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Cache blocking of distributed-memory
parallel matrix power kernels

Dane Lacey1, Christie Alappat1, Florian Lange1,
Georg Hager1, Holger Fehske1,2 and Gerhard Wellein1,3,4

Abstract
Sparse matrix-vector products (SpMVs) are a bottleneck in many scientific codes. Due to the heavy strain on the main
memory interface from loading the sparse matrix and the possibly irregular memory access pattern, SpMV typically exhibits
low arithmetic intensity. Repeating these products multiple times with the same matrix is required in many algorithms. This
so-called matrix power kernel (MPK) provides an opportunity for data reuse since the samematrix data is loaded frommain
memory multiple times, an opportunity that has only recently been exploited successfully with the Recursive Algebraic
Coloring Engine (RACE). Using RACE, one considers a graph based formulation of the SpMV and employs a level-based
implementation of SpMV for the reuse of relevant matrix data. However, the underlying data dependencies have restricted
the use of this concept to shared memory parallelization and thus to single compute nodes. Enabling cache blocking for
distributed-memory parallelization of MPK is challenging due to the need for explicit communication and synchronization
of data in neighboring levels. In this work, we propose and implement a flexible method that interleaves the cache-blocking
capabilities of RACEwith an MPI communication scheme that fulfills all data dependencies among processes. Compared to a
“traditional” distributed-memory parallel MPK, our new distributed level-blocked MPK yields substantial speed-ups on
modern Intel and AMD architectures across a wide range of sparse matrices from various scientific applications. Finally, we
address a modern quantum physics problem to demonstrate the applicability of our method, achieving a speed-up of up to
4× on 832 cores of an Intel Sapphire Rapids cluster.
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1. Introduction and related work

Parallel solvers for linear systems or eigenvalue problems
involving large sparse matrices have been widely used for
decades in traditional research fields using high-
performance computing (HPC) such as quantum physics,
quantum chemistry, and engineering. In recent years, new
applications relying on powerful and efficient sparse matrix
solvers have been developed, ranging from social graph
analysis as shown by Simpson et al. (2018) to spectral
clustering in the context of learning algorithms, as shown by
Luxburg (2004); McQueen et al. (2016). Typically these
solvers use iterative subspace methods, which may include
advanced preconditioning techniques and rely on an effi-
cient parallel implementation of the sparse-matrix vector
(SpMV) kernel y ← Ax, where A is a sparse matrix and x, y
are dense vectors. Scalable and efficient SpMV im-
plementations have thus been an active field of investigation
for a long time, as shown by Vuduc and Demmel (2003) and
more recently by Gao et al. (2024). Its low computational

intensity makes SpMV strongly memory bound on all
modern compute devices, and much research focuses on
efficient sparse matrix data layouts or matrix bandwidth
reduction to improve access locality in the dense vectors
involved in the SpMV. Kreutzer et al. (2014) showed that
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this was particularly relevant on GPGPUs and wide-SIMD
many-core CPUs.

However, these efforts do not exploit the data reuse
opportunities presented by successive SpMV invocations
with the same matrix.

Certain algorithms can be reformulated to group SpMV
invocations with the same matrix together, as shown by
Demmel et al. (2008) for CA-Krylov and by Loe et al.
(2020) for preconditioners based on matrix polynomials.
These back-to-back SpMVs constitute what we call the
traditional Matrix Power Kernel (MPK) implementation.
This kernel computes all vectors yp ← Apx for each power
p = 1, …, pm, where the sparse (and necessarily square)
matrix A is loaded from main memory each time SpMV is
called. This scenario presents an immense opportunity for
raising the computational intensity through cache blocking,
keeping relevant matrix data in the cache across successive
SpMV invocations.

In recent years, the top CPU and GPGPU manufacturers
have been rapidly increasing the cache sizes on their server-
grade chips. Shown in Table 1 is a selection of top-of-the-
line CPU and GPGPU models from Intel, AMD, and
Nvidia, and their respective aggregate cache sizes (sum of
all cache levels, rounded to the nearest MiB1) over the last
several years. These advancements in hardware capabilities
have only broadened the opportunities for cache blocking.

The Recursive Algebraic Coloring Engine (RACE), as
introduced by Alappat et al. (2020a), can be used to con-
struct an efficient, cache-blocked shared-memory MPK by
taking advantage of the level-based formulation of SpMV.
Alappat et al. (2022) describe the resulting Level-Blocked
Matrix Power Kernel (LB-MPK), with applications of LB-
MPK to contemporary sparse iterative solvers shown by
Alappat et al. (2023). While successful, this work is re-
stricted to shared-memory compute nodes. No concept or
implementation to parallelize RACE for distributed-
memory parallel systems using the Message Passing In-
terface (MPI) has been proposed until now. Satisfying the

data dependencies of the level-based formulation among
parallel processes by message passing is a non-trivial task.

The main contribution of this work is an MPI adaptation
of LB-MPK. Other works on distributed-memory parallel
MPK, such as those developed by Yamazaki et al.
(2014a,b), are focused on reducing the MPI communica-
tion overhead. At the time of writing, there is surprisingly
little work found in the direction of cache-blocking tech-
niques for the distributed-memory parallel MPK. There
exists an analysis of a similar diamond tiling strategy by
Vatai et al. (2020), but it is purely theoretical. The closest
work is likely from Mohiyuddin et al. (2009), but there are
clear differences between this approach and ours. Besides
being MPI-only whereas ours is a hybrid (MPI + OpenMP)
approach, their MPK requires redundant computations and/
or indirect accesses to matrix elements with bookkeeping to
fulfill data dependencies. We will revisit this comparison in
Section 5.

When compared to the traditional “back-to-back” SpMV
implementation of MPK, our novel distributed level-
blocked MPK algorithm shows speed-ups of up to 2.7×
across various architectures for a wide variety of matrices
from the SuiteSparse Matrix Collection by Davis and Hu
(2011).

Note that there will only be notable benefits of cache
blocking if the working set does not fit into the aggregate
caches of all CPUs involved. With in-cache datasets,
communication and synchronization overheads would
likely dominate the runtime.

2. Overview and contributions

TheDistributed Level-Blocked Matrix Power Kernel (DLB-
MPK) algorithm extends the LB-MPK algorithm to the
distributed-memory setting with MPI. Our implementation
is efficient in that it does not increase the MPI overhead
when compared to the traditional MPK implementation, and
it does not require any redundant computations.

Table 1. Cache size trends for Intel, AMD, and Nvidia devices.2,3

Company Year Model Type Aggregate Cache

Intel 2019 Q1 Cascade Lake - 8280 CPU 68 MiB
2021 Q4 Ice Lake - 8380 CPU 102 MiB
2023 Q1 Sapphire Rapids - 8480 CPU 221 MiB
2023 Q1 Ponte Vecchio - MAX 1550 GPGPU 472 MiB

AMD 2019 Q2 Zen 2 - 7742 CPU 294 MiB
2022 Q1 Zen 3 - 7773X CPU 804 MiB
2023 Q2 Zen 4 - 9684X CPU 1254 MiB
2023 Q4 Aqua Vanjaram - MI300X GPGPU 277 MiB

Nvidia 2018 Q1 Volta - V100 SXM3 GPGPU 16 MiB
2020 Q1 Ampere - A100 SXM4 GPGPU 60 MiB
2023 Q1 Hopper - H100 SXM5 GPGPU 83 MiB
2023 Q2 Grace Superchip CPU 333 MiB
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This paper is organized as follows. In Section 3, we begin
with a brief summary of shared-memory SpMV and MPK.
Then, by exploring the graph-matrix correspondence, we
are able to understand the broad strokes of how RACE
performs LB-MPK. In order to generalize LB-MPK, we
must first understand distributed-memory parallel SpMV
and MPK without cache blocking, which we explore in
Section 4. We close this section with a motivation of our
method by comparing it against the distributed-memory
parallel MPK implemented by Mohiyuddin et al. (2009).
Section 5 details our DLB-MPK method and im-
plementation. In Section 6 we investigate the relevant
hardware characteristics of three modern multicore CPU
systems and their influence on the performance of DLB-
MPK. Performance predictions based on the roofline model
by Williams et al. (2009) are derived, and we investigate the
influence of various parameters with RACE in the
distributed-memory setting. We close the section with a
strong scaling analysis of DLB-MPK. In Section 7 we
examine the weak scaling characteristics of DLB-MPK used
in Chebyshev time propagation, which has applications in
quantum physics.

