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Abstract

Improving the energy efficiency of electric vehicles has various significant benefits, such as
increasing the driving range. The Thermal Management System (TMS) plays a large role in
optimizing the vehicle energy consumption and battery lifetime. In this thesis, a nonlinear
Model Predictive control (MPC) strategy is presented to regulate the battery, motor and
inverter temperatures to minimize vehicle energy consumption and maximize battery
lifetime, two conflicting objectives traded off by a single tunable parameter, whilst staying
within temperature limits to ensure safety. The control dynamics are nonlinear and
discontinuous, due to valves in the system that can only be fully opened or fully closed,
leading to a nonlinear mixed-integer optimization problem. A nonlinear model of the TMS
including actuators and electric components is formulated that is validated by using
simulation results over three drive cycles for moderate and hot ambient conditions. Mean
temperature deviations between -0.22 and 0.25 °C are achieved for the battery, and between
0.14 and 1.48 °C for the motors, depending on the drive cycle. Using outer convexification,
the optimization problem is reformulated as a continuous problem, which can be solved
efficiently. The control strategy is tested in a simulation environment for both moderate and
hot ambient temperatures and three different drive cycles. The strategy is compared to a
benchmark strategy that uses a finite-state machine and PID-based control loops. A
decrease in power consumption between 7% and 11% is achieved for 5 out of 6 use cases
whilst additionally decreasing the ageing rate by 0% to 7%. For one use case, an increase in
energy consumption is achieved by 2.5%, but the relative ageing rate is decreased by 44%.
At hot temperatures, improvements are mostly achieved due to finding an energy-efficient
battery cooling trajectory. At moderate temperatures, improvements are mostly achieved by
increased motor cooling to take advantage of the temperature-dependent motor losses. The
results obtained using a continuous solver are also compared to those obtained using a
mixed-integer solver. Minimal loss in performance is seen compared to the mixed-integer
solver, whilst requiring a significantly lower computation time that is within the sample
time, making the MPC strategy fast enough for real-time control in the simulation
environment. Finally, the effect of using noisy forecast information is used to test the
robustness of the controller. Using noisy forecast information instead of perfect forecast
information, the energy consumption and ageing rate increase by 0.0% to 1.2%.
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Chapter 1

Introduction

The energy transition is a hot topic in the current world. People are using more and more
energy which often contributes to the emission of greenhouse gases [8] and therefore goes at
the cost of climate change [9]. Currently, the transportation sector is one of the largest
contributors to the emissions of greenhouse gases. Additionally, since 1990, global transport
emissions have grown at a constant rate of about 2% per year [10]. To reduce environmental
impact, in some countries, people are encouraged to take their bikes for short-distance
transport, which is a simple and free solution. Also, the combustion vehicle is getting
replaced by the Electric Vehicle (EV). Global increases in passenger and freight travel
activity levels have outpaced energy efficiency and fuel economy improvements, continuing a
long-term trend for the transport sector [10].

Engineers can make a high impact on making the transport sector more sustainable in many
ways. New vehicles are being made that use renewable energy sources, recyclable materials
can be used in the design and the available energy can be handled more efficiently within
the car. One of the clearest changes in the most recent years is the increase in EV’s on the
road. Globally, the amount of EV’s has grown with at least 30% per year since 2016 [11].
Certain factors are still limiting people from buying an EV. The high price, limited driving
range and time to charge are important reasons for many people not to buy an EV yet [12].
By making vehicles as energy efficient as possible, both of these problems can be addressed.

The company Lightyear is creating a solar-powered EV, designed to be grid-independent
and drive anywhere. One of the main design goals is to maximize vehicle efficiency: to be
able to drive as far as possible while consuming as little energy as possible. By minimizing
energy losses within the car, vehicle efficiency is optimized. Figure 1-1a and Figure 1-1b
show the first model: Lightyear 0. To make the car as energy efficient as possible, the entire
vehicle should be designed to allow that. This means that not just individual components
should be optimized but interactions between components should be considered as well. For
example, even though an electrical motor might be very efficient, there will be energy losses.
By considering these losses, the vehicle can be designed such that these losses can be used
again to heat up other parts in the system that need heating, such as the cabin. Using this
waste heat can increase overall energy efficiency.
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2 Introduction

(a) Lightyear 0 is designed to minimize aero-
dynamic drag

(b) Lightyear 0 uses solar panels to generate
energy

Figure 1-1: Lightyear 0 is designed with the main focus on energy-efficiency

Both the energy efficiency and the lifetime of many electrical components depend on their
operating temperatures. Additionally, the Thermal Management System (TMS) systems in
EVs can result in a range reduction of up to 50% [13]. Therefore improving the energy
efficiency of the TMS is an active area of research. The TMS has two functions:

• Regulate the temperature of the electrical components to ensure component efficiency
and durability.

• Provide passenger comfort by controlling the cabin air temperature, humidity, and
CO2 concentration, and ensuring proper defogging/defrosting of the windscreen.

Thermal conditioning of components can cost a lot of energy. Passive cooling is not always
sufficient and active cooling, turning on actuators in the TMS, is required. On the other
hand, conditioning components can save energy: For example, the efficiency and durability
of the electrical components can be temperature-dependent [6, 14] and therefore also the
component efficiency and lifetime can be improved by controlling the operating
temperature. Here the trade-off arises between thermally conditioning components very
precisely at their optimal operating temperature and saving energy in the TMS.

A separate TMS can be developed for the cabin, motors and batteries to increase ease of
adaptability to different vehicle architectures [14]. To increase efficiency, durability and
safety while driving, subsystems such as a separate battery thermal management system
and the cabin Heating, Ventilation and Air Conditioning (HVAC) should be integrated [15].
In the integrated case, less hardware is required and waste heat recovery is possible, where
excessive heat from the high-voltage electric components is reused to heat the cabin [16].
Many examples of hardware implementations for the integrated TMS exist [16, 17] but little
research on control solutions has been done. For the Lightyear 0, a fully integrated thermal
management system is developed where heat can be transferred from any location in the car
to any other location in the car. This offers an opportunity for energy savings but requires
more complex control engineering.

Another development is that modern vehicles can make use of the internet, GPS and
detailed maps. Relevant data such as the road topology, trip duration, weather forecast and
traffic conditions can be extracted for proactive control of a thermal conditioning system

Jeroen van der Knaap MSc Thesis



1-1 Objectives & requirements 3

[18]. For example, when it is known that a hill is coming up, cooling of the powertrain can
be done in advance to prevent peaks in power consumption. Component temperatures can
be precisely controlled to minimize energy consumption throughout the entire trip.

The complexity in such integrated systems has multiple causes, including but not limited to:

• Generally, as there are multiple heat sources/sinks (cabin, electric components,
ambient), the same temperature requirements can be fulfilled by replacing the heat in
different locations.

• In order to reach all possible objectives, different actuators are available. Due to this,
different control strategies are possible to reach the same objective.

An optimal control strategy for the TMS attempts to find control actions that optimize the
desired objectives.

1-1 Objectives & requirements

Various research has been done on thermal management in the last few years. Two
developments can be seen:

• The TMS is becoming more integrated [19]. Integrating the TMS allows for heat
transfer between the different vehicle components, such as the motors, inverters and
battery. An integrated TMS requires less hardware required to fulfil the same
requirements

• Using forecast information, such as ambient temperature and vehicle speed,
disturbances can be predicted which can be used for energy-saving control of the TMS
[4].

The aim of this thesis is to develop a control system that minimizes the energy consumption
in the integrated thermal conditioning system of electric vehicles. It has been shown in
research that predictive control allows for high energy savings compared to traditional
controllers. In the thermal management in the building sector [20, 21, 22] and automotive
sector [4, 7], or energy management in the automotive sector [23, 18], predictive control
using forecast information has been applied. The combination of using forecast information
in an integrated system that includes the electric motors, inverters and High Voltage
Battery (HVB), and multiple actuator combinations, in the case of a system with discrete
valves, creates a more complex control problem that has not been fully explored yet.

The objectives set for this thesis are to:

• Develop an optimal supervisory controller that is able to plan the optimal component
temperature trajectory and actuator configuration over time and compare the
performance to the currently existing system.

• Analyse the sensitivities with respect to predictable disturbances in the performance
of the control system.
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4 Introduction

• Explore the possibilities for real-time control using the presented methodology.

It is assumed that the controlled vehicle follows a route that is given by the navigation
system and that the vehicle is driven according to the speed limits. The following control
system requirements are defined:

• The component temperatures must always stay within predefined limits.

• The control strategy must be computed while driving.
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Chapter 2

Thermal management setting

In the TMS of an EV, there are multiple components that are thermally conditioned. The
conditioning process is physically executed by several actuators in the TMS. This chapter
describes a general hardware setup after which the background is given on the controller
setup and the specific subproblem of cooling is described.

2-1 Generalized setup of the reference vehicle

Within the EV, the internal temperature of different components has different effects. For
the High Voltage Battery (HVB), temperature affects lifetime and energy efficiency [6], and
for the motors, temperature affects energy efficiency [14]. Within the considered TMS, heat
can be moved from any heat sink to another. In this thesis, control of the circuits that are
able to remove heat from the powertrain components, which are the motors, inverters, and
HVB is considered. The temperatures can be controlled using any of the currently relevant
various actuator configurations: Via the radiator or the chiller. Figure 2-1 shows the the
basic setup of an electric vehicle TMS. Various blocks are connected to each other, whereas
each block consists of hardware and can target different components.

2-1-1 Conditioned components

For an electric car, the motors, inverters, HVB and passenger cabin generally all need to be
thermally conditioned. This section elaborates on the function of the conditioned
components.

Drivetrain: In an electric vehicle, the drivetrain consists of motors and inverters. In an
electric car, one or multiple electric motors are used to provide vehicle propulsion. The
motors are powered by energy coming from the HVB. The inverter connects the HVB and
electric motor(s) by converting the direct current (DC) available in the HVB to three-phase
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6 Thermal management setting

Figure 2-1: A top-level schematic of the TMS

alternating current (AC) which is required to drive the electric motors. The motors and
inverters can be cooled by the coolant circuit.
Electric motors can generate a significant amount of heat which needs to be removed [3].
The temperature influences the efficiency, durability and safety of the motors [14, 24]. Next
to the motors, the inverters generate significant heat that needs to be removed, whereas
some of the losses are also temperature dependent [25].
In the reference vehicle, there are four motors and inverters. The components are cooled in
series and parallel, as shown in Figure 2-2.

Figure 2-2: The inverter (INV) - motor (MOT) cooling arrangement.

For component safety and durability, temperature limits exist for the motors and inverters,
which are shown in Table 2-1.

HVB: The High Voltage Battery (HVB) is the energy storage system for the motors,
inverters and parts of the thermal management system that run on high voltage. Energy
capacity, efficiency and lifetime are highly dependent on temperature. Battery lifetime is an
important factor because of the price and environmental impact of replacing the battery.
Additionally, safety must be ensured as extreme temperatures can cause self-ignition or
thermal runaway [26]. For component safety and durability, temperature limits exist for the
HVB, which are shown in Table 2-1. Next to temperature limits, there also charging and
discharging power limits for the battery cells, depending on the temperature. The
dependency on temperature for the power limits is shown in Figure 2-3. Between 20 and 35
°C charging and discharging are the least limited, whereas at extremer temperatures first
only charging, but at < 10 °C and > 45 °C both charging and discharging are increasingly
limited.
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2-1 Generalized setup of the reference vehicle 7

Figure 2-3: Battery power limits are related to temperature: In the green temperature zone,
both charging and discharging are least limited, in the orange zone charging is increasingly limited
and in the red zone both charging and discharging are highly limited

Battery Inverters Motors Coolant fluid
Lower temperature limit [°C] 0 0 0 0
Upper temperature limit [°C] 65 65 100 65

Table 2-1: Temperature limits for the different components in the vehicle

Passenger cabin: A Heating, Ventilation and Air Conditioning (HVAC) system has the
function to optimise the level of thermal comfort for the passengers in the cabin. The
passenger cabin is not considered in this thesis.

2-1-2 TMS hardware

As different actuator configurations can be used to reach the same objectives, understanding
the limits and efficiencies of each configuration can provide useful information for further
improvement of the control strategy. This section elaborates on the different hardware
elements of the Thermal Management System (TMS).

Coolant system The coolant fluid used is a mixture of glycol and water. Coolant fluid is
flowing along different parts of the vehicle through hoses. Within the coolant system, the
mass flow and temperature of the coolant fluid are controlled. By control of pumps, heaters
and heat exchangers, the heat transfer for and to the different components can be regulated.
The coolant system is responsible for conditioning the motors, inverters and HVB. Heat can
be exchanged with the refrigerant circuit through the chiller and the ambient air through
the Front Hex Unit (FHU). For TMS safety and durability, temperature limits are set for
the coolant fluid, as shown in Table 2-1.

Refrigerant system Due to the efficiency of cooling through vapour-compression cycle
refrigeration, refrigerant is used in many electric vehicles. The refrigerant fluid is flowing
past different parts of the vehicle through hoses. Within the refrigerant system, the mass
flow and temperature of the refrigerant fluid are controlled. The refrigerant goes through a
vapour-compression cycle, where heat transfer is controlled through the use of a compressor
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and expansion valves. The refrigerant system is responsible for delivering the requested heat
transfer to control the cabin temperature. Additionally, as mentioned previously, heat
transfer can take place with the coolant system through the chiller and the ambient air in
the FHU.

Front Hex Unit (FHU) The FHU provides the interface with the ambient air. The air
flows through the grill and through the use of fans, the mass flow can be regulated. The
FHU is responsible for providing the requested mass flow of ambient air for the refrigerant
circuit and coolant circuit such that the desired heat transfer can take place.

Cabin HVAC system The Heating, Ventilation and Air Conditioning (HVAC) system is
responsible for thermally conditioning the passenger cabin and is not considered in this
thesis.

2-2 Simulation environment and reference controller

At Lightyear, a high-fidelity simulation environment has been developed in Simscape within
the MATLAB Simulink environment. Simscape can be used to build and simulate physical
component models based on physical connections. Components can be chosen from a large
library or made custom, whereas many model parameters can be set based on which
Simscape creates a differential-algebraic system of equations. The parameters within the
simulation model are either based on component datasheets or verified by system
identification experiments. The optimal control strategy developed in this thesis will be
compared to an existing reference setup, where two control layers for the TMS exist. This is
visualized in Figure 2-4. In the first layer, valve positions and target temperatures for
different components are chosen using a finite-state machine, based on the component
temperatures and ambient temperature. In the finite-state machine, a specific control mode
needs to be chosen. There are six modes for cooling:

• Idle. All actuators are turned off.

• Battery cooling. The battery is cooled through the radiator for moderate cooling to
ensure the battery temperature stays below 40 °C.

• Powertrain cooling. The motors and inverters are cooled through the radiator to
ensure the component temperatures stay below their respective temperature limits,
shown in Table 2-1.

• Battery chilling. The battery is cooled through the chiller for maximal cooling to
ensure the battery temperature stays below 40 °C.

• Battery cooling + powertrain cooling. Both the battery, inverters and motors are
cooled through the same radiator.

• Battery chilling + powertrain cooling. The battery is cooled through the chiller and
the inverters and motors are cooled through the radiator. There is no significant
interaction between the two circuits.
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Then, a low-level PID-based controller tracks the set target temperatures using the chosen
set of actuators.

Figure 2-4: The benchmark control hierarchy in the TMS subsystem
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Chapter 3

System modelling

This chapter describes the models used to describe the TMS. A simplified model of the
cooling subsystem is described in Figure 3-1. First of all, black box, white box and grey box
modelling methods are discussed. Background on the thermal, fluid, electrical and vehicle
dynamics is given and models found in the literature are discussed. Finally, the models from
the different domains are all integrated to create the state-space model.

3-1 White box, grey box and black box modelling

Three methods exist for modelling physical systems: Black box, grey box and white box
modelling techniques. The advantages and disadvantages of all three methods are discussed.

