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Chapter 1 Introduction

Standardization of sampling requires that the mass or the volume of the sample is
prescribed. In current standards, a prescribed value for the sample mass is derived
using empirical relations between assumed properties of the batch and the variance of
the sampling error. The potentially inaccurate empirical relations and assumed batch
properties may lead to an underestimation or overestimation of the potential magnitude
of the sampling error. Therefore, the objective of the research described in this thesis
is the development of a new, non-empirical theory for the sampling of particulate
materials, to allow for calculation of the minimum sample mass in sampling standards.
The positioning of this research is further clarified in several introductory paragraphs.

1.1 Sampling of materials

Chemical, physical or biological properties of gaseous, liquid or solid materials may be
important for economic, agricultural, environmental and/or health-related reasons.
These properties are determined by corresponding measurements, and several stages
can be distinguished relating the material under study (‘the batch’) to the final analysis
result.

Usually a batch contains more material to be analyzed than can be covered by a
single sample analysis. Therefore, an analyzable fraction has to be extracted. This
analyzable fraction is termed here as the ‘laboratory sample’. Depending on the
characteristics of the material and of the analysis technique, a sample size exists for
the laboratory sample. Unfortunately, it cannot be guaranteed that the properties of a
sample of this optimum size drawn directly from the batch are representative for the
properties of interest of the batch. Therefore, a larger bulk sample, representing (in
properties of interest) the batch, is drawn first: the ‘bulk sample’. After
homogenization of this bulk sample by e.g. milling, blending and/or mixing, a
laboratory sample, representing the bulk sample, is drawn. Often, the laboratory sample
is not immediately fit for analysis by the required analysis technique and an additional
preparation is needed to attain a test portion. Sample dissolution is an example of a
sample preparation step of the laboratory sample. Summarizing, the stages leading
from batch to the final analysis result are: drawing of the bulk sample, homogenization
of the bulk sample, drawing of the laboratory sample, sample preparation towards a test
portion and analysis of this test portion (see Figure 1.1).



Each of the above-described stages should be performed in such a way that the
difference, here indicated as the total error, between the analysis result and the
corresponding true value of the measurand in the batch remains as small as possible,
ideally zero. In practice, these differences are not zero, thus cumulating in a finite
value for the total error.

In the following, it is assumed that the batch property, which is estimated, is the
mass or volume concentration of a component in the batch'. The first source of error is
the difference between the concentration in the bulk sample and the concentration in
the batch. This is a sampling error. When sampling a batch consisting of particles, the
sampling error caused by the random sampling of non-identical particles is often
denoted as the ‘fundamental error’ (Gy, 1979).

Sampling error

Homogenizing, milling,
blending, mixing

Sub-sampling

Sample processing
I0.L12 JO $37INn0g

prepr—

Figure 1.1. Sources of error during all the stages of the process going from batch to final
analysis result.

Secondly, during the homogenization, mixing, milling and blending, loss of or
contamination with the compound of interest may occur in the bulk sample. There may
also be a sampling error during subsampling, defined analogously to the sampling error
during the drawing of the bulk sample: the difference between the concentration in the
subsample or laboratory sample and the concentration in the bulk sample.

Finally, sources of error can be sample preparation steps necessary for the
analysis of the laboratory sample. An example is incomplete digestion of the laboratory

1 The mass or volume concentration of a component in a batch, sample or particle is defined as the mass or
volume of the component in the batch, sample or particle respectively, divided by the total mass or volume of the batch,
sample or particle respectively.




sample if the test portion should be in the liquid state. Also the analysis technique
itself includes sources of error; the analysis error is defined as the difference between
the analysis result and the true value of the analyte concentration in the test portion
(IS0, 1993).

The analysis error and errors due to sample preparation are not the main subject
of this thesis, because these errors are generally well-characterized and well-
understood as part of the method validation, and assessed using quality control
materials. Also the sources of error due to loss or contamination during mixing, milling
and blending of the bulk sample can be minimized by a good choice of sample
preparation equipment, and are therefore not the main topic of this thesis.

Sampling errors, on the other hand, are more difficult to control. In the next
paragraph, it is discussed how this problem is approached in current sampling
standards. The Dutch standard NEN 5742 is taken as an example of a typical standard.
This standard relies on a sampling theory based on empirical relations between
assumed batch properties. Since these relations and assumed batch properties are
potentially inaccurate, the actual sampling errors may be larger than expected.

1.2 Sampling standards and theories

The difference between the estimated value derived from measurement of a specific
sample and the corresponding true value of the measurand® in a batch (the value of the
total error) is unknown since it would require the true batch value. To reduce the
occurrence of large positive or negative values of the sampling errors, but also to
standardize sampling, sampling standards have been devised. Examples of sampling
standards are the NEN 5742 (see NEN, 2001), ASTM C1075-93 (see ASTM, 1997),
ASTM DI1900-94 (see ASTM, 2002), ISO 11648-2 (see ISO, 2001) and ISO 11648-
1 (see ISO, 2003) publications.

In the Dutch standard NEN 5742, of which a more detailed description is
presented in the Appendix, a prescribed value of the mass that has to be sampled is
given. This value is chosen in such a way, that the standard “guarantees” that the
relative standard deviation of the sampling error does not exceed 10%. However, it will
be seen that the reliability of this assertion is questionable.

The Dutch standard NEN 5742 defines scope (sediments and soils), measurands
(metals, inorganic compounds, semi-volatile organic compounds and physico-chemical
soil properties) and sampling devices to be used. The standard prescribes the way of
sampling, which includes a prescribed value for the mass of the sample. Finally,
packaging, conservation and transport of the drawn samples and the essential elements

2 From hereon, the following shortcuts will be used:
¢ Value of the measurand in a batch /true value of the concentration of an analyte in a batch:
batch value / batch concentration
o Value of the measurand in a sample /true value of the concentration of an analyte in a sample:
sample value / sample concentration
¢ Value of the measurand in a particle /true value of the concentration of an analyte in a particle:
particle value / particle concentration




of reporting are described.

The prescribed value for the sample mass is calculated in the NEN 5742 using
Gy’s theory of particulate materials (Gy, 1979) and assumed properties of the sampled
batch. It is assumed that the maximum particle size is 10 mm, density of the particles is
2600 kg'm~> and the fraction of particles containing the property of interest is 0.1.
Using these assumptions a prescribed sample mass is obtained for which Gy’s theory
predicts that its relative standard deviation is 10% or less.

An obvious drawback is that these assumptions limit the general applicability of
this Dutch standard. Even if the assumptions are correct, the relative standard deviation
may still be larger than 10% due to possible flaws in Gy’s theory. Moreover, if an
alternative prescribed sample mass were to be calculated on the basis of different
estimates for the maximum particle size, density and fraction of particles containing
the property of interest still using Gy’s theory, the relative standard deviation could be
larger than 10% due to errors in the assumed batch properties.

1.3 Scope of the thesis

The work presented in this thesis aims to improve the scientific basis for sampling
standards by developing a new sampling theory for the sampling of randomly mixed
batches of particulate material. New fundamental theoretical work has been done with
associated computational and experimental verification. The development of the new
sampling theory is outlined in the next paragraphs.

1.4 Characterization of materials

All matter may be regarded as a collection of indivisible units. Applied to sampling,
‘indivisible’ means that the unit does not split or break up into several pieces during
sampling. This is the starting point for the development of a new sampling theory. For
the sampling of particulate materials, the units are represented by solid particles.

The shape of the particles can take any form, from simple spheres or cubic
particles to particles that are shaped like dendrites. Also the dimensions can vary
greatly, from spherical colloids with diameters ranging from several nm to 1 pum to
pieces of wood of several decimetres length. Soil is an example of a particulate
material that has a broad range of particle sizes, with typical dimensions varying from
several micrometers to several centimetres. Crushed rocks have generally also much
variation in size; often the particle mass distribution is lognormally distributed.
Biological materials like soybeans or coffee beans are more uniformly distributed and
have less variation in size and shape.

Variation in composition of particles can lead to differences in estimates derived
from distinct samples. This implies that variation in particle composition is a source of
sampling error when sampling particulate materials. Samples containing only a few
particles are prone to large sampling errors, because the average composition of the
particles in the sample can be very different from the average particle composition in
the batch. Because homogenization reduces the average particle size, the laboratory
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sample contains generally more particles than the bulk sample. This is one of the
reasons that sampling errors are generally much larger during the drawing of the bulk
sample than during the drawing of the laboratory sample from the homogenized bulk
sample. Application of the new sampling theory is therefore expected to be more
relevant to the drawing of bulk samples than to the subsampling, although, in principle,
the new theory should also be applicable for subsampling.

Finally, it is noted that in this thesis the term particulate material is also used
for materials with interstitial fluid or gas, provided that the property of interest in the
sample and batch are exclusively determined by the solid fraction.

1.5 Development of a new theory

As discussed in Paragraph 1.2, there are several potential drawbacks with the
calculation of the required sample mass in the NEN 5742, which uses Gy’s theory. For
the development of the new theory to be used for calculation of the minimum sample
size in standards, the following eight criteria were chosen:

Criterion 1

¢ The theory must provide an equation for the variance of the sample concentration,
containing the mass or volume sampled and an arbitrary number of additional
parameters.

This equation can subsequently be used to derive an equation for the minimum mass or
volume to be sampled when it is demanded that the relative standard deviation is equal
to or smaller than a preselected value (often set to 0.1). A theoretical basis for the
derivation of the equation for the variance is obtained when the second criterion is met:

Criterion 2
o The theory must be based on a model of the drawing of a sample on the level of
(groups of) particles.

Because real batches may contain a wide range of different types of particles, the
sampling theory should be applicable for batches containing multiple distinct types of
particles, with arbitrary particle masses and concentrations. This yields a third
criterion:

Criterion 3
e The theory must be applicable to batches containing any number of distinct types
of particles, with arbitrary particle masses and concentrations.

It is noted that the equation for the variance, mentioned in the first criterion, may
contain parameters other than the mass or volume sampled. Examples are the mass or
volume of the batch, the particle mass or volume and the concentration in a particle.
For calculation of a numerical size-variance equation (e.g. variance = 12.34 divided by
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the sample mass expressed in kg), a numerical evaluation of the other variables is
required. This is the underlying reason for the formulation of criterion 4 to 6.

Criterion 4

e The theory must allow determination of the parameters of the size-variance
equation, using the measured sample concentrations of one or more samples of a
given size.

The equation relating the variance to the mass or volume sampled may depend on the
properties of the particles in the batch. Examples are the distribution of particle
masses, particle volumes or concentrations in the particles of the batch. In these cases,
some prior knowledge of the properties of the particles in the batch is required. When
this knowledge is available, a good sampling theory should provide the opportunity to
use this prior knowledge for calculation of the variance. This may lead to a better
estimate of the true variance. These considerations lead to the following criterion:

Criterion 5
e The theory must allow determination of the parameters of the size-variance
equation, using prior knowledge of the properties of the particles in the batch.

Analogous to the above situation, knowledge of the properties of the particles in the
sample may be available. Examples of properties of particles in the sample are the
distribution of particle masses, particle volumes or concentrations of the particles in
the sample. Therefore,

Criterion 6
e The theory must allow determination of the parameters of the size-variance
equation, using posterior knowledge of the properties of the particles in the sample.

Both mass and volume concentrations are important in practice. Therefore, the seventh
criterion is:

Criterion 7
e The sampling theory must be applicable to mass and volume concentrations.

In Chapter 2, it will be demonstrated that in current models for the drawing of a
sample, a constant number of particles is assumed or it is assumed that the number of
particles in the sample is distributed according to a binomial distribution. These
artificial conditions are too stringent because in the practice the total number of
particles sampled will be variable even under similar sampling operating conditions.
Therefore, it is difficult to sample either a constant number of particles or a
binomially distributed number of particles. Instead, it is much easier to sample a
constant mass or volume. In addition, sampling standards give a prescribed sample



mass or volume. This suggests the need for modelling the sample drawing as a process
leading to a constant sample mass or volume. Therefore, from a pragmatic point of
view the following criterion is important:

Criterion 8
o The theory must be able to describe the sample drawing as a process leading to an
approximately constant sample mass or volume.

For theories that are based on a mathematical model for the drawing of a sample on the
level of (groups of) particles (i.e. theories that meet the second criterion), the
modelling of sampling as a process leading to a fixed sample mass or volume has the
additional advantage that the equation for the variance of the sample concentration will
depend on the mass or volume sampled. Hence, for these theories, the first criterion is
always met.

The above eight criteria are used in this work to develop a new sampling theory.

1.6 Outline of this thesis

Because the aim of sampling is to extract only a small part of the batch, it would not be
useful to develop a potentially complicated sampling theory, which is valid for every
sample size. Similarly, it is not very useful to develop a potentially complicated
sampling theory, which is valid for samples containing only a few particles. Therefore,
in this thesis, the batch-to-sample size ratio and the sample-to-particle size are defined,
respectively. Numerous results throughout this thesis are valid in the limit of an
infinite batch-to-sample size ratio and in the limit of an infinite sample-to-particle size
ratio, and good approximations for large, but finite, values for the batch-to-sample size
ratio and for large, but finite, values for the sample-to-particle size ratio.

In Chapter 2, existing sampling theories are reviewed by considering the eight
criteria outlined in Paragraph 1.5. It will be demonstrated that none of the sampling
theories meet all eight criteria. This all justifies the need for development of a new
sampling theory, which meets all eight criteria.

In Chapter 3, a mathematical algorithm is presented to serve as a model for ideal
sampling from a random arrangement of particles. The concepts of ideal sampling and
random arrangement are clarified and the details of the algorithm are discussed. The
validity of the proposed algorithm to describe real sampling processes is demonstrated
on basis of computer simulations.

In Chapter 4, a mathematical calculation will be performed using the algorithm
proposed in Chapter 3. As a final result, equations for the expected value and variance
of the sample concentration are derived in the limit of an infinite batch-to-sample size
ratio and an infinite sample-to-particle size ratio. _

In Chapter 5, the estimation of the variance will be investigated using sample
information only. It will be shown that the Horvitz-Thompson estimator can provide a



general and unbiased estimate for the variance of the n-expanded estimator. Based on
the results of Chapter 4, an expression for the Horvitz-Thompson estimator in the limit
of an infinite batch-to-sample size ratio and an infinite sample-to-particle size ratio is
derived.

For finite ratios, the sample concentration and the obtained variance estimator
may be slightly biased. Chapter 6 describes how an indicative contour-plot can be
obtained via simulations on a wide range of distinct batch compositions. The maximum
absolute value of the relative bias can be obtained as a function of both the batch-to-
sample size ratio and the sample-to particle size ratio.

In Chapter 7, for four samples, the estimators developed in this study and
associated analytical uncertainties will be evaluated. Using the experimental results,
the new theory is verified by comparing the level of contradiction of the theory with
the levels of contradiction of the theories of Wilson and Gy. Also the normality of the
distribution of the estimated sample concentrations will be investigated. It will be
shown that the new theory is more internally consistent than the theories of Gy and
Wilson and that it also provides a more normal estimator for the batch concentration.

In Chapter 8, an expression for the minimum sample mass, based on the
properties of the particles in the batch, and an estimator for the minimum sample mass,
based on the properties of the particles in the sample, will be derived. The applicability
of the obtained estimator for the minimum sample mass will be investigated using
simulations. It will be demonstrated that the estimator is applicable for sample-to-
particle size ratio larger than 10. Knowledge of the particle masses in the sample can
be used for estimation of the minimum sample mass, when knowledge of the
distribution of particle concentrations is not available. Hence, it will be demonstrated
that no a priori knowledge of the distribution of particle concentrations in the sample
is required.
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Chapter 2 Review of current
sampling theories™*

Current empirical and non-empirical sampling theories are reviewed. None of the
empirical and non-empirical theories meet all eight criteria identified in Chapter 1.
This justifies the development of a new sampling theory to meet all criteria.

2.1 Introduction

The mathematical model of the second criterion described in Paragraph 1.5 (“The
theory must be based on a model of the drawing of a sample on the level of (groups of)
particles”) provides a scientific basis for the equation for the variance. The equation
for the variance provided by a theory that is not based on an underlying mathematical
model can only have an empirical basis. Therefore, theories that do not meet the
second criterion are termed empirical theories, while theories that meet the second
criterion are termed non-empirical theories. Current empirical and non-empirical
sampling theories are separately reviewed in Paragraph 2.2 and 2.3 respectively using
the eight criteria that were presented in Paragraph 1.5.

It is noted that sampling theories were previously reviewed by Smith and James
(1981). In this review, the sampling theories are classified according to their “level of
sophistication”. Three situations are distinguished: (i) sampling theories applicable to
binary mixtures, (ii) sampling theories applicable to real mixtures, and (iii) sampling
theories applicable to mixtures that are potentially segregated. However, most of the
characteristics with respect to the eight criteria, outlined in Paragraph 1.5, are ignored.
Therefore, a new comparison of sampling theories, using the eight new criteria, is
presented in this chapter.

3 The main aspects of this chapter have been published as: B. Geelhoed and H.J. Glass (2004) Comparison of theories
for the variance caused by the sampling of random mixtures of non-identical particles, Geostandards and Geoanalytical
Researchs (IN PRESS).

4 Because a wide range of sampling theories is reviewed, it was not feasible to adopt a consistent set of symbols with
corresponding definitions. The set adopted in this chapter is not consistent, because: (i) different symbols are adopted to
denote the same entity in different sampling theories, and (ii) for each symbol, the definition adopted may vary between
different sampling theories. When required, the appropriate definition is given. The symbols and corresponding
definitions, which can be extracted from the list of symbols given at the end of this thesis, do not necessarily apply for
Chapter 2.
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As discussed in Chapter 1, the measured value can contain an analysis error. This error
is independent of the sampling error and will not be discussed further here.

2.2 Empirical sampling theories

Ingamells and Switzer (Ingamells and Switzer, 1973) proposed a single constant K, that
relates the mass of the sample to the relative standard deviation of the mass
concentration in the sample asampie. The original notation is:

R =K, /w (2.1)

in which R is the relative standard deviation in percent and w is the sample mass. In
this thesis, the symbol Mgamp1e(S) will be used instead of w (the symbol used in the
original publication) to denote the mass of the sample S. Using partly the notation
adopted in this thesis (see List of Symbols for a summary) and rewriting Equation 2.1,
an expression is obtained for the relative variance Vici(asample) and the variance
V(asamplc):

Via 1 _ K
vml(ample)siz“ﬂﬂo 4m (2.2)
81atch sample

in which apach is the batch concentration and the symbol ‘=’ stands for ‘is by definition
equal to’. The factor 107* arises so as to express R as a percentage.

For a material for which no sampling constant is specified, Ingamells and
Switzer proposed to estimate K; by analyzing multiple samples, using the following
equation:

N
10*w i‘:(ci —6)2
K, = = (2.3)
Ndet -1

in which Ny is the total number of samples drawn to estimate K, c¢; is the
concentration as measured in the i® sample and ¢ is the arithmetic mean of the Nge
determinations. A requirement for application of the above equation is that the
analytical error is negligible compared to the variations induced in the variables c; by
the sampling error. A second requirement is that a minimum number of samples is
analyzed. Ingamells and Switzer recommend that at least 10 samples should be
analyzed for a reliable estimate of K;. However, no theoretical basis for this number is
given.



The theory of Visman (Visman, 1969) is applicable to incremental sampling. In
incremental sampling, Ni, increments of mass w are drawn to constitute a composite
sample. Visman proposed the following equation for the variance of the mass
concentration in the composite sample:

V(asample)= }qi“; + ‘I\}B__ (2.4)

where A is the “homogeneity” constant and B is the “segregation” constant. As the
segregation constant B increases, the number Ni,. of samples assumes greater
importance. If there is no segregation, B is zero and it makes no difference into how
many increments the total mass of samples is divided. Note that since the value w is
given in the standard unit of mass (kg) A must also be given the in standard unit of
mass (kg); B is dimensionless. When specified values for A and B are used, the
variance of the sample concentration is calculated using Equation 2.4. When a material
is sampled for which no values for A and B are specified, A and B must be estimated
by analyzing two series of samples, one series of “small” samples and one series of
“large” samples. Ingamells (Ingamells, 1974) proposes the following equations:

A=w,w,(s? -s2)/lw,-w, ) (2.5)
B=sl-A/w, (2.6)

where s? is the observed small-sample variance, s3 is the observed large-sample

variance, w; is the small-sample mass and w; the large-sample mass (i.e. w; < w3).

The theory of Rasemann and Herbst (Rasemann and Herbst, 2000) is also not
based on a mathematical algorithm used as a model for the drawing of a sample on the
level of (groups of) particles. In this theory, the parameters that describe the statistical
distribution of the number of particles in the sample, Ngample, cannot be derived
mathematically. Therefore, it is assumed that the expected value of Nsampte, E(Nsample),
and variance of Ngmpte, V(Nsample), are determined empirically. For the derivation of an
equation that relates the identity of the particles in the batch to the variance of the
sample concentration, it is assumed that the identity of each particle in the sample is
chosen at random from the entire collection of particles in the batch. Without reference
to a derivation, Rasemann and Herbst gave the following equation for the sample-to-
sample variance:

V(asample)= Vv ;:[i mi E(N

2| &My
sample )+ V(N sample )E

sample sample

2.7
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in which V(aimi/Mgampic) and E(aimi/Msampie) are respectively the variance and expected
value of the product of the concentration in the i'™ particle in the sample and the
particle mass divided by the sample mass. Because the identities of the particles in the
sample were chosen independently, these quantities are equal for all i between 1 and
Nsample- When the sample mass is constant, the following identities hold:

v 2| Vlo,m,) 2.
[Msample} Msample S) @8
2
g2| il E (a m; ) 2.9
( Msample ] sample (S) @

where V(aim;) and E(ajm;) are respectively the variance and expected value of the
product of the concentration in a particle and the particle mass. The equation for the
variance becomes:

V8 e )= m,,.e( )(( 0, JEN st} VN e 2 0, ) (2.10)

Because the identity of the i particle in the sample is chosen at random from the
entire collection of particles in the batch, V(a;m;) and E(aim;) can be related to the
identities of the particles in the batch:

N
Efa, m, )=—! i?‘hajmj @.11)
batch 1=
N,
Vioim; = lfh (am, ~Ela, m, Jf (212)
batch J=

where Npacn, aj and m; are the total number of particles in the batch, the mass
concentration in and mass of the j™ particle of the batch respectively. The index j
ranges from 1 to Npacn. Hence, the sample-to-sample variance is modelled on the level
of the individual particles of the batch.

The characteristics of the theories of Ingamell/Switzer, Visman, and
Rasemann/Herbst can now be projected against the eight criteria:

Criterion 1
e Met, the theories relate the sample mass Mgmpie(S) (denoted as w in the theory of

Ingamells/Switzer and N;, w in the theory of Visman) to the variance of the sample
concentration, see Equations 2.2, 2.4, and 2.10.
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Criterion 2
e Not met, the theories are not based on a model for the drawing of a sample.

Criterion 3
e Met, there are no restrictions to the theories that prohibit the application to batches
that contain multiple distinct types of particles.

Criterion 4

e Met in the theories of Ingamells/Switzer and Visman, because the parameters K, A
and B can be estimated using multiple samples (see Equations 2.3, 2.5 and 2.6).

e Not met in the theory of Rasemann/Herbst. This theory provides no method to
estimate the parameters E(aim;) and V(ajm;) using the measured sample
concentrations of one or more samples. This applies even if E(Ngmpe) and
V(Nsample) have been determined empirically.

Criterion 5

e Not met in the theories of Ingamells/Switzer, and Visman. These theories do not
provide a method to estimate K, A, and B using knowledge of the properties of the
particles in the batch.

e Met in the theory of Rasemann/Herbst, where values of the parameters E(aim;) and
V(aim;) can be calculated using the properties of the particles in the batch (see
Equation 2.11 and 2.12). If it is assumed that E(Nsampie) and V(Nsample) were
determined empirically, the value of the variance can be calculated for an arbitrary
value of the sample mass.

Criterion 6

e Not met, no method is specified to estimate the parameters K;, A, B, E(aim;),
V(aim;), E(Nsampie) and V(Ngmpie) using knowledge of the properties of the particles
in the sample.

Criterion 7

e Not met, the theories apply only for mass concentrations.

Criterion 8

e Met in the theories of Ingamells/Switzer and Visman. The theories describe
sampling as a process leading to a constant sample mass, denoted as w in the
theory of Ingamells/Switzer and Nj,w in the theory of Visman.

e Met in the theory of Rasemann/Herbst. The theory is able to describe sampling as a
process leading to a constant sample mass.
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2.3 Non-empirical sampling theories

Hassialis (Taggart, 1945) proposed a binomial sampling scheme. With this model, it is
assumed that the particles belong to only two classes: particles with and particles
without the property of interest. It is further assumed that a sample contains a fixed
number of N particles that were selected during N selections. With each selection, the
probabilities of selecting a particle belonging to either the first or the second class do
not depend on any of the previously selected particles. A graphical illustration of the
model of the sample drawing process is given in Figure 2.1.

First Sampling
selection Py process
Second S
selection

Third

P, P p p p
selection ?/\02 /\2 ﬁz /\2
Fourth P ” ) Py P P2 py/\P, By \Py
selection

1% particle
2md particl
3rd pam'cIJ
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e

W
d——
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|
[ ]
[ ]
[ ]
Pl Db, B, B3 PP, B3 BF5 PP

Figure 2.1. Sampling process according to the model of Hassialis. In the model of Hassialis,
only two classes of particles are distinguished. The probabilities of drawing a particle of type
I and 2 are denoted as p, and p, respectively. In this example, the number of particles
sampled is 4. At the end of each branch, the sample composition and probability are given.

Using the binomial distribution, Hassialis derived the following formula for the

variance, clz,, of the numerical fraction of particles with the property of interest®:

5 The numerical fraction of particles with the property of interest in the sample is defined as the ratio of the number of
particles in the sample with the property of interest to the total number of particles in the sample. Other fractions are the
mass fraction or voluminous fraction of particles with the property of interest in the sample. These are defined as mass
or volume of the particles with the property in the sample respectively, divided by the total mass or volume of the
sample respectively.
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ol = (2.13)

where p; and p, are the probability of selecting a particle with and without the property
of interest respectively. Hassialis assumed that p, and p, are equal to the numerical
fraction of particles with and without the property of interest respectively, i.e.

’ —_— — ! —_— .
Py =P =Nl,batch/sznch and p, =p;) =N2,batch//Nbatch where:

p; = the numerical fraction of particles in the batch with the property of
interest,

p, = the numerical fraction of particles in the batch without the property
of interest,

N1 bater= the number of particles in the batch with the property of interest
and

N2 bateh= the number of particles in the batch without the property of
interest.

|
| Wilson (Wilson, 1964) generalized the model of Hassialis by using a multinomial
l distribution.

First Sampling
selection process
Second /
selection / / \p3
‘ D ) : ® \})
ftie|e o] o]
mdle e 0 o 0 O * | 0 oi
PRy | PR PP l PP

A S S R -

Figure 2.2. Sampling process according to the model of Wilson. In this example, the number
of classes of particles is 3, but the theory of Wilson can handle an arbitrary number of
distinct classes of particles. The probabilities of drawing a particle of type 1, 2 and 3 are
denoted as pi, p, and ps respectively. In this example, the number of particles sampled is 2. At
the end of each branch, the sample composition and probability are given.
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In this model, the samples always contain a fixed number of N particles. It is assumed
that the particles in the batch are of uniform volume and can be classified into m
distinct classes. In a class, the concentration of the property of interest in a particle and
the particle mass is constant. Like Hassialis, Wilson assumes that the probability py for

any k between 1 and m is equal to the numerical fraction p; of particles belonging to

the k™ class in the batch, i.e. p, =p} =N, pye /Nb.wh in which Ny paten is the number of

particles in the batch belonging to the k™ class. An illustration of the sampling process
proposed by Wilson is given in Figure 2.2.

The final sampling equation, derived by Wilson, using the notation of Wilson,
is:

m m .
COSEES 5 R )Z[Wl L/ ] .19
1=l j=1 dldj
where
V(asample)= the variance of the mass concentration in the sample,
N= the number of particles in the sample,
m= the number of particle types in the batch,
di= the density of a particle of type k for all k between 1 and m,
W= the mass fraction of particles of type k in the batch for all k
between 1 and m,
and
Aty= ty-t  for all k between 1 and m,
where
t= the mass concentration in a particle of type k for all k between 1
and m, and
t= the mass concentration in the batch.

A different notation convention will be used in this thesis. The equation of Wilson can
be written in this notation, if the following substitutions are made:
m=T
te=ay
t=avatch
dk=mk/v
Ny batcMy M, P
 m

W, =
M batch

18




in which

T= the number of different particle types in the batch,

k can represent any integer between 1 and T,

ax= the mass concentration in a particle of type k,

apatch™ the mass concentration in the batch,

my= the mass of a particle of type k,

v= the volume of a particle® (assumed constant by Wilson),
Mbatch= the mass of the batch,

P;( = Ni,bateh/Nbatcn and

m= the average particle mass in the batch Mpatcn/Npatch-

When the above variables are substituted and the equation is rewritten, the volume v
cancels out of the equation:

V(asample)=§2i((ai ~ Aparch }ni _(aj _abatch}nj)z P pj (2.15)

=2
i=1 j=1 m

The square can be expanded and the terms can be rearranged:

T T T 2
;p{ (ai _abatch)zmizng +(ZP; (ai _abatch)ni]

=1 i=1

V(asample = —x (2.16)
Note that because p; =N, . /meh for all i between 1 and T, it follows that
T T
Zp} =1 and Zp{ (@; —apq)m; =0
j=1 i=1
Hence Equation 2.16 is simplified to:

( ) 1 < ' 2 2
V8 ampie )= — D pi mi(a; —8pyq) (2.17)

m°N j 1

i=

The above equation for the variance is easier to evaluate than the equation originally
proposed by Wilson because only a single summation symbol is required.

Gy (Gy, 1979) proposed to model the sample drawing by repeated and
independent Bernoulli experiments for every particle in the batch. An illustration of
this process is given in Figure 2.3.

6 Note that Wilson introduced the symbol v (see Wilson, 1964), but this symbol is not part of the adopted notation used
throughout Chapter 3 to 9 of this thesis.
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Start of sampling process

End of sémpling prbcess

Entire batch is drawn No particles
with probability q,9,99, are drawn

Figure 2.3. Sampling process according to the model of Gy. In this example, the batch
contains four particles. The probabilities of drawing particles 1,2,3 and 4 are indicated by q,,
Q2. q3 and qq. It can be seen that the number of selected particles varies between 4 (the sample
on the left) and zero (the ‘sample’ on the right). At the end of each branch the composition of
the sample is given.

During the k'™ Bernoulli experiment, the k™ particle in the batch has a probability gy of
being selected, while all the other particles have a zero probability of being selected.
In standard statistical theory, this process is denoted as Poisson sampling (Sérndal et
al, 1992).

The sampling design is rather artificial because the number of particles in the
sample may potentially be any integer between zero and the total number of particles in
the batch, Npach. In the special case when all q; are constant, i.e. qi=q for all i between
1 and Npach, the total number of particles in the sample is binomially distributed. In
Gy’s theory, both the mass and volume sampled vary between zero and the mass and
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volume, respectively, of the entire batch. This is in contradiction with the practice of
sampling, since commonly the sampled mass or volume is approximately constant.

In the following, the theoretical consequences of Gy’s model are evaluated.
Using the indicator I;, which is one when the i" particle in the batch is selected and
zero otherwise, the sample concentration is defined by:

A
M

Nbatch Nbatch
sample

= > Lam / > Im, (2.18)
i=1 i=1

a sample =
sample

where Agample is the total mass of the component of interest in the sample, Mmpie is the
total sample mass, and a; and m; are respectively the mass concentration in and the
mass of the i particle in the batch. From the above equation, it follows that the sample
concentration will fluctuate both due to statistical fluctuations in the denominator (the
sample mass) and in the numerator (the total mass of the component of interest in the
sample). Hence, Gy’s model does not allow an exact calculation of the expected value
and variance of the sample concentration. Therefore, a Taylor linearization is applied
(Gy, 1979). In the following, a short and comprehensive derivation will be given,
which is basically equivalent to Gy’s derivation.

The Taylor linearization implies that asampie is written as a linear function of
Agample and Mgample plus a rest term:

A sample E(A sample ) A sample — E(A sample ) E(A sample )
= = - M -EM + Rest
#sample M ample E(M sample ) ¥ E(M sample ) E? (M sample ) ( sample ( sample )) ®

(2.19)

in which E(Asample) and E(Mgampie) are the expected value of Agampie and Mgample
respectively. The term Rest is equal to the difference between the left-hand side and
the linear terms:

- Asample _ E(Asample) - Asample - E(Asample)+ E(Asample)
E{M sample ) E? (M sample

- 2.20
Mample E(M sample ) ) (M sample E(M sample )) ( )

Rest can be interpreted as the error made during first-order approximation of asampie by
linear terms only. The above expression for Rest can be rewritten:

Rest = [ Asample _ E(A sample )] E(M sample ) - Msample (2 21 )
sample E (M sample ) E(M sample )

From the above equation, it follows that the error made in the linear approximation is
proportional to the relative deviation of the sample mass from its expected value,
(E(Msample)~Msample/E(Mgampte). Hence, the first-order approximation effectively
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neglects samples in which the difference between Msample and E(Msampie) is large. On
the other hand, if the relative deviation in the sample mass is smaller than one, the
error in the first-order approximation is smaller than the error made if Asampie/Msampte
would be replaced simply by E(Asample)/E(Msample), the zero-th order approximation.
The latter observation suggests that the first-order approximation should be preferred
instead of the zero-th order approximation.

To the first-order approximation, the expected value of asampie is simply:

Ea umpic )= E(:Im"h) (2.22)

sample

Using Equation 2.19 gives the following equation for the variance of asample:

- - (2.23)
E(M sample ) E(M sample ) E2 (M cample )(M sample E (M sample )) + Rest

E{A A -ElA E(A
v(asamp]e )= V( ( sample)+ sample ( sample) ( sample)
where the right-hand side denotes the variance of
E(Asnmple)/E(Msample)+(Asample_E(Asample))/E(Mstmple)_(Msample—E(Msample))E(Asnmple)/Ez(
M;ampie)+Rest. Neglecting Rest and using the fact that constant terms do not contribute
to the variance yields:

A E\A
Ve gt )= V[ aeme__El ’;““"“N‘"“""J (2.24)
E(Msunple) E (Mumple)
where the right-hand side denotes the variance of

As.mpl,/E(Msample)—E(Asample)Msamp1,/E2(Ms,mple). The equation can be rewritten:

EZ (Msample ) E(Asample ) E(Msample )

E%A A M
V(asample)= ( sample)v( sample _ sample ] (2.25)
where V(Asample’/ E(Asample)Msample/ E(Msample)) is the variance of
Asample/ E(Asample)Msampie/E(Msampie). In statistical theory, a sample total Xsample is a
quantity that can be written as a summation over the particles. Hence, when x; is the
value of the i'® particle in the batch

N tch
X qample = i I;x; (2.26)

i=l

Under Poisson sampling the following identities hold for the expected value and
variance of Xsampic (Sdrndal et al, 1992):
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Nbach
E(Xsample)= 2 9q; X (2.27)

i=1

N

V(Xsample)= iwh q; (1 —q; )xnz (2.28)

i=1

The above relations can be applied to Equations 2.22 and 2.25 by recognizing that
Asample, Msampte, 8nd Agample’/ E(Asample) "Msample/ E(Msampte) are the sample totals of a;m;,
m; and aimi/E(Asampie)~mi/E(Mgampie) respectively. This results in the following first-
order approximations for the expected value and variance:

E(asample)= th q;a;m; /Nbitch q;m; (2.29)

i=1 i=1

-2 2

) N batch N batch )-n ) N batch N batch
V(asa.mple = Z q; my Zl q; (1_qi i3~ Zi q;a;m, Z q;m; (2.30)
i i= j= j=1

i=1

Hence, when all q; are equal, qi=q, the mass concentration in the sample is in the first-
order approximation an unbiased estimator for the batch concentration, apatcn. This
means that E(asample)=avatch, S€€ also Paragraph 4.2. In this case, the variance of the
sample concentration becomes:

N C|
V(asample)= q(;d_%:)h fh m|2 (ai ~ Apach )z (2'3 1)
c!

i=1

where My, is the mass of the batch. The variance calculated with the above equation
may differ from the actual variance as a result of the artificial sample drawing model
assumed by Gy, leading to a binomial distribution of the total number of particles in
the sample. However, it will be shown that Equation 2.31 is similar to the equation for
the variance that is derived in Chapter 4 for the new sampling theory presented in this
thesis. A possible explanation for this fact is that the occurrence of sample masses that
deviate largely from the expected value is neglected due to the underlying first-order
approximation. Because the equation for the variance derived in Gy’s theory is similar
to the equation for the variance in the new theory, both equations could provide similar
results for specific applications. In the following, two distinct applications will be
reviewed.