In this work, we make the following contributions:

· We extend the level-based concepts in RACE to the
distributed-memory setting.

· We detail the trapezoidal-like tiling strategy which
enables our DLB-MPK to fulfill the data depen-
dencies inherent in repeated SpMV invocations, and
present an efficient implementation of the DLB-
MPK.

· For a wide array of sparse matrices, we present a
performance and scaling benefit summary of DLB-
MPK on three modern CPUs from Intel and AMD.

· We investigate the weak scaling behavior of DLB-
MPK when applied to the Chebyshev method for the
time evolution of quantum states for the Anderson
model of localization, and show the favorable scaling
qualities as compared to the traditional MPK.

3. RACE applied to the matrix
power kernel

For a given square sparse matrix A and dense vector x, MPK
computes all vectors yp ← Apx for each power p = 1,…, pm,
and stores the result into pm dense vectors. As mentioned
before, this is traditionally implemented as a series of back-
to-back SpMVs, using the output vector from the previous
iteration as the input vector x; for example, at the kth SpMV
invocation, yk ← Ax where x = yk�1. SpMV is the central
kernel of MPK, whose traditional implementation will be
limited by the same bottleneck as SpMV. For matrices A that
do not fit into the cache on modern CPUs (so-called

“memory-resident” matrices), the limiting performance
bottleneck is the main memory load bandwidth.

The key observation when cache blocking the MPK is
that we can compute Apx on a subset of rows without
waiting for the entire Ap�1x computation to finish first for all
rows of A. The only data dependency for “promoting” a row
v from Ap�1x to Apx, that is, executing the pth SpMV op-
eration on it, is that the rows that correspond to the column
indices of the non-zero elements in row v have already been
promoted to Ap�1x. When using LB-MPK, cache blocking
is achieved by detecting the dependencies between suc-
cessive SpMV invocations using the level-based SpMV
formation within RACE. The degree to which this fact can
be exploited strongly depends on the sparsity pattern of the
matrix. To understand the cache-blocking scheme in the
shared memory setting, we describe this level-based
formulation here.

Given a matrix A, there exists a correspondence with a
graphG (V, E). The set of vertices V represents the rows of A,
and the set of edges E represents the non-zero elements. If
row v in A has a non-zero element at column j, then there
exists a corresponding edge from vertex j to vertex v inG (V,
E). In order to make the correspondence more immediate,
we use G(A) to denote the graph which has A as its adja-
cency matrix. For this work, the values of the non-zero
entries of the corresponding matrix A are not considered in
the graph. An example of such a correspondence is given by
the sparse matrix representing a modified 5pt stencil in
Figure 1(b) and the associated graph in Figure 1(a). If vertex
v is in the set of “neighbors” of u,

NðuÞ ¼ fv2V : fu, vg2Eg,
then v is said to be “distance 1” from u. We say that a vertex
q is “distance k” from a vertex u when q is in the “kth
neighborhood” of u, where we recursively define

NkðuÞ ¼ Nk�1ðNðuÞÞ:

RACE will start a Breadth-First Search (BFS) at some
“root vertex,” typically at row index 0. In the next step, all
vertices that have an edge connected to this root vertex
(i.e., its neighbors) are collected into a structure that we call
a “level.” In general, for a graph G (V, E), we can define the
ith level as:

LðiÞ ¼
root vertex if i ¼ 0,
u2NðLði� 1ÞÞ if i ¼ 1,
u2NðLði� 1ÞÞ\NðLði� 2ÞÞ\Lði� 2Þ else:

8<
:

At each successive step in the search, all vertices in the
current level are scanned, and all neighbors of these vertices
that have not yet been touched are collected into the next
level. The process continues until the graph is fully traversed,
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at which point every vertex is collected into a mutually
exclusive level.4 Once the graph is fully traversed and each
vertex is assigned to a level, RACE then symmetrically
permutes thematrixA (rows and columns) based on the levels
collected. The symmetric permutation, referred to as “BFS
reordering,” improves the temporal locality on the RHS
x-vector and avoids irregular accesses to matrix elements.5

An example of this reordering is given for our 5pt stencil
matrix in Figure 1(d) and the associated graph in Figure 1(c).

We can visualize the dependencies and traversal order of
LB-MPK with an “Lp diagram” given in Figure 2. The
x-axis is the index of the level L, and the y-axis is the power
p in Apx. An important property of levels is that neighbors of
L(i) are contained in {L(i� 1), L(i), L(i + 1)}. This means in
order to compute Ax on L(i), x has to be known only on
{L(i � 1), L(i), L(i + 1)}. More generally, to compute Apx =
AAp�1x on the vertices of L(i), Ap�1x computations on the
vertices of L(i � 1), L(i), and L(i + 1) must have already
been completed. One particular example is featured in
Figure 2 for the computation of A4x at L(6), where the
dependencies lie on p = 3 at {L(5), L(6), L(7)}.

One way to ensure these dependencies are fulfilled at any
point in time is to traverse the Lp diagram such that each
diagonal defined by i + pdconst carries out computations
in a “bottom-right to top-left” fashion for increasing values
of “const” (i.e., i + p = 1, i + p = 2,… ). This execution order
is given by the numbered boxes in Figure 2, and emphasized
by the highlighted diagonal for i + p = 6.

With the aid of the Lp diagram, the idea behind level-
based cache blocking can now be briefly introduced. As LB-
MPK diagonally traverses the levels as described above,
levels (and therefore matrix entries) are reused after pm + 1
execution steps (after the wind-up phase on the left end, and
before the wind-down phase at the right end of the Lp
diagram). If all the non-zero matrix entries associated with
these pm + 1 levels accessed between two computations of
the same L(i) can be held in cache, then all matrix data for
the following computation with L(i) will be accessed from

cache (with the exception of p = 1, which has a compulsory
cache miss and must come from main memory). As an
explicit example, see the level L(5) which is used in the 15th
step in the execution of LB-MPK. If all the matrix data
corresponding to the six levels L(1)–L(6) can be held in
cache, then the vertices of L(5) are reused in the 21st step in
the execution of LB-MPK when computing p = 2.

4. Challenges in the
distributed-memory setting

Distributing MPK for level-based cache blocking across
multiple MPI processes is not as easy as just executing LB-
MPK locally on each MPI process. To understand this non-
triviality, we first investigate the dependencies that arise
from the “traditional” distributed-memory parallel MPK
(TRAD). Just as in the shared memory setting, a
distributed-memory parallel MPK is traditionally con-
structed from back-to-back SpMV invocations.

Figure 1. Graph (a) and sparsity pattern (b) of the matrix associated with a modified five-point stencil. Graph (c) shows the permuted
graph and (d) the sparsity pattern of the matrix after applying Breadth First Search (BFS) reordering. The vertices (rows) of the graph
(matrix) that belong to a level are represented with the same color.