Black box models: Black box models, sometimes called data-driven models, do not
assume any physical correlation between modelled parameters. Examples of black box
models are neural networks and random forests. Black box models have several advantages
and disadvantages including:

• Low scalability with different hardware architectures.

• Low understandability because the model is not physics-based.

• High accuracy as black box models do not assume physical connections.

• High usability as an engineer does not need to understand the physics.

Black box models have been used for the thermal control of large buildings [20, 27]. As large
buildings are often different (e.g. there are different materials and dimensions) and the
influence of disturbances is large (e.g. there is a time-varying occupation) making individual
physical models for each building can be time-consuming, inaccurate and
expertise-demanding, data-driven approaches have a significant advantage.
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Figure 3-1: Model of the TMS cooling subsystem

White box models: White box models are based on physics. Differential equations have to
be formulated that aim to describe the behaviour of the system over time and full
knowledge about the system is assumed to be available to determine the model parameters.
White box models have several advantages and disadvantages including:

• High scalability with different hardware architectures as components can be added or
removed according to their physical connection to the system.

• High understandability because the model is physics-based.

• High accuracy is not assured as physical models may not always capture real-world
behaviour.

• Low usability as an engineer does need to understand the physics.
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3-2 Thermal dynamics 13

Grey box models: Grey box models are based on physical equations but do use data to
find model parameters. Differential equations have to be formulated that aim to describe
the behaviour of the system over time and system identification tests are done to find model
parameters. Grey box models have several advantages over white and black box models
including:

• High scalability with different hardware architectures as components can be added or
removed according to their physical connection to the system.

• High understandability because the model is physics-based.

• High accuracy as physical model parameters are fitted to data.

• Moderate usability as an engineer does need to understand the basic physical equations
but the model parameters are fitted to data and not full system knowledge is required.

As the controller developed in this thesis is designed such that it can be used in many cars
of the same model, the cost of engineering hours is relatively small. Additionally, as many
different people may work with the controller, having easy-to-understand models is an
important advantage. Finally, it is desired that the controller framework is scalable, and can
be changed for different hardware configurations. Grey box models suit these requirements
best.

3-2 Thermal dynamics

Thermal dynamics background is required to model the temperatures in the TMS and the
heat transfer between different components. The first law of thermodynamics [28] states
that energy cannot get lost, however, energy can be transformed from one form to another.
Due to energy transformation, the internal energy of the system can change when energy is
added or removed from the system. The internal energy is dependent on the temperature of
the system which can change due to the addition or removal of heat, as expressed by

∆T = Qadded − Qremoved
C

, (3-1)

where T [K], Qadded[J], Qremoved[J] and C [J· K−1] are the temperature of the system, heat
added to and removed from the system, and thermal capacity of the system. The following
section applies the laws from thermal dynamics [28] to model the temperature dynamics of
the electric components and coolant fluid, as well as the various heat exchangers.

3-2-1 Electrical component temperature

The temperature dynamics for a component with mass m and heat capacity C can be
described by

dTcomponent
dt

= Q̇losses − Q̇dissipated
C

, (3-2)
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where Q̇losses [W] is the rate of generated heat due to losses and Q̇dissipated[W] is the rate of
heat dissipation through cooling, which can be to the coolant or ambient air. This concept
is visualized by Figure 3-2. The heat capacity C [J·K−1] is defined by

C = mc, (3-3)

where m[kg] is the component mass and c [J·K−1·kg−1] is the specific heat capacity of the
component.

Figure 3-2: Component and coolant temperature dynamics

When a component is being cooled down using a cooling plate mounted to the component,
practically, the component temperature will be different at different distances from the
cooling plate. The component can be modelled using a multi-node model, where the
temperature of different sub-components is modelled or a single-node model, where the
component temperature is represented by a single element. In the following paragraphs, the
application of multi-node and single-node models for the High Voltage Battery (HVB),
motors and inverters are discussed.

HVB

As the battery comprises many cells, the battery parameters, such as temperature and
voltage, can be determined for each cell. In previous research, it has been shown that it can
be assumed that the temperature can be treated as a homogeneous and uniform solid,
meaning that the electrical and thermal parameters of the cells inside the HVB are the
same. This is valid as the maximum temperature difference between cells in the battery
pack is only small [6]. Such a lumped thermal mass model was used in [29, 30].

Motors and inverters

In [3], a motor thermal controller is developed that uses a two-node model and models both
the rotor and stator temperature separately. The controller is designed with the aim to
validate the novel hardware architecture and is not compared to a benchmark controller. As
with the battery, lumped parameters models with uniform temperature can be used to
model the electric motor [14]. A Model Predictive control (MPC)-based control strategy is
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developed where up to 86 % energy saving is achieved compared to the benchmark
gain-scheduling controller. In the same paper, the dynamics of the power electronics are
neglected in the control model, as the dominating thermal inertia is given by the electric
motors. This means that they assume that the power electronics directly transfer heat to the
coolant. This allows for model reduction while their simulations reveal only small deviations.
This however might not always be possible, as the inverters have a maximum operating
temperature. If the temperature is not tracked, this might cause the inverter to overheat.

Figure 3-3: Coolant temperature dynamics at the radiator

3-2-2 Coolant temperature

The coolant in the vehicle is flowing through tubes and is heated up or cooled down by the
electrical components, refrigerant or ambient air. In between these components, the
temperature change due to losses in the tubes is assumed negligible.

The dynamics of the coolant outlet temperature at a component, as visualized in Figure 3-2,
Tcoolant[K] can be described as

dTcoolant
dt

= Q̇coolant + Q̇dissipated
mc

, (3-4)

where Q̇coolant[W] is defined using the heat balance equation as

Q̇coolant = (Tcoolant, inlet − Tcoolant, outlet)ṁc (3-5)

and depends on the inlet temperature Tcoolant, inlet [K], the outlet temperature Tcoolant, outlet
[K] of the fluid and the mass flow rate of the fluid ṁ [kg·s−1]. When a valve determines the
inlet temperature of a component, Q̇coolant is described by

Q̇coolant =w1(Tcoolant, inlet, 1 − Tcoolant, outlet)ṁc +
w2(Tcoolant, inlet, 2 − Tcoolant, outlet)ṁc,

(3-6)

where Tin, 1 [K], Tin, 2 [K] are the two inlet temperatures.

When the heat is being exchanged with another fluid, for example, at the radiator as
visualized in Figure 3-3, the coolant temperature change is described by

dTcoolant
dt

= Q̇coolant − Q̇dissipated
mc

. (3-7)
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In both cases, Q̇dissipated can be described by modelling the specific heat exchanger, as
described in subsection 3-2-3.

The temperature at the outlet of a junction Tcoolant, out [K] can be described by

Tcoolant, out = Tin, 1ṁ1 + Tin, 2ṁ2
ṁ1 + ṁ2

, (3-8)

where Tin, 1 and Tin, 2 are the temperatures of the entering mass flows ṁ1 [kg · s−1] and ṁ2
[kg · s−1] respectively.

3-2-3 Heat exchangers

In vehicle thermal management, components are cooled using passive cooling, active cooling
or both. In active cooling, actuators such as pumps and fans are used to accelerate the mass
flow rate of the fluid, which can be the coolant or ambient air. The heat transfer Q̇ [W] is
described by

Q̇ = UA(T1 − T2) (3-9)

and depends on the temperatures T1[K] and T2[K], for example, the coolant temperature
and ambient air temperature in the radiator. U [W·m−2·K−1] is the overall heat exchange
coefficient and A[m2] is the heat exchange surface. This equation cannot be directly applied
as the temperature difference at the inlet and outlet of a heat exchanger is generally not the
same when a mass flow rate is used to cool down a component or another fluid, as visualized
in Figure 3-4.

Figure 3-4: Fluid temperatures in a heat exchanger generally change between the inlet to outlet

A method to estimate the heat exchange is the Log-Mean Temperature Difference (LMTD)
method, which uses the measured inlet and outlet fluid temperature to estimate the average
temperature difference between the hot and the cold fluid. This can be used for predicting
performance in thermal management, as was done in [31]. In a real car, we do not have
access to all the inlet and outlet temperature measurements but we would still like to
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estimate the heat transfer over time. The Number of Transfer Units (NTU) method can be
used for this purpose as the method only requires the component and coolant inlet
temperature, or two inlet temperatures in the case of the radiator. This method was also
used for motor cooling [14] and battery cooling [6] through a coolant.

Number of Transfer Units (NTU) method

The heat transfer between the fluid mass flow and a component, or between different fluid
mass flows can be modelled using the NTU method, also called the effectiveness method.
Using this method, the heat transfer is described by

Q̇ = ϵCr(T1 − T2), (3-10)

using the unitless heat transfer efficiency coefficient ϵ[ ], the temperatures at each side of the
heat exchanger T1 and T2 and the minimum heat capacity rate Cr[W k−1], which is
described by

Cr = min(c1ṁ1, c2ṁ2). (3-11)
ϵ is a function of the unitless NTU[ ], which is defined as

NTU = UA

Cr
. (3-12)

When considering the cooling of the electrical components, a single-stream heat exchanger is
used, as the component with an assumed uniform temperature, is cooled by a single stream
of air and/or coolant fluid. The minimum heat capacity rate is based on the coolant mass
flow rate and component thermal capacity and expressed by

Cr = ccoolantṁ1. (3-13)

Now, ϵ is described as
ϵ(ṁcool) = 1 − exp (−NTU). (3-14)

As this method is valid for the case of a single-stream heat exchanger, this method can be
used when a mass flow is flowing past a component or when one of the two fluids is held at a
fixed temperature, for example during evaporation or condensation.
For a double-stream heat exchanger, with two different fluids flowing past each other, the
single-stream method cannot be used. The radiator, which allows cooling for the coolant
through the ambient air, has a cross-flow configuration. For this case, ϵ is described by [32]

ϵ(ṁcool) = 1 − exp exp −CrNTU0.78 − 1
CrNTU−0.22 . (3-15)

When several components are cooled in series, the heat dissipation can be calculated for
each component based on the component’s temperatures and the initial coolant temperature
only. The coolant temperature at the outlet of the first component in a steady state is
calculated by

Tcoolant, out, 1 = Tcoolant, in, 1 + ϵ(Tcomp − Tcoolant, in, 1). (3-16)
By substitution, the outlet of the coolant at the following components can also be
calculated, when knowing the series component temperatures and inlet temperature of the
first component only.

MSc Thesis Jeroen van der Knaap



18 System modelling

Heat transfer coefficient

When convective cooling happens due to a mass flow rate, the UA depends on this mass
flow rate and can be calculated using empirical Nusselt correlations [1, 33]

U ∝ Nu = Q̇conduction

Q̇convection
, (3-17)

where the Nusselt number Nu[ ] is a non-dimensional number defined as the ratio of
conductive heat transfer to convective heat transfer and is related to the flow rate via
Reynolds number by

Nu ∝ Reb, (3-18)

where b has a value between 0.5 and 0.8, depending on whether the flow is laminar or
turbulent. Reynolds number is defined as

Re = ρQDH

µA
, (3-19)

where ρ is the fluid density, Q is the volumetric flow rate [m3·s−1], DH is the hydraulic
diameter [m], µ is the dynamic viscosity [Pa · s] and A is the pipe cross-sectional area, such
that the UA can be described by

UA = aṁb
fluid , (3-20)

where a and b have to be determined experimentally. When a thermal mass is present
within the heat exchanger, heat transfer might be different. In practice, the temperature of
the component is connected to the fluid through for example a coolant plate, and the
targeted component is not directly cooled by the coolant.

For the cross-flow heat exchanger, both air and coolant mass flow rates influence the heat
exchange. The thermal resistances are in series, such that the heat transfer coefficients are
added by

UA = 1
1

a1ṁ
b1
fluid,1

+ 1
a2ṁ

b2
fluid, 2

, (3-21)

where a1 and b1 are fitted parameters for the heat transfer due to the mass flow rate of the
first fluid and a2 and b2 are fitted parameters for the heat transfer due to the mass flow rate
of the second fluid.

3-3 Fluid dynamics

Different fluids are used within the TMS. Fluid parameters such as the mass flow rate,
temperature and specific heat capacity have an effect on thermal dynamics. The following
section presents the relevant background on fluid dynamics from [28] to model the TMS.
The mass flow rate of a fluid is related to the volumetric flow rate V̇fluid[m3·s−1] by

ṁfluid = V̇fluidρfluid, (3-22)
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where ρ[kg·m−3] is the density of the fluid. According to the affinity laws, the volumetric
flow rate is proportional to the fan speed nfan[s−1] or pump speed npump[s−1]:

n1
n2

= V̇1

V̇2
. (3-23)

The density of gases ρ is described by

ρ = p

RgasT
, (3-24)

where p[Pa] is the absolute pressure, T [K] is the gas temperature and Rgas[J·K−1·mol−1] is
specific gas constant. The air density therefore also depends on the elevation via the
absolute pressure. The infleunce of elevation and temperature on the air density is
visualized in Figure 3-5.

(a) Absolute pressure at different heights (b) Air density at different temperatures

Figure 3-5: Effect of height and temperature on air density

3-3-1 Ambient air

The volumetric flow rate of the ambient air V̇amb[m3·s−1] is a function of the speed of the
car and the fan speed.

V̇amb = f(vcar, nfan), (3-25)

where vcar[m·s−1] is the vehicle speed and nfan[s−1] is the fan speed. The ambient
volumetric flow rate is defined as [5]

V̇amb = αvcar + V̇added,fan, (3-26)

where the flow rates caused by the vehicle speed through the parameter α and fan speed
V̇added,fan[m3·s−1] are added.
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3-3-2 Coolant

The volumetric flow rate of the coolant fluid is a function of the pump speeds and pressure
drops caused by the components in the circuit. The pressure drop depends on the current
flow configuration through the valve positions w [1]. The volumetric flow rate around a
pump is then expressed by

V̇coolant, pump = f(w, npump). (3-27)

Additionally, the volumetric flow rate at the outlet of a valve w with two inputs is defined as
follows

V̇coolant, valve = wV̇in, 1 + (1 − w)V̇in, 2, (3-28)

where w represents the valve position, being 1 when open and 0 when closed. Depending on
the accuracy required, the affinity laws can also be used for the coolant pump, which will be
validated using system identification.

3-3-3 Refrigerant

In the vapour compression cycle, the refrigerant undergoes phase changes when exchanging
heat with the coolant and ambient. In a phase change, the temperature does not change but
the enthalpy, or heat energy, does. The enthalpy H[J] is described by

H = E + pV, (3-29)

where E[J] is the refrigerant internal energy, p[Pa] is the pressure and V [m3] is the volume.
The mass flow rate and pressures are controlled through a compressor and one or multiple
expansion valves. For a single expansion valve, the pressure-enthalpy diagram might look as
shown in Figure 3-6. The vapour compression cycle comprises four phases, as visually
explained in Figure 3-6.

1. Compression. Work is added to the system by the compressor. The internal energy is
increased, as well as the pressure and temperature. The refrigerant is still vapour.

2. Condensation. Heat is transferred from the system to the ambient, and the
temperature and pressure are kept constant. The refrigerant goes through a phase
change and is now in a fluid state.

3. Expansion. The refrigerant is expanded through the expansion valve. The pressure
and temperature are decreased. The refrigerant is now partly vaporized.

4. Evaporation. Heat is removed from the to-be-cooled component and energy is added
to the system. The refrigerant goes through a phase change and is now vapour.

The refrigerant circuit is controlled by two inputs, the compressor and the expansion valve.
When cooling by the refrigerant circuit is required, the goal is to go through the vapour
compression cycle as efficiently as possible, meaning that only the minimum amount of work
is added to achieve the desired cooling rate.

To model the refrigerant circuit, many additional states need to be modelled, to account for
each of the four phases. Such an approach was presented in [34]. This also requires

Jeroen van der Knaap MSc Thesis



3-3 Fluid dynamics 21

Figure 3-6: A possible layout of a vapour compression cycle

tabulated data to model both the relationship between pressure and internal energies. The
compressor and expansion valve need to be controlled at a high frequency to maintain
efficiency and stability.