A derivation of Gy’s basic equation (Equation 2.31) was obtained by analysing a
mixture of distinct types of materials. Several assumptions were required. Firstly, it
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was assumed that the particles in the batch can be classified according to volume and
type of material and that the concentration in a particle and density of a particle do not
vary between particles of a given material type. Secondly, it was assumed that the size
distribution in the batch of particles belonging to distinct material types is identical.
Thirdly, it was assumed that the volume of each particle in the batch is given by a
constant factor f, multiplied by the cube of the particle diameter. Using these
assumptions about the composition of the sampled batch and the particle size
distribution, Gy  obtained the following equation for the factor

Npaich
Mblawh g miz(ai —abmh)2 in Equation 2.31:
1 Noaen 2( )2 3
v Z mifa, —a,,.. ) =dmaxfglc (2.32)
batch 1=l
where
dmax= the typical maximum particle diameter (determined by sieving),
= the shape factor,
g= the size range factor,
= the liberation factor, and
c= the mineralogical composition factor

The precise relationship between the above introduced parameters and the masses m;
and concentrations a; of the particles of the batch can be found in Gy (1979).

Von Blottnitz and Hoberg (von Blottnitz and Hoberg, 1998) arrived at another
derivative of Gy’s basic equation (Equation 2.31) based on analysing a mixture of
plastics. It is assumed that the batch consists of two particle species. The
concentrations in the particles of the first and second species are one and zero
respectively. It is also assumed that both species have a Rosin-Rammler-Sperling-
Bennet (RRSB) particle mass distribution, which is characterized by two parameters.
The fraction of particles with mass smaller than m (which can represent any positive

An
number) is parameterized as l—e_(m/m) , where m’ and n are the two parameters that

define the RRSB distribution. Von Blottnitz and Hoberg obtained the following

. N 2 . . .
equation for the factor (1/Mpgch ) i=ll’at°h m; (ai —abatch)2 in Equation 2.31:

Niatch )
z m; (ai —abatch)z

= = 2y 1~ 2pus oM QUA )+ {1 ~ 2peen M Q5 )] (2.33)
batch

where Ma, Mp, Q(nas) and Q(ng) are parameters that define the specific form of the
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RRSB particle mass distributions. For a detailed derivation and explanation of these
parameters, the reader is referred to Von Blottnitz and Hoberg (1998).

The characteristics of the theories Hassialis, Wilson, Gy and derivatives of Gy’s

theory can now be projected against the eight criteria:

Criterion 1

Not met in the theories of Hassialis and Wilson. Equation 2.17 (for T=2 or the
general case) does not relate the variance of the sample concentration to the
sampled mass or volume. An attempt to overcome this problem by replacing mN by
the sample mass Mgmpe(S) fails, because generally M:ﬁMmple(S) when the

particles in the batch have a variable mass.

Not met in the theory of Gy and derivatives of Gy’s theory, Equation 2.31 does not
depend on the volume or mass sampled. An attempt to overcome this problem by
replacing qMparcn bY Myampie(S) fails, because, in Gy's theory, the mass sampled
varies between zero and the mass of the entire batch and is therefore generally not
equal to qMpatch.

Criterion 2

Met. The theories are based on a model for the drawing of a sample.

Criterion 3

Not met in the theory of Hassialis.
Met in the theories of Wilson, Gy and derivatives of Gy’s theory.

Criterion 4

Met in the theories of Hassialis and Wilson. If mN is replaced by the sample mass
Mamp1e(S) (which is not an accurate substitution), the equation for the variance,
Equation 2.17, can be written as V(asample)=C/Msampic(S), where C is a material-
dependent parameter. In this case, the value of C can be estimated using multiple
samples, similar to the manner in which K, is estimated in the theory of
Ingamells/Switzer.

Met in the theory of Gy and derivatives of this theory. If qQMpucn is replaced by the
sample mass Mgmpie(S) (wWhich is not an accurate substitution), the equation fot the
variance, Equation 2.31, can be written as V(2sampie)=C/Msampie(S), where C is a
material dependent parameter. In this case, C could be estimated, using multiple
samples, similar to the way K; is estimated in the theory of Ingamells/Switzer.

Criterion 5

Met in the theories of Hassialis and Wilson. The equation for the variance of the
sample concentration, Equation 2.17, depends on the variables apaich, ai, m;, p; and
m . These variables depend on all the particles in the batch.

Met in the theory of Gy and derivatives of this theory. The basic- equation
(Equation 2.31) requires batch information (the masses of and concentrations in the
particles of the batch). Also Equations 2.32 and 2.33, require batch information: for
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evaluation of the right-hand side of Equation 2.32, Cpatch, dmax, f, g and € are
required. These parameters depend on the particle masses, particle volumes and
concentrations in the particles of the batch. For evaluation of the right-hand side of
Equation 2.33, the parameters apaich, Ma, Mg, Q(na) and Q(ng) are required. These
parameters depend on the particle masses and concentrations in the particles of the
batch.

Criterion 6
e Not met. No equations are given for which knowledge of the properties of the

particles in a sample is required.

Criterion 7
e Not met. The theories are only applicable to mass concentrations and not to volume

concentrations.

Criterion 8
¢ Not met. The theories of Hassialis and Wilson model the sample drawing as a

process leading to a constant number of particles. The theory of Gy (and
derivatives of this theory) models the sample drawing as a process leading to a
binomially distributed number of particles.

2.4 Results

Current empirical and non-empirical sampling theories were reviewed by considering
eight criteria. The first criterion is the ability to provide an accurate relation between
the mass or volume sampled and the variance of the sample concentration. The
empirical theories of Ingamells/Switzer, Visman and Rasemann/Herbst meet this
criterion.

The basis for the derivation of the equation for the variance can be provided by
an underlying mathematical model for the drawing of a sample. Therefore, the second
criterion is that the theory is based on a model for the drawing of a sample on the level
of (groups of) particles. This criterion is met in the non-empirical theories of Hassialis,
Wilson and Gy.

Because real batches may contain a wide range of different types of particles,
the third criterion is that the theory is applicable to sampling from batches containing
any number of distinct types of particles. Only the theory of Hassialis does not meet
this criterion.

The fourth criterion is that the theory allows determination of the parameters of
the size-variance equation, using the measured sample concentrations of one or more
samples of a given size. This criterion is met in the empirical theories of
Ingamells/Switzer and Visman and in the non-empirical theories of Hassialis, Wilson
and Gy.

Knowledge of the distribution of the particle masses and concentrations of the
particles in the batch may be used to calculate the parameters of the size-variance
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equation if the fifth criterion is met. The fifth criterion is that the theory allows
determination of the parameters of the size-variance equation, using prior knowledge
of the properties of the particles in the batch. This criterion is met by the empirical
theory of Rasemann/Herbst and by the non-empirical theories of Hassialis, Wilson and
Gy (see Equations 2.10, 2.17 and 2.31).

When there is no knowledge of the properties of the particles in the batch,
analysis of the particles in the sample may provide knowledge of the properties of the
particle in the sample. Therefore, the sixth criterion is that the theory allows
determination of the parameters of the size-variance equation, using posterior
knowledge of the properties of the particles in the sample. Because none of the
theories reviewed in this chapter uses this crucial sample information, none of these
theories meet this criterion.

The seventh criterion is that the theory applies to mass and volume
concentrations. This criterion is not met by any of the reviewed theories, because these
theories are only applicable for mass concentrations.

Finally, the eighth criterion is that the theory is able to describe sampling as a
process leading to a constant sample mass or volume. This criterion is met by the
empirical theories of Ingamells/Switzer, Visman and Rasemann/Herbst.

The results of this review are summarized in Table 2.1.

Criterion Total

1 2 3 4 5 6 7 8| score
Ingamells t o [t {1 fo]ofof1 ]| 4
Switzer
Visman 1 |0 1 I ]0 [0 JO |1 4
Rasemann
Herbst 1 {0 |1 (0 |1 [0 |O {1 4
Hassialis 0 (1 |0 |1 1 {0 (0 [0 3
Wilson 0|1 1 i 1 |0 |0 [0 4
Gy
And derivatives 0 |1 ! ! 1101010 4

Table 2.1. Summary meeting the criteria. A ‘I’ indicates meeting a criterion and a ‘0’
indicates that the criterion is not met. The last column gives the total score of a theory, i.e.
the total number of criteria that the theory meets.
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2.5 Conclusions

In Table 2.1, it can be seen that none of the theories meets all criteria. Therefore,

further research to develop a theory that meets all eight criteria is required. In order to

be able to meet the first, second and third criterion, the new theory must provide the

following features:

e The sample drawing must be modelled at the level of (groups of) particles, so that it
becomes possible to meet the second criterion.

» Using this model, an equation for the size-variance relationship must be derived, so
that the first criterion is met.

¢ The sample-drawing model must be applicable to batches containing any number of
distinct types of particles, so that it becomes possible to meet the third criterion.

Using the new model, the following results must be derived in order to meet the fourth,

fifth and sixth criteria:

o The theory must provide an equation for the parameters of the size-variance
equation, using the measured sample concentrations of one or more samples of a
given size, so that the fourth criterion is met.

e The theory must provide an equation for the parameters of the size-variance
equation, using prior knowledge of the properties of the particles in the batch, so
that the fifth criterion is met.

e The theory must provide a sample estimator for the variance, whose evaluation
requires only the particle masses, particle volumes and concentrations in the
particles in the sample, so that the sixth criterion can be met.

Finally, the new theory must provide the following features:

e The theory must be applicable to both mass and volume concentrations, so that the
seventh criterion is met.

e The theory must be able to describe sampling as a process that leads to samples of
fixed mass or volume, so that it becomes possible to meet the eighth criterion.

In Chapter 3, the underlying sample-drawing model for a new theory is presented.
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Chapter 3 Size-based multinomial
selections: a model for sampling7’8

A mathematical algorithm is presented to serve as a model for ideal sampling from a
random arrangement of particles. The concept of ideal sampling is defined and the
details of the algorithm are discussed. It is shown that non-ideal sampling and biased
sampling are different phenomena, whereas non-ideal sampling can act as a source of
biased sampling. The boundary value of the sample size can, with limited effects to the
accuracy, be estimated using the sampled mass. Simulations demonstrate the validity of
this process.

3.1 Introduction

The second criterion for a sampling theory (“The theory must be based on a model of
the drawing of a sample on the level of (groups of) particles.”) is addressed in this
chapter. In order to develop a realistic model, the physical conditions during sampling
have to be taken into account.

Several conditions influencing sampling can lead to a biased selection of
particles with respect to size, shape and/or other properties. This biased selection may
subsequently result in a biased sample estimate of a batch value or concentration (see
Paragraph 4.2 for a mathematical definition of the bias of a sample estimator). Sample
drawing is strongly influenced by the properties of the material to be sampled and by
the manner of sampling. Material properties that influence sampling are the masses and
shapes of the particles, the friction between particles and cohesive forces. Sampling is
also influenced by geometry of the sample drawing equipment and operating
conditions, for instance the opening time of a shutter when sampling from a stream of
moving particles, or the speed with or the depth to which a sampling lance is inserted
in a static batch.

During sampling of an arbitrary material, the operating conditions have to be
chosen well so that a biased selection of particles is minimized. A discussion on the

7 The main aspects of this chapter have been published as: B. Geelhoed and H.J. Glass (2001) A new model for
sampling of particulate materials and determination of the minimum sample size. Geostandards Newsletter — The
Journal of Geostandards and Geoanalysis, 25, p. 325-332.

8 The definitions of symbols that were adopted in Chapter 2 are voided for Chapter 3 to 8. From now on, a consistent
set of symbols and corresponding definitions, to be extracted from the List of Symbols given at the end of this thesis, is
used.
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minimization of a biased selection of particles can be found in Robinson and Cleary
(1999). However, an investigation of this effect is not necessary here because the focus
is on ideal sampling, a concept that will be introduced in Paragraph 3.3. To
demonstrate the absence of a biased selection of particles during ideal sampling, the
sampling error can be split into two parts: the error due to non-ideal sampling, €nis, and
the error due to the distribution of non-identical particles, eqip. The precise definition
of these errors will be given in Paragraph 3.3. However, it is important to note that
only the choice of the location inside the sampled batch and the distribution of the
particles in the batch have an influence on enip. The operating conditions, which may
lead to a biased selection of particles, influence only the value of ens. Because eyp is
the sampling error of interest, the operating conditions leading to a biased selection of
particles are not further discussed here. Instead, only the distribution of the particles in
the batch is of interest. It will be demonstrated that when the particles are in a random
arrangement, the size-based multinomial selection model can be applied for the
drawing of an ideal sample.

3.2 Basis of new theory

In the non-empirical theories outlined in Chapter 2, the sample drawing model leads to
samples in which the total number of particles is constant (Hassialis, Wilson) or
binomially distributed (Gy). In the new model, presented in this chapter, these
conditions do not exist. The eighth criterion of Paragraph 1.5 states: “The theory must
be able to describe the sample drawing as a process leading to an approximately
constant sample mass or volume.” By assuming that particles are randomly selected
from the batch until a fixed parameter Z is reached or exceeded this criterion is met. Z
is referred to as the boundary value of the sample size. The aim of introducing Z is
purely to model the sample drawing on a theoretical level. In the practice, its precise
value is unknown. The boundary value of the sample size Z corresponds to the
boundary value of the sample mass M in the mass-based approach or the boundary
value of the sample volume V in the volume-based approach. In this model, for any
sample S the difference between the sample size obtained Zampie(S) and the boundary
value of the sample size is smaller than the largest particle size in the sample, Zmax(S).
The latter symbol represents the largest particle mass in the sample, mpmsx(S), in the
mass-based approach and the largest particle volume, vmax(S), in the volume-based
approach. Hence, the relative difference between the boundary value of the sample size
and the sample size obtained tends to approach zero with increasing value of Zsampie(S).

In practice, samples often contain a large number of particles. This reduces the
relative difference between the boundary value of the sample size and the sample size
obtained, and there may be cases in which the contribution of this difference to the
sampling error is negligible. Therefore, if the boundary value of the sample size is
unknown, the above-described sampling design can be used to model the sample
drawing: After a sample S has been drawn, it is assumed that the sample was drawn
according to the size-based multinomial selection process, with boundary value of the
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sample size equal to the actual sample size Zgampie(S). This process will be simulated
for four distinctly different two-dimensional batches in Paragraph 3.5. It will be
demonstrated that the samples obtained are distributed in agreement with the size-
based multinomial distribution.

3.3 Ideal sampling

For the definition of ideal sampling, it is necessary to identify two stages during the
drawing of a sample. The first stage is the (physical) insertion of the sampling device
into the batch and the second stage is the retraction of the sampling device from the
batch. All particles that are inside the sampling device after completion of the second
stage are selected, and thus form part of the sample S. After the first stage is completed
but before the second stage is commenced, the open volume inside the sampling device
occupies a certain area of the batch. This area is defined here as the target area.

Sampling is defined as ideal if only the particles whose centres of mass were
located inside the target area before the sampling device was inserted will be selected
to form part of the sample S after completion of the second stage. The other particles,
i.e. all the particles that had their centres of mass outside the target area before the
first stage was commenced, will not be selected after completion of the second stage.
Hence, the drawing of an ideal sample is determined only by the position of the target
area in the batch before the first stage is commenced and is therefore insensitive for
mechanical factors (e.g. friction, cohesion and the speed of the sampling device with
which it is inserted) occurring during the first and second stage; these effects may
result in biased sampling. In the following the ideal sample is denoted as S'.

As mentioned in Paragraph 3.1, the sampling error is subdivided into a
contribution due to non-ideal sampling and a contribution due to the distribution of
non-identical particles. Both errors will influence the estimates of batch properties:
when estimating the true value of a batch property Xpach, using the sample S and

estimate %, (S), the value of the sampling error in S is defined as the difference
between the sample estimate and the true batch value: Ry (S)—Xpuen - The value of the
error due to non-ideal sampling, enis(S), in S is defined as the difference between the
actual sample estimate, X,,,(S), and the estimate that would be derived from the
hypothetical ideal sample S', X, (S): €.s(S)=Kpuen (S) = Rpuen (S') - In addition, a
contribution to the sampling error is introduced by the distribution of non-identical
particles. The value of this error in a sample S’ is denoted as enip(S') and is defined as

the difference between the estimate derived from the ideal sample and the batch value:
enip(S'):)"(bmh(s’)—thh. enip(S'). In principle, the errors e,j; and enjp fluctuate from

sample to sample and can be positive or negative. Using both definitions, the following
equation is obtained:
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% batch (5)= Xbatch + (X batch (8)— Xbatch (8'))+ (R batch (S")— X batch )= Xbatch +€nis (8)+enip(8)  (3.1)

In practice, the average value of e, is often not equal to zero, leading to a biased
sample estimate (see Paragraph 4.2 for a mathematical definition of bias). When non-
ideal sampling is controlled, which means that the value of e,is is small, statistical
fluctuations of the sample estimate are mainly influenced by enip. In Paragraph 3.4, a
mode] for the selection of randomly arranged particles by ideal sampling is proposed.

Figure 3.1. Sampling from a single layer of packed particles, formed under the influence of
gravity. The left photograph shows the arrangement of the particles before the first stage is
commenced, and the intended position of the sampling lance. Also the target area is indicated
in the left photograph. In the left photograph 48 particles are ideally selected. The right
photograph shows that disturbance of the arrangement of the particles is evident after
completion of the first stage but before the second stage is commenced. Only 46 particles are
selected if it is assumed that no particles are lost during the second stage.

It can be seen from Figure 3.1 that non-ideal sampling can even occur when sampling a
single layer of spherical particles with equal diameters. The particles are initially in a
static arrangement consisting of only one layer formed under the influence of gravity.
Subsequently, an image of the sampling lance is inserted into the particles. The target
position of the lance is indicated on the left part of Figure 3.1. Ideally, particles with
centres of mass inside the target area are selected. In reality, inserting the lance causes
a disturbance of the arrangement. Consequently, it is possible that particles initially
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expected to be inside the target area fall in practice outside the lance after insertion.
Another non-ideal effect is that some particles may be lost when the lance is retracted.
It can be derived from Figure 3.1 that 48 particles would be selected in the ideal case.
The right-hand part of Figure 3.1 shows that, when assuming that the particles remain
in the tube when the sampling lance is pulled up, the actual number of selected
particles is 46. This illustrates a deviation from ideal sampling.

The value of e,js depends on the property estimated and its distribution over the
particles in the batch and sample. In case of spherical particles with equal dimensions
and equal properties, the occurrence of non-ideal sampling generally does not lead to a
biased sampling. However, with properties unequally distributed over the particles, the
occurrence of non-ideal sampling may lead to a biased sampling.

Finally, some possible numerical values for e are derived for the example
depicted in Figure 3.1. The situation is considered in which Xpawch represents the mass
concentration of an arbitrary compound, which is estimated using the mass
concentration in the sample, here represented by Xy(S). It is assumed that all
particles have identical masses.

The preceding shows that the ideal sample contains all particles that are finally
sampled plus two additional particles. In the following, two numerical examples are
given. Firstly, as a worst-case scenario, it is assumed that the concentrations in these
two particles are both 1.0, while the concentrations in all other particles are 0.0. In this
case, the mass concentration in the ideal sample is:

n N 2
Rywen (3)= 55 =0.042 g/g

Assuming no particles are lost during the second stage, the mass concentration in the
final sample is:

R pagen (8) = 0.000 g/g

Hence the value of ey;; is:

€6 () = Kt (S) = R paeer (8) = 0.000 - 0.042 = —0.042 g/g

As a second example, the situation is considered in which the concentrations in 24 of

the 48 ideally selected particles are 1.0, while the concentrations in the other 24
particles are 0.0. The concentration in the ideal sample is:

, N 24
R (8')= 5 = 0.500 g/g

If it is assumed that the concentrations in the two particles ideally selected, but not
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forming part of the sample after completion of the first and second stage, are 1.0, the
concentration in S is:

. 22
K prcn (S) = v 0.478 g/g

Hence, the value of ey is:
€15 (8) = Rpuien (S) = R (S') = 0.478 - 0.500 = —0.022 g/g

This value is smaller than the value of e in the previous example.

3.4 Mathematical algorithm

The particles in the batch are classified into T distinct classes differing in one or more
parameters. The particle size, particle mass and the concentration of the property of
interest are constant within each class. In practice, the choice of a classification may
be imperfect due to a remaining variability in the particle sizes, particle masses and
concentrations in the particles belonging to a single class. Theoretically, however,
classification poses no problems, because every particle in the batch could form a
distinct class. In the latter case, T equals the number of particles in the batch.

For sake of simplicity and to proceed on the example presented in the preceding
paragraph, it is assumed that a sampling lance is used, but the similar considerations
will be possible if using other sampling devices. When the lance is inserted, particles
cross the entrance of the lance in succession. It is assumed that the arrangement of
particles is not disturbed by insertion of the lance, i.e. sampling is ideal. Because the
particles are randomly arranged, this corresponds to repeated multinomial selections.
With every selection, there are T independent possibilities and the probability of
drawing a particle of type i is equal to p;. The value of p; varies during the insertion of
the sampling lance in the batch. For the first selection, every particle has a selection
probability of 1/Npatch, Where Npaeen is the total number of particles in the batch before

sampling. Hence, during the first selection, it is guaranteed that p, =p! in which
p; ENi‘,,mh/mech , where Njpach is the total number of particles belonging to the i

class in the batch before sampling and ‘= stands for ‘is by definition equal to.” For
subsequent selections, the probability of selecting a particle is either zero when a
particle is already selected or 1/(Npatch—Dsample), Where nNgampie is the number of particles
selected, when the particle is not selected during any of the previous selections.
Therefore, the value of p; depends on the previously selected particles and the number
of particles in the batch. On the condition that ngmpie particles have been selected of

which n; are of type i (i.e. nsamplezz;l;lni ), the probability of selecting a particle of

type i during the next selection is:
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p=————— (3.2)
Nipaen =01

N; parch — 1

sample

Dividing the numerator and the denominator on the right-hand side by Nygch results in:

n; N
P, =[p: _ i J batch (3.3)

Nbatch Nbalch ~Nample

In this thesis, many results are calculated in the limit of an infinite value of Nyach,

denoted as Lim . By definition, an important property of this limiting process, as
N —x
batch

used throughout this thesis, is that the taking of the limit Nyucn=c0 does not alter the

average composition of the batch, i.e. the values of p; (for all i between 1 and T)

remain constant. This is stated as: Lim p; =p] for all i between 1 and T. In the limit
N —®
batch

of an infinite value of Nyaccn it follows that:

Lim pi = Lim (,p: -1 /Nbalch )Nbatch /(mech _k)=p: (3‘4)

Nbatch s Nbatch o®

This demonstrates that Equation 3.3 can be interpreted as follows: p] is the probability
of drawing a particle of type i when sampling with replacement or, equivalently,

Noaen=00. To correct for sampling without replacement, p! is lowered by ni/Npach.

Subsequently, p; has to be multiplied by Nboateh/(Noatch—Dsampie) t0 assure that the

probability of selecting an arbitrary particle remains one.

Using the indicator Ii(S), which is one when the i™ particle in the batch is part of
S and zero when the i"™ particle of the batch is not part of S, the sample size of S,
Zsample(S), is defined as:

Nbalch

Zsample(s)= Z Ii (S)zn(i) (3.5)

i=}

in which n(i) is the class of the i™ particle in the batch and Zqc) is the size (i.e. the
mass or volume in the mass-based or volume-based approach respectively and one in
the number-based approach) of a particle belonging to the n(i)® class. It is assumed
that the multinomial selections are terminated when Zsampie(S) reaches or exceeds the
boundary value of the sample size, Z. This is the principle of the size-based
multinomial selections. Note that this algorithm only works if Z is smaller than or
equal to the size of the batch, Zpach. Due to the discrete nature of the particles, a
difference 8(S) may exist between the theoretical boundary value of the sample size
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and the experimentally obtained sample size. Because 3(S) is smaller than the largest
particle size of the sample, the relative difference between the obtained sample size
and the boundary value of the sample size (Zsamp1e(S)—Z)/Zsampic(S) becomes arbitrarily
small, if the sample size is sufficiently large. For example, the requirement that the
relative difference between the obtained sample size and the boundary value of the
sample size is smaller than a factor € results in a minimum value for the sample size:

(8)-2

z e
Zsample(s)> _Sﬂm_l_)ls— (3.6)

The numerator on the right-hand side cannot be larger than the maximum particle size
Zmax(S) in the sample S. Therefore, for a sample S, the above condition is certainly met
if:

Z e (S)> 2w (8) (3.7)
€

Figure 3.2. Example of the evolution of p; during a sampling process. Initially, the batch
consists of 12 particles belonging to three distinct classes. The particle masses are
respectively 1 g, 1.5 g and 2 g. The boundary value of the sample mass M is 3 g. In each
branch, the probability p; is given.
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In Figure 3.2 the evolution of p;, calculated using Equation 3.3, is illustrated for
sampling from a batch containing 12 particles belonging to three distinct types with
particle masses chosen between 1 and 2 g: 1 g, 1.5 g and 2 g respectively. In this
example, the boundary value of the sample mass was set to 3 g.

For every possible sample S, the probability P(S) of being drawn is the product
of the successive probabilities to draw a particle:

Nsample (S)_l 1

B(s)= . (3.8)
]!:[0 Nbatch -k

in which Ngample(S) is the total number of particles in S. The probability of going to
one of the end-points of the multinomial tree is generally larger than P(S), because the
former probability is that of drawing an arbitrary sample from a collection of many
samples (namely all samples that are drawn using a sequence equivalent to the
sequence leading to the end-point), while the latter probability is only that of drawing a
single sample. As the probability of going to one of the end-points of the multinomial
tree depends on the obtained sample composition and the batch composition, this

probability is  denoted as P(n,,...,nT,p; ,...p’T,me). In  other  words,
P(n,,..‘,n-,-,p; DT ,meh) is the probability of going to an end-point of the multinomial
tree leading to a sample with n; particles of type i for all i between 1 and T.
P(nl,...,nT,p{ ,...p’T,Nbawh) is the product of the successive probabilities p;. Using

Equation 3.3, this can be expressed as:

Msample ™ n;-1

T|J
P(“lv"’“T'Pi ""p:l"Nbatch) l_!) Nbatch/( Nbatch ~ )H H(PJ _i/Nbatch) (3.9

j=1| i=0

T

where T is the number of classes and nsample=zi=|ni. It is noted here that

P(nl,...,nT,p; DT ,meh) is fundamentally different from p;, the probability to draw a
particle of type i during the selection of a particle. Only if Z is reached or exceeded
after one particle is selected that belongs to the i class, P(n1 seees i, P 5P ,meh)= p; -

When U is the collection of all possible samples, the ‘expected value of X, is
defined by:

ER puen )= PSR e () | (3.10)

SeU

The variance is defined by:
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V(’A‘ batch )E 2 P(SX’A‘ e (8) E("i batch ))2 (3.11)

Seu

Instead of a summation over all possible samples, the expected value and variance can
also be written as a T-fold summation over all possible values of n; for all i between 1
and T. Doing this will facilitate the calculation of analytical expressions for expected
value and variance in Chapter 4. A general requirement, which is met by all practical
estimators, is that, given a sample S and the properties of the T classes, Xpaech(S),
depends only on the number of particles in S that belong to the i™ class, Ni(S), for all i
between 1 and T. Hence R pgen(S) can be written as a function of the T variables Ni(S):

Zpuen (8) = (N, (S).... N1 (5)) (3.12)

When F(ni,...,n1,Ni batch,.--sNT batch,Z) denotes the number of end-points of the
multinomial tree resulting in samples with n; particles of type i for all i between 1 and
T, the probability of drawing an arbitrary sample with n; particles of type i for all i
between 1 and T can be written as:

P(SIN{(S) = 0y N (8) = 07 )= F( s DT N batch s NT bateh s Z)P@1 s T P s PTs Niaten ) (3-13)

Using the above equation, the expected value can be written as:

N C! N, o tC]
e, )= S 5)- S S SN, (5)= 1, e N )= Kl g -

nl =0 n-l-=0 (3.14)

Nl,batch NT,batch [F(n }((n }) (n )]
’ ’
1’“"nT’Nl,batch""’NT,batch’Z s DUy 1o s DL s P s N
n =0 nT=0

A similar equation can be derived for the variance:
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V(ﬁ batch )E SeZUP(SKi batch (S) - E(i batch ))2 =

Nibatch NT,batch
P(S]N1 (S)= n,.,Np (S)= np Xx(n1 yoens Il )— E(ibatch ))2
ny =0 nT=0 L

) (3.15)
Ny batch  NT,batch

2 2 F(nl""’nT’Nl,batch"“’NT.batch’Z)x

n] =0 nT=0 L

(x(nl ”"’nT)_ E(ibatch ))2 P(nl ""’nT’p'l "--P'T ’Nbatch)

Equations 3.14 and 3.15 will be used in the next paragraph. This paragraph concludes
with two more examples of the proposed sampling algorithm.

In Figures 3.3 and 3.5, the proposed algorithm is illustrated for the case of two
and three distinct particle types respectively in the mass-based approach. The selection
of particles is terminated when the sample mass obtained reaches or exceeds the
boundary value (5 g and 4 g in Figures 3.3 and 3.5 respectively). Figures 3.4 and 3.6
give the relative frequency of possible routes to a certain sample mass and the
probability distribution of the possible sample masses. The relative frequency is
defined as the ratio between the number of routes to a certain sample mass and the total
number of possible routes. For calculation of the probability distributions in Figure 3.4
and 3.6, it is necessary to assume numerical values for p;, p, and ps;. For the

construction of Figures 3.4 and 3.6, it is assumed that p; =pj, =1/2 and

p; =p, =p; =1/3 respectively. It is also assumed that the number of particles in the

batch is infinite, leading to constant selection probabilities. Therefore, for Figure 3.4,
it is assumed that p;=p,=1/2 and for Figure 3.6, it is assumed that p;=p,=ps;=1/3. A
different choice of values will, of course, lead to different probability distributions. On
the other hand, the relative frequency does not depend on the values of the selection
probabilities.
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Figure 3.3. Schematic illustration of the proposed sampling algorithm. At the end of each
branch, the actual sample mass and the composition of the sample are given. Selection of
particles stops when the boundary value of the sample mass (5 g) is reached or exceeded. It is
assumed that a sample never contains all the particles of one type present in the batch, so two
choices always remain during each selection.

The relative frequency is zero in the distributions of relative frequencies plotted in
Figures 3.4 and 3.6 for sample masses larger than 6 g and 5.5 g respectively.
Therefore, both figures demonstrate also that the sample mass can never exceed the
boundary value by more than the mass mpax of the largest particle batch. In Chapter 7,
the proposed sampling process will be simulated and compared with Wilson’s
multinomial model and Gy’s Bernoulli model (see Chapter 2). It will be shown that
samples drawn using Wilson’s and Gy’s procedures have more variation in the sample
mass compared to samples drawn by the here described newly developed model.
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Figure 3.4. Relative frequency of the possible routes to a certain sample mass and the
probability distribution of the possible sample masses, for the tree depicted in Figure 3.3. The
relative frequency of routes is defined as the number of routes to a certain sample mass
divided by all possible routes. The probability of drawing a certain sample mass is the sum of
probabilities of all samples with that mass. For calculation of the probabilities, it is assumed
that p1=py=1/2. It is also assumed that the number of particles in the batch is infinite,

leading to constant selection probabilities py=p,=1/2.
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Figure 3.5. Schematic illustration of the proposed sampling algorithm. At the end of each
branch, the actual sample mass is given. Selection of particles stops when the boundary value
of the sample mass (4 g) is reached or exceeded. It is assumed that a sample never contains
all the particles of one type present in the batch, so three choices always remain during each
selection.
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Figure 3.6. Relative frequency of the possible routes to a certain sample mass and the
probability distribution of the possible sample masses, for the tree depicted in Figure 3.5. The
relative frequency of routes is defined as the number of routes to a certain sample mass
divided by all possible routes. The probability of drawing a certain sample mass is the sum of
probabilities of all samples with that mass. For calculation of the probabilities, it is assumed

that p| =p3 =p3 =1/3. It is also assumed that the number of particles in the batch is infinite,

leading to constant selection probabilities py=p,=p3=1/3.

The parameters pi, z;i and Z determine uniquely the complete set of possible sample
compositions and their probabilities of being drawn. Therefore, if the mass
concentration of the property of interest in a particle of type i is denoted as a; and the
mass of a particle of type i is denoted as m;, the variance of the mass concentration in a
sample, V(asample), s uniquely determined by the parameters p;, z;, mj, a; and Z. In the
next paragraph, the variance is calculated using a calculation of
P(S IN;(S)=n1,...,NT(S)=nT) for every possible sample composition combined with
Equation 3.15.

3.5 Simulations

For the simulations in this paragraph, the mass-based approach is adopted. This implies
that the boundary value of the sample size, Z, corresponds to a boundary value of the
sample mass, M. Because samples often contain a large number of particles, the
difference between the boundary value of the sample mass and the sample mass
obtained is relatively small. This indicates that the proposed sampling design can
potentially be applied when the boundary value of the sample mass is unknown. In this
case, after a sample S has been drawn, it is assumed that the sample was drawn
according to the mass-based approach, with boundary value of the sample mass equal
to the actual sample mass of S, Mgample(S).



In order to test the validity of this assumption, simulations in four distinct two-
dimensional batches were performed. The batches contained particles of three distinct
types. Each type contained 1,000 particles in the batch, so each batch counted a total of
3,000 particles. The composition of the batches is given in Table 3.1. The particles
(diameter 0.01 cm) were positioned at random and non-overlapping positions using the
following algorithm: The position of the first particle in the batch is chosen at random.
The second particle is then allocated to a preliminary random position in the batch. If
the first and second particle overlap, a new random position is chosen for the second
particle. This is repeated until there is no overlap between the first and second particle.
The allocation of the other particles to a random position is similar: the i particle is
allocated to a random preliminary position in the batch. If there is an overlap with any
of the previous i-1 particles, a new random position is chosen for the i"™ particle. The
definitive position of the i™ particle is obtained when there is no overlap with any of
the previous i-1 particles.

In order to obtain a well-mixed batch, the type of a particle that is allocated to a
random position in the batch differs from the previous allocated particle in the
following way: after a particle of type 1 is allocated to its final position, the next
particle is of type 2. After a particle of type 2 is allocated to its final position the next
particle is of type 3. Finally, after a particle of type 3 has been allocated to its final
position, the next particle is again of type 1. After all particles have been positioned in
the batch according to the above-described procedure, a sample was drawn under ideal
conditions (as defined in Paragraph 3.3) with a lance. A graphical illustration of the
sampling of a single batch is depicted in Figure 3.7. The procedure to draw a sample
was repeated 100 times for each batch: after a single sample was drawn from a batch,
all the particles were re-allocated to new positions in the batch by choosing 3,000 new
random positions using the algorithm described above.
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Figure 3.7. Simulation of sampling from a batch consisting of 3,000 particles. Because the
target area is 0.3% of the total area of the batch and the batch contains 3,000 particles, on
average the samples contain 9 particles.

Batch 1 | Batch 2 | Batch 3 | Batch 4
Type 1 m, (ug) |20 1.0 2.0 2.0
10° particles a, (g/g) 0.0 0.0 1.0 0.0
Type 2 m, (ng) 1.0 1.0 1.0 2.0
10° particles | a, (g/g) |05 0.0 0.0 0.0
Type 3 m, (pg) 1.0 1.0 1.0 1.0
10® particles a, (g/g) 1.0 1.0 0.0 1.0

Table 3.1. Compositions of the four simulated batches.

Figure 3.8 gives the distributions of sample masses obtained drawn from batch 1, 2, 3
and 4. It can be seen that the sample masses obtained have different values. Hence, for
each sample, the sample drawing model is separately modelled by mass-based
multinomial selections, using a boundary value of the sample mass equal to the
obtained sample mass.
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Figure 3.8. Distribution of sample masses drawn from the first, second, third and fourth
batch.