Figure 2. Lp diagram with 10 levels (L(0), …, L(9)) and a
maximum power of pm = 5. Level colors are the same as in
Figure 1(c). Each node in the Lp diagram is numbered according to
the execution order. For p = 4 and level L(6), the explicit
dependencies to levels at p = 3 are indicated with red arrows.
The nodes highlighted in orange fulfill i + p = 6 (“diagonal”).
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In the distributed-memory setting, the matrix is parti-
tioned among the available MPI processes. The conven-
tional approach, which we use, often employs row-based
partitioning wherein both matrix and vector entries corre-
sponding to a subset of rows are physically assigned to
individual MPI processes. Figure 3(a) illustrates distributing
the matrix A from Figure 1(b) across two MPI processes.
The dotted lines represent the MPI “boundary,” that is,
where the data is physically disjointed. The corresponding
graph of the matrix (G(A)) in the distributed-memory setting
is shown in Figure 3(b). The crux of the problem lies in the
distributed nature of the x-vector. During SpMV compu-
tations on a given MPI process, there may be non-zero
matrix elements that do not have their corresponding RHS
x-vector elements for the dot product locally on the process,
necessitating their retrieval from remote MPI processes. For
instance, in Figure 3(a), row 8 belonging to the first MPI
process contains a non-zero element at column index 12.
While the non-zero elements with column indices 4, 7, and 8
in row 8 can be multiplied with the local x-vector for the
corresponding dot product, the non-zero element at column
index 12 lacks the requisite data on this MPI process’s
x-vector, which then must be fetched from the second MPI
process. Similarly, on the second MPI process, row 12 ne-
cessitates x-vector data corresponding to row index 8, which
resides on the first MPI process.

Transferring remote elements on-demand is feasible but
would result in significant performance overhead due to the
high latency of MPI communications. Consequently, a
common strategy involves bulk transfer of all required
remote elements before executing SpMVoperations. These
elements are then stored consecutively, typically at the end of
the x-vector, forming what is commonly known as the “halo

region/buffer.” Figure 3(c) illustrates this halo region and the
process of populating it with remote elements. Algorithm 1
presents pseudocode for the traditional distributed-memory
parallel MPK computing Apmx. Here, we assume a matrix A
has already been partitioned row-wise and distributed to each
of the n processes so that Ai resides on process i. The al-
gorithm utilizes two subroutines: the haloComm routine that
populates the halo region, and the sparse matrix-vector
product SpMV. The local vector size is the local number of
rows Nr,i, plus the number of remote elements the process i
needs to receive into its halo bufferNh,i. The “MPI overhead”
OMPI is understood to be the ratio of these halo rows on each
x-vector across all the nMPI processes to the total number of
rows Nr ð¼

Pn
i¼0Ni, rÞ, that is

OMPId

Pn
i¼0Nh, i

Nr
: (1)

Figure 4(a) illustrates the distributed TRAD MPK ap-
proach and shows the required halo communication. The
number on each vertex represents the execution order for
computing SpMV on the particular vertex xi. The TRAD
approach necessitates a complete SpMV operation to be
carried out before initiating the subsequent halo commu-
nication routine. This poses a challenge to cache blocking,
particularly when dealing with large in-memory matrices, as
the cache may not be able to accommodate all matrix el-
ements loaded during the entire SpMV computation. In
Section 3, we have seen that caching can be realized by the
LB-MPK approach on shared memory. This necessitates
that all the pm SpMV computations required to raise the
local matrix Ai to power pm be carried out consecutively in
one kernel. This requirement renders the basic halo

Figure 3. The global matrix A from Figure 1(b) and some RHS vector x are partitioned in a row-wise manner over two MPI processes in
(a). The gray boxed-out regions show, on each MPI process, which elements are “local” (inside the gray region). The edge
corresponding to the remote data dependency, that is, the edge crossing the MPI boundary, is highlighted in blue in (b). The rows at
global indices 8 and 12 are highlighted as examples of rows that contain remote data dependencies for the SpMV. To fulfill these data
dependencies, another MPI process must supply the appropriate “halo elements.” Shown in (c) is the process of data exchange on the
x-vector for our two example rows, where incoming halo elements are received into an appropriately resized buffer.
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communication scheme explained above inadequate for
distributed-memory parallelization since only the halos
necessary for a single SpMV are communicated in this
step. However, for each halo element, we now require the
values of all pm� 1 powers, that is, Apx for all p in the range
[0, pm � 1]. Complicating matters further, these values (for
p ≥ 1) are not yet available at this stage because SpMV
computations have not been performed.

For example, consider Figure 3: employing a hal-
oComm routine ensures that the first MPI process gains
access to x values corresponding to all rows that require
remote elements (in this case, rows 6, 7, 8 and 9). However,
when conducting LB-MPK with pm = 2, the first MPI
process requires Ax values (as opposed to x) at, for example,
the 12th row when computing A2x for row 8, but the Ax
value at the 12th row has yet to be computed by the other
process.

One potential solution to this problem, as explained by
Mohiyuddin et al. (2009), is known as communication-
avoiding MPK (CA-MPK). In this approach, all the
necessary values of halo elements, Apx for all p in the range
[1, pm � 1], are computed locally on each MPI process. To
achieve this, each MPI process conducts additional

SpMVs on the halo elements. However, as discussed in
Section 3, computing Apx by an SpMV operation neces-
sitates updating its neighbors to the Ap�1x value, which in
turn requires updating its neighbors to Ap�2x, and so on
until it reaches the input vector A0x = x. Consequently, to
raise boundary halos B to the pm� 1 power, all its distance-
(pm � 1) neighbors must also be updated. Given that these
neighbors often reside on different MPI processes, remote
elements must be brought into the current MPI process,
thereby requiring additional halo elements. Figure 4(b)
illustrates the additional halos required by the CA-MPK
approach on a 1D tri-diagonal stencil example. Additional
SpMVs take place within the halo buffer, that is, vertices
that are “external” to the process-local data. In our ex-
ample, these redundant SpMVs occur at execution stages
12, 15, and 16. To compute Apx, CA-MPK requires p � 1
groups of these external vertices. In general, the halos are
organized based on their distance from the boundary B,
where Ek represents the set of external vertices that are at a
distance of k from B. The boundary halo elements B = E0

are elevated to power pm � 1, while the remaining halo
elements Ek are elevated to power pm � 1 � k to fulfill the
dependencies.

To facilitate cache blocking, a diagonal-style execution
order, similar to that in LB-MPK (see Section 3), can be
employed. The name “communication-avoiding” stems
from the ability of the CA-MPK approach to overlap
communication and computations. In Figure 4(b) the
purely local part (outlined in blue boundary) can be
overlapped with the communication of the remote ele-
ments. Although the CA-MPK approach enables cache
blocking, the overheads resulting from additional halo
communication and SpMV computations escalate with the
power pm and the number of MPI processes n. It is im-
portant to note that these extra SpMV computations on
halos are redundant, as the MPI process possessing the
element locally also conducts SpMVs on these elements.

Figure 4. Comparison of three MPK implementations for the computation of A3x on a 1D tri-diagonal stencil matrix, distributed across
two MPI processes, where the execution order is written in each node. The traditional MPK implementation of back-to-back SpMVs is
shown in (a) the “Communication Avoiding” MPK with redundant SpMVs in (b) and our implementation of DLB-MPK is shown in (c).
Each dot represents an index of Apx for the respective power p. In each of the three diagrams, the dashed vertical line denotes the MPI
boundary, the process-local x-vector data is shown in black on the bottom layer and is assumed to already be present, and the halo
buffer is shown in gray. The x-axis represents the index of the RHS x-vector. The red arrows indicate that the data dependencies are the
same in each MPK version, regardless of the execution order.

Algorithm 1 Traditional Distributed MPK
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Particularly with irregular sparse matrices, these overheads
can be substantial and may lead to limited speedups as
shown in Yamazaki et al. (2014a).

