time required for a bank to generate the OKVS using 8 threads on an M1
processor. Averaged over 10 runs, the error bars indicate the standard deviation. The run
time scales linearly with the size of the bank’s dataset.

time averaged over 10 runs, and transparent bars represent the time that a party
would spend waiting to receive messages. This figure assumes that the latency is
100ms and we do not consider throughput constraints, given that all entities only
exchange a small amount of compressed curve points which are made up of 32
bytes each. The run time for the centralized entity here scales linearly, while the
data-augmenting entities perform a constant amount of work. Even at more than
250,000 rows, the centralized entity only spends 80 ms per query.

4.7.4 Comparison with other EMQFs
In Sec. 4.5.2 we discussed how there are multiple potential instantiations for a
primitive that only returns encryptions of the identity when queried on elements
in the set that it represents. Such a primitive allows moving a large fraction
of computation and communication to a one-time (or each time that the set is
updated) setup. We now compare the PaXoS OKVS with two alternatives that
are used in MPSI protocols. Specifically, we compare PaXoS with the encrypted
polynomials in the protocol by Hazay et al. [HV17] and the encrypted Bloom filters
in the protocol by Vos et al. [VCE22] (Chapter 3). For all schemes, we use the same
elliptic curve-based ElGamal ciphertexts. We measure the average time it takes
to encode a set, to decode (query on an element), and the size of the OKVS or set
representation. We present the results in Table 4.4 for a moderately-sized set of
𝑈 = 214 = 16, 384 elements over 10 runs.

Notice how encrypted polynomials are the most compact but take the longest
to encode. In fact, their size is optimal because the representation is exactly as
large as the number of elements it contains multiplied by the size of a single
ciphertext. Encrypted Bloom filters are significantly larger, even for large false
positive probabilities 𝜛 that are shown to lead to security problems in Chapter 2.
For the other schemes, the probability of a query returning a false positive is
negligible. Finally, the PaXoS OKVS is e#cient to encode and di"ers only a factor
of 2.4 with the encrypted polynomial in terms of its size. This factor can be further
reduced by increasing the number of hash functions [Gar+21]. One can also

161

Figure 4.3: Time required for each party to complete 128 consistency checks on an M1
processor with one thread. Averaged over 10 runs, the error bars indicate the standard
deviation. The run time is constant for the data-augmenting entities and scales linearly for
the centralized entity. The transparent bars indicate time spent waiting for messages to
arrive when the latency is 100ms, ignoring throughput constraints.

consider other OKVSs to instantiate our EMQF, e.g. trading o" size and the time
that it takes to encode or decode. Van Baarsen & Lu [vBP24] provide another way
of encoding curve points in an OKVS.

Table 4.4: Comparing EMQFs with 𝑈 = 214 over 10 runs.

EMQF Encode Decode Size
Encrypted polynomial 22.2s 1.03s 1 MB
Encrypted BF, 𝜛 = 0.1% 7.79s 0.02ms 18.8 MB
Encrypted BF, 𝜛 = 1% 5.19s 0.01ms 12.6 MB
PaXoS with ciphertexts 2.25s 0.03ms 2.4 MB

4.7.5 Comparison with MPSI protocols
Standard MPSI protocols are not designed to be more e#cient when some sets are
fixed. We show that our work outperforms even fast MPSI protocols like the one by
Kolesnikov et al. [Kol+17] by orders of magnitude. We use the popsicle library by
Galois Inc. [Gal19], which implements this protocol using the same elliptic curve
library as in our implementation, assigning 1 thread per party. We report total
run time, including setup time, and the bytes sent by →𝑋 and ⇒ after setup. The
implementation requires ⇒’s set to have the same size as the others’ (same in the
original), so the run time does not change whether the server queries 𝑎 = 1 or 𝑎 = 𝑈

elements in parallel. We report the cost per sequential query on an M1 processor.
Note that in [Kol+17], run time would be twice as low since each party has 2

threads. Their actual numbers are significantly lower, but even using their Table 3,

162

Table 4.5: E#ciency when performing 𝑎 parallel queries

𝑈 = 216
𝑈 = 218

Time →𝑋 sent ⇒ sent Time →𝑋 sent ⇒ sent
Ours, 𝑎 = 1 2.1 s 160 B 320 B 8.3 s 160 B 320 B
Ours, 𝑎 = 128 2.7 s 20 kB 40 kB 8.9 s 20 kB 40 kB
Ours, 𝑎 = 512 4.7 s 80 kB 160 kB 11.0 s 80 kB 160 kB
Kolesnikov et al. 79.6 s 956 MB 665 MB 327.2 s 3.84 GB 2.67 GB

the communication cost is 3 orders of magnitude higher than ours, while the run
times are similar. Also, their protocol requires a full-mesh topology, incurring
additional delays when communication is routed through a central entity.

4.8 Limitations
Protocol 7 discloses a single bit of private data from the data-augmenting entities
to the central entity. This bit signals inconsistencies between data held by ⇒ and
the data from data-augmenting entities →𝑋 . The implications of this single bit
of information can be substantial depending on the nature of the data set held
by ⇒. A zero bit immediately implies that the data entry held by ⇒ aligns with
the data held by →𝑋 . In the case the leaked bit is one, there is also the potential
for information leakage. within the specific context of the PETS prize, there
exist multiple transactions with identical names (or addresses or banks). ⇒ can
utilize the private set membership protocol results for these transactions with
overlapping data to discern inconsistencies in these specific fields and recover
them. For example, if two queries are made with the same name but the result of
the query is di"erent for both, then ⇒ will learn that the other fields are causing
the discrepancy. Whether this release of information is acceptable depends on the
particular application of our proposed protocols and needs a case-by-case analysis.
The leakage of this information needs to be weighed against the societal cost of not
detecting anomalous data.

The scenario described above is not unique to our proposed solution. It can
occur in any situation where ⇒ trains a model with features sourced from →𝑋 and
where anomalies strongly correlate with data discrepancies between ⇒ and →𝑋 . In
that case, learning the classification outcome of a transaction (anomalous or not)
already provides significant insight regarding any potential data mismatch, exactly
as in the case of our disclosed bit. For this reason, we loosely define the following
requirements to decide whether our protocol can be applied in a given use case:

• There is a centralized entity with a global view of the system, but whose
view can be enriched by incorporating data from data-augmenting entities.

• Data-augmenting entities only update their data at a low frequency, ensuring
that OKVSs can be reused.

• All involved parties have an incentive to act semi-honestly. E.g., through
legal obligations or financial incentives.

163

• The output of a private membership query may be revealed to the centralized
entity. Or, when using Protocol 8, the output of the computation that follows
it.

The release of information described above can be prevented by having the
banks locally randomize their information and obtaining local di"erential privacy
guarantees at the cost of reducing the utility of the final model. In the case the same
query is repeated multiple times by ⇒, the privacy budget needs to be adjusted
accordingly by using di"erential privacy’s sequential composition property. This
approach will typically not work, however, given that anomalies only make up a
small proportion of the entire set of data. The reason is that the randomization will
make the signal very noisy, significantly increasing the number of false positives.

Finally, we want to briefly state that while our protocol solves this specific
privacy aspect, in practice one must take into account the wider context in which
the protocol is deployed. One should be cautious about applying automated
anomaly detection in general, as there are issues beside potential privacy violations
that may negatively impact users. Nevertheless, our protocol fills an important
gap in situations where anomaly detection is applied in federations.

4.9 Conclusion
Motivated by the PETS prize challenge, we propose an e#cient solution for
federated anomaly detection. Unlike traditional federated learning scenarios, our
solution works for a case where the data is horizontally and vertically partitioned.
Moreover, our solution is based on an e#cient private feature extraction protocol -
where features used in the training of a machine learning model are computed
based on information distributed across di"erent parties. Our proposed framework
has applications beyond the specific scenario presented in the PETS competition. It
proves valuable in any situation where inconsistencies across distributed data sets
serve as important information for anomaly detection and does so while preserving
privacy.

Despite the extensive literature on privacy-preserving machine learning focus-
ing on protocols for private training of machine learning models over distributed
datasets, our approach addresses a commonly neglected issue: privacy-preserving
feature extraction. We privately compute features calculated over the distributed
data set and subsequently use these features for training ML models. To accom-
plish this, we introduce an innovative private set membership protocol, combining
the e#ciency of oblivious key-value stores with inputs encrypted using elliptic
curve-based ElGamal. By combining these two building blocks, the entities can
perform membership queries with low computational overhead and bandwidth
costs, while the only communication happens between the centralized entity and
the involved data-augmenting entities.

164

References
[Aba+16] Martín Abadi et al. “Deep Learning with Di"erential Privacy”. In:

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security, Vienna, Austria, October 24-28, 2016. Ed. by Edgar R.
Weippl et al. ACM, 2016, pp. 308–318. /)%: 10.1145/2976749.2978318.
(!&: https://doi.org/10.1145/2976749.2978318.

[Aba+24] Aydin Abadi et al. “Starlit: Privacy-Preserving Federated Learning
to Enhance Financial Fraud Detection”. In: IACR Cryptol. ePrint Arch.
(2024), p. 90. (!&: https://eprint.iacr.org/2024/090.

[Ada+22] Samuel Adams et al. “Privacy-preserving training of tree ensembles
over continuous data”. In: Proceedings on Privacy Enhancing Technologies
2 (2022), pp. 205–226.

[Aga+19] Anisha Agarwal et al. “Protecting Privacy of Users in Brain-Computer
Interface Applications”. In: IEEE Transactions on Neural Systems and
Rehabilitation Engineering 27.8 (2019), pp. 1546–1555.

[Ash+17] Gilad Asharov et al. “More e#cient oblivious transfer extensions”. In:
Journal of Cryptology 30.3 (2017), pp. 805–858.

[Asi+23] Hafiz Asif et al. Anomaly Detection via Privacy-Enhanced Two-Step
Federated Learning. Tech. rep. Rutgers University, Apr. 2023. (!&: https:
//rutgers.app.box.com/s/q84zjo3edv5d1e1eu67ypihiw8cb2djq.

[Bay+22] Aslí Bay et al. “Practical Multi-Party Private Set Intersection Protocols”.
In: IEEE Trans. Inf. Forensics Secur. 17 (2022), pp. 1–15. /)%: 10.1109/
TIFS.2021.3118879. (!&: https://doi.org/10.1109/TIFS.2021.
3118879.

[Ber+13] Daniel J. Bernstein et al. “Elligator: elliptic-curve points indistin-
guishable from uniform random strings”. In: 2013 ACM SIGSAC
Conference on Computer and Communications Security. 2013, pp. 967–980.
/)%: 10.1145/2508859.2516734. (!&: https://doi.org/10.1145/
2508859.2516734.

[Ber06] Daniel J. Bernstein. “Curve25519: New Di#e-Hellman Speed Records”.
In: Public Key Cryptography - PKC 2006, 9th International Conference on
Theory and Practice of Public-Key Cryptography, New York, NY, USA, April
24-26, 2006, Proceedings. Ed. by Moti Yung et al. Vol. 3958. Lecture
Notes in Computer Science. Springer, 2006, pp. 207–228. /)%: 10.1007/
11745853_14. (!&: https://doi.org/10.1007/11745853%5C_14.

[Beu+20] Daniel J. Beutel et al. “Flower: A Friendly Federated Learning Research
Framework”. In: CoRR abs/2007.14390 (2020). arXiv: 2007.14390. (!&:
https://arxiv.org/abs/2007.14390.

[Boe+21] Franziska Boenisch et al. “When the curious abandon honesty: Fed-
erated learning is not private”. In: arXiv preprint arXiv:2112.02918
(2021).

165

https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
https://eprint.iacr.org/2024/090
https://rutgers.app.box.com/s/q84zjo3edv5d1e1eu67ypihiw8cb2djq
https://rutgers.app.box.com/s/q84zjo3edv5d1e1eu67ypihiw8cb2djq
https://doi.org/10.1109/TIFS.2021.3118879
https://doi.org/10.1109/TIFS.2021.3118879
https://doi.org/10.1109/TIFS.2021.3118879
https://doi.org/10.1109/TIFS.2021.3118879
https://doi.org/10.1145/2508859.2516734
https://doi.org/10.1145/2508859.2516734
https://doi.org/10.1145/2508859.2516734
https://doi.org/10.1007/11745853%5C_14
https://doi.org/10.1007/11745853%5C_14
https://doi.org/10.1007/11745853%5C_14
https://arxiv.org/abs/2007.14390
https://arxiv.org/abs/2007.14390

[BP20] David Byrd and Antigoni Polychroniadou. “Di"erentially private
secure multi-party computation for federated learning in financial
applications”. In: ICAIF ’20: The First ACM International Conference on
AI in Finance, New York, NY, USA, October 15-16, 2020. Ed. by Tucker
Balch. ACM, 2020, 16:1–16:9. /)%: 10.1145/3383455.3422562. (!&:
https://doi.org/10.1145/3383455.3422562.

[Car+19] Nicholas Carlini et al. “The Secret Sharer: Evaluating and Testing
Unintended Memorization in Neural Networks”. In: 28th USENIX
Security Symposium, USENIX Security 2019, Santa Clara, CA, USA,
August 14-16, 2019. Ed. by Nadia Heninger and Patrick Traynor.
USENIX Association, 2019, pp. 267–284. (!&: https://www.usenix.
org/conference/usenixsecurity19/presentation/carlini.

[CDN15] Ronald Cramer, Ivan Damgard, and Jesper Nielsen. Secure Multiparty
Computation and Secret Sharing. New York: Cambridge University Press
Print, 2015.

[CGM21] Eduardo Chielle, Homer Gamil, and Michail Maniatakos. “Real-
time Private Membership Test using Homomorphic Encryption”. In:
Design, Automation & Test in Europe Conference & Exhibition, DATE
2021, Grenoble, France, February 1-5, 2021. IEEE, 2021, pp. 1282–1287.
/)%: 10.23919/DATE51398.2021.9473968. (!&: https://doi.org/
10.23919/DATE51398.2021.9473968.

[Cha+17] Melissa Chase et al. “Private collaborative neural network learning”.
In: Cryptology ePrint Archive (2017).

[Cha+21] Nishanth Chandran et al. “E#cient Linear Multiparty PSI and Ex-
tensions to Circuit/Quorum PSI”. In: CCS ’21: 2021 ACM SIGSAC
Conference on Computer and Communications Security, Virtual Event,
Republic of Korea, November 15 - 19, 2021. Ed. by Yongdae Kim et al.
ACM, 2021, pp. 1182–1204. /)%: 10.1145/3460120.3484591. (!&:
https://doi.org/10.1145/3460120.3484591.

[CM08] Kamalika Chaudhuri and Claire Monteleoni. “Privacy-preserving
logistic regression”. In: Advances in Neural Information Processing
Systems 21, Proceedings of the Twenty-Second Annual Conference on Neural
Information Processing Systems, Vancouver, British Columbia, Canada,
December 8-11, 2008. Ed. by Daphne Koller et al. Curran Associates, Inc.,
2008, pp. 289–296. (!&: https://proceedings.neurips.cc/paper/
2008/hash/8065d07da4a77621450aa84fee5656d9-Abstract.html.

[CMS11] Kamalika Chaudhuri, Claire Monteleoni, and Anand D. Sarwate.
“Di"erentially Private Empirical Risk Minimization”. In: J. Mach. Learn.
Res. 12 (2011), pp. 1069–1109. /)%: 10.5555/1953048.2021036. (!&:
https://dl.acm.org/doi/10.5555/1953048.2021036.

[Col21] Yann Collet. xxHash. 2021. (!&: https://cyan4973.github.io/
xxHash/.

[De +21] Martine De Cock et al. “High performance logistic regression for
privacy-preserving genome analysis”. In: BMC Medical Genomics
14(23) (2021).

166

https://doi.org/10.1145/3383455.3422562
https://doi.org/10.1145/3383455.3422562
https://www.usenix.org/conference/usenixsecurity19/presentation/carlini
https://www.usenix.org/conference/usenixsecurity19/presentation/carlini
https://doi.org/10.23919/DATE51398.2021.9473968
https://doi.org/10.23919/DATE51398.2021.9473968
https://doi.org/10.23919/DATE51398.2021.9473968
https://doi.org/10.1145/3460120.3484591
https://doi.org/10.1145/3460120.3484591
https://proceedings.neurips.cc/paper/2008/hash/8065d07da4a77621450aa84fee5656d9-Abstract.html
https://proceedings.neurips.cc/paper/2008/hash/8065d07da4a77621450aa84fee5656d9-Abstract.html
https://doi.org/10.5555/1953048.2021036
https://dl.acm.org/doi/10.5555/1953048.2021036
https://cyan4973.github.io/xxHash/
https://cyan4973.github.io/xxHash/

[DR+14] Cynthia Dwork, Aaron Roth, et al. “The algorithmic foundations of
di"erential privacy”. In: Foundations and Trends in Theoretical Computer
Science 9.3-4 (2014), pp. 211–407.

[Elk+22] Ahmed Roushdy Elkordy et al. “How Much Privacy Does Federated
Learning with Secure Aggregation Guarantee?” In: arXiv preprint
arXiv:2208.02304 (2022).

[FI17] Sam Fletcher and Md Zahidul Islam. “Di"erentially Private Random
Decision Forests using Smooth Sensitivity”. In: Expert Systems with
Applications 78 (2017), pp. 16–31.

[FJR15] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. “Model in-
version attacks that exploit confidence information and basic coun-
termeasures”. In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. 2015, pp. 1322–1333.

[Gal19] Galois, Inc. swanky: A suite of rust libraries for secure computation. https:
//github.com/GaloisInc/swanky. 2019.

[Gar+21] Gayathri Garimella et al. “Oblivious Key-Value Stores and Amplifica-
tion for Private Set Intersection”. In: Advances in Cryptology - CRYPTO
2021 - 41st Annual International Cryptology Conference, CRYPTO 2021,
Virtual Event, August 16-20, 2021, Proceedings, Part II. Ed. by Tal Malkin
and Chris Peikert. Vol. 12826. Lecture Notes in Computer Science.
Springer, 2021, pp. 395–425. /)%: 10.1007/978-3-030-84245-1_14.
(!&: https://doi.org/10.1007/978-3-030-84245-1%5C_14.

[Gar+23] Sanjam Garg et al. “Credibility in Private Set Membership”. In: Public-
Key Cryptography - PKC 2023 - 26th IACR International Conference
on Practice and Theory of Public-Key Cryptography, Atlanta, GA, USA,
May 7-10, 2023, Proceedings, Part II. Ed. by Alexandra Boldyreva and
Vladimir Kolesnikov. Vol. 13941. Lecture Notes in Computer Science.
Springer, 2023, pp. 159–189. /)%: 10.1007/978-3-031-31371-4_6.
(!&: https://doi.org/10.1007/978-3-031-31371-4%5C_6.

[GHL22] S. Dov Gordon, Carmit Hazay, and Phi Hung Le. “Fully Secure
PSI via MPC-in-the-Head”. In: Proc. Priv. Enhancing Technol. 2022.3
(2022), pp. 291–313. /)%: 10.56553/popets-2022-0073. (!&: https:
//doi.org/10.56553/popets-2022-0073.

[GLX21] Xiaolan Gu, Ming Li, and Li Xiong. “PRECAD: Privacy-Preserving and
Robust Federated Learning via Crypto-Aided Di"erential Privacy”.
In: arXiv preprint arXiv:2110.11578 (2021).

[GN19] Satrajit Ghosh and Tobias Nilges. “An Algebraic Approach to Mali-
ciously Secure Private Set Intersection”. In: Advances in Cryptology -
EUROCRYPT 2019 - 38th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Darmstadt, Germany,
May 19-23, 2019, Proceedings, Part III. Ed. by Yuval Ishai and Vincent
R!men. Vol. 11478. Lecture Notes in Computer Science. Springer,
2019, pp. 154–185. /)%: 10.1007/978- 3- 030- 17659- 4_6. (!&:
https://doi.org/10.1007/978-3-030-17659-4%5C_6.

167

https://github.com/GaloisInc/swanky
https://github.com/GaloisInc/swanky
https://doi.org/10.1007/978-3-030-84245-1%5C_14
https://doi.org/10.1007/978-3-030-84245-1%5C_14
https://doi.org/10.1007/978-3-031-31371-4%5C_6
https://doi.org/10.1007/978-3-031-31371-4%5C_6
https://doi.org/10.56553/popets-2022-0073
https://doi.org/10.56553/popets-2022-0073
https://doi.org/10.56553/popets-2022-0073
https://doi.org/10.1007/978-3-030-17659-4%5C_6
https://doi.org/10.1007/978-3-030-17659-4%5C_6

[Guo+20] Chuan Guo et al. “Secure multiparty computations in floating-point
arithmetic”. In: arXiv:2001.03192 (2020).

[Hol+19] Naoise Holohan et al. “Di"privlib: the IBM di"erential privacy library”.
In: ArXiv e-prints 1907.02444 [cs.CR] (July 2019).

[HV17] Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. “Scal-
able Multi-party Private Set-Intersection”. In: Public-Key Cryptography
- PKC 2017 - 20th IACR International Conference on Practice and Theory
in Public-Key Cryptography, Amsterdam, The Netherlands, March 28-31,
2017, Proceedings, Part I. Ed. by Serge Fehr. Vol. 10174. Lecture Notes
in Computer Science. Springer, 2017, pp. 175–203. /)%: 10.1007/978-
3-662-54365-8_8. (!&: https://doi.org/10.1007/978-3-662-
54365-8%5C_8.

[IOP18] Roi Inbar, Eran Omri, and Benny Pinkas. “E#cient Scalable Multiparty
Private Set-Intersection via Garbled Bloom Filters”. In: Security and
Cryptography for Networks - 11th International Conference, SCN 2018,
Amalfi, Italy, September 5-7, 2018, Proceedings. Ed. by Dario Catalano
and Roberto De Prisco. Vol. 11035. Lecture Notes in Computer Science.
Springer, 2018, pp. 235–252. /)%: 10.1007/978-3-319-98113-0_13.
(!&: https://doi.org/10.1007/978-3-319-98113-0%5C_13.

[Jay+18] Bargav Jayaraman et al. “Distributed learning without distress: privacy-
preserving empirical risk minimization”. In: Advances in Neural Infor-
mation Processing Systems 31. 2018, pp. 6346–6357.

[Kad+23] Swanand Ravindra Kadhe et al. “Privacy-Preserving Federated Learn-
ing over Vertically and Horizontally Partitioned Data for Financial
Anomaly Detection”. In: CoRR abs/2310.19304 (2023). /)%: 10.48550/
ARXIV.2310.19304. arXiv: 2310.19304. (!&: https://doi.org/10.
48550/arXiv.2310.19304.

[Kai+21] Peter Kairouz et al. “Advances and open problems in federated
learning”. In: Foundations and Trends® in Machine Learning 14.1–2
(2021), pp. 1–210.

[KMS21] Alireza Kavousi, Javad Mohajeri, and Mahmoud Salmasizadeh. “E#-
cient Scalable Multi-party Private Set Intersection Using Oblivious
PRF”. In: Security and Trust Management - 17th International Workshop,
STM 2021, Darmstadt, Germany, October 8, 2021, Proceedings. Ed. by
Rodrigo Roman and Jianying Zhou. Vol. 13075. Lecture Notes in
Computer Science. Springer, 2021, pp. 81–99. /)%: 10.1007/978-3-
030-91859-0_5. (!&: https://doi.org/10.1007/978-3-030-
91859-0%5C_5.

[Kol+17] Vladimir Kolesnikov et al. “Practical Multi-party Private Set Intersec-
tion from Symmetric-Key Techniques”. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2017,
Dallas, TX, USA, October 30 - November 03, 2017. Ed. by Bhavani Thu-
raisingham et al. ACM, 2017, pp. 1257–1272. /)%: 10.1145/3133956.
3134065. (!&: https://doi.org/10.1145/3133956.3134065.

168

https://doi.org/10.1007/978-3-662-54365-8%5C_8
https://doi.org/10.1007/978-3-662-54365-8%5C_8
https://doi.org/10.1007/978-3-662-54365-8%5C_8
https://doi.org/10.1007/978-3-662-54365-8%5C_8
https://doi.org/10.1007/978-3-319-98113-0%5C_13
https://doi.org/10.1007/978-3-319-98113-0%5C_13
https://doi.org/10.48550/ARXIV.2310.19304
https://doi.org/10.48550/ARXIV.2310.19304
https://arxiv.org/abs/2310.19304
https://doi.org/10.48550/arXiv.2310.19304
https://doi.org/10.48550/arXiv.2310.19304
https://doi.org/10.1007/978-3-030-91859-0%5C_5
https://doi.org/10.1007/978-3-030-91859-0%5C_5
https://doi.org/10.1007/978-3-030-91859-0%5C_5
https://doi.org/10.1007/978-3-030-91859-0%5C_5
https://doi.org/10.1145/3133956.3134065
https://doi.org/10.1145/3133956.3134065
https://doi.org/10.1145/3133956.3134065

[KS22] Marcel Keller and Ke Sun. “Secure quantized training for deep learn-
ing”. In: International Conference on Machine Learning. 2022, pp. 10912–
10938.

[Lin17] Yehuda Lindell. “How to Simulate It - A Tutorial on the Simulation
Proof Technique”. In: Tutorials on the Foundations of Cryptography. Ed. by
Yehuda Lindell. Springer International Publishing, 2017, pp. 277–346.
/)%: 10.1007/978-3-319-57048-8_6. (!&: https://doi.org/10.
1007/978-3-319-57048-8%5C_6.

[Mar+21] Martín Abadi et al. TensorFlow Privacy. https://www.tensorflow.
org/responsible_ai/privacy/guide. Sept. 2021.

[McM+17] Brendan McMahan et al. “Communication-e#cient learning of deep
networks from decentralized data”. In: AISTATS. 2017, pp. 1273–1282.

[MZ17] Payman Mohassel and Yupeng Zhang. “SecureML: A system for
scalable privacy-preserving machine learning”. In: IEEE Symposium
on Security and Privacy (SP). 2017, pp. 19–38.

[NTY21] Ofri Nevo, Ni Trieu, and Avishay Yanai. “Simple, Fast Malicious
Multiparty Private Set Intersection”. In: CCS ’21: 2021 ACM SIGSAC
Conference on Computer and Communications Security, Virtual Event,
Republic of Korea, November 15 - 19, 2021. Ed. by Yongdae Kim et al.
ACM, 2021, pp. 1151–1165. /)%: 10.1145/3460120.3484772. (!&:
https://doi.org/10.1145/3460120.3484772.

[Ped+11] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In:
Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

[Pen+22] Sikha Pentyala et al. Training Di"erentially Private Models with Secure
Multiparty Computation. Cryptology ePrint Archive, Report 2022/146.
https://ia.cr/2022/146. 2022.

[Pin+20] Benny Pinkas et al. “PSI from PaXoS: Fast, Malicious Private Set
Intersection”. In: Advances in Cryptology - EUROCRYPT 2020 - 39th
Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part
II. Ed. by Anne Canteaut and Yuval Ishai. Vol. 12106. Lecture Notes
in Computer Science. Springer, 2020, pp. 739–767. /)%: 10.1007/978-
3-030-45724-2_25. (!&: https://doi.org/10.1007/978-3-030-
45724-2%5C_25.

[PRR10] Manas A Pathak, Shantanu Rane, and Bhiksha Raj. “Multiparty
Di"erential Privacy via Aggregation of Locally Trained Classifiers”.
In: Advances in Neural Information Processing Systems 23. 2010, pp. 1876–
1884.

[Ram+20] Sara Ramezanian et al. “Private membership test protocol with low
communication complexity”. In: Digit. Commun. Networks 6.3 (2020),
pp. 321–332. /)%: 10 . 1016 / j . dcan . 2019 . 05 . 002. (!&: https :
//doi.org/10.1016/j.dcan.2019.05.002.

169

https://doi.org/10.1007/978-3-319-57048-8%5C_6
https://doi.org/10.1007/978-3-319-57048-8%5C_6
https://doi.org/10.1007/978-3-319-57048-8%5C_6
https://www.tensorflow.org/responsible_ai/privacy/guide
https://www.tensorflow.org/responsible_ai/privacy/guide
https://doi.org/10.1145/3460120.3484772
https://doi.org/10.1145/3460120.3484772
https://ia.cr/2022/146
https://doi.org/10.1007/978-3-030-45724-2%5C_25
https://doi.org/10.1007/978-3-030-45724-2%5C_25
https://doi.org/10.1007/978-3-030-45724-2%5C_25
https://doi.org/10.1007/978-3-030-45724-2%5C_25
https://doi.org/10.1016/j.dcan.2019.05.002
https://doi.org/10.1016/j.dcan.2019.05.002
https://doi.org/10.1016/j.dcan.2019.05.002

[Smi11] Adam Smith. “Privacy-preserving statistical estimation with optimal
convergence rates”. In: Proceedings of the 43th Annual ACM symposium
on Theory of Computing. 2011, pp. 813–822.

[So+21] Jinhyun So et al. “Securing secure aggregation: Mitigating multi-
round privacy leakage in federated learning”. In: arXiv preprint
arXiv:2106.03328 (2021).

[SRS17] Congzheng Song, Thomas Ristenpart, and Vitaly Shmatikov. “Ma-
chine learning models that remember too much”. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security. 2017, pp. 587–601.

[Tra+16] Florian Tramèr et al. “Stealing machine learning models via prediction
APIs”. In: 25th USENIX Security Symposium. 2016, pp. 601–618.

[Tru+19] Stacey Truex et al. “A hybrid approach to privacy-preserving feder-
ated learning”. In: Proceedings of the 12th ACM Workshop on Artificial
Intelligence and Security. 2019, pp. 1–11.

[vBP24] Aron van Baarsen and Sihang Pu. Fuzzy Private Set Intersection with
Large Hyperballs. Cryptology ePrint Archive, Paper 2024/330. https:
//eprint.iacr.org/2024/330. 2024. (!&: https://eprint.iacr.
org/2024/330.

[VCE22] Jelle Vos, Mauro Conti, and Zekeriya Erkin. “Fast Multi-party Private
Set Operations in the Star Topology from Secure ANDs and ORs”. In:
IACR Cryptol. ePrint Arch. (2022), p. 721. (!&: https://eprint.iacr.
org/2022/721.

[VCE24] Jelle Vos, Mauro Conti, and Zekeriya Erkin. “SoK: Collusion-resistant
Multi-party Private Set Intersections in the Semi-honest Model”. In:
2024 IEEE Symposium on Security and Privacy (SP). Los Alamitos, CA,
USA: IEEE Computer Society, May 2024. /)%: 10.1109/SP54263.2024.
00079. (!&: https://doi.ieeecomputersociety.org/10.1109/
SP54263.2024.00079.

[WGC19] Sameer Wagh, Divya Gupta, and Nishanth Chandran. “SecureNN:
3-Party Secure Computation for Neural Network Training”. In: Pro-
ceedings on Privacy Enhancing Technologies 2019.3 (2019), pp. 26–49.
/)%: 10.2478/popets-2019-0035. (!&: https://doi.org/10.2478/
popets-2019-0035.

[Zha+23] Haobo Zhang et al. A Privacy-Preserving Hybrid Federated Learning
Framework for Financial Crime Detection. 2023. arXiv: 2302 . 03654
[cs.LG].

4.A Di"erentially-private discretization ofInterimTime

To avoid any privacy leakage, we make the process of binning the InterimTime
feature di"erentially private. To do so, we first compute the DP mean of the

170

https://eprint.iacr.org/2024/330
https://eprint.iacr.org/2024/330
https://eprint.iacr.org/2024/330
https://eprint.iacr.org/2024/330
https://eprint.iacr.org/2022/721
https://eprint.iacr.org/2022/721
https://doi.org/10.1109/SP54263.2024.00079
https://doi.org/10.1109/SP54263.2024.00079
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00079
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00079
https://doi.org/10.2478/popets-2019-0035
https://doi.org/10.2478/popets-2019-0035
https://doi.org/10.2478/popets-2019-0035
https://arxiv.org/abs/2302.03654
https://arxiv.org/abs/2302.03654

InterimTime feature for benign transactions.4 A privacy budget of 𝜚1 is spent
towards such computation. We then split the feature value range into two regions
based on the above computed mean. Each region contains a distinct peak of benign
samples. For each region, we compute the DP min and max value (percentile)
of the InterimTime feature for the benign transactions and then generate 100
uniformly distributed bins for each percentile. The privacy of computation of
percentile is due to [Smi11] and a privacy budget of 𝜚2 is spent for computation
of one percentile. Once the bins are generated for both the regions, these are
one-hot-encoded. Each value of the feature InterimTime is then mapped to the
corresponding one-hot-encoded bin number that it falls into.

The total privacy spent for computation of DP statistics for the binning process
is (𝜚1 +2 · 𝜚2) which follows from sequential composition of DP. In order to keep the
privacy budget equal to 𝜚, we divide it between 𝜚1, 𝜚2, and 𝜚𝑃 , where 𝜚𝑃 is used in
training the model with discretized bins. The total 𝜚 is allocated as 𝜚1 = 𝜚 · 1/50,
𝜚2 = 𝜚 · 9/100, and 𝜚𝑃 = 𝜚 · 4/5, thus 𝜚 = 𝜚1 + 2 · 𝜚2 + 𝜚𝑃 .

4.B Changes in the malicious model

In the semi-honest model, the parties always follow the protocol specification.
In the malicious model, a party is allowed to divert from this behavior. In the
financial fraud detection application, one possible attack that is not addressed in
our protocol might be for the data-augmenting entities involved in a transaction to
collude with a user who makes a fraudulent transaction, covering their tracks by
returning a fresh encryption of zero instead of randomizing the ciphertext sent by
the centralized entity. One can prevent this attack by letting the data-augmenting
entities provide a zero-knowledge proof that proves that the randomization is
performed correctly. Note, however, that data-augmenting entities can also perform
this attack by encoding the fraudulent data into the OKVS to begin with. This is
not covered in the malicious model, as a party is free to choose their own inputs.

We may also assume that the centralized entity acts maliciously. For example,
it could ask the data-augmenting entities to decrypt a di"erent ciphertext than the
one originating from the previous steps in the protocol execution. This too can be
prevented using zero-knowledge proofs, where the centralized entity proves to
the data-augmenting entities that the ciphertext they are asked to decrypt indeed
corresponds to the randomized sum that they expect.

Beyond this, one can argue that the centralized entity should be limited in
the number of queries that it makes: if it can perform arbitrarily many queries,
then it can learn the data-augmenting entity’s entire datasets. This can easily be
done by data-augmenting entities, who can keep count of the number of protocol
executions. Note, however, that this ‘leakage’ can also be seen as deliberate. For
example, when it comes to the financial fraud detection application, the centralized
entity must query a large number of transactions, potentially querying the same
row multiple times. These all constitute valid transactions, and so the centralized

4We use di"privlib [Hol+19] to compute DP mean, min, and max, and we provide bounds for
clipping that are independent of the data and depend on the given problem.

171

entity is expected to learn whether these entities are in the datasets; the leakage is
inherent to this use case.

172

Part B
Automatic generation of HE circuits

Chapter 5

Depth-Aware Arithmetization of Common Primitives in
Prime Fields

Fully homomorphic encryption is a promising solution to secure
computation because it is analogous to conventional computation.
That said, current techniques still su"er from impracticalities such
as 3: Arithmetization and 4: Compute-intensive. Programmers must
currently translate high-level circuits into arithmetic circuits by hand
or use tools that significantly limit the choice of homomorphic encryp-
tion parameters, for example by being constrained to Boolean circuits.
Besides, homomorphic encryption is still orders of magnitude slower
than performing computations on plaintext values.
In this chapter, we propose automatic techniques for arithmetization.
By making these techniques depth-aware, they also lead to reduced
computational requirements when evaluated using homomorphic
encryption. Next to that, they exploit the algebra of prime fields,
which allows one to select potentially faster parameters than when
only considering Boolean circuits. When evaluated using schemes like
BFV or BGV, one can compute many evaluations in parallel, leading
to lower amortized run times than when using other schemes like
TFHE that support fast operations on single values.

This chapter is an adaptation of the work with the same title submitted to
USENIX Security 2025, authored by Jelle Vos, Mauro Conti, and Zekeriya
Erkin.

5.1 Introduction
Since the advent of cloud computing, outsourced computation has become a
ubiquitous tool for organizations to fulfill their computational tasks without
operating and maintaining a large computational infrastructure. However, classical
outsourced computation does not provide any cryptographic guarantees to the
confidentiality of data sent to the cloud. As a result, the sensitive nature of
some of these data hinder outsourcing computations on them. Secure outsourced
computation o"ers the benefits of outsourced computation while providing exactly
those cryptographic guarantees.

Homomorphic encryption schemes like BFV [Bra12; FV12] and BGV [BGV11]
allow us to encrypt elements in F

𝑎
𝑔 and perform non-interactive secure outsourced

computation because they allow an evaluator to manipulate the encrypted data
using additions and multiplications. However, a remaining challenge is to translate

175

complex computations into e#cient circuits comprised of only additions and
multiplications. We refer to this sub-problem as arithmetization. In this paper, we
show how to do so for BFV and BGV, by introducing a concept called depth-aware
arithmetization. As shown in Figure 5.1, these techniques can be used to speed up
secure outsourced computation of medical data.

(a) Two-party computation
techniques do not outsource
the computation and they re-
quire multiple interactions.

(b) TFHE allows one medical
file to be processed in 1 second
after sharing a bootstrapping
key.

(c) Our work using BGV al-
lows 128 medical files to be
processed in 44 seconds after
sharing a key-switching key.

Figure 5.1: Secure outsourced computation of medical analyses. Our work allows batching
files so they are processed more quickly.

One approach to arithmetization is to consider only Boolean circuits, so 𝑎 = 2.
This approach allows the use of existing Boolean circuit synthesis techniques, but
it may result in circuits with a large number of multiplications. For example, an
equality check between two 256-bit inputs requires just 8 squarings in F257 (see
Sec. 5.5), but it takes 255 multiplications in F2.

Other works do consider arithmetization in circuits with 𝑎 > 3, but these
works either focus on minimizing the number of multiplications, known as the
multiplicative size [Cow+21], or the multiplicative depth [GMT23], which is the
largest number of multiplications in any path through the circuit. Minimizing
the multiplicative size stands to reason because multiplications are significantly
more expensive to compute than additions in all of the techniques mentioned
above. However, the multiplicative depth cannot be completely ignored, because
it determines the size of the cryptographic parameters of the evaluated circuit:
BFV and BGV ciphertexts contain noise that grows linearly during homomorphic
additions and exponentially during multiplications, and for successful decryption,
this noise must stay under some bound. Parameters for these schemes are therefore
chosen to be large enough so that the noise has enough room to grow, remaining
under the noise limit with high probability. Large parameters negatively impact
the e#ciency of each homomorphic multiplication.

