
                

EUROPHYSICS LETTERS 10 February 1996

Europhys. Lett., 33 (5), pp. 353-358 (1996)

Deformation of toroidal DNA condensates under surface stress
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Abstract. – A qualitative rule is formulated for the shape deformation of DNA condensates,
in which the surface stresses are balanced against bending forces. A quantitative analysis is
presented for toroidal globules. Low surface tensions lead to ideal tori, high tensions give
rise to compact toroids with thin inner tubes. A qualitative discussion is given of Laemmli’s
experiments on globules of monomolecular DNA.

The equilibrium collapse of a flexible chain is reasonably well formalized and understood
[1]-[3]. Rather, the reverse is true when the chain is stiff and a persistence segment is highly
anisometric, the all-important prototype being double-stranded DNA. Elasticity, orientation-
translation coupling, the disparate Boltzmann weighting of repulsive and attractive forces [4],
and the possibilities of complicated topologies and shapes of a collapsed globule, all conspire
to make an a priori theory formidable, even at a self-consistent field level. Accordingly, one
obvious simplification has been to guess the qualitative structure of such a globule on both
local and global levels [5]-[10].

On the experimental side, the condensation of DNA into globules has been avidly studied for
some time. It may be induced by a simple salt together with a neutral polymer like polyethylene
oxide (PEO) soluble in aqueous solution [11]-[15]. A qualitative mechanism based on osmotic
pressure is trivially clear, but a quantitative theory is another matter [7],[9]. Considerably
more obscure is how DNA is condensed by multivalent cations [8],[16]-[19]: is the attraction
caused by van der Waals forces [20] or by correlated cations [21]?

Here, we would like to focus less on the mechanism of the DNA condensation itself and
more on the likely generic features of the globular shape. As we have argued previously [9],
the packing within a globule beyond a minimum size is determined mainly by extensive energy
contributions whereas its shape is sensitive to non-extensive higher-order terms. In effect, the
appropriate thermodynamic potential Ω of a globule may be expressed schematically as

Ω = Fbulk + ∆F , (1)
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where the extensive ”bulk” free energy is proportional to the globular volume V or the contour
length L of the DNA and all other terms are lumped together in ∆F , which generally is a
functional of the shape h and the DNA density ρ. Next, we assume the globule is homogeneous
enough so that an average spacing a ∼ (V/L)1/2 between DNA helices is a meaningful quantity.
Then, it is simply computed from

∂Ω

∂V
= 0 ≈ ∂Fbulk

∂V
, (2)

since the higher-order terms i must scale as V αi , with αi < 1 (for instance, the surface
energy may scale as V 2/3 though not necessarily). The globular shape and density are now
determined by δ∆F/δh = 0 and δ∆F/δρ = 0 at fixed a. Such a scheme is expected to be fairly
independent of the details of the DNA condensation itself, especially when we are concerned
with the collapse of a single macromolecule. We have to be wary of multimolecular aggregation,
for eq. (1) may then break down.

We can progress a bit further because we know that globular DNA is often close-packed
[8],[11]-[13],[16]-[18] so it must behave at least like a fluid with minor density fluctuations.
Hence, any non-uniform density contribution to ∆F should be small although there may be
substantial surface effects. Furthermore, the persistent electrostatic repulsion between helices,
even at high salt and with multivalent cations present, makes a complete collapse to a rigid
solid unlikely. Thus, if the globular matter is always fluid, elasticity is superposable because
DNA rearranges by sliding upon deformation of a condensate. On the whole, for a tightly
wound globule shaped roughly like a torus or ellipsoid and characterized by, say, two radii of
curvature R1 and R2, with R1 = O(R2) = O(V 1/3), we have the following leading contributions
to ∆F : a bending energy (1) scaling as

∆Fb ≈
kBT P L

R2
1

, (3)

where P is the DNA persistence length, and a necessarily positive surface energy, a sum over
all surface terms, proportional to a surface tension σ (conveniently scaled by kBT , with kB

Boltzmann’s constant and T the temperature)

∆Fs ≈ kBT σ V
2
3 . (4)

The surface and bending forces are antagonistic with respect to the globular shape [7], [9], the
surface tension coming into play when a dimensionless parameter α is of order unity,

α ≡ σ V
1
3 a2

P
. (5)

Various higher-order terms analogous to those discussed in ref.[9] may be disregarded. For
instance, interhelix interactions —whether the fluid is hexagonal [9] or nematic (cholesteric)
[22], [23]— do not alter the basic form of eq. (3).

We now investigate the import of surface forces on globular shape for one specific topology,
the DNA toroid having axial symmetry. In cylindrical coordinates, a toroid of arbitrary though
sufficiently regular cross-section may be defined by a curve h(r) in the (r, z)-plane, where we
choose the toroid axis to coincide with the z-axis (see fig. 1). The directrix of the DNA fluid

(1) We neglect possible anomalous inner regions of minute volume but high curvature. These may
appear if αÀ 1.
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Fig. 1. – The toroidal coordinates.

is perpendicular to the plane. The bending energy is given by

∆Fb

kBT
=

2πPL
V

∫ ro

ri

dr
h

r
, (6)

where h(r) is assumed to be a single-valued, continuous and continuously differentiable function
of r defined between the inner and outer radii, ri and ro (fig. 1). We express the surface energy
as