One way to eliminate redundant computations in-
volves a fine-grained synchronization mechanism,
wherein the other process transmits the Ax value of halo
elements once computations are completed, and the other
process waits to receive this data. However, this entails
significant synchronization overhead and the transmis-
sion of small MPI messages, ultimately resulting in
substantial performance degradation due to the high la-
tency of MPI communications. In the following section,
we will introduce a savvy new approach to mitigate these
performance pitfalls.

5. DLB-MPK methodology

The DLB-MPK approach enables cache blocking while
mitigating the drawbacks associated with CA-MPK, namely
the need for additional communication and computations.
DLB-MPK achieves this by utilizing the same halo com-
munication routine as in the traditional approach (TRAD),
but with a reordering of computation and communication to
facilitate cache blocking.

In our algorithm, following the initial halo communi-
cation, LB-MPK is executed on the local vertices. However,
not all local vertices can be elevated to power pm imme-
diately due to dependencies with the halo elements in B,
which contain only the input value x. Internal vertices that
are distance-1 neighbors to B can only be promoted to Ax
(p = 1), while their neighbors can only be promoted up to
A2x, and so forth. In general, internal vertices at a distance of
k from the boundary B, denoted as Ik, can only be elevated
up to Akx. This implies that, at this stage of DLB-MPK,

computations are incomplete on internal vertices Ik where
1 ≤ k < pm. The final step of the DLB-MPK method is an
iterative process ensuring the completion of SpMV com-
putations on the incomplete internal vertices. The iterative
post-cache-blocking computation phase begins with syn-
chronization followed by a call to the halo communication
routine to update halo boundaries B with the next power
value (Ax in the first iteration). This enables all incomplete
internal vertices Ik to perform SpMVs, advancing their
power computations by one step. This remainder phase is
repeated for a total of pm � 1 times to ensure all internal
vertices reach power pm. Figure 4(c) illustrates the DLB-
MPK approach using a 1D tri-diagonal stencil example.

As shown in Figure 4, DLB-MPK requires the same
halos as TRAD while benefiting from cache-blocking ad-
vantages similar to CA-MPK due to its diagonal-style ex-
ecution; refer to Section 3 for details. Figure 5 quantifies the
advantages of reduced halo elements and zero redundant
computations for DLB-MPK for an irregular sparse matrix
(Serena), which is partitioned row-wise over 10 and
15 MPI processes, respectively. In order to minimize
communication and optimize load balance, METIS by
Karypis and Kumar (1998) was chosen as the global par-
titioner. The left subfigure in Figure 5 shows the relative
number of halo elements incurred by CA-MPK in addition
to what is caused by DLB-MPK accumulated over all MPI
processes, while the right subfigure shows the relative
number of required redundant computations for CA-MPK
subject to the same global partitioning. Despite the banded
sparsity pattern of the matrix, the halo elements required for
CA-MPK grow significantly with the power p and the
number of MPI processes.

The implementation of DLB-MPK can be straightfor-
wardly derived from the execution order illustrated in
Figure 4(c) for a 1D tri-diagonal example. However, when

Figure 5. Overheads in CA-MPK associated with the Serena matrix, partitioned over 10 and 15 MPI processes for powers p 2 {1, 2,
…, 12}. Left: additional halo elements relative to the total number of rows Nr. Right: recomputed elements relative to the total number
of non-zero elements Nnz.
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dealing with a general sparse matrix, the internal boundary
vertices Ik for k < pm may not be ordered consecutively.
Therefore, an efficient implementation will require gath-
ering these boundary vertices and reordering the matrix
during preprocessing to ensure that these vertices (rows in
the matrix) appear consecutively. All vertices which are a
distance of pm or greater from the boundary, i.e. all vertices
in Ik for k ≥ pm, are collected into a single main “bulk
structure” M, which is large in practice.

The algorithm is separated into three distinct phases: (i)
execute the initial halo communication, (ii) use the cache
blocking capabilities of RACE to fully promote all levels in
M to pm, and each Ik level to k, and (iii) iteratively finish
remaining computations and communications. We use a
modified Lp diagram in Figure 6 as an example of DLB-
MPK executing A3

i x on someMPI process i. The color of the
box indicates in which phase it is executed. The blue box
corresponds to the first phase, the orange to the LB-MPK
phase, and the green to the iterative third phase. As pre-
viously mentioned, B = I0 is the halo buffer, while I1 and I2
are all vertices that are distances 1 and 2, respectively, away
from the MPI boundary. Instead of labeling individual
levels, Figure 6 represents the main bulk structure byM. It is
here that RACE can safely perform cache blocking.

A benefit of DLB-MPK is that we can use the same MPI
routines as for TRAD. Hence, can easily integrate our al-
gorithm into external libraries with existing SpMVand halo
communication routines. This is shown in Algorithm 2,
which gives a high-level overview of DLB-MPK. The call-
back functions haloComm and SpMV are both provided by
the user. The structure I contains the first pm� 1 levels of Ai,
where again I [0] = B contains the boundary vertices. The
initial halo exchange takes place in the first phase, high-
lighted in blue. The cache-blocking second phase is

executed during localLBMPK, highlighted in orange.
Finally, the iterative third phase, represented by the nested
for-loops, is highlighted in green.

The percentage of vertices that fall outside of the bulk
structure is considered as the “local overhead” ODLB-MPK,i

of DLB-MPK. While not an “overhead” per se, it is a useful
quantity for our investigation as it expresses the efficiency
of cache blocking. WithMi denoting the bulk structure level
on MPI process i, we can define this overhead as

ODLB�MPK, id1� jMij
Ni, r

: (2)

To have a single number which represents the “global
overhead” from cache blocking, we collect the local
overheads in Equation (2) from each of the n processes and
normalize them over the total number of rows, yielding

ODLB�MPKd

Pn
i¼0 Ni, r � ODLB�MPK, ið Þ

Nr
: (3)

6. Results

In this section, we investigate the performance and scaling
characteristics of DLB-MPK and how they compare to TRAD
in a variety of scenarios on a selection of modern multicore
CPUs. To gain a deeper understanding of the performance of
our level-based cache-blocked MPK, we first establish a
theoretical roofline-based upper performance prediction for the
SpMV kernel, the main kernel used in MPK.

It is well known that SpMV (and by extension traditional
MPK) is usually a memory-bound kernel on modern
hardware for sparse matrices from science and engineering,
as described by Kreutzer et al. (2014). According to the
roofline model, in the memory bound regime with the CRS
matrix storage format5 using 8 bytes for the matrix values,
4 bytes for the column indices, and 4 bytes for the row
pointer, performance is limited by

P ¼ bs
6 Bþ 14 B=Nnzr

, (4)

where bs denotes the saturated main memory bandwidth,
and Nnzr = Nnz/Nr denotes the average number of non-zero
elements per row.

6.1. Experimental setup

The relevant hardware and software environment used for
the measurements is explained in the following.

6.1.1. Hardware. In this work, all experiments were con-
ducted on dual-socket nodes of either Intel Ice Lake (ICL),
Intel Sapphire Rapids (SPR), or AMD Epyc Zen3 (MIL).

Figure 6. An adapted Lp diagram for DLB-MPK executing A3i x on
some MPI process i. The numbers indicate the order of
execution of DLB-MPK. The colors of the boxes indicate the
phase of DLB-MPK in which they are executed. The blue box
corresponds to the first phase, the orange to the LB-MPK phase,
and the green to the iterative third phase.
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Table 2 details the important aspects of each architecture.
ICL and SPR are both capable of performing AVX-512
instructions, while MIL supports only up to AVX-2. Sub-
NUMA Clustering with the maximum possible number of
ccNUMA domains was enabled on the Intel systems (two
on ICL and four on SPR), and NPS = 4 was set on MIL.

In order to reflect practical use case scenarios, turbo
mode was enabled for all experiments.

All of these machines have three levels of cache: private,
inclusive L1 and L2, and a victim-style L3 cache. This
means that we can consider the sum of L2 and L3 cache as
the total size for which we can use RACE to cache block.
RACE excels when blocking for outer level caches, as
shown by Alappat et al. (2022).