Inspired by the depth-size trade-o" in permutation circuits proposed by
Halevi & Shoup [HS14], we propose a new type of arithmetization called depth-
aware arithmetization, which considers both a circuit’s multiplicative size and
multiplicative depth in the arithmetization of every high-level operation. In doing
so, depth-aware arithmetization allows one to reduce the size of the parameters
needed in BFV and BGV, resulting in a lower computational cost. Specifically, we
study the arithmetization of deterministic high-level functions while minimizing
both the multiplicative size and depth of the generated circuit. We restrict these
circuits to be deterministic (so constants are truly constant) and do not allow
intermediate revealing of values. We also restrict the algebraic structure to a prime
field F𝑎 , in which any function can be expressed as an arithmetic circuit.

176

As a second consideration, we take into account that squaring is typically a more
e#cient operation than performing arbitrary multiplications. We do so by defining
a metric called the multiplicative cost, which is the number of multiplications
between distinct non-constant inputs plus the total squaring cost, which is the
number of squarings multiplied by 0.5 ≃ 𝜗 ≃ 1.0.

Our work is not the first to reduce the depth of arithmetic circuits. Some
works [CAS17; ACS20; Lee+20; YM24] take in arbitrary arithmetic circuits and
reduce their depth while increasing their size. We do not consider these generic
depth reduction methods in this work for two reasons. Firstly, these methods
ignore the function that is being computed, but since we have this knowledge,
we exploit it. Secondly, these methods reduce the depth by distributing products
of sums, while increasing the multiplicative size. However, opportunities for
distributing products of sums do not arise in the circuits generated in this paper
(this is more common in Boolean circuits).

The rationale behind our work is to propose algorithms for generating e#cient
circuits for several common primitives. These primitives can be composed into
more complex circuits. In each section, we first discuss how to obtain anchor points:
the points that minimize the multiplicative cost (with the multiplicative depth as a
secondary objective) or the multiplicative depth (with the multiplicative cost as a
secondary objective). After that, we discuss how to obtain the other solutions in
the depth-cost front. At the end of each section, we perform a case study, where
we use the primitive for a common practical use case.

BFV and BGV o"er performance gains because they allow packing multiple
inputs into a single ciphertext, enabling computations on a single thread to implicitly
parallelize across all inputs. An alternative that does not allow parallelization but
allows for faster individual computations comes from schemes like TFHE [Chi+20].
However, BFV and BGV o"er performance gains when amortized. For example,
Iliashenko & Zucca [IZ21] already showed that comparison circuits for BFV/BGV
can outperform CKKS and TFHE when amortized. We show that the same holds
for even more complex circuits, comparing to TFHE with optimized parameters.
One might think that another alternative is the use of two-party computation, but
this requires both parties to perform a significant amount of computations, so it
does not successfully outsource the computation. We summarize this in Figure 5.1.

We note that our techniques may also be of use in other domains. For example, in
some arithmetic garbling schemes, the multiplicative depth also plays an important
role in the e#ciency of a circuit [AIK11]. Arithmetization is also a fundamental
problems in these protocols.

The structure of our paper is as follows. In Section 5.2, we describe our notation.
In Section 5.3, we briefly review related work. In Section 5.4, we discuss the
depth-aware arithmetization of sums and products. After that, in Section 5.5, we
provide a MaxSAT formulation for generating exponentiation circuits. We use
the exponentiation circuits to arithmetize the equality operator. In Section 5.6,
we vary a parameter in two existing techniques to generate circuits for univariate
polynomial evaluation. We use these circuits for arithmetizating the comparison
operator. In Section 5.7, we generate circuits for AND and OR operations. We
study veto voting circuits, which are essentially OR operations. In Section 5.8, we
compose these primitives into larger circuits. We conclude in Section 5.9.

177

5.2 Notation and conventions
In this work, we typically denote circuits by upper-case letters and symbolic
variables by lower-case letters. Since multiplications with constants are much
cheaper to compute than other multiplications, we denote the former as e.g. 3𝑣 or
3 · 5, while we denote the latter using a 𝒜 operator.

An arithmetic circuit 𝑣 = (M , 𝑝) is a directed acyclic graph consisting of variable
& constant nodes, which form the leaves of the graph, and arithmetic operations.
The roots of the graph are the outputs of the circuit. In this work, we consider only
addition and multiplication operations, but we note that arithmetic circuits are
used in various di"erent contexts, which may allow for a larger set of arithmetic
operations such as subtraction.

In many cases, we will write e.g. 𝑣 = 𝑉 + N when we know that 𝑣 only has
a single root, and it is an addition node. In this work, we do not work with
the set of edges 𝑝, so we use 𝑉 ↓ 𝑣 to actually denote 𝑉 ↓ M . In other words,
we only consider 𝑣’s nodes. Putting these two shorthands together, we write
[𝑉 𝒜 N ↓ 𝑣] = {K ↓ 𝑣 | K = 𝑉 𝒜 N} to denote the set of all multiplications in 𝑣.

We define several metrics for arithmetic circuits below. These metrics only
consider multiplications. For this reason, arithmetic circuits that also allow
subtraction do not a"ect the results in this work.

Definition 6 (Multiplicative size). The multiplicative size of a circuit or several
subcircuits is the number of multiplications in these potentially-overlapping
(sub)circuits:

size(𝑣1 , . . . , 𝑣𝑄) = |[𝑉 𝒜 N ↓ 𝑣1] ↔ · · · ↔ [𝑉 𝒜 N ↓ 𝑣𝑄]| .

Definition 7 (Multiplicative cost). The multiplicative cost of a circuit is a weighted
sum of the cost of all multiplications in a circuit. One might define the cost of
squaring operations to be a factor 𝜗 of that of arbitrary multiplications, yielding:

cost(𝑣1 , . . . , 𝑣𝑄) = 𝜗|[𝑉 𝒜 𝑉 ↓ 𝑣1] ↔ · · · ↔ [𝑉 𝒜 𝑉 ↓ 𝑣𝑄]|
+ |[𝑉 𝒜 N ↓ 𝑣1 | 𝑉 ε N] ↔ . . . ↔ [𝑉 𝒜 N ↓ 𝑣𝑄 | 𝑉 ε N]| .

Definition 8 (Multiplicative depth). The multiplicative depth of a circuit 𝑣 is the
largest number of multiplications in any path through the circuit:

depth(𝑣)=

0 If𝑣 is a leaf
max(depth(𝑉), depth(N)) If𝑣 =𝑉+N

1+max(depth(𝑉), depth(N)) If𝑣 =𝑉𝒜N

For any circuit 𝑣, there exist an infinite number of di"erent circuits 𝑣
▽ that

perform the same computation. We denote such an equivalence as 𝑣 = 𝑣
▽. An

interesting question to answer is for some circuit 𝑣, what is an equivalent circuit
𝑣
▽ that minimizes some metric (such as the ones defined above). We denote the

minimal multiplicative size, cost, or depth, that can be achieved by any equivalent
circuit to some circuit 𝑣 as sizeℵ(𝑣), costℵ(𝑣), and depthℵ(𝑣), respectively.

178

5.3 Related work
We briefly go over previous works in the same order as this work, and describe
their relation.

5.3.1 Arithmetization of Sums & Products
Products can be trivially expressed in an arithmetic circuit. While the multiplicative
size of a product cannot be reduced, depth-aware arithmetization may rebalance
a multiplication tree to reduce the multiplicative depth. This has been studied
before, such as in the EVA and Ramparts compilers [Cho+21; Arc+19]. However,
these compilers rebalance multiplication trees without regard for the multiplicative
depths of the operands, so the result is suboptimal. We provide a simple algorithm
for optimally rebalancing multiplication trees and a closed-form expression for
the resulting multiplicative depth. There are also works [CAS17; ACS20; Lee+20;
YM24] that show how to reduce the multiplicative depth of a circuit beyond
multiplication trees by distributing products.

5.3.2 Arithmetization of Exponentiations
The problem of arithmetizing exponentiations (repeated multiplication) is equiv-
alent to the problem of arithmetization of repeated additions. In cryptography,
exponentiation circuits have been studied extensively. As a result, methods
like square & multiply (also known as double & add) [HVM04], window meth-
ods [HVM04], and ones based on heuristics [Ber+89] are widely deployed. While
these methods are highly e#cient in generating circuits, they only optimize for
the multiplicative size, meaning that the circuits themselves are not necessarily
e#cient. Besides that, these methods do not consider that squaring can be cheaper
than arbitrary multiplications, and they ignore the cyclic nature of F𝑎 .

Abbas & Gustafsson [AG23] propose a depth-aware arithmetization method
for exponentiations based on a mixed-integer linear program (MILP) formulation.
They also show how to adapt the formulation to consider that squaring is cheaper
than arbitrary multiplications. While the formulation allows one to find optimal
arithmetic circuits, it is slow in practice. In Section 5.5, we translate this MILP to a
MaxSAT formulation that is significantly faster to solve. We also provide several
optimizations.

5.3.3 Arithmetization of Polynomial Evaluation
The arithmetization of polynomial evaluation has been studied in many previous
works, but the work by Paterson & Stockmeyer [PS73] is of particular interest because
it specifically considers minimizing the number of non-scalar multiplications (i.e.
the multiplicative size). Paterson & Stockmeyer provide two methods, which we
discuss in more detail in Section 5.6, and we show how to tweak them to obtain a
depth-size trade-o".

Iliashenko et al. [IZ21; INZ21] show that for many common integer functions,
it is possible to choose a convenient 𝑎 such that the polynomial is e#ciently

179

computable. The key idea is that the polynomial has a sparse structure of equally-
spaced monomials apart from the leading term. This choice of 𝑎 is quite restrictive.
For example, for some of the functions it must hold that 𝑎 is a Mersenne prime. In
our work, we want to allow any choice of 𝑎.

Comparisons between two elements in F𝑎 have also been studied in other
works. Let us focus on 𝑅 < 𝑆, from which the other comparisons follow easily. The
approach taken by the T2 compiler [GMT23] performs an equality check for each
positive case of the comparison. In other words,

∑𝑎⇐1
𝑅
▽=0

∑𝑎⇐1
𝑆
▽=𝑅▽+1(𝑅 = 𝑅

▽ · 𝑆 = 𝑆
▽),

which has optimal depth but requires a large amount on non-scalar multiplications.
Iliashenko & Zucca [IZ21] show how to generate e#cient circuits that only work
for half of the elements in F𝑎 . These circuits have significantly lower multiplicative
size, but a higher depth. In this work, we show how to trade o" multiplicative
cost and depth. We also use our formulation for finding e#cient exponentiation
circuits to reuse the powers that must be precomputed for polynomial evaluation,
which allows us to find slightly smaller comparison circuits.

5.3.4 ORs & ANDs
ANDs are typically arithmetized using a product 𝑅1∞𝑅2∞ · · ·∞𝑅𝑈 = 𝑅1𝒜𝑅2𝒜 · · ·𝒜𝑅𝑈 ,
which leads to a circuit of depth ℱlog2 𝑈𝒢. The OR operation follows using
DeMorgan’s law, which does not introduce further non-scalar multiplications. An
alternative arithmetization [BI20] uses a summation and an IsNonZero check to
compute such operations on many inputs.

5.4 Arithmetization of Sums & Products

Let us consider the class of arithmetic circuits consisting of only multiplications.
In such a circuit, one can only reduce the number of multiplications by eliminating
common subexpressions, possibly introducing a trade-o" between the circuit’s
multiplicative depth and size. When such an arithmetic circuit does not contain
common subexpressions, we cannot reduce its multiplicative size, but we may
still reduce its multiplicative depth. An example can be seen in Figure 5.2. The
left subfigure shows a depth-3 product, whereas the right subfigure shows a
rearranged product of depth 2. This is the minimal depth that such a circuit can
achieve, because a binary tree of depth 𝑔 can only contain 2𝑔 ⇐ 1 operations, so a
product of 𝑄 = 4 distinct inputs requiring 𝑄 ⇐ 1 = 3 binary multiplications requires
𝑔 ∀ log2 𝑄 = 2. This simple optimization called rebalancing has been implemented
in multiple homomorphic encryption compilers [Cho+21; Arc+19].

General arithmetic circuits which also contain additions are harder to analyze.
In those cases, reducing the depth beyond rebalancing requires distributing
multiplications of sums. It is still possible to determine the minimal depth of such
a circuit by relating it to the number of multiplicands. For this reason, we define a
metric that we call the multiplicative breadth, which essentially counts the number
of multiplicands in a single term (i.e. the maximum degree) when the computed
polynomial is fully expanded.

180

𝑅1 𝒜 𝒜 𝒜
𝑅2

𝑅3

𝑅4

𝑅1 𝒜 𝒜
𝑅2

𝑅3 𝒜
𝑅4

Figure 5.2: Two circuits that compute 𝑅1 𝒜 𝑅2 𝒜 𝑅3 𝒜 𝑅4. Left, an ine#cient circuit of depth 3.
Right, an optimal circuit that uses a binary tree to compute the product in depth 2.

Definition 9 (Multiplicative breadth). The multiplicative breadth of a node in an
arithmetic circuit is the largest number of multiplicands in any path of the circuit
up to that node. The breadth of a node is given by:

breadth(𝑣)=

1 If 𝑣 is a leaf
max(breadth(𝑉), breadth(N)) If 𝑣 =𝑉+N

breadth(𝑉) + breadth(N) If 𝑣 =𝑉𝒜N

The breadth of an arithmetic circuit does not change when the circuit is
rebalanced, therefore it relates to the circuit’s minimal multiplicative depth. Since
each multiplication can only take two operands, we have that:

depthℵ(𝑣) = ℱlog2 breadth(𝑣)𝒢 . (5.1)

Conversely, it always holds that breadth(𝑣) ≃ 2depth(𝑣).
In our work we do not consider depth reduction of general arithmetic circuits,

but we rather study how to arithmetize several high-level operations. For this
reason, we do not consider distributing multiplications of sums. As such, we
can consider additions as ‘optimization fences’ beyond which we do not change
the circuit. Even in this limited model, we show that the rebalancing operation
described above can be improved by taking into account the depth of the operands.
Algorithm 6 shows how to perform depth-aware rebalancing, e"ectively answer-
ing the question of how to optimally perform depth-aware products of distinct
multiplicands.

Algorithm 6 Depth-aware product of distinct multiplicands
1: procedure P!)/(#$(𝑣1 , . . . , 𝑣𝑄)
2: Let L be an empty priority queue
3: for 𝑋 = 1, . . . , 𝑄 do
4: Insert 𝑣𝑋 into L with priority depth(𝑣𝑋)
5: while |L| ∀ 2 do
6: Pop 𝑉 and N from L 𝜖 Returns lowest depth
7: 𝑔 ↖ 1 + max(depth(𝑉), depth(N))
8: Insert 𝑉 𝒜 N into L with priority 𝑔

9: Pop 𝑣 from L 𝜖 There is only one 𝑣 in L

10: return 𝑣

We can adapt the equation before to derive a closed-form expression of the
depth of the circuit resulting from depth-aware arithmetization of a product. Since

181

we do not modify the subcircuits, we model them as having maximal breadth for
their depth, yielding:

depth(P!)/(#$(𝑣1 , . . . , 𝑣𝑄)) =
⌈
log2

𝑄∑
𝑋=1

2depth(𝑣𝑋)

⌉
. (5.2)

Since the multiplicative size (and the cost) of such a product is 𝑄 ⇐ 1, there is no
depth-cost trade-o".

5.5 Arithmetization of Exponentiations
Exponentiations are a crucial primitive in many high-level operations. In this
section, we show how to perform optimal depth-aware arithmetization of the map
𝑅
𝑊 , for a constant exponent 𝑊. Our main tool is a MaxSAT solver [MDM14], which

we use to solve a reformulation of the mixed-integer linear programming (MILP)
formulation by Abas & Gustafsson [AG23]. Such a solver attempts to find a variable
assignment that satisfies a set of hard clauses and as many soft clauses as possible
(possibly dropping some). We assign a weight to some of these soft clauses.

We first describe how to generate a minimum-cost circuit, after which we use an
adapted formulation to find a minimum-depth anchor point. Having this anchor
point and a lower bound on the cost of the exponentiation circuit allows us to
e#ciently generate the entire front. We conclude by applying our exponentiation
circuits for performing equality checks.

5.5.1 Finding a Minimum-Cost Circuit
Finding minimum-cost exponentiation circuits has been studied under the name of
‘addition chains’ (as multiplication chains are e"ectively addition addition chains
in the exponent). The aim is typically to find minimum-length chains, which
correspond to minimizing the multiplicative size of exponentiation circuits, but
some works also consider the multiplicative cost [AG23; McL21]. Much theoretical
work has been done [Sch75] and many heuristics have been proposed [McL21;
Ber+89]. Variants of the problem have also been studied, such as addition
sequences [DLS81], which compute multiple exponentiations, reusing intermediate
computations. Because exponentiations are so crucial in determining the e#ciency
of other high-level operations, we are looking for optimal solutions. We propose a
MaxSAT formulation that is amenable to computing addition sequences and to
consider precomputations provided by other computations (see Section 5.6.2).

We adapt the MILP formulation by Abbas & Gustafsson [AG23] into a MaxSAT
formulation that is significantly more e#cient to solve in practice. Let Boolean
variables 𝑅𝑋 represent that number 𝑋 is covered in the addition chain, and let 𝑆𝑋 , 𝑜
represent that the chain computes 𝑋 + 𝑜. Abbas & Gustafsson define the following
constraints:

1. If 𝑆𝑋 , 𝑜 = 1, then 𝑅𝑋 = 1, 𝑅𝑜 = 1, and 𝑅𝑋+𝑜 = 1.

2. Cutting away: 𝑅ℱ 𝑈

2 𝒢
ℋ · · · ℋ 𝑅𝑈⇐1 = 1.

182

To minimize the size of the addition chain, we want to maximize the number of 𝑅𝑋
that are 0. I.e. we want to maximize

∧
𝑋↓𝑛 ¬𝑅𝑋 . The authors also suggest replacing

this objective with an objective that maximizes the number of 𝑆𝑋 , 𝑜 that are 0, which
allows taking into account that squaring is cheaper operation. In other words, it
allows us to minimize the multiplicative cost.

We define 𝑙 = {(𝑋 , 𝑜) ↓ [1, 𝑊]2 : 𝑋 ≃ min(𝑜 , 𝑊 ⇐ 𝑜)}, which is the set of all ordered
pairs (𝑋 , 𝑜) such that 𝑋 + 𝑜 ≃ 𝑊. Our basic MaxSAT formulation is as follows:
Hard clauses:

(𝑅𝑊),
(¬𝑆𝑋 , 𝑜 ℋ 𝑅𝑋), 𝒩(𝑋 , 𝑜) ↓ 𝑙

(¬𝑆𝑋 , 𝑜 ℋ 𝑅𝑜), 𝒩(𝑋 , 𝑜) ↓ 𝑙

DE
F
¬𝑅𝑈 ℋ

∨
(𝑋 , 𝑜)↓𝑙:𝑋+𝑜=𝑈

𝑆𝑋 , 𝑜

GH
I
, 𝒩𝑈 ↓ [2, 𝑊]

Soft clauses:

weight 1 (¬𝑆𝑋 , 𝑜), 𝒩(𝑋 , 𝑜) ↓ 𝑙 : 𝑋 ε 𝑜

weight 𝜗 (¬𝑆𝑋 , 𝑜). 𝒩(𝑋 , 𝑜) ↓ 𝑙 : 𝑋 = 𝑜

We can add several cuts to this formulation to make solving it faster in practice.
We add three kinds of cuts:

• Bounds from original [AG23]

• The bounds derived by Thurber & Clift [TC21]. Given an upper bound on the
cost of the chain, we can use these to find lower bounds for the 𝑋th element
in the chain. For our MaxSAT formulation, let 𝑦𝑊(𝑌max) return a set of pairs
(O , 𝑐) such that the 𝑋th element is bounded from below by O and from above
by 𝑐 for a chain with cost at most 𝑌max. We also have that 𝑌max ∀ 𝜗𝑇min.

• Knowing a lower bound 𝑇min on the size of the chain, we can add a cardinality
constraint that

∑
𝑊

𝑋=2 𝑅𝑋 ∀ 𝑇min. This constraint can be turned into a set of
clauses using multiple di"erent techniques. We find a sequential counter
approach [Sin05] to work well in practice.1

We can add these cuts using the following hard clauses:

DE
F

𝑈∨
𝑃=ℱ 𝑈

2 𝒢

𝑅𝑃

GH
I
, 𝒩𝑈 ↓ [2, 𝑊]

(
𝑐∨

𝑃=O

𝑅𝑃

)
, 𝒩(O , 𝑐) ↓ 𝑦𝑊(𝑌)

(
𝑊∑

𝑋=2
𝑅𝑋 ∀ 𝑇min

)
, encoded with [Sin05]

1Our implementation supports the choices o"ered by PySAT [IMM18].

183

To determine 𝑇min we combine three lower bounds reported by Schönhage [Sch75],
where ↼(𝑊) is the Hamming weight of 𝑊:

𝑇min(𝑊) ∀ ℱlog2(𝑊)𝒢 , (5.3)
𝑇min(𝑊) ∀ ℱlog2(𝑊) + log2(↼(𝑊)) ⇐ 2.13𝒢 , (5.4)
𝑇min(𝑊) ∀ ℱlog2(𝑊) + log3(↼(𝑊)) ⇐ 1𝒢 . (5.5)

Finally, in a finite field, we must take into account its cyclic nature (or the
resulting exponentiation circuit cannot be considered optimal). For example,
𝑅

62 ⇓ 𝑅
128 (mod 67), but the shortest addition chain for 62 has 8 multiplications,

while 128 requires 7 multiplications. We solve this problem by generating an
exponentiation circuit for several 𝑊▽ = 𝑊 + 𝑋↽(𝑎), with 𝑋 = 1, 2, . . . , and selecting the
most e#cient.

The challenge in the solution provided above is in determining when to stop
increasing 𝑋. To do so, we use monotonically growing lower bound 𝑌mono on the
multiplicative cost of the exponentiation circuit:

𝑌mono(𝑊▽) = 𝜗ℱlog2 𝑊
▽𝒢 . (5.6)

If 𝑌mono(𝑊▽) is greater or equal to the current best cost, we can terminate the search.
Next to that, when we find a circuit with a lower multiplicative cost than before,
we can lower 𝑌max(𝑊▽), making the formulation faster to solve and allowing us to
skip targets 𝑊▽ for which 𝜗𝑇min(𝑊) ∀ 𝑌max(𝑊▽).

5.5.2 Finding a Minimum-Depth Anchor Point
One very common method for arithmetizing exponentiations is the square &
multiply method, which produces a circuit as shown in Figure 5.3. As seen in
the figure, this method actually produces minimum-depth circuits, seeing as a
multiplication can at most double the exponent in either of its inputs, so:

depthℵ (
𝑉

𝑊
)
= ℱlog2 𝑊𝒢 . (5.7)

𝑅 · · ·
. . .

. . .

· · ·. . .

Figure 5.3: Square & multiply method for computing 𝑅
𝑊 .

While square & multiply produces a minimum-depth circuit, it does not
necessarily produce a minimum-depth anchor point (i.e. a circuit that is minimal
in depth and secondarily minimal in cost). In other words, a circuit may exist
with the same depth but a lower multiplicative cost. To find such an anchor point,
we make another call to the MaxSAT formulation, but this time we provide the
following constraints:

184

• The maximum depth is ℱlog2 𝑊𝒢.

• The maximum cost is 𝑌max = 𝜗̸ log2 𝑊↦ + ↼(𝑊) ⇐ 1, corresponding to the cost
of square & multiply.

What remains, is to modify the MaxSAT formulation to incorporate a bound on
the depth 𝑔max of the exponentiation circuit. We introduce the following sets of
hard clauses:

(𝑔𝑈 ,𝑃+1 ℋ ¬𝑔𝑋 ,𝑃 ℋ ¬𝑆𝑋 , 𝑜), 𝒩(𝑋 , 𝑜) ↓ 𝑙 , 𝒩𝑃 ↓ [0, 𝑔max]
(𝑔𝑈 ,𝑃+1 ℋ ¬𝑔𝑜 ,𝑃 ℋ ¬𝑆𝑋 , 𝑜), 𝒩(𝑋 , 𝑜) ↓ 𝑙 , 𝒩𝑃 ↓ [0, 𝑔max]

(¬𝑔𝑈 ,𝑔max+1), 𝒩𝑈 ↓ [2, 𝑊]
(𝑔1,0).

These clauses encode the depth of an exponent as a Boolean vector, such that the
highest-index Boolean that is true represents the depth of that exponent. By forcing
the 𝑔max + 1th Boolean to be false, we ensure that the depth limit is not exceeded.
This is a di"erent encoding than the one used by Abbas & Gustafsson [AG23],
which uses integers to denote the depth (as they use a MILP solver).

5.5.3 Finding Circuits on the Depth-Cost Front
We can generate circuits on the depth-cost front using the same method that
we described for finding an anchor point given a minimal-depth circuit with
suboptimal cost. We do so by incrementally going through all such circuits, from
least to highest depth. For the the maximum cost, we can use the current best
cost. We present our approach in Algorithm 7, in which we call our MaxSAT
formulation as A//C-"%,(𝑊 , 𝑔max , 𝑌max , 𝜗, 𝑇min), which returns a circuit satisfying
the constraints or △ if no circuit could be found.

Algorithm 7 Depth-aware product of distinct multiplicands
1: procedure G’,E3+F!),$(𝑣)
2: Find and yield 𝑣 such that cost(𝑣) = costℵ(𝑣)
3: 𝑔 ↖ ℱlog2 𝑊𝒢
4: 𝑌 ↖ 𝜗̸ log2 𝑊↦ + ↼(𝑊) ⇐ 1
5: while 𝑌 < costℵ(𝑣) and 𝑔 < depth(𝑣) do
6: Compute 𝑇min using (5.3), (5.4), and (5.5)
7: 𝑣

▽ ↖ A//C-"%,(𝑊 , 𝑔, 𝑌 , 𝜗, 𝑇min)
8: if 𝑣▽ ε △
9: yield 𝑣

▽

10: 𝑌 ↖ cost(𝑣▽)
11: 𝑔 ↖ 𝑔 + 1

185

Figure 5.4: Equality circuits generated using square & multiply and our MaxSAT formulation,
where 𝜗 = 0.75. Square & multiply is only optimal when 𝑎 is of the form 2𝑈 + 1. When
we find a depth-cost trade-o", we denote the depth in the markers. The run time of our
algorithm is hard to predict, but it increases with the modulus 𝑎. In some cases, ignoring
the modulus makes a large di"erence in generation time, but the result is not guaranteed to
be optimal.

5.5.4 Case Study: Equality Checks

As explained by Iliashenko & Zucca [IZ21], equality checks can be arithmetized
as [𝑅 = 𝑆] = 1 ⇐ (𝑅 ⇐ 𝑆)𝑎⇐1. The cost of such an operation is almost exclusively
determined by the exponentiation circuit, as it is the only operation requiring
multiplications. In Figure 5.4, we plot the multiplicative cost of the optimal
exponentiation circuits we found using our MaxSAT formulation for di"erent
prime moduli 𝑎 and for fixed 𝜗 = 0.75. We also show how long it took to generate
these circuits, with and without consideration of the cyclic nature of F𝑎 . For the
moduli in Figure 5.4, the circuits generated by ignoring or considering the modulus
are the same, but it is significantly more e#cient to ignore the modulus. One can
interpret the ‘considering modulus’ generation time as the time it takes to prove
optimality.

5.6 Arithmetization of Polynomial Evaluation

For many high-level operations there is not a straightforward arithmetization. For
example, checking if a field element is within a given range can be expressed as
a large number of equality operations but this is ine#cient. In these situations,
it is typical to interpolate a polynomial and to find an e#cient circuit to evaluate
it. In this section, we show how to perform depth-aware arithmetization for
univariate polynomial evaluation. These cover many common operations including
comparisons, which we highlight in our case study at the end of this section.

When it comes to the multiplicative cost of polynomial evaluation circuits,
we know that the multiplicative cost of a degree-𝑔 polynomial is at least as
high as that of an exponentiation circuit with target 𝑊. Next to that, Paterson &

186

Stockmeyer [PS73] provide an asymptotic bound:

costℵ
(
𝑅
𝑔

)
≃ costℵ

(
𝑔∑
𝑋=0

𝑌𝑋𝑅
𝑋

)
≃ 𝑍(

¬
𝑔) . (5.8)

In fact, Paterson & Stockmeyer already provide two algorithms that generate
circuits with the same asymptotic complexity. We discuss these two algorithms
later on.

The multiplicative depth of polynomial evaluation circuits can also be bounded.
To achieve the minimal depth, we can simply compute all monomials and evaluate
the polynomial using a linear combination. So:

depthℵ
(

𝑔∑
𝑋=0

𝑌𝑋𝑅
𝑋

)
= ℱlog2(𝑔)𝒢 . (5.9)

This is an equality because we cannot evaluate 𝑅
𝑔 with fewer multiplications. In

Paterson & Stockmeyers’s methods, this is equivalent to choosing 𝑈 = 𝑔. Our key
idea for generating circuits that trade o" multiplicative depth and cost is to vary
this parameter 𝑈.

5.6.1 Baby-Step Giant-Step
The baby-step giant-step method was one of the two algorithm proposed by
Paterson & Stockmeyer [PS73], but we refer to it with this name because it is
colloquially known as such in the cryptography community. It is also known as
the two-level evaluation method [Deg+24].

The algorithm, parameterized by an integer 1 ≃ 𝑈 ≃ 𝑔, starts by precomputing
the monomials 𝑉

2
,𝑉

3
, . . . ,𝑉

𝑈 . It will later use these precomputed powers to
evaluate a 𝑈 ⇐ 1-degree polynomial without performing any more multiplications.
In this work, we also want to minimize the multiplicative depth, so we do not
use sequential multiplications to compute these powers. Instead, we start by
computing 𝑉

2 and use it to compute 𝑉
3 and 𝑉

4. We then use 𝑉
4 to compute

𝑉 𝒜 𝑉
4 = 𝑉

5
,𝑉

2 𝒜 𝑉
4 = 𝑉

6
, . . . ,𝑉

4 𝒜 𝑉
4 = 𝑉

8, etc. Given these precomputed
powers, the key idea behind this algorithm is the following identity:

[
𝑔∑
𝑋=0

𝑌𝑋𝑉
𝑋

]
↖ 𝑉

𝑈

[
𝑔⇐𝑈∑
𝑋=0

𝑂𝑋𝑉
𝑋

]
+
[
𝑈⇐1∑
𝑋=0

𝑚𝑋𝑉
𝑋

]
, (5.10)

where the rightmost polynomial can be evaluated using only additions and
constant multiplications. In other words, the polynomial can be evaluated by
taking approximately 𝑔

𝑈
giant steps after computing 𝑈 baby steps. Paterson &

Stockmeyer show that this method requires approximately 2
¬
𝑔 multiplications

for the right choice of 𝑈. This makes it asymptotically optimal in terms of the
multiplicative cost and size. Due to its sequential nature, the circuits generated by
this method are typically larger in depth than the circuits generated by the other
two methods that we discuss.

187

5.6.2 Paterson & Stockmeyer’s method
Paterson & Stockmeyer also propose a method that evaluates polynomials of a
specific degree in

¬
2𝑔 + 𝑍(log 𝑔) non-constant multiplications for the right choice

of 𝑈. This method is defined for monic polynomials (i.e. the leading coe#cient
is 1) of degree 𝑔 = (2𝑄 ⇐ 1)𝑈, but it can be adapted to evaluate any polynomial by
extending it to the next monic polynomial of the correct degree (or using a constant
multiplication if it is a non-monic polynomial of the correct degree). We can then
remove this added monomial from the final result by computing it and subtracting
it or by adapting the coe#cients.

Paterson & Stockmeyer’s method [PS73] works by reducing the evaluation of a
degree-(2𝑄 ⇐ 1)𝑈 monic polynomial to the evaluation of two monic polynomials of
degree (2𝑄⇐1 ⇐ 1)𝑈 and a polynomial of degree 𝑈 ⇐ 1 using the following identity:

[
𝑉

(2𝑄⇐1)𝑈 +
(2𝑄⇐1)𝑈⇐1∑

𝑋=0
𝑌𝑋𝑉

𝑋

]
↖

(
𝑉

2𝑄⇐1
𝑈 +

[
𝑈⇐1∑
𝑋=0

𝑌
▽
𝑋
𝑉

𝑋

])
𝑉

(2𝑄⇐1⇐1)𝑈 +
(2𝑄⇐1⇐1)𝑈⇐1∑

𝑋=0
𝑂𝑋𝑉

𝑋

+

𝑉

(2𝑄⇐1⇐1)𝑈 +
(2𝑄⇐1⇐1)𝑈⇐1∑

𝑋=0
𝑚𝑋𝑉

𝑋

, (5.11)

where the square brackets group together the terms of a polynomial. The coe#cients
of these smaller polynomials can be obtained using a Euclidean division. Note
that the polynomial of degree 𝑈 ⇐ 1 can be computed using the precomputed
powers without any multiplications. Note that where the previous method
only precomputes monomials 𝑉2

,𝑉
3
, . . . ,𝑉

𝑈 , this method must also precompute
monomials 𝑉2𝑈

,𝑉
4𝑈
,𝑉

2𝑄⇐1
𝑈 , which requires 𝑄 ⇐ 1 squarings.

As described previously, the method can be extended to any polynomial of
degree-𝑔 by padding it with a monomial (2𝑄 ⇐ 1)𝑈 ∀ 𝑔, which is of the correct
degree. However, we must compensate for this added monomial in the final result.
If it holds that 𝑋 = (2𝑄 ⇐ 1)𝑈 mod ↽(𝑎) ≃ 𝑔, where ↽() is the totient function, then
we can easily compensate for it by decrementing the 𝑋-th coe#cient. Otherwise,
we must compute the monomial separately and subtract it at the end.

For the case that we must compute the padding monomial separately, we slightly
modify the MaxSAT formulation described in Section 5.5 to take into account
that the polynomial evaluation circuit already precomputes a large number of
monomials. We ensure that these monomials count for free towards the cost of
the addition chain, while still considering their depth. We do so by adding new
variables 𝑤𝑈 that represent using previously-computed power 𝑉

𝑈 . When they
are enabled, they incorporate the fixed depth of the precomputed power. Given
precomputed powers 𝑊1 , . . . , 𝑊𝑄 with depths 𝑔1 , . . . , 𝑔𝑄 , we add the following hard
clauses:

(𝑔𝑊𝑋 ,𝑔𝑋 ,¬𝑤𝑊𝑋), 𝒩𝑋 ↓ [1, 𝑄]

188

Next to that, we adapt the following hard clause in the original formulation to
allow 𝑅𝑈 to be true when 𝑤𝑈 is:

DE
F
¬𝑅𝑈 ℋ 𝑤𝑈 ℋ

∨
(𝑋 , 𝑜)↓𝑙:𝑋+𝑜=𝑈

𝑆𝑋 , 𝑜

GH
I
. 𝒩𝑈 ↓ {𝑊1 , . . . , 𝑊𝑄}

We also have to remove the cuts described in Section 5.5.1 from the formulation,
as they do not apply to depth-constrained circuits.

5.6.3 Our work: Divide & conquer
We propose a new method for evaluating univariate polynomials of any degree
inspired by Paterson & Stockmeyer’s method. While our method does not achieve
as small of a multiplicative cost, it achieves a low multiplicative depth. It is
essentially a simplified version of Paterson & Stockmeyer’s method that retains
the divide & conquer strategy. The key idea is to split evaluation of a degree-2𝑄 𝑈
polynomial into the evaluation of two degree-2𝑄⇐1

𝑈 polynomials:
[

𝑔∑
𝑋=0

𝑌𝑋𝑉
𝑋

]
↖ 𝑉

2𝑄⇐1
𝑈

𝑔⇐(2𝑄⇐1

𝑈⇐1)∑
𝑋=0

𝑂𝑋𝑉
𝑋

+

2𝑄⇐1

𝑈⇐1∑
𝑋=0

𝑚𝑋𝑉
𝑋

, (5.12)

where 𝑔 ≃ 2𝑄 𝑈. This method requires the same precomputations as Paterson &
Stockmeyer’s method.

We briefly analyze the cost and depth of the circuits generated by our method.
Let 𝑞(𝑔) denote the cost of computing a degree-𝑔 polynomial using our method
when we have already computed the precomputations. We have:

𝑞(2𝑄 𝑈) ≃
{

0 If 𝑄 = 0
1 + 2𝑞(2𝑄⇐1

𝑈) If 𝑄 > 0
, (5.13)

≃ 1 + 2(1 + 2𝑞(2𝑄⇐2
𝑈)) , (5.14)

= 3 + 4𝑞(2𝑄⇐2
𝑈) , (5.15)

≃ 2𝑋 ⇐ 1 + 2𝑋𝑞(2𝑄⇐𝑋 𝑈) , (5.16)
≃ 2𝑄 ⇐ 1 + 2𝑄0 , (5.17)
= 2𝑄 ⇐ 1 . (5.18)

If it takes 𝑈 ⇐ 1 multiplications to compute 𝑉
2
, . . . ,𝑉

𝑈 and 𝑄 ⇐ 1 squarings to
compute 𝑉

2𝑈
,𝑉

4𝑈
, . . . ,𝑉

2𝑄⇐1
𝑈 , then the total cost of our circuit 𝑣 is:

cost(𝑣) ≃ 𝑈 + 𝑄 + 2𝑄 ⇐ 3 ≃ 𝑈 + log2

(
𝑔

𝑈

)
+

𝑔

𝑈

. (5.19)

The depths of precomputations 𝑉
𝑋 for 𝑋 = 2, . . . , 𝑈 are ℱlog2 𝑋𝒢, and the depths of

𝑉
2𝑋 𝑈 for 𝑋 = 1, . . . , 𝑄 ⇐ 1 are ℱlog2 𝑈𝒢 + 𝑋. As a result, the depth of the circuit is:

depth(𝑣) ≃ ℱlog2 𝑈𝒢 + 𝑄 ≃ ℱlog2 𝑈𝒢 +

𝑔

𝑈

. (5.20)

189

Figure 5.5: Polynomial evaluation circuits for computing 𝑅 (mod 7) in F127. This is a degree-
126 polynomial, so Paterson & Stockmeyer’s parameter for minimizing multiplicative size is
𝑈 =

¬
0.5 · 126 ↗ 8. However, the optimum occurs when 𝑈 = 9. Divide & conquer leads to a

lower depth.

From this analysis it is clear that choosing a large value of 𝑈 reduces the depth
significantly.

5.6.4 Finding Circuits on the Depth-Cost Front
The three methods described above all achieve a di"erent depth-cost trade-o" when
varying 𝑈. Our depth-aware arithmetization method for polynomial evaluation is
to simply try all three methods on all values 1 ≃ 𝑈 ≃ 𝑔. It turns out that, while
it is possible to compute the optimal 𝑈 for reducing the multiplicative cost, there
are cases where other values of 𝑈 achieve a lower cost. In Figure 5.5 we highlight
such a situation. In this figure, we show all circuits computing 𝑅 (mod 7) in F127
that we can generate by varying 𝑈. While Paterson & Stockmeyer show that 𝑈 = 8
minimizes the multiplicative cost, it turns out that we can achieve a significantly
better circuit using 𝑈 = 9.

