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Shortly after touching an object, humans can tactually gauge the frictional
resistance of a surface. The knowledge of surface friction is paramount to
tactile perception and the motor control of grasp. While potent correlations
between friction and participants’ perceptual response have been found, the
causal link between the friction of the surface, its evolution and its perceptual
experience has yet to be demonstrated. Here, we leverage new experimental
apparatus able to modify friction in real time, to show that participants can
perceive sudden changes in friction when they are pressing on a surface.
Surprisingly, only a reduction of the friction coefficient leads to a robust
perception. High-speed imaging data indicate that the sensation is caused
by a release of a latent elastic strain over a 20ms timeframe after the activation
of the friction-reduction device. This rapid change of frictional properties
during initial contact is interpreted as a normal displacement of the surface,
which paves the way for haptic surfaces that can produce illusions of
interacting with mechanical buttons.
1. Introduction
Whenever our fingers physically interact with objects, tools or materials, the
interaction causes our skin to deform. The deformation stimulates mechanore-
ceptors embedded in the tissues that signal to the brain material properties such
as compliance, texture and how far the object is from sliding away. Particularly,
our sense of touch can discriminate between the slipperiness of a wet soap or
the grip provided by a rough surface at the first instant of touch [1,2]. The tactile
sensations reinforce the internal model of our surroundings and are fundamen-
tal to properly tune our motor commands [3]. Transient events such as the
crackle of a piece of bread or the subtle click of a button help us understand
the dynamic behaviour of the environment [4].

However, the update of this mental model does not always reflect perfectly
the physical interaction between the skin and the environment. For every inter-
action, the brain has to infer what is the nature of the surface being touched
from an incomplete picture.

Wang and Hayward showed that unusual stimulations of the skin could
fool the brain in perceiving an indentation when only local shear was applied
[5,6]. Similarly, our perception of tactile speed is influenced by the texture of a
surface [7]. Other illusions involve tactile and proprioception, where the
compliance of an object can bias the sensation of moving the fingertip [8]. In
this study, we explain the illusion that occurs when we rapidly remove the
friction of the fingertip pushing on a rigid surface. Removing friction creates
the illusion that the surface has moved downward (i.e. similar to the click of
a keyboard). We postulate that during a simple press, the brain must decipher
whether the afferent flux originates from the deformation induced by
self-motion or induced from the object deformation. The distinction between
the deformation of the skin coming from intrinsic or extrinsic causes is also
imperfect and therefore creates the illusion of pressing a button.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2022.0718&domain=pdf&date_stamp=2023-02-08
mailto:m.wiertlewski@tudelft.nl
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We previously demonstrated that during the initial
compression of the skin on a rigid surface, the friction
constrains the lateral expansion of the skin [2]. In parallel,
we also showed that rapid friction changes during com-
pression lead to a clear feeling of pressing a button [9,10].
Could an intrinsic relaxation of the skin cause this sensation
of key click?

When an operator is pressing on a button, elastic strain is
stored in the fingertip, then suddenly released by themechanical
detent [11–13]. The interaction with buttons creates similar pat-
terns of deformation to what happens during the rapid change
of friction. Therefore, for the nervous system, the most likely
explanation for this lateral relaxation of the skin would be the
interaction with a button that accelerates downward.

This illusion is particularly useful for surface-haptic devices
that use ultrasonic friction modulation to provide artificial
tactile sensations. Ultrasonic friction modulation relies on trans-
verse waves of the order of micrometres and outside the
perceptual window of touch. However, the vibrations create a
near-field acoustic levitation that reduces friction. When friction
is modulated with the users’ movement, these devices can pro-
duce the illusion of shape and texture on a two-dimensional
plate [14–17]. The sensation of touching a button can be trig-
gered, not by physically displacing a button but by
dynamically changing the static friction of the skin on a surface
[9,10,18]. Remarkably, this behaviour arises even in the absence
of sliding or lateral forces, on a static finger.

In this paper, we show that the sensation of touching a
virtual button arises when the ultrasonic waves release the
elastic energy stored during pressing (see figure 1a,b). When
the ultrasonic vibration is turned on, the skin slightly levitates
(figure 1c) causing a decrease in real area of contact and a
deformation of the skin (figure 1d ). The deformation of the
skin following the stress release spreads radially outward
(see figure 1e).
2. Material and methods
2.1. Apparatus
The experimental apparatus comprised two sub-modules: an
optical path to image the contact and the skin topography, and
a plate excited with ultrasonic bending waves to modulate the
friction coefficient. The friction modulation section of the appar-
atus is illustrated in figure 2a and the optical arrangement to
measure the contact is shown in figure 2b. The influence of the
vibration on the friction of a sliding finger is shown figure 2c.

