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Direct numerical simulations of turbulent flow over a permeable wall using
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A direct numerical simulationDNS) has been performed of turbulent channel flow over a
three-dimensional Cartesian grid of 8@20X 9 cubes in, respectively, the streamwise, spanwise,
and wall-normal direction. The grid of cubes mimics a permeable wall with a porosity of 0.875. The
flow field is resolved with 60& 400X 400 mesh points. To enforce the no-slip and no-penetration
conditions on the cubes, an immersed boundary method is used. The results of the DNS are
compared with a second DNS in which a continuum approach is used to model the flow through the
grid of cubes. The continuum approach is based on the volume-averaged Navier<SHik&s
equationg[S. Whitaker, “The Forchheimer equation: a theoretical development,” Transp. Porous
Media 25, 27 (1996)] for the volume-averaged flow field. This method has the advantage that it
requires less computational power than the direct simulation of the flow through the grid of cubes.
More in general, for complex porous media one is usually forced to use the VANS equations,
because a direct simulation would not be possible with present-day computer facilities. A
disadvantage of the continuum approach is that in order to solve the VANS equations, closures are
needed for the drag force and the subfilter-scale stress. For porous media, the latter can often be
neglected. In the present work, a relation for the drag force is adopted based on th§'Modgles
théoriques d’écoulement dans les corps poreux,” Bulletin RiE9n37 (1965] and the Burke—
Plummer modefR. B. Bird, W. E. Stewart, and E. N. Lightfoofransport Phenomen@Viley, New

York, 20021, with the model coefficients determined from simulations reported by W. P. Breugem,
B. J. Boersma, and R. E. UittenbogadtDirect numerical simulation of plane channel flow over

a 3D Cartesian grid of cubesProceedings of the Second International Conference on Applications

of Porous Mediaedited by A. H. Reis and A. F. Migu¢Evora Geophysics Center, Evora, 2004

p. 27]. The results of the DNS with the grid of cubes and the second DNS in which the continuum
approach is used, agree very well.28005 American Institute of Physi¢g®OI: 10.1063/1.1835771

I. INTRODUCTION meable wall as well as within the pores of the wall, would
require an enormous computational power. The literature,

In this research we consider turbulent channel flow ovehowever, provides two other methods to simulate the turbu-

a three-dimensiondBD) Cartesian grid of cubes, where the lent flow over and through a permeable wall, which are more

cubes mimic a permeable wall. A permeable wall is definedattractive from a computational point of view.

here as a rigid porous wall with interconnected pores through In the first method, the effect of wall permeability is

which fluid may flow, which in our case is coupled to the incorporated in the boundary conditions specified at the wall

flow in the channel. The study of flows over permeable wallsinterface. The main advantage of this approach is that the

has various applications. Examples are oil wells, heat exflow inside the permeable wall need not be calculated. This

changers of open-cell metal foam, and riverbeds of for inapproach was adopted by, e.g., Hatral,> who performed

stance sand or stones. To some extent, also forests amNS of turbulent flow in a plane channel with a solid top

densely builtup urban areas can be considered as porous mgall and a lower permeable wall. The boundary conditions

dia. In most applications the structure of the porous mediunused, were an extension to the boundary conditions proposed

is very complex and often the geometry is not known in full by Beavers and Josei)hater on referred to as Bdo model

detail. Furthermore, the flow inside a porous medium exhibiaminar flow parallel to a permeable wall:

its usually a wide range of length scales. The smallest scales

are typically of the order of the pore size or the diameter of ¢, .= i_(u - Uy, (1)

the solid obstacles of which the porous medium is composed, VK

whereas the largest scales might be of the order of the di-

mensions of the porous medium. The complex structure of |, « n=0, 2)

porous media and the wide range of length scales of the flow,

hampers the direct simulation of turbulent flow over andwheren is the normal unit vector at the waly is an empiri-

through porous media. A direct numerical simulat@@NS)  cal coefficient of order unity, anH is the permeability. The

in which the complete flow field is resolved above the per-Darcy velocityUy is given by Darcy’s Law?
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K
Ud:——Vp, (3)
i

whereu is the dynamic viscosity an¥p the imposed pres-
sure gradient. Theoretical support for the BJ conditions was
given by Saffmarf,who showed that these conditions can be
derived from the assumption of Stokes flow inside as well as
above the permeable wall. The BJ conditions can therefore
be applied to the case of turbulent channel flow only when
close to the permeable wall a viscous sublayer exists, in
which the flow is governed by the Stokes equations. As
pointed out by Hahret al,’ this requirement is satisfied
when K is small compared to the viscous length scale.,
wherev= u/p is the kinematic viscosityy the mass density,
u,= =,/ p the friction velocity, andr, the wall shear stress.
The ratio of these two lengthscales yields the permeability
Reynolds number Re= VKu,/v, which expresses basically

Phys. Fluids 17, 025103 (2005)

(a) z=H

mean flow direction

the ratio of the effective pore diameteK to the character- z==h
istic lengthscales of near-wall eddiesu,. For small values

of Re¢ the eddies are blocked by the wall and consequently a (b) z=H
viscous sublayer exists. For large values of Ree eddies
may penetrate the permeable wall, and consequently the for-
mation of a viscous sublayer is prohibited. Although it can-
not be fully excluded, it is not likely that the penetration of
turbulence in this case can be modeled in a simple manner by
means of boundary conditions, because of the complexity of
the dynamics and structure of the turbulent flow near the
permeable wall. Therefore, for an accurate simulation of the
flow field for large R, we have to describe the flow inside
the permeable wall as well.

The second method to simulate flows over porous media,
is to model the flow inside the permeable wall as a con-
tinuum, which is coupled with the flow outside the wall.
The theoretical basis for this continuum approach is provided
by the volume-averaging meth8dn this method the flow is
averaged over a small spatial volume such that the volume-
averaged flow is defined in the fluid as well as in the solid

phase. The volume-a_lveraged flow is gov_emed by th%lG. 1. Flow geometry@a) Geometry as considered in the DNS of turbulent
VOlum_e'average(_j ’_\Iawer_StOkQVANS) equatlo_ns. These  channel flow over a 3D Cartesian grid of cub@s; geometry as considered
equations are similar to the equations used in large-eddy the DNS in which a continuum approach is employed for the grid of