5.6.5 Case Study: Comparisons
We show that our depth-aware arithmetization method allows to generate a
front of circuits that trade o" multiplicative depth and cost, even for complex
operations such as comparisons. We use the technique proposed by Iliashenko &

190

Zucca [IZ21] for performing comparisons between half of the elements in the field
F𝑎 using a univariate polynomial evaluation. By computing the leading term of
the polynomial separately, the remainder of the polynomial can be decomposed so
that its degree is only 𝑎⇐1

2 .
Another method for generating such circuit is implemented in the T2 com-

piler [GMT23], in which the comparison is implemented as a number of equality
checks:

[𝑉 < N] =
𝑎∑

J= 𝑎+1
2

[(𝑉 ⇐ N) = J] =
𝑎∑

J= 𝑎+1
2

1 ⇐ (𝑉 ⇐ N ⇐ J)𝑎⇐1
. (5.21)

We provide an optimistic implementation of this technique in which we use the
minimal-cost exponentiation circuit to implement the equality checks.

We also provide an optimistic implementation of the work by Iliashenko &
Zucca [IZ21], in which we only use the Paterson & Stockmeyer method with their
choice of 𝑈 with the intent of minimizing the multiplicative cost. One problem is
that their proposed way to compute the final term requires a certain polynomial
degree, but it is not possible for all 𝑎 to find a certain 𝑈. Instead, we use our method
for finding the optimal addition chain given precomputed powers to compute the
leading term of the univariate polynomial.

In Table 5.1 we provide an overview of di"erent methods for generating
comparison circuits. We find that our work consistently finds circuits in the
depth-size front, but the other methods do so too. We mark values on the front in
bold. For example, while the T2 compiler finds circuits with large size, their depth
is minimal. We find that the method by Iliashenko & Zucca does not outperform
ours, unless we apply common subexpression elimination. In some cases, this
allows the method to find circuits on the front. We evaluate the run time of these
circuits using fhegen [Mon+23] to generate parameters and execute the circuits
using HElib on a Threadripper 7970X CPU, using only one thread to compile and
evaluate the circuits. The machine has 4x64GB DDR5 RAM, but only a fraction
was used.

Table 5.1: Comparison circuits for di"erent moduli 𝑎 with squaring cost 𝜗 = 1.0. Run times
are in seconds, and were averaged over 10 iterations. Our circuits often outperform previous
techniques. *We used CSE to reduce these circuits’ size.

Method 𝑎 = 29 𝑎 = 43 𝑎 = 61 𝑎 = 101 𝑎 = 131
Depth Size Time Depth Size Time Depth Size Time Depth Size Time Depth Size Time

T2 [GMT23]* 5 84 1.16 6 147 4.86 7 210 6.79 7 400 11.71 8 520 16.95

IZ21 [IZ21] 7 12 0.44 8 18 0.68 9 14 0.55 8 16 0.60 11 29 1.33
IZ21 [IZ21]* 7 12 0.44 8 16 0.59 9 13 0.52 8 16 0.63 11 26 1.18

Our work 6 11 0.41 7 12 0.44 7 15 0.59 8 16 0.62 8 20 0.84
7 10 0.38 8 14 0.51

191

5.7 Arithmetization of ANDs and ORs
Finally, we study the depth-aware arithmetization of AND and OR operations.
The typical arithmetization of an AND operation is to treat it as a product:

𝑉1 ∞ · · · ∞ 𝑉𝑈 = 𝑉1 𝒜 · · · 𝒜 𝑉𝑈 . (5.22)

As shown in Section 5.4, there is a single optimal circuit 𝑣1 to compute this product.
It has the following properties:

cost(𝑣1) = 𝑈 ⇐ 1 + cost(𝑉1 , . . . ,𝑉𝑈) , (5.23)

depth(𝑣1) =
⌈
log2

𝑈∑
𝑋=1

2depth(𝑉𝑋)

⌉
. (5.24)

OR operations are sometimes arithmetized as follows:

𝑉1 ℋ · · · ℋ 𝑉𝑈 = (𝑉1 + · · · + 𝑉𝑈)𝑎⇐1
, (5.25)

where 𝑅
𝑎⇐1 maps 0 ∈′ 0 and {1, . . . , 𝑎 ⇐ 1} ∈′ 1. Note that this arithmetization

is only guaranteed to work when 𝑈 < 𝑎, otherwise the result of the summation
might wrap around the modulus. Let circuit 𝑣2 be a circuit that evaluates this
arithmetization, which first sums the operands and then uses another circuit 𝑣exp
for exponentiation by 𝑎 ⇐ 1. Then, 𝑣2(𝑣exp) has the following properties:

cost(𝑣2(𝑣exp)) = cost(𝑣exp) + cost(𝑉1 , . . . ,𝑉𝑈) , (5.26)
depth(𝑣2(𝑣exp)) = depth(𝑣exp) + max

𝑋=1,...,𝑈
depth(𝑉𝑋) . (5.27)

While this method allows varying the depth and size using di"erent circuits for
𝑣exp, this only provides minimal variance.

DeMorgan’s law provides a bidirectional transformation between AND and OR
circuits that does not increase the size or depth because it only requires negation,
which does not require non-scalar multiplications:

𝑉1 ∞ · · · ∞ 𝑉𝑈 = 𝑉1 ℋ · · · ℋ 𝑉𝑈 . (5.28)

So, either of the two arithmetizations above can be used for AND and OR operations
at the same depth and size cost. In fact, they can be composed to achieve a hybrid
arithmetization. This allows one to trade o" depth and size. It also allows reaching
smaller sizes than what could be reached by a non-hybrid arithmetization.

We cannot prove that minimizing the depth and size of the hybrid arithmetiza-
tion described above coincides with minimizing the depth and size of all potential
arithmetic circuits for ANDs and ORs. That said, we argue that our method is a
useful heuristic.

5.7.1 Finding a Minimum-Cost Circuit
It is easy to see that if 𝑈 < 𝑎, then cost(𝑣2(𝑣exp)) < cost(𝑣1) 𝒞ℜ cost(𝑣exp) < 𝑈⇐1.
So in this case, it is easy to decide the minimum-cost circuit. Let 𝑞(𝑈) represent

192

the minimal multiplicative cost of a circuit for the hybrid arithmetization of an
AND or OR operation with 𝑈 operands, and let 𝑌 denote the multiplicative cost of
𝑣exp. We have:

𝑞 (𝑈) = min(𝑌 , 𝑈 ⇐ 1) if 𝑈 ≃ 𝑎 ⇐ 1 . (5.29)

When 𝑈 ∀ 𝑎, we must consider a hybrid arithmetization. Notice that the cost of
the smallest hybrid circuit 𝑣3(𝑣exp) grows monotonically with 𝑈. So, if it holds that
cost(𝑣exp) ≃ 𝑎⇐1, we can perform 𝑣2(𝑣exp) on 𝑎⇐1 operands (e.g. 𝑉1 , . . . ,𝑉𝑎⇐1) to
obtain a new problem with 𝑈⇐ (𝑎⇐1) operands. It turns out that costℵ

(
𝑣exp

)
≃ 𝑎⇐1

always holds.
Using the strategy described above, we get that:

𝑞 (𝑈) = 𝑌 + 𝑞

(
𝑈 ⇐ (𝑎 ⇐ 1) + 1

)
, (5.30)

= 2𝑌 + 𝑞

(
𝑈 ⇐ 𝑎 ⇐ (𝑎 ⇐ 1) + 1

)
, (5.31)

.

.

. (5.32)
= 𝑚𝑌 + 𝑞

(
𝑈 ⇐ 𝑚(𝑎 ⇐ 1) + 𝑚

)
, (5.33)

= 𝑚𝑌 + 𝑞

(
𝑈 + 𝑚(2 ⇐ 𝑎)

)
. (5.34)

We reach the base case when 𝑈 + 𝑚(2 ⇐ 𝑎) ≃ 𝑎 ⇐ 1. This happens when 𝑚 = ℱ 𝑎⇐1⇐𝑈
2⇐𝑎 𝒢,

so we have:

costℵ
(
𝑣3(𝑣exp)

)
=𝑞(𝑈)=

⌊
𝑈

𝑎

⌋
𝑌 + min

(
𝑌 , 𝑈 ⇐

⌊
𝑈

𝑎

⌋
𝑎 ⇐ 1

)
(5.35)

Notice that increasing 𝑌 always increases the total multiplicative cost, apart from
the case where 𝑈 < 𝑎 and 𝑌 ∀ 𝑈 ⇐ 1, in which case 𝑌 does not influence the result.
We conclude that to minimize 𝑞(𝑈), 𝑌 needs to be minimal.

5.7.2 Finding Circuits on the Depth-Cost Front
In minimizing the multiplicative depth of the circuit, we define a useful metric
called fullness. This metric captures both the depth of the circuit and how many
multiplications can still be absorbed by the multiplication tree in the outer layer of
the circuit without increasing the circuit’s depth.

Definition 10 (Fullness). The fullness is defined as:

fuln(𝑉 + N) = 2max(depth(𝑉),depth(N))

fuln(𝑉 𝒜 N) = fuln(𝑉) + fuln(N)
fuln(𝑑) = 1

Notice that:
depth(𝑣) = ℱlog2 fuln(𝑣)𝒢 .

To find a minimum-depth anchor point, we put forward a recursive algorithm
that finds a circuit for performing an AND operation while satisfying the constraint
that the fullness is at most 𝐿 , and the cost is less than 𝑌. We present it in Algorithm 8,

193

in which cost(𝑣) ignores the cost of subcircuits 𝑉1 , . . . ,𝑉𝑈 . The algorithm also
inputs 𝑝, which is a collection of exponentiation circuits that are on the Pareto
front, and 𝑎, the order of the prime field.

Our recursive algorithm is essentially a bounded search. We use the bounds
derived above to decide whether certain branches are not worth exploring. By
starting with 𝐿 = 2𝑔 for 𝑔 = ℱlog2 fuln(𝑉1)𝒢, where 𝑉1 is the operand with the
highest fullness, we can iteratively increment 𝑔 until the algorithm finds a circuit.
This first circuit is a minimum-depth anchor point because the algorithm outputs
the minimal cost circuit for this fullness bound 𝐿 .

We can keep going in the fashion described above, incrementing 𝑔, to generate
the entire depth-cost front. Since it is easy to compute costℵ

(
𝑣3(𝑣exp)

)
, we know

when to stop the search. Note that while we describe the algorithm to compute
a circuit for an AND operation, the algorithm for OR operations follows almost
identically: For OR operations, one must apply DeMorgan’s law.

5.7.3 Case Study: Veto Voting
We study the problem of veto voting, where multiple parties submit a Boolean
value, indicating whether they veto or not. If no one vetoes, the result should be
false. If anyone vetoes, the result should be true. This is exactly an OR operation.
We consider the setting where we do not know a bound on the possible number of
vetoes.

In Figure 5.6, we demonstrate the circuits that our algorithm generates for two
values of 𝑎 when the number of operands grows. It is clear that for almost every
number of operands, there exists a cost-depth trade-o". What is more, there is also
a trade-o" between di"erent values of 𝑎. Whereas a larger value of 𝑎 allows one to
find circuits with fewer multiplications when the number of operands grows, there
are still cases where one might favor a smaller 𝑎 as it provides a better depth-cost
trade-o". For example, when there are 13 operands, 𝑎 = 7 permits a depth-4 circuit
at 10 multiplications, while 𝑎 = 13 requires 12 multiplications. Finally, notice that
there are only a few cases where computing an OR operation using a 𝑣1 circuit is
necessary to achieve a minimum depth. In many other cases, we can achieve the
same minimum depth with far fewer multiplications.

5.8 Depth-Aware Composition
In the previous sections, we put forward methods for the depth-aware arith-
metization of several common primitives, but many interesting circuits emerge
as the composition of these primitives. In this section, we show how to per-
form depth-aware arithmetization for high-level circuits that compose multiple
primitives.

Suppose we have a circuit 𝑉31 < N
31. We can generate a front for the exponen-

tiation circuits of 𝑉31 and N
31, but at that point we are stuck, because our method

for arithmetizing comparisons inputs subcircuits rather than two fronts of circuits.
For composition, we propose the following heuristic: we generate a new Pareto
front in which we try all possible combinations of input arithmetizations. This is a

194

Algorithm 8 Finds an AND circuit with fullness ≃ 𝐿 and minimal cost < 𝑌, returning
△ if it cannot be found.

1: procedure AND(𝑉1 , . . . ,𝑉𝑈 , 𝐿 , 𝑌 , 𝑝, 𝑎)
2: Ensure that fuln(𝑉1) ∀ · · · ∀ fuln(𝑉𝑈)
3: if 𝑈 = 1 𝜖 Base cases
4: if fuln(𝑉1) ≃ 𝐿 and 𝑌 > 0
5: return 𝑉1
6: return △
7: if 𝐿 < 1 or 𝑌 ≃ 0
8: return △
9: if costℵ(𝑉1 ∞ · · · ∞ 𝑉𝑈) ∀ 𝑌

10: return △
11: 𝑣out = △
12: for 𝑣exp ↓ 𝑝 do
13: 𝑣 = 𝑉1 𝒜 · · · 𝒜 𝑉𝑈 𝜖 𝑣1 circuit
14: if

∑
𝑈

𝑋=1 fuln(𝑉𝑋) ≃ 𝐿 and cost(𝑣) < 𝑌

15: 𝑣out ↖ 𝑣, 𝑌 ↖ cost(𝑣)
16: 𝐿exp ↖ 2ℱlog2 𝐿 𝒢⇐depth(𝑣exp) 𝜖 Max fuln for 𝑣2
17: if 𝑈 < 𝑎

18: 𝑣 ↖ 𝑣exp(𝑉1 + · · · + 𝑉𝑈) 𝜖 𝑣2 circuit
19: if

∧
𝑈

𝑋=1 fuln(𝑉𝑋) ≃ 𝐿exp and cost(𝑣) < 𝑌

20: 𝑣out ↖ 𝑣 , 𝑌 ↖ cost(𝑣)
21: continue
22: if

∧
𝑈

𝑋=1 fuln(𝑉𝑋) ≃ 𝐿exp 𝜖 𝑣2 works for all 𝑉𝑋

23: if cost(𝑣exp) ∀ 𝑌

24: continue
25: cache ↖ {}
26: for 𝑋 = 1, . . . , 𝑈 ⇐ 1 do
27: 𝑣

▽ ↖ 𝑣exp(𝑉𝑋 + · · · + 𝑉𝑋+𝑎⇐2)
28: 𝑉↖𝑣

▽
,𝑉1 , . . . ,𝑉𝑋⇐1 ,𝑉𝑋+𝑎⇐1 , . . . ,𝑉𝑈

29: if {fuln(𝑅) | 𝑅 ↓ 𝑉} ↓ cache
30: continue
31: Add {fuln(𝑅) | 𝑅 ↓ 𝑉} to cache
32: 𝑣 ↖ AND(𝑉 , 𝐿 , 𝑌 ⇐ cost(𝑣exp), 𝑝, 𝑎)
33: if 𝑣 ε △
34: 𝑣out ↖ 𝑣 , 𝑌 ↖ cost(𝑣)
35: else 𝜖 We can isolate 𝑉𝑋 that must use 𝑣1
36: Find 𝑊 s.t. fuln(𝑉𝑊) > 𝐿exp, fuln(𝑉𝑊+1)≃ 𝐿exp
37: if 𝑊 = 0 or 𝑊 ∀ 𝑌

38: continue
39: 𝐿new ↖ 𝐿 ⇐∑

𝑊

𝑋=1 fuln(𝑉𝑋)
40: 𝑣

▽ ↖ AND(𝑉𝑊+1 , . . . ,𝑉𝑈 , 𝐿new , 𝑌 ⇐ 𝑊 , 𝑝, 𝑎)
41: if 𝑣▽ ε △
42: 𝑣 ↖ 𝑣

▽ 𝒜 𝑉1 𝒜 · · · 𝒜 𝑉𝑊

43: 𝑣out ↖ 𝑣 , 𝑌 ↖ cost(𝑣)
44: return 𝑣out

195

Figure 5.6: Circuits computing an OR operation with 𝜗 = 1.0, for a growing number of
operands. The number of ticks on a marker indicates the depth of the circuit. Depending
on the depth that one wants to achieve and the number of operands, it is better to choose
𝑎 = 7 or 𝑎 = 13.

heuristic because we do not change the arithmetizations of the inputs, even when
this could lead to a lower cost or depth.

Because of this heuristic, composing two optimal sub-circuits does not nec-
essarily lead to an optimal composition. For example, the condition 𝑉

10 = 0 is
equivalent to 𝑉 = 0, meaning that straightforward composition leads to a circuit
that is unnecessarily large. On the other hand, it often infeasible to arithmetize a
complex high-level circuit to optimality because its search space is astronomical.

While the method described above o"ers a generic solution of dealing with
composition, it can be ine#cient. For example, when we want to arithmetize
𝑉

31 + N
31, we know that it is never better to choose a subcircuit for 𝑉

31 with a
lower depth as the subcircuit for N31 and vice versa. In those cases, we do not
exhaustively try all combinations, but we iteratively increment a depth limit and
choose the lowest-cost subcircuits that still satisfy the depth limit.

Finally, one might consider heuristics that cut away even more solutions. For
example, increasing a circuit’s depth by one layer while saving one multiplication
may not be worth it in practice. We do not implement such a heuristic, and leave it
to future work.

To highlight the e"ectiveness of our methods, we apply them to a practical
example that composes all of the primitives described in this work. Specifically,
we evaluate them on the cardio circuit as proposed by Carpov et al. [Car+16] and
used as a benchmark in other works [VJH21]. The circuit computes a number of
predicates relating to a person’s cardiac health and returns how many evaluate to

196

true. These predicates involve comparisons, such as checking whether a person’s
weight is smaller than its height - 90. We also consider a variant of this circuit that
we call cardio-elevated, which only returns if any of the risk factors were true. In
other words, we compute an OR over all the predicates.

In Table 5.2 we present the results of our methods applied to the cardio and
cardio-elevated circuits for a fixed value 𝑎 = 257, since all values fit under this
modulus. We report the fronts that our methods generated for di"erent costs of
squaring 𝜗, and how long these fronts took to generate (after implementing several
run time optimizations). We do not take the cyclic nature of F𝑎 into account for
the exponentiations in padding the polynomials to make it run in reasonable time,
and since these are unlikely to produce significantly better results for 𝑎 = 257. We
show that the cardio circuit can be evaluated in 419 multiplications.

Table 5.2: Fronts generated by our methods for the cardio and cardio-elevated circuits,
displaying the cost-depth trade-o".

Cardio risk assessment Cardio elevated risk
Depth 𝜗 = 1.0 𝜗 = 0.75 𝜗 = 0.5 Depth 𝜗 = 1.0 𝜗 = 0.75 𝜗 = 0.5
Gen. (s) 83 90 84 81 75 84

11 419.0 389.0 359.0 14 428.0 396.0 364.0
12 384.0 349.0 15 · 389.0 350.0
13 374.0 329.0 16 · 383.0 338.0

· · · ·
19 427.0 · ·
· · ·

21 380.0 333.0

Notice that if we solely optimize multiplicative cost/size, the resulting circuits
may be wasteful in terms of the multiplicative depth. A good example is in the
cardio-elevated circuit when 𝜗 = 1.0: If we would only focus on multiplicative
cost, we would save 1 multiplication at the cost of 5 layers of depth. Moreover,
optimizing both multiplicative cost and depth allows one to save multiplicative
cost on branches of the circuit that do not contribute to the multiplicative depth,
unlike what happens when optimizing for depth in isolation.

Finally, we measure the run times of our circuits using the same machine
described in Section 5.6, and compare these to the equivalent circuits implemented
in TFHE-rs 2. We use unsigned 256-bit high-level integers to generate these circuits
in TFHE. The results are in Table 5.3, in which we marked the fastest amortized run
time in bold. We conclude that the lower-cost circuits are not always better, and
that exploring the trade-o" between cost and depth enables finding more e#cient
circuits in practice.

2We used version 0.11: https://docs.zama.ai/tfhe-rs

197

https://docs.zama.ai/tfhe-rs

Table 5.3: Run times averaged over 10 iterations; 𝜗 = 0.75. Our circuits outperform TFHE
when the run time is amortized.

Circuit Slots Run time (s) Amortized (s)
Cardio risk assessment

Depth-11 128 43.98 0.34
Depth-12 128 50.14 0.39
Depth-13 128 50.87 0.40
TFHE 1 0.97 0.97

Cardio elevated risk
Depth-14 128 57.26 0.45
Depth-15 128 57.56 0.45
Depth-16 128 56.53 0.44
Depth-21 128 73.78 0.58
TFHE 1 0.49 0.49

5.9 Conclusion
In this work, we introduced the concept of depth-aware arithmetization, in which
we generate arithmetic circuits for high-level operations while considering the
trade-o" between multiplicative depth and multiplicative cost. We proposed
methods for the depth-aware arithmetization of exponentiations, polynomial
evaluation, and AND/OR operations. In turn, these primitives allow one to
perform equality checks, comparisons, and perform operations such as veto voting.
They may also be composed into larger circuits.

Our methods have limitations. For example, they can take minutes to arithme-
tize circuits with only a handful of comparisons. Moreover, they are not necessarily
optimal: we only provide optimal methods for exponentiation circuits.

There is still room for future work. One may look for:

• Faster methods for generating optimal addition chains with depth constraints
and/or precomputed values.

• An optimal method for polynomial evaluation, although this may be as hard
as solving a system of multivariate polynomials.

• Other polynomial evaluation methods, e.g. mixing or generalizing the
methods that we use in this work.

• An optimal method for AND/OR operations, or a proof that our current
approach is optimal.

• E#cient ways of composing arithmetized primitives.

• Methods for arithmetizing multiple polynomial evaluations at once, reusing
the precomputed powers across evaluations.

198

• Experimenting with di"erent plaintext moduli 𝑎, which allows for a trade-o"
between the number of slots and the size of the generated circuits.

Our work paves the way to make several secure computation tasks more
e#cient and more user-friendly. For example, these algorithms can be used to
automatically generate e#cient arithmetic circuits for high-level circuits in the
context of homomorphic encryption, where this is currently ine#cient, or left as
an exercise for the protocol designer. These techniques can also be used in the
context of other secure computation techniques, such as arithmetic garbling.

References
[ACS20] Pascal Aubry, Sergiu Carpov, and Renaud Sirdey. “Faster Homomor-

phic Encryption is not Enough: Improved Heuristic for Multiplicative
Depth Minimization of Boolean Circuits”. In: Topics in Cryptology -
CT-RSA 2020 - The Cryptographers’ Track at the RSA Conference 2020, San
Francisco, CA, USA, February 24-28, 2020, Proceedings. Ed. by Stanislaw
Jarecki. Vol. 12006. Lecture Notes in Computer Science. Springer,
2020, pp. 345–363. /)%: 10.1007/978-3-030-40186-3_15. (!&:
https://doi.org/10.1007/978-3-030-40186-3%5C_15.

[AG23] Muhammad Abbas and Oscar Gustafsson. “Integer Linear Program-
ming Modeling of Addition Sequences With Additional Constraints
for Evaluation of Power Terms”. In: CoRR abs/2306.15002 (2023).
/)%: 10.48550/ARXIV.2306.15002. arXiv: 2306.15002. (!&: https:
//doi.org/10.48550/arXiv.2306.15002.

[AIK11] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. “How to Garble
Arithmetic Circuits”. In: IEEE 52nd Annual Symposium on Foundations
of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25,
2011. Ed. by Rafail Ostrovsky. IEEE Computer Society, 2011, pp. 120–
129. /)%: 10.1109/FOCS.2011.40. (!&: https://doi.org/10.1109/
FOCS.2011.40.

[Arc+19] David W. Archer et al. “RAMPARTS: A Programmer-Friendly System
for Building Homomorphic Encryption Applications”. In: Proceedings
of the 7th ACM Workshop on Encrypted Computing & Applied Homomorphic
Cryptography, WAHC@CCS 2019, London, UK, November 11-15, 2019.
Ed. by Michael Brenner, Tancrède Lepoint, and Kurt Rohlo". ACM,
2019, pp. 57–68. /)%: 10.1145/3338469.3358945. (!&: https://doi.
org/10.1145/3338469.3358945.

[Ber+89] François Bergeron et al. “Addition Chains Using Continued Fractions”.
In: J. Algorithms 10.3 (1989), pp. 403–412. /)%: 10.1016/0196-6774(89)
90036-9. (!&: https://doi.org/10.1016/0196-6774(89)90036-9.

[BGV11] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. “Fully
Homomorphic Encryption without Bootstrapping”. In: Electron. Col-
loquium Comput. Complex. TR11-111 (2011). ECCC: TR11-111. (!&:
https://eccc.weizmann.ac.il/report/2011/111.

199

https://doi.org/10.1007/978-3-030-40186-3%5C_15
https://doi.org/10.1007/978-3-030-40186-3%5C_15
https://doi.org/10.48550/ARXIV.2306.15002
https://arxiv.org/abs/2306.15002
https://doi.org/10.48550/arXiv.2306.15002
https://doi.org/10.48550/arXiv.2306.15002
https://doi.org/10.1109/FOCS.2011.40
https://doi.org/10.1109/FOCS.2011.40
https://doi.org/10.1109/FOCS.2011.40
https://doi.org/10.1145/3338469.3358945
https://doi.org/10.1145/3338469.3358945
https://doi.org/10.1145/3338469.3358945
https://doi.org/10.1016/0196-6774(89)90036-9
https://doi.org/10.1016/0196-6774(89)90036-9
https://doi.org/10.1016/0196-6774(89)90036-9
TR11-111
https://eccc.weizmann.ac.il/report/2011/111

[BI20] Charlotte Bonte and Ilia Iliashenko. “Homomorphic String Search
with Constant Multiplicative Depth”. In: CCSW’20, Proceedings of the
2020 ACM SIGSAC Conference on Cloud Computing Security Workshop,
Virtual Event, USA, November 9, 2020. Ed. by Yinqian Zhang and Radu
Sion. ACM, 2020, pp. 105–117. /)%: 10.1145/3411495.3421361. (!&:
https://doi.org/10.1145/3411495.3421361.

[Bra12] Zvika Brakerski. “Fully Homomorphic Encryption without Modu-
lus Switching from Classical GapSVP”. In: Advances in Cryptology -
CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA,
USA, August 19-23, 2012. Proceedings. Ed. by Reihaneh Safavi-Naini and
Ran Canetti. Vol. 7417. Lecture Notes in Computer Science. Springer,
2012, pp. 868–886. /)%: 10.1007/978-3-642-32009-5_50. (!&:
https://doi.org/10.1007/978-3-642-32009-5%5C_50.

[Car+16] Sergiu Carpov et al. “Practical Privacy-Preserving Medical Diagnosis
Using Homomorphic Encryption”. In: 9th IEEE International Conference
on Cloud Computing, CLOUD 2016, San Francisco, CA, USA, June 27 -
July 2, 2016. IEEE Computer Society, 2016, pp. 593–599. /)%: 10.1109/
CLOUD.2016.0084. (!&: https://doi.org/10.1109/CLOUD.2016.
0084.

[CAS17] Sergiu Carpov, Pascal Aubry, and Renaud Sirdey. “A Multi-start
Heuristic for Multiplicative Depth Minimization of Boolean Circuits”.
In: Combinatorial Algorithms - 28th International Workshop, IWOCA 2017,
Newcastle, NSW, Australia, July 17-21, 2017, Revised Selected Papers.
Ed. by Ljiljana Brankovic, Joe Ryan, and William F. Smyth. Vol. 10765.
Lecture Notes in Computer Science. Springer, 2017, pp. 275–286. /)%:
10.1007/978-3-319-78825-8_23. (!&: https://doi.org/10.
1007/978-3-319-78825-8%5C_23.

[Chi+20] Ilaria Chillotti et al. “TFHE: Fast Fully Homomorphic Encryption Over
the Torus”. In: J. Cryptol. 33.1 (2020), pp. 34–91. /)%: 10.1007/S00145-
019-09319-X. (!&: https://doi.org/10.1007/s00145-019-09319-
x.

[Cho+21] Sangeeta Chowdhary et al. “EVA Improved: Compiler and Extension
Library for CKKS”. In: WAHC ’21: Proceedings of the 9th on Workshop
on Encrypted Computing & Applied Homomorphic Cryptography, Virtual
Event, Korea, 15 November 2021. WAHC@ACM, 2021, pp. 43–55. /)%:
10.1145/3474366.3486929. (!&: https://doi.org/10.1145/
3474366.3486929.

[Cow+21] Meghan Cowan et al. “Porcupine: a synthesizing compiler for vector-
ized homomorphic encryption”. In: PLDI ’21: 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implemen-
tation, Virtual Event, Canada, June 20-25, 2021. Ed. by Stephen N. Freund
and Eran Yahav. ACM, 2021, pp. 375–389. /)%: 10.1145/3453483.
3454050. (!&: https://doi.org/10.1145/3453483.3454050.

200

https://doi.org/10.1145/3411495.3421361
https://doi.org/10.1145/3411495.3421361
https://doi.org/10.1007/978-3-642-32009-5%5C_50
https://doi.org/10.1007/978-3-642-32009-5%5C_50
https://doi.org/10.1109/CLOUD.2016.0084
https://doi.org/10.1109/CLOUD.2016.0084
https://doi.org/10.1109/CLOUD.2016.0084
https://doi.org/10.1109/CLOUD.2016.0084
https://doi.org/10.1007/978-3-319-78825-8%5C_23
https://doi.org/10.1007/978-3-319-78825-8%5C_23
https://doi.org/10.1007/978-3-319-78825-8%5C_23
https://doi.org/10.1007/S00145-019-09319-X
https://doi.org/10.1007/S00145-019-09319-X
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1145/3474366.3486929
https://doi.org/10.1145/3474366.3486929
https://doi.org/10.1145/3474366.3486929
https://doi.org/10.1145/3453483.3454050
https://doi.org/10.1145/3453483.3454050
https://doi.org/10.1145/3453483.3454050

[Deg+24] Jean Paul Degabriele et al. “SoK: E#cient Design and Implementation
of Polynomial Hash Functions over Prime Fields”. In: 45th IEEE
Symposium on Security and Privacy (SP 2024). 2024.

[DLS81] Peter J. Downey, Benton L. Leong, and Ravi Sethi. “Computing
Sequences with Addition Chains”. In: SIAM J. Comput. 10.3 (1981),
pp. 638–646. /)%: 10.1137/0210047. (!&: https://doi.org/10.1137/
0210047.

[FV12] Junfeng Fan and Frederik Vercauteren. “Somewhat Practical Fully
Homomorphic Encryption”. In: IACR Cryptol. ePrint Arch. (2012),
p. 144. (!&: http://eprint.iacr.org/2012/144.

[GMT23] Charles Gouert, Dimitris Mouris, and Nektarios Georgios Tsoutsos.
“SoK: New Insights into Fully Homomorphic Encryption Libraries
via Standardized Benchmarks”. In: Proceedings on Privacy Enhancing
Technologies 2023.3 (July 2023), pp. 154–172. /)%: 10.56553/popets-
2023-0075.

[HS14] Shai Halevi and Victor Shoup. “Algorithms in HElib”. In: Advances
in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I. Ed. by
Juan A. Garay and Rosario Gennaro. Vol. 8616. Lecture Notes in
Computer Science. Springer, 2014, pp. 554–571. /)%: 10.1007/978-
3-662-44371-2_31. (!&: https://doi.org/10.1007/978-3-662-
44371-2%5C_31.

[HVM04] Darrel Hankerson, Scott Vanstone, and Alfred Menezes. Guide to
Elliptic Curve Cryptography. 1st ed. Springer Professional Computing.
Springer Science+Business Media New York 2004. Springer New York,
NY, 2004, pp. XX, 312. %01,: 978-0-387-95273-4. /)%: 10.1007/b97644.

[IMM18] Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. “PySAT:
A Python Toolkit for Prototyping with SAT Oracles”. In: SAT. 2018,
pp. 428–437. /)%: 10.1007/978-3-319-94144-8_26. (!&: https:
//doi.org/10.1007/978-3-319-94144-8%5C_26.

[INZ21] Ilia Iliashenko, Christophe Nègre, and Vincent Zucca. “Integer Func-
tions Suitable for Homomorphic Encryption over Finite Fields”. In:
WAHC ’21: Proceedings of the 9th on Workshop on Encrypted Computing &
Applied Homomorphic Cryptography, Virtual Event, Korea, 15 November
2021. WAHC@ACM, 2021, pp. 1–10. /)%: 10.1145/3474366.3486925.
(!&: https://doi.org/10.1145/3474366.3486925.

[IZ21] Ilia Iliashenko and Vincent Zucca. “Faster homomorphic comparison
operations for BGV and BFV”. In: Proc. Priv. Enhancing Technol. 2021.3
(2021), pp. 246–264. /)%: 10.2478/POPETS-2021-0046. (!&: https:
//doi.org/10.2478/popets-2021-0046.

201

https://doi.org/10.1137/0210047
https://doi.org/10.1137/0210047
https://doi.org/10.1137/0210047
http://eprint.iacr.org/2012/144
https://doi.org/10.56553/popets-2023-0075
https://doi.org/10.56553/popets-2023-0075
https://doi.org/10.1007/978-3-662-44371-2%5C_31
https://doi.org/10.1007/978-3-662-44371-2%5C_31
https://doi.org/10.1007/978-3-662-44371-2%5C_31
https://doi.org/10.1007/978-3-662-44371-2%5C_31
https://doi.org/10.1007/b97644
https://doi.org/10.1007/978-3-319-94144-8%5C_26
https://doi.org/10.1007/978-3-319-94144-8%5C_26
https://doi.org/10.1007/978-3-319-94144-8%5C_26
https://doi.org/10.1145/3474366.3486925
https://doi.org/10.1145/3474366.3486925
https://doi.org/10.2478/POPETS-2021-0046
https://doi.org/10.2478/popets-2021-0046
https://doi.org/10.2478/popets-2021-0046

[Lee+20] DongKwon Lee et al. “Optimizing homomorphic evaluation circuits
by program synthesis and term rewriting”. In: Proceedings of the
41st ACM SIGPLAN International Conference on Programming Language
Design and Implementation, PLDI 2020, London, UK, June 15-20, 2020. Ed.
by Alastair F. Donaldson and Emina Torlak. ACM, 2020, pp. 503–518.
/)%: 10.1145/3385412.3385996. (!&: https://doi.org/10.1145/
3385412.3385996.

[McL21] Michael Ben McLoughlin. addchain: Cryptographic Addition Chain Gen-
eration in Go. Version 0.4.0. Oct. 2021. /)%: 10.5281/zenodo.5622943.
(!&: https://github.com/mmcloughlin/addchain.

[MDM14] António Morgado, Carmine Dodaro, and João Marques-Silva. “Core-
Guided MaxSAT with Soft Cardinality Constraints”. In: Principles
and Practice of Constraint Programming - 20th International Conference,
CP 2014, Lyon, France, September 8-12, 2014. Proceedings. Ed. by Barry
O’Sullivan. Vol. 8656. Lecture Notes in Computer Science. Springer,
2014, pp. 564–573. /)%: 10.1007/978-3-319-10428-7_41. (!&:
https://doi.org/10.1007/978-3-319-10428-7%5C_41.

[Mon+23] Johannes Mono et al. “Finding and Evaluating Parameters for BGV”.
In: Progress in Cryptology - AFRICACRYPT 2023 - 14th International
Conference on Cryptology in Africa, Sousse, Tunisia, July 19-21, 2023,
Proceedings. Ed. by Nadia El Mrabet, Luca De Feo, and Sylvain
Duquesne. Vol. 14064. Lecture Notes in Computer Science. Springer,
2023, pp. 370–394. /)%: 10.1007/978-3-031-37679-5_16. (!&:
https://doi.org/10.1007/978-3-031-37679-5%5C_16.

[PS73] Mike Paterson and Larry J. Stockmeyer. “On the Number of Nonscalar
Multiplications Necessary to Evaluate Polynomials”. In: SIAM J.
Comput. 2.1 (1973), pp. 60–66. /)%: 10.1137/0202007. (!&: https:
//doi.org/10.1137/0202007.

[Sch75] Arnold Schönhage. “A Lower Bound for the Length of Addition
Chains”. In: Theor. Comput. Sci. 1.1 (1975), pp. 1–12. /)%: 10.1016/
0304-3975(75)90008-0. (!&: https://doi.org/10.1016/0304-
3975(75)90008-0.

[Sin05] Carsten Sinz. “Towards an Optimal CNF Encoding of Boolean Cardi-
nality Constraints”. In: Principles and Practice of Constraint Programming
- CP 2005, 11th International Conference, CP 2005, Sitges, Spain, October
1-5, 2005, Proceedings. Ed. by Peter van Beek. Vol. 3709. Lecture Notes
in Computer Science. Springer, 2005, pp. 827–831. /)%: 10.1007/
11564751_73. (!&: https://doi.org/10.1007/11564751%5C_73.

[TC21] Edward G. Thurber and Neill Michael Clift. “Addition chains, vector
chains, and e#cient computation”. In: Discret. Math. 344.2 (2021),
p. 112200. /)%: 10.1016/J.DISC.2020.112200. (!&: https://doi.
org/10.1016/j.disc.2020.112200.

202

https://doi.org/10.1145/3385412.3385996
https://doi.org/10.1145/3385412.3385996
https://doi.org/10.1145/3385412.3385996
https://doi.org/10.5281/zenodo.5622943
https://github.com/mmcloughlin/addchain
https://doi.org/10.1007/978-3-319-10428-7%5C_41
https://doi.org/10.1007/978-3-319-10428-7%5C_41
https://doi.org/10.1007/978-3-031-37679-5%5C_16
https://doi.org/10.1007/978-3-031-37679-5%5C_16
https://doi.org/10.1137/0202007
https://doi.org/10.1137/0202007
https://doi.org/10.1137/0202007
https://doi.org/10.1016/0304-3975(75)90008-0
https://doi.org/10.1016/0304-3975(75)90008-0
https://doi.org/10.1016/0304-3975(75)90008-0
https://doi.org/10.1016/0304-3975(75)90008-0
https://doi.org/10.1007/11564751%5C_73
https://doi.org/10.1007/11564751%5C_73
https://doi.org/10.1007/11564751%5C_73
https://doi.org/10.1016/J.DISC.2020.112200
https://doi.org/10.1016/j.disc.2020.112200
https://doi.org/10.1016/j.disc.2020.112200

[VJH21] Alexander Viand, Patrick Jattke, and Anwar Hithnawi. “SoK: Fully
Homomorphic Encryption Compilers”. In: 42nd IEEE Symposium on
Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021.
IEEE, 2021, pp. 1092–1108. /)%: 10.1109/SP40001.2021.00068. (!&:
https://doi.org/10.1109/SP40001.2021.00068.

[YM24] Mingfei Yu and Giovanni De Micheli. Expediting Homomorphic Compu-
tation via Multiplicative Complexity-aware Multiplicative Depth Minimiza-
tion. Cryptology ePrint Archive, Paper 2024/1015. https://eprint.
iacr.org/2024/1015. 2024. (!&: https://eprint.iacr.org/2024/
1015.