2.1.1. Contact optical imaging
The custom optical system has two distinct illuminations of two
different colours. The first illumination is a 450 nm blue light
(Thorlabs M455L3) directed to the fingertip with a low
incidence angle. The grazing light highlights the topography of
the skin and provides robust information for tracking the features
of the skin, including before the contact occurs. The second illu-
mination is a 660 nm red light (Thorlabs M660L4) and is shone
orthogonal to the surface of the glass. The light is emitted
through a beam splitter which ensures coaxiality with the
return path. This illumination uses frustrated reflection of the
glass–air interface to highlight the micro-junctions where the
asperities of the skin are in intimate contact with the plate [19].
In the absence of the finger, 4% of the incident light is reflected
toward the sensor, but if part of the skin is in intimate contact
with the glass plate, the reflection is frustrated, leading to a
dark area on the image. A dichroic filter is used to spatially sep-
arate the two illumination sources so the two images are
acquired by a single high-speed camera (Miro M110).

2.1.2. Friction modulation device
To modulate friction in real time, we used an ultrasonic glass
plate. The transverse vibrations levitate the skin away from the
surface, reducing the number of micro-junctions and, therefore,
reducing friction. The device used in the experiment measured
50 × 67 × 5 mm3 and vibrated in a 3 × 0 mode at a resonant fre-
quency of 28.85 kHz. A piezoelectric sensor glued to the centre
of the plate was used to measure the plate deformation in
real time. The sensor, calibrated with an interferometer
(IDS3010, Attocube, Munchen, Germany), gave a linear response
within the entire +4 mm amplitude range. The plate was
mounted on an aluminium frame fixed on a 6-axis sensor
(Nano43, ATI Industrial Automation, Norwalk, CT, USA). We
optimized the force sensor placement to avoid large torques
and cross-talk.

The piezoelectric actuator glued to the glass plate was driven
at resonance by a ±200 V carrier signal, whose amplitude was
modulated under computer control.

2.2. Participants
Twelve right-handed subjects aged from 22 to 35 years (3 females
and 9 males) participated in the study. They were naive as to the
purpose of the experiments and had no previous experience with
haptic devices. None of them reported having any skin conditions
or perceptual deficits. They gave their informed consent. The study
was approved by the Comité de Protection des Personnes Sud
Mediteranée ethics committee (2019-14-11-003). Finger images of
four participants were acquired and processed to extract contact
brightness and finger skin deformation.

2.3. Protocol
We used a randomized two-alternative forced choice (2-AFC)
protocol where participants had to discriminate which one of
the two stimuli moved similarly to a mechanical detent found
in computer keyboards.

The reference stimulus had a medium friction level, main-
tained throughout the entire press and the comparison
stimulus was a step change of friction whose average was the
medium friction level. This medium friction level was obtained
for a vibration amplitude of ±1.5 μm from base to peak. The six
comparison signals were constructed by choosing between fall-
ing friction (where the amplitude was going from low to high)
and rising friction followed by choosing one of the three levels
of friction changes (low, medium, high) that correspond to an
amplitude change ΔA of 1, 2 and 3 μm, respectively. As an
example, for the falling friction condition, the three amplitude
changes were constructed as follows: from 3 to 10−3 μm, from
2.5 to 0.5 μm and from 2 to 1 μm. The change of friction was trig-
gered by measuring in real time the force amplitude, and if the
force reached the threshold of 0.7 N, the controller would
change the ultrasonic amplitude. The controller has a latency of
0.5 ms, which translates into a negligible jitter of the force
threshold. During a pilot experiment, we measured the dynamic
coefficients of friction when the vibration amplitude was modu-
lated from 10−3 to 3 μm. When participants were steadily sliding
across the plate, we found that the coefficient of friction varied
from μ = 0.75 ± 0.14 down to μ = 0.12 ± 0.07.

Each stimulus was repeated 10 times for a total of 120 trials.
The experiment lasted approximately 60min. Participants could
take a 5min break every 15min. To mitigate the learning effects,
the participants were first shown the reference stimulus and a
typical falling friction condition with a 3 μm amplitude variation.



normal
force (N)

ultrasonic
vibration

(µm)

0.7 N

20 ms

pressing 
down stress 

accumulation
stress

release
skin

expansion

0

2

–3

3

normalized
contact

area 0

1

high friction low friction

high friction low friction

20 ms

average
displacement

(µm) 0

200

1 mm

2 mm 100 �m

(a)

(b)

(c)

(d)

(e)
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stress. This stress is released by rapid change of friction. (b) Evolution of the normal force and ultrasonic amplitude. The vibration amplitude changes when the
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Participants wore headphones playing pink noise. A tone indi-
cated the start of each trial and a double tone that they needed
to answer.