Since the achievable bandwidth of the hardware plays a
vital role in determining the performance of SpMV-like
kernels (see Equation (4)), we investigate the bandwidths on
each of the machines in Figure 7. The load-only kernel from
likwid-bench by Treibig et al. (2010) is used here to
determine the bandwidth as it reflects the predominant
behavior of the SpMV kernel. The most striking contrast
between the three plots in Figure 7 is the difference in the
scale of y-axes. ICL has about half the L3 bandwidth of
SPR, and only about a sixth of the L3 bandwidth of MIL. In
terms of main memory bandwidth, however, ICL narrowly
surpasses MIL, while SPR beats both by at least 30%.

The cache “plateaus” at which we estimate the
L3 bandwidths vary in behavior. Both ICL and SPR display
a gradual degradation of bandwidth after the data set ex-
ceeds a cache size, which is due to Intel’s “dynamic re-
placement policy.” It has been shown by Alappat et al.
(2020b) that this policy makes intelligent use of the cache
for data sets that exceed the cache size. AMD’s cache re-
placement policy is different and leads to faster bandwidth
degradation as can be seen in Figure 7(c). The wide plateau
in Figure 7(c) can be explained by MIL having the largest
ratio between L2 + L3 and L2 sizes out of the three ar-
chitectures considered, which is due to its massive L3 cache.

Figure 7 indicates that we should expect strong residual
caching effects for matrices up to about 800 MiB on ICL,
and up to about 2400 MiB for SPR and MIL.

6.1.2. Software. Table 4 lists the matrices used for bench-
marking with their number of rows Nr, number of non-zero
elements Nnz, average number of non-zero elements per row
Nnzr = Nnz/Nr, and the size of the matrix data in CRS format.
The total size of a matrix is (4Nr + 12Nnz) B. Here, matrix
sizes are rounded to the nearest whole number in MiB.

Our selection of benchmark matrices is commonly used
in the literature for performance investigations. They show
the performance of DLB-MPK compared to TRAD across a
wide variety of sparsity patterns while keeping data sets
generally large enough to not be completely cache resident
(thus, eliminating the need for cache blocking). Most ma-
trices are freely available from the Suite Sparse matrix
collection, with the exception of the Lynx matrices, which
come from a finite-volume code for Cardiac Arrhythmia
simulations over unstructured meshes as described by
Langguth et al. (2015, 2019).

Measures had to be taken against the patch for the
“Downfall” security bug as explained by Moghimi (2023),
incurring a penalty for gather instructions on the architectures
under consideration. The latest LLVM-based Intel compiler
was required, with special compilation flags to avoid the
expensive gather instructions. In Table 3, these flags are given
under “Downfall fix.” To ensure vectorization of the SpMV
kernel, #pragma omp simd simdlen(VECLEN) re-
duction(+:sum) is used on the innermost SpMV loop,
where VECLEN is the maximum SIMD width on the re-
spective hardware (see Table 2), and sum is our accumulator
for the SpMV. On the Intel architectures, the flags -xCORE-
AVX512 and -qopt-zmm-usage=high shown in
Table 3 were also required so that the compiler would
generate instructions using the 512-bit wide zmm registers.

The same affinity is used for benchmarking on each
architecture. Each MPI process is pinned to one ccNUMA

Table 2. Single-socket hardware Configurations.

Architecture ICL SPR MIL

Chip model Xeon Platinum 8360Y Xeon Platinum 8470 AMD EPYC 7763
Microarchitecture Sunny Cove Golden Cove Zen 3
Cores 36 52 64
ccNUMA domains 2 4 4
Max. SIMD width 512 bits 512 bits 256 bits
L1D cache capacity 36 × 48 KiB 52 × 48 KiB 64 × 32 KiB
L2 cache capacity 36 × 1.25 MiB 52 × 2 MiB 64 × 512 KiB
L3 cache capacity 54 MiB 105 MiB 8 × 32 MiB
L3 load bandwidth 452 GB/s 826 GB/s 2642 GB/s
Mem. Configuration 8 ch. DDR4-3200 8 ch. DDR5-4400 8 ch. DDR4-3200
Mem. Load bandwidth 180 GB/s 241 GB/s 179 GB/s
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domain, process i + 1 is mapped physically as close as
possible to process i, and OpenMP threads are also pinned
compactly to the physical cores. Simultaneous Multi-
threading (SMT) was disabled across all the systems.

While not a primary focus of this work, RACE allows
users to specify a maximum recursion stage sm which en-
ables the breaking down of “bulky” levels for increasing
cache blocking efficiency. This maximum recursion stage is
set to sm = 50 for all matrices except Lynx1151, where it is
set to sm = 80.

We aim to understand the performance gained from cache
blocking, not from improved data accesses on the RHS
x-vector through the local symmetric BFS permutations (see
Section 3). In an effort to not conflate the two, TRAD is
executed with and without local symmetric BFS

permutations and the representative performance metric is
taken as the maximum of the two. Similarly, we take the
maximum performance of DLB-MPK with and without re-
cursion as the representative performance metric.

All numerical results are validated against Intel’s Math
Kernel Library.6 Benchmarks are repeated several times,
and the median performance is taken as the representative
performance metric. Error bars are excluded from our plots
as run-to-run deviations are less than 5%.

6.2. Parameter study

RACE provides tuning parameters to optimize performance
for the specific hardware under consideration. In this sec-
tion, we perform a parameter study on ICL with the matrix

Figure 7. Full-node measured load bandwidths in GB/s (y-axis) versus data set size for the CPUs under consideration. The higher solid
horizontal line represents the estimated L3 cache bandwidths and the lower one represents the estimated bandwidth from main
memory. The dashed red line marks the overall L2 cache size for the entire node, while the dotted blue line represents the aggregate L2
+ L3 cache size for the entire node. The widest SIMD registers are used on each machine for the load instructions.

Table 3. Software Configurations and compiler flags.

Architecture ICL SPR MIL

OS AlmaLinux 8.8 AlmaLinux 8.8 RHEL 8.8
MPI library version Intel MPI 2021.10 Intel MPI 2021.10 Intel MPI 2023.03
Compiler icx 2023.2.0 icx 2023.2.0 icx 2023.0.3
Flags
Opt. level -Ofast -Ofast -Ofast
Arch -xhost -xhost -Mar = core-avx2

-mtune = core-avx2
Downfall fix -Xclang -target-feature -Xclang -target-feature -Xclang -target-feature

-Xclang + prefer-no-gather -Xclang + prefer-no-gather -Xclang + prefer-no-gather
Force AVX512 -xCORE-AVX512 -xCORE-AVX512

-Qopt-zmm-usage = high -Qopt-zmm-usage = high
Misc -std = c++14 -fopenmp -std = c++14 -fopenmp -std = c++14 -fopenmp
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ML_Geer to better understand the influence of these pa-
rameters on the performance of DLB-MPK. This will also
serve as an example of how one could perform such an
investigation.

We focus here only on the parameters p and C since we
have fixed the recursion depth sm as described before. In
Figure 8, we scan various powers p and cache sizes C when
performing DLB-MPK on ML_Geer. We use METIS as the
global partitioner, pinning one MPI process to each of the
four ccNUMA domains compactly. We observe perfor-
mance increasing until a local maximum at p = 7 andC = 50,
after which performance degrades for higher values of p and
C. The exact reasons for this behavior are described by
Alappat et al. (2022), but we summarize the main points
here. As the value of p increases, the number of levels to be
kept in the cache also increases. Once the cumulative size of
all levels needed for blocking is larger than the total cache
size, measures must be taken to reduce the size of the levels
so that they can still all fit into the cache. This incurs higher
synchronization costs in RACE since all threads must be
synchronized after computing each of the smaller and more

Figure 8. Parameter study with ML_Geer on one ICL node,
scanning p 2 {1, 2, …, 10} and C 2 {30, 35, …, 75}.