203

https://doi.org/10.1109/SP40001.2021.00068
https://doi.org/10.1109/SP40001.2021.00068
https://eprint.iacr.org/2024/1015
https://eprint.iacr.org/2024/1015
https://eprint.iacr.org/2024/1015
https://eprint.iacr.org/2024/1015

204

Chapter 6

Oraqle: A Depth-Aware Secure Computation Compiler

In the previous chapter, we introduced the concept of depth-aware
arithmetization along with several algorithms for arithmetizing
common primitives. While these algorithms solve impracticality
3: Arithmetization in theory, they do not allow non-experts to easily
develop programs using homomorphic encryption in practice. To do
so, one would still need to choose applicable parameters and generate
code that can be executed using existing homomorphic encryption
libraries that matches the generated arithmetic circuit.
In this chapter, we propose a compiler for this purpose. The com-
piler implements the depth-aware arithmetization, and automatically
chooses parameters and generates code. Because the arithmetic cir-
cuits generated by the algorithm from Chapter 5 benefit from small
plaintext spaces, we specifically use the HElib homomorphic encryp-
tion library as it supports small prime moduli. We use the compiler
to show that the arithmetic circuits generated by the compiler can out-
perform Boolean circuits for circuit computational tasks, addressing
impracticality 4: Compute-intensive.

This chapter is an adaptation of the work with the same title published in 12th
Workshop on Encrypted Computing & Applied Homomorphic Cryptography,
authored by Jelle Vos, Mauro Conti, and Zekeriya Erkin.

6.1 Introduction
In the past decade, the field of somewhat and fully homomorphic encryption
(FHE) has seen significant advancements, leading to the development of tens
of homomorphic encryption compilers. These compilers are essential tools for
enabling users who might otherwise not have the time or expertise to transition
from plaintext computations to secure computation, and they do so with relative
ease compared to other techniques like secret sharing.

Despite their utility, existing FHE compilers still have limitations. A critical
shortcoming is their limited support for high-level primitives such as equality
checks, comparisons, and AND and OR operations involving multiple operands.
This is because FHE schemes compute circuits of additions and multiplications
over some algebra. For the schemes that we consider in this work, this algebra
is typically the commutative ring of integers modulo some 𝑂. In general, it is
not straightforward to express high-level primitives as arithmetic circuits in this
algebra. However, it is a misconception that generating these arithmetic circuits is

205

Circuit
description Arithmetization Optimization Parameter

selection
Placing HE
operations Evaluation

Our work: Oraqle compiler Fhegen HElib

Figure 6.1: Typical pipeline in a homomorphic encryption compiler and the parts covered
by our work.

impossible for every 𝑂. When 𝑂 is a prime, the plaintext algebra is the finite field
F𝑎 , in which any function can be expressed as an arithmetic circuit.

Expressing high-level operations as arithmetic circuits is a process called
arithmetization. Some compilers do support the arithmetization of high-level
primitives, but they only allow doing so for the plaintext algebra F2, thereby
restricting the circuits to the Boolean circuits. This is a significant restriction
that potentially ignores many more e#cient circuits. For example, if we want
to compute an AND operation between 16 operands, we require many more
multiplications in Boolean circuits than in arithmetic circuits, where 𝑂 can be larger.
These multiplications are significantly more expensive to compute than additions.
Concretely, we require 15 multiplications in F2, and only 4 in F17 (see Section 6.4).

There are also compilers that provide arithmetization of high-level primitives
by relying on FHE schemes that support programmable bootstrapping. Instead of
computing circuits consisting of additions and multiplications, these schemes com-
pute circuits of additions and programmable bootstrapping operations, which are
essentially lookup tables. A common example of such a scheme is TFHE [Chi+20].
While these schemes are typically computationally e#cient, they require every
evaluator to have large bootstrapping keys, which are in the order of tens to thou-
sands of megabytes in size. Our work focuses on BFV/BGV-type schemes [Bra12;
FV12; BGV12], which do not require the evaluator to have bootstrapping keys.

A second problem in arithmetization for FHE is that a circuit’s e#ciency is relies
strongly on the multiplicative depth of an arithmetic circuit. This metric is defined
as the highest number of multiplication on any path through the circuit. The reason
is that FHE ciphertexts contain some noise as part of the underlying cryptographic
hardness assumption. As FHE schemes perform more homomorphic operations
on ciphertexts, this noise grows. At some point, the noise may become so large as
to override the plaintext that the ciphertext originally encrypted. Since the noise
grows most strongly during ciphertext multiplications, the multiplicative depth is
a useful metric for measuring noise growth. Knowing the multiplicative depth of
the circuit that will be computed allows one to choose parameters that are large
enough to accommodate the expected amount of noise growth. However, larger
parameters make multiplications more expensive to compute. As a result, we
have two metrics that we want to minimize to increase the e#ciency of arithmetic
circuits: the number of multiplications, which are expensive to compute, and the
multiplicative depth, which impacts the cost of individual multiplications.

In this work, we propose a new compiler called Oraqle that solves both the
problem of arithmetizing high-level operations and the problem of multiplicative
depth reduction simultaneously. The Oraqle compiler implements depth-aware

206

arithmetization, a concept recently introduced by Vos et al. [VCE24] (Chapter 5).
By restricting the plaintext algebra to F𝑎 , where 𝑎 is prime, we can arithmetize any
high-level function. Unlike other compilers, the Oraqle compiler does not focus
on reducing either the number of multiplications or the multiplicative depth, but
it reduces both. In doing so, it returns multiple circuits that trade o" these two
metrics. To be precise, it generates a front of circuits that trade o" the multiplicative
depth and the multiplicative cost, which is a number that considers that squaring
operations are cheaper to compute than arbitrary multiplications.

Our work is not the first to trade o" the multiplicative depth with the number
of multiplications. However, depth reduction has previously only been considered
as an optimization stage that comes after arithmetization [CAS17; ACS20; Lee+20;
YM24]. These works input any arithmetic circuit, so they cannot exploit the
knowledge of the high-level operations that these circuits perform. Besides, it
is possible to arithmetize a high-level operation in multiple ways, resulting in
radically di"erent arithmetic circuits. These techniques cannot recover all possible
circuits generated using depth-aware arithmetization.

In Figure 6.1, we describe a typical pipeline for compiling high-level circuits
into homomorphic encryption circuits. Notice that the Oraqle compiler considers
depth reduction in the arithmetization stage, whereas other compilers consider
depth reduction in the optimization stage. We note that our work only addresses the
first parts of the pipeline, and we rely on other work for the later parts. We believe
that this decoupling is a positive development. For example, a user (or compiler)
could use our compiler to generate arithmetic circuits and another compiler to
generate parameters and place homomorphic encryption operations. In the Oraqle
compiler, we rely on fhegen [Mon+22] to select parameters and HElib [HS20] for
the placement of relinearization and modswitch operations, as well as the final
evaluation of the circuit using the BGV cryptosystem [BGV12].

In short, while there are already many homomorphic encryption compilers,
the Oraqle compiler is unique in the sense that it:

• Arithmetizes any high-level operation in F𝑎 , supporting equality checks,
comparisons, and AND and OR operations between many operands, among
others.

• Minimizes both the number of multiplications and the multiplicative depth
during arithmetization, generating multiple circuits that trade o" these two
metrics.

• Considers the fact that squaring is often cheaper to compute homomorphically
than arbitrary ciphertext multiplications.

In this paper, we present the practical workings of the Oraqle compiler. We
demonstrate that our compiler produces more e#cient arithmetizations of compar-
ison operations (𝑅 < 𝑆) than other work for circuits over F𝑎 where 𝑎 is prime. Next
to that, we use our compiler to demonstrate that arithmetic circuits (i.e. where
𝑎 > 2) can be more performant than Boolean circuits. We show this for doing an
equality check (𝑅 = 𝑆) between two 64-bit inputs.

Our paper is structured as follows. We start by reviewing other general-purpose
homomorphic encryption compilers for BFV/BGV-type schemes in Section 6.2.

207

After that, we proceed in the same order as the pipeline diagram in Figure 6.1.
So, in Section 6.3 we explain how users can describe high-level circuits in Oraqle.
In Section 6.4 we explain how we implement depth-aware arithmetization. We
also explain some heuristics & approximations that can be used to speed up
circuit generation time. Next, in Section 6.5, we describe how semantic common
subexpression elimination can further optimize the generated arithmetic circuits.
After that, we describe in Section 6.6 how we use fhegen and HElib to compile the
circuits to an executable binary. We present some results in Section 6.7, and finish
with an overview of limitations and a conclusion in Sections 6.8 & 6.9.

6.2 Homomorphic encryption compilers

We briefly discuss existing general-purpose homomorphic encryption compilers
for Z𝑂 plaintext spaces. We exclude works that are solely for TFHE, because these
do not execute arithmetic circuits: instead, they are comprised of additions and
programmable bootstrapping operations. We only consider works from 2020 and
after. We refer the reader to the work by Viand et al. [VJH21] for prior works.

In Table 6.1, we provide an overview of the works described in this section.
We specify several properties in the same order as the pipeline presented in
Figure 6.1. Specifically, we consider each compiler’s circuit description interface,
by stating their input language and plaintext algebra. For arithmetization, we
discuss whether they support high-level operations, and whether they consider
the multiplicative depth during arithmetization. Moreover, we state whether the
compilers implement common subexpression elimination (CSE) to reduce the
multiplicative size, or depth reduction techniques. Finally, we state whether they
automate parameter selection and the placement of relinearization and modswitch
operations, as well as the library they use for evaluation.

A takeaway is that few of the previous compilers implement arithmetization for
plaintext spaces with 𝑎 > 2, so there is a large space of possible circuits they cannot
generate. Moreover, none of the compilers generate circuits in a depth-aware
manner for 𝑎 > 2.

T2. The T2 cross-compiler [GMT23] provides a DSL for describing arithmetic
circuits, allowing one to generate code for multiple libraries. If 𝑎 is a prime, the
compiler implements arithmetization for equality checks and comparisons, but it
does not consider the depth-cost trade-o". The compiler chooses parameters from
a predefined list, and places homomorphic encryption operations automatically.

HEIR. The HEIR compiler [Goo24] is based on the multi-level intermediate
representation (MLIR) toolchain, which can be reused and extended by other
compilers. For this reason, it supports multiple input formats and multiple FHE
schemes. At the time of writing, the compiler only translates arithmetic operations
on secrets to arithmetic operations on encrypted secrets, so it does not support high-
level arithmetization but it can be extended as such. Due to its extensible nature,
the compiler inherits common subexpression elimination and tree balancing from
MLIR.

Porcupine. The Porcupine compiler [Cow+21] focuses on automatic vectorization
of arithmetic circuits. It inputs circuits written in a new DSL. While it does not

208

Table 6.1: An overview of homomorphic encryption compilers since 2020 and their compila-
tion stages (see Figure 6.1).

Compiler Circuit
description

Arithmetization Optimization Parameter
selection

Placing HE
operations Evaluation

Name Year Input Alg. High-
level

Depth-
aware CSE Depth

red. Automatic Automatic Library

Porcupine
[Cow+21] 2021 Quill Z𝑂 - ! ! " ! #! SEAL

HEIR
[Goo24] 2023 Multiple Z𝑂 - ! " #! " " Multiple

HECO
[Via+23] 2023 Python Z𝑂 - ! " " #! #! SEAL

T2
[GMT23] 2023 C++ Z𝑂

Eq. &
comp. ! ! ! #! " Multiple

HElium
[Gün+23] 2023 HEDSL - ! ! ! #! #! #! Multiple

Oraqle 2024 Python F𝑎 Multiple " " #! fhegen
[Mon+22] #! HElib

arithmetize high-level operations, it performs depth reduction due to vectorization.
Parameters must be selected manually and relinearization operations are placed
naively.

HECO. Similar to the HEIR compiler, the HECO compiler [Via+23] relies on
the MLIR toolchain. It supports a python front-end and a SEAL backend. It does
not implement the arithmetization of high-level primitives, which is currently left
to the user. It does perform simple parameter selection and naive placement of
relinearization operations. Since it is based on MLIR, it can perform CSE, and it
supports a vectorization pass that reduces the multiplicative depth of series of
multiplications.

HElium. The HElium compiler is a compiler that focuses on proxy re-encryption,
allowing computations on data stored under di"erent keys. The main objective is
reducing re-encryption operations. It implements depth reduction in the form of
tree rebalancing. As an input language, it uses a new domain-specific language.

Our work: Oraqle. Our compiler implements depth-aware arithmetization and
semantic CSE. The circuits can be described using Python functions. For parameter
selection, we use fhegen, and for the placement of homomorphic encryption
operations, we rely on the HElib library, which does so naively (i.e. it may scale
down the modulus only to scale it up before the next operation).

6.3 Programming interface
The programming interface defines the way in which users supply input to the
compiler. As shown in Table 6.1, several works provide a domain-specific language
for the user to do so. While this allows one to tailor the language to the use

209

case, it introduces a learning curve. In the Oraqle compiler, we do not use a
DSL, and instead allow the user to express circuits in pure Python, supporting
a subset of Python functions by overloading operators. This means that we also
do not perform introspection or analysis of the abstract syntax tree. While those
approaches would allow one to be more expressive, they make it harder for users
to change the behavior of the compiler to their needs. A downside is that in some
cases, due to language restrictions, the user cannot use a built-in function and
instead must resort to a function with a similar name. For example, instead of
calling sum, the user must call sum_. In this section, we first describe how we go
from the user’s inputs in Python to a high-level circuit description. After that, we
provide some examples of Python code and the circuits they describe.

The key way in which we construct high-level circuits that the compiler can
arithmetize, is to symbolically execute the Python code by overriding the typical
operators. For example, when the user calls x - y, this will result in a symbolic
Subtraction(x, y, gf) node, rather than the interpreter trying to evaluate the
expression. We provide several ways in which these symbolic nodes are combined
to create di"erent symbolic nodes. For example, additions are automatically
flattened into one large Sum node. Moreover, if all the inputs to an operation are
constants, then the constant is folded. In other words, the output is a constant too.

We capture the semantics of di"erent high-level operations by specifying
di"erent types of operations, such as:

• Fixed nodes, which have a fixed number of operands.

– Commutative binary nodes: E.g. addition and equality checks.
– Non-commutative binary nodes: E.g. comparisons.
– Univariate nodes: E.g. exponentiation by a constant.
– Leaf nodes: E.g. inputs and constants.

• Flexible nodes, which have an arbitrary number of operands.

– Commutative & associative reducible nodes with a set of operands: E.g. AND
and OR operations.

– Commutative & associative reducible nodes with a multiset of operands: E.g.
sums and products.

In the compiler, we ensure that, for common operations, there is only one way
to represent them. For example, we do not allow an AND operation with one
operand, or an addition between two constants (this should simply be a constant).
As a result, the only time that a Constant node exists, is when the entire circuit
evaluates to a constant. Otherwise, the constant is part of an operation such as a
ConstantAddition.

Next, we showcase several examples of the conversions from Python expressions
to high-level circuits. These figures are generated by the compiler, which outputs
DOT files. Note that these high-level circuits are not yet arithmetized; they describe
the function that the user wants to perform, split into common primitives.

Describing high-level circuits. We start with a simple example of a program
that a user might run. A user might wish to compute [𝑅 < 𝑆]AND[𝑆 == 𝑤]. The

210

Oraqle compiler requires the user to first specify the plaintext algebra, prior to the
defining the input node 𝑅, 𝑆, and 𝑤. In Listing 1 (see Appendix 6.A), we use F31 as
the plaintext algebra. As one can see, after defining the inputs, the operations are
expressed in the same way as in regular Python functions. Finally, the user creates
a Circuit, which contains an arbitrary number of outputs.
In Figure 6.2, we show the high-level circuit as generated by the compiler. For
non-commutative nodes, the edges enter the node at the correct side, indicating
the direction of the operation (from left to right). In commutative nodes, the edges
enter the node anywhere.

AND

Output

<

x y

==

z

Figure 6.2: An example circuit with high-level operations.

Describing arithmetization in the compiler. While the Python interface is useful
for users to express the functions they want to compute, it is also used within
the compiler to implement transformations such as arithmetization. For example,
if the scheme does not support subtractions, the compiler implements a way to
arithmetize subtractions into an addition and constant multiplication as x + -1 *
y. Subtractions can in turn be used to arithmetize if-else operations.

Extending arithmetization in the compiler. We also use the Python interface to
implement arithmetization external to the compiler, making it easy to compare with
other works, such as the comparison circuits as proposed by Gouert et al. [GMT23]
for the T2 compiler. The code for this is almost as simple as the equation used to
describe the arithmetization. We present this code in Listing 2 (see Appendix 6.A).

The high-level circuit that the compiler generates from this code can be seen in
Figure 6.3. While it may seem that the compiler implements loop unrolling, this is
not the case. The for-loop is executed as is. Since the compiler flattens sums, there
is only one addition node at the end of the circuit. Operations like exponentiation
by 6 will be arithmetized later, instead of turning them into multiplications at this
stage. The reason is that exponentiation can be arithmetized in di"erent ways,
trading o" the multiplicative cost and depth, as described in Chapter 5.

211

+

Output

-

1 Pow: 6

-

-

x

- -

y

4

-

1 Pow: 6

-

5

-

1 Pow: 6

-

6

Figure 6.3: High-level circuit for 𝑅 < 𝑆 as proposed by Gouert et al. [GMT23] when 𝑎 = 7.

6.4 Depth-aware arithmetization
The Oraqle compiler implements the depth-aware arithmetization techniques
described by Vos et al. [VCE24]. Specifically, they propose how to arithmetize
distinct products, exponentiations, polynomial evaluations, and AND and OR
operations between multiple operands in a way that trades o" the multiplicative
cost and the multiplicative depth. In this section, we do not discuss the theory
behind the techniques, but we discuss our practical implementation. We begin
by explaining our implementation and providing some examples, after which we
describe several ways in which the time it takes to generate circuits can be reduced.

6.4.1 Arithmetization for 𝑎 ∀ 2
In the introduction, we gave an example of how AND operations between multiple
operands can be performed with fewer multiplications in an arithmetic circuit
over F𝑎 with 𝑎 > 2, than in a Boolean circuit where 𝑎 = 2. The reason is that a
Boolean circuit requires the operation 𝑅1 ∞ . . . 𝑅16 to be arithmetized as a product
𝑅1 𝒜 · · ·𝒜 𝑅16, whereas an arithmetic circuit over F17 allows for many di"erent kinds

212

of circuits. The Oraqle compiler arithmetizes this operation as (𝑅1 + · · · + 𝑅16)16, in
which the exponentiation only requires four multiplications.

While the Oraqle compiler implements depth-aware arithmetization, it also
implements ‘regular’ arithmetization, in which the compiler only outputs a single
circuits. In this mode the compiler seeks to minimize the multiplicative cost,
and the multiplicative depth secondarily. The compiler is significantly faster at
performing arithmetization in this way, because composition is straightforward:
the output of arithmetization of high-level operations is a single arithmetic circuit
rather than a Pareto front.

6.4.2 Depth-aware arithmetization for 𝑎 ∀ 2
When it comes to depth-aware arithmetization, the compiler outputs multiple
arithmetic circuits for each high-level circuit if it can find a trade-o" between
the multiplicative cost and the multiplicative depth. We provide an example for
performing equality checks in F31, which is the smallest plaintext modulus for
which a trade-o" occurs. Listing 3 (see Appendix 6.A) shows the Python input for
this function. The Oraqle compiler allows the user to specify the cost of a squaring
operation relative to a ciphertext multiplication, which we denote by 𝜗. Calling
arithmetize_depth_aware() defaults to 𝜗 = 1.0.

The compiler internally makes several calls to the MaxSAT compiler to generate
multiple arithmetic circuits with di"erent multiplicative depth. The results are in
Figure 6.4. Here, red-colored multiplications denote non-constant multiplications,
which are expensive to compute. The compiler here generates one circuit with
a multiplicative depth of 5, and a multiplicative cost of 7, and another with
depth 6 and cost 6. It is not clear which circuit is more e#cient, especially under
composition, until we evaluate them. One limitation is that, in the current version
of the compiler, we only implement depth-aware arithmetization for circuits with
a single output.

6.4.3 Practical optimizations
We discuss three optimizations that reduce the times it takes to generate these
circuits without changing them.

The current bottleneck in our implementation is the MaxSAT solver that we
use to arithmetize exponentiation circuits. Our implementation uses the RC2
solver [MDM14] implemented in PySAT [IMM18], and defaults to the Glucose 4.2.1
SAT solver [AS24]. While it is not always possible to reduce the number of
exponentiations that we must arithmetize, we employ caching to significantly
reduce the number of calls made to the MaxSAT solver.

Another optimization is that constant folding allows us to sometimes skip
arithmetization altogether. For example, if the a subcircuit in a Product node
evaluates to 0, we can output a constant. The same applies to other nodes with
multiple operands.

213

+

Output

×

×

×

×

×

×

+

×

y 30

x

×

×

30

1

(a) Depth-5 circuit

+

Output

×

×

×

×

×

×

+

×

y 30

x

×

30

1

(b) Depth-6 circuit

Figure 6.4: Depth-aware arithmetization of 𝑅 = 𝑆 in F31.

214

Finally, commutative & associative reducible nodes with a set of operands (see
Section 6.3), the inputs are actually modeled as a set. This means that if during
arithmetization, an AND operation receives the same operand twice (or one that
is equivalent), it ignores the second. We discuss equivalence in the context of
semantic subexpression elimination in Section 6.5.

6.4.4 Heuristics & approximations
We propose several ways in which the user may speed up circuit generation time at
the cost of a potentially worse circuit. This is necessary for larger circuits and larger
plaintext moduli, which increase the duration of arithmetization. The reason is
that the depth-aware arithmetization techniques proposed by Vos et al. [VCE24] in
some cases perform exhaustive searches.

One context in which we can avoid exhaustive search, is in polynomial evalu-
ation. All the polynomial evaluation methods described in [VCE24] require the
compiler to choose a parameter 𝑈, which a"ects both the multiplicative depth
and cost of the circuits that are generated. Vos et al. propose to try all values
1 ≃ 𝑈 < 𝑎 but this requires a significant amount of computation and many calls to
the MaxSAT solver. Paterson & Stockmeyer [PS73] instead analytically derive a
single value for 𝑈, but Vos et al. show that this is not always optimal in practice.
We propose a heuristic, where we only evaluate several values for 𝑈 around the
value derived by Paterson & Stockmeyer. In our experiments, we find that the
optimal 𝑈 is typically only 1 value away. The compiler only searches for values
up to twice the size of the analytically-optimal 𝑈, which makes circuit generation
approximately twice as fast in practice.

6.5 Optimization of arithmetic circuits
After generating arithmetic circuits, di"erent compilers perform di"erent forms of
post-processing in an attempt to reduce the multiplicative cost or the multiplicative
depth. These are transformations from arithmetic circuits to other arithmetic
circuits. The Oraqle compiler currently implements one optimization in the form of
semantic common subexpression elimination, which is similar to that implemented
by the EVA compiler [Cho+21] for a di"erent kind of homomorphic cryptosystem.

Common subexpression elimination is a technique that has been applied to
many homomorphic encryption compilers and many regular compilers alike. The
simple idea is to never compute the same thing twice. While this seems obvious,
it is not uncommon for arithmetization (or compilation) to introduce common
subexpressions. In our work, we implement semantic common subexpression
elimination, meaning that the compiler can also recognize two subexpressions to
be equivalent but not identical. We give an example in Figures 6.5a & 6.5b of two
circuits that the compiler can tell to be equivalent.

The way we implement these equivalence checks e#ciently, is to ensure that
equivalent expressions have the same hash. This is not always possible, but it is
easy to do for properties such as commutativity. The Oraqle compiler computes
the hash for commutative & associative nodes by sorting the hashes of all the

215

AND

Output

<

x y

+

z1 z2 z3 z4

(a) Original circuit

AND

Output

+

z3 z2 z4 z1

>

y x

(b) Equivalent circuit

Figure 6.5: Two circuits that are not identical but equivalent.

operands before computing the hash, making the order of operands irrelevant.
It can also be done for high-level operations that are non-commutative but each
others inverses. For example, 𝑅 < 𝑆 is equivalent to 𝑆 > 𝑅.

6.6 Code generation

Since the Oraqle compiler currently focuses on arithmetization, it does not perform
parameter selection, placement of homomorphic encryption operations, or evalua-
tion. Instead, it relies on fhegen [Mon+22] and HElib [HS20]. In this section, we
describe the steps from an arithmetic circuit to an executable binary chronologically.
We note that one might also use other tools to finish compiling the arithmetic
circuits generated by the Oraqle compiler.

Register allocation. To reduce the memory footprint of the final binary, we
implement a register allocation step, which determines at any time throughout the
computation how many ciphertexts must be stored. We note that these are logical
registers containing FHE ciphertexts, and not actual hardware registers. We do so
using a topological graph traversal of the arithmetic circuits. After this step, each
node in the arithmetic circuit knows to which register it can assign the result of its
computation.

Translation into instructions. At this point, we can compile the arithmetic circuit
with register allocation to what is essentially assembly for FHE operations. That
is, input nodes are translated to instructions that place a named input into a
register, arithmetic nodes perform operations on several registers, placing the
result in a (possibly overlapping) register, and output nodes instruct are translated
to instructions that output a given register. Importantly, the compiler traverses the
graph in the same way that it did before.

Translation to a program. Finally, we generate C++ code that can be compiled into
an actual binary. This takes two steps, as the code includes both the parameters with
which the FHE schemes will be instantiated, as well as the actual circuit evaluation.

216

We use the methods provided by fhegen [Mon+22] to generate parameters for the
default settings in HElib using the OpenFHE cost model. To do so, we derive
several metrics from the arithmetic circuit. We make one modification to support
𝑎 = 2, which is to decrement the polynomial degree 𝑃 by 1, as 𝑎 may not divide 𝑃.
After this step, code generation is a direct translation from the FHE instructions
to the functions implemented in HElib for performing homomorphic operations.
The resulting code can be compiled using any C++ compiler. HElib here performs
two stages of the pipeline as presented in Figure 6.1: it places and performs
relinearization and modswitch operations, and it evaluates the homomorphic
operations.

6.7 Results

In this section, we provide two results using the Oraqle compiler.1 We first
show that choosing 𝑎 > 2 does lead to circuits with better practical performance
than fixing 𝑎 = 2. Next, we show that an optimistic implementation of the
arithmetization technique used in the T2 compiler produces circuits with worse
practical performance than the Oraqle compiler does. We execute our experiments
on a strong computer with a Threadripper 7970X CPU. The CPU has 64 threads,
but we only use a single thread to compile and evaluate the circuits. When it comes
to memory, it has 4x64GB DDR5 RAM.

Arithmetic versus Boolean circuits Since the Oraqle compiler allows compiling
any function into an arithmetic circuit for any plaintext modulus 𝑎 that is prime,
we can evaluate the performance of di"erent 𝑎 for the same operation. We consider
here the function that checks whether two 64-bit inputs are equal and provide
the results in Table 6.2 and we set 𝜗 = 0.75. Choosing 𝑎 > 2 allows circuits with
lower multiplicative cost at the expense of a higher depth. Moreover, 𝑎 = 2 does
not allow the ring dimension 𝑃 to be a power of two. This choice of 𝑃 means that
homomorphic operations are slower, even though 𝑃 can be smaller. We see that
choosing 𝑎 = 5 leads to an arithmetic circuit that is almost twice as fast to compute
as the Boolean circuit.

Table 6.2: Run time for a circuit checking whether two 64-bit integers are equal. We consider
the front of solutions across all 2 ≃ 𝑎 ≃ 257 that are prime.

Circuits Parameters Results
Modulus 𝑎 Depth Cost Ring dimension 𝑃 𝑚 Bits 𝑌 Run time (s)

2 6 63 16385 1 142 1 3.28
5 7 58 32768 1 178 1 1.67
17 8 51 32768 1 217 1 1.96

1Our compiler is available at DOI 10.4121/e8332e69-994b-4ea7-aff9-2bb73fd2e5fe or on GitHub

217

https://github.com/jellevos/oraqle

Arithmetization in other compilers While there are many homomorphic encryp-
tion compilers, they typically target the earlier or later stages of the compilation
pipeline. To still facilitate a comparison, we compare the less-than circuits gen-
erated by our compiler with those generated by the T2 compiler as described
in the paper by Gouert et al. [GMT23]. While the techniques described by Vos
et al. [VCE24] and Gouert et al. only perform comparisons between half of the
elements in F𝑎 , we propose a new arithmetization that performs three calls to
the half-comparisons. We denote these half-comparisons by 𝒮. We precompute
𝑅small = [𝑅 𝒮 𝑎⇐1

2] and 𝑆small = [𝑆 𝒮 𝑎⇐1
2]. Our arithmetization for both works is as

follows, where 𝑅 represents negation of a Boolean variable:
[𝑅 < 𝑆] = 𝑅small ⇔ 𝑆small[𝑅 𝒮 𝑆] +

(
𝑅small ∞ 𝑆small

)
. (6.1)

In Figure 6.6 we compare the actual run time of the T2 circuits with the circuits
generated by the Oraqle compiler for a growing plaintext modulus. Our circuits
consistently outperform the T2 circuits, often by an order of magnitude, even
though these sometimes have a lower multiplicative depth. The reason is that
these circuits have a significantly higher multiplicative cost.

Figure 6.6: Arithmetization of a less-than operation in T2 and in Oraqle for 𝜗 = 1.0. In some
cases the Oraqle compiler outputs multiple circuits but they perform similarly.

6.8 Limitations
Packing and rotations would allow for the number of multiplications to be reduced.
Since we do not consider packing, we consider plaintext moduli that are not neces-
sarily NTT-friendly, which would allow constant additions and multiplications
with arbitrary vectors. This is also the reason why we currently only support code
generation for HElib: other libraries do not support plaintext moduli that are not
NTT-friendly.

The compiler does not yet take common inputs into account. E.g. when
performing multiple polynomial evaluations, we could reuse the precomputations.
The same applies to computing multiple products with the same operands.

218

The compiler also does not provide a layer of abstraction for integers (or e.g.
real numbers) that exceed the plaintext space. In this stage, the user would have to
implement this logic by hand.

We currently only perform depth-aware arithmetization on circuits with a single
output. We argue that this is mostly a practical limitation and not a theoretical
limitation.

As seen from our experiments, the cost of FHE cannot be completely described
by the multiplicative depth and cost. These merely serve as metrics. There are other
factors, such as the polynomial degree 𝑃 being a power or two of not. Moreover, it
matters how and when homomorphic encryption ‘maintenance’ operations are
placed such as relinearizations and modswitches. Some circuits are more amenable
to reducing the number of maintenance operations than others. Another example
is that multiplications at the end of the circuit become slightly cheaper to compute
as the ciphertext modulus shrinks.

6.9 Conclusion
In conclusion, while previous homomorphic encryption compilers play a crucial
role in enabling users to transition from plaintext to secure computations, they
typically only implement automatic arithmetization for Boolean circuits, or they
require large bootstrapping keys. The Oraqle compiler addresses these issues by
implementing depth-aware arithmetization for BFV/BGV-type cryptosystems with
prime plaintext moduli, allowing it to express high-level primitives as arithmetic
operations suitable for homomorphic encryption libraries. This allows one to
find more e#cient circuits than when considering depth reduction only as an
afterthought.

Future work might focus on the following enhancements:

• Incorporating SIMD, which will require handling larger plaintext modulus
for arbitrary plaintext vectors.

• Implementing multi-threading, accelerating compilation.

• Optimizing addition chain generation.

• Integrating sorting networks and other complex structures.

• Implementing early stopping, e.g. using a maximum depth.

• Extending the compiler’s capability to handle nodes with an arbitrary number
of outputs.

219

References
[ACS20] Pascal Aubry, Sergiu Carpov, and Renaud Sirdey. “Faster Homomor-

phic Encryption is not Enough: Improved Heuristic for Multiplicative
Depth Minimization of Boolean Circuits”. In: Topics in Cryptology -
CT-RSA 2020 - The Cryptographers’ Track at the RSA Conference 2020, San
Francisco, CA, USA, February 24-28, 2020, Proceedings. Ed. by Stanislaw
Jarecki. Vol. 12006. Lecture Notes in Computer Science. Springer,
2020, pp. 345–363. /)%: 10.1007/978-3-030-40186-3_15. (!&:
https://doi.org/10.1007/978-3-030-40186-3%5C_15.

[AS24] Gilles Audemard and Laurent Simon. Glucose SAT Solver. https:
//github.com/audemard/glucose. Accessed: 2024-07-27. 2024.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. “(Leveled)
fully homomorphic encryption without bootstrapping”. In: Innovations
in Theoretical Computer Science 2012, Cambridge, MA, USA, January 8-
10, 2012. Ed. by Shafi Goldwasser. ACM, 2012, pp. 309–325. /)%:
10.1145/2090236.2090262. (!&: https://doi.org/10.1145/
2090236.2090262.

[Bra12] Zvika Brakerski. “Fully Homomorphic Encryption without Modu-
lus Switching from Classical GapSVP”. In: Advances in Cryptology -
CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA,
USA, August 19-23, 2012. Proceedings. Ed. by Reihaneh Safavi-Naini and
Ran Canetti. Vol. 7417. Lecture Notes in Computer Science. Springer,
2012, pp. 868–886. /)%: 10.1007/978-3-642-32009-5_50. (!&:
https://doi.org/10.1007/978-3-642-32009-5%5C_50.

[CAS17] Sergiu Carpov, Pascal Aubry, and Renaud Sirdey. “A Multi-start
Heuristic for Multiplicative Depth Minimization of Boolean Circuits”.
In: Combinatorial Algorithms - 28th International Workshop, IWOCA 2017,
Newcastle, NSW, Australia, July 17-21, 2017, Revised Selected Papers.
Ed. by Ljiljana Brankovic, Joe Ryan, and William F. Smyth. Vol. 10765.
Lecture Notes in Computer Science. Springer, 2017, pp. 275–286. /)%:
10.1007/978-3-319-78825-8_23. (!&: https://doi.org/10.
1007/978-3-319-78825-8%5C_23.

[Chi+20] Ilaria Chillotti et al. “TFHE: Fast Fully Homomorphic Encryption Over
the Torus”. In: J. Cryptol. 33.1 (2020), pp. 34–91. /)%: 10.1007/S00145-
019-09319-X. (!&: https://doi.org/10.1007/s00145-019-09319-
x.

[Cho+21] Sangeeta Chowdhary et al. “EVA Improved: Compiler and Extension
Library for CKKS”. In: WAHC ’21: Proceedings of the 9th on Workshop
on Encrypted Computing & Applied Homomorphic Cryptography, Virtual
Event, Korea, 15 November 2021. WAHC@ACM, 2021, pp. 43–55. /)%:
10.1145/3474366.3486929. (!&: https://doi.org/10.1145/
3474366.3486929.

220

https://doi.org/10.1007/978-3-030-40186-3%5C_15
https://doi.org/10.1007/978-3-030-40186-3%5C_15
https://github.com/audemard/glucose
https://github.com/audemard/glucose
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1007/978-3-642-32009-5%5C_50
https://doi.org/10.1007/978-3-642-32009-5%5C_50
https://doi.org/10.1007/978-3-319-78825-8%5C_23
https://doi.org/10.1007/978-3-319-78825-8%5C_23
https://doi.org/10.1007/978-3-319-78825-8%5C_23
https://doi.org/10.1007/S00145-019-09319-X
https://doi.org/10.1007/S00145-019-09319-X
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1145/3474366.3486929
https://doi.org/10.1145/3474366.3486929
https://doi.org/10.1145/3474366.3486929

[Cow+21] Meghan Cowan et al. “Porcupine: a synthesizing compiler for vector-
ized homomorphic encryption”. In: PLDI ’21: 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implemen-
tation, Virtual Event, Canada, June 20-25, 2021. Ed. by Stephen N. Freund
and Eran Yahav. ACM, 2021, pp. 375–389. /)%: 10.1145/3453483.
3454050. (!&: https://doi.org/10.1145/3453483.3454050.

[FV12] Junfeng Fan and Frederik Vercauteren. “Somewhat Practical Fully
Homomorphic Encryption”. In: IACR Cryptol. ePrint Arch. (2012),
p. 144. (!&: http://eprint.iacr.org/2012/144.

[GMT23] Charles Gouert, Dimitris Mouris, and Nektarios Georgios Tsoutsos.
“SoK: New Insights into Fully Homomorphic Encryption Libraries via
Standardized Benchmarks”. In: Proc. Priv. Enhancing Technol. 2023.3
(2023), pp. 154–172. /)%: 10.56553/POPETS-2023-0075. (!&: https:
//doi.org/10.56553/popets-2023-0075.

[Goo24] Google. HEIR: A compiler for homomorphic encryption. https://github.
com/google/heir. Accessed: 2024-07-25. 2024.

[Gün+23] Mirko Günther et al. “HElium: A Language and Compiler for Fully
Homomorphic Encryption with Support for Proxy Re-Encryption”.
In: CoRR abs/2312.14250 (2023). /)%: 10.48550/ARXIV.2312.14250.
arXiv: 2312.14250. (!&: https://doi.org/10.48550/arXiv.2312.
14250.

[HS20] Shai Halevi and Victor Shoup. “Design and implementation of HElib:
a homomorphic encryption library”. In: IACR Cryptol. ePrint Arch.
(2020), p. 1481. (!&: https://eprint.iacr.org/2020/1481.

[IMM18] Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. “PySAT:
A Python Toolkit for Prototyping with SAT Oracles”. In: SAT. 2018,
pp. 428–437. /)%: 10.1007/978-3-319-94144-8_26. (!&: https:
//doi.org/10.1007/978-3-319-94144-8%5C_26.

[Lee+20] DongKwon Lee et al. “Optimizing homomorphic evaluation circuits
by program synthesis and term rewriting”. In: Proceedings of the
41st ACM SIGPLAN International Conference on Programming Language
Design and Implementation, PLDI 2020, London, UK, June 15-20, 2020. Ed.
by Alastair F. Donaldson and Emina Torlak. ACM, 2020, pp. 503–518.
/)%: 10.1145/3385412.3385996. (!&: https://doi.org/10.1145/
3385412.3385996.

[MDM14] António Morgado, Carmine Dodaro, and João Marques-Silva. “Core-
Guided MaxSAT with Soft Cardinality Constraints”. In: Principles
and Practice of Constraint Programming - 20th International Conference,
CP 2014, Lyon, France, September 8-12, 2014. Proceedings. Ed. by Barry
O’Sullivan. Vol. 8656. Lecture Notes in Computer Science. Springer,
2014, pp. 564–573. /)%: 10.1007/978-3-319-10428-7_41. (!&:
https://doi.org/10.1007/978-3-319-10428-7%5C_41.

[Mon+22] Johannes Mono et al. Finding and Evaluating Parameters for BGV. Cryp-
tology ePrint Archive, Paper 2022/706. https://eprint.iacr.org/
2022/706. 2022. (!&: https://eprint.iacr.org/2022/706.