simulations(LES),7 where the difference is due to the fact cubes.
that the VANS equations have to account also for the drag
force that the flow through a porous medium experiences. To
solve the VANS equations, closures must be provided for theous medium consisting of a 3D Cartesian grid of cubes, see
subfilter-scale stress and the drag force in terms of volumekig. 1(a). In this simulation the complete flow field in be-
averaged quantities. In many porous media subfilter-scalaveen the cubes as well as in the channel is resolved. The
dispersion can be neglected with respect to the drag forceesults of this direct simulation will be compared with a
and/or turbulent diffusion by large-scale motitf’rBreugerﬁ simulation in which the continuum approach is applied to the
used in his simulations the semiempirical Ergun equation fogrid of cubes, see Fig.().
packed bedsto model the drag force. From now on, the DNS of the channel flow over the 3D
A polynomial function for the porosity was adopted to Cartesian grid of cubes will be referred to as NS with
model the variation of the porosity in a thin interface regioncubes whereas the DNS in which the continuum approach is
in between the channel and the porous medium. employed, will be referred to as tHeNS with continuum
Whether the continuum approach is successful in accufhe results from the two simulations will be compared also
rately modeling the flow, depends on the accuracy of thevith a DNS of turbulent flow in a channel with two solid
closures for the subfilter-scale stress and especially the dragalls, which will be referred to as theNS with solid walls
force. This motivated the present research, in which we want  This paper is organized as follows. The choice for the
to evaluate these closures. To this purpose we performed grid of cubes as a model porous medium is motivated in Sec.
DNS of turbulent flow in a plane channel over a simple po-Il. In Sec. 1l the VANS equations are introduced. In Sec. IV

homogeneous fluid region
€=

homogeneous porous region
E=¢,

z=-h
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perimeapic aud Foghiwall. €—>  FoMghiandinReEmEAlIE wall meability Reynolds number is sufficiently large. The
i ' cube ribd, is chosen small compared to the channel
mm "FECEL height. Furthermore, the cube rib is chosen equal to the
[=R=] EpEEEE
B e et e meability Reynolds number. Besides, the choicedpr

=d; seems intuitively also a good choice from a compu-
FIG. 2. lllustration of the difference between a permeable and rough wall,
and a rough and impermeable wall with the same surface roughness. .

the flow in between the cubes must be resolved.
(4) The cubes can be aligned along a Cartesian computa-

the numerical method used in the DNS with cubes. In Sec. ~ simulation data. An immersed boundary methtsiM)
VI the results of both type of simulations are compared with ~ (Ref. 12 and references thergiis employed in which

MR Wi i SPFIPIPIBPIL PSP cubes are therefore aligned in a Cartesian grid and the
::. mmoa : : : : : : ammam pore dimensior(d,=d;) to ensure a relatively high per-
tational point of view, because both the flow along and
the DNS with continuum is discussed. Section V concerns tional mesh. This simplifies the volume averaging of the
each other and with the results from the DNS with solid  forces are added to the flow field to enforce the no-slip

walls. Section VII contains a summary and a discussion. and no-penetration conditions on the cubes. This method
allows for the application of fast and accurate numerical
IIl. CARTESIAN GRID OF CUBES algorithms.

The choice for a 3D Cartesian grid of cubes as a model
geometry for a porous medium is motivated by four consid-il. THE VANS EQUATIONS

erations: : _ . _— .
In this section a brief derivation of the VANS equations

(1) The grid of cubes is spherically isotropieyhich means s given, based on local volume averaging of the Navier—
that the permeability tensor is isotropli¢:=KI, wherel Stokes equations.
is the unit tensor. In a volume-averaged sense the grid of  The formal definition of the volume-averaged velocity at
cubes can therefore be considered as a simple poroyssitionx is given by
medium.

(2) The grid of cubes can be classified as an ordered porous (uys = f Yrym(y)u(r)dv, (4)
medium, which is characterized by a unit cell that can be %

extended periodically in space. For this type of porous

S 1C1 -
medium, Quintard and Whitak&tave proposed a dedi- where the bracket(s .)® denote thesuperficialvolume aver
cated filter for the volume averaging of the flow field, age, the subscript means that the volume average is evalu-

which will be used in the present study. The length 0fated at positiork, y=r —x is the position vector relative to
the centroidx of the averaging volumé&/, v is the phase-

this filter is of the same order as the dimension of the, dicator function that I ity wh ints into th
pores and solid obstacles. Therefore, the spatial structunjf%' cator function that equais unity whenpoints into the

of the unfiltered flow field is preserved as much as pos- uid phase a_nd that_ eql.JaIS Zero whepoints into the soligl
sible in the volume-averaged flow field. This is a majorphase’ andnis a we_lghtmg _funct|on. The vo_lume-av_eraglng
benefit of ordered porous media over disordered porou perator acts as a filter, which passes only information on the
media, because for the latter the filter length should b arge-scale structure of the flow field. Furthermore, we note

P - - that the volume-averaged flow field is continuous in the
ficantly | fi t local inh - L . : . .
i:ggliﬁ?ﬁeﬁloi;gﬁéld% averaging out focal inomogene sense that it is defined both in the fluid and the solid phase,

(3) Permeable walls are not only permeable, but exhibit als&rOViqed of course that the _filter Iength or the avergging vol-
surface roughness. In principle, the additional effect ofiMme 1S large enough. This is the basis of the continuum ap-

surface roughness could be quantified by comparing thgroach for flow In porous m.Ed'a' .
flow over apermeable and rough walkith the flow For a meaningful definition of volume-averaged quanti-

over arough and impermeable wall with the same sur- ties, the weighting function must satisfy the following nor-

face roughnessThe latter wall is impermeable in the malization condition:

sense that below the geometrical roughness height the

flow is forced to zero. The difference between the two fv m(y)dv=1. (5)
walls is illustrated in Fig. 2. In the literature it is com-

mon practice to characterize a rough wall by the typical  In principle the weighting function can be chosen freely,
height of the roughness elements, which in our case ibut it is desirable that the volume-averaged flow field con-
the cube ribd,. The effect of roughness depends on thetains negligible variations on scales smaller than the averag-
roughness Reynolds numbBey=dgu,/ v Similarly,  ing volume; and the averaging volume is small in order to
the effect of permeability depends on thermeability  preserve as much information of the unfiltered flow field as
Reynolds numberek,5 which we have already intro- possible in the volume-averaged flow field.

duced. Our research interest is on the influence of wall These two conditions demand that the weighting func-
permeability rather than the effect of wall roughness ontion matches the topology of the porous medium. With this in
turbulent channel flow. This demands that the roughnesmind, Quintard and Whitak&t proposed the following
Reynolds number is sufficiently small and that the per-weighting function for an ordered porous medium:
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solid phase fluid phase averaged velocity. Besides the spatial decomposition given
/4 by (9), in this study also a temporal decomposition will be
(@) . " ) . used:
E E u=u+u’, (10
f ' '
d $ N where the overbar denotes the Reynolds- or ensemble-
P n averaged value and the prime denotes the temporal fluctua-
; tion. The spatial and temporal decompositions can be com-
NN & bined together, which yields
. - u=q(u)+(u) +T+T’. (12)

surface A of solid phase

inside volume V It is easy to show that the Reynolds- and spatial-averaging

operators commutEt (u)=(u), (u)’ =(u’), T=u, andt’ =T’".
For deriving the volume-averaged form of the Navier—
Stokes equations it is necessary to relate the volume average

averaging volume V

1 of a spatial derivative to the spatial derivative of a volume
(b) average. This relation is given by the spatial-averaging
08k theorem'® For instance, the volume average of the gradient
of the pressure is given by
e 0.6 s_ sy
= (Vp)x= V(p)+ fA m(y)np(r)dA, (12
€ oaf _ _ _
whereA is the contact area between the fluid and the solid
phase inside the averaging voluidesee Fig. 8), andn is
0.2 the normal unit vector aA that points from the fluid into the
solid phase. The single assumption in the derivatio(8pfs
L ra— _0'_5 cly 0f5 ” 115 that the weighting functioom depends only ory and not

i on X.
The application of the volume-averaging operafdy

FIG. 3. The averaging volumés) and the weighting functiortb) corre-  and the spatial-averaging theoréf®) to the Navier—Stokes
sponding to the cellular filter for flow in an ordered porous medium. equations yields the VANS equatiohﬁs