Table 4. Benchmark matrices.

Matrix Nr Nnz Nnzr CRS Size [MiB]

inline_1 503,712 36,816,342 73.0 423
Emilia_923 923,136 41,005,206 44.4 473
Ldoor 952,203 46,522,475 48.8 536
af_shell10 1,508,065 52,672,325 34.9 609
Hook_1498 1,498,023 60,917,445 40.6 703
Geo_1438 1,437,960 63,156,690 43.9 728
Serena 1,391,349 64,531,701 46.3 744
bone010 986,703 71,666,325 72.6 824
audikw_1 943,695 77,651,847 82.2 892
Channel-500x100 4,802,000 85,362,744 17.7 995
Long_Coup_dt0 1,470,152 87,088,992 59.2 1002
dielFilterV3real 1,102,824 89,306,020 80.9 1026
nlpkkt120 3,542,400 96,845,792 27.3 1122
ML_Geer 1,504,002 110,879,972 73.7 1275
Lynx68 6,811,350 111,560,826 16.3 1303
Flan_1565 1,564,794 117,406,044 75.0 1350
Cube_Coup_dt0 2,164,760 127,206,144 58.7 1464
Bump_2911 2,911,419 127,729,899 43.9 1473
van_Stokes_4M 4,382,246 131,577,616 30.0 1523
Queen_4147 4,147,110 329,499,284 79.5 3787
nlpkkt200 16,240,000 448,225,632 27.6 5191
nlpkkt240 27,993,600 774,472,352 27.6 8970
Lynx649 64,950,632 978,866,282 15.0 11,450
Lynx1151 115,187,228 1,934,489,424 16.8 22,578
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numerous levels. A C which is smaller than the total cache
size also generates smaller levels, again increasing syn-
chronization overheads. But a C which is larger than the
total cache size will provoke more cache misses.

From Table 2, we know that one ccNUMA domain on ICL
has 49 MiB L2 + L3 aggregate cache, so we would expect an
optimal value for the parameter C to be around this range. The
optimalC does not always correspond directly with the amount
of available cache per process, due to a safety factor internal to
RACE. A user of DLB-MPK would manually tune these two
parameters to achieve the best possible performance for their
use case7. Notice that the DLB-MPK performance for p = 1
stays roughly constant as cache size grows. This corroborates
our claim from Section 3 that computing y← Apx for p = 1 can
not make use of cache blocking.

6.3. Performance results summary

In this section, we give a concise high-level single-node
performance summary of DLB-MPK and TRAD on our
benchmark matrices.

Figure 9 shows the node-level performance of DLB-
MPK (red, right bars) as compared to TRAD (blue, left bars)
for optimally tuned parameters C and p. The matrices are
ordered according to their size, and the vertical dashed line
indicates the L2 + L3 aggregate cache size of the architecture.
On MIL some matrices fit in the cache, that is, lie to the left of
the dashed vertical line. In this regime, DLB-MPK has no
benefit compared to TRAD since the matrices already fit in the
cache, and cache blocking is pointless. The behavior is very
similar with cache-residentmatrices on ICL and SPR, although
for this work, we chose large in-memory matrices to elucidate
the situations in which DLB-MPK is advantageous to use.

The short black line in or above each TRAD bar is the
memory-bound roofline performance limit of SpMV for the
given matrix and hardware computed using Equation (4).
As TRAD performs back-to-back SpMVs, ideally one
would expect the performance of TRAD for large in-
memory matrices to be below the roofline limit. How-
ever, in many cases, close to the cache boundary (just to the
right of the dashed vertical line), TRAD’s performance
exceeds the roofline limit by a small margin. This is due to
the residual caching effects as also observed in Figure 7 for
the load-only benchmark. As predicted for SPR and MIL,
TRAD exhibits these residual caching effects until the
matrix size is up to 2400 MiB, that is, until van_-
stokes_4M, after which point the performance of TRAD
is almost always lower than the upper roofline bound.

In general, towards the right of the dashed vertical line
(the in-memory matrices), DLB-MPK has a significant
advantage over TRAD. The performance of DLB-MPK is
much higher than the roofline prediction and TRAD, due
to cache blocking resulting in lower main memory traffic.
We observe an average (maximum) speedup of 1.6×

(2.5×), 1.7× (2.4×), and 1.6× (2.7×) for large in-memory
datasets on ICL, SPR, and MIL, respectively. The numbers
annotated above DLB-MPK bars show the optimal power
value tuned in the range of p 2 {1, 2, …, 12}. On ICL and
MIL, both TRAD and DLB-MPK perform poorly with the
Lynx1151 matrix. This is due to our benchmark requiring
multiple copies of internal data structures, which is not
uncommon in real applications. Combined with the size of
Lynx1151, this leads to frequent remote ccNUMA domain
accesses. This problem does not occur on SPR, as this ar-
chitecture has roughly twice the memory per ccNUMA
domain versus ICL, and roughly four times that of MIL.

As shown by Alappat et al. (2022), the preprocessing
costs associated with RACE to collect the level structure are
typically equivalent to 5 to 50 SpMVs (increasing with the
recursion stage sm). The preprocessing costs associated with
the introduction of MPI are minimal since the only addi-
tional steps are the identification and collection of the
boundary vertices. As this is equivalent to each MPI process
scanning its local rows once, this overhead is equivalent to
roughly one additional SpMV.

6.4. Strong scaling

It is frequently more important to understand the scaling
characteristics of performance rather than taking a snapshot
for a single parameter configuration and input. We now
investigate how the performance of DLB-MPK grows with
an increasing number of ccNUMA domains. The experi-
ment is conducted on eight nodes of SPR. As in the previous
section, the power p is tuned in the range p 2 {1, 2,…, 12}.

Figure 10(a) shows the performance of TRAD versus
DLB-MPK for both p = 4 and p = 6 on Lynx1151. The
reason that the performance for both A4x and A6x is shown is
that both powers are optimal for Lynx1151, depending on
the scale one considers. For a single SPR node, p = 4
performs better than p = 6. However, once more cache
becoming available when scaling to multiple nodes, p = 6
performs better.

Figures 10(b) and 10(c) show on the right y-axis how the
two overheads introduced in Sections 4 and 5 –MPI overhead
(OMPI from Equation (1)) and DLB-MPK overhead (ODLB-

MPK fromEquation (3)) – scale forLynx1151with a growing
number of processes. On the left y-axis, we show parallel
efficiency for strong scaling εstrongdT1/(nTn) for DLB-MPK,
where T1 is the time required by DLB-MPK for a single
process and is Tn the time required by n processes. Since we
have a fixed workload, we can choose Tn = 1/Pn, where Pn is
the performance of DLB-MPK on n ccNUMA domains.

Since we are blocking for a higher power in Figure 10(c),
it makes sense that ODLB-MPK will be higher than in
Figure 10(b), since there will be fewer vertices contained in
the bulk structure M as described in Section 5. MPI
overhead will be the same for both p = 4 and p = 6 since
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Figure 9. Node-level performance summary for benchmark matrices in Table 4, ordered by CRS size, on the CPUs under
consideration. For each matrix, the numbers above the bars denote the optimal power p for which DLB-MPK was tuned. The
horizontal black lines are the roofline predictions for TRAD according to Equation (4). The vertical dashed line represents the aggregate
L2 + L3 cache size.
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OMPI depends only on the matrix structure and number of
MPI processes.