When it is assumed that the temperature and pressure dynamics in the refrigerant are faster
than the target heating/cooling dynamics, static mapping allows for more convenient
modelling [35].

The compressor is the main power consumer in the refrigerant system. The power
consumption of the compressor is often modelled using the unitless Coefficient Of
Performance (COP) [5, 36, 37]. COP is defined by

COP = Q̇dissipated
Pcompressor

. (3-30)

In some papers [36], a fixed COP is assumed, but as shown in many other papers [5, 37],
this assumption is not valid in many circumstances, as the COP can vary significantly.

Part of this variation depends on the dimensionless Partial Load Ratio (PLR) [37], which is
defined as

PLR = Q̇desired

Q̇nominal
, (3-31)

where Q̇desired[W] is the heat dissipation setpoint and Q̇nominal[W] is the nominal heat
dissipation of the system. The PLR should be taken into account as the COP is not equal
under different desired cooling capacities.

A COP static map was used in [5] for Heating, Ventilation and Air Conditioning (HVAC)
control and COP was modelled as a fixed value in an MPC strategy in[36, 38], different for
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heating and for cooling [39]. For MPC, a static map can be used, for example, taking into
account the dependency on ambient temperature, cabin temperature and partial load ratio
[37]. As mentioned in [40], weighting matrices in MPC can be adjusted according to current
operating conditions, such as the COP, at the start of a new function evaluation. This
allows for efficient optimization while taking into account the current operating conditions.
In the integrated TMS, the compressor can be used to condition more than one component,
for example, the battery and the cabin. In this case, multiple evaporators are used and a
COP will exist for the different cooling demands [41].

3-4 Electrical dynamics

First, the models regarding the power consumption of TMS actuators are described, after
which models for the losses from the battery, motor and inverters are described. These
losses depend on the current torque and speed requirements, which are modelled in the final
part of this section.

3-4-1 Compressor

As mentioned in the subsection 3-3-3, the power consumption of the compressor can be
modelled through the COP. The parameter identification of the COP is discussed in
chapter 6.

3-4-2 Pumps and fans

To minimize power consumption in the vehicle, we need to know the energy required to
reach the desired mass flow rate to control heat exchange. According to the affinity laws [28],
the power consumption of the fan or pump is related to the volumetric flow rate as follows:

P1
P2

= ( V̇1

V̇2
)3, (3-32)

showing a cubic relationship between the volumetric flow rate V̇ [m3·s−1] and the power
consumption P [W]. This law does assume a fixed electric efficiency.
The pump power consumption Ppump[W] is then described as

Ppump = aV̇ 3
coolant (3-33)

where V̇coolant[m3·s−1] is the volumetric flow rate and fitting parameter a has to be found
through experiments and can differ per valve position [1]. Additional second and first-order
terms [6] can be used to achieve the desired model accuracy, such that

Ppump = a1V̇ 3
coolant + a2V̇ 2

coolant + a3V̇coolant. (3-34)

If multiple pumps are used within the same circuit, there is interaction and separate models
per pump as in Equation 3-34 may not be accurate. In [1], the relation was captured by
Look-Up Table (LUT)’s. In this thesis, the following relation is assumed:

Ppump,1 + Ppump,2 = f(V̇1) + f(V̇2) + bV̇1V̇2, (3-35)
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where f(V̇1) and f(V̇2) are described by Equation 3-34 and parameter b needs to be found
through experiments. For the fan, it should be taken into account that there is an external
force, due to the vehicle speed, adding mass flow to the system. The power consumption of
the fan Pfan[W], based on Equation 6-11, is expressed by

Pfan = a1V̇ 3
air − a2(αvcar)3 (3-36)

where V̇air[m3·s−1] is the desired flow rate and vcar[m·s−1] is the vehicle speed.

3-4-3 HVB

A general model to calculate the battery losses of Lithium-ion cells Q̇losses comprises two
main terms [29] such that the losses are expressed by

Q̇losses, battery = I2
batteryRbattery − IbatteryTbattery

dVoc
dt

, (3-37)

where the first term comprises losses due to the internal resistance Rbattery[Ω] and battery
current Ibattery[A], and the second term is due to entropy change. The entropy change can
be ignored as the internal resistance losses are dominant, it comprises more than 95% of the
total losses in [42]. The losses are then described by

Q̇losses, battery = I2
batteryRbattery. (3-38)

Different models for the cell internal resistance Rcell[Ω] exist. In previous work, the
resistance is modelled as a function of cell temperature and State of Charge (SoC)
[42, 6, 30, 1]. The values for the cell resistance can be obtained through offline tests and
stored for lookup [42, 43], such that the cell resistance can be described as

Rcell = f(Tcell, SoC), (3-39)

where Tcell[K] is the cell resistance. The SoC is generally kept above 20% to maintain
normal operation. In the region where SoC > 20%, the cell resistance is almost solely
dependent on the temperature [30]. This allows for significant model simplification. The
relation between the cell resistance with temperature can be determined offline and stored
for lookup [42] or a linear relation can be drawn in the region above 25 °C [30], such that

Rcell = a − bTbattery, (3-40)

where a and b need to be identified through system identification experiments. When it is
assumed that each cell in the battery has the same temperature, the losses are expressed as

Q̇losses, battery = I2
batteryRbattery(Tbattery). (3-41)

Ageing

Estimating the lifetime of Li-ion batteries is a critical challenge that limits the integration of
EV’s into the automotive market [44]. It is also necessary because the degradation of the
batteries largely determines the cost, performance and environmental impact of EV’s [45].
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The topic of ageing is also relevant for thermal management, as the temperature of the
battery has an influence on the battery State of Health (SoH), or lifespan [6]. The term
ageing comprises different effects, namely capacity fade and power fade, caused by the
increase of internal resistance. Capacity fade Clost[%]is defined as the loss in battery
capacity, or available energy, over time and is described by

Clost = 100 − Cused
Coriginal

× 100%, (3-42)

depending on the battery capacity after usage and the orignal capacity Cused[Wh] and
Coriginal[Wh]. Power fade is caused by the increase of the battery resistance Rbattery[Ω] and
will cause decreased efficiency over time. The variables influencing ageing can be different
for batteries with different designs and chemistries [46].

If a battery cooling strategy would be based only on minimizing losses, and not ageing,
cooling would never be required except when reaching the upper-temperature limit. This
would not be optimal for ageing. Tests required to identify ageing models often take a long
time, for example, a dataset involving many cells, which were tested for more than three
years, was used in [47]. Accelerated ageing tests have been developed [48], but due to the
length of this thesis, ageing model identification is not feasible within the available timeline
and model parameters are chosen based on literature.

During the battery lifetime, the performance degrades because of various ageing
mechanisms. This problem of ageing can be divided into two subproblems: calendar ageing
and cyclic ageing. Calendar ageing occurs independently from charging or discharging.
Cycling ageing occurs when the battery is charged or discharged.

Calendar ageing The main calendar ageing mechanism, growth of the Solid Electrolyte
Interface (SEI) layer, is accelerated by high temperatures and SoC [47, 48, 45]. Most electric
vehicles spent more than 90% of their time being parked and current rates are relatively low
compared to hybrid electric vehicles, except when accelerating or fast charging. Therefore,
it is recognised that the main ageing mechanism is the SEI growth and calendar ageing
models are able to make reliable lifetime predictions [45]. Calendar ageing contributes more
to increased internal resistance than cycling according to [49]. The temperature-ageing
relation can be described by the Arrhenius equation [47, 48, 46, 49]. This equation describes
the rate of chemical reaction rates by

reaction rate ∝ exp
(

− Ea

kbT

)
. (3-43)

Based on the activation energy Ea[J], temperature T [K] and Boltzmann constant kb[J·K−1],
such that a temperature-dependent ageing factor α can be expressed as

α = a exp(− b

T
), (3-44)

where a and b are fitted to measurement data and α can be expressed differently for
capacitive and resistive ageing. Assuming a time dependency of t0.75 [48], The remaining
capacity after ageing Caged[%] can be then described by

Caged = (1 − αcapt0.75) · 100%, (3-45)
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using a fitted capacity ageing factor αcap, which is expressed by Equation 3-44, and the time
t, here in days. This same can be done for battery cell resistance after ageing Raged[%],
which can be expressed as

Raged = (1 + αrest
0.75) · 100%, (3-46)

where the resistance ageing factor αres is also expressed by Equation 3-44 and fitted to
resistance measurement data.

Cycling ageing The main cycling ageing mechanism, lithium plating, is increased at high
charge rates and at low temperatures [45]. Similarly, with calendar ageing, cycling ageing
has been modelled using the Arrhenius equation [50] [46].

Several approaches to modelling ageing for control are possible. Ageing models have been
used for battery thermal control [6]. The used method [50] does include discharge rates and
temperature, but no charge rates. Here they assume that high temperatures increase the
rate of ageing during discharging, not taking into account the increased cycling ageing at
low temperatures. In [7], a desirable range is determined offline. They mention that the
overall ageing is slowest and the internal resistance is minimal in a temperature range from
approximately 15 to 40 °C, based on [46]. A practical temperature reference is then chosen
with consideration of ambient temperature. In [42, 1], curve fitting was done to assign a
cost to both higher and lower battery temperatures compared to their minimal optimal
temperature of 27 °C. In [29], simply a fixed desired temperature was defined and deviation
was penalized in the MPC cost function.

The results of ageing tests in [46] show that ageing happens at a minimal rate at 25°C, as at
both lower and higher temperatures, different ageing mechanisms come up and can be
modelled using the Arrhenius equation. Using this method, both effects happening at low
and high temperatures are separately modelled. Therefore, the model is scalable and can be
adjusted easily when ageing tests are done.

3-4-4 Motors and inverters

Electric motors can generate a significant amount of heat which needs to be removed [3].
The temperature influences the efficiency, durability and safety of the motors [14, 24].

Next to the motors, the inverters generate significant heat whereas the losses are
temperature dependent [25]. The inverter switching losses as well as conduction losses are
most significant at high temperatures. In [14], however, the inverter temperatures are
modelled as non-temperature-dependent. The reason might be that the losses depend very
much on the specific vehicle architecture and inverter design. The motor losses can be
divided into copper losses, iron losses, magnet losses and mechanical losses, whereas the
copper losses Q̇losses, copper[W] are most significant at high motor torques, as the currents
through the copper windings, and the losses, increase with respect to the phase resistance,
as expressed by

Q̇losses, copper = I2R0(1 + α(Tmotor − T0)), (3-47)

where I[A] is the motor winding current, R0[Ω] is a reference resistance measured at
reference temperature T0[K] and Tmotor[K] is the current temperature and α[K−1] is the
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temperature coefficient. This shows that the copper losses are proportional to temperature.
The iron and magnet losses are caused by the frequent change of magnetic flux density,
inducing a voltage in the stator, rotor and magnets, leading to eddy currents. The remaining
mechanical losses are caused by the bearings and depend mainly on the rotational speed of
the motor [25]. Due to the complex thermal condition of the motor, the mathematical
modelling of the losses is complicated. The iron and magnet losses are determined by the
rotor speed ω and electric current and can be stored in a lookup table whose inputs are the
rotor speed and current amplitude [24]. Combining the map and knowledge on copper
resistance, one can calculate the motor losses Q̇losses, motor[W] using [14]

Q̇losses, motor = f(ω, τ) + aτ2(1 + α(Tmotor − T0)), (3-48)

where ω[rad·s−1] is the motor speed, τ [N·m] is the torque setpoint, proportional to the
winding current and a needs to be identified through experiments. As no inverter models
were available that include temperature, the inverter losses are assumed
non-temperature-dependent and are expressed by

Q̇losses, inv = f(ω, τ). (3-49)

Simplification of the multi-motor and multi-inverter model

As the torque requests and speed for all the motors and inverters will always be the same, it
might not be necessary to model all four motors and inverters.
The motors and inverters in parallel are always cooled at the same coolant mass flow rate,
such that

ṁmotors, inverters = 0.5ṁpump, (3-50)
where ṁmotors, inverters[kg·s−1] is the mass flow rate at the motors and inverters and
ṁpump[kg·s−1] is the mass flow rate at the pump, before the split. Therefore only one of the
two sets of motors and inverters needs to be modelled.
When two components are cooled in series, both components are not cooled by a coolant
with the same temperature, so the heat dissipation is not equal. Depending on the heat
transfer coefficient, the heat dissipation might still be very similar. The two motors can be
modelled as one when some model adaptions are made. The heat capacity is doubled, as
described by

Cmotors, simpl = 2Cmotor, (3-51)
where Cmotors, simpl[J·K−1] is the heat capacity used in the simplified model. The induced
heat is adapted in the same way and defined as

Q̇losses, motors, simpl = 2Q̇losses, motor, (3-52)

where Q̇losses, motors, simpl[W] is the induced heat due to losses in the simplified model.
Assuming now that both series components have the same temperature. The heat transfer
efficiency coefficient can be rewritten using the rule of series components described in
Equation 3-16, such that

ϵmotors, simpl = 2ϵmotor − ϵ2
motor, (3-53)

where ϵmotors, simpl[ ] is the heat transfer efficiency coefficient for the simplified model,
assuming that the temperature of the two motors is the same, which has to be validated
through experiments. This same approach can be taken for the inverters.
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3-5 Vehicle dynamics

A simple vehicle model can be established by using basic physical equations. Based on the
traffic information, road conditions and weather forecast, that are assumed to be available,
the future propulsion power Ppr can be estimated as shown in Equation 3-54 [36]. If there is
no traffic flow or road information available, the future speed and acceleration can also be
estimated based on the current speed and acceleration using a Markov chain, developed
using statistical data [37] [51] or a Neural Network (NN), developed using statistical data
[52, 6]. As the vehicle speed and acceleration are related to the losses in the battery, the
heat generation can also be directly predicted using Markov chains based on the current
speed and acceleration [29] or using traffic flow information [42] In this thesis, it is assumed
that a speed profile and an elevation profile are available.
The battery power consumption Ppr[W] used for vehicle propulsion is expressed by

Ppr =
{

Ftrvcar
ηdt

, if Ftr ≥ 0
Ftrvcarηdt Ftr < 0,

(3-54a)

where Ftr[N] is the total traction force and ηdt[] is the efficiency of the drivetrain. For
discharging (Ftr > 0), the battery power is divided by the drivetrain efficiency. For charging,
whilst regenerative braking, (Ftr > 0), we multiply by the drivetrain efficiency,
The traction force Ftr[N] is described by

Ftr = Froll + Faero + Fgrav + Faccel, (3-54b)

where Froll[N] is the rolling resistance, Faero[N] is the aerodynamic drag, Fgrav[N] is the
gravitational force and Faccel[N] is the inertial force. The rolling resistance is defined as

Froll = mcargcrr, (3-54c)

depending on the gravitational acceleration g [m·s−2] and the dimensionless rolling
resistance coefficient crr[ ]. The aerodynamic drag is described by

Faero = 1
2ρairCdAfr(vwind + vcar)2, (3-54d)

where ρair[kg·m−3] is the air density, Cd[ ] is the dimensionless drag coefficient, Afr[m2] is
the frontal area and vwind[m−1] wind speed. The gravitational force is expressed by

Fgrav = mcargsin(αroad), (3-54e)

where αroad[°] is the slope of the road. The inertial force,

Faccel = macar, (3-54f)

depends on the acceleration of the vehicle acar[m·s−2]. The torque on a wheel can be
described as a function of the rotational speed ω[s−1] and propulsion power by

τ=Ppr/4/ω. (3-54g)

The rotational speed of the motor is proportional to the vehicle speed and expressed by

ω ∝ vcar. (3-54h)
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3-6 Resulting state-space model of the TMS

This section summarizes the model used to describe the Thermal Management
System (TMS). In the following equations, the parameters ai, bi, ci, and di need to be
identified through system identification experiments. The following states x are used to
model the TMS dynamics:

x =



Tbattery
Tmotor

Tinverter
Tcool, chiller
Tcool, battery

Tcool, rad
Tcool, motor

Tcool, inverter


. (3-55)

The differential state equations ẋ describing the system dynamics are expressed by
Equation 3-56 on the following page.
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ṁ
2
)−

ϵ m
ot

or
(0

.5
ṁ
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1ṁ

a
2

c c
oo

lṁ
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The N = 8 temperature states are linearly constrained to their safety limits.