S S, S S, S
oHu)° v{@ (u) ]+ V[(uu)5—<u> (u) }
G(th ot € €
m(x) = H , (6) 1
= :——V<p>5+vv2<u>5+f mn[—|9+vVu]dA, (13
in which I, andx; are, respectively, the length of the unit cell P A p
and the spatial coordinate in directionThe functionG is

defined according to V- (u)®*=0. (14
=l k=1, The VANS equations as given above are exact for Newtonian
G(x;,li) = 0, |x|>1. @) and incompressible flow through a rigid porous medium. The

third term on the left-hand side of Eql3) represents
The above averaging volume and the weighting functionsybfilter-scale dispersion, i.e., dispersion of volume-averaged
are illustrated in Flg 3 for the Cartesian grld of cubes CON-momentum by subfilter-scale motions1 and the last term on
sidered in the present study. Quintard and Whitaker refer tgne right-hand side accounts for the drag force that the solid

this filter as thecellular filter. phase exerts on the fluid phase_
According to Eq.(4) the porosity is defined as Darcy’s Law (3) follows from the VANS equations for
uniform, stationary flow through a homogeneous porous me-
€(x) = f y(r)m(y)dV. (8)  dium (i.e., with a constant porosity
\%
=~ V(p) - uK Ky, (15

The velocity at a certain point in the fluid phase of the
porous medium can be decomposed into a contribution of thevhere the surface integral has been replaced by
volume-averaged velocity at this point and a subfilter-scale-vK ~Le(u)s.*® The VANS equations can be considered as a
velocity T:*3 generalization of the LES equations as well. The latter follow
from the VANS equations for the case that the porosity
equals unity, i.e., the absence of a solid phase, and conse-
where (uy=(u)/e is known as theintrinsic volume- quently a zero drag force.

u=(u)+1, 9
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IV. DNS WITH CONTINUUM 10°
As depicted in Fig. (b), in the DNS with continuum the laminar| turbulent
R : ; 102} regime ! regime
flow domain is divided into three regions. o
(1) The homogeneous fluid region or channel region be- o'k
tween z=0 and z=H in which the porositye equals fadp
unity. ((u)s)2
(2) The interface region betweearx -8 andz=0, which is 107
characterized by a spatially varying porosity.
(3) The homogeneous porous region betweerrh and z 10k

=-§;, with a constant porositye=¢,).

10-2 L 1 1 1 1 ]
ibed 102 10" 10° 10’ 102 10° 10*
Scriped. <’u>8dp/l/

Below we discuss how the flow in each region is de-

A. Homogeneous porous region FIG. 4. Drag forcefy=(1/€)fsmn-[-1p/p+vVT]-n,dA per unit mass of

Th | d fl in the h the fluid phase as function of the Reynolds number, wimgres the unit
€ volume-average Ow In the NOMOogeneous POroUGecior in the streamwise direction. Each dot corresponds to a separate simu-

region is governed by the VANS equatiofs3) and (14). lation (Ref. 19. The simulation results are compared with a model based on
These equations can be simplified by assuming that th&ds.(17)<19) with C=11.4 andC¢=0.4. —, Linear interpolation of simu-
volume-averaged flow field does not vary significantly inside/@tion results; ---, model.

the averaging volume, i.e{{u))=<(u). This is equivalent to

the assumption thafli)= 0. If this assumption holds, then

Eq. (13) can be written a9 diF _ CF( 1- e><|<u>5|dp),

F=FI, 19
K 3 (19

14

a(u)® [<u>3<u>5} W . |
+ V| —— |+ V{@u)® whereCg is a constant and for many packed beds approxi-
at € mately equal to 1.8 In order to determine the values 6f
(u)® andCr more accurately, Breugest al’® performed detailed
vV— numerical simulations of flow through fally periodic 3D
Cartesian grid of cubes wite=0.875(which is equivalent to
P ~ d;=d,). Based on these simulations we found tBat=11.4
+fAmn{—|;+ vV u}dA. 19 and 'tjhatCFzOA. The results from these simulations, to-
gether with the model prediction based on equations
In order to solve the above equations, closures are rg17)—(19), are depicted in Fig. 4. The model overestimates
quired for the subfilter-scale stress and the drag force ihe drag force in the transitional regime where both linear
terms of the volume-averaged flow field. WhitaKegave  and nonlinear drag are important, but gives a good fit in the
support to the following convenient parametrization of thejow and the high Reynolds number range.
surface integral in E(16): A discussion of the closure problem for the subfilter-
scale stress= ({ili)® is given by Breugen.It is argued that
in porous media subfilter-scale dispersion is usually negli-
gible with respect to the drag force and/or the Reynolds-
shear stress of the volume-averaged flow field. The final
form of the momentum equation as used in the continuum
gpproach, therefore reads

S
LTS AN
€

f mn[— |:—‘: + VVTJ}dA: - K1 +F)elu)s, (17)
A

whereK, | andF are, respectively, the permeability, the unit,
and the Forchheimer tensor. A 3D Cartesian grid of cube
falls in the class of spherically isotropic porous médar  d(u)® (uyXu)®
which the permeability tensor is isotropig=KI. Irmay” gt V{ 6 }
derived the following expression for the permeabiliyof s s
the grid of cubes, valid foe<1: __egiP, WU - vV e V (up
p €

€

_[1-(1-9"1+1-9""

K=KI, K
CK(l_G)

2, (19 - %(1 +F)eu)®, (20)

whereCy=12 on condition thak<1 holds. In general, the whereK andF are given by, respectively, Eqi.8) and(19).