221

https://doi.org/10.1145/3453483.3454050
https://doi.org/10.1145/3453483.3454050
https://doi.org/10.1145/3453483.3454050
http://eprint.iacr.org/2012/144
https://doi.org/10.56553/POPETS-2023-0075
https://doi.org/10.56553/popets-2023-0075
https://doi.org/10.56553/popets-2023-0075
https://github.com/google/heir
https://github.com/google/heir
https://doi.org/10.48550/ARXIV.2312.14250
https://arxiv.org/abs/2312.14250
https://doi.org/10.48550/arXiv.2312.14250
https://doi.org/10.48550/arXiv.2312.14250
https://eprint.iacr.org/2020/1481
https://doi.org/10.1007/978-3-319-94144-8%5C_26
https://doi.org/10.1007/978-3-319-94144-8%5C_26
https://doi.org/10.1007/978-3-319-94144-8%5C_26
https://doi.org/10.1145/3385412.3385996
https://doi.org/10.1145/3385412.3385996
https://doi.org/10.1145/3385412.3385996
https://doi.org/10.1007/978-3-319-10428-7%5C_41
https://doi.org/10.1007/978-3-319-10428-7%5C_41
https://eprint.iacr.org/2022/706
https://eprint.iacr.org/2022/706
https://eprint.iacr.org/2022/706

[PS73] Mike Paterson and Larry J. Stockmeyer. “On the Number of Nonscalar
Multiplications Necessary to Evaluate Polynomials”. In: SIAM J.
Comput. 2.1 (1973), pp. 60–66. /)%: 10.1137/0202007. (!&: https:
//doi.org/10.1137/0202007.

[VCE24] Jelle Vos, Mauro Conti, and Zekeriya Erkin. Depth-Aware Arithmetiza-
tion of Common Primitives in Prime Fields. Cryptology ePrint Archive.
2024. (!&: https://eprint.iacr.org/2024/1200.

[Via+23] Alexander Viand et al. “HECO: Fully Homomorphic Encryption
Compiler”. In: 32nd USENIX Security Symposium, USENIX Security
2023, Anaheim, CA, USA, August 9-11, 2023. Ed. by Joseph A. Calandrino
and Carmela Troncoso. USENIX Association, 2023, pp. 4715–4732.
(!&: https://www.usenix.org/conference/usenixsecurity23/
presentation/viand.

[VJH21] Alexander Viand, Patrick Jattke, and Anwar Hithnawi. “SoK: Fully
Homomorphic Encryption Compilers”. In: 42nd IEEE Symposium on
Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021.
IEEE, 2021, pp. 1092–1108. /)%: 10.1109/SP40001.2021.00068. (!&:
https://doi.org/10.1109/SP40001.2021.00068.

[YM24] Mingfei Yu and Giovanni De Micheli. Expediting Homomorphic Compu-
tation via Multiplicative Complexity-aware Multiplicative Depth Minimiza-
tion. Cryptology ePrint Archive, Paper 2024/1015. https://eprint.
iacr.org/2024/1015. 2024. (!&: https://eprint.iacr.org/2024/
1015.

6.A Code samples

We present several code samples used to generate these circuits.

Listing 1 A simple example of a three-input function using high-level operations.

gf = GF(31)
x = Input("x", gf)
y = Input("y", gf)
z = Input("z", gf)

comparison = x < y
equality = y == z
both = comparison & equality

circuit = Circuit([both])

222

https://doi.org/10.1137/0202007
https://doi.org/10.1137/0202007
https://doi.org/10.1137/0202007
https://eprint.iacr.org/2024/1200
https://www.usenix.org/conference/usenixsecurity23/presentation/viand
https://www.usenix.org/conference/usenixsecurity23/presentation/viand
https://doi.org/10.1109/SP40001.2021.00068
https://doi.org/10.1109/SP40001.2021.00068
https://eprint.iacr.org/2024/1015
https://eprint.iacr.org/2024/1015
https://eprint.iacr.org/2024/1015
https://eprint.iacr.org/2024/1015

Listing 2 Implementation of a comparison operation as proposed by Gouert et
al. [GMT23] in the Oraqle compiler.
gf = GF(p)
x = Input("x", gf)
y = Input("y", gf)

comparison = 0

for a in range((p + 1) // 2, p):
comparison += 1 - (x - y - a) ** (p - 1)

circuit = Circuit([comparison])

Listing 3 Implementation of an equality operation over F31.
gf = GF(31)
x = Input("x", gf)
y = Input("y", gf)

equality = x == y

circuit = Circuit([equality])
arithmetic_circuits = circuit.arithmetize_depth_aware()

223

224

Chapter 7

E#cient Circuits for Permuting and Mapping Packed
Values Across Leveled Homomorphic Ciphertexts

The oraqle compiler makes deploying homomorphic encryption easier
and more e#cient by implementing a full pipeline for generating
e#cient homomorphic encryption programs from high-level circuits.
By integrating the arithmetization techniques described in Chapter 5,
it allows exploiting the algebra of prime fields F𝑎 . Homomorphic
encryption schemes like BFV and BGV then allow one to perform
multiple evaluations of the homomorphic encryption circuit in parallel
by packing multiple such elements as ‘slots’ of a polynomial in
F𝑎[𝑉]/(𝑉𝑞 + 1).
One limitation of the compiler is that the plaintext algebra F𝑎 implies
that the circuits generated by the compiler only focus on values within
a single slot; there is no movement between slots. However, in some
cases, one might want to move elements from one slot to another, to
enable other computations. In this chapter, we propose algorithms for
automatically generating e#cient homomorphic encryption circuits
capable of performing such permutations and maps, even across
multiple BFV or BGV ciphertexts.

This chapter is an adaptation of the work with the same title published in
European Symposium on Research in Computer Security 2022, authored
by Jelle Vos, Daniël Vos, and Zekeriya Erkin. We would like to thank Neil
Yorke-Smith for his great help with our optimization algorithm.

7.1 Introduction
Nowadays, organizations use cloud providers to outsource their data processing,
easing deployment and allowing them to scale the architecture up and down
when required [Arm+10]. While these organizations typically keep sensitive
data in encrypted form at rest, they decrypt it when performing computations.
Consequently, these organizations must fully trust the cloud providers, who can
observe all sensitive data. To protect sensitive data while processing, researchers
propose secure outsourced data processing solutions, which allow cloud providers
to o"er their services on data that they cannot see. In the settings of those proposals,
organizations assume that the cloud provider performs the operations they ask
them to, thus reducing privacy risks.

One possible approach that enables cloud providers to process sensitive data
relies on fully homomorphic encryption (FHE) schemes. FHE allows anyone with

225

the correct public key to perform computations on encrypted data without seeing
it. In current schemes, one typically encrypts integers or real numbers, which can
be manipulated through addition and multiplication. A subset of FHE schemes
(such as BFV [Bra12; FV12], BGV [BGV11], and CKKS [Che+17]) allows one to
encrypt entire fixed-length vectors of integers or real numbers in one ciphertext
through ciphertext packing. A limited number of additions and multiplications
can be performed as element-wise operations between encrypted vectors, following
the concept of single-instruction multiple-data (SIMD). As a result, operating on
packed ciphertexts leads to significant speed-ups when there is a large set of data
to be processed.

A problem arises when the data stored in two encrypted vectors do not align.
For example, consider two ciphertexts that each hold a database relating to the
incomes of a set of employees. One ciphertext holds their salary sorted by their
first name, while another holds their yearly bonus sorted by their last name. An
outsourced HR system might compute each employee’s total income by adding
the two together. However, directly adding the two ciphertexts together leads to a
meaningless result. Instead, the HR system must align the data stored within one
ciphertext with the other by permuting it.

FHE schemes that support ciphertext packing implement ciphertext rotations
to allow one to align encrypted vectors. This primitive shifts the encrypted vector 𝑅
places towards the end while cycling the last 𝑅 encrypted numbers to the beginning.
However, rotations alone are not enough to perform arbitrary permutations on
encrypted vectors. Instead, it requires an intricate circuit that combines additions,
multiplications, and rotations. We call these permutation circuits. Halevi &
Shoup [HS14] conjecture that finding the optimal (i.e., fastest given a maximum
multiplicative depth) is a hard problem.

Previous work has focused on generating permutation circuits that permute
a single ciphertext. However, for applications in the real world, not all data may
be stored in the same ciphertext due to size constraints or because the data has
di"erent origins. Therefore, with the current solutions, the problem of permuting
across multiple ciphertexts requires splitting the entire permutation into multiple
within-ciphertext permutations. We highlight this problem in Figure 7.1. Solving
this problem may also lead to improvements in the circuits for other applications,
such as circuits that perform AES encryptions homomorphically.

In this work, we propose a new primitive that performs arbitrary mappings
on values in ciphertexts and does so significantly cheaper than previous work
regarding the computational e"ort required. These mappings are arbitrary in the
sense that they may span multiple ciphertexts. Unlike previous methods which
generate circuits for a chosen maximum multiplicative depth, our method focuses
on a specific class of permutation circuits with a constant multiplicative depth.
Still, we argue that our circuits’ depth is reasonable for the complexity of the
operation required. Our new primitive takes the burden o" the implementor to
create manual mapping circuits when data spans multiple ciphertexts. Its high
e#ciency brings secure outsourced computation one step closer to practice.

We summarize our contributions as follows:
• We propose a new method for e#ciently performing arbitrary mappings on

encrypted values in packed, leveled-homomorphic ciphertexts.

226

Name

Alice

Bob

Charlie

Daniel

Hannah

Salary

100

50

80

70

70

Name

Alice

Bob

Charlie

Daniel

Hannah

Bonus

10

30

20

15

20

Data is aligned and fits within
a single ciphertext

Ciphertexts can be added as is

Name

Alice

Bob

Charlie

Daniel

Hannah

Salary

100

50

80

70

70

Name

Hannah

Daniel

Bob

Alice

Charlie

Bonus

20

15

30

10

20

Data is not aligned but fits
within a single ciphertext

One ciphertext must be permuted
 [GHS12, HS14]

Name

Alice

Bob

Charlie

Daniel

Hannah

Salary

100

50

80

70

70

Name

Hannah

Daniel

Bob

Alice

Charlie

Bonus

20

15

30

10

20

Data is not aligned and
does not fit within one ciphertext

Elements must be permuted
accross ciphertexts

No permutations Ciphertext permutation Arbitrary permutation

Figure 7.1: If data is not aligned between two ciphertexts, one of the ciphertexts must be
permuted. The existing methods work when data fits within one ciphertext, but when data
spans multiple ciphertexts they must be adapted and lose performance rapidly.

• We compare an open-source implementation of our method to HElib for
performing permutations on single ciphertexts and show that it consistently
outperforms HElib for circuits of similar multiplicative depth.

• We compare our implementation to an adjusted version of HElib to perform
arbitrary permutations. We show that it outperforms HElib by more than an
order of magnitude when the data is spread among five or more ciphertexts.

The remainder of this paper is structured as follows: In Section 7.2, we shortly
explain operations in leveled homomorphic encryption, graph coloring, and the
notation we use. In Section 7.3, we discuss related work. Next, in Section 7.4, we
put forward our method for constructing mapping circuits, and in Section 7.5 we
analyze its complexity. Finally, in Section 7.6 we compare our method against that
implemented in HElib, after which we conclude in Section 7.7.

7.2 Preliminaries & Notation

In this section, we give a high-level explanation of the underlying techniques used
in this paper. Table 7.1 contains a summary of the notation that we use.

7.2.1 Permutations & Mappings
We consider permutations and mappings of elements across vectors of length 𝑄.
Here, we denote 𝑙 as the set of indices to map, which is short for the preimage. We
say that element 𝑅 ↓ 𝑙 is permuted to position𝜑(𝑅)when considering permutations,
or mapped to position 𝜛(𝑅) in the case of a mapping. Note that permutations are a
restriction of mappings.

227

Table 7.1: Summary of the symbols used in this work.

Symbol Definition
ℓ Number of slots in the ciphertext
𝑄 Total number of elements to permute

𝜑(𝑅) Target for index x after permuting
𝜛(𝑅) Targets for index x after mapping
𝑙 Set of indices to permute (preimage)
⇀ Chromatic number (minimum number of colors)

↽(_) Euler’s totient function
𝑃 Order of cyclotomic polynomial
𝑎 Prime modulus defining the message space
L Ciphertext modulus defining the ciphertext space

7.2.2 Graph Coloring
Graph coloring is one of Karp’s original 21 NP-complete problems [Kar72]. In this
problem, we are given a loopless graph 𝑧 = (M , 𝑝) where we must assign a color to
each vertex such that no two adjacent vertices share the same color. The minimum
number of colors needed to be able to properly color 𝑧 is the chromatic number
⇀. In this work, we translate the process of setting up an e#cient homomorphic
circuit for ciphertext mappings to the problem of graph coloring. While the
problem is NP-complete in general, we can practically solve our instances here
using algorithms such as DSATUR [Bré79].

7.2.3 Leveled Homomorphic Encryption Schemes
This work specifically considers leveled homomorphic encryption schemes that
support packing multiple elements into one ciphertext. Here, leveled refers to the
fact that we can only perform operations up to a certain level before decryption
is likely to fail. The level is typically indicated as the multiplicative depth of
the arithmetic circuit. The reason for this is that the ciphertexts incorporate a
small noise term that grows with each homomorphic operation. This is why
we speak of the remaining noise budget of a ciphertext, which we express as the
number of bits of the ciphertext that the growing noise can still consume before
the ciphertext is no longer decryptable. When there is a need to perform circuits of
arbitrary depth, one can use bootstrapping techniques [Gen09]. In that case, we
speak of fully homomorphic encryption. In our implementation, we only consider
the BGV [BGV11] cryptosystem implemented in HElib, without bootstrapping
operations.

One can add, multiply and rotate the values encrypted in a ciphertext. Element-
wise additions are cheap operations between two ciphertexts with only small
noise growth. In this work, we do not multiply ciphertexts together but only
multiplications with constants, which is more e#cient and incurs less noise growth.
We use these plaintext multiplications to isolate values from the ciphertext by
creating a mask that is zero everywhere except for the places with the elements we

228

Table 7.2: Comparison of permutation circuits generated by related work

Operation Compute Noise Ciphertext permutation Arbitrary
Naive HElib Ours HElib* Ours

Rotation Expensive Cheap ℓ 4 log(ℓ) ⇐ 2 log2(ℓ) 𝑍(𝑄2) 𝑍(𝑄)
Plaintext mult. Cheap Moderate ℓ 4 log(ℓ) ⇐ 2 𝑍(log3(ℓ)) 𝑍(𝑄2) 𝑍(𝑄2)
Addition Cheap Cheap ℓ 2 log(ℓ) ⇐ 1 𝑍(log3(ℓ)) 𝑍(𝑄2) 𝑍(𝑄2)
Rotation keys Severe - ℓ 2 log(ℓ) log(ℓ) 2 log(ℓ) log(ℓ)

need to isolate where it is 1. Rotations can be performed using automorphisms
on the underlying ring. In this work, we only consider the case where those
automorphisms cause one-dimensional rotations.

7.3 Related Work
To the best of our knowledge, the first work that studied permutations in leveled
homomorphic ciphertexts was the work by Gentry et al. [GHS12]. In separate
work, the same authors use it to implement an AES circuit homomorphically,
which requires shu$ing the elements within a ciphertext. Before that, Damgård et
al. [DIK10] already used the underlying techniques within the context of secure
multi-party computation to permute packed secret shares rather than ciphertexts.
The underlying technique called Bene% networks [Ben64] originates in the study of
e#cient routing networks, which send packets from a range of senders to a range
of receivers under constraints, e"ectively executing permutations.

In 2014, Halevi & Shoup [HS14] reduced the problem of constructing e#cient
permutation circuits for leveled homomorphic ciphertexts as a new problem named
the cheapest-shift-network problem. Here, a shift-network is a series of shifts
(permutations), which can be executed using additions, plaintext multiplications,
and rotations. Each next shift considers only the shift before it. Halevi & Shoup put
forward a method to e#ciently optimize the computational cost of such a circuit
given a maximum multiplicative depth, and implement it in the HElib library.1 At
the time of writing, we are not aware of other libraries that implement ciphertext
permutations.

In this work, we consider a type of circuit that not only considers the layer
before it but also any other layer before that. We also extend it beyond the range of
a single ciphertext. In this sense, it is less restricted than the method proposed
by Halevi & Shoup. However, it is an open question of how to optimize such a
circuit e#ciently, so we introduce other restrictions to turn the problem into one
of graph coloring. For example, the multiplicative depth of our circuits scales
logarithmically with the number of slots in a ciphertext. In the remainder of this
section, we go into detail about the solutions of Gentry et al. [GHS12] and Halevi
& Shoup [HS14] (summarized in Table 7.2) and explain how one can trivially but
ine#ciently extend them to perform arbitrary permutations and mappings.

1The HElib repository can be found at https://github.com/homenc/HElib

229

https://github.com/homenc/HElib

7.3.1 Naive Method for Permutations
A naive method for performing permutations within and across ciphertexts rotates
each individual element to its target index and sums up the result. As mentioned
before, elements can be isolated by multiplying them with a vector of zeroes and a 1
in the right index. This approach requires a plaintext multiplication, rotation, and
addition for each of the ℓ slots in a ciphertext when performing a permutation within
one ciphertext. Moreover, key generation will also be computationally expensive
as one has to be able to perform each possible automorphism. Alternatively,
one incurs an additional run time penalty for certain rotations by composing it
from other rotations. Note that we can omit rotations of 0 and that there are
scenarios where identical rotations can be rotated at the same time. Still, after
these optimizations, the algorithm scales with 𝑍(𝑄) in the worst case.

7.3.2 ‘Collapsed’ Bene# Networks for Permutations
Both the works by Gentry et al. [GHS12] and Halevi & Shoup [HS14] rely on Bene%
networks. Such a network has a butterfly structure, which contains 2 log(ℓ) ⇐ 1
layers in the case of a ciphertext permutation. This structure makes it a shift-
network that can be constructed e#ciently in a recursive manner for all possible
permutations. Elements are either rotated leftwards or rightwards in each layer by
a given amount.

Gentry et al. use Bene% networks without any modifications, leading to a
permutation circuit with a multiplicative depth that scales as 2 log(ℓ) ⇐ 1. Each
layer only does a power-of-two rotation, meaning that one must generate 2 log(ℓ)
rotation keys.

Halevi & Shoup modify Bene% networks into other valid shift networks by
collapsing layers to reduce the multiplicative depth of the resulting circuit. As
mentioned before, they implement this in the HElib library. In Table 7.2 we consider
the case where there is no bound to the multiplicative depth of the circuit. Since
each layer of the network requires 2 plaintext multiplications and rotations, the
total number is 4 log(ℓ) ⇐ 2 in the worst case.

7.3.3 Extending Permutation Circuits to Arbitrary Permutations
We remark that while previous works do not explicitly describe how to construct
arbitrary permutations or mappings, they can be easily extended to do so. We
shortly explain how the work Halevi & Shoup [HS14] can be extended as such
by expressing the arbitrary permutation across multiple ciphertexts as a series of
within-ciphertext permutations.

The key idea is that one can break a permutation across multiple ciphertexts
into a set of permutations from each ciphertext to every other ciphertext. A
similar trick can be used to perform mappings by first breaking it down into a
set of arbitrary permutations. In the worst case, performing permutations in this
way scales quadratically with the number of ciphertexts. When the elements are
densely packed, we need a total of

⌈
𝑄

ℓ

⌉
= 𝑍(𝑄) ciphertexts. Here we consider ℓ

to be constant. Consequently, the worst-case complexity for rotations, plaintext
multiplications, and additions alike is 𝑍(𝑄2).

230

7.4 Constructing Arbitrary Mapping Circuits

In this section, we propose our method for constructing circuits to perform arbitrary
permutations and mappings. Since the construction only has to happen once for
each permutation, it can be considered a one-time setup.

7.4.1 High-level Insight
The most time-consuming operation in a permutation circuit is a ciphertext rotation.
Therefore, it stands to reason to minimize the number of rotations. Conversely,
we want to maximize the number of elements we rotate at once. At the same
time, since we have to generate special rotation keys for every possible rotation
magnitude, we want to keep the number of di"erent rotations as low as possible.
In our method, we restrict all rotations to be powers of two. As we discuss later,
this simplification allows us to optimize our permutation circuit e#ciently. It is
also possible to restrict rotations to powers of three (or any other base), but this
requires certain rotations to be decomposed into a larger number of consecutive
power of three rotations.

Given a permutation, we construct a circuit that realizes it by decomposing
the number of places that each element must move into its binary representation.
If there is a 1 in place 𝑅 of the binary representation, we add the element to the
set of elements that must be rotated by 2𝑅 . For simplicity, let us fix the order of
rotations in the final circuit as 20 = 1, 21 = 2, 22 = 4, One can imagine this idea
as vertically-stacked conveyor belts that sequentially turn at increasing rates, as
seen in Figure 7.2. In this figure, an element (pictured as a box) starts at index 1
and must end up at index 6. To do so, it must travel 5 = 1012 places rightwards,
and therefore it enters the first and third conveyor belt, but not the second.

At first thought, the method described above seems to construct valid permuta-
tion circuits, but a problem arises when two elements must take the same place
on the same conveyor belt. In an actual arithmetic circuit, this would add up the
corresponding values of these elements, invalidating the permutation. In the right
half of Figure 7.2, we visualize this. There are two simple solutions to this problem.
Firstly, one might change the order of the conveyor belts. For example, one might
bring the third conveyor belt to the start. Another approach is to add a second
independent set of conveyor belts. In our method, we use both approaches: We
try several di"erent random orderings of conveyor belts and use a graph coloring
algorithm to distribute elements over multiple sets of conveyor belts in a way that
elements do not collide. We use the minimum number of conveyor belts given a
certain order of conveyor belts.

7.4.2 Assigning Elements to Sets of Conveyor Belts
To assign the elements to multiple sets of conveyor belts, we construct a graph
where the vertices represent elements of the encrypted vector. The edges between
them represent that the elements cannot coexist in the same conveyor belts. After
performing a graph coloring, the color of a vertex represents the set of conveyor

231

0 1 2 3 4 5 6 7

1

2

4

0 1 2 3 4 5 6 7

Figure 7.2: Elements can be mapped to other locations by applying a sequence of rotations
on them, as if on a conveyor belt. Multiple elements can exist on the same set of conveyor
belts so long as they do not enter the same conveyor belt at the same location.

belts to which it is assigned. In the remainder of this subsection, we refer to a
single conveyor belt as a rotation.

For a permutation 𝜑 with preimage 𝑙, we first create an undirected graph
𝑧𝜑 = (M , 𝑝), where 𝑝 = ∋ and M = 𝑙. Then, for each element, we compute its
position in the encrypted vector when it enters each rotation operation. If two
elements 𝑐 , 𝑑 ↓ 𝑙 where 𝑐 ε 𝑑 enter the same rotation at the same position, we
extend 𝑝 ↖ 𝑝 ↔ {𝑐 , 𝑑}. This graph satisfies the property that any valid coloring
represents a valid assignment. Figure 7.3 shows an example of such a graph and a
possible coloring.

When we move beyond a permutation to a mapping 𝜛, we must consider that
elements in the preimage may map to multiple positions in the final encrypted
vector (replication), or multiple elements in the preimage may map to the same
position (overlapping). Notice that overlapping elements do not necessarily have
to be assigned to di"erent sets of rotations and that the graph 𝑧𝜛 constructed as
described above already adequately handles such situations. The reason is that
overlapping elements in the final encrypted vector do not necessarily overlap in
the encrypted vectors to which rotations are applied. This graph also adequately
handles replications, as all outputs relating to the same input element are assigned
to the same set of rotations. This means that even in the extreme case where one
element of the input ciphertext is mapped to all positions of the output ciphertext,
we only require one set of rotations.

After generating the graph, we use a dedicated graph coloring algorithm to color
the vertices with the minimum number of colors required. In our implementation,
we use the DSATUR algorithm [Bré79], but any algorithm su#ces.

232

1 2 4 8

Finish

15 1
14 15 1 9
13 14 2

12 14 2 10
11 12 14 6

10 12
9 11 3

8 9 11 15
7 9 13 5

6 14
5 7

4 5 7 11
3 4 8 0

2 4
1 2 4 8
0 1 5 13

Start

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0 0 1

2

3

4

5

6

789

10

11

12

13

14

15

Figure 7.3: Example of the graph generated for a within-ciphertext permutation of 16 slots.
The graph contains edges between the elements that would collide with each other at
any of the rotations. This graph can be colored with two colors, but larger ciphertexts,
across-ciphertext permutations, and mappings typically require more colors.

7.4.3 Determining the Order of Conveyor Belts
In the previous subsection, we did not explain how one should choose the order of
the rotations. However, it follows that for the graph coloring to work, we require
all sets of rotations to have the same order.

One approach is to fix the rotation order for every mapping. For example,
1, 2, 4, While this ordering performs well for random permutations and
mappings, as we show in Section 7.6, one might try di"erent orderings to avoid
running into the worst-case behavior. In our implementation, we test multiple
random orderings to find the one resulting in the graph that can be colored with
the least colors. In our experiments, we compare the performance of trying only
one random ordering against trying ten random orderings, which we refer to as a
long setup.

It remains an open problem to integrate this step with the previous step to
e#ciently find an ordering that results in the minimum number of sets of rotations.

7.4.4 Generating Circuits for Conveyor Belts
Given an assignment that maps each element to a set of rotations, we construct
a separate circuit for each set. Consequently, in a multi-threaded setup, one can
execute these circuits in parallel. This subsection describes how to construct a
circuit for one set of rotations, given a specific ordering of rotations and a set of
elements that will not collide.

First, we create a set of masks for all the elements that must be included in a
single rotation. In other words, we create one mask for each of the input ciphertexts
and one mask for each of the ciphertexts resulting from all previous rotations. Such
a mask contains ones in the positions of elements that must remain and zeroes
in the positions of elements that must be dropped. We then perform a plaintext

233

multiplication between each ciphertext and the corresponding mask and sum up
the results. The result is a ciphertext containing all the relevant encrypted values,
which we subsequently rotate.

Note that there are several places where we can prune this circuit to prevent
performing meaningless computations. For example, if we do not need to consider
any values from a ciphertext, the corresponding mask would be empty (i.e., filled
with zeroes). Moreover, we do not need to perform any summations if there is
only one relevant ciphertext. We implement both of these optimizations, but we
stress that more pruning is still possible. For example, by keeping track of which
positions in each ciphertext actually contain values rather than zeroes, one can
discard multiplications that mask all values in a ciphertext.

In the worst case, an element must be shifted 11 . . . 112 = ℓ ⇐ 1 places in the
encrypted vector. The resulting circuit then has a multiplicative depth of 1 + log2 ℓ
consecutive plaintext multiplications. When it comes to the asymptotic run time,
each circuit only requires log2 ℓ rotations and, therefore, a total of𝑍(log2 ℓ)plaintext
multiplications and additions.

7.5 Performance of Special Mappings
In this section, we analyze the complexity of the circuits constructed by our method.

7.5.1 Permutations
In the case of permutations within a single ciphertext, the chromatic number ⇀
of the graph that our method constructs to assign elements to sets of rotations is
bound by log ℓ . We prove this in the following theorem:

Theorem 15. It takes at most ⇀ = 𝑓 ⇐ 1 colors to color graph 𝑧𝜑 representing the
collisions of permutation 𝜑 with preimage 𝑙.

Proof. It su#ces to show that any element 𝑅 ↓ 𝑙 can only collide with at most
log2(ℓ) ⇐ 1 other elements at one position. In that case, 𝑅 and the other elements
are all connected via an edge and must all be assigned a di"erent color. For brevity,
we denote 𝑓 = log2(ℓ).

Let us express an upper bound for the maximum number of elements at a single
position after 𝑚 rotations as a function 𝑥(𝑚). At the first rotation, the maximum
number of overlaps is 𝑥(1) = 1, because the encrypted vector has no overlaps. At
every rotation after that, the maximum number of overlaps is that of the previous
rotation, plus one element that was already in this position, so 𝑥(𝑋) = 𝑥(𝑋 ⇐ 1) + 1.
This only holds for 𝑋 = 2, . . . , 𝑓 ⇐ 1, however, because at the 𝑓th rotation, the result
must not have any overlaps given that 𝜑 is a permutation. So, 𝑥(𝑓) = 0. Our
function 𝑥 is undefined for any other values.

We reach the maximum number of overlapping elements at any rotation at
𝑥(𝑓⇐1) = 𝑓⇐1. In fact, this upper bound overestimates the number of overlapping
elements, because, after 𝑚 rotations, the overlapping elements can only move to
2𝑓⇐𝑚 remaining positions, so 𝑓 ⇐ 1 overlapping at 𝑥(𝑓 ⇐ 1) cannot satisfy a valid
permutation. ⊋

234

As a result, we require at most log(ℓ) sets of log(ℓ) rotations. Also notice that
in the case of arbitrary rotations, the number of rotations required is 𝑍(𝑄), when
ℓ is kept constant. This is because even in the worst case where each of the 𝑄

elements to be permuted is assigned to a separate set of rotations, the relation is
linear. However, this situation should be seen as an upper bound because when
the number of elements grows, the sets of rotations become more densely packed
in the average case. The number of plaintext multiplications and additions scale
quadratically with the number of rotations because before the 𝑅th rotation there
can be additions and multiplications with the prior 𝑅 ⇐ 1 resulting ciphertexts.

7.5.2 Bounded Rotation Magnitude

The number of rotations that one element occupies is exactly the number of ones
in the binary representation of the distance it must move. This number, which is
called the Hamming weight, is 1

2ℓ on average for random permutations. However,
if the distance that elements move is bound or the Hamming weight of the distances
is low, we expect to pack more elements within one set of rotations.

7.6 Results

In this section, we analyze the performance of our open-source implementation2

and compare it against HElib. To facilitate a fair comparison, we execute our
circuits with HElib’s implementation of BGV. Note, however, that any FHE library
can execute the resulting circuits with minimal engineering e"ort.

We perform three sets of experiments, which are increasingly generic. We
start by comparing the performance of permutations within a single ciphertext to
HElib. Then, we extend HElib to perform arbitrary permutations across multiple
ciphertexts and compare the implementation against our work. Finally, we analyze
the run time performance of our implementation when performing arbitrary
mappings for increasing degrees of overlapping and replication.

Table 7.3 contains the parameters we used for our experiments. We choose the
order of the cyclotomic polynomial 𝑃 = 2𝑅 for some 𝑅, following the homomorphic
encryption standard [Alb+18]. Since the number of slots ℓ = ↽(𝑃)

ord(𝑎) , we want the
plaintext modulus 𝑎 to have a low order modulo 𝑃. On the other hand, when ℓ is
large, the depth of our circuits might cause the noise in the ciphertexts to grow too
large. So, we choose the highest ℓ for which the ciphertexts are still decryptable
while selecting the lowest 𝑎 that satisfies it. We provide the number of bits in the
modulus chain log2 L, which we maximized while satisfying 128 bits of security
as specified by the homomorphic encryption standard [Alb+18].

2The repository is at DOI 10.4121/4b3dfb12-35e5-4d77-82ea-9758ac6dec18 and on GitHub

235

https://github.com/jellevos/perm_map_circuits

Table 7.3: BGV parameters used in the experiments

Order 𝑃 Modulus 𝑎 log2 L Slots ℓ HElib’s depth
Small 213 = 8192 31 111 24 = 16 4
Medium 214 = 16384 127 213 26 = 64 7
Large 215 = 32768 5119 <440 26 = 64 9

We executed all our experiments on a Unix machine with 16 virtual In-
tel® Xeon® Cascade Lake CPUs at 3100 MHz and 64 GB of memory. However,
we only executed our experiments on a single thread. While our technique would
work on any leveled homomorphic RLWE-based ciphertexts, we used the BGV
cryptosystem in our experiments. Since the actual contents of the ciphertexts do
not influence the performance in our experiments, we choose repeated encryptions
of 0, . . . , 𝑎 ⇐ 1.

7.6.1 Within-ciphertext Permutations
Since HElib’s permutation circuits aim to perform permutations on single cipher-
texts, we compare its performance with that of our method. We test performance
on the same 50 randomly-generated permutations. In Figure 7.4 we show the
mean run time to perform such a permutation, not considering the setup time,
which is considerably smaller. Notice that our method outperforms HElib in each
scenario. Moreover, while we execute the separate sets of rotations consecutively
in these experiments, one can execute them on separate threads for an even larger
speed-up. On the other hand, unlike HElib, our method does not allow the user to
specify a maximum circuit depth, so this is only a suitable alternative when the
ciphertext’s noise budget is large enough.

Figure 7.4: While our circuits are not specifically made for permutations within ciphertexts,
they outperform HElib in execution time for a similar noise budget by a factor 1.4𝒜 for large
parameters up to 2.7𝒜 for small parameters. The error bars denote the standard deviation.

In our experiments, we aimed for the remaining noise budgets between our
method and HElib’s method to be similar, as displayed in Table 7.4. To do so, we

236

set the depth bound for HElib’s permutation circuit as displayed in the rightmost
column of Table 7.3.

Table 7.4: Average remain noise budget of the resulting ciphertext expressed in bits. Here,
higher is better, but we selected the parameters for both works to perform similarly.

Small Medium Large
HElib 11.72 10.14 26.86
Ours 5.38 22.24 29.68
Ours (long setup) 5.46 22.34 29.76

7.6.2 Arbitrary Permutations
Next, we evaluate the performance when the number of ciphertexts we permute
across grows. We measure the execution time for each number of ciphertexts over
20 random permutations, disregarding our long-setup method. We present the
results in Figure 7.5. The experiment supports the worst-case complexities that
predict HElib’s method to scale quadratically and our method linearly regarding
the number of ciphertext rotations, which make up the most expensive operation.
The improvement in run time is significant, exceeding an order of magnitude
starting from as little as five ciphertexts.

Figure 7.5: Execution time for random permutations among a growing number of ciphertexts.
The experiment confirms that the execution time of HElib scales quadratically, while our
approach scales linearly. The shaded area represents the 99% confidence interval.

7.6.3 Arbitrary Mappings
Finally, we evaluate the setup and execution time required for performing arbitrary
mappings using our method. We do not consider HElib’s method for these
experiments, which is prohibitively expensive when the overlap or replication
degree exceeds 1. Our experiment considers random mappings across eight

237

ciphertexts, which we generate by creating a set of possible targets and distributing
them among the indices of each ciphertext, taking into account the overlap and
replication constraints. We present the results in Figure 7.6. In this figure, the
upper left corner is an arbitrary permutation, and the leftmost column represents
injective mappings (replications). Notice that the small and medium parameters
finish in the order of seconds, even when elements in the output are allowed
to overlap with three other elements. Also, notice that both the setup time and
execution time only significantly increase when both the overlap and replication
degree.

Figure 7.6: Total time in seconds of arbitrary mappings for increasing overlap and replication
degrees. The bold number is the execution time, while the time above is the setup time.
Notice that the times hardly increase when only one of the parameters grows and that the
setup time becomes non-negligible for higher replication and overlap degrees.

7.7 Conclusion
To the best of our knowledge, this work proposes the first e#cient method for
constructing mapping circuits across multiple ciphertexts. We experimentally
show that our method consistently outperforms the algorithm in HElib, given a
ciphertext that supports a large enough multiplicative depth.

Still, open questions remain:

1. Future work can optimize the generated circuits by pruning parts of the
circuit. For example, there is no need to isolate elements using a plaintext
multiplication when the ciphertext already only contains those elements.

2. Future work might look for an optimization algorithm that separately opti-
mizes the order of rotations.

3. In our current method, all sets of rotations contain all power-of-two rotations,
but one might construct shallower circuits by considering using only a subset
of those rotations. Such a method would require a di"erent optimization
algorithm, however.

With our new primitive, one can construct e#cient permutation circuits for
permuting elements within a single ciphertext and across multiple ciphertexts.

238

Where previous methods scale quadratically with the number of elements to
permute, our method scales linearly regarding the total number of rotations
to perform. Our method is concretely e#cient when previous work becomes
prohibitively expensive.

References
[Alb+18] Martin Albrecht et al. Homomorphic Encryption Security Standard. Tech.

rep. Toronto, Canada: HomomorphicEncryption.org, Nov. 2018.
[Arm+10] Michael Armbrust et al. “A view of cloud computing”. In: Commun.

ACM 53.4 (2010), pp. 50–58. /)%: 10.1145/1721654.1721672. (!&:
http://doi.acm.org/10.1145/1721654.1721672.

[Ben64] V. E. Bene%. “Optimal rearrangeable multistage connecting networks”.
In: The Bell System Technical Journal 43.4 (1964), pp. 1641–1656. /)%:
10.1002/j.1538-7305.1964.tb04103.x.

[BGV11] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. “Fully
Homomorphic Encryption without Bootstrapping”. In: IACR Cryptol.
ePrint Arch. (2011), p. 277. (!&: http://eprint.iacr.org/2011/277.

[Bra12] Zvika Brakerski. “Fully Homomorphic Encryption without Modu-
lus Switching from Classical GapSVP”. In: Advances in Cryptology -
CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA,
USA, August 19-23, 2012. Proceedings. Ed. by Reihaneh Safavi-Naini and
Ran Canetti. Vol. 7417. Lecture Notes in Computer Science. Springer,
2012, pp. 868–886. /)%: 10.1007/978-3-642-32009-5_50. (!&:
https://doi.org/10.1007/978-3-642-32009-5%5C_50.

[Bré79] Daniel Brélaz. “New Methods to Color the Vertices of a Graph”. In:
Commun. ACM 22.4 (Apr. 1979), pp. 251–256. %00,: 0001-0782. /)%:
10.1145/359094.359101. (!&: https://doi.org/10.1145/359094.
359101.

[Che+17] Jung Hee Cheon et al. “Homomorphic Encryption for Arithmetic
of Approximate Numbers”. In: Advances in Cryptology - ASIACRYPT
2017 - 23rd International Conference on the Theory and Applications
of Cryptology and Information Security, Hong Kong, China, December
3-7, 2017, Proceedings, Part I. Ed. by Tsuyoshi Takagi and Thomas
Peyrin. Vol. 10624. Lecture Notes in Computer Science. Springer,
2017, pp. 409–437. /)%: 10.1007/978-3-319-70694-8_15. (!&:
https://doi.org/10.1007/978-3-319-70694-8%5C_15.

[DIK10] Ivan Damgård, Yuval Ishai, and Mikkel Krøigaard. “Perfectly Secure
Multiparty Computation and the Computational Overhead of Cryp-
tography”. In: Advances in Cryptology - EUROCRYPT 2010, 29th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Monaco / French Riviera, May 30 - June 3, 2010. Proceedings.
Ed. by Henri Gilbert. Vol. 6110. Lecture Notes in Computer Science.

239

https://doi.org/10.1145/1721654.1721672
http://doi.acm.org/10.1145/1721654.1721672
https://doi.org/10.1002/j.1538-7305.1964.tb04103.x
http://eprint.iacr.org/2011/277
https://doi.org/10.1007/978-3-642-32009-5%5C_50
https://doi.org/10.1007/978-3-642-32009-5%5C_50
https://doi.org/10.1145/359094.359101
https://doi.org/10.1145/359094.359101
https://doi.org/10.1145/359094.359101
https://doi.org/10.1007/978-3-319-70694-8%5C_15
https://doi.org/10.1007/978-3-319-70694-8%5C_15

Springer, 2010, pp. 445–465. /)%: 10.1007/978-3-642-13190-5_23.
(!&: https://doi.org/10.1007/978-3-642-13190-5%5C_23.