For the i™ simulated sample S;, a new variable Zscore,i Was calculated using the
following equation:

Zaores = A parch "asample(si) (3.16)

\/V(ample) MsamPle(si )

where
Apatch= the mass concentration in the batch (which is constant for all
samples drawn from the same batch),
asamp1e(Si)= the mass concentration in the i sample and
V(asml l°1 = the theoretical variance of the concentration in samples
’ Msample(si)

drawn using mass-based multinomial selections with a
boundary value of the sample mass equal to Msamp1c(Si)-

The latter variance is calculated using a calculation of P(S]N[ (S)=n, ,...,NT(S)=nT) for
all possible sample compositions combined with Equation 3.15. The order in which the

quantities P(nl,...,nT,p; ,...,p’T,meh) and F(nl,..,,nT,N,,bmch,...,NT,bmh,Z) were
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calculated is illustrated in Figure 3.9. Hence, if the sample drawing is successfully

described by a mass-based multinomial selection process, the variable z,, .. is

distributed with a mean equal to zero and a standard deviation equal to one.
The variable ¥’ is defined by
2_%,2
X" =2 Zicorei /N (3.17)

in which N is the number of degrees of freedom, which is equal to 100 here. From
statistics (see e.g. Barlow, 1989), it is known that ¥’ is approximately normally
distributed with mean equal to one and variance equal to 1/(2N). For batch 1, 2, 3 and
4 respectively the following values for x> were obtained respectively: 0.94, 0.84, 0.84
and 0.99. These figures do not differ from one by more that three times the standard

deviation (1/+2N =0.07).

Start of calculation

Last
end-point
l T l I\' end of
calculation
@ O e
First
end-point

Figure 3.9. Example of a sequence in which the end-points were calculated, as indicated by
the arrows. The depicted multinomial tree is similar to the tree depicted in Figure 3.2

Figure 3.10 illustrates that the distributions obtained for the four distinct batches match
the theoretical distribution.
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Figure 3.10. Distributions of z-scores for 4 distinct batches. From each batch 100 samples
were drawn. After a sample has been drawn, all the particles are replaced in the batch and
allocated to new, random positions. The curves represent normal distributions with a mean
equal to zero and a variance equal to one.

Hence, the mass-based multinomial selections statistically describe the distribution of
mass concentrations in the samples drawn.

3.6 Results

Size-based multinomial selections can model the drawing of an ideal sample from a
randomly mixed batch. This process was investigated and verified with simulations
using four distinctly different batches. For the simulated batches, the samples were
statistically distributed according to the mass-based multinomial distribution. The
boundary value of the sample size can, with limited consequences to the accuracy, be
estimated using the sampled mass.
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3.7 Conclusions

The model presented in this chapter serves as the underlying mathematical algorithm
for development of a new sampling theory. Thus the second criteria (“The theory must
be based on a model of the drawing of a sample on the level of (groups of) particles.”)
is met in the new theory. The model leads to samples of either an approximately
constant mass or an approximately constant volume. Therefore, the eighth criterion
(“The theory must be able to describe the sample drawing as a process leading to an
approximately constant sample mass or volume.”) is met.
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Chapter 4 Size-based sampling
theory’

Because the sample concentration is the ratio of two sample totals, it is important to
study the variance of a sample total. It is demonstrated that for calculation of this
variance, the covariances between the numbers of particles belonging to the classes in
the sample are required. Using a specified method, these covariances are calculated in
the size-based approach. As a final result, the variance of the sample concentration,
estimated using the properties of the particles in the batch, is calculated.

4.1 Introduction

In view of the first criterion for a sampling theory (“The theory must provide an
equation for the variance of the sample concentration, containing the mass or volume
sampled and an arbitrary number of additional parameters.”), an equation for the size-
variance relationship will be derived using the mathematical algorithm, size-based
multinomial selections, which was presented in Chapter 3.

Firstly, principles from finite population sampling, relevant to the sampling of
particulate materials, are reviewed.

4.2 Principles from finite population sampling

Denoting the actual value of the property simply by Xpaich, the sample S provides an
estimate for Xpaicn denoted as ibmh(S). This leads to the definition of the estimator
Rpaten @S 2 function U—-R in which U is the set of all possible samples and R the set of
all real values. For any sample S from U, R, provides the corresponding value
K pacn (S), which may vary from sample to sample. The value of the sampling error,

)'cbatch(S)—xbmh, will also fluctuate from sample to sample. When it is assumed that

sampling is ideal, i.e. the ideal sample is equal to the actual sample (S’ =8), the error
due to non-ideal sampling is zero (enis(S)=0)). In this case, it can be derived, using

9 Part of this chapter has been published in: B. Geelhoed and H. J. Glass (2002) Multinomial distributions applied to
random sampling of particulate materials, Statistica Neerlandica, 56, p. 58-76.
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Equation 3.1, that:
X patch (S)" Xbatch = Cnip (S) 4.1)

in which enip(S) is the value of the error due to the distribution of non-identical
particles. Because in this work a random variable is defined as a function U-R, %,

is by definition a random variable. The sampling errors eqip and e, are by definition
random variables, where the variable e, is a function of the ideal sample and ey is a
function of both the ideal and the actual (potentially non-ideal) sample. The concept of
a random variable is useful for sampling, because it facilitates referring to a sample
property without the necessity of referring to its value in a specific sample. This allows
definition of statistical properties like the expected value and variance of a random

variable x (X can represent €nip, €nis, Xpu, O any other random variable; x(S)

represents its value derived from the sample S), which are given below.

The statistical variability of x is caused by the statistical distribution of samples
and the fact that x can yield different values for distinct samples. Therefore, in order to
define the expected value and variance of x, the probability of drawing a sample S is
specified by P(S). P(S) is generally denoted as the sampling design. In Chapter 3, it
was demonstrated that size-based multinomial selections can model the drawing of an
ideal sampling from a random arrangement of particles. Therefore, in Paragraph 3.4, an
expression for P(S) in the size-based approach was derived. However, irrespective of
the precise form of P(S), the expected value of x is defined as:

E(x)= %P(S)X(S) 4.2)

where U is again the collection of all possible samples. For the ideal sampling from a
random arrangement of particles, the expression for P(S) derived in Chapter 3,
Equation 3.8, may be substituted in the above equation. The bias of an estimator is
defined as:

B(ibatch )E E(i batch )— X batch (4.3)

When the bias is positive, X, will have the tendency to overestimate the true value,

while a negative bias indicates the tendency to underestimate the true value. Therefore,
it is desirable that the absolute value of the bias is as small as possible. When sampling
is ideal, Equation 4.1 may be substituted in the above equation, resulting in:

BRpuen )= Eleup) (4.4)
An estimator is called unbiased when B(ﬁbmh) is zero (Barnett, 1974). Even an
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unbiased estimator may result in estimates with large sampling errors. Therefore, the
variance of a random variable is defined as a measure of potential variation of around
its expected value:

V(x)= 3 P(S)x(S)-E(x))’ (4.5)

SeU

Because a larger variance allows larger deviations from the expected value, it is
desirable, for estimators, to have a low variance. When sampling is ideal, Equation 4.1

may be substituted in the above equation. This results in V(ibmh)=V(emp).

Because P(S) is generally determined by the sampling method, the bias and
variance are also determined by the sampling method. Only for the ideal sampling from
a random arrangement of particles, Equation 3.8 may be used for substitution of P(S) in
Equation 4.4 and 4.5.

The concentration in the sample is an important random variable, because it is
generally used as an estimator for the concentration in the batch. Therefore, in
Paragraph 4.7, the expected value and variance of the concentration of an arbitrary
property in the sample are calculated. The concentration is defined as Ypatch/Zbatchs
where Yhawen and Zparen are population totals (see Siarndal et al, 1992) given by:

Nbatch
Youch = 2 Yagy) (4.6)
i=1
Nyatch
Ziwen = 2 Zag) (4.7)

i=1
in which Nygn is the total number of particles in the batch, n(i) the class of the ith
particle in the batch, yq) is the value of the property of interest in a particle belonging
to the n(i)™ class and za is the size (i.e. mass or volume in the mass-based or volume-
based approach respectively) of a particle belonging to the n(i)™ class. The
denominator Zyan is the size of the batch, which can correspond to the mass or
volume.
A general expression for the sample concentration is Ysampie/Zsample, Where

T
Ysample = ZNiYi (4'8)

i=1

T
Zsample = Z Ni Z; (4'9)

i=}

where yi, z;, N; and T are the value of the property of a particle of type i, the size of a
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particle of type i, the number of particles belonging to the i class in the sample and
the number of particle classes respectively. The denominator Zs,mpic is the size of the
sample, which can represent the mass of, volume of or number of particles in the
sample. Because the denominator and numerator are generally measured without
analysing every particle in the sample separately, the sample concentration is
extensively used as an estimator for the batch concentration.

4.3 Covariances

The sample concentration is a ratio of two sample totals. Therefore, in this paragraph,
the variance of a sample total is considered. Because the particles are classified into T
classes, the sample totals Ysampte and Zgampie Were parameterised using the variables y;,
z;, N; and T in Equations 4.8 and 4.9. It is noted that N; is a random variable. For a
sample S, the value of N; is denoted as N;(S). Consequently, the sample totals Ygample
and Zgumpie are also random variables. Using the definitions of expected value and
variance results in:

vly,

)= 20 2313, BN, N ) BN, EN,) (4.10)

i=l j=1

A similar expression can be obtained for V(Zsmple). Hence, an expression for the
covariances, E(N;N;)-E(N;)E(N;), is required. First, in Paragraph 4.4, the special case
of sampling a batch containing only two particle classes in the number-based approach
is considered. It will be derived that in this special case, Ny and N, are distributed
according to the hypergeometric distribution. In Paragraph 4.5, a method will be
developed for calculation of the covariances, E(N;N;)~E(N;)E(N;), in the general case
of sampling a batch containing T particle classes in the size-based approach.

4.4 Hypergeometric distribution

In this paragraph, the special case of sampling of a batch containing only two distinct
particle classes (T=2) in the number-based approach is considered. The number-based
approach can be considered as an alternative to the mass-based or volume-based
approach, and is defined as follows: all particle sizes are equal to one and the boundary
value of the sample size is an integer N that equals the number of particles in the
sample. In the number-based approach with T=2, Equation 3.9 becomes:
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N- nl—l nz—l
P(n1,n2,p1,P2, Noarch )= H batch /(Nbatch - kJ[ T16: —i/Nbatch)Jl 116> 'i/Nbatch)} (4.11)

i=0 i=0

As stated in Chapter 3, the probability of drawing an arbitrary sample with n, particles
of type 1 and n, particles of type 2, P(S|N1(S)=n|.N2(S)=n2), is the product of
P(nl,nz,p; ,p'z,Nba,ch) and the number of possible end-points of the binomial tree

resulting in a sample with n, particles of type 1 and n, particles of type 2, denoted as
F(ny,n2,N1 batch, N2 batcs, N):

P(S|N1 (S)’_‘ n, ’Nz(s)= n2)= F(nl ’n2’Nl,balch’N2,batch9N)P(nl »1,,P; ,P5 ’meh) (4.12)

For the current special situation (number-based approach and T=2), the total number of
possible end-points of the binomial tree is 2~. The total number of possible end-points
resulting in a sample with n, particles of type 1 and n; particles of type 2 is the number
of possible permutations of N objects, N!, divided by the number of permutations of n,
objects, n;!, and the number of permutations of n, objects, n;!. This leads to the
following expression for F(n;,n,N batch, N2 batch,N):

N!
n,!n,!

Fln,, 15 N, s N puno N) = (4.13)

provided that n;+n;=N and n;<Nj parch and n25N3 parcn. If one of these conditions is not
met, the value of F is set to zero. Substituting Equation 4.11 and 4.13 into Equation
4.12 gives the following expression:

P(SN1(S)=n1,N;(8)=n,)=
(4.14)

nl'nz (H batch /(N batch — k)]{H(Pl ’/Nbatch):”:H(PZ “‘/Nbatch)]

i=0 i=0

provided that n;+n,=N and n,<N pach and n;<N3 parch. The following identities can be
used for substitution in the above equation:

H NY !N ~N)!
N /[Ny — k)= o bt (4.15)

k=0 Nbatch !
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n, -1 n i
h(p; _i/Nbatch) 1 (Nl cbatch J Nl.batCh! (4.16)
i=0

i=0 Npaen o ( _ )
Natch N1 pach =11 /!

n-l n

H (P ‘/ Niateh )

N

‘[N;bmh l]z N pateh! (4.17)
batch N:aztch (Nz.batch -, ) !

W
o

i

Substituting Equations 4.15, 4.16 and 4.17 into Equation 4.14 yields:

= X

NN (N —N)!
P(SINI(S)=n1,N2(S)=n2) N! MNpatch M batch

1
n;!n,! Niatch'

N batch’ N batch! (4.18)

= >
T TN
Nbatch (Nl,batch ny )! Nbatch N2,batch n, !

N!(Nbatch—N)! Nivaeh!  Noppa!
N

bach! M !(Nl,batch -n; )! nZ!(NZ,batch "“2)!

provided that n;+n;=N and n;<Nj parch and n2<N3 patch. The final obtained expression for
P(S | N1(S)=n;,N(S)=n;):

! -N) N ! N !
P(S|N1 (S)=n,,N,(8)= n2)= N ‘(N‘m ' N)‘ ' Lbatch — 2,barch ' (4.19)
Nyatcn! n, '(Nl.hatch -n ) n2‘(N2,batch - nz)-

is equivalent to the hypergeometric distribution (see Feller, 1968). In the limit of
Npaten=0 (see Paragraph 3.4), Equation 4.14 becomes:

. N! o p
Lim P(SN, (S)=n,,N,(S)=n, )= g2 (4.20)
Nbatch% n;n,.

provided that n;+n;=N and n;<Njpaich and n2<N3 pach. The latter two conditions are
automatically satisfied in the limit of Npen=00. Equation 4.20 is equivalent to the
binomial distribution (see Feller, 1968). The cumulative probability to draw a sample
with any possible value for N; and N, (satisfying N;+N,=N) is one:
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N N
Lim 3 PN (§)=1,N,8)=n,)-

Npaten 2% n;=0n,=0

Lim ZP@ =n,,N,(S)=N-n, )= | (4.21)

Niaieh =%

N

N! ,n, ,N-n , , N
Zﬁpllpz l=(P1 *Pz)Nzl =1
nl=0n1!N—nl 4 J

in which the first equality follows from the fact that P(S | Ni(S)=n1,N2(S)=n;) is zero if
ni+ny#N. For the third equality, the binomial expansion theorem was used.
A method of deriving expected values and covariance of N; and N; in the limit

of Npacn=w0 is to differentiate Equation 4.21 with respect to p| . In general, it is only

correct to differentiate an equation with respect to a variable on the left-hand side and
on the right-hand side, if both sides are equal to each other for all possible values of
the variable. This is not the case for Equation 4.21, because the cumulative probability

is only one if p; +p) =1. Therefore, the relation p), =1-p| is substituted into

Equation 4.21:

N N! My ' ot 4.22
Zmpn (-pi ) =1 (4.22)
n, =0 ) '

The left-hand side and the right-hand side of the above equation are differentiated with
respect to pi:

] e L DA (423)
n = - ’

=0 pl l_pi N

Substituting p, =1-p; and Equation 4.20 yields:

Lim i(n+_N—TBL)P(S{N1(S)=n1aN2(S)=N_“1)=0 (4.24)
1

Nbateh ™% n, =0 P2

The definition of P(S|N1(S)=n1,N2(S)=n2) can be substituted back into the above
equation:
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Ni|ln, N-n
. 1 1 4 ' =
Lim 3l ——-— F(nl’N_nl’Nl,batch’NZ,batch’N)P(nl’N_nl’pl ’pZ’Nbatch) =0 (4.25)
Nbatch 2%, =0| | P} Py

Because F(n1,n2,N| batch,N2,batchsN) is zero if n;+n;#N the summation over n; may be
replaced by a double summation over n; and n; if the second argument of F in Equation
4.25, N—n,, is replaced by ny:

)| e ‘P 4.26
Lim Z Z I F(nl’nZ’Nl,bzaxtch’1‘12,batch’1‘1)P("l’“2’91 P2 ’Nbatch) =0 (4.26)
Nbatch_w)nl=0n2=0 P] P2

From Equation 3.14 follows that the above equation is equivalent to the definition of
an expected value. Therefore, the above equation results in:

Lim (N_N_iJo @27
P P2

’
Npatch =>®
Using p, =1-p; and rewriting the above equation gives:

Lim E(N, )= Np} (4.28)
Npatch>*

With a similar derivation, it can be proven that:

Lim E(N,)=Np; (4.29)

Npatch>®

The same method as above can be used for the calculation of the covariance,
E(N|N3)-E(N,)E(N;). From the definition of expected value and Equation 4.28
follows:

Lim > N, (S)P(S)=Np; (4.30)
Nbatch_’w SeU

Applying Equation 3.14, the above equation is written as a double summation:

N N
Lim ) Zn,P(s|N,(s)=nl.N2(s)=n2)=Np; (4.31)
Nbatch >® n,=0 ny=0

Because P(S | N1(S)=n;,N2(S)=n;) is zero if n;+n,#N the double summation can be
replaced by a single summation if in the summand n; is replaced by N—n,. This yields:
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N
Lim anP(sle (8)=n;,N,(S)=N-n, ): Np; (4.32)
Nbatch 2 n; =0

Application of Equation 4.20 results in:

N
N! M N-n

2 py'py ! =Npj (4.33)
n {N=n }
n, =0 1 1

1

The above equation is valid for all values of p; if p, =1-p] . Therefore, in order to
differentiate both sides of the equation with respect to p] , the equality p, =1-p] is

substituted. This yields after differentiation with respect to p; :

i“l[

N- ! N—|
- n]J o 1“1(1_p;)“'=N (4.34)
n,!
1

I (N‘“jp

P 1-p
Substituting 1-p; =p’, and Equation 4.20 yields:

’

N -
Lim nl[nl N JP(S}NI(S)=n1,N2(S)=N—n1)=N (4.35)
PP P

The definition of P(S | N1(S)=n{,N2(S)=n;) can be substituted into the above equation:

N
. n, _N-n ( ),( ; )_ 4.36
Lim 3 {"1[, —— [P N=np Ny paehs No parehs NP N =1, 0] 595, Ny /| = N (4.36)
Nbatch —-»oonl -0 P Py

Because F(ny,n3,Ny paich, N2 batch,N) is zero if n;+n,#N the summation over n; may be
replaced by a double summation over n; and n; if in Equation 4.36 the second argument
of F, N—n,, is replaced by nj:

N N n N-n ( * )
: 1 1 ’ ’ - 4.37
Lim 3 3 {“1[ T ]Fnl’nZ’Nl,batch'N2,batch’N (“l’N““l’Pl sP2 s Npgen /| =N ( )
Nbatch™>®n =0n,=0L \P1 P2

Because F(ni,n2,N{ patch,N2,batch,N) is zero if n;+n,#N the second argument of P in the
above equation, N-n;, may be replaced by n,. Applying equation 3.14, the above
equation results in:
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Lim E(N[N_N_&)]N (438

r r
Noatch > P P2

This is equivalent to:

Lim E[N,(N_Nz —EAJ]=N (4.39)

' U
Nbatch = P P2

The terms can be rearranged and Equation 4.28 and Equation 4.29 can be substituted
into Equation 4.39. This yields:

Lim (E(N,N,)-E(N, E(N, )= -Np] p} (4.40)

Nbatch -

In the next paragraph, a similar method is used to calculate the expected values and
covariances in the size-based approach with T classes.

4.5 Generalised method

As discussed in Chapter 1, a sampling theory is required which models the sample
drawing as a process leading to samples of (approximately) fixed mass. In addition, the
theory must be applicable to batches containing an arbitrary number of distinct particle
classes. The situation considered in the previous paragraph (number-based approach
and T=2) does not meet these criteria. Therefore, in this paragraph, a method is applied
for calculation of the covariances, E(N,N;)—E(N,)E(N,), for arbitrary n and r between 1
and T, for the general case of sampling a batch with T classes in the size-based
approach in the limit of Npacn=00. The method is basically similar to the method that
was applied in Paragraph 4.4 and comprises the following steps:

Step 1
e It is demonstrated that the probability to draw an arbitrary sample, which is one
when the evolution of p; is given by Equation 3.3 with p] =N, .., /Ny, » remains

one for arbitrary values of p; (satisfying only Z;p; =1).

Step 2
e An expression for the probability of drawing an arbitrary sample with n;
particles of type i, for i ranging between 1 and T, is derived, using the
expression for the probability of going to an end-point of the multinomial tree,

P(nl,...,nT,p; 3o PT > Npatch ), given by Equation 3.9.
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Step 3
¢ The summation over all possible samples in the definition of the cumulative
probability is replaced by a T-fold summation over all possible values of
np,....nT.
Step 4
¢ In the limit of Nysen=c0, the cumulative probability is differentiated with respect
to p, , for arbitrary n between 1 and T, to obtain an expression for the expected
value of the number of particles belonging to the n'™ class in the sample.
Step S
o The expression for the expected value is also differentiated with respect to p/, ,
for arbitrary n between 1 and T, to obtain an additional equation.
Step 6
¢ The equations obtained are rewritten, yielding an equation for the covariance
E(N,N)—E(N,)E(N,), for arbitrary n and r between 1 and T in the limit of
Nbatch=®.

Step 1. In the size-based approach, the probability of drawing a sample with arbitrary
composition is one when the probability of choosing an arbitrary branch of the T
possible branches at any node of the multinomial tree is one. Using Equation 3.3
results in:

T
!
Nbatch Z pi - rlsample

i _ i ro_ n; Nbatch — i=1 Nbatch (4 41 )
BT P TN N B N N )

i=l i=l batch batch ~ Msample batch batch ~ Msample

Because

Pi =N baen /Nbalch (4.42)

for all i between 1 and T, the cumulative of p! is one:

ip; =1 (4.43)

i=1

Substituting this result in Equation 4.41 gives:

T Niaen =1
Zm:[ batch S““‘P‘e}N Nowen _; (4.44)

i=1 N batch batch — 1 sample
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Hence, the probability of choosing an arbitrary branch of the T possible branches at
any node of the multinomial tree is one. Consequently, the cumulative probability of
drawing any arbitrary sample is one. The general situation will be considered where the
probability p; is given by Equation 3.3, with arbitrary p; , satisfying only Z;P; =1.
Hence, the following derivations are also valid when Equation 4.42 does not hold.

Because Y. p, =1, Equation 4.44 remains valid, so the probability of drawing an
=1Yi

arbitrary sample remains one. During Step 4, the necessity of this generalisation will
be discussed.

Step 2. As defined in Chapter 3, the probability of going to an end-point of the
multinomial tree resulting in a sample with n; particles of class j, for all j between 1

and T, is denoted as P(nl sl Py ,...,p'T,meh). Equation 3.9 states that:

nsample"l

T nj—l
P(“l - "-"P'T’Nbatch)= 1[[0 Nbatch/(Nbatch‘k)q 1:10 (PJ “/Nbatch) (4.45)
= j=1| i=

where T is the number of classes and n,,, = Z‘Lni . In the limit of an infinite value of

Noatch the above equation becomes:

T

n.-1
T n.
Lim P(nl,...,nrr,p'l ,...,pfr,meh)=H ﬁps =1—:[p3J (4.46)
Npatch =% =1 i=0 i1

The probability of drawing an arbitrary sample with n; particles of class j, for j ranging
between 1 and T, is the product of P(nl T ,...,pfr,Nba,ch) and the number of possible

end-points resulting in a sample with n; particles of class j, for all j between 1 and T.
The number of possible end-points resulting in a sample with n; particles of class j, for
all j between 1 and T depends on the number of particles in the different classes in both
sample and batch (i.e. the variables ny, ..., n1, Nibawchs s NT,batch) and the boundary
value of the sample size Z (which can represent the boundary value of the sample mass
M, volume V or number of particles N). Therefore, the number of possible end-points
resulting in a sample with n; particles of class j, for all j between 1 and T, is denoted as
F(ni,...,n7,N| batchs-+-sNT batch,Z). In the number-based approach, F is equal to

N!/n;ni! provided that le ; =N and ni<Njpacn for all i between 1 and T.

However, in the mass- or volume-based approach, the relation is not simple. In the
following derivations, no explicit knowledge of F(ny,...,nT,Ny batchs---NT,batch,Z) is
needed. The value of F(ny,...,nT,N| batchs-.-,NT batch,Z) is zero for all combinations of ny,
..., nt that result in a too low or too high sample size (i.e. do not correspond to an end-
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point of the multinomial tree).
Denoting the probability of drawing an arbitrary sample with n; particles of class
j, for j ranging between 1 and T, as P(S|N(S)=ny,...,N1(S)=n7) , results in:

P(SIN1(S)=n1,... NT(8)=n7)=Flny,.0 T, Ny batch - NT,batch» Z)P(a 18T, Phrocs DT Nioatch ) (4:47)

Step 3. Any end-point resulting in a sample with n; particles of class j, for j ranging

between 1 and T, contributes with P(nl,...,n-r,pi ,..‘,p’T,meh) to the cumulative

probability, ZP(S), which is one. Therefore, the expression for the cumulative
Seu

probability can be written as a T-fold summation'’:

T Ns,batch

2RE)=TT X [F(nl""’nT’Nl,batch""’NT,batch’Z})(nl""’nT’pi w-’P'T’Nbatch)]:l (4.48)
SeU =1 n 0

Taking the limit of Npsch=c0 on both sides of the above equation and substituting
Equation 4.46 yields:

T Ns,batch

T o
Pl
F(nl"“’nT’Nl,batch"“’NT,batch’Z)l_[pj =1 (4.49)
s=1 ne=0 _]=1
S

Step 4. In the derivation of an expression for the covariances in the limit of Nyaien=0,

the fourth step is differentiation to p, of the above equation. The above result was
derived under the constraint ZiTzlp; =1. Therefore, the result is not valid for all values
of p; , where i ranges from 1 to T. Differentiation on both sides of the equation with

respect to p, , for arbitrary n between 1 and T, is only correct if both sides are equal
for all possible values of the variable. This problem is solved by introducing the
arbitrary index r, which can represent any integer value between 1 and T, and the index
t, ranging from 1 to T, and substituting

T
' '

pr =1-2°p} (4.50)

t=1

ter

Ny batch Nopatch  NTbatch | T Nspatch
10 in which the symbolic notation Z = H Z is used.
n=0 n,=0 np=0 5=l pe=0
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This gives:

np

T

l_] ! -

F(nl""’nT’Nl,batch"’ N1 batchsZ HP 1-2°p} =1
-l

t#r

T Ns,batch
(4.51)

= =0 J*r

The above equation is valid for all values of p), where j can represent any integer

between 1 and T.
For arbitrary class n, with n#r, the expected value of N, is obtained by taking

the derivative with respect to p;, on both sides of Equation 4.51:

nr

T
. d
F(nl""’nT’Nl,batch" » N7 batch - Z HP -2h e

ng=0 t=1 Pn
J;tr tr

d T Ns,batch

-0 (4.52)

dpyy | s=1

where the arbitrary index r may not be equal to n. Here, the importance of considering
the general situation with arbitrary p; (satisfying z.:lp; =1) not necessarily given by
Equation 4.42 becomes clear: the zero on the right-hand side of the above equation
appears after differentiation, because the cumulative probability is one for arbitrary p;

(satisfying Z‘_T:lp{ =1). If the cumulative probability were only one for p; given by
Equation 4.42, the above equation would not necessarily be valid. In order to perform

the derivation with respect to p;, summations and differentiation are interchanged.

This results in:

0y

N
oy [
T
s=1 n =0

Pn

1-2°p

t£r

T
F(nl""’"T’Nl,batch’ >N batch’ )HP 1—211%
t=

_]#l‘

T
Substitution of I—Zp; =p, results in a simpler equation:
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T N batch n n T .
— F(nl""’nT’Nl,batch""’NT,balch’Z IIei’ | |=0 (4.54)
=1

n_

Pn D:

8= =
ng =0

In the following developments, the above equation will be transformed into an equation
for expected values. First, Equation 4.46 is substituted:

N
T "Vs,batch
. Np _ 0y
Lim H Z li[p, _,JF(HI’“"nT’Nl,batch""’NT,batch’Z)

Nb;\tch - s=1 ng =0 n r

(4.55)

P(n1 ,...,nT,p'1 ,...,p'T sNpatch )] =0

According to Equation 3.14, the above equation is equivalent to the following expected
value:

Lim E(ﬂ-&] ~0 (4.56)

i '
N batch > Pn Pr

Originally the arbitrary indices n and r were chosen unequal. However, the above
equation is also valid for n=r, yielding the trivial result 0=0. Equation 4.56 can also be
written as:

© N
Lim D)o Pe _ Nobaon (4.57)

r
Nbatch —© E Nn Pa Nn,batch

This implies that in the limit of Ny.p=00 the ratio of the expected values of N; and N,
is equal to the corresponding ratio of N; paten and Ny paten. The above equation can also
be written as:

Lim E(N,)= Lim E(N,)P- (4.58)

r
Npatch >*® Npatch >® Pn

In the derivation of Equation 4.56 no explicit knowledge of the form of
F(ny,....,07,N1 batchs-..sNT batch,Z) was used. On the other hand,
F(ni,...,07,N1 patchs---sNT,batch,Z) is determined by the structure of the multinomial tree,
i.e. the location of the end-points. Therefore, it can be concluded that the essential
property of the size-based approach, namely that the difference & between the boundary
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value of the sample size and the obtained sample size is relatively small, is not a
requirement for Equation 4.56 (and hence also for Equation 4.57 and 4.58). However,
for the derivation of an expression for the expected value (note: not an equation for a
ratio of two expected values) the fact that the parameter & is relatively small is
essential. To demonstrate this, an equation for the precise definition of 8 is given:

T
8=2-) z,N, (4.59)

r=1
where z, is the size, i.e. mass or volume of a particle of type r or one. Taking the

expected value in the limit of Npacn=0 on both sides of the expression for & and
substituting Equation 4.58 yields:

T r
Lim E@)=z- Lim 3 zE(N,)R- (4.60)

’*
Npatch > Npatch 2@ =1 Pa

This can be written as an equation for the expected value of Nj:

T
Lim E(N,)= Lim p,(Z-EG))/Yp,z (4.61)
Nbatch > Npatch = r=l

The denominator in the above equation is the mean particle size Z defined as:

NI
[
M-
]
.
N
A

(4.62)

-
]
_

Because —Zmsx<8<0 and thus also —zy:x<E(8)<0, E(8) is often negligible compared with
Z. When E(8) is neglected, the expected value of the number of particles of type n
becomes:

Lim E(N,)~p,Zz/z (4.63)

Nbatch —®

Similarly to the above derivation, one can find an expression for the variance
V[N, )=E(N2)-E2(N, ) and covariance E(NuN;)~E(N.)E(N,).

Step 5. Substituting Z—E(8)=E(Zsampie) into Equation 4.61 and using Equation 3.14 for
evaluation of the expected values in Equation 4.61 results in:
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T N s.batch

Lim |[T 2 [ “nF(nl ""’nT’Nl,batch""’NT,batch’Z)x
Npatch >®| s=1 n =0

P(nl ses 5 Py 5o PT ’Nbatch) ] =

N s,batch

T T
Lim ([T X I:[Zzini]F(nl""’nT’Nl,batch""’NT,batch’Z)x
in1

Nbatch > s=1 ng =0

T (4.64)

’

Pn

P(n1 ,...,UT,Pi w-,P'T ’Nbatch) ]T__
zp'r Zr
r=1

From Equation 4.46 and the above equation it follows that:

T Ns batch T on.
') _
) [ “nF("l ""’nT’Nl,batch”"’NT,batch’Zh—[pj }-
j=1

s=1 ng =0

(4.65)

, T Ns,batch [T
i

T o,
Pn ( h )
T 2zn; [Flo #o B Ny batch s N1 baren 1 Z]] 1P

Zp’r Zr s=1 ng =0 ! =
r=1

In order to differentiate both right-hand side and left-hand side of the above equation

T
with respect to p, , for arbitrary r (r#n), p, is replaced by I—Zp; . This yields after

t=1
t#r

T
differentiation with respect to p, and substituting I—Zp; =p, back:

t=1
t#r
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—-=

N
s,batch [ng nyn,

’ ’

T .
i
)F(nl s s Ny porch ""’NT,batch’Zh P;
Pn Pr

=1

T
ZIP;’ z; +pp (zl’ _Zn) T Ns,batch T
T 2 Hx = [zxzini]x
s= _ =
(zp’r Zy ] s =0 ¢
r

T q. p' T Ns,batch
r ] n
F(nl""’nT’Nl,batch""’NT,batch’Zl—[pj M I1
=l Zp’r Zr s=1 ng =0
r=1
T T n.
Np 0y ( h v
[Zzi n; J[T - fJF Dy s s Ny patch s N7 patch s 2| 1 P
i=1 Pn  Pr j=1 (4.66)

When Equation 4.46 is substituted back into the above equation, the definition of mean
particle size, z, is used and Equation 3.14 for the expected value is used to replace the
above T-fold summations, the above equation becomes:

zN; ]

Lim E Nn[]-‘{&-& = Lim Z¥PnfroZ E[
' ’ -
Nbatch =% Pn  Pr Nbatch —_® z

M-

(4.67)

’ T
. Pn Ny, N;
+ Lim “2%E z.N. | ———
z (lgll 1 J

! ’
Nbatch —®© Pn Pr

Substituting Z;ZiNi =Z-96, results in the following useful equation for the

derivation of variance and covariance:

Lim E
Npatch >®

- - Lim — 2
Pn Pr Npatch =® z z

’ Nn Nr
: , i )
[ﬁn__ NnNrJ: Z-E@) pn(Z-E@))zn -z) pn_ Pr (4.68)

As a result of the original assumption that n is unequal to r, the above equation is not
valid for n=r. Therefore, the above equation is transformed into an equation that is
valid for all values of n and r between 1 and T by introduction of the Kronecker delta,
Ape. The parameter A, is one when n=r and zero otherwise, where n and r range
between 1 and T. The above equation is transformed into the following result that is
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valid for all values of n and r:

N2
Lim E[ L -&}
Nbalch")w Pn P:
(4.69)
N N
Z-E@G ' (Z2-E@)) ) pI"E[[ .‘n‘,'}s]
Lim —%Q(I—Am)_pn( - (_2) Zy —2,) pn— P,
Nypatch = z Z 7

yielding the trivial result 0=0 for n=r. In other words, this gives the correct result for a
previously omitted situation.

Step 6. Both the right-hand side and the left-hand side of Equation 4.69 can be
multiplied by p; z, and summed over all r between 1 and T. For terms that do not

depend on r, this operation is equivalent to a multiplication by z. The result is:

2 T . o B
Lim ZE[N_H] - E[Nn zerr ]] = Lim [(Z _ E(S){l _ pr_Zr J _PnZy (% E(S))J
Npatch 2%\ \ Ph r=1 N patch 2 z z

T
ZZ,N,sJ (4.70)

p E[
T r
+ Lim | Y py 22 Pnle- =0 (Z_ - EE) E(an)+——’
Niaien 2> r=1 z

T T
The definition of & is used to eliminate ZZ,N, by substitution of ZZrNr =7Z-3.

r=1 r=1

After multiplication on both sides by )) by E(Nn) one

p_“ and replacing g"—(—zri@—
z Z

obtains:
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Lim E(N,Z,)—EZ(N,‘)—%E(S)E(N ) Po E(N 8)}

Niatch >®

! Y T ’
el G0 (B RN N, S Y Ry
z z z

Nbatch_)w r=l
. ;,( 5)_ b [ E(z-5p)
Z 72
batch )

(4.71)

The first two terms on the left-hand side in the above equation are the variance of N, in

the limit of Nypacn=00:

Lim V(Nn)s Lim (E(Nﬁ)—EZ(Nn))=
Npatch 2 Nbatch ?®
Lim |Pn E(a)E( o) E(N 5)}
Nbatch =% '
Lim E(N,,{n-"'ré]_g(lq )M (Nn)ipr 2 Pn ]_
Npatch > * r= 2’
i [2aE00)_es Fe2-0p)
Npaeh 2=\ z J

A much simpler equation is obtained using the following definition:

’ 2 ’
v(N, +p, 8/7)= E[(N +po3) }—EZ[NH +P{—§]
z z

Rearranging the terms of Equation 4.72 yields:

Lim V(Nn+p;,8/2) Lim E(N, )Zpr 2, (z-p, (z,.—zr))/22

Npatch 2>® Npatch =
f*"

(4.72)

(4.73)

(4.74)

With large sample masses, i.e. N, is large compared to p,8/Z, the variance of

N, +p, 8/2 will be approximately equal to the variance of N,. The approximate result

in Equation 4.63 will then be valid as well. These approximations yield for the

variance of Nj:
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Lim V(N,)~p!, Zip'r 2, (z-p, (2 -2, )2 (4.75)
=1

Nbatch It

r#n

While this result is approximate, an exact solution is obtained by calculating
covariances. In order to derive these covariances, the system consisting of Equations
4.61, 469 and 4.74 is transformed into a simpler system using the transformed

variables N; and Z":

Pi 8

N =N, + (4.76)

Z" =Z-E() 4.77)

in which k can represent any integer between 1 and T. First, the terms of Equation 4.69
are rearranged providing the following result:

Lim E [N,,+p+8j (Nn _] /p; -[N, __j /p;
Npateh=* z z z

= Lim [Ei(a)(l—Am)—R:‘—[Z_-zE—(S)](zn —zr)]

Nbatch -

(4.78)

z z

where n and r can represent any integer between 1 and T and also the special case in
which n=r is allowed. The system of equations (Equation 4.61, 4.74 and 4.78) is
transformed into the following system:

Lim E(N.)=p,z/z (4.79)
Nbatch_”c
Lim (E((N;)z)-EZ(N;))= Lim @ip} zjw (4.80)
Npatch>® Npach=® 2 = z

j#n
Lim B(N,(N/p, -N;/p, )= Lim (ZT'(I—A,.,)—":’ZZ‘ (zn—z,)} (4.81)
Nbatcl'l_"Jo Nbalch")m z z

The following derivations extract from Equations 4.79 to 4.81 an expression for the

covariance between N, and N;. First, Equation 4.80 is rewritten:
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Lim E[(N;)Z:I= Lim ij
Npatch >® Npatch ) j;:x

The above result is substituted in Equation 4.81:

phzt I z—p'n(zn—zj)

Lim n z —_2—'_
z

Nbatch —>© pﬂ J=
_]#

z
- Lim -LE(N;N:)= Lim ——_—(I—Am)——
z

[
Npaich 2@ Pr Nipgien >

This can be rewritten:

Lim [E(N;N:)-"LEz(N;)} Lim

Nigtch > Pn Nipgieh =
iry vl
+ Lim 3 ZP} L I
Npn 2o % =1 z

j#n
Equation 4.79 implies that

Lim E(NE(N)= Lim p,E*(N; )/pn

Npatch >® Npatch 2®

This can be substituted into Equation 4.84:

Lim (E(N;N:)~E(N;}3(N:))= Lim |-

Npateh 2> N

batc

pZ *7 _—p'n(zn—z.)
+ Lim >z )
z
Nbatch —®© J= z
J¢

which is equivalent to:
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(4.82)

(4.83)

(4.84)

(4.85)

(4.86)



Lim (B(N;N7)-E(NG E(NT)-

Nbatch %
Z—pl, (Zn —z.) (4.87)
Lim ij . J —(I—Am-) pnznzpnzr
Nbatch e J,&n Z

In the special case z,=1, for all n between 1 and T (the number-based approach), the
right-hand side of Equation 4.87 becomes equal to Nsmp,e(p; A, —DnP: ), in which
Niample is the total number of particles sampled, which is a well-known result for the

standard multinomial distribution (see e.g. Tanabe and Sagae (1992) and Pederson,
1973).