N∑
i=1

Tmin, i ≤ Ti ≤ Tmax, i, (3-60)

The model is nonlinear and discontinuous, due to the fact that the mode w1 ∈ 0, 1. The
control inputs, the mode w1 describing the valve positions, coolant and ambient air mass
flow rates ṁ1, ṁ2 and ṁamb, and the chiller heat dissipation Q̇chiller are denoted by u.

u =


w1
ṁ1
ṁ2

ṁamb
Q̇chiller.

 (3-61)

The L = 5 control inputs are also linearly constrained.

L∑
i=1

umin, i ≤ ui ≤ umax, i, (3-62)

The time-varying disturbances, denoted by d, are the vehicle speed vvehicle, ambient
temperature Tambient, motor torque τ , motor rotational speed ω and battery current Ibattery.

d =


vvehicle
Tambient

τ
ω

Ibattery.

 (3-63)

The objective J is to minimize the total induced heat Q̇induced, total, TMS power
consumption Pconsumed, total and the ageing rate αageing(T ) and is expressed by

J =
∫ tN

t=0
C(αageing) + Q̇losses, total + Pconsumed, total, (3-64)

where C is the ageing weight used to trade off ageing and energy consumption and tN is the
time of the trip. The ageing rate αageing is defined by

αageing = a1T 4
battery + a2T 3

battery + a3T 2
battery + a4Tbattery + a5. (3-65)

The total induced heat Q̇losses, total is the sum of motor and battery temperature-dependent
losses Q̇losses, motor and Q̇losses, battery.

Q̇losses, total = 4aτ2(1 + α(Tmotor − T0))︸ ︷︷ ︸
Q̇losses, motor

+

(a − bTbattery)I2
battery︸ ︷︷ ︸

Q̇losses, battery

.
(3-66)
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The total power consumption Pconsumed, total is the sum of the power consumption of the fan
Pfan and compressor Pcompressor. The power consumption of the pumps is described by
Ppump,1, Ppump,2 and an additional term Ppump, 1,2 to capture the nonlinearity when both
pumps are turned on and w1 = 0.

Pconsumed, total = a1ṁamb︸ ︷︷ ︸
Pfan

+

˙Qchiller
COP︸ ︷︷ ︸

Pcompressor

+

w1(b1m3
1 + b2m2

1 + b3m1︸ ︷︷ ︸
Ppump,1

+ c1m3
2 + c2m2

2 + c3m2︸ ︷︷ ︸
Ppump,2

)+

(1 − w1)(d1m3
1 + d2m2

1 + d3m1︸ ︷︷ ︸
Ppump,1

+ e1m3
2 + e2m2

2 + e3m2︸ ︷︷ ︸
Ppump,2

+ f1m1m2︸ ︷︷ ︸
Ppump, 1,2

),

(3-67)

where the remaining coefficients are to be identified.
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Chapter 4

Control methods for the TMS

The goal of energy-efficient thermal management is to find the optimal control scheme that
trades off component efficiency, actuator power consumption and battery ageing within the
Thermal Management System (TMS). First, the problem of optimal control is explained
and optimal control methods are discussed. Then, the concept of Model Predictive
control (MPC) is explained and examples found in literature in the context of thermal
management are discussed. Then, discretization methods, approaches to the mixed-integer
problem, integration methods and optimization methods are mentioned. Finally, the
concept of hierarchical control is explained and the possibilities for hierarchical control in
the TMS is discussed

4-1 Optimal control methods

Optimal control strategies are used to find optimal methods to control dynamic processes.
The following section explains the concept of optimal control based on [53] and elaborates
on several methods in more detail. Let x(t) be the state variable at time t, u(t) be the
control variable at time t, and d(t) be disturbances to the process, the state dynamics can
be described by differential equations, as discussed in chapter 3. Given a certain initial
value of the state x0 and chosen control inputs over a time interval 0 ≤ t ≤ T , these
differential equations can be integrated to get the state trajectory over time. The goal is to
choose the control inputs such that the objective function is minimized,

J =
∫ T

t=0
F (x(t), u(t), d(t), t)dt. (4-1)

The objective could be to minimize energy consumption over time. The Optimal Control
Problem (OCP) is to find a control action that maximizes the objective, subject to the state
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continuation constraint, and possible other inequality constraints c or equality constraints r:

min
x,u

∫ T

t=0
F (x, u, d, t)dt,

s.t.
dx

dt
= f(x, u, d, t),

x(0) = x0,

0 ≤ c(x, u, d, t),
0 = r(x, u, d, t).

(4-2)

There are basically two different ways of solving an OCP: Direct and indirect methods.
Both methods and the concept of dynamic programming are discussed in this section.

4-1-1 Dynamic programming

Dynamic Programming (DP) uses Bellman’s principle of optimality which states that any
intermediate step in an optimal trajectory is optimal. Iterating backwards from the end of
the control trajectory, a minimization problem is solved for all feasible initial states of that
intermediate step, and all possible control inputs. The feasible trajectory with the lowest
cost is the optimal trajectory [2].

DP can be used to get a benchmark solution to the optimal control problem, as was done in
[5] for cabin conditioning. Continuous signals need to be discretized at a certain resolution
which always will give a trade-off between accuracy and computation time. As DP searches
the entire space, the global optimum is always found but it is slow in computation due to
the curse of dimensionality and requires large processor memory [54]. Therefore it is not
well suited for the real-time control problem.

4-1-2 Indirect methods

Indirect methods optimize in an infinite-dimensional function space. These methods are
referred to as "first optimize, then discretize". The necessary conditions of optimality have
to be derived for each problem, and again for each small change of initial conditions or
constraints to transform the OCP into a Boundary Value Problem (BVP). As human
insight into the problem is required, the numerical solution of an optimal control problem
using indirect methods cannot be fully automated and therefore indirect methods have not
appeared as a suitable method for real-time control [2].

4-1-3 Direct methods

Direct methods on the other hand are based on the discretization of the continuous OCP
into a finite-dimensional Nonlinear Programming (NLP) problem. Direct methods can be
sketched as "first discretize, then optimize". The formulated NLP problem can then be
solved by an optimization algorithm and is therefore suited for real-time use.
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4-2 Model Predictive Control

When aiming to solve an optimal control problem, the goal is to find a solution to the
Ordinary Differential Equation (ODE)’s that maximizes or minimizes the objective. The
concept of MPC is a direct method that uses optimization to find a control action taking
into account the future behaviour of the system. This opens up the possibility of reacting to
time-varying disturbances. [2].

The basic MPC algorithm is explained based on [55]:

1. The state x(i) is measured at time i. The initial value for the OCP is x0 = x(i).

2. Solve the following optimization problem:

min
x,u

Np−1∑
k=0

ℓ(x(k), u(k), d(k)),

s.t. x(k + 1) = f(x(k), u(k), d(k)),
x(0) = x0,

0 ≤ c(x(k), u(k), d(k)),
0 = r(x(k), u(k), d(k)),

(4-3)

where Np denotes the prediction horizon and ℓ(x(k), u(k), d(k)) is the value of the
objective function at timestep k. The found optimal control trajectory is denoted by
u∗.

3. Apply the first input u∗(0) to the system in the next sampling period Ts, after which
the process is repeated.

The concept of MPC is visualized in Figure 4-1. Note that the original OCP is now
discretized, as the system is controlled at a discrete sampling time Ts. MPC always consists
of several parts:

• Prediction model. The dynamical model and the system constraints are presented in
the chapter 3.

• Objective function. The objective of minimizing energy consumption and maximizing
the High Voltage Battery (HVB) lifetime was also presented in chapter 3.

• Integrator. The integrator is required to solve the model ODE’s over time.

• Optimizer. The optimizer is required to find the control inputs that fulfil the
constraints and minimize the objective.

In the following sections, several examples will be given in TMS application and the length
of the prediction horizon is discussed.
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Figure 4-1: Visualization of the MPC principle

4-2-1 MPC in general thermal management applications

MPC has been used before in the context of thermal management. It was used in the
application of building thermal management, where predictable forecasts such as weather
information [21] [56] and occupancy grids [20] [22] were used to improve the control
performance. [21] compared MPC using weather forecast to traditional rule-based control
and 17% energy was saved and occupants comfort was improved. In [20], adding occupancy
forecast information in MPC allowed for up to 40 % lower energy consumption annually for
cooling compared to conventional MPC.

In the vehicle context, MPC was also used for battery conditioning, powertrain conditioning
and vehicle cabin conditioning. For cabin conditioning, MPC was compared to an on-off
controller. Weather and traffic forecast information was used to predict the future thermal
load, causing an estimated battery lifetime improvement of up to 19% [36]. In [57],
passenger amount variation was predicted in buses and up to 6% of energy was saved
compared to a rule-based controller, respectively. In [37], both velocity predictions and
weather forecasts were used to improve the energy consumption both energy consumption
and passenger comfort were improved by 12 and 50% compared to a rule-based controller.
In [38], a nonlinear MPC strategy was developed. A linear quadratic approximation was
applied which allowed for between 20 and 40% energy saved compared to the traditional
controller and at maximum consumed only 4 % more compared to the nonlinear strategy,
depending on the driving scenario.

For battery conditioning for electric vehicles, MPC using speed prediction and a variable
target temperature based on the ambient temperature was used in [6], where improved
battery lifetime and between 25 % energy was saved compared to an on-off controller and
14% compared to conventional MPC. In [30], MPC was compared to PID control and 10 -
17% energy consumption was achieved depending on the drive cycle.

For conditioning of the motors and inverters, MPC was also proposed in [14]. Here between
7 and 86% of energy was saved compared to the benchmark over different drive cycles.
MPC has also been tested successfully focusing purely on reducing thermal stress in [24]
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4-2-2 MPC for integrated vehicle thermal management systems

The control problem for a hybrid system can be solved by various techniques, the most
simple will employ heuristic knowledge in the form of a state machine, combined with PID
controllers. MPC can also be used to control a hybrid system, but the integer requirements
must be taken into account to achieve usable results.

As solving a mixed-integer problem is inherently complex, a linear formulation of the TMS
dynamics is proposed in [58]. The system is described as a linear Mixed Logical
Dynamical (MLD) system, where some of the inputs are binary (valves) and some are
continuous (actuators). These inputs are then used to choose an energy optimal mode and
actuator input in an integrated thermal management system. The concept is promising, but
no real nonlinear vehicle setup is presented, and no approach is shown to linearize such
nonlinear dynamics.

Cabin and battery thermal management were integrated in [4, 7], and cabin and powertrain
thermal management was integrated in [18]. However, the used setups do not include valves,
which significantly simplifies the respective control problems.

A nonlinear hybrid MPC was developed in [1] to thermally control the battery and power
electronics, excluding the motors. The setup considered is visualized in Figure 4-2.

Figure 4-2: The hardware setup considered in [1]

The possible positions for the used valve are binary values as they can only be open or
closed, but the approach of rounding was investigated to decrease model complexity. The
problem was simplified by assuming that the coolant reaches the same temperature as the
battery at the outlet, no equations were used to describe the heat transfer efficiency, which
is generally not a valid assumption. The performance was validated and they have shown
that compared to the baseline, for rounding and non-rounding, an almost equal decrease in
energy consumption of 5.6% and 5.2% was achieved, with significantly decreased
computation time for the rounding case. The rounding-based solution was solved in 1.5
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seconds. The cost function by a part that represented the power consumption of the TMS
and a part penalizing the battery temperature, taking into account both performance and
lifetime. Continuation of the work was discussed [59], where this was taken a step further
and implemented on a rapid prototyping module and testing the actual car instead of in
simulation. Decreases of 8-50% were achieved in the cost function, depending on the drive
cycle.

4-2-3 Prediction horizon

As the thermal dynamics are slow, a prediction horizon of multiple minutes adds benefits.
This can be seen based on previously done research that used MPC for thermal
management, as summarized in Table 4-1. Different horizon lengths are used depending on
the required computation time and accuracy, but the length is at least 30 seconds, and up
to several minutes. The research with shorter lengths assume a fixed target temperature [60]
[30] and are not considering multiple modes and valves position [29]. None of these systems
includes other components than the HVB. The research with an extremely long horizon
does note that it is hard to use long previews that are accurate [7].

Publication Cabin Battery Inverters Motors Sample time [s] Prediction Horizon [s]
[1] X X 2.5 200
[4] X X 5 60 - 180
[7] X X X 5 1375 (entire cycle)
[14] X X 15 900
[6] X ? 60
[29] X ? 5
[60] X 5 20
[61] X 1 5-60
[30] X 1 10
[62] X 1 30-180
[33] X ? 10-50

Table 4-1: Prediction horizon in previous TMS research. an "X" denotes wich components are
controlled. A "?" indicates that the sample time was not given.

4-3 Discretization methods

Direct methods are based on a discretization of the OCP such that it can be solved by an
optimization algorithm. The methods of direct single shooting, direct collocation and direct
multiple shooting are explained in detail in [63, 2] and summarized in the following section.

4-3-1 Direct single shooting

Direct single shooting is a so-called direct sequential method, where the steps of system
simulation and optimization are performed sequentially. The state trajectory is regarded as
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an implicit function of the controls and the initial state. An ODE solver is used to integrate
the ODE’s and simulate the system behaviour. Only, the control inputs are discretized
which means the state trajectory cannot be directly constrained. Additionally, initialization
of the state trajectory using prior information is not possible [2]. This means disturbance
predictions cannot be used within the prediction horizon and additionally, the state
trajectory can be constrained, which is required in the thermal management problem.

4-3-2 Direct collocation

Direct collocation methods do discretize both the states and controls into a fine grid.
Opposed to direct single shooting, state trajectory variables can now be initialized, at the
cost of a larger resulting optimization problem. As the discretization can be done at any
step size, in theory, the NLP problem can be solved efficiently. The issue is that often, it is
not known at what point in time, small timesteps are required. Adaptive stepsize solvers
cannot be used for direct collocation and optimizing the entire problem using very small
timesteps is not efficient, as computation would take a lot of time [2].

Figure 4-3: In direct multiple shooting, initially the state trajectory is not continuous, as can be
seen on the left image. When a feasible solution is found, the state trajectory is continuous, as
can be seen on the right image [2].

4-3-3 Direct multiple shooting

Direct multiple shooting inherits advantages from both collocation and single shooting
approaches: The state trajectory is discretized but finding a solution still relies on solving
initial value problems. The control trajectory is discretized into m shooting intervals

a = t0 < t1 < ...tm−1 < tm = b. (4-4)

On each interval [ti, ti+1], 0 ≤ j ≤ m − 1, an Initial Value Problem (IVP) is defined:

dx

dt
= f(t, x), x(ti) = si. (4-5)

By a suitable choice of unknown vector si, the solutions on the shooting intervals are
constrained such that a continuous function results that is continuous on the entire interval
[a, b]:

x(ti+1; si) = si+1, i = 0, m − 2. (4-6)
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For all intervals, simulation and optimization can be done simultaneously until the objective
is reached and the constraints are fulfilled. To clarify this, the concept of direct multiple
shooting is shown in Figure 4-3. Initially, the state trajectory is physically not possible, as it
is not continuous. After several iterations, a continuous state trajectory is achieved. If N is
the number of shooting intervals, there are N times many more variables in the optimization
problem compared to direct single shooting, but also more structure in the optimization
problem. By condensing the matrices, this can be reduced to the same size as for direct
single shooting. Additionally, there is the advantage that initialization and constraining of
state trajectories can be done. Due to the division of the problem into smaller shooting
intervals, there are also better feasibility properties compared to direct single shooting.

Compared to direct collocation, there is the advantage that they easily allow using efficient
adaptive solvers. This is due to the fact that the state discretization is decoupled from the
control discretization. Therefore, the direct multiple shooting method is most suitable for
our problem.