[FV12] Junfeng Fan and Frederik Vercauteren. “Somewhat Practical Fully
Homomorphic Encryption”. In: IACR Cryptol. ePrint Arch. (2012),
p. 144. (!&: http://eprint.iacr.org/2012/144.

[Gen09] Craig Gentry. “Fully homomorphic encryption using ideal lattices”. In:
Proceedings of the 41st Annual ACM Symposium on Theory of Computing,
STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009. Ed. by Michael
Mitzenmacher. ACM, 2009, pp. 169–178. /)%: 10.1145/1536414.
1536440. (!&: https://doi.org/10.1145/1536414.1536440.

[GHS12] Craig Gentry, Shai Halevi, and Nigel P. Smart. “Fully Homomorphic
Encryption with Polylog Overhead”. In: Advances in Cryptology -
EUROCRYPT 2012 - 31st Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19,
2012. Proceedings. Ed. by David Pointcheval and Thomas Johansson.
Vol. 7237. Lecture Notes in Computer Science. Springer, 2012, pp. 465–
482. /)%: 10.1007/978-3-642-29011-4_28. (!&: https://doi.org/
10.1007/978-3-642-29011-4%5C_28.

[HS14] Shai Halevi and Victor Shoup. “Algorithms in HElib”. In: Advances
in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I. Ed. by
Juan A. Garay and Rosario Gennaro. Vol. 8616. Lecture Notes in
Computer Science. Springer, 2014, pp. 554–571. /)%: 10.1007/978-
3-662-44371-2_31. (!&: https://doi.org/10.1007/978-3-662-
44371-2%5C_31.

[Kar72] Richard M. Karp. “Reducibility Among Combinatorial Problems”. In:
Proceedings of a symposium on the Complexity of Computer Computations,
held March 20-22, 1972, at the IBM Thomas J. Watson Research Center,
Yorktown Heights, New York, USA. Ed. by Raymond E. Miller and James
W. Thatcher. The IBM Research Symposia Series. Plenum Press, New
York, 1972, pp. 85–103. /)%: 10.1007/978-1-4684-2001-2_9. (!&:
https://doi.org/10.1007/978-1-4684-2001-2%5C_9.

240

https://doi.org/10.1007/978-3-642-13190-5%5C_23
https://doi.org/10.1007/978-3-642-13190-5%5C_23
http://eprint.iacr.org/2012/144
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/978-3-642-29011-4%5C_28
https://doi.org/10.1007/978-3-642-29011-4%5C_28
https://doi.org/10.1007/978-3-642-29011-4%5C_28
https://doi.org/10.1007/978-3-662-44371-2%5C_31
https://doi.org/10.1007/978-3-662-44371-2%5C_31
https://doi.org/10.1007/978-3-662-44371-2%5C_31
https://doi.org/10.1007/978-3-662-44371-2%5C_31
https://doi.org/10.1007/978-1-4684-2001-2%5C_9
https://doi.org/10.1007/978-1-4684-2001-2%5C_9

The road ahead

Chapter 8

Oraqle Extended: Optimal Automated Protocol Design
for Homomorphic Encryption-based Multi-Party Private Set Intersections

While designing the protocols in Part A, we often wondered if it is
possible to generate these protocols automatically. After all, Chapter 1
already defines high-level constructions for MPSI protocols, and
abstractions like EMQFs as presented in Chapter 4 allow one to
construct private set operation protocols from simple building blocks.
Moreover, protocols for private set operations often use the same
arithmetization of AND and OR operations. Automatic protocol
design could perform these arithmetizations so that protocol designers
do not have to reinvent them.
In this chapter, we extend the oraqle compiler to design homomorphic
encryption-based protocols for MPSI protocols. As such, we show
how to combine insights from Parts A and B. Unlike the oraqle com-
piler, which considers somewhat homomorphic encryption, we also
consider partially homomorphic encryption, with the goal of having
the compiler automatically generate the protocol from Chapter 3.
Depending on the parameter choices, the extended oraqle compiler
can also come up with slightly more e#cient variants of this protocol
by distributing computations among the clients, while remaining in
the star topology.

This is an unpublished chapter detailing initial steps of combining the insights
and techniques that were proposed in Parts A & B.

8.1 Introduction
Designing secure computation protocols is a task reserved for experts. It re-
quires making design choices that optimize e#ciency without sacrificing security.
Moreover, since its inception, the research community has developed many new
secure computation techniques. While this large increase in secure computation
techniques allows designing more e#cient protocols than before, it also means that
there are now so many techniques to choose from that, even for experts, it is not
possible to be familiar with all of them. As a result, it remains an open problem
to design the most e#cient secure computation protocol that computes a desired
function given current secure computation techniques.

Since designing secure computation protocols is such a laborious task, it is
typically hard to tailor previously-proposed protocols to a specific computing
infrastructure. For example, the private set operation protocols proposed in

243

Chapter 3 centralize the majority of computations around a central party →1. It
would take careful analysis to design a protocol that instead distributes most of the
computations among the other parties. It raises the question whether a protocol
that performs better than another is better because it corresponds closer to the
computational infrastructure, or whether the underlying circuit or combination of
secure computation techniques achieves better performance in general.

In this chapter, we o"er an initial solution to these problems by proposing
algorithms for automatically designing secure computation protocols from high-
level descriptions. We limit the set of secure computation techniques to a subset
of homomorphic encryption schemes (see Table 8.1). After all, homomorphic
encryption is well-suited to the client-server model, as it does not require significant
involvement of the clients during the computations, and unlike in secret sharing-
based techniques, computations can be performed by a single party. Even within
this smaller set of homomorphic encryption schemes there is a wide variety of
computational properties and plaintext algebras, which allows one to design
protocols with radically di"erent performance characteristics. We note that, while
the techniques in this chapter apply to all these schemes, we leave a practical
implementation to future work.

We split the problem of automatically designing secure computation protocols
from high-level descriptions into two sub-problems:

• Expressing high-level circuits as extended arithmetic circuits: Given a
circuit containing high-level values and operations such as set representations
and intersections, we consider how an algorithm can generate an extended
arithmetic circuit that confidentially computes the high-level circuit. Next to
additions and multiplications over some plaintext algebra, these extended
arithmetic circuit enable selectively disclosing values and they incorporate
randomness. These additional operations allow them to closely model
the computational model of many secure computation techniques such as
homomorphic encryption and secret sharing [BMY24].

• Assigning & scheduling computation among the parties: Deploying these
extended arithmetic circuits requires deciding which party performs which
computations. As such, we need to assign & schedule the computations
in an extended arithmetic circuit among the parties involved in the secure
computation protocol. In other words, we transform the circuit into a protocol.
In this chapter, we show how to perform this transformation optimally with
respect to two di"erent optimization objectives.

In the remainder of this chapter we will refer to secure computation protocols as
multi-party computation protocol interchangeably. We use 𝑄 to denote the number
of parties participating in a protocol, and 𝑊 to denote the maximum number of
colluding parties that the protocol can withstand. We note that our focus on MPC
protocols does not exclude secure outsourced computation: one may model a
secure outsourced computation task by defining one party who supplies the inputs
but whose computations are infinitely expensive to compute locally.

244

Table 8.1: Non-exhaustive overview of homomorphic encryption schemes. The last column
indicates whether they can be supported in our extension of the oraqle compiler.

Technique Homomorphism Plaintext algebra Supported
+ 𝒜 𝑠 Structure

Partially-homomorphic encryption
Paillier [Pai99] ℛ 0 Z(𝑎𝑂)2 Ring !
ElGamal [Gam84] 0 ℛ Zℵ

𝑂
Group "

EC-ElGamal (see Ch. 3) ℛ 0 Z𝑂 Ring !

Somewhat-homomorphic encryption
BGN [BGN05] ℛ 1 Z𝑂 or Z𝑂𝑦

Rings "
BGV [BGV11] Exp. Poly. F𝑎[𝑉]/(𝑉𝑞 + 1) Ring !
w/ [SV14] Exp. Poly. (F𝑎)𝑖 Fields !

BFV [Bra12; FV12] Exp. Poly. F𝑎[𝑉]/(𝑉𝑞 + 1) Ring !
w/ [SV14] Exp. Poly. (F𝑎)𝑖 Fields !

CKKS [Che+17] Exp. Poly. C𝑖 Fields "

Fully-homomorphic encryption
BGV + bootstrapping ℛ ℛ F𝑎[𝑉]/(𝑉𝑞 + 1) Ring !
BFV + bootstrapping ℛ ℛ F𝑎[𝑉]/(𝑉𝑞 + 1) Ring !

8.1.1 Previous work
We briefly review other works that generate secure multi-party computation proto-
cols from high-level specifications. We also discuss how they handle assignment &
scheduling.

MPCircuits [Ria+19] is a pipeline for generating multi-party Boolean garbled
circuits from high-level descriptions. Its objective is to generate circuits with the
minimal number of non-XOR gates. In other words, it minimizes the multiplicative
size. It uses the multi-party BMR protocol [BLO16] to evaluate these circuits, which
implicitly handles assignment & scheduling: Because this work considers the
dishonest majority setting with 𝑊 = 𝑄⇐1, each party must perform all computations
and each pair of parties must communicate with each other.

Hastings et al. [Has+19] discuss several other general-purpose MPC compilers.
The tools they describe use di"erent techniques to evaluate the circuits they
generate: most tools use garbled circuits, Wysteria [RHH14] uses the GMW
protocol [GMW87] (which relies on oblivious transfers, see Section 1.3.2), and
others propose hybrid protocols, which switch between plaintext algebras or secure
computation techniques throughout the computation. For example, ABY [DSZ15]
is a compiler specifically for two-party secure computation that uses one of three
techniques: GMW using arithmetic (so relying on oblivious linear evaluation, see
Section 1.3.2), GMW using a Boolean circuit and garbled circuits. Apart from ABY,
Hastings et al. discuss three other tools that support arithmetic protocols:

• SCALE-MAMBA [Aly+25] is a compiler that relies on secret sharing and

245

implements many sub-protocols using other cryptographic primitives, such
as homomorphic encryption. It essentially hardcodes which sub-protocols to
run for each operation, but it does implement multiple low-level optimiza-
tions.

• Sharemind [BLW08] is a proprietary tool that focuses on three-party compu-
tation but it also supports a larger number of parties. The tool uses secret
sharing and is in the honest majority setting, so when there are three parties,
all parties perform the same amount of computation.

• PICCO [ZSB13] is another secret sharing-based compiler that uses di"erent
kinds of sub-protocols for operations such as floating point operations or
comparisons.

Another tool for generating secure multi-party computation protocols that was
not discussed by Hastings et al. is MPyC. This tool takes a similar approach to the
oraqle compiler, by implementing arithmetizations of several high-level primitives
instead of supporting arbitrary programs in a high-level language. In fact, these
arithmetizations also include randomness and reveal operations. MPyC considers
the honest majority setting, evaluating the circuits it generates using Shamir’s
secret sharing scheme. They evenly distribute computations over all parties by
assigning computations on the fly, keeping track which was the last party to receive
a computation.

Other works that propose techniques for generating hybrid protocols These
works go beyond arithmetic circuits with reveal and random operations because
they perform operations such as scheme switching. Because hybrid protocols are
more expressive than extended arithmetic circuits that are evaluated using a single
secure computation technique, they can be more e#cient. However, given the
larger search space, it is hard to prove optimality. These hybrid protocols lead
to particularly large e#ciency gains when performing both arithmetic on and
comparisons between large integers.

Another example of a work that generates hybrid protocols is HyCC [Büs+18],
which was not discussed by Hastings et al. This multi-party compiler shares
similarities with the ABY compiler. After splitting the high-level circuit into
modules, it generates multiple possible circuits for each module. Specifically,
it generates a Boolean circuit minimizing multiplicative size, a Boolean circuit
minimizing multiplicative depth, and an arithmetic circuit. The arithmetic circuit
is a straightforward mapping from arithmetic expressions to arithmetic circuits, so
it does not generate an arithmetic circuit for operations such as equality checks
and comparisons. HyCC also performs constant folding and no-op removal on all
circuits. While HyCC can generate hybrid protocols, it does not consider Boolean
circuits that trade o" multiplicative size and depth (only the two extremes), and
it does not consider arithmetizations of high-level operations beyond Boolean
circuits. When it comes to assignment & scheduling, HyCC employs the simple
approach of scheduling operations at the same time if they were also computed in
parallel in the high-level program. The authors explain how this typically leads to
a lower round complexity but that this method is indeed not optimal.

Finally, MP-SPDZ [Kel20] is a compiler similar to SCALE-MAMBA, but with a
many more possible protocols that can be used to evaluate the circuits. MP-SPDZ

246

approach to scheduling computations is that it schedules them as soon as possible,
but in a way that minimizes the number of rounds. By bundling computations in
rounds, one can minimize the amount of intermediate communication. In general,
MP-SPDZ does not take into account that one party may be faster at computing
some operations than others.

In short, previous work focuses on generating Boolean circuits that are typically
evaluated using secret sharing-based techniques or garbled circuits. Works that
do use arithmetic, perform a binary decomposition protocol to switch to Boolean
circuits anyways when performing complex computations such as equality checks
or comparisons, which is not always the most e#cient (see Table 6.2). In this work,
we consider arithmetic circuits, and we evaluate these circuits using homomorphic
encryption. The use of homomorphic encryption allows one to assign computations
to the party that is most e#cient at performing them. By considering arithmetic
circuits beyond Boolean circuits, we can make full use of the plaintext algebra
provided by these schemes.

8.1.2 Our solution
We solve the problem of expressing high-level circuits as extended arithmetic
circuits by extending the oraqle compiler (see Chapter 6) beyond arithmetic circuits.
We extend the compiler in three ways, allowing us to arithmetize private set
intersections and to support a wide variety of homomorphic encryption schemes
as listed in Table 8.1:

• The oraqle compiler assumes the plaintext algebra to be a prime field F𝑎 .
We implement another plaintext algebra in the form of commutative rings,
which allows the usee of homomorphic encryption schemes such as elliptic
curve-based ElGamal. Note that not all arithmetization techniques described
in Chapter 5 translate over to this algebra.

• We add extended arithmetic circuits, which besides arithmetic operations
may contain reveal and random nodes (see Section 8.2). This extension is
based on the computational model proposed by Blanton et al. [BMY24].

• We introduce new encodings for Booleans, which permit convenient conjunc-
tion operations. We use these Booleans to implement bitsets (see Chapter 1),
which, in turn, permit convenient intersections.

As such, the supported homomorphic encryption schemes listed in Table 8.1 are
schemes with a plaintext algebra satisfying the properties of a ring. Moreover,
these schemes must have a finite characteristic and the plaintext algebra must
remain the same throughout the entire computation. As a result, this chapter does
not pertain to the CKKS homomorphic encryption scheme because its plaintext
algebra has an infinite characteristic, meaning that the arithmetizations described
in this chapter do not apply. It also does not support the BGN cryptosystem
because its plaintext algebra changes throughout the computation: fresh messages
are in the ring Z𝑂 , whereas the results of multiplications are in another ring Z𝑂𝑦

. By
EC-ElGamal, we mean the cryptosystem resulting by instantiating ElGamal using

247

Circuit
description

 Extended
arithmetization

 Optimization

Our work: Oraqle extended

 Scheduling &
 assignment

Parameter
selection Implementation

Figure 8.1: Our pipeline, which separates arithmetization and scheduling & assignment.

an elliptic curve, and encoding a message 𝑃 ↓ Z𝑂 as 𝑃𝑧 where 𝑧 is a generator
point. We provide more details in Chapter 3.

We provide two solutions to the second problem of assigning & scheduling
computations that di"er in their objective. Our first solution optimizes for e#ciency
by minimizing the total cost of the protocol. The total cost is the sum of all the
tunable costs of individual operations, such as the cost of party →𝑋 computing
a multiplication, or for →𝑋 to send a value to →𝑜 . Our second solution instead
minimizes the total run time of a protocol, from the first party contributing their
inputs to the last party concluding the protocol with their outputs.

One intricacy that comes up during the assigning & scheduling phase is that
one must decide how to generate the random values required in the protocol.
While it is possible for these values to be generated by a trusted third party, this
is often undesirable. In Section 8.4 we discuss other approaches for realizing
randomness such that the value remains unknown to all possible colluding subsets
of parties.

We summarize the phases of compiling a high-level circuit into a secure
computation protocol in the pipeline diagram in Figure 8.1. Here, the optimization
phase is made up of the existing optimization methods implemented in the oraqle
compiler such as common subexpression elimination. This phase also includes the
extended arithmetic circuit-specific optimizations described in Section 8.2.3.

8.1.3 Contributions
In Section 8.5, we use a bitset-based private set intersection circuit to show that
the extended oraqle compiler can generate the handcrafted MPSI protocol from
Chapter 3 automatically. In doing so, we make the following scientific contributions:

• We provide a definition of secure encodings and propose a realization of a
Boolean encoding that permits an e#cient conjunction operation.

• We use this encoding to generate an extended arithmetic circuit from a
high-level circuit for performing set intersections.

• We propose two formulations for optimally assigning & scheduling extended
arithmetic circuits with respect to two di"erent optimization objectives.

We note that we do not parameterize and implement the resulting protocol in this
chapter. However, we can use the objective functions to quantify these protocol’s
theoretical performance.

248

8.1.4 Outline
This chapter is structured as follows. In the next section, Section 8.2, we discuss
the concept of extended arithmetic circuit and what it means for such a circuit
to be secure. After that, in Section 8.3, we define secure encodings for Booleans
and sets that allow one to conveniently compute conjunctions and intersections,
respectively. In Section 8.4, we propose methods for (optimally) transforming
extended arithmetic circuits into MPC protocols. Finally, in Section 8.5, we present
initial results, and in Section 8.6, we discuss the main findings in this chapter and
conclude with limitations and future work.

8.2 Beyond arithmetic circuits
The oraqle compiler implements arithmetization of high-level circuits to pure
arithmetic circuits: the resulting circuits only contain additions and multiplica-
tions. Arithmetic circuits describe the circuits that can be non-interactively and
deterministically computed using homomorphic encryption (ignoring automor-
phism operations). However, when secure computation may involve interaction,
it is possible for parties to reveal intermediate values. Next to that, there is no
theoretical requirement for these circuits to be deterministic. These two notions
allow for significantly more e#cient secure computation protocols than when
using pure arithmetic circuits [BMY24]. In this section, we discuss how to extend
the oraqle compiler to extended arithmetic circuits. This formalization has been
used implicitly in SCALE-MAMBA [Aly+25] and PICCO [ZSB13], and a variant
was proposed explicitly in the work by Blanton et al. [BMY24]. We present our
own version of this formalization that excludes redundant operations, and we
discuss what it means for such a circuit to be secure. Finally, we present several
simple optimizations.

8.2.1 Extended arithmetic circuits
Blanton et al.’s computational model [BMY24] of extended arithmetic circuits
contains five additional functions. The authors use the notation [𝑅] to denote a
secret share of a value 𝑅. We use this notation to also mean any type of encryption
of 𝑅. The additional functions are:

• 𝑅 ↖ Open([𝑅]) reveals the value to all parties.

• [𝑅] ↖ RandFld() generates an encryption of a random field element.

• [𝑅] ↖ RandInt(𝑈) generates an encryption of a random 𝑈-bit unsigned integer.

• 𝑤 ↖ MulPub([𝑅], [𝑆]) reveals 𝑤 = 𝑅 · 𝑆 to all parties.

• [𝑤] ↖ DotProd(([𝑅1], . . . , [𝑅ℓ]), ([𝑆1], . . . , [𝑆ℓ])) generates [∑ℓ

𝑋=1 𝑅𝑋 · 𝑆𝑋].

We define a variant of these extended arithmetic circuits that is more suited to
secure computation beyond secret sharing because it does not require revealing
values to all parties. Next to that, we reduce the set of additional nodes to two:

249

• 𝑅 ↖ Reveal𝑖([𝑅]) reveals 𝑅 to each party →𝑋 where 𝑋 ↓ 𝑖.

• [𝑅] ↖ Random𝑙() generates an encryption of a random sample from proba-
bility distribution 𝑙.

As mentioned before, the key di"erences are that Reveal only reveals to a (sub)set
of parties, whereas Open always reveals to all parties, and that our model provides
fewer functions. Specifically, randomness is now captured by a single function
parameterized by a probability distribution. Finally, we remove functions MulPub
and DotProd altogether: MulPub can be realized by a multiplication followed by
Reveal, and DotProd can be expressed using additions and multiplications.

We note that this model still restricts the enivisioned computational model.
Specifically, in several use cases it may be required to perform a re-encryption by
masking the value [𝑅], revealing it, and encrypting it again. For example, this
would allow a BGN ciphertext that was already used in a multiplication to be
multiplied again. Another example is that of a BGV or BFV ciphertext that is close
to its noise limit. By re-encrypting the value, the we obtain a fresh ciphertext
with low noise. The designer of such a protocol may not want to specify which
parties must perform this re-encryption, but only that it must occur. Ideally, the
designer specifies that the randomness can only be known to a large colluding
subset of parties, and that the party that obtains the revealed value is not part of this
colluding subset. Blanton’s model cannot express this becauseOpen([𝑅]) reveals the
value to all parties. Our model can also not express this for the case where 𝑊 < 𝑄⇐1
because Random𝑙() does not allow specifying 𝑊 and Reveal𝑖([𝑅]) requires a set 𝑖
of party indices: it is not possible to specify that 𝑋 ϖ Known(Random𝑙()) : 𝒩𝑋 ↓ 𝑖,
which states that the parties that observe the masked value may not know the
mask. Here, we use Known([𝑅]) to denote the set of parties that know plaintext
value 𝑅.

8.2.2 Security of compiled circuits
Let us use the notation of Chapter 5 to denote circuits: a circuit is a directed acyclic
graph 𝑣. We use 𝑣(𝑅1 , . . . , 𝑅𝑈) to denote the evaluation of the circuit on inputs
𝑅1 , . . . , 𝑅𝑈 , which outputs one or more values for each party (i.e. it outputs an
𝑄-tuple). We use the notation Outputs

𝑋
(𝑣(𝑅1 , . . . , 𝑅𝑈)) to specifically denote the

outputs of party →𝑋 . We say that the inputs are in some algebraic structure 𝑠

that satisfies the properties of a commutative ring or prime field. The circuit may
consist of arbitrary nodes (i.e. high-level nodes) or extended arithmetic nodes. In
this chapter, we define what it means for such a circuit to be secure in the context
of homomorphic encryption.

To define security regardless of the homomorphic encryption scheme, we focus
on the behavior of circuits in the plaintext space. We consider security of a circuit
with respect to another envisioned high-level circuit (i.e. the ideal functionality).
We first define what it means for a circuit to be perfectly correct:

Definition 11 (Perfect correctness). Let 𝑣 denote the ideal high-level circuit, and 𝑣
▽

another circuit for computing 𝑣. We say that circuit 𝑣▽ perfectly correctly evaluates
𝑣 if and only if: 𝑣(𝑅1 , . . . , 𝑅𝑈) = 𝑣

▽(𝑅1 , . . . , 𝑅𝑈) : 𝒩(𝑅1 , . . . , 𝑅𝑈) ↓ 𝑠
𝑈 .

250

In other words, circuit 𝑣
▽ is only perfectly correct with respect to 𝑣 if it is

equivalent. Next, we define confidentiality. The intuition behind this definition is
that, if you can simulate a circuits outputs from only the intended outputs and
the intended revealed intermediate values, then it reveals nothing more about the
inputs than the intended high-level circuit already would.

Definition 12 (Confidentiality). Let 𝑣 denote the ideal high-level circuit, and 𝑣
▽

another circuit for computing 𝑣. We say that circuit 𝑣▽ confidentially computes 𝑣
if and only if the following pairs of outputs are indistinguishable:

𝑖𝑋(𝑓𝑋 ,Outputs𝑋(𝑣(𝑅1 , . . . , 𝑅𝑈)))
and

Outputs
𝑋
(𝑣▽(𝑅1 , . . . , 𝑅𝑈)), 𝒩𝑋 ↓ [1, 𝑄], 𝒩(𝑅1 , . . . , 𝑅𝑈) ↓ 𝑠

𝑈
,

where 𝑖 is a simulator, which can be any e#ciently computable function, and 𝑓𝑋 is
the set of intermediate values 𝑤 ↓ 𝑣 where Known(𝑤) = →𝑋 .

We note that when a circuit is perfectly correct with respect to the envisioned
high-level circuit, it also confidentially computes that circuit. In this case, the
simulator is the identity function. A second important insight is that perfectly
correct sub-circuits can be composed into larger perfectly correct circuits. The
oraqle compiler from Chapter 6 exploits these two facts, expanding high-level
sub-circuits into perfectly correct arithmetic sub-circuits that are in turn composed
to achieve the envisioned high-level circuit. As such, the circuits generated by the
oraqle compiler achieve confidentiality.

So far, we have only considered operations in the plaintext space, but in practice
we require a protocol that computes these plaintext operations obliviously. In this
chapter, we use homomorphic encryption for this task. For IND-CPA-secure noise-
less homomorphic encryption schemes such as the Paillier cryptosystem [Pai99],
one can prove the security of such a protocol in the semi-honest model by noticing
that the following holds. for a homomorphic ciphertext operation 𝒯 that results in
plaintext operation ∝, the following are indistinguishable:

ReRand𝑈(Enc𝑈(J) 𝒯 Enc𝑈(𝑏)) and Enc𝑈(J ⇔ 𝑏) .

Here, Enc𝑈(𝑃) is the encryption of message 𝑃 under key 𝑈, and ReRand rerandom-
izes the ciphertext, for example by adding a fresh encryption of 0 in the context of
Paillier encryption. For noisy homomorphic encryption schemes such as BFV and
BGV, proving security is more complicated as such a rerandomization function
must also ensure that the noise does not reveal information about the secret key
and inputs or intermediate values. This has recently received a great deal of
attention from the scientific community, specifically in the context of achieving
IND-CPA-D security, which is an extension of the IND-CPA security game with a
restricted decryption oracle [LM21].

In the next section, we use randomness to design extended arithmetic circuits
that are not perfectly correct, but the outputs are still simulatable. But first, we
briefly discuss some extended arithmetic circuit-specific optimizations.

251

8.2.3 Optimizations
We briefly review three optimizations for extended arithmetic circuits that do not
apply to arithmetic circuits.

Firstly, one can reintroduce separate operations for the operations defined in
Blanton’s computational model [BMY24] that we omitted in our computational
model. So, one may implement a specific public-multiplication operation that
replaces a multiplication that is immediately revealed.

Another optimization is that we can fold randomness similarly to how we can
perform constant folding. For example, an addition of two random values can be
replaced by one random value, so long as the random values do not have other
dependents. When a random value has multiple dependents, replacing it would
imply a new random sample while the circuit expected the same random sample.
Because of this limitation, we cannot fold randomness in a Beaver triple [Bea91]
(J , 𝑏 , J𝑏) with J , 𝑏 ↓ 𝑠, as this would yield (J , 𝑏 , 𝑌) where 𝑌 ε J𝑏 with high
probability.

A third optimization is that one can use the property that a revealed value may
allow one to deduce the value of other intermediate values. We can then reveal
these other intermediate values as well, without leaking more information. For
example, if 𝑣(J , 𝑏) = (J + 𝑏 ,△), Known(J) = →1, and Known(𝑏) = →2, then one can
choose to reveal value 𝑏 to →1 anyways, because the value of 𝑏 is revealed by J + 𝑏

through the knowledge of J. Let 𝑣▽(J , 𝑏) = ((𝑏 , J + 𝑏),△) represent the outputs
when we choose to reveal value 𝑏. To show that this still achieves confidentiality
(see Definition 12), we can define simulators 𝑖1(J , J + 𝑏) = (J + 𝑏 ⇐ J , J + 𝑏)
and 𝑖2(△) = △. Choudhary et al. [Cho+23] use this concept in the context of
defending against speculative execution attacks by deciding what values do not
need protecting. They refer to these values as the ‘knowledge frontier’. We argue
that a similar pass can be implemented to identify revealable intermediate values.

8.3 Encoding Booleans & sets

In the oraqle compiler, all plaintexts are elements of F𝑎 , and Booleans are repre-
sented as the additive identity 0 or the multiplicative identity 1. In this section, we
extend the compiler with other secure encodings for Booleans that use the full set
of possible elements. For the sake of generality, we also extend the compiler to
support di"erent algebras 𝑠. Specifically, in this section, we require that 𝑠 at least
satisfies the properties of a commutative ring. This allows us to use EC-ElGamal
in Section 8.5 to evaluate resulting circuits.

8.3.1 Definition of secure encodings
In the previous section, we defined the security of compiled circuits. Specifically,
we gave a simulation-based definition for when one circuit is said to compute
another envisioned circuit confidentially. We now use this definition to define
security for encodings. We focus on Boolean encodings but we claim that the
definitions can be extended to other types as well.

252

A Boolean encoding is defined by an invertible map ↽ : {0, 1} ∈′ 𝑠 and at least
one function 𝐿

▽ over encoded elements that applies 𝐿 on non-encoded elements.
The idea is that such an encoding makes this computation 𝐿 more convenient
than when using a naive encoding. At the same time, they should not reveal
information about the inputs of 𝐿 ▽ that could not be derived from the output(s) of 𝐿 .
In Chapter 1 we studied such encodings in the context of private set intersections
under the name private homomorphic set representations. We define correctness as
follows:
Definition 13 (Encoding correctness). An operation 𝐿

▽ inputting elements encoded
by ↽in and outputting elements encoded by ↽out correctly realizes function 𝐿

if there is no polynomial-time algorithm ℬ that can distinguish the following
distributions with non-negligible advantage:

↽⇐1
out(𝐿 ▽(↽in(𝑅1), . . . , ↽in(𝑅𝑄))) and 𝐿 (𝑅1 , . . . , 𝑅𝑄) .

Similarly to the previous section, we use a simulation-based notion of confi-
dentiality. In this definition, we do not require the inverse map to be applied after
computing the homomorphism 𝐿

▽; the idea being that, if 𝐿 is the last operation in
the circuit, this decoding operation can be performed in plaintext after performing
the rest of the circuit using homomorphic encryption. We do not consider Reveal.
Definition 14 (Encoding confidentiality). An operation 𝐿

▽ inputting elements
encoded by ↽ is confidential w.r.t. function 𝐿 if there is no polynomial-time
algorithm ℬ that can distinguish the following distributions with non-negligible
advantage:

𝑖(𝐿 (𝑅1 , . . . , 𝑅𝑄)) and 𝐿
▽(↽(𝑅1), . . . , ↽(𝑅𝑄)) .

When an encoding is correct, applying the decoding operation during the
circuit (e.g., by arithmetizing it and using homomorphic encryption) or after
decryption leads to the correct output(s) of the circuit. If the encoding also
satisfies confidentiality, then the resulting circuit also confidentially computes the
envisioned circuit as defined in Definition 12.

8.3.2 The negated reduced & unreduced Boolean encodings
We now formalize the negated Boolean encodings that have been implicitly used
in many private set intersection protocols (see Chapters 1, 3, and 4) to conveniently
compute the set intersection. These encodings exploit the fact that the sum of
𝑈 < char(𝑠) Boolean variables {0, 1} ↓ 𝑠 is 0 if and only if all variables were 0.
Specifically, we define two encodings. The first encoding is the negated reduced
Boolean encoding, which defines the following map that negates a Boolean and
lifts it to 𝑠:

↽¬red (𝑅) =
{

1 If 𝑅 = 0
0 If 𝑅 = 1

↓ 𝑠 .

The second encoding is the negated unreduced Boolean encoding, which defines
the following inverse map:

↽⇐1
¬unr

(
𝑆

)
=

{
1 If 𝑆 = 0
0 Otherwise

↓ {0, 1} .

253

We define the following homomorphic operation 𝐿
▽ on 𝑈 < char(𝑠) negated

reduced Booleans, which outputs a negated unreduced Boolean. Function 𝐿
▽

achieves an encoding representing the conjunction of the input Boolean:

𝐿
▽(𝑆1 , . . . , 𝑆𝑈) = 𝑚

𝑈∑
𝑋=1

𝑆𝑋 ,

𝐿 (𝑅1 , . . . , 𝑅𝑈) =
𝑈∧

𝑋=1
𝑅𝑋 = ↽⇐1

¬unr
(
𝐿
▽(↽¬red (𝑅1) , . . . , ↽¬red (𝑅𝑈))

)
.

Here, 𝑚 ↓ 𝑠
ℵ denotes a uniformly random unit of 𝑠 that must remain unknown

to any colluding subset of parties. In other words, 𝑚 is represented by the node
Random

Q[𝑠ℵ], where we use Q[𝑠ℵ] to denote the uniform distribution over 𝑠ℵ. It is
crucial here that 𝑚 is a unit so that it does not send the sum

∑
𝑈

𝑋=1 to 0.
We provide a short proof of correctness and confidentiality for computing the

conjunction using this encoding.

Lemma 16. Function 𝐿
▽ correctly computes the conjunction.

Proof. If 𝑅𝑋 = 1 for all 𝑋 = 1, . . . , 𝑈, then 𝑆𝑋 = ↽¬red (𝑅𝑋) = 0 and 𝑚

∑
𝑈

𝑋=1 𝑆𝑋 = 0. We get
that ↽⇐1

¬unr (0) = 1, which is correct. In all other cases, we have that
∑

𝑈

𝑋=1 𝑆𝑋 ↓ 𝑠 \ {0}
because 𝑆𝑋 ↓ {0, 1} and 𝑈 < char(𝑠), so by the definition of the characteristic, the
sum cannot ‘wrap around the modulus’. Since 𝑚 ↓ 𝑠

ℵ, it cannot send the output
of the sum to zero. In other words, 𝑚

∑
𝑈

𝑋=1 𝑆𝑋 ↓ 𝑠 \ {0} and by the definition of
↽⇐1
¬unr

(
𝑆

)
the output is 0, which is correct. ⊋

Lemma 17. Function 𝐿
▽ confidentially computes the conjunction.

Proof. We define the following simulator 𝑖 and show how its output is identically
distributed to the output of 𝐿

▽(𝑆1 , . . . , 𝑆𝑈):

𝑖

(
𝑈∧

𝑋=1
𝑅𝑋

)
= 𝑚

▽ · ¬
𝑈∧

𝑋=1
𝑅𝑋 = 𝑚

▽
𝑈∨

𝑋=1
𝑆𝑋 = 𝑚

▽
𝑤

𝑈∑
𝑋=1

𝑆𝑋 ,

where 𝑚
▽ ↓ 𝑠

ℵ, is a random unit. Now, there are two cases:

•
∑

𝑈

𝑋=1 𝑆𝑋 = 0, so
∨

𝑈

𝑋=1 𝑆𝑋 = 0 and 𝑤 and 𝑚
▽ can take any value for the result to be

correct.

•
∑

𝑈

𝑋=1 𝑆𝑋 ε 0, so
∨

𝑈

𝑋=1 𝑆𝑋 = 1 and 𝑤 = (∑𝑈

𝑋=1 𝑆𝑋)⇐1 ↓ 𝑠
ℵ. Since 𝑚

▽
𝑤 is a random

unit in 𝑠
ℵ, it is statistically indistinguishable from 𝑚. ⊋

Note that by applying DeMorgan’s law, so by negating the inputs and the
output, we can define similar encodings that permit a convenient function for
computing the disjunction.

254

8.3.3 Boolean-based set encodings
We briefly discuss Boolean-based set encodings, which may use the encodings
described above to encode and intersect sets. Of these three encodings, we
implement bitsets and present our initial results in Section 8.5. The bitset encoding
allows us to compile a protocol that is essentially the same as the handcrafted
bitset-based MPSI presented in Chapter 3.

Bitset

The bitset encoding maps a set to a vector of Booleans that has the length of the
universal set ↘ . Specifically, each Boolean pertains to a specific element in the
universe, and it is set to 1 if the element is contained in the set. Intersections
are then straightforward to compute by performing an AND operation between
each corresponding bit between multiple bitsets. In Section 1.4.1, we explain
the operation in more detail and we explain how this intersection does not leak
information about the elements outside of the intersection.

Bloom filter

In Chapter 2, we show that for a Bloom filter-based (M)PSI protocol to be secure, it
must have a negligible false positive rate. A low false positive rate also implies a
secure encoding according to the definitions in this chapter, because the Bloom
filter representing the intersection equals the Bloom filter after aggregation with
high probability. That said, when the false positive rate is set appropriately,
this encoding can still be used to compute intersections by computing an AND
operation between each corresponding bit between multiple Bloom filters. We
describe the high-level structure of such an intersection in Section 1.4.2.

EMQF

The output of an EMQF, as defined in Chapter 4, is a negated unreduced Boolean.
By following the high-level construction described in Section 1.4.3, one can also
implement intersections on EMQFs using an AND operation.

8.4 Assignment and scheduling
The methods described in the previous section can be used to generate extended
arithmetic circuits that compute a desired high-level circuit. These circuits dictate
how to compute the high-level circuit, but not who performs the computations. In
this section, we propose techniques for distributing these computations among the
involved parties. In other words, we transform the circuit representation into a
protocol. We first discuss how to realize the randomness introduced in extended
arithmetic circuits. After that, we put forward two formulations for (optimally)
assigning and scheduling computations among the parties. The first formulation is
a MaxSAT formulation that minimizes the total cost of the protocols as measured
by the individual cost of each operation. The second is a MILP formulation that
minimizes the total run time.

255

8.4.1 Realizing randomness
Before we can assign computations to the involved parties, we must define how
one can obtain the random samples required in an extended arithmetic circuit. The
goal of this step is to reduce the extended arithmetic circuit to one that is realizable
under the current security assumptions. Depending on those assumptions, this
task can be trivial or not. For example, in the precomputation model with a trusted
third party, all randomness can be pre-generated by the trusted third party and
provided as encryptions. In fact, such a trusted third party can even pre-generate
correlated randomness that may occur in extended arithmetic circuits such as
Beaver triples [Bea91], or more generically, arithmetic tuples [Rei+22]. On the
other hand, if no trusted third party and precomputations are allowed, realizing a
complex random sample such as Random𝒰(0,𝜗)(), where 𝒰(0, 𝜗2) is the discretized
Gaussian distribution with standard deviation 𝜗, is a complicated task.

In this chapter, we do not rely on arbitrary precomputations. Instead, match
the assumptions and security properties of the protocols proposed in Chapter 3:

• All computations happen during the protocol.

• There is no trusted third party.

• The collusion threshold is maximal: 𝑊 = 𝑄 ⇐ 1.

• Communication happens strictly in the star topology.

• We do not assume homomorphic multiplications.