We see εstrong ≥ 1 in the intra-node regime in the left
subfigure in Figure 10(b) where we normalize εstrong against
the time taken by DLB-MPK on one ccNUMA domain. The
sharp increase in εstrong from one to two processes is due to
the additional cache available with the second ccNUMA
domain. As the number of processes increases, we gain access
to more cache, yet the MPI costs grow as we communicate
with other processes that are physically farther away. Alter-
natively, in the right subfigure in Figure 10(b) εstrong ≤ 1 for the
inter-node regime, where we normalize εstrong against the time
taken by DLB-MPK on one entire node. We see the impact of
MPI on a larger scale here, as inter-node communication
latency is much higher than within a single node. Parallel
efficiency reaches a higher maximum with p = 4 for the intra-
node case as shown in Figure 10(b), but is sustained for larger
MPI process for the inter-node case with p = 6 as shown in
Figure 10(c).

Figures 10(d) and 10(e) show how the performance and
overheads of DLB-MPK scale for nlpkkt240. Although
the maximum performance attained is roughly the same as
for Lynx1151 on all eight nodes, nlpkkt240 exhibits
different scaling behavior. There are two reasons for the
strange scaling behavior of nlpkkt240.

First, the matrix structure is much “worse,” i.e., the
sparsity pattern is not banded, and there are many non-zero
elements that are far from the diagonal. This will not only
increase DLB-MPK overhead as there are fewer levels
(i.e., fewer vertices inside the bulk structure M), but it will
also increase the MPI overhead as there are more halo ele-
ments on each process. The second reason is that we rec-
ognize residual caching effects after around 4–5 nodes by the
sharp jumps in the performance of both TRAD and DLB-
MPK. From Table 2, we can compute that if Lynx1151 is
partitioned roughly equally across eight nodes, about 2.8 GiB
of matrix data lies on each node. Since this is above
2400MiB, wewill not see any residual caching effects. But if
we partition nlpkkt240 in the same manner, only about
1.1 GiB of matrix data will reside on each node.

This is not uncommon and poses a difficulty when
performing scaling studies with DLB-MPK. Most matrices
from Suite Sparse are simply not large enough to fully take
advantage of DLB-MPK.

7. Application: Chebyshev
time propagation

A common application that can benefit from the DLB-MPK
is the Chebyshev method for the time evolution of quantum
states as shown by Tal-Ezer and Kosloff (1984); Fehske
et al. (2009). In this section, we demonstrate the advantage
of cache blocking in the context of this application and
investigate the weak scaling characteristics of DLB-MPK.

Figure 10. Single- (left) and multi-node (right) strong scaling
performance and overhead results for Lynx1151 and
nlpkkt240 on SPR nodes.
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Given a Hamiltonian bH and an initial state |ψ(0)i, the
goal is to solve jψðτÞi ¼ e�iτbH jψð0Þi for some target time τ.
This can be achieved by splitting the exponential into
multiple small time steps δτ and approximating each as a
polynomial in bH . Using an expansion in Chebyshev
polynomials and keeping the firstMþ 1 terms leads to the
following approximation for a single time step:

jψðτ þ δτÞi ¼ e�iδτbH jψðτÞi
≈J0ðδτÞjv0i þ 2

XM
k¼1

ð�iÞkJkðδτÞjvki,
(5)

where Jk (δτ) is the Bessel function of the first kind of order
k. The states |vki are calculated recursively using the
relations

jvkþ1i ¼ 2bH jvki � jvk�1i, (6)

jv0i ¼ jψðτÞi, jv1i ¼ bH jψðτÞi, (7)

which primarily amounts to a sequence ofM SpMVs whenbH is given as a sparse matrix. Since these SpMVs are the
computational hot spot of the algorithm, the Chebyshev
time-propagation method can potentially be sped up sig-
nificantly by using the DLB-MPK.

We demonstrate the Chebyshev time propagation for the
Anderson matrix. Physically, it represents a single-
particle Hamiltonian for electrons in a disordered medium

bH ¼ W

2

X
r

wrjrihrj � t
X
hr, r0i

jrihr0j, (8)

where the states |ri with r ¼ ðx, y, zÞ 2Z
3 correspond to sites

in a cubic lattice, and the second summation is over nearest-
neighbor pairs. The parameter W determines the strength of
the disorder potential. Here, we assume an uncorrelated
random potential, with wr drawn uniformly from the interval
[�1, 1]. Equation (8) is a paradigmatic model for the metal-
insulator transition due to Anderson localization as described
by Anderson (1958): while the system is a conductor for
small W, it becomes an insulator above some critical value
Wc. For W > Wc, the eigenstates of bH are localized, that is,
they are restricted to a finite region outside of which their
weight decreases exponentially. As a consequence, an ini-
tially local state, for example, a Gaussian wave packet

jψð0Þi}
X
r

e�
r2

2σ2þik0rjri (9)

of width σ, does not diffuse and instead remains localized
indefinitely. Moreover, it was recently shown that the
density distribution ρ(r, τ) = |hr|ψ(τ)i|2 at long times τ is
insensitive to the initial momentum k0 of the wave packet,
so that the center of mass of the wave packet must return to
its origin.

Prat et al. (2019); Janarek et al. (2020, 2022) have nu-
merically investigated this “quantum boomerang effect” for
various models using the Chebyshev time-propagation
method. Here, we consider a variant of the Anderson
model in which the hopping parameter t along the y and z
axis is replaced by t’ < t, that is, a system of weakly coupled
chains. By tuning t’, a localization transition can be in-
duced at fixed disorder W, as shown by Zambetaki et al.
(1997). Figure 11 displays results for the time evolution of a
wave packet moving in the x direction with k0 = π/2ex. As
expected, the center of mass approaches x ≈ 0 for long times
in the localized system with small t’/t = 0.001, while it
remains at a finite displacement in the delocalized one with
t’/t = 0.1. In addition, the density distribution ρ(r, τ) for t’/
t = 0.001 becomes stationary at long times τ, that is, the
wave packet stops spreading, which is another signature of
Anderson localization.

To demonstrate the effectiveness of DLB-MPK on a real-
world application, we now perform a weak scaling study on
the above-described Chebyshev time propagation method

Figure 11. Time evolution of a wave packet (Equation (9)) with
width σ = 20 and momentum k0 = π/2ex. Panel (a) shows the
time-dependent density distribution in the localized regime with
parameters t’/t = 0.001 andW/t = 1. The center-of-mass motion is
displayed in panel (b), which also includes data for a delocalized
system with t’/t = 0.1. We used a finite rectangular system with
dimensions Ly = Lz = 100 and Lx = 3000 for the simulations, and
averaged the results over 50 runs with different random
potentials wr.
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on SPR nodes. The Anderson matrix is generated using
the ScaMaC matrix generator.8

Previous state-of-the-art implementations of the Che-
byshev time propagation method perform back-to-back

SpMVs to compute |vk+1i for successive time steps.
However, these SpMVs can be accelerated by cache
blocking using DLB-MPK. In order to be well outside of the
residual caching effects on SPR, the study is constructed so

Table 5. Anderson matrix Configurations.

# ccNUMA Domains (Lx, Ly, Lz) Nr Nnz Nnzr CRS Size [MiB]

1 (160, 160, 160) 4,096,000 28,518,400 7.0 342
2 (320, 160, 160) 8,192,000 57,088,000 7.0 685
4 (320, 320, 160) 16,384,000 114,278,400 7.0 1370
8 (320, 320, 320) 32,768,000 228,761,600 7.0 2743
16 (640, 320, 320) 65,536,000 457,728,000 7.0 5488
32 (640, 640, 320) 131,072,000 915,865,600 7.0 10,981
64 (640, 640, 640) 262,144,000 1,832,550,400 7.0 21,972

Figure 12. Weak scaling investigation using the Anderson matrices in Table 5 on a single (left) and multiple (right) SPR node(s).
Boxplots are given when performance fluctuates by more than 5%.
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that we always have about 342 MiB of matrix data per
ccNUMA domain, i.e. 2743 MiB per node. Compared with
our observations in Figure 7, this will be far outside of the
cache. Specifically, we double the number of lattice sites in a
selected direction (x, y, or z) in order to double the number of
rows in the matrix. The Anderson matrix configurations
used can be seen in Table 5.