4-4 Mixed-integer programming

Solving mixed-integer optimization problems is computationally complex compared to
solving continuous optimization problems due to the fact that some variables are
constrained to have an integer value. In the TMS, the integer inputs are valves. Whether a
valve is in one position or another, determines the flow of coolant. One approach would be

Figure 4-4: Valves determine the flow of coolant.

to fix the integer control variable for every possible choice and then solve a continuous
optimal control problem [2]. Branching methods and relaxation methods can be used to
solve mixed-integer problems and are discussed in more detail.

4-4-1 Branching methods

Mixed-integer problems can be solved using branching techniques [2]. Using branching
methods, a systematic enumeration of candidate solutions for the integer variables is done.
Iteratively for each chosen candidate solution, continuous optimization can be done. The
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idea is that this systematic search does not require solving the problem for each possible
integer input, but only for those that might give a better result. The efficiency of
branch-and-bound methods, therefore, depends on how efficiently the systematic search is
done.

4-4-2 Relaxation methods

Relaxation methods aim at reformulating the mixed-integer problem as a continuous
problem, which can be solved using regular NLP solvers.

Inner convexification The most simple approach would be simply to drop the integrality
requirement of the integer control variable. Consequently, the solution found by the NLP
solver will not necessarily be an integer one, so must be rounded, and therefore also is not
guaranteed to be optimal [2].

Outer convexification In outer convexification, the problem is reformulated such that the
binary constraint can be relaxed. First, the term ’modes’ must be clarified. When a mode is
chosen, a logical combination of valve positions is chosen, which allows the flow to either
reach the heater or the radiator for example. First of all, a new binary variable wi is

Figure 4-5: Modes also determine the flow of coolant.

introduced for all n possible ’modes’.

w = {0, 1} (4-7)

All functions f depending on the integer control function are partially convexified, with
respect to the integer variable only. This means that the introduced binary variables act as
convex multipliers.

f(x, u, w) = w1f1(x, u) + w2f1(x, u)... (4-8)

Additionally, an equality constraint is added that enforces that the sum of discrete options
is 1.

N∑
n=0

wi = 1 (4-9)
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As a final step, these binary variables are relaxed to have real values between 0 and 1. Using
this reformulation, even after relaxation, all model functions are often evaluated in integer
feasible choices only.

w ∈ [0, 1] (4-10)

The outer convexification method allows for efficient problem-solving and often binary
feasible solutions but the performance needs to be compared to a reference controller in
order to be able to judge the performance. Next to the dynamics, constraints can also be
relaxed. A constraint depending on an integer input can be described as follows

g(x(t), u(t), w(t)) ≥ 0 (4-11)

The outer convexified constraint can be expressed by

w(t)g(x(t), u(t), w(t)) ≥ 0 (4-12)

The optimal rounded solution will still satisfy the original constraint but this constraint
does not satisfy the Linear Independence Constraint Qualification (LICQ) at w(t) = 0, as
the constraint gradient cannot be determined. Such constraints can be relaxed using a
relaxation parameter M > 0

g(x(t), u(t), w(t)) ≥ −M(1 − w(t)) (4-13)

Which satisfies the constraint when w(t) is 1 or 0 but can attract fractional solutions.

4-5 Integration methods

To solve the OCP, we need to know how the states evolve over time for different control
trajectories. The background on numerical ODE solvers given in this section is based on
[64]. Integration methods solve IVP’s for ODE’s of the form

dx

dt
= f(x, t) (4-14)

over a certain time interval, t ∈ [t0, tf ], where the initial value of x is known

x(t0) = x0 (4-15)

Numerical methods are used to find the solution to the initial value problem. The
performance is measured by the computation time and accuracy. To measure the accuracy,
let us define the Local Truncation Error (LTE).

Definition 4-5.1 (Local Truncation Error (LTE)). The LTE, Tn+1, is defined to be the
difference between the exact and the numerical solution of the IVP at time t = tk+1:

Tk+1 = x(tk+1)xk+1, (4-16)

under the localizing assumption that xn = x(tn), i.e. that the current numerical solution xn

is exact. The LTE is the error made in a single step.
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whereas the Global Error (GE) is defined as follows

Definition 4-5.2 (Global Error (GE)). The GE,

ek = x(tk)xk, (4-17)

is defined as the error between an approximation of the state value x(tk) and the exact state
value xk. Therefore the global error can be seen as the cumulative of LTE’s.

The following section elaborates on the difference between explicit and implicit ODE
solvers. Additionally, the difference between fixed-step and adaptive solvers is explained.

Explicit methods The most common method for integration is the explicit (forward) Euler
method, which linearizes the differential equation at the current timestep.

xk+1 = xk + hf(xk, tk) (4-18)

where h is the step size and tk is the time at step k. The accuracy of the explicit Euler
method depends on the size of the integration stepsize and the stiffness of the system.
LTE∝ h2 and for a wide range of problem, it can be proven that GE ∝ h. The stability
region of explicit Euler is bounded, which is of importance for stiff systems. Stiff systems
require impractically small step sizes in a priori unknown regions [2], causing the integration
accuracy to be more accurate than needed [64] and the computation slower. As the TMS
model includes different states with both slow- and fast-changing dynamics, the battery
temperature changes slowly and the coolant temperature changes quickly, an explicit
method might not be optimal.
Compared to forward Euler, explicit Runge-Kutta (RK) allows for a more accurate
estimation of the derivative. A four-step RK scheme (RK4) looks as follows:

xk+1 = xk + h
1
6(k1 + 2k2 + 2k3 + k4), (4-19)

where
k1 = f(xk, tk),

k2 = f(xk + h
k1
2 , tk + ts/2),

k3 = f(xk + h
k2
2 , tk + ts/2),

k4 = f(xk + hk3, tk + h,

(4-20)

such the solution is influenced by the slope at different points of the integration interval.
Using the RK4 scheme, LTE ∝ h5. It has to be noted that if an ODE solver requires a
smaller stepsize compared to another solver, also needs more computations to reach the
same accuracy.

Implicit methods Implicit methods however suffer less from the small stability region as
the ODE is linearized at the next timestep k + 1 instead of the current timestep k. For
implicit (backward) Euler this looks as follows

xk+1 = xk + hf(xk+1, t). (4-21)
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Similarly, as for explicit methods, an implicit RK scheme can be used. Implicit methods do
require an additional computation compared to explicit methods. Equation 4-5 needs to be
solved as the next state at k+1 is not directly known. Backward Differentiation
Formula (BDF) methods are a family of implicit methods and are so-called linear multistep
methods, that use previously computed steps to calculate the derivative in the next step.
The general equation for a k-step BDF can be written as

xn+k + αk−1xn+k−1 + ... + a0xn = hβf(tn+s, xn+s), (4-22)

where the remaining free coefficients are chosen to achieve order k. A BDF with an order of
one equals the backward Euler method. As the equation for xn + s can be written as a
function of the state at xn + k for k = 0, 1, ..k, reuse of previously computed solutions at
every new timestep is possible. BDF methods are stable up to order 6.

Adaptive solvers When using fixed-step integrators, the integration error is not controlled
online. An adaptive stepsize solver can be used which adapts the stepsize such that the
integration error never exceeds the allowed error. Both RK and BDF methods can be used
with an adaptive solver. The disadvantage is that the computation time is not known and
depends on the to-be-solved system of ODE’s.

4-6 Optimization methods

Various methods for solving NLP problems exist and different approaches were also used in
the context of vehicle thermal management.

Particle swarm optimization was used for solving the battery thermal management problem
[30], as well as the genetic algorithm [34]. Also Sequential Quadratic Programming (SQP)
[1] [59] and interior point methods [4] [62] are used. The aforementioned methods are
discussed in more detail.

4-6-1 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a global optimization method iteratively trying to
improve a possible solution. Initially, there is a population of possible solutions, particles,
which can move in the search space according to mathematical formulas that describe the
particle velocity and position. The idea is that over time, the ’swarm’ of particles moves
towards the optimal solution. PSO does not use the hessian of the optimization problem.
As PSO does not use the hessian, convergence towards a global, or local optimum cannot be
guaranteed.

4-6-2 Genetic Algorithm

The genetic algorithm is also a global optimization algorithm, inspired by the process of
natural selection. Similarly with PSO, the evolution starts with a population of randomly
generated individuals, which is called a ’generation’. Iteratively, individuals within the
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population are selected to reproduce children such that the population changes. Over
several generations, the population moves towards a better solution. As PSO, the genetic
algorithm does not use the hessian, convergence towards a global, or local optimum cannot
be guaranteed.

4-6-3 Sequential Quadratic Programming

SQP does use the hessian of the optimization problem and does find a local optimum, which
is not guaranteed in the previous methods. SQP attempts to model the nonlinear problem
iteratively by a quadratic subproblem to define a step towards the minimum of the
nonlinear problem [65]. Depending on the problem, very low computation times can be
achieved. The concept is explained for a general NLP problem, expressed by

min
x

f(x)

s.t. b(x) = 0, c(x) ≥ 0.
(4-23)

The method of Lagrange multipliers can be used to find the minimum of a function subject
to equality constraints. The Lagrangian L captures the cost function and constraints in a
single function and for the problem described by Equation 4-23 is defined as

L = f(x) − λb(x) − σc(x) (4-24)

Where λ is the Lagrange multiplier for equality constraints and σ is the Lagrange multiplier
for inequality constraints. At a new iteration k, a search direction d(k) is defined by solving
quadratic subproblems to the main problem. The subproblem resembles a Taylor expansion
of the objective function and is described by

min
d

= f(xk) + ∇f(xk)T d + 1
2dT ∇2

xxLkp

s.t. b(xk) + ∇b(xk)T d ≥ 0
s.t. c(xk) + ∇c(xk)T = 0

(4-25)

which is iteratively solved by an Quadratic Programming (QP) solver.

4-6-4 Interior point

Interior point methods do also use the hessian. The algorithm is explained by assuming we
are finding the minimum of a function f(x) with inequality constraints [65], expressed by

min
x

f(x)

s.t. g(x) ≥ b
(4-26)

These inequality constraints can written as

g(x) − b ≥ 0, (4-27)
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such that they can be replaced by equality constraints and a simple inequality constraint
using slack variables s.

g(x) − b − s = 0,

s ≥ 0.
(4-28)

The equality constraint are now rewritten as c(x) = 0. the minimization function can then
be reformulated to create just an equality-constraint problem. This so-called barrier
function is minimized and is described by

min
x

f(x) − µ
N∑

i=0
log(xi)

s.t. c(x) = 0
x ≥ 0

(4-29)

where N is the number of original inequality constraints in Equation 4-26, and the barrier
parameter µ converges to zero when approaching the solution of the problem. Note that the
value of log(xi) is not defined for x ≤ 0, as required by Equation 4-28. Next to the ’primal’
optimization variable x, as with the method of Lagrange multipliers, a ’dual’ variable λ is
introduced. The equation for the gradient can now be written as

∇f(x) + λ∇c(x) − µ
N∑

i=0

1
xi

= 0 (4-30)

Depending on the problem, very low computation times can be achieved. SQP and interior
point are the preferred options for real-time optimization.

4-7 Hierarchical control

The computational complexity of a control problem can be decreased by using hierarchical
control. The main problem can be explicitly split into 2 subproblems. This could be done as
well for the integrated TMS problem, by choosing the actuator configuration and component
temperatures in two steps instead of a single step, which is already done in the benchmark
controller. Generally, first, setpoints are created at a low frequency in a high-level
controller. The setpoints can be tracked at a high frequency in a low-level controller.

Split mode switching and temperature control

In [3], an electric motor cooling system is developed. The control strategy is visualized in
Figure 4-6 Multiple actuator configurations exist to keep the motor temperature controlled.
Here, based on the current component temperature and current heat generation in the
motor, the discrete mode is chosen using a finite state machine. The target temperature is
assumed fixed and in the second step tracked using the controller that belongs to the chosen
mode. An approach using a fixed reference temperature, does not take into account that
energy consumption can be decreased by allowing temperature variations over time.
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Figure 4-6: The control strategy presented in [3]

Split control of multiple components

An important variable to take into account is the timescale at which the temperatures of
different components change. If the expected variation in temperature of certain components
is a magnitude higher compared to other components, the control response is also allowed to
be slower. A hierarchical controller can cover different dynamics (relatively fast and slow).
[4] shows that the battery and cabin cooling thermal conditioning can be decoupled by
controlling individual component temperatures separately, as visualized in Figure 4-7. This
allows for easier implementation and simpler tuning. Here the component with slower
dynamics can be controlled at a lower frequency than the component with faster dynamics.

Figure 4-7: The battery temperature prediction horizon Hs is shorter than the cabin temperature
prediction horizon HL [4]

Planning and Tracking

Hierarchical control allows for using the benefits of different control strategies. A high-level
controller can provide setpoints, for example, based on optimization. Low-level controllers
ensure setpoint tracking and disturbance rejection [5]. Here the high accuracy of a
high-fidelity model is combined with the good disturbances rejection properties of the fast
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feedback controllers. In [5], the cooling capacity for a passenger cabin is controlled in the
high-level controller, as visualized in Figure 4-8. The cooling capacity directly dictates the
component temperature, which changes slowly. The low-level controller tracks this cooling
capacity by controlling the actuators that need fast control.

Figure 4-8: Control strategy combining optimization with feedback control. [5]

A similar approach for battery thermal management using a radiator only was taken in [6].
Optimal battery target temperatures are determined offline depending on the ambient
temperature and the current drivecycle is not taken into account. After the target
temperature is chosen, MPC tracks this temperature, based on a linearized model of the
system, as seen in Figure 4-9.

Figure 4-9: MPC is used for tracking [6]

Hierarchical control can be useful when using multiple sources of forecast information for
the same prediction variables. In [4], cabin thermal management was split into two cascaded
controllers that each use different forecast predictors. Vehicle speed is predicted accurately
over the short term using vehicle-to-infrastructure and vehicle-to-vehicle information.
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Traffic flow information gives a more accurate estimate in the long term. This was also done
in [62]. Based on the idea that the forecasted speed is uncertain, they introduced "robust
constraint tightening", where constraints in the first layer are tightened if the second layer,
that uses a more accurate model, predicts constraint violations.
Similarly in [7], a first layer is developed to plan the battery temperature trajectory whilst
forecasting the future vehicle load. By using a long horizon, battery temperature can be
maintained within specified limits even in case of high peaks in future power demand. The
second layer more accurately tracks the battery temperature and additionally, the cabin
temperature, as visualized in Figure 4-10.

Figure 4-10: Different prediction horizons are used in cascased MPC control [7]

4-7-1 Hierarchical control for thermal management

If the model dynamics are understood well, hierarchical control allows for splitting the
control problem by controlling slow-changing states at a slow rate and fast-changing states
at a faster rate. This section elaborates on the speed of the dynamics in the TMS.
Regarding the modelled states in the TMS, the ’speed’ of the dynamics is depending on the
maximum heat generation and the thermal inertia and can be summarized per component.

• Inverters: Fast dynamics. Can change significantly in a minute.

• Motors: Moderate dynamics. The losses are proportional to the vehicle torque. Can
change significantly in several minutes.

• Battery: Moderate/slow dynamics. The losses are proportional to the vehicle torque.
Temperature changes slowly due to the thermal capacity

• Coolant temperature: Fast/moderate dynamics, can change significantly in a minute.

• Refrigerant temperature/phase: Fast dynamics. Phase changes in the circuit need to
be controlled at a high frequency
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As mentioned in subsection 3-3-3, the refrigerant circuit dynamics can be simplified by
directly relating the heat dissipation to the compressor power dissipation in the optimal
controller. As the refrigerant dynamics are fast, the compressor and expansion valve are
controlled at a higher frequency, saving computational power in the first layer. Similarly
with the refrigerant temperature, the coolant temperature changes a lot faster than the
motor, inverter or battery temperature. However, as the coolant directly exchanges heat
with the components, ambient and refrigerant, modelling the coolant temperature is
required for an accurate physical model.

Next to the states, the speed of variations is summarized for each of the modelled
disturbances.

• Vehicle speed: Fast dynamics. Can change significantly in several seconds.