To avoid any lateral movement during pressing, the finger
was secured to a vertical linear guide. The palm rested on a sup-
port, which stabilized the participant’s hand, ensuring repeatable
interaction.
2.4. Image analysis
The contact image and deformation image were recorded syn-
chronously. We registered the images by computing the
homogeneous transform from a known calibration object. The
illumination drift was corrected using images without any
finger. We recorded images at 1000 Hz 5ms before and 40ms
after the friction change was triggered.

To capture the deformation of the skin, we tracked 800 fea-
tures on the topography image with a key image at the instant
of the trigger. These features were tracked inside the ellipse of
contact using Lucas and Kanade optic flow algorithm. We com-
puted a metric to extract the average displacement of the skin by
taking the spatial average of the norm-2 of the displacement field
u(x, y):

�u ¼ 1
S

ð
S
kuðx, yÞk2 dxdy, ð2:1Þ

where S is the contact area and x, y are the spatial coordinates.

2.5. Statistical analysis
The influences of friction change in direction or amplitude ΔA on
contact area and skin displacement were assessed with analyses
of variance (ANOVA). One-sample t-tests were used for post hoc
comparisons when ANOVA showed a significant effect of one or
multiple independent variables. The significance threshold used
was 0.05.
3. Results
3.1. Perceptual experiment
The probability of detecting the comparison from the refer-
ence of the psychophysics experiment for all cases is shown
in figure 3. The vibration amplitude and the direction of the
frictional change had a significant effect on the perception
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of the keyclick (ANOVA, F5,66 = 13.4, p = 5 × 10−9 and F1,70 =
12.65, p = 0.0007, respectively). The responses follow a
psychometric curve, with an unambiguous detection for
rapidly decreasing friction with the highest amplitude vari-
ation of 3 μm. Participants responded at chance level for
every rising friction condition,where the frictionwas changing
from low to high, consistent with previous studies [9,10,20].

We fitted the results with a logit function and found that
the 75% detection threshold was reached for ΔA = 2.5 μm. For
reference, when actuating the plate at 2.5 μm, the sliding
friction is reduced by �30%.

The psychophysical results clearly show that only a
significant decrease in friction is perceptible, and the percep-
tion is unreliable when friction increases. We postulated in a
previous paper that this specificity to the friction reduction
was the effect of the sudden release of frictional stress at
the interface [2]. The following section explores the contact
mechanics associated with this perception of click.
3.2. Contact evolution
The contact images are used to extract a measure of the real
contact area. This real contact area is the sum of all the junc-
tions between the asperities of the skin and glass plate. The
real area of contact is known to be linearly correlated to the
frictional strength of the contact, therefore providing a
measurement of the friction at the interface without resorting
to force measurement during gross slippage [19,21]. A larger
contact area has more junctions to adhere to the surface and
therefore experiences more friction, assuming a constant
shear strength of the interface.

For every trial, the increase in normal force causes an
increase in the area of contact. The normal force typically
reaches 2–3N at the end of the press. We set the trigger
when the force reached a 0.7 N threshold so that the friction
modulation occurred at the early stage of the establishment
of the contact. During reference trials, the friction was
unchanged, and the contact brightness steadily increased by
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39:7+ 54:1%. The increase of brightness can be explained by
an increase of apparent contact area and normal force when
the participant pressed their finger.

Significant differences in the evolution of the contact area
during falling and rising friction conditions with respect to
reference trials are found (ANOVA, F2,477 = 164.23, p < 0.001).
During the transition from low to high friction, the area of
contact has notable dynamics. Around 5ms after the
change of friction is triggered, the contact area rises sharply
(figure 4b,c left), marking a lower levitation height and the
formation of new junctions between the skin and the glass
plate (M ¼ 41:60%, s:d: ¼ 56:22%, t119 = 8.11, p < 0.001).

During falling friction trials, where the friction changed
from high to low, the contact area rapidly decreases within
5ms after the transition (M ¼ �13:54%, s:d: ¼ 20:87%, t119 =
−7.41, p < 0.001) (see figure 4b,c right). This decrease demon-
strates that the ultrasonic actuation reduces the number of
junctions between the skin and the glass plate. The decrease
of contact is positively correlated with friction reduction
(Spearman’s coefficient = 0.123, p < 0.0001). Twenty millise-
conds after this rapid reduction of contact, the contact
rises again under the increase of normal force from the
participant.