If there is a large sample-to-particle size ratio, the variables N, and N are

approximately equal to N, and N;. This results in an approximate expression for the
covariance between N, and N,:

Lim (BN, N, )-E(N, BN )<

Npatch =®
(4.88)

Lim

Zp . Z-pp (Zn—z ) (I A ) Pn Zn rp;lzr
N -»00 z
batch J*n

The right-hand side of the above equation, which is identical to the right-hand side of
Equation 4.87, will be used in the next paragraph for the calculation of the variance of
a sample total.

4.6 Expected value and variance of a sample total

A general expression for the expected value and for the variance of a sample total is
given, because the sample concentration is the ratio of the sample totals Ygumpie and
Zsample- Parameterisation of the sample total Ysample using T variables y;, which
represent the value for the property of a single particle of type i, results in:

T
Yoample = 2. Vi N; (4.89)
i=l

Hence, a simple expression for the expected value of Ygample is:

(sample) i E(N,) (4.90)
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The variance of the property can be written as:

( sample) (Z YiN; J = i iyi Y; (E(Ni N; )’ E(Ni )E(Nj )) (4.91)

i=1 i=l =1

Hence, an exact calculation of the expected value and variance of a sample total
requires expressions for the expected values E(N;j) and covariances

E(NiN;)-E(N))E(N;). While this is very complicated, transformed variables Ni', N; and

Z" were introduced. In the number-based approach & is always zero, hence N; = N;. In

a mass- or volume-based approach, there may be a difference. However, for large
sample sizes, this difference will be relatively small and not influence the final results

significantly. This can be demonstrated by using the relation p; =N,y /meh . Hence,

although the variable of interest is Yample, it is easier to calculate the variance and
expected value of

T T
Y 2 Ni batcnYi 2P Y
Yample *+3 zbmh =Yeampie + ‘;1—— = Ysample * %_
batch 2N bachZi 20 % (4.92)
i=1 i=1
T pf s
=Ysample+§l?yi '_'; - y -EN‘YI
= P =

In a fixed size design with boundary value of the sample size Z, the second term,
8 Y batch/Zbatch, becomes negligible compared to Ysampie for large sample sizes. Hence, for
large sample sizes, the equations obtained for the variance and expected value can be
applied t0 Ysampie. The variance is:

Y 0 3258 (S |- 32 S, i b ) «99)

batch i=1 =l j=1

The expression for the covariance, Equation 4.87, is substituted in the above
expression for the variance. The result is:
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Y,
Lim V]Y, g—batch |

sample
Npatch 2® batch
. ( ' , (4.94)
T T —fz—z) p;, z. -p. Z,
: i Vi k 11 1)
Lim 3 3 v; Zpkzk‘ (I‘Aij)+—‘—i
N —woi=]l j=1
batch k#l
The factor between square brackets can be simplified:
Y
: batch | _
Lim Vv Ysample +38 ;— =
N = batch
batch alc
: T - T , " (4.95)
p. — pP: z. —p: Z
J z 17 i
Lim 3 3y;y; PE AT
Nbatch—wol:l j=1 k=1

Because of symmetry arguments the double summation of the last term between
rectangular parentheses becomes zero after summation.

" Z' T n 52 -

Y, P, Z
: batch | _ : .l ' k “k ’ z
Lim V| Y, +8 %% = Lim Z Zy L > 2Dz A
Npatch = batch Npaich 2>@i=l =1 k=1 Z z
(4.96)
This can be rewritten:
14 2
Y, Py Z
Lim V| Yo o+ —batch |_ pim %
Niaeen = Zbatch Nparch =2 =] k=1 2
(4.97)
T
-2)y,%p! Zy —~—+Z
i:l =
Putting the common factor Z'/Z out of brackets yields:
batch
Lim V| Ysample +d .
Npgten >® batch (4.98)
FAR S T T pj Zi T T
Lim  — 2P 2R D=2y, 7 b 2Y;P —+ZY P;
Nigren 2 “ i=1 j=1 k=1 Z i=1 =
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This can be simplified to:

zZa 2 I :
—2.pi i T'ZP',- Yj (4.99)
z 5 z 3

Y,
: batch
Lim V[Ysmple +8 2= |=
Npatch batch Nbatch

Similarly, the expected value of YsampietdYbatcth/Zvatch is calculated using Equation 4.79:

Y, LI
Lim E[Ymple+8ﬂ}= Lim E(ZNiyi) Z——yl (4.100)

Npgrch = batch ) Npgp™®  \i=l

When the sample is large enough, 8Yvatcn/Zbacch is negligible compared to Ygample and
the relative difference between Z* and Z will be negligible, so that Z’ can be replaced
by Z. Hence, the following approximate results for the expected value and variance of
Y sample are obtained from Equation 4.99 and 4.100:

Z

(4.101)

( sample) i

i=1

2

T

V(Y e )~ = Zp, {y, 23°p; y,-] (4.102)
Zia j-l

These results are approximations and will therefore not be used in further derivations.

Instead, the exact results, Equation 4.99 and 4.100 will be used.

4.7 Sample concentration

In this section, expressions are derived for the expected value and variance of
Y sample/ Zsamples Which is an estimator for Yvaten/Zbatch. As a first step in the derivation of
the expected value, both right-hand side and left-hand side of Equation 4.100 are
divided by Z:

Lim E samPle E Ybatch an Yi =Ybatch (4_103)
Npaecn = Z Z Zpger ) =1 Z Zyaren

When the boundary value of the sample size becomes large, Ysample/Z is approximately
equal to the sample concentration Ysample/Zsample @0d (8/Z)Ybaten/Zparch can be neglected
as & remains between 0 and —zn,.x. Hence, it follows that

Y Y
Limp| ~smte 8 Youon |_ i pf Tsample (4.104)
Zoe Z Z Zbatch Z Zsample
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Therefore, in order to find an expression for the expected value of the sample
concentration, the limit of Z=c has to be taken. However, if this is done directly on
both sides of Equation 4.103, the following result is obtained:

Y,
Lim Lim E 5“;“"‘ ;meh = Youen (4.105)
Zbatch Zbalch

-
Nbatch It

Only if both limits could be interchanged, Equation 4.104 can be substituted into the
above equation, providing an equation for the expected value of the sample
concentration. However, without further mathematical investigation, interchanging
both limits would not be justified. Therefore, in the following, it will be investigated
whether both limits may be interchanged.
All previous results containing Lim are based on the following limit (see
Nbatch_)
also Equation 3.4):

Lim P = Lim (P batch)Nbatch/( ba(ch k):p: (4'106)

Nbatch - Nbatch -

where p; is the probability that the next particle sampled is of type i and n; is the
number of particles previously sampled belonging to the i™ class. If Z is allowed to go
to infinity, it cannot be guaranteed that ni/Npach remains negligible compared to p; in
Equation 4.106. Therefore, it would be incorrect to interchange both limits in Equation

4.105. Fortunately, this can be made correct by slightly changing the limiting process.
For this, the batch-to-sample size ratio, rys, is defined as

Tos = Zogen/ Z (4.107)

For constant Z, the limit of Nyacn=c0 is equivalent to the limit of rps=c. Therefore, all
previous results derived in the limit of Nyach=00, can also be read as results valid in the
limit of ry;=co, denoted as Lim . The advantage, however, of taking the latter limit is

5w
bs

that Lim p, =p; irrespective of the value of Z, because if rys=00, ni/Nparen can always
rbs—)co

be neglected compared to p; . This proves that when in Equation 4.105 Lim is
Nbatch—mo

replaced by Lim , the two limits, L1m and Lim , may be interchanged. This results in:
l"b -0 l'b —©
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Y, Y, Y, Y.
Lim Lim E sa;lple +% batch |_ [im Lim E salanle +% batch
Zow T —® Zbatch Ty YA L Zbatch w108

YASS
Tps > w Zsample Zbatch

As the limit of Z=wo was effectively taken in order to neglect § with respect to Z, it is
convenient to define the sample-to-particle size ratio, rgp, as:

Ty =22 (4.109)

where zmax is the largest particle size of the batch. The limiting process, Z=ow, is

equivalent to the limit of ry;=, denoted as Lim . Hence, Equation 4.108 becomes:
rsp—m

Lim Lim E(Ysample / Zsample) = Ybatch / Zbatch (4' 1 10)

rbs—m \'sp—)w

Hence, in the limit of an infinite sample-to-particle size ratio and an infinite batch-to-
sample size ratio, the estimator is unbiased. Equation 4.110 is an exact result.
However, in practice the batch-to-sample size ratio size and the sample-to-particle size
ratio are always finite. Therefore, the expected value of the sample concentration is
only approximately equal to the batch concentration, resulting in:

E(Ysample/zsaml:-le)z Yiatct /Zbatch (4.111)

This implies that the sample concentration may contain a (small) bias. Similarly to the
above followed method to derive an expression for the expected value, an expression
for the variance of the sample concentration is derived. Dividing both left-hand side
and right-hand side of Equation 4.99 by Z results in:

. 2
Y g g
Lim zv] e Yousn | i Z {yi_éng Y, (4.112)
Nipaich=>® Z Z Zbatch Nipaich ™% Z i) zZ

Subsequently, the limit of Npaich= is replaced by the limit of rys=c0, the limit of rg,=o
is taken on both sides of Equation 4.112 and on the left-hand side both limits are
interchanged. In addition, the factor Z on the left-hand side is replaced by
Zsampie(Z/Zsampie). This results in:
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2
P yj} (4.113)

sample

In the limit of ry,=0, Z/Zsample and Z'/Z are one, Ysample/Z is equal to Ysampie/Zsample and
(8/Z)Yvarch/Zoatch is zero. Hence, Equation 4.113 becomes:

. . Ysample 1 u ’ Z; u ' ’
Lim Lim Z ., .V =%Zpi Y —;ij Y (4.114)
il

Tyg ™% Tsp @ sample i=l

The above equation is an exact result. However, in practice the batch-to-sample size
ratio and the sample-to-particle size ratio are always finite. Therefore, the variance of
the sample concentration multiplied by Zgmpic is only approximately equal to the right-
hand side of Equation 4.114. Therefore, the right-hand side of Equation 4.114 divided
by Zsample provides an estimate for the variance, based on the identities of the particles
in the batch. This estimate is denoted as Vpaten(Y sample/Zsample), Tesulting in:

2
Ysample 1 < ' Z < ’
Voaten = -3 0 | Vi — = 2p) Y, (4.115)
anmple Zsamplez i=] Z =

The above result provides an estimate for the relation between the variance of the
sample concentration and the sample size Zgampie (i.e. the mass or volume sampled).

4.8 Results

Using a multinomial selection scheme with fixed sample size (mass, volume or

number) an expression for the expected value of N; and an expression for the

covariance between N; and N: (Equation 4.79 and Equation 4.87 respectively) are
now available in the limit of an infinite batch-to-sample size ratio for all values of n
and r between 1 and T. These equations were used to derive expressions for the
expected value and variance of YgampietYbaton(Z—Zsample)/Zoatch. Subsequently, these
results have been used to derive expressions for the expected value and variance of a
ratio of the sample totals Ysample and Zsampie in the limit of an infinite sample-to-
particle size ratio and an infinite batch-to-sample size ratio (Equation 4.110 and
Equation 4.114 respectively).

Using Equation 4.114 an expression (Equation 4.115) for the variance estimated
using the identities of the particles in the batch, Viaten(Ysampie/Zsample), was derived
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4.9 Discussion

As a consequence of the fact that Equation 4.110 is only valid within the limit of an
infinite sample-to-particle size ratio and an infinite batch-to-sample size ratio, the
sample concentration may contain a (slight) bias. This bias will be investigated in
Chapter 6.

Similarly, Equation 4.114 is also only valid within the limit of an infinite
sample-to-particle size ratio and an infinite batch-to-sample size ratio. Therefore, the
value of the true variance may differ from the value of Vpaten(Ysampie/Zsample) calculated
with Equation 4.115. In Chapter 7, this difference will be investigated for the sampling
of a batch of wooden chips, two batches of steel slag produced during the production of
steel and a batch of recycled plastic chips.

4.10 Conclusions

An equation for the relation between the variance and the sample size was derived
(Equation 4.115). Therefore, the first criterion for a sampling theory (“The theory must
provide an equation for the variance of the sample concentration, containing the mass
or volume sampled and an arbitrary number of additional parameters.”) is met. Because
the right-hand side of Equation 4.115 depends on the identities of the particles in the
batch, the fifth criterion for a sampling theory (“The theory must allow determination
of the parameters of the size-variance equation, using prior knowledge of the properties
of the particles in the batch.”) is also met.
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Chapter S Estimation of the variance
of the sample
concentration’

The Horvitz-Thompson estimator can provide a general and unbiased estimate for the
variance of the n-expanded estimator. It is demonstrated that the sample concentration
can be rewritten in the form of a n-expanded estimator, indicating that the Horvitz-
Thompson estimator can be applied for estimation of the variance of the sample
concentration. Because in this study particles are classified, the behaviour of the n-
expanded estimator and Horvitz-Thompson estimator under classification s
investigated. Derivations of expressions for the first- and second-order inclusion
probabilities, using results from Chapter 4, are performed. These expressions are
substituted into the m-expanded estimator and the Horvitz-Thompson estimator. This
results in an expression for the variance, estimated using the properties of the
particles in the sample. Finally, as an application of the obtained equation for the =-
expanded estimator and the variance, the obtained equations are worked out for mass
concentrations.

5.1 Introduction

The variance of the sample concentration is a measure of the potential statistical
fluctuations of the sample concentration around its expected value. Because it is
important to have insight into the magnitude of these variations, it is of practical
significance to estimate the numerical relationship between the variance and the sample
size. For the drawing of an ideal sample from a random arrangement of particles, the
value of the variance of the sample concentration can be calculated using knowledge of
the distribution of the particles in the batch and Equation 4.115:

2
Ys le l T ] Zi s ’
Vbateh = =*“_zpi [)'i ";ij Yj] (5.1

Zsamp]e Zsamplez i=1 j=1

11 The main aspects of this chapter have been published in: B. Geelhoed, H. J. Glass (2004) Estimators for particulate
sampling derived from a multinomial distribution, Statistica Neerlandica, 58, p. 57-74.
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This can be written as an equation for the variance, containing the sample size and one
additional parameter C:

Vbatch (Ysample / Zsample ) = C/ Zsample ( 5.2 )

where the parameter C is given by:

l LS 1] zi L ’ ’
C=%Zpi ¥i — 2Py (5.3)

i=1 j=1

Hence, it was demonstrated in Chapter 4 that the fifth criterion for a sampling theory
(“The theory must allow determination of the parameters of the size-variance equation,
using prior knowledge of the properties of the particles in the batch.”) is met.

In this chapter, two alternative methods of estimating the variance will be
investigated. The first method is related to the fourth criterion for a sampling theory
(“The theory must allow determination of the parameters of the size-variance equation,
using the measured sample concentrations of one or more samples of a given size.”)
and addresses calculation of the parameters of the size-variance equation using analysis
results of multiple samples. The second method is related to the sixth criterion for a
sampling theory (“The theory must allow determination of the parameters of the size-
variance equation, using posterior knowledge of the properties of the particles in the
sample.”) and addresses calculation of the parameters of the size-variance equation
using the results of analyses of the particles in the sample.

5.2 Estimation of the size-variance relationship using multiple
samples: the first method

In the first method, Ng.; samples are drawn using the size-based multinomial selections,
with boundary value of the sample size set to Z, and determination of the concentration
in each sample. When the concentration in the it sample is denoted as Csamplc.i; Where i
represents any integer between 1 and Nge, the variance of a sample can be estimated
using the values of Csampie,i (see e.g. Cohen, 1988):

N
V(Ysample /Zsample): R‘—l———l f: (csample,i - 6)2 (5-4)
et 1=

where ¢ is the arithmetic mean of the Ny values of the sample concentration. In order

to estimate the parameter C, it is assumed that the value obtained for V(lec / Zmple)

is equal to the variance calculated with Equation 5.2, where C is replaced by its

estimate, é, , and Zsample is the average sample mass of the Nge samples. This yields:
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N
n 1 det et _
Cl = z Zsample,i i (csample,i - c)z (5.5)
Ndet Ndet -1 j=t i=t

where Zgumpre,i is the size of the i™ sample. The above equation provides an estimate
for the parameter of the size-variance equation, using the concentrations and masses of
an arbitrary number (Ng.:) of samples. Hence, the fourth criterion for a sampling theory
is met.

5.3 Estimation of the size-variance relationship using posterior
knowledge of the particles in the sample: the second method

The second method is based on the fact that although the distribution of particles in the
batch is unknown, the distribution of particles in the sample can in principle be
measured. This implies that in the second method, the variance of Yiumple/Zsample iS
estimated using knowledge of the distribution of the particles in the sample. As a first
guess, the following ad hoc substitutions are made in Equation 5.1:

e p; is replaced by the number fraction of particles of type i in the sample:
T
Ni/Zj:le

e z is replaced by the average particle size in the sample, ZLZJNJ/ZL]NJ'

The result is the following estimator for the variance, denoted as V(Y le/Zsmplc):

samp!

2
NA's 1 & Y.
| Lsample | _ N, z2| Yi _ Lsample 5.6
[z Z2 LNz z. Z -6

sample sample i=1 i sample

Because the estimator \‘/(Ymple/zmp,e) is a function of the random variables N;, Yample

and Zsampte, the estimator \"(Ymp,e/zmp,c) is by definition a random variable. For a

sample S, its value is denoted as \“/(Ympk/zmpl,,s). Using the definitions in Paragraph
4.2, it is possible to associate a bias to \‘/(Ysamp,,/zm,e). Because the substitutions used
to obtain \A/(Ysample / Zmple) were ad hoc, it is not guaranteed that \A’(Ys,,mp,e / Zsample) is
unbiased, even in the limit of an infinite batch-to-sample size ratio and an infinite
sample-to-particle size ratio. If V(Ymple/Zmple) is biased, the obtained estimate will

have the tendency to either underestimate or overestimate the true variance of the
sample concentration. Therefore, in the next paragraph, the general and unbiased
Horvitz-Thompson estimator is discussed.
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5.4 The Horvitz-Thompson estimator

An estimator for the variance of the n-expanded estimator will be determined. The n-
expanded estimator, which is a general and unbiased estimator, requires definition of
the inclusion probability, mi, which is the probability that the ith particle of the batch,
with i ranging from 1 to Npatch, is selected during the drawing of a sample. It is noted
that in the theory of finite population sampling, the general terms ‘units’ and
‘population’ are common. When dealing with particulate materials the units are the
individual particles of material and the population is denoted as the batch. When U; is
the set of samples that contains the i particle of the batch, the inclusion probability of
the i particle is:

m, = Y P(S) (5.7)
SeU.

It will be demonstrated in this chapter that, if sampling corresponds to size-based
multinomial selections, the inclusion probability is approximated by the ratio of the
sample size and the batch size.

Because the m-expanded estimator applies for the estimation of a population
total, in the following the properties of a population total are defined. Note that
because, in this thesis, the population is a batch of particulate material, the population
total is often indicated as batch total. In the general sample survey theory (see Sirndal
et al, 1992), the population total Yyan is given by:

Noatch
Yoarch = Zyn(i) (5.8)
i=1

in which Npach is the total number of particles in the batch, n(i) is the class of the it
particle in the batch and yn() is the property of interest in a particle belonging to the
n(i)™ class.

To investigate the estimation of a batch total, first the sample total is discussed.
For definition of the sample total, the indicator [; is required. The indicator I; indicates
whether the i™ particle in the batch is selected or not. When a sample S does not
contain the i™ particle I;(S)=0; when S contains the i® particle I;(S)=1. The sample
total is defined as:

Npaich

Ysample = zli yn(i) (5’9)
i=l

If yniy>0, for all i between 1 and Nyuch, and the sample size is smaller than the batch,
for any sample S, Ygampie(S) is always smaller than the value of Ypacn. When
Ysample(S)<Ypaien for all possible S, Yumpie is @ negatively biased estimator for Yoaicn,
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which can be demonstrated with the following simple derivation:

B(Ysample ): E(Ysample )" Ybatch = ZP (S)Ysample (S) ~ Ypatch < Z P(S)Ybatch = Ybatch =0 (5.10)
SeU SeU

in which the identity ZSeUP(S)=l was used. Therefore, the sample total would

systematically underestimate the value of the batch total. Fortunately, the sample total
of the ‘expanded’ variable, yni)/mi, in which m; is the inclusion probability of the i
particle in the batch, is of the same order of magnitude as the population total. This
estimator is by definition the m-expanded estimator, often referred to as the Horvitz-
Thompson estimator®”. It will now be proven that the n-expanded estimator is unbiased.
From the definition of the inclusion probability, the inclusion probability of the

P particle is equal to the expected value of 1, i.e. m=E(l;). The n-expanded estimator,

denoted < batch> , can be written as:

batc Npatch Yn(l)
<Ybatch ; i 771 Zl E(I) (5.11)

This estimator is unbiased because:

N
B(<Ybatch>n) - E(<Ybatch >") - Ybatch = '_).th E( )g-([(ﬁ) Ybalch =0 (5.12)

i=l

For the variance of the n-expanded estimator, a general Horvitz-Thompson estimator is
defined by (Sirndal et al, 1992):

ch *"batch Nbatch 1 1
(<Ybatch ) % i iljyn(i)yn(j)+ Z [?——Jli}’i@) (5.13)

=l =l \ T i=1 LT
]#I

in which =nj; is the second-order inclusion probability®”, i.e. the probability that the
particle pair consisting of the i and j' particle, with i#j, is selected. In equation:

12 To avoid confusion in this work the term ‘n-expanded estimator” is used and the term ‘Horvitz-Thompson estimator”
is reserved exclusively for the variance estimator defined in Equation 5.13.

13 Wherever the symbol # has two indices, as e.g. in =, this symbol represents a second-order inclusion probability and
not the first-order inclusion probability m,, where k=i Xj. When the indices are numbers, e.g. i=1 and j=2, a semicolon
must be placed between the indices to denote the second order inclusion probability, e.g. m; = w2 for i=1 and j=2. The
use of a semicolon is essential in this case, because without a semicolon, the symbol becomes =, which represents the
first-order inclusion probability of the twelfth particle in the batch.
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m;= > .P(S) (5.14)
SeU

where Uj; is the set of samples that contains the i and j™ particle (i#j) of the batch™.
Here, the second-order inclusion probability =;; is not defined for i=j, because this
combination would not form a pair. If, however, it would be defined that z;;=n; for all i
between 1 and T, the second term on the right-hand side of Equation 5.13 could be
omitted, if the double summation is extended over all values of i and j between 1 and
T. This would yield a simpler equation. However, in this thesis, m;; is not defined for
i=j, avoiding the artificial concept of a ‘pair’ that consists of one particle. The proof
that Equation 5.13 provides an unbiased variance-estimator can be found in literature
(Sarndal et al, 1992). For a sample S, the value of the Horvitz-Thompson estimator is
equal to:

Natch
By 5 |- by 619

i=1 i

. Npatch Nbatch 1 1
Var (Yoaten P s)= [ -

izl j=1 \MT M
J#i

In this chapter, Equation 5.13 is the starting point for the derivation of an estimator for
the variance of the sample concentration. The derivation contains four essential
elements: (i) demonstration that if Equation 5.11 and 5.13 are slightly modified, they
can be applied to concentrations instead of batch totals, (i7) replacement of the
summations over all particles by summations over the T particle classes, (iii)
calculation of the first- and second-order inclusion probabilities in the size-based
approach and (iv) substitution of the expressions obtained for the first- and second-
order inclusion probabilities and calculation of the variance estimator. These four steps
are carried out in Paragraphs 5.5, 5.6, 5.7 and 5.8 respectively.

5.5 The n-expanded estimator for the concentration

It may be necessary to estimate the concentration of a property in the batch, expressed
as a ratio of batch totals Yyparcn and Zpaeh. The denominator Zpaen is the size of the
batch, which can correspond to the mass or volume. Often the batch concentration is
estimated using the corresponding sample ratio Ysample/Zsampie, Which is denoted as the
ratio estimator. Because the denominator and numerator of the ratio estimator are
generally measured without analysing every particle in the sample separately, this

14 Wherever the symbol U has two indices, as e.g. in Uy, this symbol represents the set of samples that contains the it
and j® particle of the batch and not the set of samples, U,, that contain the Kt particle of the batch where k=i%j. When
the indices are numbers, e.g. i=1 and j=2, a semicolon must be placed between the indices to denote the set of samples
that contains the i™ and j* particle of the batch, e.g. U= Uy, for i=1 and j=2. The use of a semicolon is essential in this
case, because without a semicolon, the symbol becomes U,,, which represents the set of samples that contain the twelfth
particle in the batch.
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estimator is extensively used in practice. However, the n-expanded estimator can also
be developed by recognizing that Ypawn/Zpaten 18 the batch total of yaci)/Zparch. The m-
expanded estimator, given by Equation 5.11, becomes:

Ngateh Ii Yn{i)

<Ybatch / Zbatch>n = Z

= Zpaen ™

(5.16)

The value of the m-expanded estimator becomes equal to the value of the ratio
estimator for mi=Zsample/Zvatch- This is of practical significance, because in Paragraph
5.7, it will be demonstrated that, if sampling corresponds to size-based multinomial
selections, m; can be approximated by Zsample/Zbarch. In this case, the ratio estimator is
unbiased and has a variance estimator given by Equation 5.13, with y,g) replaced by
Yni) Zbatch-

N N N 2
. Y. tch *“batch 1 1 yn(i)yn(A) batch{ 1 1 yn(i)
v Ybatch - 2: _ L1 I 4 z — L (5.17)
" <Zbatch >,[ [ J Y ZZ : 3 l 22

i=l et (T Ty batch i=1
J#

This shows that, in the size-based approach, the positive properties of the Horvitz-
Thompson and the ratio estimator can be exploited at the same time.

5.6 Behaviour of the n-expanded and Horvitz-Thompson estimator
under classification

In this paragraph, the behaviour of the n-expanded estimator for the batch
concentration and the corresponding Horvitz-Thompson estimator for the variance
under classification of the particles into T classes is investigated. Equation 5.16 and
5.17 are modified, i.e. the summations over all the particles are replaced by
summations over the T classes, using the following two general assumptions:

e It is assumed that the inclusion probability is constant for particles of a given type.
Denoting the class of the i particle as n(i) for all i between 1 and Npawen, this
condition can be mathematically expressed as follows: m;=n; if n(i)=n(j) for all i and
j between 1 and Npacch.

¢ For the second-order inclusion probability a similar condition is assumed: mi=mn;s if
n(i)=n(j) and n(r)=n(s) for all i, j, r and s between 1 and Npgcn, i=r and j=s
excluded.

The above two conditions can be used to define the new parameters k, and kn for all n
and k between 1 and T, which can be interpreted as the first- and second-order
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inclusion probability of particles belonging to the n™ and k™ class®. These new

parameters are required for the derivation presented in this paragraph of expressions
for the n-expanded estimator and Horvitz-Thompson estimator subject to classification.

if n(i)=n . (5.18)

Kp =T if n(i)=n and n(j)=k and i#] (5.19)
Note that although =m;; is not defined for i=j, . is defined for n=k, because different
particles may belong to the same class. Using the definition of x,, the m-expanded
estimator for Yyacch/Zbarch, given by Equation 5.16, can be written as a summation over
the distinct classes.

T

N,y
<Ymh/ Zbatch>" = ;ﬁ , (5.20)

in which now y, denotes the value of the property of a particle of type n and N, is the
number of particles in the sample belonging to the n™ class. Equation 5.20 can be
identified as a simple generalization of Equation 5.16. Similarly, the equation for the
Horvitz-Thompson estimator for the variance of the sample concentration, Equation
5.17, can be rewritten using summations over the T particle classes. However, this
derivation is not a simple generalization.

According to the definitions of x, and g, m;; in Equation 5.17 may be replaced
by Kagija(j) and z; and m; may be replaced by xu(i) and xq(;) respectively. Equation 5.17
now becomes:

2
Gpg (Yoo ) )TgR L I.I_vn(i)h(j)f%ch L1 | a0 (s
HT Zy, Kl YKl KeliW(y | 1) 2 2 Kl 122
atch /) i) }:} n(i)a(j) *n(in(j) Ziaeh  i=1 (%n@) 0] Zigen

The double summation can be extended over all values of i and j when the terms with
1=j are subtracted.

15 Wherever the symbol x has two indices, as e.g. in kg, this symbol represents a second-order inclusion probability
and not the first-order inclusion probability k,, where r=nxk. When the indices are numbers, e.g. n=1 and k=2, a
semicolon must be placed between the indices to denote the second order inclusion probability, e.g. Ky = k.2 for n=1
and k=2. The use of a semicolon is essential in this case, because without a semicolon, the symbol becomes k), which
represents the first-order inclusion probability of a particle belonging to the twelfth class.
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i=1 | () Kn(i)n(i) batch i=t | K@) Kn(i) batch

The summands with non-zero indicators depend indirectly on the particle numbers i and
j via n(i) or n(j) respectively. Therefore, in each summation, terms for which n(i)=n
and n(j)=k are equal when n and k are constant. When equal terms are combined, the
summations are rewritten as summations over the particle classes n and k:

_toateh N n n

(5.22)

(5.23)

e

Z e

Taking the last two terms together results in:

. (/v T g .
Verr <“""°“> ZZN,,N { —L] Lol +ZND[L L] L= (5.24)
n nKk Kan

Zbatch n=1 k=1 Kk batch  n=I n Zbatch

In the following paragraph, in the limit of an infinite batch-to-sample size ratio (i.e.
Ivs=c0) expressions for the first- and second-order inclusion probabilities, k, and Kok,
will be derived. In Paragraph 5.8, these expressions will be used to evaluate Equation
5.20 and Equation 5.24.

\

5.7 First- and second-order inclusion probabilities

The n-expanded estimator for Ypaccn/Zbaten and the Horvitz-Thompson estimator for its
variance, given by Equation 5.20 and Equation 5.24 respectively, depend on the first-
and second-order inclusion probabilities k, and k, for all integer values of n and k
between | and T. In this paragraph, expressions for these inclusion probabilities are
derived for the size-based approach. First, the definitions of the inclusion probabilities,
Equation 5.7 and Equation 5.14 are rewritten using the indicators I; and I;:

= Y B(S)= 31, GPE)-Ef, ) (5.25)

SeU. SeU
i
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= PRIOEDI A ¢ (s)1>(s)=13(1i I j) (5.26)
Se SeU

Uij

where i may not be equal to j. The results of Chapter 4 can be used for evaluation of
the above two expressions. For this purpose, the following expression for Ny is used:

N ch
N, = Arn(e)le (5.27)

r=1

for all k between 1 and T. The summation on the right-hand side of the above equation
represents a count of particles sampled, which belong to the k™ class. While the factor
Axn(ry guarantees that only particles belonging to the k'* class are counted, the factor I,
guarantees that only particles sampled are counted. To find an expression for the first-
order inclusion probability the expected value of Equation 5.27 is calculated. Taking
the expected value of both sides of Equation 5.27 gives:

) 5 8, e) (s.28)

Substituting Equation 5.25 into the above equation yields the following relation
containing the first-order inclusion probability:

Nbatch
E(Nk)= 2. D) (5.29)

r=1

Using the definition of xy, the above equation can be written as:

( ) Noatch Npatch
E Nk = Akn(r)nr =Kk Akn(l‘) = Kka,batch (5.30)

r=1 r=1

An expression for the left hand-side of the above equation, the expected value of Ny,
was calculated in Chapter 4 in the limit of Npacn=00, or equivalently in the limit of
tys=o0. Taking the limit of rps=c on both sides of the above equation results in:

Lim E(Nk)= Lim (Kka’bth (5.31)

~»00 Q0
Ths Ths ™

Substituting Equation 4.61 and the definitions of Z and 7" gives:
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P2
z

Lim (KkN k,batch )= Lim
Tps ™® Tpg

(5.32)

Hence, when the batch-to-sample size ratio is large, but finite, and if Z" is
approximated by Zsampie the first-order inclusion probability can be approximated by:

r
- Py Zsample _ Zsample

K
kTN z

(5.33)
k,batch2 batch
It is noted that the above equation is only an approximation and will therefore not be
used further in theoretical developments. Instead, the correct result, Equation 5.32 is
used.