Since our goal is to provide initial results, we do not consider realizing arbitrary
probability distributions. In the context set intersections based on the encodings
proposed in Section 8.3, we are only interested in how to generate uniform samples
from 𝑠. We briefly discuss three methods of realizing such a sample Random

Q[𝑠]()
and we consider how these samples may be multiplied with an encrypted value 𝑑:

1. If we can perform an arbitrary number of additions and multiplications, we
can evaluate pseudo-random number generator prng that outputs elements
in 𝑠 under encryption. As such, one can realize a collusion-resistant random
sample by having each of 𝑊 + 1 parties contribute an encrypted random seed.
If 𝑇𝑋 is the seed of party →𝑋 , the resulting sample is the sum of prng(𝑇𝑋). The
seeds can be reused for many computations, as long as prng changes at every
occasion. Since we can perform an arbitrary number of multiplications, we
can homomorphically multiply the resulting sample with 𝑑.

2. If we can only perform few multiplications, we can instead have 𝑊 + 1 parties
contribute random samples in 𝑠. Let 𝑚𝑋 denote the random sample of →𝑋 .
Then, we can compute the resulting sample as the sum

∑
𝑋↓𝑦 𝑚𝑋 , where 𝑦 is the

set of 𝑊 + 1 parties. We can homomorphically multiply this sample with 𝑑.

3. If we cannot perform any multiplications, then we must change the second
approach. Instead of computing 𝑑 · ∑

𝑋↓𝑦 𝑚𝑋 , we can distribute the product
such that the multiplications with 𝑑 become scalar multiplications:

∑
𝑋↓𝑦 𝑑 · 𝑚𝑋 .

As such, the multiplications can be computed using repeated additions. This
requires that 𝑚𝑋 ↓ Z.

256

Since we do not assume homomorphic multiplications, we implement the third
method. This allows us to use EC-ElGamal to evaluate the protocol.

Note that the method described above realizes uniform samples on the entire
set 𝑠, but in the encodings presented in Section 8.3, we required samples in 𝑠

ℵ.
However, notice that for some 𝑠, these distributions are almost exactly the same.
Specifically, for some rings, such as 𝑠 = Z𝑎 where 𝑎 is a large prime, we have that
𝑠
ℵ is practically the entire set 𝑠. A sample Random

Q[Z𝑎]() from the entire set is only
distinguishable from a sample Random

Q[Zℵ
𝑎
]() of its units if the outcome is the zero

element. This occurs with probability 𝑎
⇐1. As such, the above method is su#cient

to realize the randomness required in the set encodings that we use in this chapter.

8.4.2 Optimizing for e!ciency
One optimization objective in secure computation can be to minimize the total cost
of all computation and communication. For example, one might consider the cost
of running a cloud service, in which computation and communication translates
to a monetary value. Another example is that of minimizing the power consumed
by the protocol. In this case, we are optimizing for sustainability.

What is interesting about this objective is that if idling is considered free, then
we can ignore the concept of time: it does not matter when an operation is computed
or a message is sent or received. Instead, it matters who does what. As a result, we
can formalize the problem using only Boolean variables, which leads to a natural
MaxSAT formulation.

Our formalization of this optimization problem is as follows. Let Nodes denote
the set of all operations (nodes) in the circuit. We use (K,→𝑋) ↓ Inputs and
(K,→𝑋) ↓ Outputs to specify the set of pairs describing which party →𝑋 should input
or output K, respectively. We define the following variables:

• 𝑗𝑋 ,K is a Boolean indicating whether →𝑋 has an encryption of K.

• 𝑌𝑋 ,K is a Boolean indicating whether →𝑋 computes K.

• 𝑇𝑋 ,K, 𝑜 is a Boolean indicating whether →𝑋 sends K to →𝑜 .

We add the following constraints to this formulation:

C1. At the end of the protocol, →𝑋 must have an encryption of each of its outputs.

C2. In order to have an encryption of the result of node K, →𝑋 must compute it or
receive it from another party.

C3. In order to compute node K, →𝑋 must have an encryption of its operands.

C4. In order to send an encryption of K to →𝑜 , →𝑋 must have it.

C5. An encryption of K can only be sent in one direction between two parties.

It may seem that this last constraint is merely a cut, but this is not true. Because this
formulation does not consider the concept of time, it is perfectly possible for two
parties to obtain an encryption of K from each other ‘at the same time’, allowing
them to send it to the other. The last constraint disallows such a paradox.

257

Our MaxSAT formulation is as follows:
Hard clauses:

C1 (𝑗𝑋 ,K), 𝒩(K,→𝑋) ↓ Outputs

C2 DE
F
¬𝑗𝑋 ,K ℋ 𝑌𝑋 ,K ℋ

𝑋⇐1∨
𝑜=1

𝑇𝑜 ,K,𝑋 ℋ
𝑄∨

𝑜=𝑋+1
𝑇𝑜 ,K,𝑋

GH
I
, 𝒩K ↓ Nodes, 𝒩𝑋 ↓ [1, 𝑄] : (K,→𝑋) ϖ Inputs

C3 (¬𝑌𝑋 ,K ℋ 𝑗𝑋 ,𝑉), 𝒩𝑋 ↓ [1, 𝑄], 𝒩K ↓ Nodes : K = 𝑉 ∝ N

C3 (¬𝑌𝑋 ,K ℋ 𝑗𝑋 ,N), 𝒩𝑋 ↓ [1, 𝑄], 𝒩K ↓ Nodes : K = 𝑉 ∝ N

C3 (¬𝑌𝑋 ,K ℋ 𝑗𝑋 ,𝑉), 𝒩𝑋 ↓ [1, 𝑄], 𝒩K ↓ Nodes : K = 𝑌 ∝ 𝑉

C4 (¬𝑇𝑋 ,K, 𝑜 ℋ 𝑗𝑋 ,K), 𝒩𝑋 , 𝑜 ↓ [1, 𝑄] : 𝑋 ε 𝑜 , 𝒩K ↓ Nodes
C5 (¬𝑇𝑋 ,K, 𝑜 ℋ ¬𝑇𝑜 ,K,𝑋). 𝒩𝑋 , 𝑜 ↓ [1, 𝑄] : 𝑋 ε 𝑜 , 𝒩K ↓ Nodes

Here, we use K = 𝑉 ∝ N to denote any addition or multiplication between 𝑉 and
N, and K = 𝑌 ∝ 𝑉 represents a scalar addition or multiplication.

Additionally, we add a cut to discard a large amount of suboptimal solutions in
which a party →𝑋 obtains an encryption of K in multiple di"erent ways, whereas
one is su#cient. For example, when 𝑇𝑋 ,K, 𝑜 = 1 (for some 𝑜 ε 𝑋) and 𝑌𝑋 ,K = 1. The cut
is to enforce the following constraint:

Cut 𝑌𝑋 ,K +
𝑋⇐1∑
𝑜=1

𝑇𝑜 ,K,𝑋 +
𝑄∑

𝑜=𝑋+1
𝑇𝑜 ,K,𝑋 ≃ 1, 𝒩𝑋 , 𝑜 ↓ [1, 𝑄] : 𝑋 ε 𝑜 , 𝒩K ↓ Nodes .

A simple way to encode such an at-most-1 constraint
∑

𝑋
𝑅𝑋 ≃ 1 is as pairwise

clauses containing all combinations of the sum (¬𝑅1 ,¬𝑅2), (¬𝑅1 ,¬𝑅3), (¬𝑅2 ,¬𝑅3),
and so forth. Other methods exist, such as the ladder approach by Gent &
Nightingale [GN04], which may have more favorable optimization properties.

Next, we define the three functions to describe the individual costs of operations,
which allows us to formulate the objective as a set of soft clauses. We use the
function Compute(𝑋 , K) to denote the cost of →𝑋 computing operation K, and
functions Send(𝑋 , 𝑜) and Receive(𝑋 , 𝑜) to describe the costs of party →𝑋 sending or
receiving a message to/from →𝑜 . The objective of the MaxSAT formulation is as
follows:
Soft clauses:

weight: Compute(𝑋 , K) (¬𝑌𝑋 ,K), 𝒩𝑋 ↓ [1, 𝑄], 𝒩K ↓ Nodes
weight: Send(𝑋 , 𝑜) (¬𝑇𝑋 ,K, 𝑜), 𝒩𝑋 , 𝑜 ↓ [1, 𝑄] s.t. 𝑋 ε 𝑜 , 𝒩K ↓ Nodes

weight: Receive(𝑋 , 𝑜) (¬𝑇𝑜 ,K,𝑋). 𝒩𝑋 , 𝑜 ↓ [1, 𝑄] s.t. 𝑋 ε 𝑜 , 𝒩K ↓ Nodes

We note that some variables and clauses can be removed. For example, if a
certain operation K is uncomputable by →𝑋 , such as a homomorphic multiplication
in the case of additively homomorphic encryption, one can set 𝑌𝑋 ,K = 0 and change
the clauses accordingly. The same holds for communication lines that cannot be
realized in practice, such as in a star topology.

258

8.4.3 Optimizing for run time
Another common objective for secure computation protocols is to minimize their
run time, from the moment the parties provide their inputs until the moment that
the last party receives their output. Unfortunately, this objective cannot e#ciently
be captured by extending our MaxSAT formulation, because it requires additional
variables that track time, which are ine#cient to express using Booleans. Instead,
we provide a MILP formulation that implements the same constraints as the
MaxSAT formulation, while keeping track of time using continuous variables.

One challenge in designing a MILP formulation that minimizes run time, is that
some of the required additional constraints are conditional with respect to some of
the Boolean variables. For example, the time at which a party has an encryption of
the result of operation K depends on its origin. If the party computes it, it depends
on the time at which it has encryptions of all required operands. Alternatively, if it
obtains the result of K by communicating with another party, it depends on the
time at which the other party has such an encryption. The straightforward way of
encoding these constraints would lead to a quadratically-constrained mixed-integer
program, which cannot be optimized by a MILP solver. Instead, we encode these
constraints using big-M constraints, allowing for linear constraints.

We note that the objective we use is still a simplified model of the real world.
For example, while the objective captures that computations can only start when
all their operands are available, it does not model that one party may not complete
multiple computations at the same time. In other words, the objective assumes
that each party has an infinite number of concurrent threads. When it comes to
communication, the objective also does not provide a completely accurate model
of the real world. Specifically, it only takes into account a fixed latency modeled by
a function Latency(𝑋 , 𝑜), which is the time it takes for a message from party →𝑋 to
reach →𝑜 . It does not consider throughput or bandwidth limits, thereby ignoring
the actual number of bytes that a ciphertext contains.

Our MILP formulation is essentially an extension of our MaxSAT formulation
with more variables and constraints. Next to the Boolean variables defined in our
MaxSAT formulation, our MILP formulation define a set of continuous variables
𝑊K,𝑋 ∀ 0, which represent the time since the start of the protocol at which K is
known to party →𝑋 . Another continuous variable 𝑊 represents the time for the entire
protocol to finish. We add the following additional constraints to this formulation:

C7. The time it takes for →𝑋 to compute K is at least as long as the time it takes to
obtain its operands plus Compute(𝑋 , K).

C6. The time it takes for →𝑋 to receive K from →𝑜 is at least as long as the time it
takes for →𝑜 to obtain K plus Latency(𝑜 , 𝑋).

C8. The time it takes to finish the protocol 𝑊 is at least as long as the time it takes
to obtain its outputs 𝑊𝑋 ,K for (K,→𝑋) ↓ Inputs.

Finally, to ensure that our MILP formulation can find the optimal solution, we
must ensure that our big-M constraints are valid. The big-M constraints ensure
that constraint C6 is only enforced when the value is actually computed, and that
C7 is only enforced when a value has been sent. If a message is not computed or

259

sent, we subtract 𝑥 from the time at which the value becomes available. As such,
we want 𝑥 to be as least as large as the run time of the optimal protocol. One way
to choose this value is to compute the run time of any naive protocol. For example,
in the case of fully homomorphic encryption, one may assign all computations to
the party that performs computations the fastest. Our formulation is as follows:

Minimize 𝑊 such that:
𝑗𝑋 ,K , 𝑌𝑋 ,K ↓ {0, 1}

𝑇𝑋 ,K, 𝑜 ↓ {0, 1}
𝑊𝑋 ,K ↓ R+

𝑊 ↓ R+

C1 𝑗𝑋 ,K = 1 𝒩(K,→𝑋) ↓ Outputs
C2 𝑌𝑋 ,K +∑

𝑋⇐1
𝑜=1 𝑇𝑜 ,K,𝑋 +

∑
𝑄

𝑜=𝑋+1 𝑇𝑋 ,K, 𝑜 ∀ 𝑗𝑋 ,K 𝒩K ↓ Nodes, 𝒩𝑋 ↓ [1, 𝑄] : (K,→𝑋) ϖ Inputs
C3 𝑌𝑋 ,K ≃ 𝑗𝑋 ,𝑉 𝒩𝑋 ↓ [1, 𝑄], 𝒩K ↓ Nodes : K = 𝑉 ∝ N

C3 𝑌𝑋 ,K ≃ 𝑗𝑋 ,N 𝒩𝑋 ↓ [1, 𝑄], 𝒩K ↓ Nodes : K = 𝑉 ∝ N

C3 𝑌𝑋 ,K ≃ 𝑗𝑋 ,𝑉 𝒩𝑋 ↓ [1, 𝑄], 𝒩K ↓ Nodes : K = 𝑌 ∝ 𝑉

C4 𝑇𝑋 ,K, 𝑜 ≃ 𝑗𝑋 ,K 𝒩𝑋 , 𝑜 ↓ [1, 𝑄] : 𝑋 ε 𝑜 , 𝒩K ↓ Nodes
C5 𝑇𝑋 ,K, 𝑜 + 𝑇𝑜 ,K,𝑋 ≃ 1 𝒩𝑋 , 𝑜 ↓ [1, 𝑄] : 𝑋 ε 𝑜 , 𝒩K ↓ Nodes

Cut 𝑌𝑋 ,K +∑
𝑋⇐1
𝑜=1 𝑇𝑜 ,K,𝑋 +

∑
𝑄

𝑜=𝑋+1 𝑇𝑋 ,K, 𝑜 ≃ 1 𝒩𝑋 , 𝑜 ↓ [1, 𝑄] : 𝑋 ε 𝑜 , 𝒩K ↓ Nodes
C6 𝑊𝑋 ,𝑉 + Compute(𝑋 , K) ⇐ (¬𝑌𝑋 ,K) · 𝑥 ≃ 𝑊𝑋 ,K 𝒩𝑋 ↓ [1, 𝑄], 𝒩K ↓ Nodes : K = 𝑉 ∝ N

C6 𝑊𝑋 ,N + Compute(𝑋 , K) ⇐ (¬𝑌𝑋 ,K) · 𝑥 ≃ 𝑊𝑋 ,K 𝒩𝑋 ↓ [1, 𝑄], 𝒩K ↓ Nodes : K = 𝑉 ∝ N

C6 𝑊𝑋 ,𝑉 + Compute(𝑋 , K) ⇐ (¬𝑌𝑋 ,K) · 𝑥 ≃ 𝑊𝑋 ,K 𝒩𝑋 ↓ [1, 𝑄], 𝒩K ↓ Nodes : K = 𝑌 ∝ 𝑉

C7 𝑊𝑜 ,K + Latency(𝑜 , 𝑋) ⇐ (¬𝑇𝑜 ,K,𝑋) · 𝑥 ≃ 𝑊𝑋 ,K 𝒩𝑋 , 𝑜 ↓ [1, 𝑄] : 𝑋 ε 𝑜 , 𝒩K ↓ Nodes
C8 𝑊 ∀ 𝑊𝑋 ,K 𝒩(K,→𝑋) ↓ Outputs

8.5 Initial results
We present initial results that demonstrate that the extended oraqle compiler can
automatically design a protocol that is essentially the bitset-based MPSI presented in
Chapter 3. To obtain these results, we implemented the Boolean encodings and the
bitset representation as explained in Section 8.3. We also implemented the method
for realizing randomness that does not require homomorphic multiplications and
the MaxSAT formulation for scheduling & assigning operations in the circuit, as
presented in the previous section. In this section, we first explain how the compiler
transforms a high-level set intersection circuit into an extended arithmetic circuit.
After that, we present two protocols designed by the compiler. The first protocol is
essentially Protocol 3 from Chapter 3. The second protocol is a variant designed
for the scenario in which the leader’s computations are an order of magnitude
more expensive than those of other parties.

8.5.1 From a bitset intersection to an extended arithmetic circuit
We specify the high-level circuit of an MPSI protocol by its definition 𝐿 (𝑉1 , . . . ,𝑉𝑄) =
𝑉1 ↑ · · · ↑𝑉𝑄 with ↘ = {1, . . . , 10}. We must also define knowledge: Known(𝑉𝑋) =
{𝑋} implies that input sets are only known by their respective party, andKnown(𝑉1↑
· · · ↑ 𝑉𝑄) = {1} marks that only the leader, party →1, obtains the output. Finally,

260

we must choose the plaintext algebra. Since we want to use elliptic curve-based
ElGamal (EC-ElGamal, in Table 8.1), we specify it to be the ring of integers modulo
𝑂, where 𝑂 is the order of the prime-order elliptic curve that we also used in
Chapter 3. Compilation then happens in the following steps:

1. The only set encoding we implemented is the bitset encoding, so we encode
the inputs as such: 𝑉1 ↑ · · · ↑ 𝑉𝑄 = Bitset(𝑉1) ↑ · · · ↑ Bitset(𝑉𝑄).

2. Extended arithmetization of the bitset intersection is simply the bit-wise
conjunction of the bit vectors: Bitset(𝑉1)↑ · · ·↑Bitset(𝑉𝑄) = Bitset(𝑉1)∞ · · ·∞
Bitset(𝑉𝑄).

3. The compiler performs extended arithmetization of the conjunctions. It tries
all the possible Boolean encodings and chooses the circuit with the lowest
number of multiplications. Currently, it has two Boolean encodings that
support conjunctions:

• The compiler encodes the Booleans as reduced Booleans and applies
the arithmetization of AND operations as described in Chapter 5. This
leads to a circuit with multiplications, as these pure arithmetic circuits
do not contain randomness.

• The compiler then encodes the Booleans as reduced negated Booleans
and applies the extended arithmetization of the conjunction as described
in Section 8.3. This leads to a circuit without multiplications.

It chooses the second encoding of negated reduced Booleans.

The result of this compilation stage is an extended arithmetic circuit with |↘ |
outputs; one bit for each element in the universal set. Each bit is computed in the
same way, using the conjunction operation as defiend in Section 8.3.

8.5.2 From the extended arithmetic circuit to an MPSI protocol
In the next stage, assignment & scheduling, the user must specify some high-level
properties of the homomorphic encryption scheme. Specifically, it must indicate
how many homomorphic multiplications the cryptosystem supports. The user
must also specify the computational and communication characteristics of the
entire set of parties, so as to parameterize the objective function. In doing so, the
user also specifies the number of parties 𝑄, and the collusion threshold 𝑊. In our
implementation, we only support 𝑄 = 𝑊 ⇐ 1.

We specify the following parameters to be in line with the protocols presented
in Chapter 3: Since we want to use EC-ElGamal, we indicate that the cryptosystem
does not support any multiplications. When it comes to communication, we
assume a star topology, so we specify that the cost of →𝑋 sending →𝑜 a message for
𝑋 , 𝑜 ↓ [2, 𝑄] to infinity. We set the other parameters as follows: An addition costs 1
unit, a scalar multiplications costs 100 units, and sending a message costs 1,000
units. To match Chapter 3, which centralizes computations around central server
→1, we make the computational costs of the other parties 10x higher. As a minimal
example, we set the number of parties to 𝑄 = 3. The compiler then proceeds with
the following steps:

261

4. The compiler determines how to realize the random samples in Zℵ
𝑂
. It asserts

that 𝑂⇐1 is negligible (it does not exceed 2⇐128), so it can realize the random
samples as uniform samples in Z𝑂 . It uses the technique for the setting
with no homomorphic multiplications as described in Section 8.4.1. This
introduces three random inputs, say 𝑚𝑋 for 𝑋 ↓ [1, 3] where Known(𝑚𝑋) = {𝑋}.

5. At this point, the comiler must assign & schedule the computations among the
involved parties. It uses the MaxSAT formulation described in Section 8.4.2
to generate the most e#cient protocol.

We present the resulting protocol for the first bit of the bitset in Figure 8.2 (the
protocol is the same for each other bit). In this circuit, blue nodes indicate inputs,
purple nodes indicate random inputs, and gray nodes represent homomorphic
operations that do not require non-scalar multiplications to compute. Notice that
the inputs are negated because they use the negated reduced Boolean encoding. We
indicate the set of computations performed by each party by clustering these nodes
together in a dotted rectangle. This protocol is almost identical to Protocol 3 from
Chapter 3. The only di"erences are that Protocol 3 also considers point compression
and that the inputs are encoded slightly di"erently; it uses the negated unreduced
encoding multiplied by randomness. The two protocols have the same cost when
measured using the objective of the MaxSAT formulation. It took less than ten
seconds for the MaxSAT solver to construct the optimal protocol on a laptop with
an M1 chip. We used the same MaxSAT solver as for performing arithmetization
(see Chapter 5).

8.5.3 A variant of the MPSI protocol for another scenario
One benefit of separating the extended arithmetization phase from the assignment
& scheduling phase is that one can distribute the computations in a protocol
di"erently depending on the parties’ properties. To demonstrate this, we consider
the setting in which the leader’s computations are ten times more expensive than
the operations of the other parties. The compiler now outputs a di"erent optimal
protocol that lets the other parties perform more work. We present the resulting
protocol in Figure 8.3. Notice that the protocol is still in the star topology, but
that there is communication between parties →2 and →3 that is routed through the
leader →1. While this would extend the run time of the protocol, it reduces its
computational cost. It also took the compiler less than ten seconds to construct
this optimal protocol.

8.6 Conclusion
In this chapter, we provided proof of concept extension of the oraqle compiler that
can generate MPSI protocols from a high-level description. While these protocols
are conceptually simple enough to be designed by hand, an algorithmic approach
does not require a user to have the same expertise. Next to that, the extended oraqle
compiler provides optimality guarantees that we cannot easily work out by hand.
What is more, we can generate a scenario-specific protocols automatically based

262

Party 1Party 2

Party 3

+

Output

+

×

Uniform
random +

×

×

+

¬b₁,₁¬b₂,₁

¬b₃,₁

Uniform
random

Uniform
random

Figure 8.2: The optimal protocol as computed by our MaxSAT formulation when computing
an addition costs 1 unit, a scalar multiplication costs 100 units, sending a message costs
1,000 units, and the computations of parties 2 and 3 are 10x more expensive. This protocol
achieves a cost of 14,104 units. This protocol is almost identical to Protocol 1 as proposed in
Chapter 3, except that its inputs are the identity 0 or the unit 1, whereas Protocol 1 encrypts
0 or randomness.

263

Party 1 Party 2Party 3

+

Output

+

×

Uniform
random +

××

+

¬b₂,₁¬b₁,₁ ¬b₃,₁

Uniform
random

Uniform
random

Figure 8.3: The optimal protocol as computed by our MaxSAT formulation when computing
an addition costs 1 unit, a scalar multiplication costs 100 units, sending a message costs
1,000 units, and the computations of parties 2 and 3 are 10x cheaper. This protocol achieves
a cost of 12,123.1 units. The dotted arrow between party 3 and party 2 indicates that the
communication is actually routed through party 1. Notice that this is not wasteful, as party
1 also uses the result of the addition to perform its multiplication. Moreover, the objective is
to minimize cost rather than run time, so routing the message through party 1 does not
oppose the objective.

264

on the computational and communication costs. We discuss several limitations
to our approach and future work, describing the steps required for the compiler
to generate more complex protocols and to do so more e#ciently. We conclude
that, while this proof of concept provides promising results towards a generic
secure computation compiler, there are still limitations that may require di"erent
approaches to address and there is a significant amount of implementation work
left to support other homomorphic encryption schemes and computational tasks.

Limitations
Firstly, the computational model of extended arithmetic circuits does not allow
one to express hybrid (or mixed) protocols that use multiple secure computation
techniques. Hybrid protocols can achieve better performance than protocols
relying on one secure computation technique. The computational model also does
not cover more complex techniques such as some homomorphic secret sharing
techniques [Boy+18] and function secret sharing [BGI15].

Another limitation that limits the e#ciency of protocols is that the order of
operations in an extended arithmetic circuit can have a drastic impact on the
performance of the optimal protocol. For example, the sum (J + 𝑏) + 𝑌 may require
fewer communication than the sum J + (𝑏 + 𝑌), even though these are equivalent.
Since extended arithmetization and assignment & scheduling happen in isolation,
we cannot alleviate this problem in our current setup.

One limitation that makes the compiler significantly less practical is that
assignment & scheduling may take very long for large circuits and many parties.
In these cases, it may be su#cient to find a protocol that is ‘good enough’, rather
than one that is optimal. As such, one may consider using an incremental
weighted MaxSAT solver and terminating its search when it obtains a good (but not
necessarily optimal) solution or when the search duration exceeds a predetermined
limit. Note that, in some cases, the solution at termination is also the optimal
solution, but it cannot be proven to be so.

Finally, as mentioned before, our model for describing the cost of a protocol
does not always accurately describe the real world. For example, real computers
have a specified number of concurrent threads and networks have a limited
bandwidth and throughput. Moreover, the computational cost of homomorphic
encryption operations is not always constant: in schemes such as BGV, the
cost of operations becomes slightly cheaper after a multiplication. In the BGN
cryptosystem, homomorphic additions also change after a multiplication.

Future work
An obvious next step for the extended compiler is to implement code generation,
such that the protocols do not have to be implemented by hand. Ideally, non-
experts could provide the compiler with a list of secure extended arithmetic
circuit evaluation techniques and the cost of their operations so that the compiler
can automatically choose which secure computation technique leads to the most
performant protocol. One starting point is to implement the homomorphic
encryption schemes listed in Table 8.1.

265

Another direction is to extend the compiler to support secret sharing. The
key di"erence between the resulting protocols is that operations in homomorphic
encryption-based protocols do not have to be performed by more than one party,
while in secret sharing-based protocols, it is common for many parties to be involved
in each computation. This would require taking into account that computations
must be done by multiple parties, and that multiple shares must not be sent to the
same party as that reduces the collusion threshold.

In the context of multi-party private set intersections, one could implement the
other constructions presented in Chapter 1. Next to that, for the compiler to be
useful in contexts other than set operations, it must support more high-level types
and encodings. For example, in many programming languages it is common to
work with 64-bit values, not with elements in Z𝑂 where 𝑂 is a small or large prime.

Finally, one can extend the compiler to realize other probability distributions.
This may prove useful in distributed key generation protocols, among others.

References
[Aly+25] Abdelrahaman Aly et al. SCALE-MAMBA: A framework for practical

secure computation. https://github.com/KULeuven-COSIC/SCALE-
MAMBA. Accessed: 2025-01-28. 2025.

[Bea91] Donald Beaver. “E#cient Multiparty Protocols Using Circuit Ran-
domization”. In: Advances in Cryptology - CRYPTO ’91, 11th Annual
International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 11-15, 1991, Proceedings. Ed. by Joan Feigenbaum. Vol. 576. Lec-
ture Notes in Computer Science. Springer, 1991, pp. 420–432. /)%:
10.1007/3-540-46766-1_34. (!&: https://doi.org/10.1007/3-
540-46766-1%5C_34.

[BGI15] Elette Boyle, Niv Gilboa, and Yuval Ishai. “Function Secret Sharing”. In:
Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II. Ed. by Elisabeth
Oswald and Marc Fischlin. Vol. 9057. Lecture Notes in Computer
Science. Springer, 2015, pp. 337–367. /)%: 10.1007/978- 3- 662-
46803-6_12. (!&: https://doi.org/10.1007/978-3-662-46803-
6%5C_12.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. “Evaluating 2-DNF For-
mulas on Ciphertexts”. In: Theory of Cryptography, Second Theory of
Cryptography Conference, TCC 2005, Cambridge, MA, USA, February
10-12, 2005, Proceedings. Ed. by Joe Kilian. Vol. 3378. Lecture Notes in
Computer Science. Springer, 2005, pp. 325–341. /)%: 10.1007/978-
3-540-30576-7_18. (!&: https://doi.org/10.1007/978-3-540-
30576-7%5C_18.

266

https://github.com/KULeuven-COSIC/SCALE-MAMBA
https://github.com/KULeuven-COSIC/SCALE-MAMBA
https://doi.org/10.1007/3-540-46766-1%5C_34
https://doi.org/10.1007/3-540-46766-1%5C_34
https://doi.org/10.1007/3-540-46766-1%5C_34
https://doi.org/10.1007/978-3-662-46803-6%5C_12
https://doi.org/10.1007/978-3-662-46803-6%5C_12
https://doi.org/10.1007/978-3-662-46803-6%5C_12
https://doi.org/10.1007/978-3-662-46803-6%5C_12
https://doi.org/10.1007/978-3-540-30576-7%5C_18
https://doi.org/10.1007/978-3-540-30576-7%5C_18
https://doi.org/10.1007/978-3-540-30576-7%5C_18
https://doi.org/10.1007/978-3-540-30576-7%5C_18

[BGV11] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. “Fully
Homomorphic Encryption without Bootstrapping”. In: Electron. Col-
loquium Comput. Complex. TR11-111 (2011). ECCC: TR11-111. (!&:
https://eccc.weizmann.ac.il/report/2011/111.

[BLO16] Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. “Optimizing Semi-
Honest Secure Multiparty Computation for the Internet”. In: Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Communi-
cations Security, Vienna, Austria, October 24-28, 2016. Ed. by Edgar R.
Weippl et al. ACM, 2016, pp. 578–590. /)%: 10.1145/2976749.2978347.
(!&: https://doi.org/10.1145/2976749.2978347.

[BLW08] Dan Bogdanov, Sven Laur, and Jan Willemson. “Sharemind: A Frame-
work for Fast Privacy-Preserving Computations”. In: Computer Security
- ESORICS 2008, 13th European Symposium on Research in Computer
Security, Málaga, Spain, October 6-8, 2008. Proceedings. Ed. by Sushil
Jajodia and Javier López. Vol. 5283. Lecture Notes in Computer Science.
Springer, 2008, pp. 192–206. /)%: 10.1007/978-3-540-88313-5_13.
(!&: https://doi.org/10.1007/978-3-540-88313-5%5C_13.

[BMY24] Marina Blanton, Dennis Murphy, and Chen Yuan. “E#ciently Com-
piling Secure Computation Protocols From Passive to Active Security:
Beyond Arithmetic Circuits”. In: Proc. Priv. Enhancing Technol. 2024.1
(2024), pp. 74–97. /)%: 10.56553/POPETS-2024-0006. (!&: https:
//doi.org/10.56553/popets-2024-0006.

[Boy+18] Elette Boyle et al. “Foundations of Homomorphic Secret Sharing”.
In: 9th Innovations in Theoretical Computer Science Conference, ITCS
2018, January 11-14, 2018, Cambridge, MA, USA. Ed. by Anna R. Karlin.
Vol. 94. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2018, 21:1–21:21. /)%: 10.4230/LIPICS.ITCS.2018.21. (!&: https:
//doi.org/10.4230/LIPIcs.ITCS.2018.21.

[Bra12] Zvika Brakerski. “Fully Homomorphic Encryption without Modu-
lus Switching from Classical GapSVP”. In: Advances in Cryptology -
CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA,
USA, August 19-23, 2012. Proceedings. Ed. by Reihaneh Safavi-Naini and
Ran Canetti. Vol. 7417. Lecture Notes in Computer Science. Springer,
2012, pp. 868–886. /)%: 10.1007/978-3-642-32009-5_50. (!&:
https://doi.org/10.1007/978-3-642-32009-5%5C_50.

[Büs+18] Niklas Büscher et al. “HyCC: Compilation of Hybrid Protocols for
Practical Secure Computation”. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018, Toronto,
ON, Canada, October 15-19, 2018. Ed. by David Lie et al. ACM, 2018,
pp. 847–861. /)%: 10.1145/3243734.3243786. (!&: https://doi.
org/10.1145/3243734.3243786.

[Che+17] Jung Hee Cheon et al. “Homomorphic Encryption for Arithmetic
of Approximate Numbers”. In: Advances in Cryptology - ASIACRYPT
2017 - 23rd International Conference on the Theory and Applications
of Cryptology and Information Security, Hong Kong, China, December

267

TR11-111
https://eccc.weizmann.ac.il/report/2011/111
https://doi.org/10.1145/2976749.2978347
https://doi.org/10.1145/2976749.2978347
https://doi.org/10.1007/978-3-540-88313-5%5C_13
https://doi.org/10.1007/978-3-540-88313-5%5C_13
https://doi.org/10.56553/POPETS-2024-0006
https://doi.org/10.56553/popets-2024-0006
https://doi.org/10.56553/popets-2024-0006
https://doi.org/10.4230/LIPICS.ITCS.2018.21
https://doi.org/10.4230/LIPIcs.ITCS.2018.21
https://doi.org/10.4230/LIPIcs.ITCS.2018.21
https://doi.org/10.1007/978-3-642-32009-5%5C_50
https://doi.org/10.1007/978-3-642-32009-5%5C_50
https://doi.org/10.1145/3243734.3243786
https://doi.org/10.1145/3243734.3243786
https://doi.org/10.1145/3243734.3243786

3-7, 2017, Proceedings, Part I. Ed. by Tsuyoshi Takagi and Thomas
Peyrin. Vol. 10624. Lecture Notes in Computer Science. Springer,
2017, pp. 409–437. /)%: 10.1007/978-3-319-70694-8_15. (!&:
https://doi.org/10.1007/978-3-319-70694-8%5C_15.

[Cho+23] Rutvik Choudhary et al. “Declassiflow: A Static Analysis for Modeling
Non-Speculative Knowledge to Relax Speculative Execution Security
Measures”. In: Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2023, Copenhagen, Denmark,
November 26-30, 2023. Ed. by Weizhi Meng et al. ACM, 2023, pp. 2053–
2067. /)%: 10.1145/3576915.3623065. (!&: https://doi.org/10.
1145/3576915.3623065.

[DSZ15] Daniel Demmler, Thomas Schneider, and Michael Zohner. “ABY -
A Framework for E#cient Mixed-Protocol Secure Two-Party Com-
putation”. In: 22nd Annual Network and Distributed System Security
Symposium, NDSS 2015, San Diego, California, USA, February 8-11,
2015. The Internet Society, 2015. (!&: https://www.ndss-symposium.
org/ndss2015/aby--- framework- efficient- mixed- protocol-
secure-two-party-computation.

[FV12] Junfeng Fan and Frederik Vercauteren. “Somewhat Practical Fully
Homomorphic Encryption”. In: IACR Cryptol. ePrint Arch. (2012),
p. 144. (!&: http://eprint.iacr.org/2012/144.

[Gam84] Taher El Gamal. “A Public Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms”. In: Advances in Cryptology, Proceedings
of CRYPTO ’84, Santa Barbara, California, USA, August 19-22, 1984,
Proceedings. Ed. by G. R. Blakley and David Chaum. Vol. 196. Lecture
Notes in Computer Science. Springer, 1984, pp. 10–18. /)%: 10.1007/3-
540-39568-7_2. (!&: https://doi.org/10.1007/3-540-39568-
7%5C_2.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. “How to Play
any Mental Game or A Completeness Theorem for Protocols with
Honest Majority”. In: Proceedings of the 19th Annual ACM Symposium
on Theory of Computing, 1987, New York, New York, USA. Ed. by Alfred
V. Aho. ACM, 1987, pp. 218–229. /)%: 10.1145/28395.28420. (!&:
https://doi.org/10.1145/28395.28420.

[GN04] Ian P Gent and Peter Nightingale. “A new encoding of alldi"erent
into SAT”. In: International Workshop on Modelling and Reformulating
Constraint Satisfaction. Vol. 3. 2004, pp. 95–110.

[Has+19] Marcella Hastings et al. “SoK: General Purpose Compilers for Secure
Multi-Party Computation”. In: 2019 IEEE Symposium on Security and
Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019. IEEE,
2019, pp. 1220–1237. /)%: 10.1109/SP.2019.00028. (!&: https:
//doi.org/10.1109/SP.2019.00028.

268

https://doi.org/10.1007/978-3-319-70694-8%5C_15
https://doi.org/10.1007/978-3-319-70694-8%5C_15
https://doi.org/10.1145/3576915.3623065
https://doi.org/10.1145/3576915.3623065
https://doi.org/10.1145/3576915.3623065
https://www.ndss-symposium.org/ndss2015/aby---framework-efficient-mixed-protocol-secure-two-party-computation
https://www.ndss-symposium.org/ndss2015/aby---framework-efficient-mixed-protocol-secure-two-party-computation
https://www.ndss-symposium.org/ndss2015/aby---framework-efficient-mixed-protocol-secure-two-party-computation
http://eprint.iacr.org/2012/144
https://doi.org/10.1007/3-540-39568-7%5C_2
https://doi.org/10.1007/3-540-39568-7%5C_2
https://doi.org/10.1007/3-540-39568-7%5C_2
https://doi.org/10.1007/3-540-39568-7%5C_2
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1109/SP.2019.00028
https://doi.org/10.1109/SP.2019.00028
https://doi.org/10.1109/SP.2019.00028

[Kel20] Marcel Keller. “MP-SPDZ: A Versatile Framework for Multi-Party
Computation”. In: CCS ’20: 2020 ACM SIGSAC Conference on Com-
puter and Communications Security, Virtual Event, USA, November 9-
13, 2020. Ed. by Jay Ligatti et al. ACM, 2020, pp. 1575–1590. /)%:
10.1145/3372297.3417872. (!&: https://doi.org/10.1145/
3372297.3417872.

[LM21] Baiyu Li and Daniele Micciancio. “On the Security of Homomorphic
Encryption on Approximate Numbers”. In: Advances in Cryptology -
EUROCRYPT 2021 - 40th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Zagreb, Croatia, October
17-21, 2021, Proceedings, Part I. Ed. by Anne Canteaut and François-
Xavier Standaert. Vol. 12696. Lecture Notes in Computer Science.
Springer, 2021, pp. 648–677. /)%: 10.1007/978-3-030-77870-5_23.
(!&: https://doi.org/10.1007/978-3-030-77870-5%5C_23.

[Pai99] Pascal Paillier. “Public-Key Cryptosystems Based on Composite De-
gree Residuosity Classes”. In: Advances in Cryptology - EUROCRYPT
’99, International Conference on the Theory and Application of Crypto-
graphic Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding.
Ed. by Jacques Stern. Vol. 1592. Lecture Notes in Computer Science.
Springer, 1999, pp. 223–238. /)%: 10.1007/3-540-48910-X_16. (!&:
https://doi.org/10.1007/3-540-48910-X%5C_16.

[Rei+22] Pascal Reisert et al. “Arithmetic Tuples for MPC”. In: IACR Cryptol.
ePrint Arch. (2022), p. 667. (!&: https://eprint.iacr.org/2022/667.

[RHH14] Aseem Rastogi, Matthew A. Hammer, and Michael Hicks. “Wysteria:
A Programming Language for Generic, Mixed-Mode Multiparty
Computations”. In: 2014 IEEE Symposium on Security and Privacy, SP
2014, Berkeley, CA, USA, May 18-21, 2014. IEEE Computer Society,
2014, pp. 655–670. /)%: 10.1109/SP.2014.48. (!&: https://doi.org/
10.1109/SP.2014.48.