When inspecting individual trials, we also observed that
the majority of falling friction trials shows that the losses of
contact are concentrated in specific clusters that grow slowly,
and the front of which propagates laterally. This effect might
be due to the complex interaction between ultrasonic levitation
and soft skin. Pockets of over-pressured air are nucleating and
diffusing throughout the area of contact before finally reaching
equilibrium. By contrast, during rising friction cases, contact
increases over the entire finger surface.
3.3. Contact and skin displacement
In addition to the real contact area, we measured the displa-
cement field of the skin. We observed the movement of
patches of skin during the normal compression of the finger-
tip pulp. During reference trials, the ultrasonic vibrations are
maintained at 1.5 μm causing an incomplete contact between
the finger and the plate. The observed increase in contact area
after 0.7 N is only due to the increase in finger pressure. The
skin of the fingertip exhibits a lateral displacement during
compression (M = 15.6 μm, s.d. = 17.1 μm), in line with
previously reported findings [2].

In the condition where friction increases, the movement of
the skin only occurs before the trigger, since almost no fric-
tion is present at the initial moment of contact (figure 5a).
After the rapid increase of friction, the growth of the contact
area increases the friction and reduces the lateral displace-
ment of the skin to almost zero in the 20ms following the
trigger (M = 7.4 μm, s.d. = 8.5 μm, t119 = 9.51, p < 0.001) (see
figure 4d–f left and figure 5d ). This sudden cease of lateral
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displacement can be explained by the high friction state that
prevents any lateral movement of the skin.

In the falling friction condition, the contact initially devel-
ops with high friction. Consequently, only a slight lateral
deformation of the skin is observed before the trigger. After
the rapid reduction of friction, several detachment fronts
nucleate in the area of contact, which causes a non-uniform
movement of the skin (figure 5c). We measured a lateral dis-
placement of the skin after the change of friction of 43.3 ±
54.1 μm (t119 = 8.77, p < 0.001) (see figure 4d–f right). The
size of the change of lateral displacement followed a
normal distribution, verified by a chi-square test rejecting
the null hypothesis (χ2(1, N = 120) = 16.87, p < 0.001). The
amplitude of the lateral movement significantly increases
between friction conditions and for the reference stimulus
(ANOVA, F2,477 = 49.63, p < 0.001).

The skin movement 20ms after the trigger has an average
displacement of 43.3 ± 54 μm. However, the displacement field
is not uniform. The outer regions show a larger movement of
the skin than the inner region, showing an expanding pattern
similar to what is observed in [2] (see figure 5f ).

Overall, the change of contact area decreases with
increasing change of amplitude (ANOVA, F6,553 = 87.37,
p < 0.001) (see figure 5b). Conversely, the global displacement
shows a positive correlation with the amplitude of the change
of ultrasonic vibrations (ANOVA, F6,473 = 21.39, p < 0.001) (see
figure 5e).
3.4. Skin deformation causes perception
While the deformation of the skin is of the order of a few hun-
dred micrometres, the relaxation of the skin after a reduction
of friction is quick enough to generate a strain rate of roughly
5% per second compatible with the known detection
threshold of rapidly adapting afferents [22].

Using the data from the experiment, we can establish a
causal connection between skin deformation and the percep-
tion of mechanical stimuli. The connection emerges when
selecting only trials where the friction was decreased (falling
friction). While the change of contact area pre- and post-
trigger was not significantly different when the participant
detected the stimuli or not (figure 6a), the amount of
deformation of the skin had an unambiguous explanatory
power over the probability of detection by the participant
(figure 6b, Spearman’s coefficient = 0.123, p < 0.01).

The trials where the stimulus was not detected, but the
amplitude was 3 μm, correspond to near-zero changes in
the contact area and negligible deformation (see figure 6c).
Conversely, the trials where the stimuli were correctly
detected are associated with larger contact area changes
and skin deformation.

3.5. Model predictions
To better understand how the skin deforms after a sudden
change of friction, we modelled the biomechanics of the
fingertip under frictional contact. We used a finite-difference
time-domain scheme to capture the deformation of the skin,
viscoelasticity and local friction behaviour at the interface.
The model is identical to the one used in [2]. We simulated
the interaction between the finger skin and the plate surface
under seven friction changes from −3 to 3 μm with a normal
force of 4N applied to the bone element (see figure 7a).