Similarly to the above derivation, an expression for k,x can be derived. The
product of N, and Ny, for arbitrary n and k between 1 and T is written as:

ngch Noateh N%ch Nbatch
NuN, = An(e)ls Zl Aol |= ) A (5P kn(e) s e (5.34)
s=] r=| s= r=

Taking the expected value of the right-hand side and of the left-hand side yields:

Npatch Noatch

E(NnNk)= Am(s)Akn(r)E(lsl,) (5.35)

s=1 r=1

Only for s#r the expected value of LI, is equal to m,. Therefore, the terms for which
s=r are excluded from the double summation:

E(NnNk )= Ng‘m Ngm Am(s)Akn(r)E(Is I, )+ Ngh Am(s)Alm(s)E(Ig) (5.36)
T#£S

In the above equation, E(II;) may be replaced by =g and E(If)=E(Is) may be replaced

by =,:

( ) Nyatch Nbatch Npatch

EIN,N, )= Z; 1 A nfs)Pkn(e) st + 1 A s kn(s) s (5.37)
§= = s=

r#s
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The equation is slightly simplified by using the identity A, A, ) = Ay

( ) Nbatch Npatch Nbatch
ENnNk = Zl : Ann(s)Akn(r)n“ +Akn Zl Am(s)ﬂs (5.38)
s=| = s=
r#s

Using the definitions of k, and x, in the above equation results in:

E(NﬂNk )= N, batch (Nk,batch —An }%k +A 0 N batch Kn (5.39)

The terms can be rearranged and Njpaichkn=E(N,), from Equation 5.30, can be
substituted:

N batch (Nk,batch —An )"nk = E(NﬂNk )‘ AnkE(Nn ) (5-40)

The right-hand side can be evaluated in the limit of Nysen=o, or equivalently in the
limit of rps=c0, using the results of Chapter 4. Taking the limit of r,s=c0 on both sides of
Equation 5.40 gives:

Lim (Nn,batchNk,batchKnk)z Lim (E(NnNk )‘AnkE(Nn» (5.41)

o0 o]
rbs - rbs —

It will be convenient to introduce a new parameter C,x (interpretation below), defined
by:

Ky =Koy (1= Cor ) (5.42)

C.k can be interpreted as a small correction necessary because the sample size is fixed.
This interpretation is most clearly illustrated when all particles have the same size. The
first particle of a pair has a probability of Ngamplc/Noateh to be included in the sample.
On the condition that the first particle is in the sample, the second particle will have a
probability of (Nsampie—1)/(Noatch—1)~(Nsample—1)/Nbaten being included in the sample.
The product of both probabilities leads to the second-order inclusion probability

Nemoie Weampte = 1) Nt - N
Ky = sample(2 sample )= sample2 sample =K,K, 1- 1 (5.43)
Nbalch Nbatch sample

Hence, when all particles have the same size Cp=1/Ngampie. This result supports the
above interpretation of Cp. In the following an expression for C, will be derived

92



which is also valid for particles of varying size. Hereto, Equation 5.42 is substituted
into Equation 5.41. This gives:

Lim (Nn,batchNk,batchK"Kk(l_an»= Lim (E(NnNk)_AnkE(N"» (5.44)

oo} [c o]
rbS - l‘bs = d

Using ®uNn batch=E(Nn) and «xNg paren=E(Nx) (which follow from Equation 5.30) results
in:

Lim (N N i-Cyi )= Lim (ElNaN, -2, BN, (5.45)

r, —o L, —wm
bs bs

This can be transformed into the following equation for Cpy:

A E(N Nk)-E(Nn)E(Nk)
Lim Cy = Lim |0k _ " (5.46)

Iy —® Ty —>® E(Nk) E(Nn)E(Nk)

For evaluation of the above equation, an expression for the covariance in the limit of
an infinite value of r, is required. In Chapter 4, however, an expression for the

. . * * .
covariance between the transformed variables N, and N, was derived. In order to use

this expression here, first the relation between both covariances is derived:

’

op; , B
E(N;N;)— E(N:‘, )-:(Ni):E [Nn +%n N, + Pk —E[Nn +5PT“]E N, + Pk
z Z Z z

1] 8 4 ' 6’
=E|NyN, |-E/ N, |[E[ N, |+E BPT“N +E &N +E %& . (5.47)
7k n k z k z n z z

' 8 ! ' 8 ’
- E[QP}JE(N]{ ) - E[—p_L]E(Nn ) - E[ZSPT“JE Py
z z z z

From the above equation follows, after some derivations, that:
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E(N;N; )- E(N; JE(N; )= E(N,N, )- E(N, BN, )+

(5.48)
5 (N -E(N,), N, -E(N,), 5-E()
E(N.,)E(Nk);(?( kE(Nk)k + E(Nn ) + e
This equation can be substituted into Equation 5.46:
Lim C, = Lim | — _svang )-5iv; i )
Tos 7 "bs E(Nk) E(Nn (Nk)
(5.49)

Z *

N, -E|N - _
+Ei, k (k)+Nn EfN.), 8 E(3)
E{N, EN, z

Using the expression for the expected value and the expression for the covariance,
Equation 4.87, the expression for the expected value, Equation 4.61, and the definition
of Z results in:

- | _ .(z _ ) oy o' g
Lim C , = Lim | - . Zp;‘zr Pn Zn —7Zr _l+Pn n_Pn K
L —® 5 Py =1 z2 b7
bs bs r#n
(5.50)
N —E(N ) _ ( ) _
+B S N =B No ~BlNa ), 8 13(8)
Z E(Nk) E(Nn) Z
The first term on the right-hand side of the above equation,
z T zZ-p, (z -z ) PnZn —PnZy
-——| 2.Prz — -1+ — (5.51)
vZ | = 72 Z
Py r=1
r#£n

is inversely proportional to the sample size Z’ and hence converges as 1/Z" towards
zero as the sample size increases. On the other hand, the second-term on the right-hand
side, denoted simply as y (for reasons explained later),
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YzE[i[Nk—E(Nk)+Nn—E(Nn)+8—E(8)D (5.52)

z'| Ely,) E(N, ) z

will converge more rapidly than 1/Z° towards zero, because (N—E(Ng))/E(Ny),
No.—E(N.))/E(N,) and (8—-E(8))/Z° also approach zero with increasing sample size.
Therefore, the first term will be dominant at large sample sizes and the precise
structure of the complicated second term will not be relevant in the following
derivations and was, therefore, denoted as y. This results in:

— T 5 _ ' _ ) 'Z ! z
Lim Cpy = Lim [-—2 | Ypjz, 2 Pn¥n=2r) | Pn¥a"Pn% (5.53)
Ths® Tps 2% Pi( Z :::1 z z

The above equation can be written as:

T
Lim Cy = Lim ?"—’;ZL-Zp;zf/(z*z)u (5.54)

l'b S —»0 l‘b s —>00! r=1

A practical problem with application of the obtained expressions for xy and xyy
(Equation 5.32 and 5.42 respectively) is that batch information is required: the values
of E(8) (because Z'=Z-E(3)), pk, and Cp. When the expression for the first-order
inclusion probability ki is used for calculation of the m-expanded estimator and the
Horvitz-Thompson estimator in paragraph 5.8, it will be seen that the associated factor
pk cancels. This is not the case for E(8) and C,x. Fortunately, it will be seen that in the
limit of an infinite sample-to-particle size ratio, rs,, E(8) will becomes negligibly small
and C,x can be approximated by:

!
Cpg =Cp° (5.55)

in which C;al‘(mple is defined as:

T
le Zy+Z 1
Cni(sampe _ZntZy ZNrZ% (5.56)

2
Zoample Z sample =1

which is based solely on sample information. Therefore, in the next paragraph, the
limit of an infinite sample-to-particle size ratio is taken in order to exploit these useful
approximations.
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5.8 Substitution of first- and second-order inclusion probabilities

Because in the previous paragraph expressions for the first- and second-order inclusion
probability were derived in the limit of rps=00, in this paragraph, the limit of rys=w is
taken of the m-expanded estimator and the Horvitz-Thompson estimator. First, in the
expression for the n-expanded estimator, Equation 5.20, the limit of ry;=c is taken on
both sides:

. y Pa Nay
Lim <Ybatch/ Zbatch> = Lim Z o¥n o i Z —
Ths 2% T Tps > l"-1Zbatch'(“ Thg™® n=1 “Nnbatch'cn

Z Ny¥n _ i Pn Nn)'n | (5.57)
= - _ .. . o

n=l Z Lim (Nn,bamhKn) n=l Z Lim (an z)

rbs—>oo l'bs—)OO

= Lim Z le( samplc/ z )

b —0 p=] l'bs—)w )
in which Equation 5.32 was used. The result obtained

. . »*
Lim <Ybatch / Zbatch>n = Lim (Ysample / Z ) (5.58)
l’bs—)OO l‘bs—)m

indicates that, in the limit of an infinite batch-to-sample size ratio, the m-expanded
estimator is equal to the sample concentration if Z" can be replaced by Zsample.
Fortunately, this is correct in the limit of an infinite sample-to-particle size ratio. As
discussed in Paragraph 4.7, the limit of rg,= and rys=c0 may be interchanged. Hence,
taking the limit of rg;=c0 on both sides of the above equation results in:

Y Y

. . s . sample | .. . sample

Lim Lim <Ybatch / Zbatch> = Lim Lim +— |= Lim Lim -
Igp =00 F —>0 T rgp—o o z Ty % lsp =0 z

(5.59)
Y Y,

- Lim sample _ sample

Ths ® Zsample sample

Hence, in the limit of both an infinite sample-to-particle size ratio and an infinite
batch-to-sample size ratio, the mn-expanded estimator is equal to the sample
concentration. Similarly to the above derivation, the limit of r,s=w is taken on both
sides on the equation for the Horvitz-Thompson estimator, Equation 5. 24:
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. Y ILJ 1 1 | Yn¥x < 11 2
. batch : nrk y
Lim Vi <i> = Lim z _5_ NnNk( -— |3 +Z:Nn _ 2~“ (5.60)
Ziatch x ) TosTeLP" KnXp Ko ) Zhatch  n=l Ko ¥n ) Zhateh

-
I

I Q0
bs

Substituting the identities meh=ZNn'bmh/p;l and Zg,., =2Nk,,,m,:h/p;c into Equation

5.60 results in:

\
. Y,
Lim VHT batch
Tos Zbatch ,[
T T t ’
. Pn Py ¥YnY 1 1
Lim " 3NN, |2k - 5.61
Ty ™% n=1k=l1 z (Nn,batchKn )(Nk,batch Ky ) N n,batch N k,batch ® nk (5.61)
T 2.2
. 1 1
+ Lim Z Npn 2 - Pn 2y 2
Tos ™% n=1 N n,batch Knn N n,batch (N n,batch¥n ) z

Equations 5.42 can be substituted into the above equation to eliminate the second-order

inclusion probability. The result is:

. Y,
Lim V| (02t
Tps >® Zyatch -
T T L
_ Pn P} Yn¥ 1 !
Lim ZZNnNk 1;2 k 1- ( (5.62)
Ty F>®n=1k=1 (Nn.batchK“)(Nk,batCth) (I—an)
T 2.2
+ Lim ) Ny 3 ‘2 - : pn_zyn
I, 2®n=1 Nn,batchKn(l_C“n) Nn,batch(Nn,batchK") z

In order to eliminate the first-order inclusion probabilities, Equation 5.32 can be

substituted into the above equation. The result is:
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N Yb tch I X ank 1 I )'2
Lim Vpp|(—2) |= Lim | Y NyN, 1- +ZN,,—————— (5.63)
Ty —© Zy atch x Tys n=lk=1 (Z )2 (I-C nk) n=1 (1 Cm)(z )2

From Equation 5.54 it follows that, with increasing sample size, Cux and Cypy, in the
above equation converge towards zero as 1/Z°. Note that when all particles have the
same size Cok=1/Ngampie for all n and k between 1 and T (see interpretation below
Equation 5.43). Therefore, the Taylor-expansion around 1/Ngample

1 o -Crk ( 1 ) -Cnk 2
1- = +0,k +05, +... (5.64)
1-Cpik 1—1/r~1$,,,,,[,l,1e—c,,lﬂsl/r‘zs,l,,,,,lc 1-1/Ngample \1-8nx ) 1- 1/Ns,mple( nk )
where
_ Cuk ~Y/Nsample (5.65)
l_l/Nsample

for all values of n and k between 1 and T, and a similar expansion for Cyy:

1 1 1 (1 ) 1 2
= = = +0,, +02, +..) (5.66)
1-Cpn l“/Nsample -Can “"/Nsamplc l‘I/N:mmple kl‘enn l"/Nsample (l e )

are substituted into Equation 5.63. This yields:

Lim V| ( Sbatch Lim iiN N Ik Ok (110 62 1)
M VHT = aNg ok + 00k o
Tos batch / 5 | Tos Z®n=1k=l (Z )2 1- l/Nsample

(5.67)

Lim ZN

L, —o®p=] 1- I/Nsample

2
(1+6lm +62, +) Yn

e

In the limit of ry=w, 0,=0 and 6,,=0. Hence, the series (l+0nk+0§k +) and

(l+9m+0%n +) in the above equation may be replaced by one in the limit of ry,=co.

Also, Z" may be replaced by Zsampic and the n—expanded estimator may be replaced by
the sample concentration Ysample/Zsampie in the limit of ro,=c0. Therefore, the advantage
of taking this limit would be that unknown values (i.e. the values of the n—expanded
estimator, Ox, Onn and Z°) are replaced by values known to the sampler (i.e. the sample
concentration, zero, zero and Zgmpie respectively). However, in the limit of rg=,
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VHT(<Ybatch /Zbatch>,t)=0s which is not a very useful result. Therefore, the product of the

Horvitz-Thompson estimator and Z~ is considered. This results in:

Y,
. . sample
Lim Lim ZsamplevHT =
Ty —> Tgp >0 Z ample
(5.68)
T T -Z T 2
YnY
Lim Lim Z anN 2n k sample Z ¥n
Tys —>®Tep =0 n=]k=] Zsample I~ l/Nsample n=l 1_l/Nsamplt: Zsample

In the above equation, the only remaining unknown parameter is C,. Therefore, this
parameter is estimated in the limit of rps=0 and ry,=00, using the following result:

. . _ sample
Lim Lim Zsamplec nk ~Zsamplec ok (5.69)
rbs—)oo rsp—»o

in which C5™" is defined as:

e Z,t+Z -
Came ==t Y N2 (5.70)
'sample r=1

sample =

The final result expressed in Equation 5.69 follows from multiplying both sides of
Equation 5.54 with Zs,mpie, taking the limit of rs,=c0 on both sides of Equation 5.54, and
from the fact that the summation in the right-hand side of Equation 5.54 can be written

as a function of a ratio of batch totals Yy, /Zy. if Yyucn is defined as the batch total

of §, =z:

z z Y
Lim Lim Z_  C. = Lim Lim ﬁmfi(zn+zk)——-—sam*—m—tm (5.71)
Ty —00 Ly —300 P R N 4 FAR A

From Equation 4.110, it follows that in the limit of an infinite sample-to-particle size
ratio and an infinite batch-to-sample size ratio Y, mple / Zs,lmple is unbiased for meh / Z oot
and its variance is given by Equation 4.115 with y; replaced by z . Because the
summation in Equation 4.115 applied to Ysample / Z ,mpie 18 proportional to the particle
size only, the variance of ?smp,,/zm,e
particle size ratio and an infinite batch-to-sample size ratio. Hence, in the limit of an
infinite sample-to-particle size ratio and infinite batch-to-sample size ratio no error is

is zero in the limit of an infinite sample-to-
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made when ?bm/zmh is replaced by ?’mple/Zmple. In addition, no error is made

when ZW‘C/Z' is replaced by one, leading to Equation 5.69. Substituting this result

into Equation 5.68 yields:

. Y
Lim Lim [Zmp,evm[zsample JJ =

Ty =@ Isp—>) sample
(5.72)
1 T
—(zn +zn)+ ZN,zf
Le Ya¥i Zsample r=1 Ll 1 yﬁ
ZZ NnNk 2 +ZNn
n=l k=1 Zssmple 1- 1/ Nsample n=l 1~ 1/ Nsample Zsample

The double summation can be written as two separate terms containing one summation

each:

. . O Ysample Yszample . 2
Lim Lim|Z, . Vur == ZN,Zr -
Tos > Tsp Zsample Zsample (1 -1/ Nsnmple ) r=l

(5.73)
2
Ysample iN ZyYn +iN Yn
n n

Zsample (l-l/Nsunple)ﬂ"l Zsample n=l Zsample(l_l/Nsample)

Using a single summation symbol yields:
L) Yszample 2 Ysample 2
z 72 Npzp - 2NpzpYn + Npyn
=1 V4
. . - sample || sample sample
Lim Lim ZsampleVHT =
Tos % Tsp > sample (Zsample - Zsample / Nsample)
(5.74)
2
T Y
sample
Z Np|¥n—2n £
n=] Zsample

(Zsamp]e - Zsamp]e / Nsample)

Application of the above equation results in the following estimator for the variance,
based on the identities of the particles in the sample:
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Vv

sample

(5.75)

2
T Y
Z Nn (Yn —Z, Ll"e]
Ysample _ n=l Zsample
z Z e \Z Z, /N

sample sample ~ ““sample sample)
For finite values of the sample-to-particle size ratio and batch-to-sample size ratio,
Vsample(Ysample/Zsampte) has a possible bias. This bias will be investigated in Chapter 6.
For a sample S, the value of Vmpie(Ysampte/Zsample) 1is denoted as
Vsample(Ysample/ZsamplesS)-

Comparison of Equation 5.75 with the equation for the variance, based on the
identities of the particles in the batch, Vpaen(Ysample/Zsample)=C/Zsampie (Equation 5.2),

results in the following estimate for C:

T Y :
an[Yn —Z, ﬂ]

sample

(5.76)

~-Z /N

sample sample sample )
The above equation provides an estimate for the parameter of the size-variance
equation, using the properties of the particles in the sample. Hence, the sixth criterion

for a sampling theory is met.

5.9 Application to mass concentrations

In the mass-based approach, Zgmpic is the sample mass, Mqample, and Zpaeeh is the batch
mass, Myacn. Applying the estimators (given by Equation 5.59 and Equation 5.75)
developed in the previous paragraph to mass concentration in the batch, i.e.
substituting y;=a;m;, results in:

o A
Lim Lim (A, /Moyan) =22 =2 (5.77)

x = = %sample
Top=>00 Ty =0 sample

and
u 2
( ) Z_;Nnmn(an —asample)2
Vsmple asaml-’le ) Msample (Msample _Msamplc /Nsample) (5.78)

in which Ayampic is the sample total of ajm; and asmpic is the mass concentration in the
sample. The right-hand side of Equation 5.78 gives an estimator for the variance of the
mass concentration in the sample. For a sample S, the value of Viagmple(asample) is
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denoted as Vsample(8sampte,S). In Chapter 6, the ranges of possible biases of both the
right-hand side of Equation 5.77 and 5.78 will be calculated for a wide range of
distinct batch compositions and values for the batch-to-sample size ratio and sample-
to-particle size ratio.

5.10 Results

The size-variance equation, Vpatcn(Ysample/Zsample)=C/Zsample, contains the parameter C.
Two methods were investigated to estimate this parameter. In the first method, C is

estimated using an arbitrary number of samples. Equation 5.5 relates the estimate, él,

to the sample concentrations and sample sizes of an arbitrary number, Nge:, of samples.

For the second method, the Horvitz-Thompson estimator was applied. The
Horvitz-Thompson estimator can provide a general and unbiased estimate for the
variance of the m-expanded estimator. To this end, the sample concentration,
Ysampie/Zsample, Was rewritten in the form of a m-expanded estimator (Equation 5.16).
The Horvitz-Thompson estimator was then applied for estimation of the variance of the
sample concentration. Because in this study particles are classified, the behaviour of
the n-expanded estimator and Horvitz-Thompson estimator under classification was
investigated. Expressions for the first- and second-order inclusion probabilities
(Equation 5.32 and 5.42 respectively) were derived using results from Chapter 4. These
expressions were substituted into the n-expanded estimator and the Horvitz-Thompson
estimator. This yielded an expression for the Horvitz-Thompson estimator for the
variance of the sample concentration in the limit of an infinite batch-to-sample size
ratio and an infinite sample-to-particle size ratio (Equation 5.74). From this expression
an estimator, Vsample(Ysampie/Zsampie), for the variance was derived (see Equation 5.75).
This result was subsequently used to derive an expression (Equation 5.76) for the

estimate, éz , of the parameter of the size-variance equation
Finally, as an application of the obtained equations for the =n-expanded
estimator, <meh /meh>n’ and the variance based on the properties of the particles in

the sample, Vsampie(Ysampie/Zsampie), the obtained equations were worked out for mass
concentrations (see Equations 5.77 and 5.78).

5.11 Conclusions

Equation 5.5 relates the sample concentrations of one or more samples to the value of
the parameter of the size-variance equation. Therefore, the fourth criterion of a
sampling theory (“The theory must allow determination of the parameters of the size-
variance equation, using the measured sample concentrations of one or more samples of
a given size.”) is met.

Equation 5.76 relates the properties of the particles in the sample to the value of
the parameter of the size-variance equation. Therefore, the sixth criterion for a
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sampling theory (“The theory must allow determination of the parameters of the size-
variance equation, using posterior knowledge of the properties of the particles in the
sample.”) is also met.
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Chapter 6 Evaluation of bias

The sample concentration and the estimator for the variance, based on the properties
of the particles in the sample, provide estimators for the batch concentration and the
variance of the sample concentration respectively, which are unbiased under certain
conditions. To investigate the behaviour, the biases are split into a contribution caused
by a finite batch-to-sample size ratio and a contribution caused by a finite sample-to-
particle size ratio. Only a theoretical calculation of the range of possible values of the
bias in the sample concentration, caused by a finite sample-to-particle size ratio, was
presented. For mass concentrations, the remaining biases were investigated using
simulations.

6.1 Introduction

In Chapter 4, it was proven that during a size-based selection of particles, the sample
concentration, Yampie/Zsample, Pprovides an unbiased estimator for the batch
concentration, Ypatch/Zpatch, in the limit of both an infinite batch-to-sample size ratio
and an infinite sample-to-particle size ratio. In practice, however, both ratios are finite
and hence, the sample concentration may contain a (small) bias.

The same situation occurs with the estimator for the variance of the sample
concentration, Vsampie(Ysample/Zsampie), given by Equation 5.75. In Chapter 5, it was
proven that in the limit of both an infinite batch-to-sample size ratio and an infinite

sample-to-particle size ratio, Vsampie(Ysampie/Zsampte) is €qual to VHT(<Ybatch/Zbatch>n)'

Because \A/m[<Ybawh/me>J is unbiased, this implies that Vampie(Ysampie/Zsample) i8

also unbiased in the limit of both an infinite batch-to-sample size ratio and an infinite
sample-to-particle size ratio. In practice, however, both ratios are finite and therefore,
Vsample( Ysampte/Zsample) May contain a (small) bias.

Because mass concentrations are important for many practical applications, in
this chapter, the magnitudes of the possible biases are investigated for
Asample=Asample/Msampte a1d Vgampie(asample), given by Equation 5.78.

For agumpic, a theoretical calculation of the minimum and maximum bias caused
by a finite sample-to-particle size ratio is presented in the next paragraph. While a
similar calculation for Vsampie(@sampte) Would be more complicated, the magnitude of the
bias in Viampie(asampte) is studied using simulations with a wide range of distinct batch
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compositions and values for the batch-to-sample size ratio, rps, and the sample-to-
particle size ratio, rsp. In addition, these simulations were also performed for asample,
validating the theoretical results.

6.2 Theoretical calculation of bias

The bias is divided into two contributions: the bias caused by a finite sample-to-
particle size ratio and the bias caused by a finite batch-to-sample size ratio. The
advantage of the subdivision of bias is that both contributions can be independently

investigated. First, the bias caused by a finite sample-to-particle size ratio, Bsp()‘(bmh),
is defined as the bias of X, under sampling with replacement or, equivalently, when

the batch-to-sample size ratio, 1., is infinite:

Bsp (xbatch ) = Lim B(ibatch) = Lim (E("‘bamh ) ~Xbatch ) (6.1)
l'bs—')w rbs-—-)w

The bias caused by a finite batch-to-sample size ratio, Bbs(imh), is defined as
B()‘(bmh)— Bsp(imh), leading to:

Bbs("‘bmh ) = B(ibawh)“Bsp(*batch) = E(*bamh)"‘batch ‘r”:;(ﬁ("‘bmh)“mh)
bs

(6.2)

= E(ibatch ) - Lim E(ibatch )

bs—o

It is noted that, as expected, in the limit of an infinite value of the batch-to-sample size

ratio, 1, the bias caused by a finite batch-to-sample size ratio is zero. Using the above

definitions, the total bias of X,,, can be written as:

B(ibatch )= B(ibatch )‘ Bg (ibatch )+ B, (’A(bau:h )= By, (ibatch )+ By, (ﬁbatch ) (6.3)

An analogous equation for relative biases can be obtained (provided that x,,, is non-

zero) when the left- and right-hand sides of the above equation are divided by Xy,

B(ibatch ) _By (ﬁbatch)+ By (ﬁbatch ) - B;l(

B™(R paren) = X patch )+ B;l (ibatch) (6.4)

X batch X batch X batch

106



. . rel{~ _ A rel{a _ A
in which Bbs (xbalch)= Bbs (xbatch )/xbatch and Bsp (xbatch)= Bsp (xbatch) Xbatch *

Theoretical expressions for the maximum and minimum values for the bias due to a
finite sample-to-particle size ratio of asampic can be found, using Equation 6.1, applied

to asample :

BSP (asample) = Lim B(a sample) = Lim (E(asample ) ~3patch ) (6.5)
Tps > Tps >

For evaluation of the right-hand side of the above equation, results from Chapter 4 can
be substituted. For this, first asampie is rewritten as:

A sample = Asample/Msample = Asample /(M _6) (6.6)

Another useful equation is obtained when Equation 4.100 is applied to Agmple

T
. ‘M
Lim E(A i+ 824uea )= X P aym; = May 6.7)
i=1

Tbs 7
where m is the mean particle mass in the batch. This can also be written as:

Lim E(A

I‘bs —»a0

sample) = Lim (M-EQ)e batch (6-8)
I —>®

In the following, Equation 6.6 and 6.8 are used to find expressions for the maximum
and minimum bias. First, Equations 6.6 is substituted into Equation 6.5:

A
sample

M-§ ~3patch (6.9)

Because the value of & varies between zero and —m,, , a lower limit for the right-

hand side is obtained when & is replaced by ~m_, :

A
. sample
Bop B gunpie )2 Lim B g (6.10)

I, —®© + Mpmax
bs

Substituting Equation 6.8 into the above equation results in:
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E (M ~ E(S))abatch _

a 6.11
M+ mp batch (6.11)

B sp (a sample )Z Lim
r, —0
bs

A lower limit for the right-hand side of the above inequality is obtained when E(3) is
replaced by zero. This is then also a lower limit for the bias caused by a finite sample-
to-particle size ratio:

Mab&tch —Mpmax —Mmax (6.12)

By (a )2 Lim ff —————-a =——a 2———a
P\ “sample . M + M yax batch |~ N + Mpax batch M batch

From the above inequality, it follows that B;;'(ample) cannot be smaller than minus the

inverse of the sample-to-particle size ratio, if size is defined as a mass.
Similarly to the above derivation, an upper limit can be obtained. For this, in
Equation 6.9, & is replaced by zero:

A
. sample
Bop(ample )< Lim B~ a0, (6.13)
l'bs—)w

Equation 6.8 is substituted into the above inequality:

(M-E@)Rypch .

M batch (6.14)

B sp (a samplc) < Lim
T, —®

An upper limit for the right-hand side of the above inequality is obtained when 3§ is
replaced by —m_, . This is then also an upper limit for the bias caused by a finite

sample-to-particle size ratio:

]s Lim E| — — o<’ batch _, = Dmax (6.15)
n

mple) cannot exceed the inverse of the

From the above equation, it follows that B:;'(a
sample-to-particle size ratio, if size is defined as a mass.

From the above-obtained results, Equation 6.12 and 6.15, it follows that the
inverse of the sample-to-particle size ratio is an upper limit for the absolute value of

the relative bias:
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m

B;;l(ample] g To (6.16)

Hence, for agg,., the relative bias due to a finite sample-to-particle size ratio is

between —m,, /M and m,,. /M.

6.3 Simulations

In the previous paragraph, the range of possible values of the bias caused by a finite
sample-to-particle size ratio for agmpe was calculated. It is, however, more
complicated to derive theoretical expressions for the ranges of possible values for the
other biases: the bias due to a finite batch-to-sample size ratio of ample and the biases
in the variance estimator, Vsample(@sample), given by Equation 5.78. To investigate the
magnitudes of the biases caused by a finite sample-to-particle size ratio and a finite
batch-to-sample size ratio, the probability to draw a sample with n; particles of class j,
for j ranging between 1 and T, denoted as P(S|N(S)=n,,...,N1(S)=n7), is calculated for
all possible sample compositions and for many distinct batches (20250), covering a
broad range of distinct compositions of batch (each batch with given values of p{ , m;
and a;). Three classes of particles are defined with the following compositions:

¢ Particle masses m;, my, and m3 ranging from 0.9 g, 1.0 g, 1.1 g, 1.2 g, to 1.3 g ( 5%

possibilities),

’

e Numerical fractions of particles p;, p,, and p} chosen from 0.2, 0.4, 0.6
(satisfying p, +p) +p; =1) (3+2+1=6 possibilities).

¢ Particle concentrations a;, a;, and a; chosen from 0.0, 0.5 and 1.0 (33 possibilities).

Hence, 20250 (=5°x6x3%) different batches were considered. Because of the large
number of investigated batches, it is expected that the obtained maximum and
minimum value for the relative biases are indicative for batches with similar sample-
to-particle size ratio and batch-to-sample size ratio.

First, the bias caused by a finite sample-to-particle size ratio, Bsp(ibmh), was

investigated. Hence, it is assumed that sampling is with replacement. The order in
which the probabilities of going to the end-points of the multinomial tree were
calculated is illustrated in Figure 6.1,
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Figure 6.1. Example of a sequence in which the probabilities of reaching the different end-
points of the multinomial tree were calculated, as indicated by the arrows. The depicted
multinomial tree is similar to the tree depicted in Figure 3.9.

The scheme to calculate the probabilities of reaching each possible end-point allowed a
calculation of P(S|N1(S)=ul ,...,NT(S)=nT). Hence, the bias of an estimator can be
calculated (using B()‘(bmh)= E()‘(bmh)—x,,mh and Equation 3.14). In the following, X,
represents either the estimator for the mass concentration in the batch, agg,,., or the

as

estimator for the variance of the mass concentration in the sample, Vmplg(a“mp,e),

given by Equation 5.78. For the investigated batches, in Figure 6.2, the maximum and
minimum biases caused by a finite sample-to-particle size ratio are plotted as a
function of the boundary value of the sample mass.
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Figure 6.2. Maximum and minimum biases caused by a finite sample-to-particle size ratio of
the proposed estimators for the mass concentration in the batch and the variance of the mass
concentration. Three types of particles were distinguished. For each boundary value of the
sample mass the biases were calculated. The maximum and minimum are the maximum and
minimum bias respectively that occurs for the 20250 settings indicated in the text.

From Figure 6.2, it can be seen that the maximum and minimum bias caused by a finite
sample-to-particle size ratio tend to become zero if the boundary value of the sample
mass becomes larger. Hence, for all simulated compositions the bias caused by a finite
sample-to-particle size ratio approaches zero, if the sample mass increases. This must
also hold for the relative bias, provided that Xpacn is non-zero. Relative biases were
calculated for the distinct batches. The 20250 distinct batches included 18000 batches
with non-zero variance and 19500 with non-zero batch concentration.
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Figure 6.3. Maximum and minimum relative biases caused by a finite sample-to-particle size
ratio of the proposed estimators for the mass concentration in the batch and the variance of
the mass concentration in the sample. The same batches as in Figure 6.2 were used, with the
exception of batches resulting in a zero value for the concentration or variance. AtM =9 g
the maximum and minimum biases have reduced to respectively 2.1% and -3.2% for the
sample concentration and 9.4% and -9.1% for the variance.

For all the investigated batches, the sample-to-particle size ratio, rs,, (in the mass-
based approach defined as the ratio of M and the maximum particle mass in the batch)
cannot be larger than M/0.9. It is therefore assumed that minimum and maximum
relative biases can be plotted as a function of the sample-to-particle size ratio by
dividing the x-axis (M) of Figure 6.3 by 0.9. The result is plotted in Figure 6.4.
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Figure 6.4. Relative bias caused by finite sample-to-particle size ratio as a function of the
sample-to-particle size ratio.

It is concluded that when the sample-to-particle size ratio is 10, the biases caused by a
finite sample-to-particle size ratio are certainly between —10% and +10%. Hence, it is
expected that in general the bias due to a finite sample-to-particle size ratio is between
-10% and +10% when the sample-to-particle size ratio is 10 or more. For the relative
bias of asample, the results plotted in Figure 6.4 are consistent with Equation 6.16.

Similar calculations were made to investigate the bias due to a finite batch-to-
sample size ratio. A boundary value of the sample mass M=6 g and M=7 g were
chosen. The maximum and minimum biases as a function of the number of particles in
the batch are depicted in Figure 6.5.

From Figure 6.5, it can be seen that the minimum and maximum biases converge
to zero when the number of particles in the batch increases. However, the minimum
bias in the variance caused by a finite batch-to-sample size ratio is zero. Thus, for the
investigated batches, the bias in the variance is never negative. This outcome is not yet
mathematically proven to hold for any arbitrary batch.
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Figure 6.5. Maximum and minimum biases caused by a finite batch-to-sample size ratio of the
proposed estimators for the mass concentration in the batch and the variance of the mass
concentration. The same batches as in Figure 6.2 were used. The boundary value of the
sample mass M is 6 g and 7 g.

The same trend must hold for the relative bias of the estimators: the relative minimum
bias in the variance caused by a finite batch-to-sample size ratio cannot be negative
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and the other relative minimum and maximum biases must converge to zero at
increasing batch size. In Figure 6.6, the minimum and maximum relative biases are
given as a function of the number of particles in the batch for M=6 g and M=7 g.
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Figure 6.6. Maximum and minimum relative biases caused by a finite batch-to-sample size
ratio of the proposed estimators for the mass concentration in the batch and the variance of
the mass concentration. The same batches as in Figure 6.2 were used. The boundary value of
the sample mass M is 6 gand 7 g.

From Figure 6.6 it is concluded that the relative bias tends to become zero with
increasing batch size. This is also true for increasing batch-to-sample size ratio when
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this ratio is defined as the mass of the batch divided by the boundary value of the
sample mass. For every value of Npach in Figure 6.6 the batch-to-sample size ratio is
equal to or smaller than Npaenx1.3/M. Therefore, it is assumed that that minimum and
maximum relative biases can be plotted as a function of the batch-to-sample size ratio
by multiplying the x-axis (Npacn) With 1.3 (the mass of the heaviest particle) and
dividing by the boundary value of the sample mass (either 6 g or 7 g). Therefore, both
graphs of Figure 6.6 are combined by transforming the x-axis to give the batch-to-
sample size ratio. Figure 6.7 gives the maximum and minimum biases as a function of
the batch-to-sample size ratio.
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Figure 6.7. Relation between the batch-to-sample size ratio and the maximum and minimum
relative biases caused by a finite batch-to-sample size ratio of the proposed estimators for the
mass concentration in the batch and the variance of the mass concentration. The same batches
as in Figure 6.2 were used. The boundary value of the sample mass M is 6 g or 7 g.

Because a broad range of batch compositions was used, the above figure can be used in
practice to evaluate the possible relative biases caused by a finite batch-to-sample size

ratio.

6.4 Finite population correction

The ratio Ysample/Zsample i @ consistent estimator for the batch ratio Yvatch/Zvawch. This
means that when the entire batch is selected as a sample, the estimate is precisely equal
to the batch value: Yampie/Zsample=Ybatch/Zbatcn- In general, it is a positive property if an
estimator is consistent. However, the estimated variance of Ygampie/Zsample (Equation
5.75) does not possess this property. Fortunately, it is possible to transform the
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proposed estimator into a consistent form by subtracting a finite population correction
(Barnett, 1974). This correction would be equal to the estimated variance if
Zsample=Zvatch and therefore does not change the estimator in the limit of an infinite
batch size. The (new) estimator becomes:

2
T Y
z N. [yl z, sample ]

prc (Ysamx)le/ Zsamme)={ 7 1 _ J s sample

sample Zhalch (Zsample - Zsample /Nsample

(6.17)

For estimating mass concentrations in the mass-based approach, the estimator becomes:

SN e, ]

. 1 =
o ) ~ P 6.18
o (a e ) [ M Mbatch ] (M sample wmple / N“mple) ( !

sample

The bias of prc(asmplc), B(prc(asample)), is analogous to the previous paragraph split into
two contributions: the bias caused by a finite sample-to-particle size ratio,
Bsp(prc(asample)), and the bias caused by a finite batch-to-sample size ratio,
Bbs(prc(asample)). The former bias is equal to the bias caused by a finite sample-to-

particle size ratio of Vsﬂmple( smlple):

A

BSP (prc (a sample )) Bsp (Vsa.mple (a sample )) (6. 1 9)

The bias caused by a finite batch-to-sample size ratio is thus defined as the remaining
contribution to the total bias:

B bs (vfpc (a sample )) = B(\A’fpc (a sample )) -B sp (Vsamp[e (a sample )) (6 2 0)

This leads to

B(\A]fpc (asample )) = Bbs (vaC (a sample )) + BSP (vsamplc (asample )) | (6'2 1)

Using similar calculations as in the previous paragraph, the maximum and minimum
relative biases in prc(asmple), caused by a finite batch-to-sample size ratio, were
calculated for several values of Nyan. Similarly to the procedure in the previous
paragraph, each value of Nygcn is transformed into a value for ry, by multiplying Npaccn
with 1.3 and dividing by M. This allows to construct Figure 6.8, where the maximum
and minimum relative biases caused by a finite batch-to-sample size ratio of the
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variance estimator given by Equation 6.18 (with finite population correction) and the
maximum relative bias caused by a finite batch-to-sample size ratio of the variance
estimator given by 5.78 (without finite population correction) are plotted versus the
batch-to-sample size ratio. The relative bias of the estimator given in Equation 5.78 is
potentially larger than the relative bias of the estimator given in Equation 6.18.
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Figure 6.8. Maximum and minimum relative biases of the variances estimated using Equation
5.78 and the corrected estimator Equation 6.19 versus the batch-to-sample size ratio. The
same batches as in Figure 6.2 were used. The boundary value of the sample mass M is 6 g or

78

Because the finite population correction in Equation 6.18 is positive, the corrected
variance estimator has a lower bias than the uncorrected estimator. For small batches,
the maximum possible relative bias increases sharply for the uncorrected variance
estimator, while for the corrected estimator this bias increases only mildly. For large
batches, it can be seen that biases in both estimators become similar. For batch-to-
sample size ratio equal to 10, the bias of the corrected variance is between —5% and
5%. For the uncorrected estimator, this range is attained only at a batch-to-sample size
ratio of 30.