Forchheimer tensofF depends on the Reynolds number, on :

. . B. Channel region
the geometrical parameters of the porous medium and on the
direction of the volume-averaged flow. In the present work, = The VANS equationg13) and(14) apply to the channel
F is modeled with the Burke—Plummer equation, which isregion as well. Because the porosity equals unity in this re-
equivalent to the nonlinear part of the Ergun equation: gion, the drag term on the right-hand side(&8) vanishes
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and hence the VANS equations reduce to the LES equations. r
The subfilter-scale dispersion term is negligible only when
the filter length is sufficiently small. This may not be the case
when thesamefilter length is used for the channel region as 0.95[
for the homogeneous porous region. In the DNS with con-
tinuum, however, we aim to completely resolve the flow field
in the channel region. This can be accomplished by assuming € 09
that in the channel region the filter length is set by the com-
putational mesh spacingy, such that, provided that is suf-

ficiently small, dispersion by subfilter-scale turbulent mo- 0.85[

tions is negligible. Consequently, the VANS equatigh8)

and (14) reduce to the standard Navier—Stokes equations

with {u)>=u. 0%3 03 o 0
z/H

C. Interface region

As pointed out above. we assume that in the DNS withF!G- 5. Porosity profile corresponding to the flow over a 3D Cartesian grid
continuum the cellular-filte;r length is different for the homo- of cubes withd, =d, and 5=3d,. The black squares mark the positions of
- 9 . _~ the cubes. —, Calculated from E@®); ---, calculated from Eq(21).
geneous porous region than for the channel region. This im-
plies that the filter length varies across the interface region,

with I;=d;+d, (see Fig. 3 in the homogeneous porous re- _

interface region the volume-averaging theoré®) is not the porous medium. The porosit_y_ in the interface reg_ion is
strictly valid, because a spatially varying filter length meansdiven by Eq.(21). The permeability and the Forchheimer
that the weighting functiom depends not only oy, but also ~ Parameter are calculated from, respectively, H4$) and

on x. On the other hand, the commutation errors will be(19- The governing equations are solved by means of a
small when the filter length is gradually changed over a sufSécond-order pressure-correction method. A pseudospectral
ficiently large distance compared to the characteristic lengtfn€thod is used for the spatial derivatives in the wall-parallel
scales of the flow field® The VANS equationg13) and(14) ~ directions, whereas the finite-volume method with the
may therefore be applied also to the interface region. As fofentral-differencing scheme is used for the wall-normal di-
the homogeneous porous region and the channel region, wection. The reader is referred to Breugefor more details
assume that subfilter-scale dispersion can be neglected in tR8 the numerical scheme. The same code has also been used
interface region too. The drag force cannot be neglected©’ the DNS with solid walls. The results from the latter
however. It is modeled by means of E47), with Egs.(18) 5|mglat|on agle in excellent agreement with the DNS results
and (19) for K andF, respectively. Furthermore, we need a of Kim et al.

model for the porosity, which must gradually change across

the interface region from unity &=0 to e=¢. atz=-4. In a

previous study we adopted a fifth-order polynomial far V- DNS WITH CUBES

according to In this section the numerical method is discussed that is

2\5 2\4 used in the DNS with cubes. The flow geometry has been
-8<2<0:e(z)=-6(e— 1)(—) - 15— 1)(—) presented in Fig. (&). The computational domain has finite
2 5 dimensions. It is bounded by two solid wallszatH andz

z\3 =-h, respectively, at which the no-slip and no-penetration
- 10(e. - 1)(5) +1. (21) boundary conditions are imposed. Periodic boundary condi-
' tions are imposed for the wall-parallel directions. The
This model requires a specification of the thicknéssf the ~ Navier—Stokes equations are discretized on a fully staggered
length of the cellular filter would be kept constantiatd, ~ @nd uniform Cartesian mesh by means of the finite-volume
+dy, then &=23d, for the 3D grid of cubes withi;=d,. The method based on the second-order central-differencing
corresponding porosity profile is plotted in Fig. 5 togetherScheme. The equations are advanced in time with the follow-
with the porosity profile calculated from E¢B). The agree- Ng pressure-correction scheme:

ment between the model and the exact porosity profile is g —y" 5 1 1dP
- . . i L _ S \h_—n2_ =2
good. The local value for the porosity in the interface region A 29 g9 T dx5i1, (22)
is used in the expressions f&randF. This assures that the P
drag force and the VANS equations are continuous across the N N
) . ) - 1#p 190
interface region. The reader may notice that the permeability -—=——, (23)
approaches infinity az=0. However, in order to solve Eq. pax; Atax
(20), we actually compute K, which remains bounded ~
throughout the flow domain. g Atdp (24)
Recapitulating, in the DNS with continuum, Eq4.4) ! ' opax
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—slip velocit -
R . N . no-slip velocity @ _ [U(i,kﬂ) 2u(i’k) + u(i‘k_l)}
T T T T 14 22 -V 22 y
u(ik+1) IZ{ij A
- R - -+
2 Wﬁlﬁ’k) W('{l’k) f where uw; 1/ corresponds taiw at the location of the
) cross. According to the desired no-slip conditiomy; 1/,
T e — T T =0 andug -1 =—U ) Must hold. This is equivalent to a force
3 4 4 T Az f, equal to
w(i,k-1) w(i+1,k-1
T T wikoy T T floo=m UWi k-1/2) , Ui ko + Ui k-1
+ = + + tik Az AZ '
<—+— surface cube
T <T/;9 T T T The no-penetration condition on the cubes is enforced by
s <= - & putting the prediction velocityl, to zero. According to Eq.
(24) this yields a penetration velocity equal to
very small penetration velocity U™z — AtV Ia n=0 (28)

FIG. 6. lllustration of the IBM in which forcegindicated byf, andf,) are ; :
applied at mesh points close to and at the surface of the cube to enforce thBecause the pressure IS uDdated every time step, see Eq.

no-slip and no-penetration conditions. The horizontal and vertical vector§%5)a V_p remainsl very small. Adt is also small, the right-
mark the mesh points of the streamwise and wall-normal velocity compohand side 0{28) is therefore almost zero. For the case of a

nents, respectively. stationary flow, the correction pressure will approach zero
and the no-penetration condition is then enforced exactly. In
the DNS with cubes it has been verified that the largest pen-
etration velocities, which appeared at the corners of the

1 .
prri=p"+p, (25) cubes nearest tp=0 in Fig. 1@ have a magnitude smaller
where), is the prediction velocitydP/dx the constant pres- than 10° times the bulk velocity in the channel.
sure gradient that drives the flow, afdis the correction In the IBM used in the DNS with cubes, forces are not
pressure. The functiog; in Eq. (22) is given by only applied at the outside of the cubes, but also at the in-
19p auy  u side. Furthermore, the pressure gradi@éRtdx on the right-
g=--—-—2+r—+f. (26)  hand side in Eq(22) is set to zero in the interior of the
pIXi X % cubes. The interior of a cube is therefore very similar to a

For the implementation of the cubes an IBM is used,closed cavity inside which the *fluid” is at rest. -
which has been used successfully by Fadéinal,'? and The use of the IBM has consequences for the stability of

references therein. In this method forces are added to tHife numerical $cheme. The forces that are added to the mo-
flow field, i.e.,f, #0 in Eq.(26), to accomplish a zero veloc- mentum equation are related to the drag that the flow en-
ity on the cubes, as illustrated in Fig. 6. The advantage of afPunters by the presence of the cubes. From(Eq.for the
IBM is that no boundary conditions have to be specified orfrad force in the VANS equations, it can be deduced that this
the cubes. As a consequence of this, the Poisson equatioR2y cause large negative eigenvalues of the fungjott is
(23) can be solved on a continuous domain with very efﬁ_however difficult to quantify this in a simple manner, as Eq.
cient FFT-based solvers. (17) concerns the drag force experienced by the volume-
The IBM that is used here, is similar to the one devel-2veraged flow, whereak in the equation for; is a point
oped by Fadluret al2 An advantage of applying the IBM in force acting on the unfiltered flow field. The expected diffi-
the present study over the problems discussed by Fatlun culties with large negative eigenvalues, motivated our choice
al., which concern rather complicated geometries, is that th&® US€ another time integration sche(@@) than the popular
cubes can be aligned along the computational mesh. Asecond-order Adams-Bashforth scheffiehe stability poly-