[Ria+19] M. Sadegh Riazi et al. “MPCircuits: Optimized Circuit Generation for
Secure Multi-Party Computation”. In: IEEE International Symposium on
Hardware Oriented Security and Trust, HOST 2019, McLean, VA, USA, May
5-10, 2019. IEEE, 2019, pp. 198–207. /)%: 10.1109/HST.2019.8740831.
(!&: https://doi.org/10.1109/HST.2019.8740831.

[SV14] Nigel P. Smart and Frederik Vercauteren. “Fully homomorphic SIMD
operations”. In: Des. Codes Cryptogr. 71.1 (2014), pp. 57–81. /)%: 10.
1007/S10623- 012- 9720- 4. (!&: https://doi.org/10.1007/
s10623-012-9720-4.

[ZSB13] Yihua Zhang, Aaron Steele, and Marina Blanton. “PICCO: a general-
purpose compiler for private distributed computation”. In: 2013
ACM SIGSAC Conference on Computer and Communications Security,
CCS’13, Berlin, Germany, November 4-8, 2013. Ed. by Ahmad-Reza
Sadeghi, Virgil D. Gligor, and Moti Yung. ACM, 2013, pp. 813–826.
/)%: 10.1145/2508859.2516752. (!&: https://doi.org/10.1145/
2508859.2516752.

269

https://doi.org/10.1145/3372297.3417872
https://doi.org/10.1145/3372297.3417872
https://doi.org/10.1145/3372297.3417872
https://doi.org/10.1007/978-3-030-77870-5%5C_23
https://doi.org/10.1007/978-3-030-77870-5%5C_23
https://doi.org/10.1007/3-540-48910-X%5C_16
https://doi.org/10.1007/3-540-48910-X%5C_16
https://eprint.iacr.org/2022/667
https://doi.org/10.1109/SP.2014.48
https://doi.org/10.1109/SP.2014.48
https://doi.org/10.1109/SP.2014.48
https://doi.org/10.1109/HST.2019.8740831
https://doi.org/10.1109/HST.2019.8740831
https://doi.org/10.1007/S10623-012-9720-4
https://doi.org/10.1007/S10623-012-9720-4
https://doi.org/10.1007/s10623-012-9720-4
https://doi.org/10.1007/s10623-012-9720-4
https://doi.org/10.1145/2508859.2516752
https://doi.org/10.1145/2508859.2516752
https://doi.org/10.1145/2508859.2516752

270

Discussion

The title of this thesis being ‘Practical Secure Computation in the Client-Server
Model’ implies that there are also impracticalities related to secure computation.
Indeed, we formulated four impracticalities in the introduction, with the ultimate
goal of identifying and implementing ways to address them. Specifically, we
formulated the following impracticalities:

• Impracticality 1: High interactivity, secure computation protocols can require
many communication rounds.

• Impracticality 2: Full-mesh topology, secure computation protocols can re-
quire all parties to communicate with each other.

• Impracticality 3: Arithmetization, secure computation protocols can require
programmers to express high-level circuits as arithmetic circuits by hand.

• Impracticality 4: Compute-intensive, secure computation protocols can re-
quire significant computational e"ort.

We addressed impracticalities 1 & 2 in the context of multi-party computation, and
3 & 4 in the context of fully-homomorphic encryption. In Chapter 8 we provide
initial steps to combine these approaches. Looking back at the entire thesis, we
discuss our main findings, its societal impact, as well as its limitations and future
directions.

Takeaways
In addressing the four major impracticalities as defined in the introduction of
this thesis, we have learned several new facts. We do not reiterate all separate
conclusions from the chapters in this thesis. Instead, we discuss the most prominent
takeaways in the order in which these insights appear in the thesis.

Part A: E!cient protocols for MPSO in the star topology
In Part A, we focused on the design and analysis of multi-party private set operations
that address impracticalities 1: High interactivity and 2: Full-mesh topology. We
provided a new systematization for MPSI protocols and analyzed the security
of Bloom filters in realizing secure MPSI protocols. We also proposed multiple
low-round protocols in the star topology for private set operations, including
membership queries, intersections, and unions. Our research led to the following
insights.

271

There are three high-level constructions that all MPSI protocols follow MPSI
protocol roughly consist of three stages: some form of aggregation, membership
queries, and a phase in which values that were cryptographically hidden are revealed.
In Chapter 1, we found that MPSI protocols can be classified into three categories
that each has a fixed order in which these phases occur:

• Protocols based on private homomorphic set representations first aggregate
the representations, after which they reveal the result and query it in plain
text.

• Protocols based on leaky homomorphic set representations also first aggregate
the representations, but they query under encryption before revealing the
results because the representation leaks information.

• Protocols based on aggregatable membership queries first query the separate
sets, aggregate these results by computing an AND operation, and revealing
the results.

It stands to reason that revealing cannot occur before aggregation, because that
would leak information about the individual sets. As a result, these are the only
three categories that occur.

Approximate Bloom filters cannot be used to realize secure (M)PSI protocols
In Chapter 2, we showed that the approximate nature of Bloom filters leads not
only to a non-negligible probability of incorrectness, it leads to both theoretical
and practical attacks with non-negligible attack success rates. That said, Bloom
filters are still convenient to design private set operation protocols around, but
the Bloom filters must be large enough to make the probability of false positives
occurring negligibly small.

We achieve e!cient low-round private set operation protocols in the star topology
In Chapter 3, we proposed multiple private set operation protocols. Specifically,
we proposed multi-party private set intersection and union protocols for small
and large universes. In Chapter 4, we proposed protocols for performing multiple
sequential privacy-preserving membership queries on the same set. Our multi-
party private set union protocol for large universes allows trading o" the number
of rounds and the computational e"ort required. The other protocols have a
constant round complexity. All our protocols are strictly in the star topology and
they achieve computational e#ciency by using elliptic curve-based homomorphic
encryption.

Part B: Automatic generation of HE circuits
In Part B of this thesis, we addressed impracticalities 3: Arithmetization and
4: Compute-intensive by proposing several methods for generating computationally-
e#cient circuits that can be evaluated using homomorphic encryption from high-
level representations. The main product of this research is the oraqle compiler,
which arithmetizes circuits composed of several common operations in seconds

272

or minutes. Since the oraqle compiler produces arithmetic circuits, which di"er
from the Boolean or LUT circuits generated by other compilers, we demonstrate
speedups for several circuits. Next to that, in Chapter 7, we considered circuits
beyond arithmetic circuits, that use the polynomial ring structure of ring learn-
ing with errors-based cryptosystems to permute and map values across packed
ciphertexts. We briefly summarize some of the learnings that emerged from this
research.

Depth-aware arithmetization produces better circuits than single-objective
methods In Chapter 5, we proposed depth-aware arithmetization: a multi-
objective version of arithmetization that minimizes for both the multiplicative
depth and size (or cost) of an arithmetic circuit. By considering multiplicative depth
during arithmetization, instead of as an additional optimization afterwards, we
obtain circuits that could not by generated by focusing on either the multiplicative
depth or size. Table 5.1 showcases that depth-aware arithmetization can generate
comparison circuits that are smaller in size than the work by Iliashenko & Zucca that
focuses on minimizing the multiplicative size, and as shallow as the work by Gouert
et al. that focuses on minimizing the multiplicative depth with a significantly lower
multiplicative size.

The amortized computational cost of BGV can be lower than TFHE The TFHE
homomorphic encryption scheme essentially computes LUT circuits: circuits
comprised of additions and look-up tables. These circuits are well-suited to non-
linear operations, because the cost of evaluating a look-up table does not depend
on the actual operation. One may expect that this makes TFHE more suitable for
evaluating complex circuits as compared to schemes like BGV, which evaluate
arithmetic circuits that contains additions and multiplications. In Chapter 5,
we show that the computational cost of evaluating a complex high-level circuit
consisting of comparisons and AND operations using BGV is comparable to that
of TFHE when accounting for the fact that the BGV scheme permits ciphertext
packing. A key aspect is that the circuit is shallow enough to be computed without
any bootstrapping operations.

Arithmetic circuits for complex operations can outperform Boolean circuits
Previous homomorphic encryption compilers for HE schemes like BGV typically
generate Boolean circuits, even though these schemes are capable of evaluating
arithmetic circuits beyond Z2. In Chapter 6, we demonstrate that the arithmetic
circuits generated by the oraqle compiler lead to a decrease in computational e"ort
when compared to Boolean circuits, even for complex non-arithmetic operations.
Specifically, Table 6.2 shows that a circuit over Z5 is almost twice as e#cient as a
Boolean circuit for computing an equality check between two 64-bit sequences.

Rotation blocks outperform Bene#’ shift-networks on random permutations
In Chapter 7, we propose a method based on so called ‘conveyor belts’ to auto-
matically generate shift-networks for permuting packed HE ciphertexts. These
shift-networks, consisting of rotations, masking operations, and additions, have

273

been studied and implemented before in the HElib library. While our method
was designed with the goal of optimizing shift-networks for permutations across
ciphetexts, we show that our circuits can outperform the collapsed Bene% networks
implemented in HElib, even for within-ciphertext permutations, see Figure 7.4.

The road ahead
In Parts A & B we addressed the four major impracticalities in isolation, but in the
final chapter of this thesis, Chapter 8, we aimed at addressing these impracticalities
collectively. The main product of this research is an extension of the oraqle
compiler that is general enough to include the generation of MPC protocols. In
other words, the compiler has a concept of parties, and may decide which parties to
assign certain computations: the compiler generates protocols rather than circuits.
Moreover, the compiler considers operations beyond arithmetic: it enables the
use of randomness and it selectively allows for parties to reveal plaintexts in the
middle of a circuit. We discuss our three main takeaways.

Given an extended arithmetic circuit, we can generate an optimal protocol In
Chapter 8, we propose a MaxSAT and a mixed-integer linear programming formu-
lation for assigning and scheduling the computations of an extended arithmetic
circuit among multiple parties. These formulations can be solved to optimality by
existing MaxSAT and MILP solvers. The two formulations optimize for di"erent
objectives: the MaxSAT formulation minimizes the total cost of the protocol, e.g.
in terms of the energy required or the amount of cloud credits that it consumes.
The MILP formulation minimizes the total run time of the protocol, provided that
it knows how long it takes for each party to perform each possible operation, as
well as the latency on each communication line.

Existing MPSI protocols can be generated from a high-level description Chap-
ter 8 connects parts A and B of this thesis by showing that the extended oraqle
compiler can generate what is essentially the bitset-based MPSI protocol as pro-
posed in Chapter 3. After specifying that the each party contributes a bitset, that
the plaintext algebra is the group Z𝑎 , and that the protocol should output the
intersection, the compiler automatically generates this MPSI protocol. Moreover,
depending on the cost of each operation, the resulting protocol may di"er from
the protocol proposed in Chapter 3 if the MaxSAT formulation decides that it is
cheaper to distribute the computations di"erently.

The extended oraqle compiler generalizes MPC in the star topology and SOC
The extended oraqle compiler allows specifying arbitrary costs, so if the goal
is to completely outsource computations in a two-party setting to a server, one
may specify that the computations are infinitely expensive when performed by
other parties. In a secure multi-party computation setting, one can use the
communication costs to encode arbitrary communication structures. For example,
one might encode a star topology by specifying communication between two
clients to be infinitely expensive.

274

Societal impact
The aim of this thesis is to make secure computation more practical. We briefly
review the societal impact we achieve in doing so.

Secure multi-party computation Secure multi-party computation has the poten-
tial to distill knowledge from information sources that could previously not be
joined, whether for regulatory or ethical reasons. We mentioned several examples
in the introduction of this thesis. In situations where users’ private data are
already combined but in a way that requires placing trust in the aggregator, the
confidentiality achieved by MPC can improve the privacy of these users. In a way,
our work on MPC has already had some societal impact: the United States and
the United Kingdom collaborated to organize a challenge in privacy enhancing
technologies (PETs), and our solution that we proposed in Chapter 4 was awarded
the second prize. As a result, the challenge and the three top teams were briefly
presented at the Summit for Democracy in 2024 for the president of the United
States, with the aim of underlining the ability of PETs to reinforce democratic
values.

Secure outsourced computation Secure outsourced computation allows parties
to rely on cloud computing without the inherent trust assumption. This may
allow medical analyses to be outsourced in a way that was not previously legally
permitted, while protecting user’s sensitive data under cryptographic hardness
assumption. In other words, SOC may be used to limit the spread of private
information to only those parties that need to see it. An important first step here
is to democratize the technology that is homomorphic encryption, so that it may
be deployed by the organizations that o"er cloud computing and understood
by non-experts. In this aspect, our work has already achieved a modest societal
impact: at the time of writing, our work on ciphertext permutations (see Chapter 7)
is being adapted in Google’s HEIR compiler.1

The road ahead We believe that the extended oraqle compiler paves the road
ahead to a future in which laypersons and experienced researchers alike can
generate e#cient and secure protocol in the client-server model to achieve better
privacy or distill knowledge from information silos.

Limitations
We discuss six general limitations to the research presented in this thesis.

Private set operations do not necessarily preserve privacy By their definition,
private set operations achieve confidentiality. Whether they provide privacy
depends on the context in which they are deployed. Here we consider control to
be a fundamental property of privacy: an individual should personally determine

1The implementation e"ort is tracked in: https://github.com/google/heir/issues/919

275

https://github.com/google/heir/issues/919

the extent in which their personal information is shared. To see that it is possible
that these protocols do not preserve privacy, consider the use of an MPSI protocol
between multiple organizations on private user data, without giving users the
option to opt out of this computation. At the end of the protocol, if an intersection
exists, the protocol may reveal private user data that those users did not agree to
release.

Quantum algorithms break elliptic curve-based homomorphic encryption All
the realizations of the protocols that we presented in Part A of this thesis rely on
the security of elliptic curve-based homomorphic encryption. However, quantum
algorithms, such as Shor’s algorithm, are known to break the IND-CPA security
of these schemes in polynomial time. It stands to reason that these protocols
should be deployed with caution, and that it may be advisable to deploy them
using post-quantum homomorphic encryption. For example, the lattice-based
homomorphic encryption methods described in Part B of thesis are conjectured to
withstand quantum attacks when suitably parameterized.

Our optimality guarantees only apply to simple operations In Chapter 5, we
provide optimality guarantees for exponentiation and equality circuits, but we
cannot guarantee optimality for more complex operations such as comparisons
or AND and OR operations. Even circuits composed of optimal sub-circuits are
not optimal: for example, checking whether the result of an exponentiation equals
0, e.g. 𝑅

5 = 0, in a finite field is equivalent to checking 𝑅 = 0. In other words,
the sub-circuit that computes 𝑅

5 is unnecessary, increasing the multiplicative size
beyond optimality.

Optimality is only guaranteed with respect to simplified models We provide
optimality guarantees in two ways in this thesis. First, in Chapter 5, we show how
to generate circuits that optimally trade o" multiplicative size and depth. However,
the multiplicative size and depth do not capture all computational aspects in
homomorphic encryption. For example, the noisier a ciphertext is, the smaller we
can represent it, which in turn decreases computational e"ort. This means that
multiplications at the start of a circuit are more expensive than later multiplication,
which is not captured by the multiplicative size metric. Next to that, these metrics
do not consider automorphism operations, which permit ciphertext permutations,
among others. The multiplicative depth also does not fully describe the noise
growth in homomorphic encryption circuits: a circuit multiplying three ciphertexts
is less noisy than a circuit multiplying four ciphertexts, even though may have
the same multiplicative depth. So, we cannot conclude that these are the least
computationally-expensive circuits in practice. Second, in Chapter 8, we provide
optimality guarantees for the assignment and scheduling of extended arithmetic
circuits among parties. However, this model abstracts away several practical
aspects. For example, the MILP formulation assumes that parties have an infinite
number of threads and that communication lines have an infinite bandwidth. The
MaxSAT formulation assumes that idling has no cost, but in practice, a waiting
computer still carries a cost.

276

Extending our protocols to withstand malicious adversaries is non-trivial
Whereas some protocols that withstand honest-but-curious adversaries can easily
be transformed to withstand malicious adversaries by instantiating them with
maliciously-secure primitives, this hard to achieve for the protocols proposed in
this thesis. The reason is that our protocols, which are based on homomorphic
encryption, rely on the honest-but-curious assumption to ensure that parties do
not perform arbitrary computations on the ciphertexts. For elliptic curve-based
ElGamal ciphertexts there exist constructions for zero-knowledge proofs, but for
fully homomorphic encryption the overhead would be significant.

Centralized secure computation does not ensure availability The protocols that
we propose in this thesis achieve confidentiality, but the do not necessarily ensure
availability. Especially considering that our protocols revolve around a powerful
centralized party, this party essentially controls whether a protocol execution
succeeds. Note that even though the honest-but-curious model expects such a
party to follow the protocol faithfully, they can in theory delay it indefinitely. In
other words, while the client-server model is a practical computational model, an
ill-intentioned central parties may at any point decide to selectively deny service.

Future work

In Chapter 8 we described the road ahead for unifying the research in Parts A and B
with the idea that this would allow us to address all four major impracticalities that
we identified earlier. Unfortunately, there are remaining challenges. We briefly
discuss areas in which our current work falls short at addressing the impracticalities,
and propose several future directions.

Two-round secure computation protocols in the star topology are already
achievable through fully-homomorphic encryption, addressing impracticalities
1: High interactivity and 2: Full-mesh topology. Next to that, through the ex-
tended oraqle compiler presented in Chapter 8, non-experts can design par-
allelizable FHE circuits. However, our methods for addressing impracticality
3: Arithmetization still impose restrictions, and, depending on the evaluated func-
tion, the resulting FHE circuits may still require significant computational e"ort.
We conclude that impracticality 4: Compute-intensive is still a dealbreaker for
practical deployments of complex functions: users may not be willing to wait for
seconds or minutes when a plaintext computation would finish in milliseconds,
and companies may not be willing to pay significantly more for secure operations
as compared to plaintext operations.

Develop MPSO protocol applications We are not aware of practical deployments
of multi-party private set operations. As a result, it is unclear what the context-
specific design requirements are of such a protocol. In other words, theree may
be context-specific impracticalities that current protocols do not take into account.
As shown in Chapter 1, protocols already provide a large set of trade-o"s, but it
is unclear in what ways these protocols still require changes. One may develop

277

practical use cases for existing functionalities or for new variants of private set
operations.

Increase the e!ciency of bootstrapping While homomorphic encryption schemes
have seen significant improvements in their e#ciency since their inception, boot-
strapping remains their bottleneck. Schemes like TFHE do allow for the e#cient
bootstrapping of a single value, but it remains ine#cient to bootstrap a large
number of values. On the other hand, bootstrapping in schemes like BFV and BGV
supports ciphertext packing, but remains computationally expensive. Alternative
approaches such as re-encryption (where a value is masked, decrypted, then
re-encrypted before removing the mask) require additional interactions. Future
work could design new methods for bootstrapping multiple values e#ciently.

More e!cient and more intelligent arithmetization Arithmetization is a complex
process that scales with the size of a circuit. As such, large circuits may be too slow
to arithmetize in practice. A clear next step is to further optimize the arithmetization
process. Next to that, the arithmetization process may also still be improved to
generate more e#cient circuits: the compiler may infer knowledge about plaintexts
so that it can perform optimizations it could otherwise not perform. For example,
if the compiler can assert that a set of if statements are mutually exclusive, it
can significantly reduce the number of branches in the arithmetized circuit. The
compiler may also consider automorphism operations to extend beyond pure
arithmetic circuits.

Increase the flexibility of FHE libraries FHE libraries typically impose restric-
tions on the parameters that they permit. For example, we are not aware of any
libraries other than HElib that allow the small plaintext moduli we use in Chap-
ters 5 & 6. HElib, too, enforces some restrictions because it does not permit the user
to manage the ciphertext modulus manually. These restrictions prevent further
optimizations, such as the compiler deciding when and how to switch ciphertext
moduli based on the circuit that it is compiling. By lifting these restrictions, a
homomorphic encryption compiler may generate more computationally-e#cient
circuits.

Hybrid protocols As mentioned before, our work on automatic protocol genera-
tion may be extended to support hybrid protocols. These protocols, which combine
multiple secure computation techniques, may achieve better performance than
protocols that only use one technique. It would require significant changes for the
extended oraqle compiler to generate such protocols as it would require support
for multiple di"erent plaintext algebras within one circuit. When implemented
naively, the compiler would consider multiple algebras for each sub-circuit, which
may significantly increase compilation time. Future work may research how to
generate hybrid protocols e#ciently, for example, through the use of heuristics.

278

Acknowledgments

There is one person I want to thank in particular for the enormous role he played,
not only during my PhD, but also for the past six years, in my life. Wouter, you
are the love of my life. Over the past four years, you have been thanklessly acting
as the second member on my PhD team, often experiencing the consequences of
my stress without any of the rewards. You have also carried the burden of being
both your own and our collective memory, and you have been on the receiving
end of so many sacrifices, such as when I moved away for months, when I was
jetlagged, or when I was working late. I will never be able to thank you enough
for all your support. I hope that, in a little over a year, we can move into our new
house together, overlooking the university and recalling the beautiful memories
we made there.

Of course, Wouter is not the only one who experienced the sacrifices I made
for my PhD. The volunteer work I dropped, the drinks I didn’t join after hockey
training, and the family dinners I skipped are all small ways in which my decision
to pursue this career turned out to be a somewhat selfish one. I want to thank
everyone for giving me the space and the opportunities that allowed me to pursue
this career and develop myself.

D

I also want to express my gratitude to my family, who have always been there
for me. I could always count on Daniël and Evelien to cheekily play some Minecraft
or to commit culinary crimes at Pavarotti: I’m super fortunate to call you my
brother and sister. Also, who gets to write scientific papers with his twin?! In the
same way, I could always count on my parents, both for creating fun memories and
for asking for advice. I look back with great love and admiration for the constant
support I received from my immediate family and I hope to give the same back. I
am also grateful to the rest of my family. My love for research and teaching must
have surely been influenced by my brilliant grandmother who has been a school
teacher in her working life and my late grandfather with infinite curiosity, who
went back to university to study some more, even after retiring. Together, they
created this amazing family that I look to with great admiration.

Having a partner comes with the benefit of extra family! It has been amazing
to get to know Wouter’s (step)parents, (step)brothers, and (step)sisters. Going
on holidays, seeing musicals, playing hockey tournaments; all these activities
contributed to finding some relaxation between all the research. What’s more, a
partner also comes with extra friends! Thanks for including me on your gaming
adventures and zombie movie nights, Mike and Joris. I can’t say these nights
helped me sleep better, but they certainly took my mind o" research. Thank you to
Roos for the fun activities and for coining the name ‘Wossie’.

279

Next to my family, I have also been blessed to be supported by two amazing
paranymphs: Daniël and Leon. Having you two next to me for my defense feels
like a full circle moment. After all, we started our studies together at TU Delft, and
now I get to finish it. Over the course of my studies, Leon has been a great best
friend, collaborator, and roommate. If I can be even a fraction as ambitious and
pragmatic as you, I would be super proud. Together with Daniël we worked hard
on so many projects and hackatons, or we hardly worked when we got distracted.
Now with Luuk at Leon’s side, we get to ‘hardly work’ even more!

D

Of course, I want to thank my promotors, Zeki and Mauro, for the trust they
placed in me over the past four years: I am super fortunate for the freedom they
gave me to follow my curiosity wherever it led and for allowing me to help teach
and supervise. Zeki’s supervision has been a constant in my life: He has been
my supervisor in three separate roles over a span of almost ten years! Zeki, you
already challenged me during the context project in the bachelor’s together with
Daniël, Leon, Matth!s, and Max (and much-appreciated cake moments with Ozzy
and Gamze!). Then came my master thesis, in which you taught me to ’hold my
horses’, which is advice I can still lean on. Finally, as my PhD supervisor, you have
been putting up with four years of stubbornness (although I prefer to think of it as
determination). Thank you for playing such a big part. At the same time, Mauro’s
guidance has also taught me a lot throughout my PhD. Mauro, I’m continuously
impressed by your ability to reason about all the di"erent security & privacy topics
and manage so many projects in parallel. Thank you for teaching me to be more
objective and transparent. You also made me feel at home when visiting Italy, and
I still recall all the fun conversations we had there (and in the Netherlands). I hope
to keep learning from you!

Zeki and Mauro were not the only colleagues contributing to my research
and personal development. First and foremost, I want to thank the person at the
helm of the cybersecurity group: Sandra! Just kidding, of course, but our group
head George and Sandra make a great team together. You are both approachable,
empathetic, and generous; you always try to make things right for someone and
provide them with the best opportunities. I felt safe in your hands. Sandra, you
have meant so much to me and the other students over the past years, often o"ering
the support I and others longed for. George, similarly, you always (literally) have
your door open for us. Thank you for your willingness and aptitude to level with
students of any level.

One of the downsides of a PhD is that colleagues come and go quite rapidly.
As such, the group of PhD students I worked besides when I was writing on this
thesis were completely di"erent from the group I started with. However, I admire
each of them equally.

Tianyu and Florine, thank you for kicking o" my PhD with me and for all the
times I could call for your help. Tianyu, you are such a gentle person to be around
and such a hard worker. It did not only show in the o#ce but also while playing
FIFA, where you would silently destroy us with your years of training. Florine,
you are such a kind person and I respect your eye for detail. I cannot commend
you for your FIFA skills but I am sure you would beat me in any virtual reality

280

game. Thank you for all the times I could rely on your advice. Back when I started,
our group also included Sicco’s students! I want to thank Clinton in particular for
our fun conversations at the co"ee machine. I don’t only speak for myself when I
say that our group misses you guys!

In the second half of my PhD, our team was fortunate enough to welcome Jorrit.
Jorrit, thank you for all the collaboration and for making the o#ce so ’gezellig’. You
are curious, you are a fast learner, and you have a strong sense of righteousness: I
think you are the definition of a scientist. After Jorrit came so many new, talented
researchers: I am certain that the next generation of research in good hands. I was
particularly lucky to be in the o#ce with Tjitske, who I even got to collaborate
with right away, along with her supervisor Lilika! Tjitske, you are a brilliant
mathematician and now also a Rust programmer. I’m going to miss our banter.
Lilika, thank you for all your paper-writing advice and hands-on supervision. I
have learned so much from you in a short time. I hope to be able to supervise the
way you do. I also want to thank Tjitske and Maarten together for being a jolly duo
and for helping me out tremendously with the design of this thesis’ cover. Lastly,
I want to thank all the other PhD students, old and new, for making this group
feel like a group of friends rather than strictly colleagues. I have been so fortunate
with you all around.

Besides the PhD students, our group has also been the host of some amazing
master students. There are too many fun conversations I have had with you all,
and I can only highlight a fraction of them. If I have to choose one, it would be
the many tea moments with Dāvis in the past year. Dāvis, thank you for keeping
me and the other students sane and ca"einated on busy days! I would also like to
thank the students that I got to supervise (for weeks or years!) and learn from at
the same time. Armin, Aslı, Codrin, Dan, Dieuwer, Ioana, and Ivo, you are all so
talented, making my role super easy. You will do well!

D

One of the turning points of my PhD was when I got to do an internship at
Apple. I want to extend my sincerest gratitude to the team I joined for one summer,
and in particular, to Yannick, who has provided me with countless opportunities
since then. If I am ever in a leadership position, I aspire to manage as you do. I also
want to thank Cathie, Chris, Frederic, George, Steve, and the other team members,
who taught me so much in such a short time. Everyone on the team is ambitious,
driven, talented, and generally just wonderful to be around. Thank you so much
for making me feel at home and part of the team. I wish you all the best in the
space donut and elsewhere!

The awesome people I met in Cupertino extended far beyond the team at
Apple, though. First and foremost, I was blessed to share the appartment with
Cameron, who was an amazing housemate and is an even more amazing researcher.
Cameron, I still miss your endless supply of jokes and our late-night conversations
about economics, cryptography, machine learning, and what not. I also had such
a good time with Rutvik and Joachim, who I have both got to see again after
our internships. Rutvik, thank you for all the laughs and for the Powerpoint
inspiration! Joachim, I loved your British-Danish humor and thank you for being
my Rust helpline. I am grateful for meeting all the other interns, too, over the

281

course of the summer! Then, in the last week or two of the summer, I met Tabby,
who by a stroke of luck, also worked on fully homomorphic encryption. That said,
Tabby was and still is way more knowledgeable on the topic than I am. In fact,
I think she is probably one of the most knowledgeable FHE researchers I know.
Tabby, thank you for all the biweekly meetings after we finished our internships,
in which you came up with so many useful suggestions. In a way, you have played
the role of my third supervisor. Also, I don’t think I have laughed harder during
work meetings than I have with you.

D

One place of constant joy for me has been my hockey team. Heren 5, you
guys are such a fun, welcoming, and beautiful group of people. I hope you don’t
underestimate the positive impact you had on my PhD. Especially during the
pandemic, when hockey was one of the few moments to disconnect from work,
but also later, when life got more and more stressful. I don’t think anyone could
convince me to do another PhD, but I would consider it for another couple of years
on my favorite hockey team.

Another source of joy and relaxation during my PhD were the group of friends
I play video games with. Although I do not get to play as much as I used too
(probably much to my parent’s delight), I want to thank you for the minutes of joy
and peace (and hysterics) you graced me with over the past years. Joep, Nemo,
and Max, sorry for all the times I forgot to glimmer cape you. Daniël and Alexander,
we should sail the salty seas again!

Much of my student life has been spent at Outsite & DWH, Delft’s LGBT+
association. I have received so much support from our association, and I regret not
helping out so much during the past years. I want to thank the association and
all the friends I made there. I am so fortunate to still be in touch with so many of
you! Our fake ‘dispuut’ is filled with such warm and smart friends. And thank you,
Daniel, my old fellow board member and good friend! It’s always so refreshing
when we call or meet up again. I feel so comfortable around everyone I met at our
association; you are truly a pillar of strength.

Another group that I feel so comfortable around, and who have definitely left
their mark on my student times and PhD, are my old rowing friends. Every time
we get back together it feels like going back in time. I’m so glad you guys are
still around. I should also thank the person who got me rowing in the first place:
Rens. Thank you for bringing so much positive energy when my mind was stuck
thinking about work.

In Dutch student life we have a nice word for the friends you made in high
school and before: Vrienden van vroeger (friends from the past), or VVV for short.
I have not always been the best vvv’tje, especially in the past few years where I was
constantly occupied by the next project or some urgent task that needed finishing.
I cannot thank Alice, Lah Tascha, Megan, Lilian, Veerle, and my other VVV’tjes
enough for their patience with me. We may not see each other as often, but I am
always so happy when I return from one of our little reunions.

282

D

Finally, I want to thank Célio, Martine, Sikha, Steven, and the rest of the
PPML Huskies team from Washington Tacoma that I got to join for the PETS
prize challenge. Everyone was so committed; I think we made a good team! And
of course, I want to thank the thesis committee that took time from their busy
schedules to see me dressed as a penguin.

All in all, I cannot help but feel privileged for all the support I got over the past
years and how I have been provided with so many good opportunities essentially
out of the blue. I hope I can mean the same to the people around me in the future.

283

284

Curriculum Vitae

Jelle Victor Vos

March 6, 1998 Born in Delft, The Netherlands

Aug 2009 - Jul 2015 Bilingual VWO, Gymnasium
Grotius College Delft

Sep 2015 - Jan 2019 BSc Computer Science & Engineering
Delft University of Technology
Honours programme
Thesis internship at ING Group, Amsterdam

Sep 2019 - Jun 2021 MSc Computer Science
Delft University of Technology
Cyber security specialisation
Graduated cum laude

Jul 2021 - Jun 2025 PhD in Cryptography
Delft University of Technology
Cyber Security research group

May 2023 - Sep 2023 Cryptographic Engineering Intern
Apple Inc., Cupertino, United States of America

Feb 2024 - Jun 2025 Security Engineer
Apple Inc., remote

285

286

List of publications

Published

1. Chapter 4: Jelle Vos, Sikha Pentyala, Steven Golob, Ricardo Maia, Dean Kelley,
Zekeriya Erkin, Martine De Cock, Anderson Nascimento. ‘Privacy-Preserving
Membership Queries for Federated Anomaly Detection’. In Proceedings on
Privacy Enhancing Technologies, PETS 2024. 10.56553/POPETS-2024-0074

2. Chapter 6: Jelle Vos, Mauro Conti, Zekeriya Erkin. ‘Oraqle: A Depth-Aware
Secure Computation Compiler’. In Proceedings of the 12th Workshop on
Encrypted Computing & Applied Homomorphic Cryptography, WAHC 2024.
10.1145/3689945.3694808

3. Chapter 1: Jelle Vos, Mauro Conti, Zekeriya Erkin. ‘SoK: Collusion-resistant
Multi-party Private Set Intersections in the Semi-honest Model’, In 2024 IEEE
Symposium on Security and Privacy, IEEE S&P 2024. 10.1109/SP54263.2024.00079

4. Armin Memar Zahedani, Jelle Vos, Zekeriya Erkin. ‘Practical Verifiable
& Privacy-Preserving Double Auctions’. In Proceedings of the 18th Inter-
national Conference on Availability, Reliability and Security, ARES 2023.
10.1145/3600160.3600190

5. Tianyu Li, Jelle Vos, Zekeriya Erkin. ‘Decentralized Private Freight Declara-
tion & Tracking with Data Validation’. In 2022 IEEE International Conference
on Pervasive Computing and Communications Workshops and other A#li-
ated Events, BRAIN 2022. 10.1109/PERCOMWORKSHOPS53856.2022.9767444

6. Chapter 7: Jelle Vos, Daniël Vos, Zekeriya Erkin. ‘E#cient Circuits for
Permuting and Mapping Packed Values Across Leveled Homomorphic
Ciphertexts’. In European Symposium on Research in Computer Security,
ESORICS 2022. 10.1007/978-3-031-17140-6_20

7. Aslı Bay, Zekeriya Erkin, Jaap-Henk Hoepman, Simona Samardjiska, Jelle Vos.
‘Practical Multi-Party Private Set Intersection Protocols’. In IEEE Transactions
on Information Forensics and Security, IEEE TIFS 2021.10.1109/TIFS.2021.3118879

8. Aslı Bay, Zeki Erkin, Mina Alishahi, Jelle Vos. ‘Multi-party private set inter-
section protocols for practical applications’. In 8th International Conference
on Security and Cryptography, SECRYPT 2021. 10.5220/0010547605150522

9. Jelle Vos, Zekeriya Erkin, Christian Doerr. ‘Compare Before You Buy:
Privacy-Preserving Selection of Threat Intelligence Providers’. In IEEE
International Workshop on Information Forensics and Security, IEEE WIFS
2021. 10.1109/WIFS53200.2021.9648381

287

https://doi.org/10.56553/POPETS-2024-0074
https://doi.org/10.1145/3689945.3694808
https://doi.org/10.1109/SP54263.2024.00079
https://doi.org/10.1145/3600160.3600190
https://doi.org/10.1109/PERCOMWORKSHOPS53856.2022.9767444
https://doi.org/10.1007/978-3-031-17140-6_20
https://doi.org/10.1109/TIFS.2021.3118879
https://doi.org/10.5220/0010547605150522
https://doi.org/10.1109/WIFS53200.2021.9648381

Under review

1. Chapter 2: Jelle Vos, Jorrit van Assen, Tjitske Koster, Evangelia Anna Marka-
tou, Zekeriya Erkin. ‘On the Insecurity of Bloom Filter-Based Private Set
Intersections’. Under review at the Theory of Cryptography Conference,
IACR TCC 2025.

2. Chapter 5: Jelle Vos, Mauro Conti, Zekeriya Erkin. ‘Depth-Aware Arithme-
tization of Common Primitives in Prime Fields’. Under review at the 34th
USENIX Security Symposium, USENIX Security 2025.

Unpublished

1. Daniël Vos, Jelle Vos, Tianyu Li, Zekeriya Erkin, Sicco Verwer. ‘Di"erentially-
Private Decision Trees with Probabilistic Robustness to Data Poisoning’.
ArXiv preprint: arXiv:2305.15394.

2. Chapter 3: Jelle Vos, Mauro Conti, Zekeriya Erkin. ‘Fast Multi-party Private
Set Operations in the Star Topology from Secure ANDs and ORs’. Cryptology
ePrint Archive: 2022/721.

288

	Summary
	Samenvatting
	Introduction
	Practical secure computation & existing techniques
	Research questions
	Detailed thesis outline
	References

	A Efficient MPSO protocols in the star topology
	SoK: Collusion-resistant Multi-party Private Set Intersections in the Semi-honest Model
	Introduction
	Formal problem description
	Preliminaries
	Common constructions
	Proposed protocols
	Common pitfalls
	Analytical evaluation of computational costs
	Discussion
	Conclusion
	References
	Derived complexities
	Derived operation counts

	On the Insecurity of Bloom Filter-Based Private Set Intersections
	Introduction
	Bloom Filters
	Definition of MPSI security
	An abstraction of Bloom filter-based PSI
	Analysis of Bloom filter-based PSI
	Practical attack on Bloom filter-based PSI
	Mitigations
	Conclusion
	References
	Conditions on the false positive probability
	Additional lemmas for proving upper bounds

	Fast Multi-party Private Set Operations in the Star Topology from Secure ANDs and ORs
	Introduction
	Related work
	Preliminaries
	Private ORs & ANDs
	Private set operations for small universes
	Private set intersections for large universes
	Private set unions for large universes
	Conclusion
	References
	Complexities of MPSI protocols
	Complexities of MPSU protocols

	Privacy-Preserving Membership Queries for Federated Anomaly Detection
	Introduction
	Related work
	Preliminaries
	Solution outline
	Private consistency queries
	Privacy analysis
	Performance analysis
	Limitations
	Conclusion
	References
	Differentially-private discretization of InterimTime
	Changes in the malicious model

	B Automatic generation of HE circuits
	Depth-Aware Arithmetization of Common Primitives in Prime Fields
	Introduction
	Notation and conventions
	Related work
	Arithmetization of Sums & Products
	Arithmetization of Exponentiations
	Arithmetization of Polynomial Evaluation
	Arithmetization of ANDs and ORs
	Depth-Aware Composition
	Conclusion
	References

	Oraqle: A Depth-Aware Secure Computation Compiler
	Introduction
	Homomorphic encryption compilers
	Programming interface
	Depth-aware arithmetization
	Optimization of arithmetic circuits
	Code generation
	Results
	Limitations
	Conclusion
	References
	Code samples

	Efficient Circuits for Permuting and Mapping Packed Values Across Leveled Homomorphic Ciphertexts
	Introduction
	Preliminaries & Notation
	Related Work
	Constructing Arbitrary Mapping Circuits
	Performance of Special Mappings
	Results
	Conclusion
	References

	The road ahead
	Oraqle Extended: Optimal Automated Protocol Design for Homomorphic Encryption-based Multi-Party Private Set Intersections
	Introduction
	Beyond arithmetic circuits
	Encoding Booleans & sets
	Assignment and scheduling
	Initial results
	Conclusion
	References

	Discussion
	Takeaways
	Societal impact
	Limitations
	Future work

	Acknowledgments
	Curriculum Vitae
	List of publications