6.5 Evaluation of total bias

In Paragraph 6.2, the relative bias was split into two contributions: the relative bias
due to a finite sample-to-particle size ratio and the relative bias due to a finite batch-
to-sample size ratio. For a given sample-to-particle size ratio and a given batch-to-
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sample size ratio, the ranges of possible values for both biases can be obtained from
Figure 6.4 and Figure 6.7 respectively. Choosing a larger sample-to-particle size ratio
and a larger batch-to-sample size ratio reduces the biases. However, both ratios can be
practically adjusted only by the choice of the sample mass. Choosing a larger sample
mass will increase the sample-to-particle size ratio, but decrease the batch-to-sample
size ratio. Conversely, choosing a smaller sample mass will increase the batch-to-
sample size ratio, but lower the sample-to-particle size ratio. Hence, both ratios cannot
be increased simultaneously and a (small) bias cannot be precluded.

In the following, nomograms for the maximum of the absolute value of the
relative bias are constructed, which can be used to obtain one of the following three
variables: the maximum absolute value of the bias, the sample-to-particle size ratio or
the batch-to-sample size ratio, provided the other two are given. To facilitate the
construction of these nomograms, the maximum and minimum relative biases are
parameterized using simple mathematical functions; see Figure 6.9 and 6.10. These
functions are chosen in such a way that the parameterization of a maximum or
minimum is respectively larger or smaller than the values obtained with simulations.

From Figures 6.9 and 6.10, it can be concluded that the absolute value of the
relative bias in the sample concentration is always smaller than 1/(2.4%r5p)+1/(1.1x1ys),
which is always smaller than 0.5/rgp+1/rys, the expression used for the construction of
the nomogram for the relative bias of asample, see Figure 6.11.
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Figure 6.9. Maximum and minimum relative biases due to a finite sample-to-particle size
ratio. Also the parameterizations are shown.
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Figure 6.10. Maximum and minimum relative biases due to a finite batch-to-sample size ratio.

Also the parameterizations are shown.
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Figure 6.11. Nomogram for the maximum of the absolute value of the relative bias in the
sample concentration. The intercept of a straight line through two values on distinct axes with
the third axis yields the corresponding value of the third variable.
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Figure 6.12. Nomogram for the maximum of the absolute value of the relative bias in the
variance of the sample concentration, calculated using Equation 5.78. The intercept of a
straight line through two values on distinct axes with the third axis yields the corresponding
value of the third variable.

Analogously, from Figures 6.9 and 6.10 it can be seen that the absolute value of the
relative bias in the variance estimator, Vsample(8sample), 18 never larger than
1/(0.67x15p)+1/(0.46xr,5), which is smaller than 1.5/155+2.5/1ps, the expression used for
construction of the nomogram for the bias of the variance estimator, Figure 6.12.

Figures 6.11 and 6.12 can be used in practice to evaluate the maximum possible
bias. However, the above results are only proven valid for sample-to-particle size
ratios between 1 and 10 and batch-to-sample size ratio’s between 10 and 2x10°,
because for these ratio’s the maximum and minimum biases were calculated in
Paragraph 6.3. Therefore, further research is proposed to obtain nomograms similar to
Figures 6.11 and 6.12 but with extended validity for broader ranges of the batch-to-
sample size ratio and sample-to-particle size ratio.

6.6 Results

In Chapter 4, it was proven that the sample concentration, Ysampic/Zsampte, 1S an
unbiased estimator for the batch concentration, Ypacch/Zoawch, in the limit of both an
infinite sample-to-particle size ratio and an infinite batch-to-sample size ratio. In
addition, in Chapter 5 a variance estimator, Vsample(Ysample/Zsample), Was derived that is
also unbiased in the limit of both an infinite sample-to-particle size ratio and an
infinite batch-to-sample size ratio. In practice, both ratios are finite and hence there are
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possible biases. There are also possible biases for the above-mentioned estimators
applied to mass concentrations in the mass-based approach. Because mass
concentrations are important in numerous practical applications, in this chapter the
magnitude of the possible biases in asampte and Vgample(8samplc) Were investigated as a
function of both the sample-to-particle size ratio and the batch-to-sample size ratio.

In order to study the effects of a finite value of rs, and rys separately, the bias
was split into a bias caused by a finite sample-to-particle size ratio, By, (see Equation
6.1), and a bias caused by a finite batch-to-sample size ratio, Bys (see Equation 6.2). It
was demonstrated that the absolute value of the relative bias caused by a finite sample-
to-particle size ratio in the mass concentration in the sample, asample, cannot exceed
1/tsp (see Equation 6.16).

While similar calculations for the other biases would be more complicated,
simulations with a wide range of distinct batch compositions were performed. Because
a wide range of distinct batch compositions was used, it is expected that the obtained
minimum and maximum values for the relative biases will be indicative for the
sampling of other batches using a similar batch-to-sample size ratio and a similar

sample-to-particle size ratio. It was verified that B;;l and B™ converge towards zero as

1sp and ry respectively increase (see Figures 6.4 and 6.7).

For the investigated batches the relative biases caused by a finite sample-to-
particle size ratio are between —10% and +10% when the sample-to-particle size ratio is
10 or more. The bias caused by a finite batch-to-sample size ratio is for the sample
concentration and for the uncorrected variance estimator between -5% and 5% for a
batch-to-sample size ratio of 30 or more.

A finite population correction (see Equation 6.17) was developed and
investigated using simulations. Especially for small batch sizes, the proposed
correction reduces the possible biases (see Figure 6.10). When it is demanded that the
corrected variance estimator has a bias caused by a finite batch-to-sample size ratio
between —5% and 5% the batch-to-sample size ratio must be 10 or more. Because for
the uncorrected estimator this was achieved at a higher ratio of 30, this demonstrates
the potential benefit of using the corrected estimator instead of the uncorrected
estimator.

Finally, nomograms were obtained for the maximum of the absolute value of the
relative bias in the sample concentration (Figure 6.11) and the variance estimate using
the properties of the particles in the sample (Figure 6.12).

6.7 Conclusion

Nomograms are available (see Figures 6.11 and 6.12), which can be used in the
practice to evaluate the maximum of the absolute value of the relative bias, given
values for the sample-to-particle size ratio and the batch-to-sample size ratio.
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Chapter 7 Experimental evaluation
of the theory
developed'®!’

The estimators developed in this study and associated analytical uncertainties are
evaluated for four samples. Using the experimental results, the new theory is validated
by comparing the level of contradiction of the theory with the level of contradiction of
the theories of Wilson and Gy. Also the normality of the sample concentration is
investigated. It is shown that the new theory is less contradictory than the theories of
Gy and Wilson and yields a more Gaussian estimator for the batch concentration.

7.1 Introduction

In Chapter 3, it was demonstrated that the mathematical algorithm indicated as size-
based multinomial selections, provides a realistic model for the drawing of a sample
from a random arrangement of particles. Based on this algorithm, theoretical results
were derived in Chapter 4, 5 and 6. Notable results are expressions for estimators for
the concentration in the batch and the variance of the sample concentration, which are
of direct practical interest. Therefore, in this chapter, these estimators are evaluated for
four samples taken from four distinct batches: a batch of wooden particles, two batches
of steel slag and a batch of plastic particles.

Before this is done, the analytical uncertainty is investigated theoretically in
Paragraph 7.2. When all particles in the sample are separately analyzed, the estimates
for the concentration in the batch and for the variance depend on Nsampte(S)
determinations. As each determination may have a different uncertainty, the effect of
analytical uncertainties in these determinations on the derived estimates must be
estimated. Therefore, in the next paragraph, the effect of analytical uncertainty on the
derived estimates is investigated theoretically.

16 Parts of this chapter have been published as: B. Geelhoed, P. Bode, H. J. Glass and M. Stelling (2002) Verification
of a New Sampling Theory Using INAA of Recycled Wood, Transactions of the American Nuclear Society, 85, p. 425-
426.

17 Definitions of symbols given in this chapter are not included in the List of Symbols and do not form part of the
consistent set of symbols with associated definitions as used for the development of the new theory in Chapter 3 to 6
and Chapter 8.
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After these theoretical considerations, the sampling from a batch of wooden particles,
two batches of steel slag and a batch of plastic particles are described in Paragraphs
7.3 to 7.5 respectively. For each analyzed material, analysis procedures are described
and analysis results are given. These results are used to evaluate the estimators for the
batch concentration and its variance and associated uncertainties.

The sampling theories of Wilson, Gy and the present study provide equations for
the variance of the sample concentration. In each of these theories, the value for the
variance predicted by the model equation (Equations 2.17, 2.31 and 4.115 in the theory
of Wilson, Gy and this study respectively) may differ from the actual value, obtained
when sampling corresponds exactly to the underlying mathematical algorithm for the
drawing of a sample as used in the theory. Therefore, the level of contradiction of a
sampling theory is quantitatively defined as the difference between both values for the
variance. A sampling theory is internally more consistent if this difference remains
small for various types of batches. Therefore, in Paragraph 7.6, the levels of
contradiction of the non-empirical theories of Wilson, Gy and the mass-based approach
are compared using the analytical results and the general method of bootstrapping.

Another important property of any sampling theory is the degree of normality
induced in its estimators. Therefore, in Paragraph 7.7, it is demonstrated theoretically
that, for asampie, deviations from the normal (Gaussian) distribution are more likely to
occur in the algorithms of Wilson and Gy than in the mass-based approach. To
investigate this effect the technique of bootstrapping is used. As expected, it will be
seen in Paragraph 7.8 that, in the theories of Wilson and Gy, the estimator for the batch
concentration is less normal.

7.2 Evaluation of the analytical uncertainty

According to a guide provided by the International Organisation for Standardization
(ISO, 1995) uncertainty in measurement is a parameter, associated with the result of a
measurement that characterizes the dispersion of the values that could reasonably be
attributed to the measurand. The standard uncertainty is the uncertainty expressed as a
standard deviation. If f(x),...,x;) is a function that depends on n independent
measurands x;, the combined standard uncertainty u.(f) is defined as:

2
w2(f)= > u2(x, {A(——)af SE } (1.1)
i=1 ox;
in which u(x;) is the standard uncertainty of x;. When estimating apaccn, and the
corresponding variance, uncertainty lies in the determinations of the measured
concentrations a; and those of the masses m;. Because often the masses can be
determined much more accurately than the concentrations, in the following derivations,
the contribution to the combined standard uncertainty of the standard uncertainties in
the masses is neglected. The uncertainty of measurement in the estimated batch
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concentration, asample, becomes:

2 2 2
N.a.m. T N.m

(sample) é ( )M =iu2(ai)~a—§_l_)_i =Zu2(ai)—ii‘ (1.2)

Bai i=1 a"‘i i=1 Msample i=1 Msample

The combined standard uncertainty in the estimated variance, Vsampic(2sample), given by
Equation 5.78, results in a much more complicated equation:

i=1 oa.

2
2 b )= Tl {WM_N)J _

(7.3)

2
i“ N ii Nm(a; —agm |

i=1 aal =1 Msumple (M sample — Msample / Nsample )

The partial derivatives also act on asample:

0 0 wNjam; N.m,
PR e Dy vy (1.4)

i i Fl sample Msample

This yields the following equation for the uncertainty:

a;

2
02 Ve B )= 026, {a_m_(m_)J

(1.5)

2
N.m.
2
N,m?2(a, —ample{z\ij o J
sample

sample (Msample - Msample / Nsample )

- &M

When the standard uncertainties of all a; are equal and all particle masses are equal, the
above expression is simplified. However, when the standard uncertainties and masses
are allowed to vary, the above complicated expression must be used. In this chapter,
the most general situation in which every particle in the batch belongs to a distinct
class, i.e. T=Npacn and N;=I;, is assumed for evaluation of Equation 7.2 and 7.5.

The combined standard uncertainty in the estimated standard deviation,

Vv,

sample

Bsample }» Can be related to uﬁ(anple(am,ple »
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To validate the applicability of the estimators asample and Vgampte(2sample), actual sample
data must be used. Therefore, experimental sampling procedures will be given for four
batches. Because mass concentrations are estimated, the mass-based approach is
adopted. Equations 7.2, 7.5 and 7.6 are applied for the sampling of a batch of wooden
chips, two batches of slag produced during the production of steel and a batch of
recycled plastic chips in Paragraphs 7.3 to 7.5 respectively.

7.3 Wooden particles

For technical reasons, recycled wood to be incinerated in a power plant is chopped up
into particles with a length up to 20 cm. In theory, when all these particles in the batch
are ordered in an arbitrary sequence, a random number generator could be used for
random selection of the particles. For every random selection, a random number
(integer) would be generated between 1 and Npatch—Dsample, Where ngmpie is the total
number of previously selected particles. The generated random number would
determine the next particle that is selected in the following way: if the random number
is x, the x™ particle in the arbitrary sequence would be selected. The mass-based
approach could be implemented if these random selections stop if a boundary value M
for the sample mass is reached or exceeded.

However, for the batch of wooden chips, with Myachn=1.5 kg, considered in this
paragraph, the number of chips is practically too large. Therefore, a two-stage
sampling procedure was followed. The batch of wooden chips was mixed thoroughly
and at a few random locations in the batch subsamples were drawn. This yielded a
primary sample containing 38 particles, see Figure 7.1.

Subsequently, all particles in the obtained primary sample are ordered and from
this sequence particles can be selected, using random numbers and the above-described
sampling design. Mathematically, this is equivalent with selecting with uniform
probability particle-after-particle from the batch: The probability P that the i™ particle
in the batch is selected for the primary sample is given by the ratio of the number of
particles in the primary sample to the total number of particles in the batch:

lJszrim/Nbatch (7.7)
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in which Npim is the total number of particles in the primary sample. Subsequently, if
during a selection from the primary sample the i particle is in the primary sample, the
probability that the i™ particle is selected is given by 1/Nprim. The product of both
probabilities yields the probability that during each selection, the i particle from the
batch is selected:

(I/Nprim XNprim /Nbatch )= l/Nbatch (7.8)

Hence, the sampling procedure corresponds to selections with uniform probability
directly from the batch. The boundary value of the sample mass was set to 20.0 g,
resulting in the selection of 18 particles.

-
10 12 44 ]
I 15 18 20,

356789

4

Figure 7.1. Wooden chips that were randomly selected for the primary sample. In the picture
the chips are numbered, starting with chip number 1 on the left to chip number 38 on the
right. This ordering is arbitrary. Also a length of 20 cm is indicated. The boundary value of
the sample mass was set to 20 g.

All element determinations were made using Instrumental Neutron Activation Analysis,
abbreviated as INAA (see e.g. Bode and de Goeij, 1998 and Bode, 2000). Polyethylene
capsules with cylindrical dimensions with diameter 9.0 mm and height 15 mm were
used for all samples. Each particle was milled and put in one or more capsules, each
containing approximately 250 mg of material. After grinding, the chip-material was
dried in an oven at 105 °C for 24 hours after which the total dry mass of the chip was
determined. A next chip was selected and processed until the dry mass of the total of
selected chips reached 20.0 g, resulting in the selection of 18 particles.

The INAA procedure resulted in elemental concentrations and an estimate of the
standard uncertainty. The amount of an element in a chip was calculated by adding the
absolute amounts in the capsules that belong to that chip. In the Table 7.1, the chip-
mass of the selected chips and the concentrations of Zn, As and Cr are given. These
elements were seclected since they all had a high chip-to-chip variation. Also the
combined standard uncertainties in percent provided by the INAA system are given.
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Zn Standard As (mg/kg) Standard Cr Standard
Nr m; (mg/kg) uncertainty uncertainty (mg/kg) | uncertainty
(2) Zn (%) As (%) Cr (%)
1 0.817 7.60 3.0 3.38E-2 3.6 0.72 15
2 0.335 17.16 2.8 5.79E-2 35 5.08 5.4
3 0.271 13.58 3.5 1.67E-2 15 0.67 34
4 0.274 16.31 3.0 2.73E-2 7.9 1.02 22
5 0.107 15.42 6.3 2.13E-2 21 1.18 49
6 1.313 128.94 0.7 10.0SE-2 41 0.88 12
7 3.019 32.16 0.6 4.21E-2 2.1 1.91 3.6
8 0.164 14.14 5.6 1.52E-2 21 0.79 47
9 0.349 20.74 3.1 14.79E-2 5.0 1.98 13
10 | 0.250 3.56 12 2.50E-2 17 0.54 46
11 1.084 58.21 0.9 7.99E-2 2.6 2.52 4.7
12 | 0.578 36.51 1.5 3.13E-2 8.5 1.02 18
13 | 0.660 9.34 3.3 2.21E-2 11 1.01 16
14 | 0.928 36.90 1.0 1.55E-2 8.1 0.59 20
15 | 6.604 24.21 0.6 2.85E-2 3.2 3.24 1.4
16 | 0.733 22.92 1.6 4.24E-2 55 1.84 7.8
17 1 2.037 4824.74 0.6 109.97E-2 9.9 7.21 2.4
18 | 0.444 16.06 2.5 1.83E-2 6.4 1.83 11
z 20.0

Table 7.1. Masses of the selected wooden chips and the associated concentrations of Zn, As
and Cr. The standard uncertainties are estimates calculated during the INAA analysis, which
include the most significant contributions to the uncertainty of measurement in INAA.

With the data in Table 7.1 for Zn, As and Cr, the sample concentration and its
estimated variance can be calculated, as well as the combined standard uncertainties
using Equations 7.2, 7.5 and 7.6. This results in the following estimates and

corresponding combined standard uncertainties (Table 7.2):

Value for | Value for|Value for
Zn (mg/kg) | As (mg/kg) | Cr (mg/kg)
a 523 0.15 2.68
sample
\/me(amle) 492 0.11 0.57
uc(ample) 3.0 0.011 0.031
(= 0.6%) (=7.7%) (=1.2%)
0l Ve o) 3.0 0.011 0.014
(= 0.6%) (=10.1%) (=2.6%)

Table 7.2. Estimates for the concentrations of Zn, As and Cr, their variances and their
combined standard uncertainties. The combined standard uncertainties are based on the

standard uncertainties given in Table 7.1.
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7.4 Steel slag

In the previous example, the wooden particles had to be milled in order to put a
standard amount in each capsule used for analysis. When sampling a batch of steel slag
produced during the production of steel, it is technically difficult to mill a single
particle with typical diameter of 1 cm to powder. Instead, it is easier to mill larger
amounts (several particles) to powder. Therefore, in this example a group of particles
constitutes a ‘particle’. Although this is not in accordance with the model for sample
drawing proposed in Chapter 3, the following sampling procedure assures that
sampling corresponds to mass-based multinomial selections of heaps of powder. Two
batches of slag produced during the production of steel were milled to powder and
dispersed over grids. Batch 1 (with Mpach=0.484 kg) and Batch 2 (Mpaey=0.521 kg),
were dispersed over Grid 1 and Grid 2 respectively. Grid 1 and 2 were subdivided in
690 squares and 1380 squares respectively, see Figure 7.2.

Figure 7.2. The left graph shows the sampling from Grid 1 containing milled slag (Batch 1)
formed during the production of steel. The right graph shows Batch 1 after 30 heaps were
selected. Note that for analysis only the first 26 selected heaps were used.

With the use of random numbers, squares were selected and all the particles in that
square were added to the sample until the sample mass reached or exceeded the
boundary value. For the sampling of Batch 1 and 2, the boundary value of the sample
mass was set to 15 g and 5 g respectively (see Table 7.3 and 7.5), resulting in the
selection of 26 and 19 heaps of powder respectively. This sampling protocol, which is
not generally used, assures that the heaps of powder are selected according to a mass-
based selection.

All element determinations were made using INAA. Polyethylene capsules with
cylindrical dimensions with diameter 9.0 mm and height 15 mm were used for all
samples. The material from each selected square was weighed and put in a cylindrical
capsule. No further sample-handling steps were necessary. The element of interest was
Fe, because this element is often heterogeneously distributed in slag, leading to large
sampling errors.

The iron concentration and subsample masses drawn from Batch 1 and Batch 2
are given in Table 7.3 and Table 7.5 respectively.
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Selection | Mass of selected Fe (g/kg) Standard
heap (g) uncertainty (%)
1 0.804 11.70 1.6
2 0.427 8.28 1.8
3 0.629 6.13 1.6
4 0.530 9.75 1.8
5 0.465 9.24 2.0
6 0.450 7.24 1.8
7 0.674 10.50 1.5
8 0.572 7.01 1.8
9 0.647 10.80 1.6
10 0.426 10.10 1.7
11 0.704 8.14 1.6
12 0.514 8.45 1.7
13 0.417 8.48 2.8
14 0.631 7.70 1.6
15 0.700 9.48 1.7
16 0.453 9.08 1.7
17 0.472 7.63 1.8
18 0.471 8.91 1.8
19 0.620 8.37 1.7
20 0.795 7.32 1.8
21 0.813 10.00 1.6
22 0.461 7.65 2.1
23 0.372 7.20 2.0
24 0.596 9.56 1.5
25 0.606 9.59 1.5
26 0.772 26.80 1.5
Cumulative 15.021

Table 7.3. Masses of the heaps of powder selected from Batch 1 and associated
concentrations of Fe. The standard uncertainties are estimates calculated during the INAA
analysis, which include the most significant contributions to the uncertainty of measurement
in INAA.

For Batch 1, the statistical evaluation of the sample data yielded the results given in
Table 7.4.

Value for Fe (g/kg)

Brannte 9.75
\[ sampl: sample 0.95
u (ample) 0.04 (=0.4%)

0.02 (=2.1%)

( sample sample )

Table 7.4. Estimates for the concentration of Fe, its variance and their combined standard
uncertainties for the sampling of Batch 1. The combined standard uncertainties are based on
the standard uncertainties given in Table 7.3.

For Batch 2, the following results were obtained (Table 7.5):
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selection Mass of selected Fe Standard
heap (g) (g’kg) uncertainty (%)
1 0.174 198.9 1.4
2 0.287 193.0 14
3 0.409 199.0 14
4 0.410 198.0 1.8
5 0.183 197.8 14
6 0.201 195.0 14
7 0.214 192.1 14
8 0.247 200.0 1.3
9 0.261 198.2 14
10 0.221 198.2 1.3
11 0.361 219.1 14
12 0.263 198.1 1.4
13 0.297 190.9 14
14 0.294 200.0 1.5
15 0.333 202.1 14
16 0.254 198.0 14
17 0.225 195.1 1.4
18 0.191 206.8 1.4
19 0.231 197.8 14
Cumulative 5.056

Table 7.5. Masses of the heaps of powder selected from Batch 2 and associated
concentrations of Fe. The standard uncertainties are estimates calculated during the INAA

analysis, which include the most significant contributions to the uncertainty of measurement
in INAA.

The statistical evaluation of the sample data for batch 2 yielded the following estimates
(Table 7.6):

Value for Fe (g/kg)
Asample 199.2
VaapleBsample 1.7
Ue(@sample) 0.7 (=0.3%)
N — 0.2 (=12.3%)

Table 7.6. Estimates for the concentration of Fe, its variance and their combined standard
uncertainties for the sampling of Batch 2. The combined standard uncertainties are based on
the standard uncertainties given in Table 7.5.

7.5 Shredded plastic

Plastic that is recycled to be used for the manufacturing of new plastic products is for
technical reasons chopped up into pieces with typical diameter of several millimetres
and typical mass of 20 mg (see Figure 7.3). Because a single particle of this size does
not represent a standard amount of material for use of the analysis technique INAA, in
this example, a group of plastic flakes constitutes a ‘particle’. Although this is not in
accordance with the model for sample drawing proposed in Chapter 3, the following
sampling procedure assures that sampling corresponds to mass-based multinomial
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selections of groups of particles. A batch of plastic flakes with Myacn=0.35 kg was
equally distributed over a grid. The grid consisted of 1200 squares. Subsequently,
using random numbers between 1 and 1200, samples were drawn. This was repeated
until the cumulative sample mass reached 3 g, resulting in the selection of 10 groups of
particles (see also Table 7.7).

\

Figure 7.3. Top view of a batch of shredded plastic.

All element determinations were made using INAA. Polyethylene capsules with
cylindrical dimensions with diameter 9.0 mm and height 15 mm were used for all
samples. After a subsample was drawn, no further sample-handling steps were
necessary. The subsamples were weighed into polyethylene capsules. The element of
interest was Br, because the variation in concentration between the groups of particles
was very large for this element.

Selection ass of selected group (g) Bromine Standard uncertainty

F‘A (g/kg) (%)
1 0.323 3.20 20
2 0.230 0.88 2.1
3 0.322 2.17 20
4 0.289 5.40 1.8
5 0314 229 20
6 0.309 4.68 20
7 0.321 1.65 19
8 0.293 0.09 1.9
9 0.337 0.14 22
10 0.249 0.24 2.1

Cumulative 2.987

Table 7.7. Masses of the groups of particles selected from the batch of plastic chips and
associated concentrations of Br. The standard uncertainties are estimates calculated during
the INAA analysis, which include the most significant contributions to the uncertainty of
measurement in INAA.
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The amount of bromine in a group of particles and the associated concentration of Br
are given in Table 7.7.

For the batch of shredded plastic, the statistical evaluation of the sample data
yielded the following estimates (Table 7.8):

Value for Br (g/kg)
Agample 2.12
Virr 8 sropic 0.59
“c(asampne) 0.02 (=0.8%)
S ) 0.01 (=1.3%)

Table 7.8. Estimates for the concentration of Br, its variance and their combined standard
uncertainties for the sampling of the batch of plastic chips. The combined standard
uncertainties are based on the standard uncertainties given in Table 7.7.

7.6 Validation by using bootstrapping

In this paragraph, the level of contradiction of the new theory is investigated by the
general method of bootstrapping using the analytical results of the previous paragraph.
During bootstrapping, the sample is “extended” to form a hypothetical batch. The
hypothetical batch contains as many classes as particles in the original sample. Each
class corresponds to a single particle in the sample and the particles in a class are
assumed to be identical to the corresponding particle in the original sample. Then,
many samples are drawn from this batch using a specific sampling algorithm. Before
the next sample is drawn, the sampled material from the previous sample is put back in
the batch. The distribution of samples obtained is finally used as an “estimate” of the
distribution of the original sample. Here, the level of contradiction is quantitatively
defined as the absolute value of the difference between the variance predicted by the
equation provided by a sampling theory and the actual variance if sampling
corresponds to the model provided by the theory. Therefore, the method of
bootstrapping provides insight into the levels of contradiction of the non-empirical
sampling theories of Gy, Wilson and this study.

For each distribution estimate, 10* samples were drawn. The mass concentration
in the i sample drawn using a specific sampling algorithm is denoted as a;sampie in
which i can represent any integer value between 1 and 10*. The variance estimate
obtained with bootstrapping, denoted here as V', is calculated as follows (Sirndal ef al,
1992):
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V = 104 -1 E 2, sample — W j_Zlaj,sample (7-9)

For each algorithm (Wilson, Gy and this study) the above variance estimate can be
compared with the theoretical predictions (Equations 2.17, 2.31 and 4.115
respectively). In the following, bootstrapping is applied for the sample of wooden
chips, both slag samples and the sample of shredded plastic.

Wooden chips. The sample consisting of wooden chips is extended to a hypothetical
batch containing about 10* particles. Because the sample contains 18 particles, it is
assumed that the batch contains 18 classes, with each class containing 556 identical
particles. The 18 classes contain particles identical to respectively the 18 particles in
the sample of wooden chips. Next, for the sampling algorithms of Gy, Wilson and the
mass-based approach, a large number of samples (10%) is drawn from the hypothetical
batch, which consists of a population of 10008 (=18%556) particles. For the algorithm
of Gy a value for q has to be assigned. Because a larger value of q leads to a larger
average sample mass, the value of q is chosen so that the expected value of the sample
mass will be 20 g. This value corresponds to q=1/556, because then the expected value
of the sample mass using Gy’s algorithm is:

18 18 1 18
EMqumpie)= > N puen 4; = 2.556=m; =) m; =200g

i=] i=l i=1

in which m; represents the mass of a particle belonging to the i class.

Similarly, for the implementation of Wilson’s algorithm a value has to be
assigned to N. It is assumed that N=18, leading to samples with the same number of
particles as the original sample, which was extended to form the hypothetical batch.

For sampling according to the fixed mass design, selections are terminated when
the obtained sample mass is larger than or equal to M=20 g.

The theoretical variances of the sampling process according to Wilson, Gy and
the size-based approach are respectively given by Equations 2.17, 2.31 and 4.115 with
yi=ajm; and z;=m;. Substituting the parameters of the hypothetical batch into the
equations results in numerical values for the variance. For Cr, it is found that in all the
three cases the theoretical variance is equal to 0.30.

In table 7.9 the theoretical variances (denoted as V) and variances obtained
(denoted as V") for Cr are compared. It is observed that in the mass-based approach the
agreement between the theoretical and variance obtained is closest.
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Vv A\ Relative deviation
(mg/kg)® | (mg/kg)® | (V-V )V

this study 0.30 0.29 0.03
Wilson 0.30 0.36 -0.20
Gy 0.30 0.41 -0.37

Table 7.9. Comparison between theoretical and obtained variances for Cr for the mass-based
approach and Wilson’s and Gy's algorithm.

Slag from production of steel. The sample drawn from Batch 1 is multiplied by 385 to
obtain the simulated batch. In this way, the batch contains 26x385=10010 particles. For
the mass-based approach, Gy’s algorithm and Wilson’s algorithm respectively the
following parameters are chosen: M=15 g, q=1/385 and N=26. Analogously to the
bootstrapping using the sample of wooden chips, the choice of q results in an expected
sample masses of 15 g for the algorithm of Gy. The following variances were obtained
(Table 7.10):

£

v \% Relative
(g/kg)’ | (g/kg)? deviation
(V=-V" )V
this study 0.851 0.845 0.0071
Wilson 0.851 0.848 0.0035
Gy 0.851 0.854 -0.0035

Table 7.10. Comparison of theoretical and obtained variances for Fe in samples from Batch 1
Sor the mass-based approach and Wilson’s and Gy’s algorithm.

Wilson’s and Gy’s algorithm have relatively less deviation than this study. However,
for all algorithms, the relative deviations in the variances are much smaller than in the
previous example of sampling a batch of wooden chips.

The sample drawn from Batch 2 is multiplied by 526 to obtain the simulated batch. In
this way, the batch contains 19x526=9994 particles. For the mass-based approach, Gy’s
algorithm and Wilson’s algorithm respectively the following parameters are chosen:
M=5.0 g, q=1/526 and N=19. Analogously to the bootstrapping using the sample of
wooden chips, the choice of q results in an expected sample masses of 5 g for the
algorithm of Gy. For Batch 2 the obtained variances are given in Table 7.11. For
Wilson’s algorithm the agreement between the variance obtained and the theoretical
prediction is best.
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\' v’ Relative
(g/kg)’ (g/kg)? deviation
(V=-VHv
this study 2.68 2.60 0.030
Wilson 2.68 2.66 0.007
Gy 2.68 2.79 -0.041

Table 7.11. Comparison of theoretical and obtained variances for Fe in samples from Batch 2
for the mass-based approach and Wilson’s and Gy’s algorithm.

Shredded plastic. The sample drawn from the batch of shredded plastic is multiplied
by 1000 to obtain the simulated batch. In this way, the batch contains 10x1000=10*
particles. For the mass-based approach, Gy’s algorithm and Wilson’s algorithm
respectively the following parameters are chosen: M=3.0g, q=1/1000 and N=10.
Analogously to the bootstrapping using the sample of wooden chips, the choice g
results in an expected sample mass equal to the original sample, which was extended to
form the hypothetical batch. The following variances for Br were obtained (Table
7.12):

v v Relative
(g/kg)? (g/kg)2 deviation
. V=-Vyv
this study 0.31 0.29 0.06
Wilson 0.31 0.32 -0.03
Gy 0.31 0.35 -0.13

Table 7.12. Comparison of theoretical and obtained variances for Br in samples from the
batch of shredded plastic for the mass-based approach and Wilson’s and Gy’s algorithm.

Again, for Wilson’s algorithm the agreement between the variance obtained and the
theoretical prediction is best.

In all four examples studied, the relative deviation between theoretical
prediction and variance obtained is for this study positive, with a minimum of 0.0071
(Batch 1 of steel slag) and a maximum of 0.06 (batch of recycled plastic).

For the algorithm of Wilson the minimum and maximum relative deviations
observed are —0.20 and 0.007 respectively. This indicates that the range of possible
relative deviations is much larger than for this study.

In all four examples studied, the relative deviation between theoretical
prediction and variance obtained is for Gy’s algorithm negative. For Gy’s algorithm the
minimum and maximum relative deviations observed are —0.37 and -0.0035
respectively. This also indicates that the range of possible relative deviations is much
larger than for this study.
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7.7 Normality

Bootstrapping can also be used to investigate other properties of the distribution of
samples obtained. An important property that can be investigated using bootstrapping
is correspondence to a normal or Gaussian distribution. In this paragraph, the degree of
normality of the sample concentration, asample, is investigated.

When samples of constant mass M are considered to be composite samples
consisting of N independently drawn increments of mass M/N, the central limit
theorem can be used to demonstrate that in the limit of both an infinite sample-to-
particle size ratio and an infinite batch-to-sample size ratio, the distribution of asample is
normal. However, a further derivation is not presented here, because in practice both
the sample-to-particle size ratio and the batch-to-sample size ratio are finite, resulting
in a potentially non-normal distribution of agampie. Below, it is shown that, for a given
sample-to-particle size ratio and batch-to-sample size ratio, there are two causes for
non-normality: (i) fluctuations in the sample mass and (ii) variation in particle
concentrations.

Because agmple is equal to the ratio Agampie/Msample, the distribution may become
asymmetric, if large fluctuations in Mgampie may occur. This first source of non-
normality can be illustrated numerically as follows: Suppose Agample=0.5 (arbitrary
units) and E(Msample)=1.0 (arbitrary units). If Mgmpie is equal to its expected value,
asample=0.5/1.0=0.5. If Mgmpie is 20% lower than the expected value, but Asample remains
equal to 0.5, asamp1e=0.5/0.8=0.625. On the other hand, if Mgmple is 20% larger than its
expected value, but Agimple remains equal to 0.5, asample=0.5/1.2=0.417. It can be
concluded that the deviation in asample due to a downward fluctuation of the sample
mass (0.625-0.5=0.125) is larger than the deviation in asumpie due to an upward
fluctuation of the sample mass (0.5-0.417=0.083). Because the normal distribution is
symmetric, large deviations in the sample mass, which may lead to an asymmetric
distribution, are a source of non-normality.

As a low variability in particle concentrations implies that fluctuations in Msampie
and Agmplc are more strongly correlated than would be the case with a high variability
in particle concentrations, the occurrence of the above mechanism, where it was
assumed that Agmple remained constant, while Mgmple varied, becomes less likely.
Therefore, the first source of non-normality is counteracted when the variation in
particle concentrations is reduced. In other words, reducing the variability in particle
concentrations will increase the normality, because the non-normality induced by
fluctuations in the sample mass is counteracted. Variability in particle concentrations
is a source of non-normality.

For the mass-based approach, the variation in sample masses is maximally mmax,
while for the algorithm of Gy, the variation in sample masses is equal to Mpacn, which
is generally much larger than mmax. The algorithm of Wilson will generally result in a
variation in sample masses that lies between the variation for the mass-based approach
and the variation for the algorithm of Gy: the variation is NX(mMpay—Mmin), Where mmpi,
is the smallest particle mass in the batch. This shows that, in theory, the algorithm of
Wilson may lead to less variation in sample masses than the mass-based approach, if
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the difference in particle masses, (Mmax~Mmin), is smaller than mpy./N. However, in
practice, there will always be a variation in particle masses and hence, for large
samples, the variation in sample masses will be larger for the algorithm of Wilson than
for the mass-based approach.

Because fluctuations of the sample mass are generally largest for Gy’s algorithm
and smallest for the mass-based approach used for the current study, it is expected that
the degree of normality will be in the following order: this study 2Wilson>Gy. To test
this hypothesis, a quantitative test of normality has to be used. It is chosen here to look
at the numbers of samples exceeding the 20- and 3o-levels.