. sl .
sketched in Fig. 6, the cubes are aligned along the mesh sufjpmial for our scheme is fognd by putting™=€*u with
that their surfaces coincide with mesh points for the normaf? € [0,2m) and solving the eigenvalue from

(with respect to the surfagevelocity. This enables aaxact uMt -y = )\At[gui“ - %u?—z]_ (29)
implementation of the no-slip boundary condition on the
cubes: The solution reads
= X ei¢ — 1
uxn=0. (27) NAt = 4e2|¢<—562i¢’— 1). (30

As an example we calculate the for&eat position(i,k) in
Fig. 6 that is equivalent to imposing a no-slip velocity at theThe above stability polynomial is shown in Fig. 7. Also de-
location of the cross. The discretized terms in E26) for  picted in this figure is the stability polynomial of the second-
the functiong that make use of the velocity components order Adams—Bashforth scheme. From the figure it is clear
Ui k1) W(i k-1) @NAW(j4q 1), are that with respect to the Adams—Bashforth scheme, the time
UWe W integration scheme used in the present study is much more
{ (I.k+1/2 ("k‘l’z)], stable for eigenvalues with a large negative real part. The
Az dotted line in Fig. 7 is the stability polynomial of the

Juw

Jz

@ik
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1
0.75*AB2 VI. NUMERICAL RESULTS

In the following sections the results from the DNS with
cubes and the DNS with continuum are compared with each
other and with the results from the DNS with solid walls.
First some characteristics of the DNS with cubes and the
DNS with continuum are given.

The dimensions of the computational domain in the DNS
with cubes are X 2X 2 in terms of the channel height for,
respectively, the streamwise, the spanwise, and the wall-
normal direction. The porous medium has a helgh and
consists of 3k 20X9=5400 cubes in, respectively, the
streamwise, spanwise, and wall-normal direction. The num-
R 1 1 1 i ber of cube layers in the wall-normal direction is chosen

2 15 reaipant 00 0 deliberately large to prevent that the flow in the channel ex-
periences any influence of the solid wall below the grid of
FIG. 7. Stability polynomials for several time integration schemes. Thecybes. The cube rib equalng/ZOI The dimensiord; of

enclosed areas are the stable regions of the respective schemes.30)Eq. ; PP
---, stability polynomial of second-order Adams—Bashforth schemesta- the POres 1S equal tdp’ and Consequently the porosiy in

bility polynomial of second-order Adams—Bashforth scheme multiplied by th€ homogeneous porous region equals 0.875. The Darcy
0.75. number is given by Dae K /H?=3.4x 1074, whereK_ is the

permeability of the grid of cube@vhich was determined in
Sec. IV A). The number of mesh points is 68C100x 400

o =96x 10°. The bulk Reynolds number Re U H/v=5500,
Adams-Bashforth scheme multiplied by a factor of 3/4, nere U, is the bulk velocity in the channel region. The

which falls inside the curve of the stability polynomial given ¢.;¢ion Reynolds number for the top wall ReutH/v

by (30). Ignoring the forces added to the momentum equaz g whereu' =[-va(u)/ oz 12 is the friction velocity at

i i i H itAar z=H
tion in the IBM, the computational time step criteria corre- the top wall. The friction Reynolds number for the permeable

sponding to the latter stability polynomial are the criteriawa" Re=UPH/ =669, whereu?=[~(w'w')+ oW/ dz]%2

derived by Wesselir?ﬁ(p. 188 for the second-order Adams— . - . =0 -
Bashforth scheme multiplied by 3/4: is the friction velocity at the permeable wall. The permeabil

ity Reynolds number R@EUEV’RCIV is equal to 12.4. Based

on the classification of Breugeénof permeable walls, the
vAt < 1 (31) grid of cubes can therefore be considered as a highly perme-
A 16’ able wall near which viscous effects are of minor impor-
tance. The roughness Reynolds numbenge‘de/v:BSA,
which according to HinZg is in the transitional roughness

new scheme

I
»

imaginary part
o

o
n

AH /E Ui2 regime. The computational time step in the simulation equals
L }7 (32)  At=6.7X10*H/Uj. The number of instantaneous data fields
Ax 4 used for the statistics equals 45, spanning a total time inter-

val of 60.3H/U,,.

13 13 The values ofe, d,,, &, and Reg for the DNS with con-

At|ui] \ [ |uilAx 27 , P . .
> <—)<—> < <—> ] (33 tinuum are chosen equal to the corresponding values in the
i\ Ax v 32 DNS with cubes. Some characteristics of these two simula-

tions are listed in Table I. The Reynolds number$,ARe,
These time step criteria are used in the present simulationRe,, and Rg are about equal, and, because they were deter-
As indicated in Fig. 7, a relatively large safety margin existsmined from the simulation data, this indicates already that
to account for the destabilizing effect of the IBM forces.  also the turbulence statistics of the two simulations are simi-

TABLE I. Characteristics of the DNS with cubé8NS CUB), DNS with continuum{DNS CON), and the DNS with solid walleDNS SOL). ¢, is the porosity
in the homogeneous porous regial/H is the rib of the cubes, Q&= K /H? is the Darcy number in the homogeneous porous region wkei€, & is the
thickness of the interface regioh,is the thickness of the permeable wall,,ReUyH/ v is the bulk Reynolds number whetg, is the bulk velocity in the
channel, Re= utH/ v is the friction Reynolds number based on the friction veloaltyt thetop wall, R&=uPH/ v is the friction Reynolds number based on
the friction velocityu? at thepermeablavall, Rec=uPVK./ v is the permeability Reynolds number based on the friction velafigt the permeable wall, and
RedEuEdp/v is the roughness Reynolds number for the permeable wall.

DNS € dy/H Da,(10%) SIH h/H Re, Re Re. Rec Re
cuB 0.875 0.05 3.4 0.15 1 5500 669 394 12.4 33.4
CON 0.875 0.05 3.4 0.15 1 5500 726 409 13.5 36.3
soL 0 0 0 0 0 5500 352 350 0 0
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lar. The dimensions of the computational domain in the DNS
with continuum are X 3X 2 in terms of the channel height (
H for, respectively, the streamwise, the spanwise, and the
wall-normal direction. The number of mesh points is 256

X 192X 300=15.7x 1(P. The mesh is stretched in the wall-

normal direction with mesh points clustered around the per-
meable wall interface and the top wall. The computational

time step in the DNS with continuum equalst=3.1

X 10"4H/Uy,. The number of instantaneous data fields for the
statistics equals 96, spanning a total time interval of
58.M/U,,.