∆Fs

kBT
= 4πσ

∫ ro

ri

dr r
[
1 + (h′)2

] 1
2 , (7)

with h′ ≡ dh/dr. As we argued above, we have to minimize ∆F = ∆Fb + ∆Fs at a fixed
volume V

V = 4π
∫ ro

ri

dr h r , (8)

so it is convenient to scale r ≡ lR and h ≡ lH by l ≡ V 1/3. Accordingly, we minimize the
functional g

g ≡ 4π
∫ Ro

Ri

dR L[R,H(R), H ′(R)] , (9)

L ≡ HR−1 + αtR
[
1 + (H ′)2

] 1
2 − ΛHR , (10)

αt ≡
2σl4

LP
, (11)

where we have introduced the Lagrange multiplier Λ, which can be shown to be positive. Note
that the dimensionless coupling constant αt is identical with α (eq. (5)) to within a numerical
constant. The Euler-Lagrange equation after rearrangement yields

H(R) = D +
∫ R

Ri

dR
W

[1−W 2]
1
2
, (12)

with

W (R) = α−1
t

[
lnR
R
− ΛR

2
+
C

R

]
. (13)
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Fig. 2. – Cross-sections of a toroidal condensate for various values of αt, calculated from eq. (12) with
L = 5.1 · 104 nm and V = 7.1 · 105 nm3. Because of symmetry, only the upper halves are shown.

There are now five integration constants Ri, Ro, Λ, C and D in accordance with five boundary
conditions: H(Ri) = H(Ro) = 0, H ′(Ri) = ∞, H ′(Ro) = −∞ and the volume constraint.
In the limit αt ¿ 1, it is not difficult to show analytically that H asymptotes towards a
semicircular cross-section as it should. The best numerical approach to solving eq. (12) is by
starting with some value for αt ¿ 1 when initial estimates can be given [9]

4 [Ro −Ri] ≈ αt [Ro +Ri]
2 (14)

and proceeding for incrementally larger values of αt.
In fig. 2 we show representative cross-sections h(r) for T4 DNA of contour length L =

= 5.1·104 nm and persistence length P = 50 nm enclosed in a toroidal volume V = 7.1·105 nm3.
For αt much smaller than unity, the toroid is slender and the cross-section is almost circular
as we expect. In this regime, an analytical scheme adapted to the model at hand [9] compares
well with our numerical analysis. When αt is much larger than unity, large deviations from
circularity occur. The high surface tension forces the toroid to be compact so as to minimize
its surface area. But this is offset in an inner region (r = O(ri)) where very high elastic forces
tend to flatten the toroid in one direction forming a thin tube (fig. 2).

In a previous paper [9] we addressed the condensation of one DNA molecule into a hexago-
nally packed toroidal globule under the influence of a semidilute polymer. Scaling theory was
used to estimate the osmotic pressure Πp ≈ kBTξ

−3 and the scaled surface tension σ ≈ ξ−2,
where ξ is the correlation length, both in the bulk and in the depletion layer. However, since
then we have come to suspect the quantitative applicability of the latter theory to a popular
water-soluble polymer like PEO (2). For instance, using a Kuhn length of 1.2 nm, we obtain
a scaling estimate for the osmotic pressure of order 0.1 bar at a PEO concentration of 100 g/l
which compares unfavourably with an experimental value of about 1.0 bar [26]-[28]. Even more
startling is the fact that the correlation length is one order of magnitude less than one would
anticipate [29]. Still, in the absence of surface tension measurements, we think that a heuristic
scaling ansatz σ ≈ (Πp/kBT )2/3 with an experimental Πp may still be of value in an analysis
of DNA condensation (provided that the surface tension of DNA may be neglected [9]).

We emphasize that the pressure balance itself, as used earlier [9], is not in doubt. The vari-
ation of Bragg spacings for ψ condensates with PEO and NaCl concentrations was measured

(2) Some authors argue that anomalous hydrogen bonding occurs, see, e.g., [24], [25].
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long ago [13], [30]. We calculate the relevant osmotic pressures from an empirical expression
given by Parsegian et al. [27]. Although the ionic-strength dependence of the Bragg spacings
is subject to some ambiguity [30], the resulting pressure-spacing curves agree fairly well with
both those determined for undeformed liquid-crystalline DNA [31],[32] and those predicted
theoretically [9], [33]. Hence, eq. (2) is borne out.

Strong multimolecular aggregation often seems concomitant with condensation [8], [13], [16]-
[19], [34], though Laemmli [12] described the collapse of single DNA molecules. According to
our computations (fig. 2), αt would have to be close to 5 and σ close to 0.1 nm−2 in order to
explain the dimensions of his T4 DNA collapsed by polylysine. Unfortunately, neither do we
have an independent estimate for σ nor did Laemmli ascertain the precise shape of his globules.
He also found ellipsoidal particles when DNA was condensed by a 100 g/l solution of PEO. Our
discussion above would lead to σ ≈ 0.1 nm−2 and so α = O(1) from eq. (5) which is consistent
with the fairly weak anisometry of Laemmli’s ellipsoids. Clearly, future experiments will be
necessary to shed more light on the physics of DNA condensates. One option for testing our
predictions for the globular shapes is small-angle X-ray scattering in dilute solution: Ronto et
al. [35] have forcefully argued that the structural organization of compact DNA can, in fact,
be elucidated given some a priori information of a qualitative kind.

***

We thank J. A. M. Smit for discussions on the osmotic pressure of PEO.
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