Wooden chips. For the sample of wooden particles, bootstrapping was performed with
the same settings as in Paragraph 7.6. In Figure 7.4, the sample concentrations of Cr
are plotted against the sample mass obtained, for the mass-based approach, the
algorithm of Gy and the algorithm of Wilson.
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Figure 7.4. Sample concentration of Cr versus obtained sample mass for the mass-based
approach, Wilson’s algorithm and Gy's algorithm. The horizontal lines indicate the batch
concentration, the 2c0-levels and the 3a-levels. Bootstrapping was performed on the sample
drawn from the batch of wooden particles.
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Especially samples with a small sample mass have large deviations from the batch
concentration. To investigate the degree of normality numerically the total numbers of
samples that exceed the 20- or 3o-levels are put in Table 7.13.

Number of samples | Number of samples
exceeding 2o-levels exceeding 3o-levels
this study 471 30
Wilson 942 44
Gy 1107 99

Table 7.13. Number of samples outside the 20- and 3o-levels for the mass-based approach
(used in this study) and the sampling algorithms of Wilson and Gy. Bootstrapping was
performed on the sample drawn from the batch of wooden particles.

Steel slag. For Batch 1 of steel slag, bootstrapping was performed with the same
settings as in Paragraph 7.6. In Figure 7.5, the concentrations of Fe are plotted versus
the obtained sample mass for the mass-based approach, the algorithm of Wilson and the
algorithm of Gy.
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Figure 7.5. Sample concentration of Fe versus obtained sample mass for the mass-based
approach, the algorithm of Wilson and the algorithm of Gy. The horizontal lines indicate the
batch concentration, the 2c0-levels and the 3g-levels. Bootstrapping was performed on the
sample drawn from Batch 1 of steel slag.
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Number of samples
exceeding 2o-levels

Number of samples
exceeding 3o-levels

this study 413 72
Wilson 394 61
Gy 364 73

of Gy.
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Table 7.14. Number of samples outside the 26- and 3o0-levels for the mass-based approach
(used in this study) and the sampling algorithms of Wilson and Gy. Bootstrapping was
perfornmed on the sample drawn from Batch 1 of steel slag.

For Batch 2 of steel slag, bootstrapping was performed with the same settings as in
Paragraph 7.6. In Figure 7.6, the concentrations of Fe are plotted versus the obtained
sample mass for the mass-based approach, the algorithm of Wilson and the algorithm
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Figure 7.6. Sample concentration of Fe versus obtained sample mass for the mass-based
approach, the algorithm of Wilson and the algorithm of Gy. The horizontal lines indicate the
batch concentration, the 2c-levels and the 3c-levels. Bootstrapping was performed on the
sample drawn from Batch 2 of steel slag.
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Number of samples
exceeding 2c-levels

Number of samples
exceeding 3o-levels

this study 409 55
Wilson 408 48
Gy 436 62

Table 7.15. Number of samples outside the 20- and 3o0-levels for the mass-based approach
(used in this study) and the sampling algorithms of Wilson and Gy. Bootstrapping was

performed on the sample drawn from Batch 2 of steel slag.

Recycled plastic. For the sample of recycled plastic, bootstrapping was performed with
the same settings as in Paragraph 7.6. In Figure 7.7, the concentrations of Br are
plotted versus the obtained sample mass for the mass-based approach, the algorithm of

Wilson and the algorithm of Gy.
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Figure 7.7. Sample concentration of Br versus obtained sample mass for the mass-based
approach, the algorithm of Wilson and the algorithm of Gy. The horizontal lines indicate the
batch concentration, the 2¢-levels and the 3c-levels. Bootstrapping was performed on the
sample drawn from the batch of plastic particles.
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Number

of samples

exceeding 2a-levels

Number

of samples

exceeding 3o-levels

this study 369 19
Wilson 479 26
Gy 588 75

Table 7.16. Number of samples outside the 20- and 3o-levels for the mass-based approach
(used in this study) and the sampling algorithms of Wilson and Gy. Bootstrapping was
performed on the sample drawn from the batch of plastic particles.

7.8 Interpretation of results on normality

In the previous paragraph, it was discussed that the degree of normality increases when
both sample masses and particle concentrations have less variation. The aim of this
paragraph is to interpret the results of the previous paragraph in the context of the
above remark. For this, the degree of normality is quantified, using the results of the
previous paragraph.

Ideally, when sampling a normal distribution, 0.28% of the samples will be
outside the 3c-levels and 4.56% outside the 2c-levels (Bendat and Piersol, 1971).
Because each time 10* sample were drawn, these percentages are respectively exceeded
when the actual number of samples outside the 2c-levels is larger than 456 and the
number of sample exceeding the 3-o level is larger than 28.

The numbers of samples outside the 2c-levels or 3o-levels are subject to
statistical fluctuations. Assuming that these numbers are distributed following Poisson
distributions, the standard deviations of the numbers of samples outside the 2c-levels
or the 3c-levels are respectively /456 and 28. Therefore, it is defined here that when
the actual number of samples outside the 2c-levels is larger than 456+3.456 =520 and
the actual number of samples outside the 3o-levels is larger than 28+3428 =44 the 2o-
and 3c-levels are significantly exceeded.

Using the above definition the following conclusions can be drawn (see Table
7.17).
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Variation 2-c 3-c
in sample
masses (g)
this study 6.6
Wooden chips Wilson 116.9 *
Gy . TR %2 . :
this study 0.813 *
Batch 1 Wilson 12.6 *
Gy 5,783.1 *
this study 0.410 *
Batch 2 Wilson 4.5 *
FeT— 56593 .
this study 0.3
Shredded plastic | Wilson 1.1
FeTR— 59870 . v

Table 7.17. Non-normality of the estimators during different sampling algorithms and
associated variation in sample masses. A ‘*’ indicates a significant exceeding of the 2o- or
3o-levels (based on 10 samples).

The degree of normality, N, can be defined as follows:
e N =2, if there no significant exceeding of 2o- and 3o-levels
e N =1, if there is a significant exceeding of either the 2c-levels or the 3c-levels
e N=0, if both the 20-levels and the 3c-levels are significantly exceeded.

From the above definition of N and the results in Table 7.17 follows that for the
sampling of wooden chips, the degree of normality is highest for this study (2), lower
for Wilson (1) and lowest for Gy (0). This is exactly in accordance with the result of
the discussion in the previous paragraph, because it can also be deduced from Table
7.17 that the variation in sample masses varies as mass-based approach<Wilson<Gy.

For the sampling of steel slag (Batch | and 2), the degree of normality is equal
for all three sampling algorithms (N =1). This result is not in accordance with the
results of the discussion in the previous paragraph. An explanation is that the
definition of the degree of normality, N, is too coarse to distinguish between the three
algorithms. A different definition of the degree of normality, with more than three
degrees, may indeed reveal that the nomality wvaries in the order: this
study>Wilson>Gy. \

For the sampling of plastic, the degree of normality is lowest for the algorithm
of Gy (N =0), while the algorithms of this study and Wilson have the same degree of
normality (N =2). This is almost in accordance with the results of the discussion in the
previous paragraph, except that the algorithm of this study and Wilson result in the
same degree of normality. The latter observation can be explained. It can be deduced
from Table 7.17 that the variations in sample masses is not much larger for the
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algorithm of Wilson than for the mass-based approach. This can also be observed in
Figure 7.7. It can therefore be expected that the definition of N is too coarse to
distinguish between the algorithms of this study and Wilson. An alternative definition
of the degree of normality, allowing for more than three degrees, may reveal that even
for the sampling of plastic, the degree of normality is higher for the algorithm of this
study than for the algorithm of Wilson.

7.9 Discussion and conclusions

The procedure to estimate the batch concentration, variance and the combined standard
uncertainties was illustrated with practical examples (a batch of wooden chips, two
batches of slag and a batch of shredded plastic). Despite some large standard
uncertainties in analysis results of individual particles or subsamples (up to 49% for
the measured Cr concentration in the fifth selected wooden particle) the combined
standard uncertainties in the final results were smaller (up to 12.3% for the estimated
standard deviation for the sampling from Batch 2 of steel slag).

Next, the validity of the equations for the variance of the theory of Wilson, Gy
and this study were compared with bootstrapping using analysis results of the four
distinct samples. While the equation for the variance provided by this study (Equation
4.115) is only exact in the limit of an infinite sample-to-particle size ratio and an
infinite batch-to-sample size ratio, the approximate nature of Wilson’s and Gy’s
equations are less clear. The results of bootstrapping show that deviations exist in all
three algorithms. For the four samples studied, the ranges of relative differences are
greater for the algorithms of Wilson and Gy than for this study. Although this shows
that the sampling theory presented in this study may have a lower level of
contradiction than the theories of Wilson and Gy, no theoretical foundation for this
observation is presented in this study. Therefore, further research into the level of
contradiction of the three theories is recommended.

In Paragraphs 7.7 and 7.8, the non-normality of the sample concentration was
investigated. It was demonstrated theoretically that reducing the variation in
concentrations between the particles increases the normality, while increasing the
variation in sample masses reduces the normality. The first effect does not depend on
the sampling algorithm used, but the second effect does and generally plays a larger
role for the algorithm of Wilson and Gy than for this study. It was demonstrated (see
Table 7.17) that the algorithm of Gy leads in all four cases to a non-normal (N<2)
estimator. The algorithm of Wilson leads to a non-normal estimator for Batch 1 and
Batch 2 and wooden chips. The estimator obtained with the mass-based approach is
only non-normal for Batch 1 and Batch 2. This increased non-normality for the
algorithms of Wilson and Gy can therefore be related to the greater variability in
sample masses compared with the mass-based approach (see Table 7.17).
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Chapter 8 Minimum sample mass'®

The minimum sample mass can be estimated using the properties of the particles in the
batch or sample. Using the properties of the particles in the sample, a feedback
mechanism is proposed to draw additional samples. The mechanism is investigated
with simulations. Knowledge of the maximum particle mass and of the minimum and
maximum particle concentrations in the sample can be used for estimation of the
minimum sample mass.

8.1 Introduction

When the mass concentration in the batch, apawn, is estimated using the mass
concentration in the sample, asample, several factors influence the potential difference
between the obtained value for the estimate and the actual batch concentration. The
obtained value for the estimate would be exactly equal to the true value if (i) the
analytical uncertainty is zero, (ii) the estimator is unbiased, and (iii) the estimator has
a zero variance. In practice, the analytical error may be non-zero, the mass
concentration in a sample may be slightly biased, and the variance may also be non-
zero. Therefore, the three factors influencing the potential difference between the
obtained value for the estimate and the actual batch value are analytical uncertainty,
bias, and variance. A larger analytical uncertainty, a larger bias or a larger variance
leads to more potential difference between the obtained value for the estimate and the
actual batch value. Therefore, it is important to have insight in the magnitudes of the
analytical uncertainty, bias and variance.

In Chapter 6 and Chapter 7, the magnitudes of bias and analytical uncertainty
were investigated. In this chapter, the third aspect, the magnitude of the variance, is
addressed. It is investigated how the variance can be reduced by the choice of the
sample mass.

18 Parts of this chapter have previously been published in: B. Geelhoed and H.J. Glass (2001) A new model for
sampling of particulate materials and determination of the minimum sample size. Geostandards Newsletter — The
Journal of Geostandards and Geoanalysis, 25, p. 325-332.
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8.2 Minimum sample mass

It is well known that the variance of the sample concentration, which is equal to the
variance of the sampling error, reduces with increasing sample size. This condition
implies that the relative standard deviation, defined as the square root of the variance
divided by the batch concentration,

RSD = \)V[asample )/abatch (8.1)

also reduces with increasing sample size. The relation between the sample size and the
relative standard deviation can thus be indicated using a function f():

sample) (8'2)

RSD = f(M
where f(Mgampie) is @ monotonic decreasing function of Mgample. Setting RSD=a, where
o is defined as the ‘maximum allowable coefficient of variation’, for Msampie=Mmin and
taking the inverse of f, f !, Equation 8.2 transforms into the following expression for
the minimum sample mass:

£ (o)=M;, (8.3)

For any sample mass larger than the minimum sample mass, it is guaranteed that the
relative standard deviation does not exceed the preselected value a. Therefore, Mmin
can be interpreted as the minimum amount of material to be analyzed when it is
demanded that the relative standard deviation does not exceed a. In the next paragraph,
it is investigated how the minimum sample mass can be calculated using the properties
of the particles in the batch.

8.3 Estimation of the minimum sample mass using the properties of
the particles in the batch

In the size-based approach, the variance can be estimated using the sample size,
knowledge of the properties of the particles in the batch and Equation 4.115. In the
mass-based approach, this equation becomes:

Voatcn (asample)= M—l%ip: miz(ai - abatch)z (8.4)
sample™ " 1=

where asmple is the mass concentration in the sample, a; is the mass concentration in a
particle of type i, and ™ is the mean particle mass in the batch. It is noted that

Vbatch(@sample) 18 by definition a random variable, because the sample mass is a random
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variable. The relative variance estimated with batch information, V;;ich(asmple), is

defined as:

V, (a ) 1 T

batch " sample / _ , 2 ( )2

Vbatch( sample) 2 IR, — 2P M@ — 8y (8.5)
2parch Apatch Mample M i=I

The relative standard deviation estimated using the properties of the particles in the

batch is defined as the square root of V,,,, (asamp,e)/af,mh. From Equation 8.5, it follows

that this standard deviation is inversely proportional to the square root of the sample
mass. The condition that the relative standard deviation estimated using the properties
of the particles in the batch should not exceed a preselected value a is equivalent to the
following inequality:

Y mles e f <o (8.6)

a batch M m i

sample

A minimum value is obtained for the sample mass, the minimum sample mass estimated
using the properties of the particles in the batch, Myin.b:

Mmin,b Zpl m; ( al:mtch)2 (8°7)

0. abatchm i=]

When the variance estimated with batch information is equal to the actual variance, i.e.
when the level of contradiction is zero (see Chapter 7), Mpinb=Mnmin.

As an example, Equation 8.7 can be applied for T=2, a,=1, a;=0 and m;=m,=1.
Because the particle masses are one, Mpinb is the minimum number of particles
required (denoted as Nminp). The batch concentration is equal to p; and p, is equal to

1-pi. This results in the following expression for the minimum number of particles
required: Niinb =(l—pi )/(azp’] ) This expression corresponds to the equation given

in literature for the sampling from a binomial distribution (see e.g. Barnett, 1974).
An alternative way of expressing Mmpin,p is:

M samplevbatch (a sample )
min,b = 2 2
O 3patch

M

(8.8)

in which Equation 8.4 and 8.7 were used. This shows that the minimum sample mass
can be estimated using two batch properties: the batch concentration and the variance
estimated using the properties of the particles in the batch, given by Equation 8.4.
These quantities are generally unknown. Therefore, in the next paragraph an alternative
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method to calculate the minimum sample mass will be proposed, where, instead of the
above two batch properties, the sample concentration and the estimator Vsampie(@sample)
for the variance of the mass concentration in the sample are used.

8.4 Estimation of the minimum sample mass using the properties of
the particles in the sample

The minimum sample mass can be estimated by replacing, in Equation 8.8,
Viatch(asampte) and @paicn by the approximately unbiased estimators Viampie(@sampe) and
asample Tespectively. This yields an estimator for the minimum sample mass based on
the properties of the particles in the sample:

_ M sample vsample (a sample ) ( 8 9)

mins 2,2
o asample

M

For a sample S, the value of Mmin s is denoted as Mmin,s(S). An alternative estimator for

the minimum sample mass is obtained when, in Equation 8.8, a’ is not replaced b
P q batch 1Y Yy

af,mple, but by its approximately unbiased estimator azamp,e —Vmple(amp,e):
M V, a
M sample nmple( sample) (8.10)

minalt = az—(a :nmple - Vsample (a sample »

The above equation may of course not be used if Vsampic(asample) is larger than or equal

2

sample> DEcCause this would lead to a negative or infinite value of Mpin,aii. Using

to a

Equation 8.9, the above equation can also be written as:

M .
M o (8.11)

minalt = 2
1- Vsample (asample )/ A sample

Hence, Mmina: is larger than or equal to Mpi,. Substituting the equation for
Vsample(@sample), Equation 5.78, into Equation 8.9 results in:

T
2
ZNnmn (an - asample)Z
=]

_ n
mins T2 2
asamplea (M

(8.12)

M ampte /N

sample sample)

Instead of batch information the above equation uses strictly sample information. The
same is true for Mmin.ae but the result is a much more complicated equation. In the

following, a feedback mechanism for the drawing of a (composite) sample is proposed
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which uses Mmins. The scheme is illustrated in Figure 8.1. The aim of the proposed
mechanism is to ensure that the relative standard deviation of the mass concentration in
the finally obtained composite sample is smaller than or equal to a.

Draw initial sample S, draw additional sample S,
and put S=§, and add to S P j
l r
Determine M rmple (S) -
and M (s) Feedback
mechanism

} Finally obtained sample =S

Figure 8.1. Schematic representation of the proposed feedback mechanism to draw a sample.
In the depicted scheme Muin s is used. A similar scheme can be constructed in which Mpip ay, is
used.

Precisely formulated the procedure is:

An initial sample S, is drawn with boundary value of the mass M; and from this
sample the estimate for the minimum sample mass Mpins(S)) is derived using
Equation 8.12

If Msamp1e(S1)<Mnin,s(S1) an additional sample, S,, with boundary value of the
sample mass My=Muin,s(S2)~Msampie(S1) is drawn and added to the first sample.

The previous step is repeated as many times as necessary and the boundary value of
the sample mass of the i'" sample that is added to the composite sample is given by:

Msamplc (Sj )

i-1 i—
M; = Mmin,s{Usj]— _

1
j=1 j=1

i-1
in which USj is the composite sample containing the samples S, Ss,..., Si-1.
j=1

The procedure is terminated if Mmi“,S[USj ] < Z:Msmple(sj ), for any value of i.

j=1 j=1
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In the next paragraph, the relative standard deviation of the composite sample obtained
with the proposed procedure is investigated.

8.5 Relative variance

The proposed procedure to draw additional samples from the batch stops if the
estimated minimum sample mass is equal to or smaller than the obtained sample mass.
This results in:

M Vamole (@ sample
Msample 2 Mmin,s = sample 2 zple( i ) (8.13)
a asnmple:
This can be written as:
V. a
ol > —“‘“"';( “‘"“"°) (8.14)
asample

It follows that the procedure is terminated only if the estimated relative variance is
smaller than or equal to a’. Hence, the procedure assures that the estimated relative

. 2 . 2 . s
variance, mG(amk)/amle, is smaller than or equal to a°. However, this is not

necessarily guaranteed for the relative variance, Vn,(amp,e)= V(amp,e)/aﬁmh. To

investigate this effect, two situations are distinguished: (/) M1>Mmin and (ii) MiSMupin.

In the first situation, the initial boundary value of the sample mass is larger than
the minimum sample mass. If for every sample S, the estimate for the minimum sample
mass is exactly equal to the minimum sample mass, i.e. Mpin,s(S)=Mmnin, no additional
samples would have to be drawn. In this case, sampling corresponds to mass-based
multinomial selections with boundary value of the sample mass equal to M;. Because
M| >Mmin, the relative standard deviation is smaller than a. In practice, due to possible
upward statistical fluctuations in Mpin,s(S), it can occur that M;<Mpins(S) and thus
additional samples have to be drawn, Because variance decreases with increasing
sample mass, it is expected that this effect can only lead to a reduction of the variance
and not to an increase. Therefore, if M; is larger than Mpy,, the relative standard
deviation is smaller than or equal to a.

In the second situation, the initial boundary value of the sample mass is smaller
than or equal to the minimum sample mass. If for every sample S, the estimate for the
minimum sample mass would be exactly equal to the minimum sample mass, i.e.
Min,s(S)=Mmin, the finally obtained composite sample will correspond to a sample with
boundary value of the sample mass equal to Mpin and hence will have a relative
standard deviation equal to a. Downward statistical fluctuations in Mpin <(S) can lead to
a finally obtained composite sample mass smaller than the theoretical minimum sample
mass, if Mmins(S) is smaller than the finally obtained composite sample mass. It is
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expected that at low values of M, the estimated minimum sample mass will have much
larger statistical fluctuations than at higher values of M,. Therefore, the occurrence of
a finally obtained composite sample mass smaller than the theoretical minimum sample
mass will be greater at low values of M,. Hence, it is expected that at low values of M;
there can be a breakdown of the proposed mechanism: the actual relative standard
deviation of the finally obtained composite sample is larger than a.

Hence, although the proposed procedure is objective, it does not guarantee that
the relative standard deviation of the concentration in the finally obtained composite
sample always stays below the warranted a at low values for M,. In the following,
simulations will be applied to investigate the relation between the initial sample mass
and the relative standard deviation of the finally obtained composite sample. Because
the estimated minimum sample mass depends on the concentrations and particle
masses, simulations were performed with different batches, with a typical particle mass
of 1 g. During the simulations, the value of a was fixed at 0.01. For several batches
and values of the initial boundary value of the sample mass, M, the proposed feedback
procedure was repeated 10* times. During each feedback procedure, every sample S;
(with i=1,2,3,...) was drawn according to the mass-based multinomial selection
scheme. Before a new feedback procedure was started, the particles that were sampled
during the previous feedback procedure were put back in the batch, so that all the 10*
finally obtained composite samples were independent realizations of an identical
statistical distribution. In Figure 8.2 the particle masses and concentrations of the
studied batches, which represent a range of extreme particle distributions, are
graphically defined.
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Figure 8.2. Six particle distributions used for simulations. Every dot represents a particle in
the batch. The horizontal axis represents the mass and the vertical axis denotes the
concentration in the particle. The total number of particles in each batch is 10°.

160




0.03 0.03
A Relative standard deviation obtained —#- B Relative standard deviation obtained —e—
Theoretical relative standard deviation == Th ical relative dard deviation e
0.02 0.02
0.01 Xl'_.——-— v\ 0.01 \i.——?—f v v -\
0.00 0.00
1 10 100 1000 1 10 100 1000
§ oo03 0.03
= Relative standard deviation obtained —e-- :
B] C D Relative standard deviation obtained —e-
> Th ical relative standard deviation m . N .
59 Theoretical relative standard deviation e
=]
0.02
2 0.02
<
g
8
2 om —~——— 0.01
) - w5 % ¥
8 BN ™
=
L
=4 0.00 0.00
1 10 100 1000 1 10 100 1000
0.03 0.03
E Relative standard deviation obtained —e— F Relative standard deviation obtained —e—
Theoretical relative standard deviation e Theoretical relative standard deviation e
0.02 0.02
0.01 \ * T \
0.00 0.00
1 10 100 1000 1 10 100 1000

Initial sample mass (g)

Figure 8.3. Relative standard deviation calculated with simulated samples as a function of the
initial sample mass and the particle distribution from Figure 8.2. For graph A to F in this
figure the particle distributions A to F in Figure 8.2 respectively were used. For each point,
10° samples were simulated. The solid line represents the theoretical relative standard
deviation (for which it is assumed that Mpin,s = Mpin and V(asample)=Voaicn(8sampie)): 0.01 when
the initial sample mass is smaller than Muiny and equal to the square root of the relative
variance estimated using the properties of the particles in the batch (Equation 8.5) when the
initial sample mass is larger than Mpin .

In Figure 8.3, the relative standard deviation of the 10* finally obtained composite
samples is plotted as a function of the initial sample mass M;. Graphs A to F represent
the results of the simulations for batches A to F in Figure 8.2 respectively. For the
sampling of batch D with the initial sample mass smaller than 8 g the finally obtained
composite sample masses were comparable to the total mass of batch D. Because in this

161



given by Equation 6.18, instead of

case it would be better to apply prc(amplc),

anp,e(asmple ), given by Equation 5.78, these data points were omitted in Figure 8.3. In

Paragraph 8.9, the effect of omitting a finite population correction is discussed. It will
be seen that the results depicted in Figure 8.3 are not significantly influenced.

When assuming that the finally obtained composite sample concentrations are
normally distributed, a xz-analysis can be applied to prove that the 95% confidence
bands corresponding to the obtained relative standard deviations are very narrow.
Hence, these confidence bands are not depicted in Figure 8.3.

It is observed that, for a large range of values for the initial sample mass (note
the logarithmic scale), the proposed mechanism to draw additional sample ensures that
the relative standard deviation is not larger than the warranted value for o (here
chosen 0.01). Only for very low values of the initial sample mass, can it be seen that
the scheme is indeed inadequate. In Figure 8.4 the results are summarized.

Additional sample No additional
mass required sample mass

required

Relative. standard deviation
R

Mg
Initial sample mass

Figure 8.4. Schematic summary of results obtained with simulations. Depending on the value
of the initial sample mass three regions are identified. Only in the third region the relative
standard deviation is larger than a.

Three regions can be defined. In region I and II, the sampling scheme proposed is
adequate, i.e. the relative standard deviation is below the warranted a. In region III this
is not guaranteed, due to a too low value of M;. For batches A to F region III occurs at
M, below 10 g. Because for these batches the typical particle mass is 1 g, it is expected
that in general if a sample contains 10 or more particles, the proposed scheme is
adequate, i.e. the initial sample mass is in region I or II.
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8.6 Safe value for the variance

Generally, the mass concentration of a component in the sample can be determined by a
single sample analysis instead of analyzing all the particles in the sample separately.
Because of this practical convenience, the mass concentration of a component in the
sample is extensively used as an estimator for the mass concentration in the batch. An
additional advantage, which was demonstrated in Chapter 5, is that the value of this
estimator is equal to the value of the unbiased m-expanded estimator, if sampling
corresponds to a mass-based multinomial selection of particles in the limit of an
infinite sample-to-particle size ratio and an infinite batch-to-sample size ratio. In
Chapter 5, a variance estimator Vgampic(@sample), based on the Horvitz-Thompson
estimator was derived. However, for evaluation of this estimator, the mass
concentrations in all the particles of the sample are required. In practice, these are
often unknown.

Therefore, in the next paragraph, a safe value for the estimated variance will be
calculated, which is always larger than or equal to the actual variance Vgampie(@sample,S),
which would be obtained if all the particles belonging to S were analyzed for their
mass concentrations. This will subsequently lead to a larger estimate of the minimum
sample mass (see Equation 8.9). Because larger samples lead to smaller variance, it can
be expected that if the procedure depicted in Figure 8.1 is modified so that instead of
Muin,s a larger value is used, the general trend depicted in Figure 8.4, remains valid as
an upper bound for the relative standard deviation. Hence, it can still be guaranteed
that the relative standard deviation is smaller than o if the initial sample mass is in
region I or II. The advantage of application of the safe value of the variance will be
that its value can be calculated without analyzing all particles in the sample
individually for their mass concentrations.

As an introduction to the calculation of a safe value for the variance, a general
technique to obtain extreme values of a function that depends on several variables is
discussed. The technique of Lagrange multipliers (see e.g. Arfken, 1985) can be
applied when searching the extreme values (including maximums, minimums or saddle
points) of a function g that depends on multiple variables x;, denoted as g=g(xi,...,Xn).
When there are no constraints on the variables x;, the extreme values can be found by
equating the partial derivatives of g with respect to the x-variables to zero. This yields
N equations for N unknowns. When there is a constraint expressed in the form
f(x1,...,Xn)=0 there are N+1 equations with only N unknowns. This may lead to an
unsolvable system. Therefore, an extra variable A, termed as the Lagrange multiplier, is
introduced. The partial derivatives with respect to x; (for all i between 1 and N) and to
A of

gk, Xy J#AE(R X ) (8.15)

are equated to zero in search for its extreme values. This yields the following system of
equations:
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ﬁ[g(xl X AR oy )= 0 (8.16)

£{x, . xy )=0 \ (8.17)

Because the final equation is identical to the constraint imposed on the variables x;,
solutions will yield the extreme values of g(xi,...,xn) under the constraint
f(X],...,XN)=0.

In the next paragraph, the above-described technique is applied for the variance
estimate Vampie(@sample,S).

8.7 Calculation of a safe value for the variance

In this paragraph, it is assumed that for the sample S, the value of the sample
concentration, denoted as asampic(S), is known and the concentrations a; are unknown.
Therefore, values for the variables a; will be searched, for which the estimated
variance, Vsample(@sample,S), has a maximum value. It is assumed that every particle in
the sample forms a distinct class, hence T=N;ampic(S) and N;i(S)=1 for all i between 1
and T. In a first calculation, an extreme value for Vample(@sample,S) Will be found by
using a Lagrange multiplier and the constraint imposed on the variables a;
(i=1,...,Nsamp1e(S)):

lec(s)
ijaj _Msnmple(shsamplc(s)': 0 (8.18)
i=

When the above equation is satisfied, the mass concentration in a sample in which the
concentration in the j' particle is given by a;j is equal to agmpi(S). For each possible
value of i between 1 and Ngampic(S), differentiation to a; of

Nsam le(s)

sample’s)+}" mjaj _Msample(s)asample(s) (8'19)

=

vsample (a

yields the following equation:

2mi2 (ai -8 gmple (S))+ Am;
Msample (SXM sample (S) - Msample (S )/ Nsample (Sﬂ

=0 (8.20)

Equation 8.18 and the Nsampie(S) results from Equation 8.20 for all possible values of i
between 1 and Ngampic(S) form a system of Ngampie(S)+1 equations. The only solution of
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this system is that all a; are given by ai=asampic(S) for all i between 1 and Ngampte(S)
(and A=0). When this result is substituted back in Equation 5.78, it is found that
Vsample(@sample,S)=0. Because the estimated sample-to-sample variance is a non-negative
quantity it is concluded that a minimum was found. Below, the procedure will be
modified in order to obtain a maximum value,

Solutions for the system of equations obtained in a Lagrange procedure contain
all possible maximums, minimums or saddle points. However, in the previous
calculations only a minimum was found, in spite of the fact that a maximum must exist.
The failure can be illustrated in a simple general one-dimensional case.

True
maximum

Extremum
obtained

by Lagrangian
procedure

Figure 8.5. The true maximum of a function f(x) is not always found by equating the partial
derivative to zero. The function f(x) has a maximum at the maximum value of x.

In Figure 8.5, it can be seen that the true maximum is attained at the boundary of the
range at which x is defined. A similar situation occurred in the first calculation.
Therefore, a transformation of variables is applied. Because each a; may vary between
the minimum and maximum concentration in a particle in the sample, denoted as ami,
and amax respectively, the following substitution is suggested:

max ;amin sin(¢i ) (8.21)

It follows that a; cannot be smaller than any, or larger than apn.x. However the new
variables @; may take any value between — and +w. Hence, if a Lagrange procedure is
applied using the new variables ¢;, it is expected that all extreme values are found,
even the extremes that correspond to one or more values of a; equal to amin Or amax.
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Note that instead of the function sin(;) other periodic and differentiable functions that
vary between —1 and +1 can be used. This will however not influence the final results,
so therefore the well-known sinus function is chosen here. Substitution in Equation
5.78 yields:

Nsampie(®) 2| Bmax t8min . Bmax — Ay ?
( ) i mi( = ) - 2 - Sin(¢j )'asample(S)J
Vnote B e S) = —— (8.22)
ple ¥ samel Msample (Sstample (S)—Msample (S)/ Nsample (S))
The constraint, Equation 8.18, becomes:
Nsam le(s)
+a_, —a,, .
Y m j(am - Zmin ;. & max : Zmin ing, )]—Mmple(S)amp,e(S)= 0 (8.23)
=

The first Ngampie(S) Lagrange equations, obtained by Nsampie(S) partial derivatives with
respect to @;, become:

N (s) 2
4 mzple 2| fmax *3min  Bmax “3pp ( )
— m’ + sin| . |-a ()
J sample
aq,i j=1 2 2 J p!
M sample (S(Msample (S) -M sample (S)/ Nsample (S))
(8.24)
N mpteS) ‘
o e Amax ta8 . 8max "85, . Fl
* x;i E M 2 * 2 sm(q)j ) B )‘;i Msample(s)’sample(s)= 0
Performing the partial differentiations results in:
a +a_. a —a_.
2m?| == ot = 2 Si“(“’i )"‘sample(s)
Amax ~ 350 cos((p. )
M (S(M S)-M__. (S) / N (s)) 2 '
sample sample sample sample
(8.25)

dmax ~3min _
+ Ami ——2————COS(QJi )—O

There is no unique solution of the system of equations (Equation 8.23 and the
Nsample(S) results provided by Equation 8.25 for all i between 1 and Nsample(S)).
Therefore, the solution that yields the largest value for the variance when it is re-
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substituted is the true maximum. When for all i (between 1 and Ngamp1e(S)) cos(@;) is
non-zero, the solution is again a;=asmpie(S) for all i between 1 and Ngampie(S)).
Therefore, in order to find the maximum, for at least one or more i-values, cos(g;)
must be zero. When this is the case, sin(¢;) is either +1 or -1 and aj=amax Or ai=amin
respectively.

In view of the above observation, it is convenient to define the indicators Iax(i),
Imin(i) and Iowmer(i) as follows:

. Imax(i) =1 if a; =a,,, and zero otherwise,

. Imin(i) =1if a; =a,;, and zero otherwise, and

o I,.(0)=1ifa, #a,, and a, #a_, and zero otherwise

n

Using these definitions, the constraint (Equation 8.23) becomes:

Nsample (S) Nsample (S)
Z Imax(j)mjamax + Z Imin(-i)mjamin
j=1 j=1
(8.26)
Nsample (S)

. Amax 23 Amax ~ 30 .
+ Z Iother (J)mj : min 5 min sm((pj )] - Msample (Sksample (S)= 0
j=1

and the Ngampie(S) equations, provided by Equation 8.25, becomes for all values of i
satisfying Ioener(1)=1:

Zm?(amax ;’amin + A max ;amin Sin(d)i )_ asample(s)

M ampte M sarmpie )~ Mygrpie S)/ N e )

+Am, =0 (8.27)

Resubstituting the definition of a; into the system of Equation 8.26 and 8.27 yields:

Nsample (S) Nsample (S)

Z Iother(j)mjaj + z Imax(j)mj‘amax +
= = (8.28)

N sample s)

Imin (J)m ] A min — M sample (S)asample (S) =0
j=1

i ) +Am, =0 (8.29)
Msample (SXM sample (S) - Msample (S )/ Nsample (S)) l
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The above system of equations can be solved for the variables a; for all i with
Ioer(i)=1. Dividing the left-hand side of Equation 8.29 by m; yields the following
expression:

m, (ai - as,,,,,,.,(S))= —ML;‘JS)[MSMPR(S)—%‘T:((—:—))]L (8.30)

Equation 8.28 can be rewritten and the above result can be substituted.