We remark that the dimensions of the computational do-
main in the DNS with cubes are chosen deliberately smaller
than in the DNS with continuum, in order to avoid that the
number of mesh points in the DNS with cubes would be-
come excessively large. Therefore, a larger computational (v)
domain was not feasible. We note that the dimensions of the
computational domain in the DNS with cubes, although rela-
tively small, are still much larger than the minimal channel
studied by Jiménez and Mofi.Furthermore, we verified by 05§
means of a simulation of standard channel flow, using the
same numerical method as used in the DNS with cubes, that
a computational domain of382X 1 yields low-order statis-
tics that agree well with the DNS results of Kiet al?

The codes for both the DNS with cubes and the DNS
with continuum have been written FORTRAN 77 and made
parallel based on the MPI standard. The DNS with cubes was
run on 100 nodes of a SGI Origin 3800 system. The DNS 055 o5 1 s
with continuum was run on 32 nodes of a SGI Altix 3700 x/H
system.

z/H

z/H

FIG. 8. Cross section along the streamwise direction of the fluctuating flow
) ) . field in the DNS with cubes. For clarity, only part of the cross section is
A. Volume averaging and mean velocity profiles shown and the number of vectors is reduced by a factor of 2 in botk the

. andz direction. The rectangle shows the dimension of the averaging volume
Before the results of the DNS with cubes and the DNSof the cellular filter.(a) Unfiltered flow field (u’,w’); (b) corresponding

with continuum can be compared with each other, the velocvolume-averaged flow fielé(u’)s, (w’)s).
ity field of the DNS with cubes need to be filtered first ac-

cording to Eq.(4) with the cellular weighting functior6).

We remark that the calculation of the volume-averaged ve-

locity at asingle mesh point involves the evaluation of the
discretized form of Eq.(4) over 4G neighboring mesh
points. Hence, the computation of the volume-averaged qu] /U, <1073 for z/H>0.

locity at all mesh points is fairly time consuming. Figure 8 mlatxis t;mportant o note that in the DNS with cubes the
shows a cross section of the fluctuating flow field before andy;;. length is kept constant &t=d,+d, in the volume av-
after filtering. The white spots in Fig(# mark the location eraging of the flow field, except closgz to the solid walls at
of the cubes. The rectangle indicates the dimension of the_ ;"1 \\here th,e vertical extent of the averaging

averaging volume of the cellular filter. Figur¢b shows volume is gradually decreased to zero, depending on the dis-

clearly that due to filtering the subfilter-scale m(_)tion's a'%ance to the wall. We remark that the constant filter length in
averaged out and that the volume-averaged flow field is COMhe DNS with cubes iglifferent from the assumption of a

tinuous_thrc_)ughout _the flow domain. Figure 9 shows th_e ef'variable filter length in the DNS with continuum. Recall that
fect of filtering applied to the Reynolds-averaged flow field. i, \ariaple filter length in the latter simulation has the ad-

Furthermore, it illustrates nicely the decompositi@nof the | ntage that no subfilter-scale stress need to be modeled in
Reynolds-averaged flow field into the volume- andihe channel region. The disadvantage of a variable filter
Reynolds-averaged flow field and the subfilter-scalengiy is that it causes a commutation error in the volume-
Reynolds-averaged flow fields=(u;)+u;. Notice that the averaging theoreni8). Although this error is small, in the
volume- and Reynolds-averaged flow figld),(w)) is one- DNS with cubes we want to avoid this, and therefore the
dimensional and horizontally homogeneous, whereas the uffilter length in theprocessingof this simulation is kept con-
filtered Reynolds-averaged flow fieldu,w) is three- stant. It is important to realize that the difference in the filter
dimensional and horizontally heterogeneous. The horizontdength for the channel region between the DNS with cubes
heterogeneity in the unfiltered Reynolds-averaged flow fieldand the DNS with continuum, has consequences for compar-

rapidly vanishes when moving out the grid of cubes into the
channel region, withw];,a/ Up<1072 for z/H>-0.07 and
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0 IIIIIIIIII

a 05 0 05 1
z/H

FIG. 10. Profiles of the Reynolds- and volume-averaged velocity, normal-
ized by the bulk velocityJy, as function ofz/H. The black squares mark the
location of the cubes in the DNS with cubes. —, DNS with cubes; --- DNS
with continuum;..., DNS with solid walls.

because the mesh spacing is sufficiently small. In the channel
region of the DNS with cubes, the profile af)® is also very
similar, although not exactly equal, to Although our main
interest is in the behavior of the flow field in the channel
region, we still prefer here to pldt)®, because this velocity

is continuous and horizontally homogeneous in the channel
region as well as inside the permeable wall. This is not true
for u.

The profiles of the DNS with cubes and the DNS with
continuum overlap each other. Both profiles are strongly
skewed with the positiorz=4,, of the maximum velocity
well above the centerline of the channel. The position of the
maximum velocity corresponds to zero total shear stress.
From this condition the following expression can be found
for &,

Sw (uh)?
H (UP)2+ (uh)?’ (34)

Thus the skewed mean velocity profile is a direct conse-
quence of the larger skin friction at the permeable wall than
at the top wall.

The small wiggle neaz/H=-1 in the profile of the DNS

FIG. 9. Cross section along the streamwise direction of the Reynoldswith cubes is caused by the change in the vertical extent of
averaged flow field in the DNS with cubes. For clarity, only part of the crossthe averaging volume close to the solid wall.

sectlon is shown. The different graphs illustrate the decompositiofu;)
+ui. (a) Reynolds-averaged flow fieltl,w); (b) volume- and Reynolds-

averaged flow field(u),(w)); (c) subfilter-scale Reynolds-averaged flow

field (U, w).

B. Rms profiles of velocity components and pressure

The volume-averaged root-mean-squénas) velocity
Ui rms iS defined here according to

ing the results of the two simulations with each other. We Ui rms = V{u/u])*
come back to this point in the next section.

Figure 10 presents the profiles of the Reynolds- and
volume-averaged velocity of the DNS with cubes, the DNS
with continuum and the DNS with solid walls. We recall that

uiu;) =

<”,’ >S<Mi, ) T
-, ¢t {( (35)

<u;>~v<u;>‘fJ
e

I

in the channel region of the DNS with continuum and theThe decomposition ofj; ;s into the above two terms origi-
DNS with solid walls, the Reynolds- and volume-averagednates from the consideration that, whéfu/))s~(1)Xu;)