The rising friction case has a similar mechanical behav-
iour to the reference, which sees no change in friction.
Because of the low friction, the elements start to expand lat-
erally before the mechanical detent, when the friction is
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effect on the detection (n = 40). (b) A stimulus perceived by the participants is likely to correspond to large skin deformation (n = 40). (c) Normalized contact area
as a function of average displacement for every falling-friction condition (n = 40).
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small. Then when we increase friction, the lateral component
of the interfacial pressure increases and locks the elements in
place. The simulated median displacements are shown in
figure 7b. The curves flatten in all conditions, but despite a
saturation, the median of the average displacement metric
is eight times higher in the maximal falling friction condition
compared to the rising friction condition.
Simulation results are shown in figure 7c where individ-
ual displacements of skin patches appear in red, and the
stresses at the interface appear in white. In the falling friction
condition, the lateral component of the interfacial pressure
decreases significantly after the friction change, which hap-
pens at 0ms. This release of mechanical stress results in
significant lateral deformation of the skin.
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4. Discussion
The skin of our fingertip is highly deformable and, therefore,
can conform to a wide range of shapes and surfaces [23,24].
During the first instant of contact, friction plays a critical
role in the way the skin will deform [1,2]. If friction is low,
the skin will expand laterally and a negligible amount of tan-
gential stress will be stored. Conversely, when friction is high,
the skin grips to the surface when it makes contact, blocking
its tangential expansion and storing elastic energy.

Surprisingly, this work shows that a sudden release of
elastic energy by rapidly reducing friction can be perceived.
Effectively this rapid change of friction is analogous to chan-
ging the boundary condition at the contact from fixed to a
roller. A similar change of boundary condition arises when
operating real buttons [13], which might explain why we per-
ceive these changes of friction as a button click. The change in
friction produces a notable lateral expansion of the skin,
which takes less than 20ms to fully develop. The time
response is consistent with known values of the relaxation
of the skin [25] suggesting that this duration is limited by
the viscoelastic behaviour. The brief deformation of the skin
can be sufficiently large to produce conscious sensations.

The ultrasonic vibration excites the skin in a range of
frequencies and deformations that do not stimulate the
mechanoreceptors in the skin. Yet participants reported
perceiving the event, suggesting that the mechanical defor-
mation of the skin, due to the release of friction, is
sufficient to trigger a sensation. Participants reported that
they felt they pressed a mechanical button, although no sig-
nificant normal movement of the plate was recorded. Our
hypothesis behind this association is that the detent that we
feel when interacting with a real button produces a similar
release of elastic energy to what is found when interacting
with a mechanical button. Because the release of energy is
congruent to the user’s action, this sensation of mechanical
detent after a reduction of friction is perceived as the
activation of a mechanical button.

The salience of the illusory button directly connects to the
size of the friction change. The larger the friction change,
the larger the skin deformation and the easier it is to detect
the stimulus. Since the stored energy during compression is
limited by the mechanics of the skin, there is an upper
bound on the strength of the stimuli. In the present study,
we focused our attention on purely normal exploratory
motions, where the participant could only press on the plate
since their finger was guided by a vertical linear guide. There-
fore, we recorded only an insignificant amount of lateral force.
However, we could increase the strength of the stimuli by stor-
ing additional elastic energy in the gross lateral deformation of
the fingertip during compression, using surface-haptic devices
that provide active forcing, such as in [26,27]. A lateral defor-
mation at the initial instant of skin deformation could lead to
potent sensations and salient click.
The observed skin deformation is of the order of a few
tens of micrometres and yet it leads to a robust perception.
We postulate that such a small change is perceivable because
the deformation is quick enough to stimulate the rapidly
adapting afferents. We showed that the expansion of the
skin is a fundamental factor of our estimate of friction
during the moments following the initial contact [2]. How-
ever, the discrimination of friction on initial contact is
challenging, and a proper estimate of friction is made when
there is a lateral motion of the skin on the surface [28].
5. Conclusion
In this study, we showed that micrometre-scale ultrasonic
vibrations, which are not perceivable by touch, can create a
distinct tactile stimulus resembling a button click when the
friction suddenly decreases. The stimulus is created by an
indirect stimulation of the skin: a near-field levitation effect
reduces the friction and allows the skin to expand. To observe
this skin expansion, we developed a custom optical apparatus
that can simultaneously monitor the change in the real con-
tact area—connected to the frictional strength of the
contact—and the deformation of the skin. The observed
skin expansion when pressing on the surface is at the root
of the perception since larger deformation leads to an
improved probability of detection by participants.

The perception of friction is central to the appreciation of
materials and the motor control of grasp. Taken together, the
observations presented in this paper allow us to postulate
that the tactile perception of friction when actively interacting
with our environment is initially caused by the lateral
expansion of the skin.
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