• Motor speed: Fast dynamics, proportional to vehicle speed

• Torque: Fast dynamics, proportional to vehicle speed squared at higher velocities.

• Battery current: Fast dynamics, proportional to the vehicle speed cubed at higher
velocities.

• Ambient temperature: Slow dynamics. Significant changes generally take hours.

The vehicle speed, motor speed and torque, and battery current all have fast dynamics, so,
therefore, it is important to have predictions for each timestep in the optimal controller.
The ambient temperature changes slowly and therefore it can be modelled as a fixed value
throughout the control horizon.
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Chapter 5

Controller design

This chapter elaborates on the controller design for the Thermal Management
System (TMS). First, the model dynamics are summarized, and then the sampling time,
prediction horizon, integration method and optimization method chosen are discussed.

5-1 Prediction model

The system is modelled by differential equations, as described in chapter 3, where
temperature dynamics are modelled as states:

x =



Tbat
Tmotor

Tinverter
Tcoolant, chiller
Tcoolant, battery
Tcoolant, radiator
Tcoolant, motors

Tcoolant, inverters


, (5-1)

the control inputs are denoted by:

u =


w1
ṁ1
ṁ2
ṁair

Q̇chiller

 , (5-2)
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and the disturbances are denoted by:

d =


vvehicle
Tambient

τ
ω

Ibattery

 . (5-3)

The differential state equations are nonlinear functions of the states, inputs and
disturbances.

ẋ =f(x, u, d). (5-4)

There are linear equality constraints g for the states and inputs.

g(x, u, d) ≥ 0, (5-5)

including the operating mode control input u1 = w1, for which the integer requirement is
relaxed.

u1 ∈ [0, 1]. (5-6)

The objective to be minimized includes the ageing rate αageing(T ), total losses and TMS
power consumption, such that the Model Predictive control (MPC) is formulated as:

min
x,u

=
Np−1∑
k=0

C1(αageing) + C2(Q̇losses, total + Pconsumed, total)dt,

s.t. x(k + 1) = f(x(k), u(k), d(k)),
x(0) = x0,

g(x(k), u(k), d(k)) ≥ 0,

(5-7)

where Np is the MPC prediction horizon and C1 and C2 are the weights for ageing and
power consumption respectively..

5-2 Controller structure

Hierarchical control allows for planning the trajectory of slow-changing temperatures far
ahead, whilst tracking fast-changing elements at a high rate and saving computational
power. The supervisory MPC controls the slow-changing temperature states, x by taking
into account forecast information d, as visualized in Figure 5-1, whereas simple PID-based
controllers are used to track the setpoints generated u by regulating the chiller heat
dissipation and the coolant and air mass flow rates. The plant outputs used in the
PID-based controller are denoted by y2, where the control actions, the pump speeds, fan
speed, compressor speed and expansion valve positions, are denoted by u2.
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Figure 5-1: NMPC-based control structure

5-3 Sampling time

Based on the in-vehicle measurement rate, the low-level pump and compressor controllers
are limited to running at a frequency f1 of 2 Hz. Therefore, the frequency of the high-level
controller should run at f2 < 0.1f1 which means at 0.2 Hz or slower, to ensure the
PID-based controllers are able the track the setpoints generated in the high-level controller.
The temperature of the inverters can change significantly in several seconds. To ensure that
the temperature will never exceed the temperature limits, shown in Table 2-1, the inverter
can gradually reduce its power output to decrease heat production. Instead, being able to
react to disturbances is preferred such that the inverter temperature can be decreased
through cooling, which requires a low sampling time.
To ensure the desired disturbance rejection, the minimum sampling time of Ts = 1

0.1f1
= 5 s

is chosen.

5-4 Integration

The integrator is responsible for solving the Ordinary Differential Equation (ODE)’s to
simulate the model dynamics over time. Following the background given in chapter 4,
different numerical ODE solvers are compared on two criteria: Computation time and
accuracy. The computation time is evaluated in combination with the optimizer, which will
be discussed in chapter 7.

Backward Differentiation Formula (BDF) method The Backward Differentiation
Formula (BDF) method is an implicit, adaptive solver that allows for an error controlled
solution that ensures numerical stability and accuracy for stiff and non-stiff systems.

Explicit fixed-step Runge-Kutta method (RK4) The RK4 method is an explicit and
fixed-step method, meaning that the computation time is bounded. The step size must be
chosen such that the desired accuracy in the integration is ensured.
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5-4-1 Integration stepsize

While the BDF uses an adaptive stepsize to control the error, the RK4 integration method
uses a fixed step size h. The Local Truncation Error (LTE), the error made in a single
integration step, is proportional to h5. The step size is chosen by evaluating the LTE on
each of the inputs and initial states, obtained from the benchmark controller results that
were also used for model validation in section 6-4. An error-controller integrator with a
relative error tolerance RelTol = 1e-12 and absolute error tolerance AbsTol = 1e-20 is used
as a benchmark integrator. The benchmark integrator is compared to the RK4 integrator
with various step sizes. The integrator with stepsize h = 0.5 gives a maximum error of
LTE=1e-6, which is assumed sufficient and therefore is chosen for the MPC controller.

5-5 Optimization

The multiple shooting method is used to formulate the Nonlinear Programming (NLP)
method. Both Sequential Quadratic Programming (SQP) and interior point methods are
suitable solvers for real-time problem-solving. Various available optimizers are compared in
combination with various integrators by evaluating the achieved performance of the control
strategy and computation time in chapter 7.

Tested solvers Many solvers are available. Casadi [66] is an open-source tool for nonlinear
optimization and algorithmic differentiation. Within Casadi, various solvers for NLP
problems are available, both SQP methods and interior point methods. Casadi was also
used in [67] and [68].

Finally, Forcespro [69] is a commercial optimization framework that allows using branch and
bound methods to solve mixed-integer problems, as well as interior point methods
specifically designed for real-time MPC.

These methods will be compared with each other and the benchmark controller.
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Chapter 6

System identification and model
validation

System identification is done within the high-fidelity Simscape simulation environment, that
has been developed at Lightyear. The simulation captures many more physical effects than
captured in the control model described in chapter 3. Some of the main differences are:

• Most components are parametrized by tabular data retrieved from component
datasheets or system identification experiments, instead of basic physical equations
that may not truly capture the component behaviour.

• All four motors and inverters are modelled instead of just one.

• The battery, motors and inverters are modelled by multi-node models, instead of
single-node models.

• The refrigerant circuit is modelled completely, whereas in the control model, the
relation between compressor power consumption and heat dissipation in the chiller is
modelled by the Coefficient Of Performance (COP) only.

By using only measurement data from the simulation that can also be obtained on the real
vehicle, the experiments are designed such that the same methods can also be executed on a
real vehicle.

6-1 Thermal model parameters

The thermal capacities are given, based on their materials. The thermal capacity of the
coolant around a component is simply estimated by multiplying the coolant mass at room
temperature around that component by the specific heat coefficient. The symbolic thermal
capacities are given in Table 6-1.
This section elaborates on the system identification of the heat exchange model parameters.
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Component Thermal Capacity
Motor Cmotor
Inverter Cinverter
HVB CHVB
Coolant around motor mcoolant, motorccoolant
Coolant around inverter mcoolant, invccoolant
Coolant around HVB mcoolant, hvbccoolant
Coolant around radiator mcoolant, radccoolant
Coolant around chiller mcoolant, chillerccoolant

Table 6-1: Thermal capacities used

6-1-1 Methodology

This section describes the procedures followed to estimate the heat transfer coefficients for
the different heat exchangers. Summarizing the equations given in section 3-2, the heat
transfer Q̇dissipated between components and the coolant is described by

Q̇dissipated = ϵṁcoolantccoolant(Tcomponent − Tcoolant), (6-1)

whereas the heat transfer efficiency ϵ is defined as

ϵ(ṁcool) = 1 − exp (−NTU), (6-2)

and NTU is defined as
NTU = UA

ṁcoolantccoolant
. (6-3)

The overall heat transfer coefficient, multiplied by the heat transfer surface UA is modelled
by

UA = aṁb
coolant, (6-4)

where a and b are the parameters to be identified.

We assume the following data is measured for each test. The component temperature for
the battery, motor or drivetrain is generalized below and denoted by Tcomponent.

• Component temperature Tcomponent.

• Mass flow rate of coolant ṁcoolant.

• Temperature of the coolant at the inlet Tcoolant, inlet and outlet Tcoolant, outlet of the
respective heat exchanger.

The following procedure is used to find heat transfer parameters:

System identification procedure: Component dissipation to coolant

1. Bring component up to a high-temperature such that Tcomp >> Tcool

Jeroen van der Knaap MSc Thesis



6-1 Thermal model parameters 57

2. Gather component temperature data and additional coolant inlet and outlet
temperature data over time at different coolant mass flow rates and estimate heat
exchange between the coolant and the component.

3. The heat dissipation to the coolant is estimated as follows:
Q̇dissipation, coolant = (Tcoolant, outlet − Tcoolant, inlet)ṁcoolantccoolant

4. Fit Number of Transfer Units (NTU) heat exchange model parameters to the data
using the MATLAB fit function.

At the radiator, the coolant mass flow and the ambient air mass flow exchange heat through
the double-stream heat exchanger. The heat transfer is defined by

Q̇dissipated, radiator = ϵCr(Tcoolant − Tambient), (6-5)

where the minimum heat capacity rate Cr is described by

Cr = min(ṁcoolantccoolant, ṁambientcambient). (6-6)

For the double-stream heat exchange, ϵ is defined as

ϵ(ṁcoolant) = 1 − exp exp −CrNTU0.78 − 1
CrNTU−0.22 . (6-7)

The definition for the NTU is the same as for the single-stream heat exchanger as described
in Equation 6-3. The overall heat transfer coefficient, multiplied by the heat transfer
surface, UA is now expressed by

UA = 1
1

a1ṁ
b1
coolant

+ 1
a2ṁ

b2
ambient

, (6-8)

where a1, a2, b1 and b2 are the parameters to be identified. To avoid using a minimum in
the optimization, the direct use of the UA, such that

Q̇dissipated, radiator = UA(Tcoolant − Tambient), (6-9)

is compared to the equation using the NTU method as described in Equation 6-1-1. For the
radiator experiments, we assume the following data is measured:

• Mass flow rate of the coolant ṁcoolant, radiator.

• Mass flow rate of the ambient air at the radiator ṁambient.

• Temperature of the coolant at the inlet Tcoolant, inlet and outlet Tcoolant, outlet of the
radiator.

• Temperature of the air at the inlet, equal to the ambient temperature, Tambient and
outlet of the respective heat exchanger Tair, outlet.

The following procedure is used for the radiator:
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System identification procedure: Coolant to air at the radiator

1. Ensure there is a temperature difference between the coolant and the ambient air such
that Tcomp ̸= Tcool

2. Gather coolant inlet and outlet temperature and additionally ambient air temperature
data over time at different combinations of coolant mass flow rates and air mass flow
rates and estimate heat exchange between the coolant and the air.
Q̇dissipation, coolant to air = (Tcoolant, outlet − Tcoolant, inlet)ṁ coolantccoolant

3. Fit NTU heat exchange model parameters to the data using the MATLAB fit function.

6-1-2 Results of system identification

The heat exchange coefficients are identified for the electrical components and radiator.
Complete results including each of the electrical components are shown in section A-1.

Electrical components

For each of the electrical components, the heat transfer at different mass flow rates was
measured. The heat transfer equation parameters a and b were fitted to the heat transfer
equation, resulting in the values presented in Table 6-2, whereas the results for the High
Voltage Battery (HVB) are shown in Figure 6-1 for visualization.

Figure 6-1: Battery to coolant heat transfer coefficient

Radiator

For the radiator, the heat transfer at different mass flow rates of the ambient air and
coolant was measured. The approach using the the NTU method does give the most
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Battery Inverters Motors
a 955.5 220 75.35
b 0.40 0.79 0.24

Table 6-2: Resulting heat transfer parameters from system identification experiments

accurate results, as shown in Figure 6-2a. Figure 6-2b shows the results of the model using
the heat transfer coefficient directly, which prevents using a discontinuous minimum
function in the optimization problem and is therefore chosen. At lower mass flow rates, the
heat transfer coefficient is slightly underestimated. The values for the heat transfer
parameters are shown in Table 6-3.

Radiator using NTU method Radiator using UA directly
a1 2279 937
b1 0.8 0.8
a2 3873 2614
b2 0.79 0.8

Table 6-3: Resulting radiator heat transfer parameters from system identification experiments

(a) Heat transfer coefficient using NTU
method (b) Heat transfer coefficient directly using UA

Figure 6-2: Comparison of two models for the heat transfer coefficient at the radiator. The dots
denote the measured data, whereas the surface plot is made using the model.

6-2 Hydraulic model parameters

This section elaborates on the methodology and results of the system identification of the
hydraulic model parameters.
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6-2-1 Methodology

For the model parameters related to the coolant fluid, ambient air and refrigerant, first the
used models are summarized, and then the experimental procedure is described.

Ambient air mass flow rate

Summarizing the equations described in section 3-3, using the affinity laws, the fan power
Pfan is related to the volumetric flow rate V̇air by

Pfan = afanV̇ 3
air, (6-10)

where a is the parameter to be fitted. A linear relationship is assumed between the air
volumetric flow rate V̇air, when the fan is turned off, and vehicle speed vcar.

V̇air = acarvcar, (6-11)

where acar needs to be found through experiments.

We assume the following data is measured:

• Vehicle speed vvehicle

• Mass flow rate of air at the radiator ṁair that can be converted to the volumetric flow
rate V̇air through the air density.

• Fan power consumption Pfan

The following procedure is executed to find the model parameters required to model the
ambient air mass flow rate:

System identification procedure: Ambient air mass flow rate

1. Vary the vehicle speed between vvehicle = 0 and vvehicle = vvehicle, max and for each
speed, measure Vair. Maintain each speed for step 2, after which the speed can be
increased.

2. Vary the fan speed between the 0 and 100% and measure the volumetric flow rate V̇air
and fan power consumption Pfan.

3. Fit affinity law model at vvehicle = 0 using the MATLAB fit function.

4. Fit volumetric flow rate to vehicle speed at Pfan = 0 using MATLAB fit function.
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Coolant mass flow rate

For the pumps, a similar relationship can be used to describe the pump power consumption
Ppump, but first and second-order terms are added to capture nonlinearities.

Ppump = a1V̇ 3
coolant + a2V̇ 2

coolant + a3V̇coolant, (6-12)

where V̇coolant is the volumetric flow rate of the coolant and the remaining parameters a1, a2
and a3 have to be identified for the different modes. When w1 = 1, the drivetrain
components and battery are both cooled through the radiator, there is an interaction
between the two circuits, requirements an additional term.

Ppumps, w1=1 = f(V̇coolant, 1) + f(V̇coolant, 2)) + cV̇coolant, 1V̇coolant, 2, (6-13)

where f(V̇coolant, 1) and f(V̇coolant, 1) are the power consumption when the other pump is
turned off, as described by Equation 6-12 and c needs to be identified.
The following data is measured in order to execute the system identification procedure:

• Coolant mass flow rate at pump 1 ṁcoolant, 1 and at pump 2 ṁcoolant, 2 that can be
related to the volumetric flow rate through the coolant density

• Valve position w1

• Power consumption of pump 1 Pcoolant, 1 and pump 2 Pcoolant, 1.

The following procedure is executed to find the model parameters relating the coolant mass
flow rate to the pump power consumption, for each of the modes w1 = 0 and w1 = 1.

System identification procedure: Coolant mass flow rate

1. Vary the pump speeds between 0 and 100% and measure the mass flow rate ṁcoolant, 1,
ṁcoolant, 2 and pump power consumptions Ppump, 1 and Ppump, 2.