As previously mentioned, Equation (6) represents a
series ofM SpMVs with the same matrix data bH . SinceM
is on the order of 100-1000s, we must choose a factor
pm <M by which we block the matrix data in the cache.9

In the samemanner described in Section 6.2, we first tune
pm and the cache size C to obtain optimal node-wide per-
formance. After such an investigation, DLB-MPK yields the
highest performance on SPR at pm = 8, C = 35 MiB. Note
that C is much smaller than the available L2 + L3 aggregate
cache given for SPR in Table 4. This is expected since there
are other data structures in the application that will also
occupy space in the cache. We define parallel efficiency in
the weak scaling case as εweakdT1/Tn. Since our workload
now increases with the number of processes, we choose T1 =
1/P1 and Tn = n/Pn, where Pn is still the performance of
DLB-MPK on n ccNUMA domains.

Figure 12 shows the weak scaling performance per MPI
process and the overheads of DLB-MPK applied to the
Chebyshev time propagation method using various sizes of
the Anderson matrix. We double the innermost spatial
dimension last to respect layer conditions for cache
blocking. In the single-node regime, we took the median of
five executions of both TRAD and DLB-MPK as the
representative performance, yet the fluctuations were less
than 5%. For the multi-node regime, we included the box-
and-whisker plots in addition to the median for both TRAD
and DLB-MPK, since we noticed higher performance

fluctuations when scaling to multiple nodes. The tip and tail
of the whiskers are the minimum and maximum perfor-
mance observed, and the boxes denote the interquartile
range of the five executions. Our selected affinity is the
same as described in Section 6.

DLB-MPK maintains a speed-up of about 2.8× as
compared against TRAD for one and two ccNUMA do-
mains. When moving from 2 to 4, and then to 8 ccNUMA
domains, speed-up drops to about 2.5×. In the multi-node
regime (i.e., past eight ccNUMA domains) we maintain a
speed-up of 2× to 3.3× for the worst performing DLB-MPK
executions, and 2.5× to 4× for the best.

8. Summary

We have motivated and developed a novel cache-blocked
MPI-parallel matrix power kernel based on the level-
blocking capabilities of RACE. The resulting algorithm
extends the ideas developed by Alappat et al. (2022) by first
organizing local vertices on each MPI process by their
distance k from the halo buffer into levels Ik, and then
interleaving a local cache blocking MPK with communi-
cation steps to fulfill data dependencies. Our algorithm,
DLB-MPK, has been shown to be efficient in that it does not
increase MPI overhead when compared to the traditional
MPK implementation. This is because these collections of
vertices Ik grow inwards, keeping the number of halo el-
ements constant while slightly reducing the efficiency of
cache blocking. Furthermore, DLB-MPK has the advantage
that it uses the same computation and halo communication
routines as a traditional distributed-memory parallel MPK.
Therefore, it can be easily integrated into existing libraries
and can be used as a drop-in replacement for traditional
distributed-memory parallel MPK.

We used the roofline model to explain expected per-
formance behavior using key metrics extracted from our
selection of test hardware platforms. After that, we gave an
example of how one may tune DLB-MPK for optimal
performance. To evaluate the performance of DLB-MPK,
we first gave a snapshot summary of the optimally tuned
performance as compared to the traditional MPK on modern
multicore CPUs. We observed a node-wide average
(maximum) speedup of 1.6× (2.5×), 1.7× (2.4×), and 1.6×
(2.7×) for large in-memory datasets on ICL, SPR, and MIL,
respectively

Then, strong scaling characteristics of DLB-MPK were
studied, where we observed the influence of caches and
communication on performance. Finally, DLB-MPK was
integrated into an application using a Chebyshev method for
the time evolution of quantum states for the Anderson
model of localization. This enabled us to perform weak
scaling investigations on up to eight Sapphire Rapids nodes,
in which we observed a speed-up of up to 4× when com-
pared to the traditional MPK implementation. Future work

Algorithm 2 Distributed Level-Blocked MPK
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will be directed towards the integration of GPGPU support
for DLB-MPK.
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Notes

1. We conform to the standard of describing quantities as powers
of two, and performance metrics as powers of 10, for example,
1 MiB = 220 B, 1 M flop/s = 106 flop/s.

2. https://www.techpowerup.com/cpu-specs/.
3. https://www.techpowerup.com/gpu-specs/.
4. RACE internally handles non-symmetric matrices as sym-

metric, filling in non-symmetric entries to aid the collection of
vertices into levels. These filled-in elements do not appear on
the actual matrix, and it is therefore sufficient to discuss only
symmetric matrices.

5. This technique is very similar to the well-known Reverse
Cuthill-McKee reordering. The main difference is how the root
vertex is selected.

6. We are not bound to any particular matrix format, but choose
CRS for its ubiquity in the literature.

7. In practice, one would choose a value close to the cache size of
the hardware for C. As we have seen from Figure 8, this is close
to the optimal value. However, the optimal p value might need
some tuning but in many practical cases it is determined by the
application that we run. For example in case of s-step GMRES
method, it is typically the value of s.

8. https://software.intel.com/en-us/mkl.
9. https://alvbit.bitbucket.io/scamac_docs/index.html.

References

Alappat C, Basermann A, Bishop AR, et al. (2020a) A recursive
algebraic coloring technique for hardware-efficient sym-
metric sparse matrix-vector multiplication. ACM Trans.
Parallel Comput 7(3): 1–37. DOI: 10.1145/3399732.

Alappat CL, Hofmann J, Hager G, et al. (2020b) Understanding
HPC benchmark performance on Intel broadwell and cascade
lake processors. In: Sadayappan P, Chamberlain BL,
Juckeland G, et al. (eds) High Performance Computing.
Cham: Springer International Publishing, pp. 412–433. ISBN
978-3-030-50743-5.

Alappat C, Hager G, Schenk O, et al. (2022) Level-based blocking
for sparse matrices: sparse matrix-power-vector multiplica-
tion. IEEE Transactions on Parallel and Distributed Systems
34(2): 581–597. DOI: 10.1109/TPDS.2022.3223512.

Alappat C, Thies J, Hager G, et al. (2023) Algebraic temporal
blocking for sparse iterative solvers on multi-core CPUs.
The International Journal of High Performance Com-
puting Applications. 2024;0(0). DOI: 10.1177/
10943420241283828.

Anderson PW (1958) Absence of diffusion in certain random
lattices. Physical Review A 109: 1492–1505. DOI: 10.1103/
PhysRev.109.1492.

Davis TA and Hu Y (2011) The University of Florida sparse matrix
collection. ACM Transactions on Mathematical Software
38(1): 1–25. DOI: 10.1145/2049662.2049663.

Demmel J, Hoemmen M, Mohiyuddin M, et al. (2008) Avoiding
communication in sparse matrix computations. In: 2008 IEEE
International Symposium on Parallel and Distributed Pro-
cessing, pp. 1–12. DOI: 10.1109/IPDPS.2008.4536305.

Fehske H, Schleede J, Schubert G, et al. (2009) Numerical ap-
proaches to time evolution of complex quantum systems.
Physics Letters A 373(25): 2182–2188. DOI: 10.1016/j.
physleta.2009.04.022.

Gao J, Liu B, Ji W, et al. (2024) A systematic literature survey of
sparse matrix-vector multiplication. Preprint: arXiv:
2404.06047.

Janarek J, Delande D, Cherroret N, et al. (2020) Quantum boo-
merang effect for interacting particles. Physical Review A
102: 013303. DOI: 10.1103/PhysRevA.102.013303.
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