1 Nsample ()

-5 Z omer(J)mmple(SXMmple S) Msample(s)/ Nsample ))

2 =
(8.31)

+ Zy: Lo ()0 ( e — 8 e (8)) Zz: L (0, (o — 2 ampie(8)) = 0

=1 j=1

sample ®) N sample ®)
Defining M_,, = ZI,M,‘(j)rnj and M, = Zlmin(j)mj yields an expression for A:
j=1 j=1

. 2M i3 mar ~ 2 gl (8 Mg (i — sampne(s)) (8.32)

pie(S)
M e WM e (5) - Mmle(s)/Nm.e(s)) zlmo)

The above result can be substituted back in Equation 8.30, which results in an equation
for a; (for all values of i with Ier(i)=1):

M 2 max 2 sapte )+ M B — 8 e (S))

N sample (S)

m; Z Iother (J)
j=1

a; = asample(s)_ (8.33)

Note that it was chosen arbitrarily which particles have a;=amax, ai=amin Or a; given by
Equation 8.33. However, the obtained solution can be substituted in the variance
estimator. The extreme value for the variance Ext{Viample(asample,S)} (i.e. maximum,
minimum or saddle point of Vsampie(@sample,S)) consists of three terms:
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N sample (S)

2
Imax (J)ml2 (a max ~#gimple (S)j

j=I

M sample (S(M sample (S) -M sample (S)/ N sample (S))

EXt{vsample (a sample’ S)} =

1 (8)
Zp Lin (J}mf (a min -~ 3sample (S))z

. (8.34)

j
sample (s ( sample (s)- Msample (S)/ Nsample (S))

N sample (S)

z other (J)m ( i " %sample (S))z

j=1

+
M sample (S( sample (S) M sample (S)/ N sample (S))

Substituting the obtained expression for a; (Equation 8.33) yields after rewriting:

N sample (S)

> Imax(ijm] (amax -asample(s))2

=1
Ext F’sample (a sample> S)}: :
Msample (S(M sample (8)-m sample (S)/ Nsample (S))

Nsample (S)

Imin (J)njz (a min ~ 3sample (s))Z

=1 , (8.35)

' Msample (S( sample(s) Msample (S)/ Nsample (S))

[M max (a max ~ @sample (S))‘*‘ M min (a min ~ #sample (S))]Z

N sample (S)

xM sample (S(M sample (8)-M sample (S)/ Nsample (S)) Z Tother ()
j=1

~+

To eliminate the summation symbols the following inequalities are used:

Nmile(S)

i=t

(J)mJ 'mm“(s) ile J)ln mmax( ) (8'36)

Noample(®)

les Nsam le(s)
Y L0} S0 ®) 9 T (I, = (M (8.37)

=1 =
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__l___<%a_x(_s) (8.38)

Nsample (S) Mother

2 Lo ()

Nsample ©

Zloﬂm(j)mj and mp«(S) is the largest particle mass in the sample.
j=1

in which M

other —

Also the following equality is substituted:

Mmax(amax _asnmplc(s))+ M in (amin - sample(s)) ( samplc(s) ) (8.39)

in which a is the mass concentration in the collection of particles which do not have a
maximum or minimum concentration, i.e.:

Noamy le 1e(S)
a= oﬂm’(]h m; / i other (8°40)
]=1

The above substitutions lead to a supreme value for (here defined as a value that is
always larger than or equal to) each possible extreme value for the estimated variance:

E"t{Vs:mnple("sample’s)}S (8.41)

Mpmax (S){M & max - sample (S))z * Mmm ( min ~ sample (S))z + Mother( sample (S))z}

sample (SXM sample S) M sample (S)/ N sample (S))

The values of Muyax, Mmin and Moper Were arbitrary, within the following constraints:

(S)=M, e + M + M s (8.42)

samp]e

asample(S)Msample(S) = amameax + amianin + aMother (8'43)

When Equations 8.42 and 8.43 are used to eliminate a and Momer in the supreme value
for each possible extreme value for the estimated variance, and the partial derivatives
with respect t0 Mmax and M are set to zero (in order to find the combination of Mmax
and My, that yields maximum value), it is found that

S)—a._.
me — asample( ) 2 min Msample(s) (8.44)

max ~ @min
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S)-
My = 351:Le(.)aﬂMmp,e(s) (8.45)

min max
As a consequence, Mowme=0. Substitution of these results into Equation 8.41 yields a
single supreme value for all possible extreme values of the sample-to-sample variance.

This is equivalent to an overall supreme value of the sample-to-sample variance:

M max (SXa max ~ @sample (S)la sample (S) ~ Amin )
Msample (S) -M sample (S)/ N sample (S)

Vsample (a sample > S) = (8.46)

With respect to the distribution of particle masses in the sample, only the maximum
particle mass is needed for evaluation of the right-hand side of the above expression.

8.8 Results

Equations for the minimum sample mass were derived using the properties of the
particles in the batch or sample (Equation 8.7 or 8.12 respectively).

A scheme to draw additional sample mass was proposed. The scheme assures
that the relative standard deviation estimated using the properties of the particles in the
sample does not exceed a preselected value a. Simulations show that for batches A to F
in Figure 8.2 the scheme is adequate if the initial sample mass is 10 g or more. Because
the typical particle mass for the studied batches was 1 g, the scheme is adequate when
a sample contains 10 or more particles.

A maximum value for the estimated variance was derived in case the individual
particle concentrations are unknown. A formula (Equation 8.46) is obtained in which
only the maximum particle mass and minimum and maximum concentration in the
sample are used. When there is no prior knowledge, the two latter quantities are
respectively zero and one.

8.9 Discussion

The simulations in Paragraph 8.5 demonstrated that, for batches A to F the scheme is
adequate when a sample contains 10 or more particles. Because batches A to F form a
wide range of distinct batches, it might be concluded that the scheme is adequate for
every arbitrary batch when a sample contains 10 or more particles. More investigation
is necessary to strengthen this anticipated conclusion.

Another point of discussion is that, in some cases, the estimated minimum
sample mass, Mpin,s may become comparable to the batch mass (=0.1xMygcn). For
calculation of the estimated minimum sample mass, it is then recommended to apply

the finite population corrected variance estimator prc(ample), instead of Vsmple(asample)

in Equation 8.9.
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To gauge the influence of omitting a finite population correction in the simulations
with batches A to F, the number of times the sample mass was larger than 0.1xMpach
was counted for every point in Figure 8.3. For every point, less than 10% of the
simulated samples were heavier than 0.1 times the batch mass. Therefore, it can be
concluded that the simulated sampled batches were large enough to justify the absence
of a finite population correction.

By comparing Equation 5.78 and 6.18 it follows that

prc(asample)=(l—Mmple/Mbmh )Vmple(ample). Therefore, when the mass of the batch is
known, the safe value of Vample(@sample), Obtained in Paragraph 8.7, can be multiplied

by a factor (1-Msampie/Myatch) to find a safe value for prc(ample). In this way, the

results obtained in Paragraph 8.7 can slightly be modified to encompass a finite
population correction.
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Chapter 9 Final remarks

This thesis describes the development of a new, non-empirical theory for
the sampling of randomly mixed batches of particulate material. The theory
can be applied, among others, to calculate the minimum sample mass for
use in sampling standards which aim to limit the sampling error to a
maximum allowable value. However, limiting the sampling error is not a
fundamental requirement of sampling standards in general. Standards may
also prescribe a value for the sample mass or volume without taking into
account the sampling error associated with the specified sample size. These
standards do not require the model-based determination of sample size as
outlined in this thesis.

In order to identify the strengths and weaknesses of existing
sampling theories, eight general criteria were defined. While other less
general criteria may exist, none of the existing sampling theories met all
eight criteria. Assuming that none of the reviewed theories are modified, it
was concluded that a new theory was required which meets all criteria. It
should be noted that the methods used in this study may also be applied to
other theories. For example, the Horvitz-Thompson estimator was applied
to derive an equation for the sampling variance based on the particle
properties in the sample. It is interesting to consider whether the Horvitz-
Thompson estimator could be applied in the non-empirical theories of
Wilson or Gy.

While the new theory is based on a model for “ideal sampling” from
“a random arrangement of particles”, only the sampling error due to the
distribution of non-identical particles is considered. It does not consider
the error due to non-ideal sampling which, for successful application of the
theory, must be assumed to be minimized by the practical choice of the
operating conditions during sampling. As a result of non-ideal sampling,
the actual sample variance may differ from the calculated value. Sampling
from “a random arrangement of particles” limits the applicability of the
new theory because order or structure may be observed in actual practice.
For example, the situation is considered in which a completely segregated
batch is sampled containing only two classes of particles: black and white
particles. It is assumed that, as a result of segregation, the majority of
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samples consist entirely of black particles or entirely of white particles.
Hence, it would be inappropriate to use the variance estimator provided in
this thesis, because its value would be zero for the majority of samples,
leading to an underestimation of the true variance. Order or structure could
be incorporated into the theory by taking into account the ‘variance due to
spatial variation’. This has the drawback of introducing an empirical
parameter. Furthermore, a model that includes segregation and/or
aggregation is likely to be complicated and may yield cumbersome
equations.

The new theory models sampling as repeated selections of particles
from the batch with the probability of drawing any particle during a
specific selection being constant. This mode of sampling is denoted as
“equal probability sampling”. In practice, deviations from equal
probability sampling may occur. For example, when particles are drawn as
clusters, the probability of a particle being drawn during a selection is only
equal for particles belonging to the same cluster. The current model does
not (yet) include these types of sampling processes. For developing a
model that can describe sampling processes from batches containing
clusters of particles, the basic assumption of equal probability sampling
must be abandoned. A promising extension of the current model is to
model sampling using unequal selection probabilities which may depend on
the properties of the previously selected particles.

The theory provides equations for the expected value and variance
of the sample concentration in the limit of an infinite batch-to-sample size
ratio and an infinite sample-to-particle size ratio. An expression for the
size-variance relationship is obtained using properties of particles in the
batch. Under suitable conditions, this equation is exact for finite values of
the batch-to-sample size ratio and the sample-to-particle size ratio.
However, the actual variance may differ from the calculated variance even
if sampling corresponds to ideal sampling from a random arrangement of
particles. A more precise equation is likely to be very complicated, which
may reduce its attractiveness for practical application. Practical application
also suffers if evaluation of the model parameter requires a large number
of measurements. Although a method was developed to estimate parameters
from a series of samples, the difference between the value estimated and
the actual variance remains unknown.

The equation for the variance, estimated using the properties of the
particles in the sample, was based on the Horvitz-Thompson estimator.
This does not preclude that the estimator may be biased for finite values of
the batch-to-sample size ratio and the sample-to-particle size ratio. Even if
the estimator is unbiased and sampling corresponds to ideal sampling from
a random arrangement of particles, its value will differ from sample to
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sample and, for a specific sample, may differ from the actual variance.
This raises the question of the practical significance of bias. The relative
bias, derived from simulations on a wide range of distinct batch
compositions, was plotted in a nomogram. It is found that the absolute
value of the relative bias in the sample concentration, caused by a finite
sample-to-particle size ratio, did not exceed half the inverse of the sample-
to-particle size ratio. Another conclusion from the simulated batches is that
bias caused by a finite batch-to-sample size ratio in the estimated variance
is always positive. It is worthwhile to investigate whether these findings
are generally valid.

It is possible that the variance calculated with the theory may differ
from the variance which would be obtained if the sample drawing process
corresponds exactly to the assumed model. Such a difference could be
characterized in terms of the "level of contradiction". Using bootstrapping
on four samples, it was shown that the new theory exhibits smaller levels
of contradiction than the theories of Wilson and Gy. The new theory also
provides a more normal estimator for the batch concentration. However,
more insight into the level of contradiction and normality of the estimators
of the new theory is required. It would be useful to establish the level of
contradiction and normality as a function of the batch-to-sample size ratio,
the sample-to-particle size ratio and possibly other factors.

Combining the equation provided by the theory with knowledge of
the properties of particles in the batch or sample allows determination of
the minimum sample mass. It was demonstrated that the minimum sample
mass is accurate if the sample-to-particle size ratio is larger than 10. More
study is required to determine the validity of this seemingly arbitrary
number. In general, it may be impossible to analyze each particle
individually so that unavailable sample information has to be estimated. It
should be noted that less sample information should imply a higher
calculated minimum sample mass.

Two applications of the determination of the variance associated
with the sampling of particulate materials are envisaged: the determination
of the minimum sample mass and an application which has not been
considered in this thesis: using the variance to assist in decision-making
based on sample analyses. For quality and process control, particulate
samples are routinely extracted and analysed. With control in general, the
objective is to ensure that a limiting value of a property of interest is either
exceeded or undercut. Direct comparison of the sample analysis with the
limiting value is not possible because the sample analysis does not
necessarily reflect the value of the property in the batch. The potential lack
of representativity, caused by the sample being smaller than the batch, can
be characterized in terms of the variation with respect to the limiting
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value. By taking into account the variation, a critical value can be defined
which is used to make a decision. A decision is made by comparing the
critical value with the sample analysis. The permissible variation can be
expressed in terms of a number of standard deviations, where the standard
deviation is calculated using an appropriate equation provided by the new
theory.
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Appendix

The Dutch standard NEN 5742 defines scope (sediments and soils),
measurands (metals, inorganic compounds, semi-volatile organic
compounds and physico-chemical soil properties) and sampling devices to
be used. The standard prescribes the way of sampling, which includes a
prescribed value for the mass of the sample. Finally, packaging,
conservation and transport of the samples drawn and the essential elements
of reporting are described.

The prescribed value for the sample mass in the NEN 5742 can be
calculated using Gy’s theory of particulate materials (Gy, 1979). In the
theory of Gy, the sample drawing is modelled using Bernoulli sampling. In
a first-order approximation, in which large variations of the sample mass
from its expected value are neglected, the variance of the sample
concentration becomes:

Nbpatch

1—
V(asample)z% z miz(ai —8patch )2 (A1)
M batch =l

A derivation of Gy’s basic equation (equation A.l) was obtained by
analyzing a mixture of distinct types of materials. Several assumptions
were required. Firstly, it was assumed that the particles in the batch can be
classified according to volume and type of material and that the
concentration in a particle does not vary between particles of a given
material type. Secondly, it was assumed that the size distribution in the
batch of particles belonging to distinct material types is identical. Thirdly,
it was assumed that the volume of each particle in the batch is given by a
constant factor f, multiplied by the cube of the particle diameter. Using
these assumptions about the composition of the sampled batch and the
particle size distribution, Gy obtained the following equation for the factor

N . .
(1/Mpateh )Ziz?amh miz(ai —apatch )2 in Equation A.1:
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1 N%Ch 2 3
m; (ai _abatch)z =dmax fgtc (A.2)
Mbatch i=]

where
dmax = the typical maximum particle diameter (determined by
sieving),
f= the shape factor,
g= the size range factor,
L= the liberation factor, and
c= the mineralogical composition factor of the material.

The precise relationship between the above introduced parameters and the
masses m; and concentrations a; of the particles of the batch can be found
in Gy (1979). It is noted that Gy assumes that £ is smaller than or equal to
one, although this is not necessarily true for arbitrary batches. Assuming
that gMbatch=Msample and 1—q can be approximated by one, the condition

that the relative standard deviation, 1/Viamp,c i/aﬁm,, , does not exceed «a,
results in the following value of the minimum sample mass, Mpin:

M,, = ——d2. fatc (A3)
a“a

batch

To arrive at the value for the sample mass given in the NEN 5742, it is
assumed that c=apaicn(1—avatch)p, Where p is the density of the particles. It
is further assumed that £=1, the particles are spheres (i.e. f=n/6), and apatch
can be replaced by p, the numerical fraction of particles in the batch that
contain the property of interest. The equation for the minimum sample
mass becomes

1-2p (A.4)

M. . =E><d13mlx XpXgX
6 a’‘p

min

Equation A.4 corresponds to the equation for the minimum sample mass
given in Annex C of the NVN 7302 standard. The NEN 5742 uses Equation
A.4 and the following assumptions: the maximum particle size is 10 mm,
the density p of the particles is 2.6x10° kg/m®, g=0.25, a=0.1, and p=0.1.
The result is:
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M pin = gx (0.01)* x2.6x10% x0.25x 1201 o3k

(0.12 x0.1

An obvious drawback is that the assumptions limit the general applicability
of this Dutch standard. Even if the assumptions are correct, the relative
standard deviation may still be larger than 10% due to possible flaws in
Gy’s theory. Moreover, if an alternative prescribed sample mass were to be
calculated on the basis of different estimates for the maximum particle
size, density and fraction of particles containing the property of interest
still using Gy’s theory, the relative standard deviation could be larger than
10% due to errors in the assumed batch properties.
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Summary

Standardization of sampling requires that the mass or the volume of the sample is
prescribed. In current standards, a prescribed value for the sample mass is derived
using empirical relations between assumed properties of the batch and the variance of
the sampling error. The potential inaccurate empirical relations and assumed batch
properties may lead to an under or overestimation of the potential magnitude of the
sampling error. Therefore, the objective of the research described in this thesis is the
development of a new, non-empirical theory for the sampling of randomly mixed
batches of particulate material, to allow for calculation of the minimum sample mass in
sampling standards.

Current empirical and non-empirical sampling theories are reviewed in Chapter
2. None of the empirical and non-empirical theories meet all eight criteria identified in
Chapter 1. This justifies the development of a new sampling theory to meet all criteria.

In Chapter 3, a mathematical algorithm is presented to serve as a model for ideal
sampling from a random arrangement of particles. The concept of ideal sampling is
defined and the details of the algorithm are discussed. It is shown that non-ideal
sampling and biased sampling are different phenomena, whereas non-ideal sampling
can act as a source of biased sampling. The boundary value of the sample size can,
with limited effects to the accuracy, be estimated using the sampled mass. Simulations
demonstrate the validity of this process.

Because the sample concentration is the ratio of two sample totals, in Chapter 4,
the variance of a sample total is studied. It is demonstrated that for calculation of this
variance, the covariances between the numbers of particles belonging to the classes in
the sample are required. Using a specified method, these covariances are calculated in
the size-based approach. As a final result of Chapter 4, the variance of the sample
concentration, estimated using the properties of the particles in the batch, is calculated.

In Chapter 5, the Horvitz-Thompson estimator is.used to provide a general and
unbiased estimate for the variance of the n-expanded estimator. It is demonstrated that
the sample concentration can be rewritten in the form of a n-expanded estimator. This
indicates that the Horvitz-Thompson estimator can be applied for estimation of the
variance of the sample concentration. Because in this study particles are classified, the
behaviour of the m-expanded estimator and Horvitz-Thompson estimator under
classification is investigated. Derivations of expressions for the first- and second-order
inclusion probabilities, using results from Chapter 4, are performed. These expressions
are substituted into the m-expanded estimator and the Horvitz-Thompson estimator.
This results in an expression for the variance, estimated using the properties of the
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particles in the sample. Finally, as an application of the obtained equations for the =n-
expanded estimator and the variance, the obtained equations are worked out for mass
concentrations.

The sample concentration and the estimator for the variance, based on the
particles in the sample, provide estimators for the batch concentration and the variance
of the sample concentration respectively, which are unbiased under certain conditions.
In Chapter 6, the biases are split into a contribution caused by a finite batch-to-sample
size ratio and a contribution caused by a finite sample-to-particle size ratio. Only a
theoretical calculation of the range of possible values of the bias in the sample
concentration caused by a finite sample-to-particle size ratio is presented. For mass
concentrations, the remaining biases are investigated using simulations. Finally,
nomograms are obtained for the maximum of the absolute value of the relative bias in
the sample concentration and the variance estimate using the properties of the particles
in the sample.

In Chapter 7, the estimators developed in this study and associated analytical
uncertainties are evaluated for four samples. Using the experimental results, the new
theory is validated by comparing the level of contradiction of the theory with the level
of contradiction of the theories of Wilson and Gy. Also the normality of the sample
concentration is investigated. It is shown that the new theory exhibits lower levels of
contradiction than the theories of Gy and Wilson and yields also a more normal
estimator for the batch concentration.

In Chapter 8, the minimum sample mass is estimated using the properties of the
particles in the batch or sample. Using the properties of the particles in the sample, a
feedback mechanism is proposed to draw additional samples. The mechanism is
investigated with simulations. Knowledge of the maximum particle mass, the minimum
and maximum particle concentrations in the sample can be used for estimation of the
minimum sample mass.

Bastiaan Geelhoed
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Samenvatting

Standaardisatie van bemonstering vereist dat de massa of het volume van het monster
wordt voorgeschreven. In de hedendaagse standaarden wordt een waarde voor de
voorgeschreven monstermassa afgeleid aan de hand van empirische relaties tussen
veronderstelde eigenschappen van de partij en de variantie van de steekproeffout. De
mogelijk onjuiste empirische relaties en veronderstelde eigenschappen van de partij
kunnen leiden tot een onder- of overschatting van de mogelijke grootte van de
steekproeffout. De doelstelling van het in dit proefschrift beschreven onderzoek is
daarom de ontwikkeling van een nieuwe, niet-empirische theorie voor het bemonsteren
van willekeurig gemengde partijen korrelvormig materiaal, die het mogelijk maakt de
minimale monstermassa in bemonsteringsstandaarden te berekenen.

Hedendaagse empirische en niet-empirische bemonsteringstheorieén worden
belicht in Hoofdstuk 2. Geen van de empirische en niet-empirische theorieén voldoen
aan de in Hoofdstuk 1 gestelde criteria. Dit rechtvaardigt de ontwikkeling van een
nieuwe theorie die wel aan alle criteria voldoet.

In Hoofdstuk 3 wordt een trekkingsschema gepresenteerd dat dient als model
voor de ideale monstername uit een stochastiche pakking van deeltjes. Het concept
ideaal bemonsteren wordt gedefiniéerd en de details van het algorithme worden
besproken. Het wordt aangetoond dat niet-ideaal bemonsteren en onzuiver bemonsteren
verschillende verschijnselen zijn, waarbij niet-ideaal bemonsteren een bron van
onzuiver bemonsteren kan zijn. De grenswaarde voor de monstergrootte kan, met
beperkte gevolgen voor de juistheid, worden afgeschat door gebruik te maken van de
monstermassa. Simulaties tonen de geldigheid van dit proces aan.

Omdat de monsterconcentratie de ratio van twee steekproeftotalen is, wordt in
Hoofdstuk 4 de variantie van een steekproeftotaal bestudeerd. Het wordt aangetoond
dat voor de berekening van deze variantie de covarianties tussen de deeltjesaantallen in
het monster van deeltjes behorende tot de klassen vereist zijn. Deze covarianties
worden, gebruikmakend van een specificke methode, berekend in de op grootte
gebaseerde aanpak. Als laatste resultaat in Hoofdstuk 4 wordt een vergelijking
afgeleid, waarmee de variantie van de monsterconcentratie kan worden berekend met
behulp van de eigenschappen van de deeltjes in de partij.

In Hoofdstuk 5 wordt de Horvitz-Thompson schatter voor de variantie gebruikt
om een algemene en onbevoordeelde schatting voor de variantie te verschaffen. Het
wordt aangetoond dat de monsterconcentratie herschreven kan worden in de vorm van
een Horvitz-Thompson schatter. Dit duidt erop dat de Horvitz-Thompson schatter
toegepast kan worden op de schatting van de variantie van de monsterconcentratie.
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Omdat de deeltjes in deze studie worden geklassificeerd, wordt het gedrag onder
klassificatie van de Horvitz-Thompson schatters voor de concentratic en de variantie
onderzocht. Gebruikmakend van resultaten uit Hoofdstuk 4 worden afleidingen
uitgevoerd van uitdrukkingen voor de eerste en tweede orde insluitverwachtingen. Deze
uitdrukkingen worden ingevuld in de Horvitz-Thompson schatters. Dit resulteert in een
vergelijking waarmee de variantie kan worden geschat aan de hand van de
eigenschappen van de deeltjes in het monster. Tenslotte worden, als toepassing, de
verkregen vergelijkingen uitgewerkt voor massa concentraties.

De monsterconcentratie en de schatter voor de variantie, gebaseerd op de
eigenschappen van de deeltjes in het monster, verschaffen schatters voor
respectievelijk de partijconcentratie en de variantie van de monsterconcentratie, die
onder bepaalde voorwaarden zuiver zijn. In Hoofdstuk 6 word de onzuiverheid
opgesplitst in een bijdrage ten gevolg van een eindige partij-monstergrootte verhouding
en een bijdrage ten gevolg van een eindige monster-deeltjesgrootte verhouding. Alleen
de maximale en minimale waarden van de onzuiverheid van de monsterconcentratie ten
gevolg van een eindige monster-deeltjesgrootte verhouding worden theoretisch
berekend. De overige onzuiverheden worden voor massa concentraties door middel van
simulaties onderzocht. Tenslotte worden nomogrammen verkregen voor de maximale
absolute waarde van de relatieve onzuiverheid in de monsterconcentratie en in de
variantie geschat met behulp van de eigenschappen van de deeltjes in het monster.

In Hoofdstuk 7 worden de schatters die in deze studie ontwikkeld zijn en de
bijbehorende  analytische onzekerheden ge&valueerd voor vier monsters.
Gebruikmakend van de experimentele resultaten wordt de nieuwe theorie gevalideerd
door het niveau van tegenstrijdigheid te vergelijken met de theorieen van Gy en
Wilson. Er wordt aangetoond dat de nieuwe theorie lagere niveaus van
tegenstrijdigheid vertoont dan de theorieen van Gy en Wilson en leidt tot een meer
gaussische schatter voor de partijconcentratie.

In Hoofdstuk 8 wordt de minimale monstermassa geschat met behulp van de
cigenschappen van de deeltjes in de partij of het monster. Gebruikmakend van de
eigenschappen van de deeltjes in het monster wordt een terugkopplingsmechanisme om
additionele monsters te nemen voorgesteld. Het mechanisme wordt onderzocht met
behulp van simulaties. Kennis van de maximale deeltjesmassa, the minimale en
maximale concentraties in het monster kan worden gebruikt voor de schatting van de
minimale monstermassa.

Bastiaan Geelhoed
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drawn from Batch 1 of steel SIag. ......c.oocveoiieicceecee s 143

Figure 7.6. Sample concentration of Fe versus obtained sample mass for the mass-based approach,
the algorithm of Wilson and the algorithm of Gy. The horizontal lines indicate the batch
concentration, the 2¢-levels and the 3o-levels. Bootstrapping was performed on the sample
drawn from Batch 2 0f Steel S1ag. ........cccovririiieeic ettt es s s seanes 145

Figure 7.7. Sample concentration of Br versus obtained sample mass for the mass-based approach,
the algorithm of Wilson and the algorithm of Gy. The horizontal lines indicate the batch
concentration, the 2c-levels and the 3o-levels. Bootstrapping was performed on the sample
drawn from the batch of plastic PArtiCles. ..........ccuerivieeririieriereceree e esen s seesanes 147
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Figure 8.1. Schematic representation of the proposed feedback mechanism to draw a sample. In the
depicted scheme Muyins is used. A similar scheme can be constructed in which Myin ai is used.
................................................................................................................................................... 157

Figure 8.2. Six particle distributions used for simulations. Every dot represents a particle in the
batch. The horizontal axis represents the mass and the vertical axis denotes the concentration in
the particle. The total number of particles in each batch is L1O% s 160

Figure 8.3. Relative standard deviation calculated with simulated samples as a function of the
initial sample mass and the particle distribution from Figure 8.2. For graph A to F in thlS figure
the particle distributions A to F in Figure 8.2 respectively were used. For each point, 10*
samples were simulated. The solid line represents the theoretical relative standard deviation (for
which it is assumed that Mpins = Mmin and V(@sampic)=Vatch{sample)): 0.01 when the initial
sample mass is smaller than Mp,» and equal to the square root of the relative variance
estimated using the properties of the particles in the batch (Equation 8.5) when the initial
sample mass is larger than Miinp. ...cocvreecrerrereniiiniiiiiii s ens 161

Figure 8.4, Schematic summary of results obtained with simulations. Depending on the value of the
initial sample mass three regions are identified. Only in the third region the relative standard

deviation is 1arger tham @ .....ccoocoiiiiiiii e s 162
Figure 8.5. The true maximum of a function f(x) is not always found by equating the partial
derivative to zero. The function f(x) has a maximum at the maximum value of x. ................. 165
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Glossary"

m-expanded estimator: An unbiased estimator for a batch total.

Algorithm: Finite set of (simple) instructions used for solving a certain type of
problem or achieving a certain result.

Analysis result: The value that is obtained after analysis.

Analyte: The compound of which the concentration or amount is measured.

Batch: The quantity of material whose properties are under study.

Batch size: The mass, volume, or number of particles in the batch.

Batch-to-sample size ratio: The mass or volume of a batch divided by the boundary
value of the sample mass or volume respectively.

Batch total: Quantity that can be expressed as a summation over all particles of the
batch.

Bias: The difference between the expected value of an estimator and the true value of
the quantity that is estimated.

Bootstrapping: A technique for estimation of the variance that uses simulation.
Boundary value of the sample size: Parameters that characterizes the sample size in a
model for the drawing of a sample.

Bulk sample: One or more increments of material taken directly from a batch. The bulk
sample represents the batch in properties of interest and is, as a consequence, often
much larger than the optimum laboratory size.

Classification: A division of the particles of a batch or sample into a finite number of
classes, where it is assumed that particles belonging to the same class have identical
properties.

Composite sample: Sample that consists of a finite number of increments.
Concentration: Property of a batch, sample or particle that is expressed as a ratio of
two quantities, where the denominator is either the mass or volume of the batch,
sample or particle respectively.

Contamination: The unwanted addition to the sample of material that influences the
final analysis result.

Covariance: Parameter that describes the degree to which two random variables depend
on each other statistically.

Empirical theory: A theory for the sampling of particulate materials that is not based
on a model for the drawing of a sample on the level of the particles.

Estimate: Value derived from a sample that aims to represent a batch.

Estimation: The process of arriving at an estimate from a sample.

Estimator: Random variable whose value in a sample is an estimate.

19 The descriptions given are not rigorous definitions.
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Expected value: Parameter that describes the average value of a random variable.
Extreme value: Value of a function obtained by equating the partial derivatives to
zero. Includes minimum, maximum or saddle point.

Finite population correction: Often a small positive number or random variable that is
subtracted from a variance estimate or estimator to account for the finite size of the
batch from which the sample was drawn.

Finite population sampling: The drawing of a sample from a batch that contains a
finite number of particles.

Gaussian: Corresponding to a bell-shaped probability distribution that is characterized
by a mean and standard deviation.

Horvitz-Thompson estimator: Unbiased estimator for the variance of the n-expanded
estimator.

Hypergeometric distribution: A special type of probability distribution, used when a
sample contains a fixed number of particles that are drawn without replacement, where
all possible samples have an equal probability.

Ideal sampling: Hypothetical mode of sampling where there is no influence of
unwanted - mostly mechanical - factors that could lead to a biased selection of
particles.

INAA: Acronym for the analytical technique instrumental neutron activation analysis.
Increment: An individual portion of material collected by a single operation of a
sampling device, from parts of a batch. Increments may be either tested individually or
combined and tested as a unit.

Inclusion probability: The probability that a particle is sampled during the drawing of
a single sample.

Indicator: Random variable whose value is one if a particle is part of the sample and
zero if the particle is not part of the sample

Laboratory sample: A sample as prepared for sending to the laboratory and intended
for inspection or testing.

Loss: The unwanted removal from the sample of material that was part of the original
sample.

Mass concentration: Property of a batch, sample or particle that is expressed as a ratio
of two quantities, where the denominator is the mass of the batch, sample or particle
respectively.

Maximum: A value which is larger than or equal to all values in a certain set of values.
Measurand: A quantity subjected to measurement.

Minimum: Value which is smaller than or equal to all values in a certain set of values.
Minimum sample mass: The mass of a sample for which the relative standard deviation
is equal to a maximum allowable value.

Minimum sample size: The size of a sample for which the relative standard deviation
is equal to a maximum allowable value.

Model: A simplified version of the phenomenon it seeks to describe that focuses on the
essentials of the problem.

Multinomial tree: A graphical representation of a sampling process.

Nomogram: A diagram with tree axes which can be used to obtain the value of a third

196




variable when the values of the other two variables are given.

Non-empirical theory: A theory for the sampling of particulate materials that is based
on a model for the drawing of a sample on the level of the particles.

Normal: sece Gaussian.

Normality: The degree to which a distribution can be characterized by the Gaussian
distribution. There is no standard way in which normality is defined.

Parameter of the size-variance relationship: Parameter whose value determines the
numerical relation between the sample size and the variance.

Particle size: The mass or volume of a particle.

Particulate material: Material that consists of discrete physical entities of arbitrary
size and shape.

Probability: A value that can be assigned to the likelihood of a future possibility. The
probability is one when it is certain that the event will happen and zero when it is
certain that the event will not happen.

Probability distribution: Variation of the probability as a function of the value of a
parameter or a measurand.

Random variable: A function that assigns a value to every possible sample.

Relative standard deviation: The square root of the variance divided by the true value.
Safe value for the variance: Value for the variance based on limited knowledge of the
properties of the particles in the sample that is certainly larger than or equal to the
value based on all the properties of the particles in the sample.

Sample total: Quantity that can be expressed as a summation over all particles of a
sample.

Sample: A portion of material selected from a larger quantity of material.

Sample preparation: The process of extracting a test portion from a laboratory sample.
Sample processing: Sampling, homogenizing, milling, blending, mixing, subsampling,
sample preparation, and analysis.

Sample size: The mass of, volume of, or number of particles in a sample.
Sample-to-particle size ratio: The mass or volume of a sample divided by the particle
mass or volume respectively.

Sampling: The process of obtaining a sample.

Sampling error: The difference between the estimate derived from a sample and the
corresponding true value of the population from which the sample was drawn.
Sampling error due to non-ideal sampling: Part of the sampling error that is caused by
non-ideal sampling.

Sampling error due to the distribution of non-identical particles: Part of the sampling
error that is caused by the distribution of non-identical particles in the population from
which the sample is drawn.

Sampling standard: The recommended process for extracting a sample.

Simulation: Virtual reconstruction of a process.

Size-based multinomial selection: The process of extracting a sample of a certain size
from a batch that can contain an arbitrary number of different particles.

Size-variance relationship: Defining how a sample size varies with the variance
ascribed to the sample.
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Subsample: A portion taken from a sample. A laboratory sample may be a subsample
of a bulk sample; similarly, a test portion may be a subsample of a laboratory sample.
Supreme value: A value which is larger than or equal to all values in a certain set of
values.

Target area: Part of the volume of the batch whose particles would be selected if
sampling were ideal.

Test portion: Quantity of material, of proper size for measurement of the concentration
or other property of interest.

Theory: A coherent system of one or more models and corresponding theoretical
results in a certain scientific discipline.

Uncertainty: An estimate attached to a measurement result which characterises the
range of values within which the true value is asserted to lie.

Variance: Parameter that describes the dispersion of a random variable around its
expected value.

Variance estimator: Random variable that is used to estimate the variance using the
properties of the particles in a sample.

Volume concentration: Property of a batch, sample or particle that is expressed as a
ratio of two quantities, where the denominator is the volume of the batch, sample or
particle respectively.
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List of symbols***!

=, 36

Apacch, 47, 153

a;, 44, 154

Amax, 165

amin, 165

Asample, 101, 105, 153, 154
Asample, 101

Asample(S), 164

B(X patch )» 52, 110

Bbs (prc (a sample ))’ 117
Bbs Abatch) 106

1
By, batch) 107

(%

B (&

"(Rvatcn ) 106
o

p(k

B™
Bep (Vipe (4 sample ) 117
Byp (Rbatch )» 106

Bsp (xbatch ), 107

c,82

C,82

¢, 83

C,, 101

C;;, 92

c;‘mp‘e, 95, 99

Csample,is 82

E(x), 52
E(’A‘batch )’ 39
Cnip, 52
€nip(S), 52
enip(S'), 33
Chisy 52
€nis(S), 33

F(ny,....n1,N patchy---

I;, 84
Ii(S), 37

Lim ,37
Nbatch »>®

Lim ,77

Thg —>®
Lim ,78

Tsp >®

m, 107, 154

M, 32

Mbatch, 101

m;, 44

Mypay, 42

Mmax(S), 32, 170

Mmin, 154

Mmin,alt, 156

Muminb, 155

Muins, 156

Mmins(S), 156

Msample, 101

N1 baten,Z), 40, 62

20 The symbols comprised in this list are used for the development of the new sampling theory, described in Chapter 3
to 6 and Chapter 8. The page number refers to the place(s) where the symbol is defined in this part of the thesis. This
definition is consistently used throughout Chaper 3 to 6 and Chapter 8.

21 When a symbol contains a single index, the variable i is chosen. When a symbol contains two indices, for the first
index the variable i is chosen and for the second index the variable j is chosen. The variables i and j can take any
arbitrary integer value between 1 and T (the number of particle classes) or between 1 and Ny, (the number of particles

in the batch). However, some symbols that contain two indices are not defined for i=j.

199




Miampie(S), 44
n(i), 37, 53, 84
N;, 71

Nbateh, 36, 53, 84
Net, 82

N, 53, 88

Ni(S), 40, 54
Nibatch, 36

Nuin, 155
Nsample, 73
Nsample(s): 39
Pln,,....n1,p] 5esPT ,meh), 39, 62
P(S), 39, 52
P(S|N(S)=n,,....N1(S)=nr), 40, 63, 109
p;i, 36,37, 61
Pi» 36

R, 51

Ths, 77

RSD, 154

Tep, 78

S, 33

s, 33

T, 36, 53, 62

U, 39, 51, 52
U;, 84

Us;, 86

V,32

V(asample)a 44
V(x), 53
V(ibatch )’ 40

vfpc (asample)’ 117
prc (Ysample / Zsample )a 117
\A,HT (<Ybatch >1r )’ 85

VHT (<Ybatch >n :S)’ 86

Viateh(sample), 154
Vbatch(Ysample/ Zsample), 79
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Vl:::ch (asample)’ 155
Vmax(S), 32
Vsample(@sample), 101
Vsample(asample,S), 102
Vsample(Ysample/ Zsample), 1 01
V cample(Y sample/ Zsampie,S)» 101
X, 52

x(S), 52

ibatch ,51

ibatch (S)» 33,51
Xbatchs 33, 51

Ybateh, 33, 84
<Yhateh™r, 85

Vi, 53, 54, 73, 88
Vagi)s 53, 84

Y samples 53, 84

z,66

Z,32,37

zZ,71

Zarch, 37, 53, 86

z;, 53, 66

Zmax, 78

Zuax(S), 32

Zn(i), 37, 53

Zsamples 53

Zsampie(S), 32, 37
Zumplo,ia 83

o, 154

9, 66

8(S), 37, 38

A, 68

8;, 98

Ki, 88

Kijs 88

T, 84

m;, 85, 86
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