2. Fit the model for each pump and each mode individually, as described by
Equation 6-12 using the MATLAB fit function.

3. Fit the complete model, including the model parameter c, as described in
Equation 6-13 using the MATLAB fit function.

Chiller

To summarize the model equations given in subsection 3-3-3, let the Coefficient Of
Performance (COP) be expressed by

COP = Q̇dissipated, chiller
Pcompressor

, (6-14)

where Q̇dissipated, chiller and Pcompressor are the heat dissipated at the chiller and power
consumption of the compressor.
We assume the following data is measured:
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• Coolant mass flow rate at the chiller ṁcoolant, 1

• Ambient air mass flow rate ṁair

• Coolant temperature at the chiller inlet, denoted as Tcoolant, inlet

• Coolant temperature at the chiller outlet, denoted as Tcoolant, outlet

• Ambient temperature Tambient

• Power consumption of the compressor Pcompressor

We assume a test matrix where the COP at all possible combinations shown in Table 6-4
are evaluated such that the COP at all realistic use cases can be estimated.

Possible values
Tamb[°C] [20, 30, 40]
Tcoolant, inlet[°C] [20, 30, 40]
npump[%] [25, 50, 75, 100]
vvehicle[km/h] [30, 50, 70, 90, 120]
Q̇dissipated, chiller[W] [1000, 2000, 3000]

Table 6-4: Chiller COP test parameter settings

System identification procedure: Chiller cooling power

1. Iteratively set the initial conditions according to the upper use case. The heat
dissipation is controlled by a simple PID controller.

2. Wait for the low-level tracking controller to reach the desired heat dissipation.

3. Measure the power consumption of the compressor.

6-2-2 Results of system identification

This section shows results for the hydraulic model identification. Complete results for each
pump in each valve position are shown in section A-2.

Ambient air mass flow rate

The parameter acar, relating the vehicle speed and resulting air volumetric flow rate is
determined first. Then the affinity law parameter afan relating the volumetric flow rate to
the fan power consumption is estimated. The found values are shown in Table 6-5 and the
resulting fitted model is visualized in Figure 6-3.

It was observed that at higher speeds when the fan is turned, increased fan speed would
actually lower the mass flow rate. Because of this, correct lower and upper mass flow rate
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Parameter Value
acar 0.008
afan 1700

Table 6-5: Resulting hydraulic model parameters from system identification experiments

limits at different velocities were determined. The lower bound ṁair, min is straightforward,
as it is the mass flow rate induced by the vehicle speed.

ṁair, min = ṁair, natural. (6-15)

The upper limit ṁair, max depends on specific fan characteristics at lower speeds, as shown
in Figure 6-3a. A linear relation between the vehicle speed and upper limits is drawn. This
limit at lower speeds is denoted by ṁair, max, fan. At higher speeds, the fan is not able to
increase the mass flow anymore and the mass flow is proportional to the vehicle speed. Now,
the resulting limit are simply expressed by

ṁair, max = max(ṁair, max, fan, ṁair, natural). (6-16)

The graph Figure 6-3b shows how the mass flow rate changes at different fan - vehicle speed
combinations, taking into account the limits.

(a) Ambient air mass flow limits at different
velocities

(b) Ambient air mass flow rate at different
velocities and fan speeds

Figure 6-3: The relation between the ambient air mass flow rate, the vehicle speed and fan
power consumption is identified.

Coolant mass flow rate

The coolant mass flow rate does not only depend on the pump speed but also on the valve
positions, as different components cause different pressure drops. First, the relation between
pump speed and mass flow rate was determined assuming only one of the two pumps was
turned on. After this, both pumps were both turned on to capture the interactive term.
The resulting model parameters are shown in Table 6-6, whereas the results for pump 1 and
w1 = 1 are plotted in Figure 6-4. For the interactive term, a value of c = 1621 was found.
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An example of the fitted model can be seen below for the short circuit mode. Adding a first
order allows for increased accuracy in the low mass flow rate section.

Figure 6-4: Power consumption related to coolant mass flow for pump 1 and w1=1

Pump 1, w1 = 0 Pump 1, w1=1 Pump 2, w1=0 Pump 2, w1=1
a1 3841 2981 3076 2955
a2 322.2 0 66.1 0
a3 11.8 74.3 0 15.5

Table 6-6: Resulting model parameters relating the mass flow rate to the mass flow rate

Coefficient Of Performance (COP)

First, the influence of the mass flow rate on the Coefficient Of Performance (COP) is
investigated. up to a certain point, higher mass flow rates cause a decrease in power
consumption, thus increasing the COP, as can be seen in Figure 6-5a for the ambient air
mass flow rate. At a certain point, an increase in mass flow rate costs too much energy and
the combined power consumption of the compressor and fan increases. For each
combination of ambient temperature, coolant temperature and desired heat dissipation, an
energy-optimal air and coolant mass flow rate can be chosen using Look-Up Table (LUT)’s.

To conclude, the influence of coolant temperature, ambient temperature and cooling power
are evaluated, as visualized in Figure 6-5b . The following choices are made:

• The ambient temperature changes very slowly, so a fixed COP with relation to the
ambient temperature is assumed at every function evaluation.

• The coolant temperature can change fast, but it reaches a steady-state temperature
based on the current battery temperature. Based on experiments, a fixed COP with
relation to the current coolant temperature is assumed at every function evaluation. A
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(a) Combined power consumption for the fan
and compressor for different air mass flow rates
for an ambient and battery temperature of 40
°C. The circles represent the optimal mass flow
rate for each desired heat dissipation.

(b) Chiller COP for different temperatures and
cooling rates

Figure 6-5: Chiller COP for different operating conditions

coolant temperature of five degrees lower than the current battery temperature is
assumed.

• There is no single physical equation describing the relation between Q̇desired and the
COP. However, because the battery temperature changes slowly, also a slow change in
optimal cooling demand can be expected. Therefore at every function evaluation, a
fixed COP with relation to the previous cooling demand is assumed. To ensure no
sudden fluctuations in the optimal control action, a low-pass filter is required. This is
implemented by constraining the chiller heat dissipation to only change by a limited
amount every timestep compared to the previously chosen heat dissipation.

This method allows for using simply a LUT to estimate the COP for every new function
evaluation.

6-3 Electrical model parameters

The system identification process for the models describing the losses of the electrical
components used for propulsion, the motors, inverters and HVB are discussed in this section.

6-3-1 Motors

Summarizing the equations described in subsection 3-4-4, the motor losses Q̇losses, motor are
described by

Q̇losses, motor = f(ω, τ) + aτ2(1 + α(Tmotor − T0)), (6-17)

where f(ω, τ) are the non-winding losses, a needs to be identified and α is the copper
temperature resistivity coefficient. The non-winding losses can be stored using a LUT.
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The following data is used to estimate the losses of the motors:

• Total motor losses and phase currents Iphase at various torque and speed setpoints, at
known temperature Tmotor.

• Measured phase resistance Rphase at initial temperature Tinit

From this data, the goal is to model the temperature-dependent losses at different speed
and torque setpoints. The procedure to find the parameters of the temperature-dependent
winding losses is described as follows:

System identification procedure: Motor losses

1. Calculate winding losses for all three phases using Q̇losses, winding = 3I2
phaseRphase.

2. Fit winding losses to torque setpoints using Q̇losses, winding = aτ2(1 + α(Tmotor − Tinit).

3. Winding losses can now be modeled as Q̇losses, winding = aτ2(1 + α(Tmotor − Tinit).

This allows splitting the losses into temperature-dependent winding losses and
non-temperature-dependent losses, such that the winding losses can be shown in Figure 6-6.
The non-winding losses are given in section A-3.

Figure 6-6: Motors winding losses as a function of torque and temperature

6-3-2 Inverter

Based on the available models, the temperature-dependent inverter losses are assumed
negligible, as well as the speed-dependent losses. A polynomial model is available relating
the torque and the inverter losses that is used in the remainder of this thesis. The inverter
losses are given in section A-3.
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6-3-3 HVB

Summarizing the equations described in , the battery losses Q̇losses, battery are expressed by

Q̇losses, battery = I2
batRbat(Tbat). (6-18)

where Rbat is the battery resistance, depending on the temperature Tbat.

Rbat = a − bTbat. (6-19)

The calculate the losses in the HVB, the following data was available:

• Battery cell internal resistance for discharging, as a function of temperature and State
of Charge (SoC). Data for charging is also available, but as the car is mostly driving
and the cell resistance for charging is similar compared to discharging, only
discharging data is used.

(a) Battery cell resistance as a function of SoC
and temperature

(b) Battery cell resistance as a function of
only temperature

Figure 6-7: The battery cell resistance depends on both the SoC as well as the temperature.

The cell resistance is shown in Figure 6-7a, where it can be observed that the SoC indeed
has a very small effect when larger than 20 %, as was discussed in subsection 3-4-3. By
removing the dependence on SoC, a nonlinear relationship with temperature can be seen.
When only looking at battery temperatures above 25 °C, the region considered in this
thesis, a linear relationship can be drawn, as shown in Figure 6-7b. The values for
parameters a and b in Equation 6-19 are shown in Table 6-7.

Parameter Value
a [Ω] 0.065
b [Ω· K−1] 0.95 ·10−3

Table 6-7: Resulting model parameters relating the battery temperature to the cell resistance
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Figure 6-8: Ageing rate at different temperatures

Ageing As both mechanisms of cycling ageing and calendar ageing need to be taken into
account, we assume the model including model parameters explained in [46], as discussed in
subsection 3-4-3. The ageing behaviour of cycled cells is tested between -20 °C and +70 °C.
Between 25 and 70 °C, a clear trend of rising ageing rates with increasing temperature was
found. On the other hand, between -20 and 25 °C, higher ageing with lower temperatures
was found. This shows that two different ageing mechanisms take place. The ageing rates
for low and high temperatures are expressed as a percentage compared to ageing at 25°C, as
shown in Figure 6-8. When adding the Arrhenius plots, we find a convex function. Here the
total ageing rate αageing, total is defined as the sum of cycling and calendar ageing and
expressed by

αageing, total = αageing, cycling + αageing, calendar. (6-20)
A polynomial fit is done which can be used in the optimization:

αageing, total = a1T 4
Bat + a2T 3

Bat + a3T 2
Bat + a4TBat + a5. (6-21)

The resulting model parameters are shown in Table 6-8.

Parameter Value
a1 0.0001268
a2 -0.01728
a3 1.004
a4 -25.89
a5 240.8

Table 6-8: Resulting model parameters relating the battery temperature to the ageing rate

6-4 Validation of the integrated model

To validate the integrated model, the following procedure was done:
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System validation procedure: Integrated model

1. Generate control input data using the benchmark controller in the TMS simulation
environment for different drive cycles and different initial temperatures.

2. Feed generated control inputs to the MPC model.

3. Compare component temperatures over time.

Various use cases were used to validate the complete system model.

6-4-1 Use cases cycles

To evaluate the effect of using forecast information, various drive cycles were chosen with
different characteristics. The drive cycles are called "Stelvio" drivecycle, "Artemis" drive
cycle and the Worldwide Harmonised Light Vehicle Test Procedure (WLTP) drive cycle.
Also, tests are done for different ambient condtiions.

Figure 6-9: Velocity/Elevation profiles of the drivecycles

Stelvio drive cycle The vehicle is going up and down the Stelvio mountain. This drive
cycle has a high average torque and a low average speed. The ambient temperature varies
due to the elevation profile.
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Average torque[Nm] Max torque[Nm] Average speed[km/h] Duration[s]
Artemis 258 1673 58 3400
Stelvio 529 1690 44 3815
WLTP 216 1039 46 1800

Table 6-9: Drive cycle properties

Artemis drive cycle This drive cycle has a moderate average torque and a varying speed.

WLTP drive cycle This drive cycle has a moderate average torque and a varying speed.
WLTP is the standard drive cycle for vehicle efficiency testing and has the shortest duration.

Ambient conditions The controller is tested for two cases, to examine the effect of
ambient temperature. The initial component temperature is assumed to be five degrees
above the ambient temperature.

• Moderate weather: the ambient temperature is 20 degrees

• Hot weather: the ambient temperature is 40 degrees

6-4-2 Results

To show the validity of the integrated model, example input data was generated using the
reference controller. For the drive cycle WLTP, the example inputs generated from the
baseline controller are fed into the MPC model. The true component behaviour is compared
to the simulated behaviour over the same inputs as can be seen in Figure 6-10. The
integration time is over the entire drive cycle, whereas during real-time control, only several
minutes of prediction is done so error accumulation should be lower. Complete validation
results including results obtained over the remaining use cases are shown in section A-4.

The mean error and standard deviations in the error of the electric components are shown
in Table 6-10 for each of the drive cycles.

µϵ,HV B

[K]
σϵ,HV B

[K]
µϵ,mot,max

[K]
σϵ,mot,max

[K]
µϵ,inv,max

[K]
σϵ,inv,max

[K]
WLTP moderate -0.14 0.01 1.40 1.06 -0.75 1.62
WLTP hot -0.16 0.03 0.92 3.01 0.20 2.16
Artemis moderate 0.25 0.10 0.78 0.99 -0.79 1.16
Artemis hot 0.21 0.09 0.14 1.51 0.00 0.98
Stelvio moderate -0.22 0.09 0.74 2.77 2.52 2.12
Stelvio hot 0.03 0.29 1.48 1.90 1.26 1.38

Table 6-10: Integrated model error
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Figure 6-10: Component temperatures compared at WLTP - hot weather use case

6-5 Vehicle dynamics

Applying the vehicle model, the model disturbances, motor rpm, torque setpoints and
battery current can be estimated from the vehicle speed profile and an elevation profile.
Known vehicle parameters are used and no optimization is done to fit the fit parameters.
For simplicity, a time-invariant model is assumed. The resulting model accuracy of the
battery current and torque estimation is shown in Table 6-11.

µϵ,Ibat
[A] σϵ,Ibat

[A] µϵ,τ [τ ] σϵ,τ [τ ]
WLTP -0.9 3.2 -2.0 7.1
Artemis -1.8 8.8 -2.8 10.8
Stelvio -0.3 5.6 -2.4 12.4

Table 6-11: Propulsion load estimation error

6-5-1 Modelling the inaccuracy of forecast information

To test the robustness of the Model Predictive control (MPC) strategy to inaccurate
forecast information or imperfectness of driving behaviour, noise can be added to the
velocity profile. To create realistic noise on the velocity profile, the following is assumed:

1. The noise level is correlated such that the resulting velocity profile is feasible. For
example, if the error in prediction at timestep A is 10 km/h, the error in prediction at
timestep A+1 should be close to 10 km/h.
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72 System identification and model validation

2. The maximum noise level is limited to +10/-10 km/h.

Based on the assumption, a cumulative sum of random noise is used, where the maximum
level is limited to 10 km/h. The steps in creating the noise profile are shown in below:

1. create a vector with length equal to the full drive cycle, multiplied by the velocity data
sampling rate fs and assigned random values in the range [-0.25, 0.25].

2. Apply a cumulative sum over the vector elements, such the resulting noise level is
correlated, allowing a maximum noise level of -10/+10 km/h.

3. Add the accumulated noise to the perfect velocity profile to obtain the noisy velocity
profile.

The principle is visualized in Figure 6-11, where three different random noise signals are
created and added to the Artemis drivecycle.

(a) Three resulting noise signals after a cu-
mulative sum is applied over random noise

(b) Comparison of the true velocity cycle and
the three resulting noisy velocity profiles

Figure 6-11: Noise is added to the velocity profile
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Chapter 7

Results

The following chapter elaborates on the results of the tests done to validate the Model
Predictive control (MPC) strategy. First, the control strategy with initial controller
parameters is compared with the benchmark controller. Then, the effect of changing the
ageing weight is discussed, as well as different options for the integrator, optimizer and
prediction horizon. Finally, the effect of removing forecast information by freezing the
predicted disturbances over the prediction horizon and adding noise to the forecast
information is evaluated.

7-1 Validation of the MPC-based control strategy

As a baseline, the MPC-based control strategy with the settings shown in Table 7-1 is
compared with the benchmark control strategy. The energy consumed in the Thermal
Management System (TMS) throughout each of the use cases proposed in section 6-4 is
discussed, as well as the relative battery ageing and the computation times required to find
the optimal control action.