velocity {(u)® is equal to the Reynolds-averaged veloaity

=(u/)® holds, term Il is approximately equal to
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4-(a) In the DNS with continuum, just the volume-averaged
I flow field is resolved, and consequently only the contribution
I of term | can be calculated exactly. At this point we recall the
discussion of the variable filter length in the DNS with con-
tinuum(see Secs. IV B and IV In the channel region it is
assumed that the cellular-filter length is set by the mesh spac-
ing, which is sufficiently small, and consequently term Il is
equal to zero in this region. In the homogeneous porous re-
gion, however, the cellular-filter length is equal to=d;
+d, and consequently in this region term Il is not zero. As
______ our main interest is in the behavior of the volume-averaged
S - rms velocity in the channel region, we will not attempt here
1 05 0 0.5 1 to model term Il in the homogeneous porous region. Instead,
z/H in the DNS with continuum term Il is simply put to zero.
The profiles of the volume-averaged rms velocities and
pressure of the DNS with cubes, the DNS with continuum
I and the DNS with solid walls are depicted in Figs.
i ) 12(a)-12d). The profiles of the DNS with cubes and the
: DNS with continuum compare very well. The differences
! between the profiles of these two simulations are small com-
! pared to the differences with the corresponding profiles of
A the DNS with solid walls. Notice that not only a good agree-
i ; ment exists between the DNS with cubes and the DNS with
i continuum in the channel region, but also inside the perme-
‘ able wall, despite neglecting the contribution of term Il in the
__________________ ! DNS with continuum.
ennnmumnn | The rms profiles of the DNS with cubes and the DNS
-1 05 0 0.5 1 with continuum show an increase in all rms velocities and in
z/H the rms pressure near the permeable wall as compared to the
FIG. 11. Decomposition of the volume-averaged rms velocity and pressurproflles of the- D-NS with .So“td walls, at least when normal-
accbrdiﬁg to Eq(35) for the DNS with cubes. The black squares mark the ?zed by the friction VelOCItyuT at the top wall. However, a

position of the cubes. —, Total; --- contribution term I;, contribution term  More appropriate scaling of the rms profiles near the perme-
Il. (a) Volume-averaged streamwise rms velocityj volume-averaged rms  able wall is by means of the friction veIocit}P; at the per-

pressure. meable wall. Figure 13 shows the result for the rms profiles
of the streamwise and the wall-normal velocity, respectively.

The profiles are plotted as function ofé,,, whereé,, given
RIYRIY: by Eq.(34), is considered as a characteristic lengthscale for

e

1
:
]
'
k.
E
N
:

o

12r

’

.

’
I
i
'

0

INS/ 1 /\S
mf_ M eddies in the outer region of the boundary layer above the
€ permeable wall. The peak in the streamwise rms velocity is
W smaller for the DNS with cubes and the DNS with con-
=([u) + T/ J(u/y + T/ ])s - '—6' tinuum as compared to the DNS with solid walls. The large

peak for the DNS with solid walls is associated with the
(u)HyXu/')® presence of low- and high-speed streaks near a solid wall,
€

~ (U XUy L)+ 2(u) U] + (T/T, ) which originate from the intense mean shé&uy/9z) layer
_ near the wall and the wall-blocking effect. The strong reduc-
~ (U0 tion in mean shear and the weakening of the wall-blocking
effect prevent the formation of the streaks above a highly
Thus, terms | and Il represent basically the contributions ofpermeable wall, and this explains the decrease in the peak
respectively, the volume-averaged velocify/) and the value of the streamwise rms velocity. The nonexistence of
subfilter-scale velocityj; . streaky structures near the permeable wall in the DNS with
In the DNS with cubes, the contributions of both term | cubes and the DNS with continuum can be observed also in
and term Il in Eq.35) can be calculated exactly. Figure 11 Fig. 8. The flow near the solid top wall is characterized by
shows the result fou,,s and p,,s The contribution of the elongated streaky structures, whereas the flow near the per-
subfilter-scale flow field tau,,s is significant in the channel meable wall is dominated by relatively large-scale vortical
region and the top region of the grid of cubes, but appears tetructures. Similar vortical structures have been detected in
be small forz/H=<-0.5. The rms pressure is dominated by experiments of flow over plant canopies, which originate
the contribution of large-scale pressure fluctuations with g&om a Kelvin—Helmholtz type of instability of the inflex-
small contribution of the subfilter-scale pressure fluctuationsonal mean velocity profilé‘." The existence of these vortical
throughout the flow domain. structures is consistent with the dominant contribution from
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FIG. 13. Volume-averaged rms profiles of the streamwise and wall-normal
velocity fluctuations in the DNS with cubgs—), the DNS with continuum
(---), and the DNS with solid wallg...). The rms profiles are normalized by
the friction velocityu? at the permeable wall and plotted as functiorzbf,,.

The black squares mark the position of the cubes in the DNS with c(#es.
Streamwise rms velocityp) wall-normal rms velocity.

1 0.5 OH 0.5 1 the volume-averaged flow field to the streamwise rms veloc-
ity aroundz=0 in Fig. 1Xa) which is opposite to the behav-
ior close to the solid top wall. Furthermore, as will be dis-
cussed in the following section, these vortical structures are
also responsible for a strong increase in the Reynolds-shear
stress at the permeable wall as compared to a solid wall. A
more elaborate analysis of these vortical structures is beyond
the scope of the present paper.

Opposite to the effect of wall permeability on the
streamwise rms velocity, an increase is observed in the peak
of the wall-normal rms velocity. This can be explained by the
i weakening of the wall-blocking effect, which no longer pro-
e 5 ! hibits wall-normal transport of fluid across the wall interface.
z/H Notice that the profiles of the streamwise rms velocity over-

lap for z/ §,= 0.5, thus exhibiting similarity, whereas in the
same region the profiles of the wall-normal rms velocity of
the DNS with cubes and DNS with continuum do not coin-

_ _ cide with the profile of the DNS with solid walls.
FIG. 12. Volume-averaged rms profiles of the velocity and pressure fluctua-

tions in the DNS with cubes—), the DNS with continuuni---), and the .

DNS with solid walls(...). The rms profiles are normalized by andp(u!)?, C. Shear-stress profiles

respectively, and plotted as function ofH. The black squares mark the s .
position of the cubes in the DNS with cubga) Streamwise rms velocity; The VOIume'averaged total shear Stréﬁ§> is defined

(b) spanwise rms velocityic) wall-normal rms velocity(d) rms pressure. here as
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FIG. 14. Contribution of terms I-IV on the right-hand side of E2f) to the 1—1 -0.5 0 0.5 1
volume-averaged total shear stregs,)® for the DNS with cubes. The Z/H
stresses are normalized by)?. The black squares mark the position of the
cubes.
4
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The terms on the right-hand side represent, respectively, the 0
volume-averaged viscous shear strggsthe contribution of EEEEEEEERE e
large-scale motiongll) to the volume-averaged Reynolds- 1 . . . ..
shear stresgu’w’)S, the contribution of subfilter-scale mo- " -05 0 0.5 1
tions(lll) to the volume-averaged Reynolds-shear stress, and z/H

the volume-averaged mean shear st(@gs3.
The terms in Eq(36) have been calculated separately for FIG. 15. Profiles of the volume-averaged Reynolds-shear, viscous shear, and

. : : - total shear stress in the DNS with culges), the DNS with continuung---),
the DNS with cubes. The result is shown in Fig. 14. Theand the DNS with solid wall...). The stresses are normalized (o§)2. The

volume-averaged viscous shear str@ssm ) peaks at the  pjack squares mark the position of the cubes in the DNS with cufaps.
top wall due to the no-slip boundary condition, but it is neg-Reynolds-shear stresth) viscous shear streglines without symbolsand
ligible near the permeable wall. This substantiates the clagotal shear stresgines with symbols
sification of the grid of cubes as a highly permeable wall.
The kink in the profile of the volume-averaged viscous shear
stress atz/H=0.9 is caused by the change in the verticaltinuum and the DNS with solid walls. In the DNS with con-
extent of the averaging volume close to the top wall, whichtinuum, the contribution of the subfilter-scale motidierm
leads to a small commutation errdmzdu/ 9z)s+ va{uys/ gz. Il to (u’'w’)* and the volume-averaged mean shear stress
The volume-averaged mean shear sti@ssn 1V) is negli-  (term 1V) are neglected, based on a similar reasoning as
gible throughout the flow domain. In most of the channelgiven in the preceding section for the contribution of
region the contribution of the large-scale motigtesm Il) is  subfilter-scale motions to the volume-averaged rms velocity.
dominant over the contribution of the subfilter-scale motionsThe Reynolds-shear stress in the DNS with continuum is
(term 11I), but in the top region of the porous medium both slightly overpredicted as compared to the DNS with cubes,
contributions are equal. As mentioned before, at the end ddilthough this discrepancy is small compared to the difference
Sec. VI B, the dominant contribution from the large-scalewith the profile of the DNS with solid walls. With respect to
motions aroundz=0 is consistent with the presence of the the DNS with solid walls, we find a large increase in the
relatively large-scale vortical structures observed in Fig. 8Reynolds-shear stress for the DNS with cubes and the DNS
These structures are responsible for an exchange of streamith continuum, especially close to the permeable wall. This
wise momentum between the channel region and the topan be explained by a weakening of the wall-blocking effect,
layer of the permeable wall. which no longer prohibits an exchange of streamwise mo-
Figure 15 presents the profiles of the volume-averageghentum between the channel and the top layer of the porous
Reynolds-shear strega’w’)s, viscous shear stress and total medium by means of the previously observed vortical struc-
shear stress for the DNS with cubes, the DNS with con+tures. Figure 1) shows that also a good agreement exists

Downloaded 27 Aug 2010 to 131.180.130.114. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



025103-14 W. P. Breugem and B. J. Boersma Phys. Fluids 17, 025103 (2005)

between the DNS with cubes and the DNS with continuumwell for many porous media, although the coefficient in this
for the profiles of the volume-averaged viscous and totamodel might vary substantially dependent of the structure of
shear stress. As mentioned before, near the permeable wétle porous medium. MacDonaét al® found that a value of
the volume-averaged viscous shear stress is negligible. THe8 is appropriate for many packed beds, while we found a
large peak in the profile for the volume-averaged total stressalue of about 0.4 for the Cartesian grid of cubes. The dif-
is thus solely due to the strong increase in the volumeference in these values is due to the fact that packed beds are
averaged Reynolds-shear stress near the permeable wall. disordered, whereas the Cartesian grid of cubes is ordered
and aligned.
VII. CONCLUSIONS AND DISCUSSION Other requirements for using the continuum approach
are that the lengthscales of the volume-averaged and the
The main conclusion of the present study is that the consubfilter-scale flow field are well separated, and that the per-
tinuum approach based the VANS equations is capable of ameability Reynolds number is relatively large. The former
accurate simulation of the turbulent flow over and through acondition demands that the dimension of the pores and solid
permeable wall, even quantitatively. In order to solve theobstacles of the porous medium should be small compared to
VANS equations for the volume-averaged flow inside thethe channel height, because otherwise the flow in the channel
permeable wall, closures are required for the subfilter-scaleegion is more similar to flow around obstacles rather than
stress and the drag force. We have assumed a variable filtBow over a permeable wall. Furthermore, the permeability
length for the DNS with continuum, withy=d;+d, in the  Reynolds number should be relatively large to ensure that the
homogeneous porous region dpdA in the channel region. effect of wall permeability on the turbulent flow in the chan-
As argued by Breugel%subfilter-scale dispersion can usu- nel dominates over the effect of surface roughness. The dif-
ally be neglected in the homogeneous porous region. Beference between wall permeability and wall roughness has
cause the mesh spacidgis sufficiently small, in the DNS been illustrated in Fig. 2. If the effect of surface roughness
with continuum subfilter-scale dispersion can be neglected imould be much more important, then it is not likely that the
the channel region as well. In the literature many semiempirelosure for the drag forcen the interface regiorwill give
ical relations exists for the drag force. In the present study accurate results. This closure is namely based on the drag
drag relation was adopted based on the Irjrﬁaynd the relation for uniform volume-averaged flow throughfuly
Burke—Plummer modélwhere the model coefficients were periodic porous mediumwhich will be quite different from
determined from simulations reported by Breuge'mal.lgA the drag experienced by flow over the rough and imperme-
variable-porosity model was used for the interface region table wall in Fig. 2. Therefore, when surface roughness is
ensure that the VANS equations are continuous throughoumportant, one has to look for a more appropriate closure
the flow domain. model for the drag force in the interface region. Instead of
We have introduced the concept of a variable filterusing the continuum approach, a better option in this case is
length for the DNS with continuum. In therocessingf the  probably a direct simulation, which captures the geometry of
DNS with cubes however, the filter length was kept constanthe surface roughness. A measure for the effect of surface
to avoid commutation errors. Figure 14 has shown that irroughness is the roughness Reynolds number. In the DNS
this case the volume-averaged mean shear sftegs® can  with continuum this number was equal to 36.3, see Table I,
still be neglected, but that the contribution of the subfilter-and according to HinZé this value falls the transitional
scale motions to the Reynolds-shear stressv’')* may be  roughness regime. The permeability Reynolds number was
important in the channel as well as in the interface region. Iil3.5 and this value corresponds to the highly permeable
a previous study,we proposed a closure for the subfilter- regime® This suggests that, in addition to the fact that the
scale stress of the form{esu;) +(u;){u;) = (K +Ky) (u;)/ 9x; results of the DNS with cubes and the DNS with continuum
+uj)/ ax;) with K andK; the mechanical and turbulent vis- agree well, in the present simulations the influence of wall
cosity, respectively. Although not evaluated in the presenpermeability was strongly dominant over the effect of sur-
paper, this model seems to be promising. face roughness. This suggestion is also supported by the rela-
The success of the continuum approach depends priméively large rms velocities inside the permeable wall, and the
rily on the accuracy of the closure for the drag force. In theimportant contribution of the volume-averaged Reynolds-
present work we adopted the |rmay model for the range oﬁhear stress to the total shear stress in the tOp Iayer of the
low Reynolds numbers. This model is restricted to flowpermeable wall. We are aware that these arguments are only
through a Cartesian grid of cubes and might not be suitablédirect evidence for the dominant effect of wall permeabil-
for other porous media. For example, for packed beds th#y over wall roughness. For a more conclusive claim con-
Blake—Kozeny modé&lis widely used. The coefficient in the cerning the importance of wall roughness with respect to
Irmay model was determined from separate simulationgvall permeability, we should actually simulate and compare
through a fully periodic grid of cubes with a porosity of the two cases shown in Fig. 2. This is however beyond the
0.875. The value thus determined was close to the value dicope of this paper.
12 proposed by Irmay for small porosities. This indicates that
the Irmay model is valid for a large range of porosities, vary-pckNOWLEDGMENTS
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