Sample time [s] 5
Prediction horizon [s] 300
Ageing weight Cageing 1
Integrator RK4 fixed-step
Optimizer IPOPT
Forecast source Perfect without noise

Table 7-1: MPC initial settings

7-1-1 Energy consumption

In the base case, the MPC controller is able to save energy throughout each of the three
drive cycles for moderate ambient conditions, between 20 and 30 °C. For hot ambient
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conditions, between 30 and 40 °C, a slight increase in energy consumption can be observed
for the Stelvio drive cycle. This is visualized in Figure 7-1a. The energy consumption
difference is shown in Table 7-2. Assuming a total vehicle energy consumption of 96 wh/km,
based on the Lightyear 0 WLTP range [70], the driving range is extended with almost one
kilometer of driving for the moderate Stelvio use case, where the most energy is saved.

7-1-2 Ageing and power limits

Whilst being able to save energy, an equal or decreased relative ageing rate compared to the
benchmark controller is achieved, as can be seen in Figure 7-1b. For the Stelvio drive cycle,
a significant decrease in the relative ageing rate can be seen. The relative ageing difference
is shown in Table 7-2.

(a) Energy consumption using the MPC con-
trol strategy and the benchmark strategy

(b) Relative ageing using the MPC control
strategy and the benchmark strategy

Figure 7-1: Performance metrics compared between MPC and benchmark strategy

Usecase Energy spent [Wh] Decrease in relative ageing [%]
Artemis, Tamb = 20 -26.1 (-11.4%) -0.0 (-0.0%)
Artemis, Tamb = 40 -31.5 (-6.3% ) -0.5 (-2.0%)
Stelvio, Tamb = 20 -84.0 (-9.2%) +0.2 (-7.1%)
Stelvio, Tamb = 40 +17.5 (+1.6%) -8.0 (-31.4%)
WLTP, Tamb = 20 -5.4 (-7.7%) -0.0 (-0.0%)
WLTP, Tamb = 40 -25.7 (-8.9%) +0.1 (+0.4%)

Table 7-2: Energy spend and relative ageing using the MPC-based strategy compared to using
the benchmark strategy over different drive cycles and ambient conditions. The relative difference
is shown in brackets.

7-1-3 Behavioral analysis

In this section, the relation between the MPC behavior and the losses, the velocity and the
time-varying Coefficient Of Performance (COP), that are included in the prediction model,
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(a) Pump power consumption uphill and
downhill for moderate Stelvio drive cycle

(b) Pump power consumption and velocity
zoomed in for moderate Stelvio drive cycle

(c) Fan power consumption and velocity
zoomed in for moderate Stelvio drive cycle

(d) Chiller heat dissipation for the hot WLTP
drive cycle

Figure 7-2: The effect of several runtime parameters on controller behaviour

are analysed. Plots showing the control trajectories, component temperature trajectories
and computation times for each of the six use cases, for the benchmark and MPC-based
control strategy, are shared in Appendix B. This section shares the summarized results.

Component losses In the Stelvio drive cycle, there is a clear distinction between a
high-torque section, when driving uphill and a low-torque section, when driving downhill.
At high torque, the motor losses are higher and intuitively, more cooling is desired to
minimize temperature-dependent losses. The MPC behaviour reflects this intuition, as can
be seen in Figure 7-2a. Both in advance of reaching the peak, and the end of the drive cycle,
pump power consumption is decreased to save energy. This is further discussed in
section 7-4, where different prediction horizons are compared. The benchmark control is
also plotted, showing a lower pump power consumption, only occurring when an inverter or
motor reaches the respective temperature limit, as discussed in section 2-2, not taking into
account temperature-dependent component efficiencies, such that the overall power
consumption is higher.

MSc Thesis Jeroen van der Knaap



76 Results

Vehicle velocity Heat dissipation at the radiator is more effective at higher velocities.
Therefore, if there are many fluctuations in velocity, intuitively, more cooling should be
done at higher velocities and less cooling at lower velocities. This means a higher pump
power consumption at higher velocities, to achieve a lower total average power consumption.
This expected behaviour can be seen back in Figure 7-2b, where the pump power
consumption is increased at higher velocities to cool most effectively compared to at lower
velocities. Additionally, the fan is only turned on when the vehicle speed is too low and
remains inactive at higher velocities, as can be seen in Figure 7-2c. In this case, the
benchmark control strategy never turns on the fan.

Effect of the time-varying Coefficient Of Performance (COP) At hot ambient
conditions, the chiller is used to cool down the battery until reaching a healthy temperature.
Tests were done both applying a prediction model using a time-varying COP and a fixed
COP that is independent of the cooling rate. When using a fixed COP, the optimal control
is bang-bang control, as shown in Figure 7-2d. When using a time-varying COP that is
higher at a higher chiller heat dissipation, a different control strategy is found, as also shown
in Figure 7-2d. The battery is cooled down at a slower rate to save energy until reaching the
same temperature of around Tbattery = 309 K. This causes the ageing rate to be slightly
higher, but the energy consumption to be significantly decreased. Only results for the hot
WLTP and hot Artemis use case are compared as can be seen in Table 7-3. Only in these
use cases, the chiller is used to cool down the battery from the initial hot temperature.

Fixed COP Time-varying COP

Usecase Relative ageing
[%]

Energy consumption
[Wh]

Relative ageing
[%]

Energy consumption
[Wh]

WLTP, 40 deg 24.6 295.1 25.8 263.3
Artemis, 40 deg 22.4 509.8 23.7 470.8

Table 7-3: Results using a fixed and a time-varying COP

7-2 Ageing weight

The ageing weight Cageing can be set to achieve the desired trade-off between minimizing the
ageing rate and power consumption, two conflicting objectives. For the control strategy
validation, initially, the ageing weight Cageing = 1 was set, as described in section 7-1. As
can be seen in Table 7-4, when the ageing weight is increased, the relative ageing decreases
at the cost of a higher energy consumption. Figure 7-3 shows the battery temperature
profile for the WLTP drivecycle at hot ambient conditions for the MPC-based control
strategy for different ageing weights.

The strategy should trade-off minimizing the energy consumption and ageing rate as
desired. The battery temperature should be kept below 45 °C such that discharging is not
limited, as was visualized in Table 2-1 and preferably closer to 35 °C, such that also
charging is least limited. Secondly, a decrease in energy consumption compared to the
benchmark strategy is desired whilst maintaining an equal ageing rate. The results obtained
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Figure 7-3: Battery temperature profiles compared for the MPC strategy using different ageing
weights compared and the benchmark control strategy

using an ageing weight of Cageing = 1 trade-off ageing and energy consumption as desired.
Therefore the ageing weight of Cageing = 1 is chosen and used in the remainder of this thesis.

WLTP Benchmark Cageing=0.8 Cageing=1.0 Cageing=1.2

Energy consumption [Wh] 288.9 219.9 (-23.8%) 263.35 (-8.8%) 300.6 (+4.0%)

Relative ageing rate [%] 26.3 31.2 (+18.6%) 26.4 (+0.4%) 23.7 (-9.9%)
Artemis

Energy consumption [Wh] 502.3 432.1 (-14.0%) 470.8 (-6.3%) 505.6 (+0.7%)

Relative ageing rate [%] 24.7 30.0 (+21.5%) 24.2 (-2.0%) 20.5 (-17.0%)
Stelvio

Energy consumption [Wh] 1089.3 1087.2 (-0.2%) 1106.8 (+1.6%) 1141.9 (+4.8%)

Relative ageing rate [%] 25.7 19.8 (-23.0%) 17.5 (-31.9%) 12.5 (-51.4%)

Table 7-4: Results on energy consumption for different ageing weights in the different drive
cycles at hot ambient conditions. The relative difference is shown in brackets.

7-3 Comparison of integrators and optimizers

The results for using the fixed-step RK4 integrator are compared to the results applying the
BDF integrator. Figure 7-4a and Figure 7-4b show the computation times for the implicit
adaptive-stepsize BDF integrator and the explicit fixed-stepsize RK4 integrator, in
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combination with the IPOPT optimizer. The energy consumption within the TMS and
ageing rate are compared in Table 7-5 and Table 7-6 respectively for the different
integrators. As can be seen, when using the same IPOPT optimizer, the RK4 integrator is
computationally more efficient whilst achieving no performance loss compared to the MPC
control strategy using the BDF integrator. By looking at the number of datapoints outside
of the boxplot whisker, it can be seen that the spread in computation times is larger. Due to
the lower computation times, for the TMS, the RK4 integrator is the preferred integrator
due to the increased computational efficiency.
Applying the RK4 integration method, The IPOPT optimizer is compared to the Forces
interior-point optimizer and the Forces mixed-integer method that uses the same
interior-point optimizer. Additionally, tests were done using both the Casadi and Forces
Sequential Quadratic Programming (SQP) optimizers, but these were not able to converge
towards optimal solutions. Therefore further analysis is only done based on the results
obtained using the interior point methods. The computation times are shown in Figure B-25
for each of the tested optimizers. The results on the energy consumption and ageing rate
are shown in Table 7-5 and Table 7-6 respectively. The computation times using the Forces
mixed-integer method have the largest difference between the box size and the maximum
computation times. This can be caused due to the fact that the computation time can vary
significantly depending on how many options for the integer valve position are evaluated
throughout the branch bound process. The Forces interior-point optimizer is
computationally most efficient whilst achieving minimal losses in performance compared to
the mixed-integer solver and no loss in performance compared to the IPOPT optimizer. Due
to the low computation times, the Forces NLP solver is the preferred optimizer in
combination with the RK4 integrator.

(a) IPOPT opti-
mizer + BDF in-
tegrator

(b) IPOPT opti-
mizer + RK4 in-
tegrator

(c) Forces
MINLP opti-
mizer + RK4

(d) Forces NLP
optimizer + RK4
integrator

Figure 7-4: Computation times for different combinations of integrators and optimizers
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7-4 Influence of prediction horizon

The computation times for different prediction horizons between Np = 6 and Np = 120,
between 30 and 600 seconds, are evaluated and can be seen in Figure 7-5b. Here the ageing
weight is set to Cageing = 0, to make quantitative comparison possible, whilst not taking into
account the battery ageing. If a nonzero ageing weight would be chosen, a different ageing
weight is necessary for each of the different prediction horizons to get comparable results in
terms of battery ageing. The energy consumption of the TMS for different prediction
horizons for the Stelvio drive cycle is shown in Figure 7-5a. The results for the other drive
cycles are shown in subsection B-2-4.

(a) Energy consumption for different predic-
tion horizons

(b) Computation time for different prediction
horizons

Figure 7-5: Different prediction horizons and their effect on TMS energy consumption and
computation times for the moderate Stelvio use case and Cageing = 0

The effect of increasing the prediction horizon is different for each drive cycle. For the
Stelvio drive cycle, there are high losses and there is a significant change in torque after
reaching the peak of the mountain. Here, there is an advantage of using a longer prediction
horizon for the control strategy. For the motor temperature, the effect of increasing the
prediction horizon in the Stelvio drive cycle result in a lower average motor temperature, as
visualized in Figure 7-6a. Also, it can be seen that the motor temperature changes more in
advance of future disturbances. For example. at the end of the drive cycle no more losses
are predicted. The active cooling is decreased as there is no gain in cooling the motors.
Similar behaviour can be seen in advance of reaching the peak. A prediction horizon of
Np=60 is chosen, as it is the largest prediction horizon for which the maximum computation
time is still within the sample time that is set to Ts =5s, as described in section 5-3.
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(a) Motor temperature for different prediction
horizons

(b) Pump 2 behavior for different prediction
horizons

Figure 7-6: Motor related behavior of controller for different prediction horizons in the Stelvio
drivecycle

7-5 Influence of removing forecast information

The value of using forecast information has not yet been quantified. In real-life scenarios,
forecast information may not always be useful or it may not even be available. To evaluate
the controller performance when no forecast information is used, in this test, the forecast
parameters are frozen over the entire prediction horizon. This means that the prediction is
based only on the current disturbances and not on external forecasts. The results for the
moderate use case are shown in Table 7-7. When the forecast information is removed, the
general trend is that still a relative improvement compared to the benchmark is observed,
but also a significant decrease in performance compared to when forecast information is
used. Typical behavior is shown in Figure 7-7, showing that when the current disturbances
are used over the entire prediction horizon, the control strategy overreacts to the current
disturbances. This results in a larger increase in energy consumption for the Stelvio drive
cycle compared to the other drive cycles, as the forecasted parameters vary most throughout
the drive cycle. Sudden peaks in power consumption can be observed for both pumps and
the fan in Figure 7-7a, Figure 7-7b and Figure 7-7c, respectively. For the chiller heat
dissipation, used in the hot use cases and shown in Figure 7-7d, the cooling trajectory
fluctuates more causing an increased compressor power consumption.
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Ageing Energy consumption

Usecase Bench-
mark Forecast No forecast Bench-

mark Forecast No forecast

WLTP 20 0.6 0.6 (+0.0%) 0.6 (+0.0%) 69.8 64.7 (-7.3%) 65.5 (-6.2%)
Artemis 20 0.6 0.6 (+0.0%) 0.6 (+0.0%) 229.3 203.2 (-11.4%) 210.7 (-8.1%)
Stelvio 20 2.8 2.6 (-7.1%) 2.8 (+0.0%) 917.4 833.4 (-9.2%) 871.5 (-5.0%)
WLTP 40 26.3 26.6 (+1.1%) 26.2 (-0.4%) 288.9 260.6 (-9.8%) 265.3 (-8.0%)
Artemis 40 24.7 24.4 (-1.2%) 23.7 (-4.0%) 502.3 467.8 (-6.9%) 481.2 (-4.2%)
Stelvio 40 25.7 14.2 (-44.3%) 11.5 (-55.3%) 1089.3 1116.6 (+2.5%) 1153.3 (+5.9%)

Table 7-7: Energy saved and decrease in relative ageing using MPC without forecast information
compared to the benchmark and MPC with forecast information. The relative difference is shown
in brackets.

(a) Power consumption for the pump in the
battery cooling circuit for the moderate Stelvio
use case

(b) Power consumption for the pump in the
drivetrain cooling circuit for the moderate
Stelvio use case

(c) Fan power consumption for the moderate
Stelvio use case

(d) Chiller heat dissipation for the hot Artemis
use case

Figure 7-7: Controller behavior for the moderate Stelvio use case using time-varying forecast
information in the prediction horizon compared to using the current disturbances throughout the
prediction horizon
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7-6 Influence of imperfect forecast information

Instead of perfect forecast information, noisy imperfect forecast information is used in this
test. Only tests are done for the moderate ambient use cases, as the effect of adding noise to
the velocity profile is evaluated, as described in subsection 6-5-1, and not to the
temperature profile. Noise is added to the true velocity profile and, using both the velocity
and elevation profiles, the forecast parameters, the torque and battery current, are
estimated using a basic vehicle model. A minimal loss in performance can be recognized for
the WLTP and Artemis drive cycles, as shown in Table 7-8. For the Stelvio drive cycle, a
more significant difference can be seen. This can be explained by the fact that a small
difference in future velocity prediction has a large impact on the losses in the Stelvio drive
cycle, as the car is driving in mountainous terrain and is often accelerating and decelerating.

WLTP Perfect forecast Noisy cycle 1 Noisy cycle 2 Noisy cycle 3

Energy consumption [Wh] 64.4 64.7 (+0.4%) 64.7 (+0.5%) 64.7 (+0.4%)

Relative ageing rate [%] 0.58 0.58 (+0.0%) 0.58 (+0.0%) 0.58 (+0.2%)
Artemis

Energy consumption [Wh] 203.1 203.2 (+0.1%) 205.58 (+1.2%) 203.3 (+0.1%)

Relative ageing rate [%] 0.61 0.61 (-0.2%) 0.61 (-0.2%) 0.61 (-0.1%)
Stelvio

Energy consumption [Wh] 833.4 843.7 (+1.2%) 834.0 (+0.1%) 844.9 (+1.4%)

Relative ageing rate [%] 2.6 3.9 (+49.9%) 2.9 (+9.7%) 4.10 (+57.2%)

Table 7-8: Energy saved and decrease in relative ageing using MPC with forecast parameters
obtained using the vehicle model and three noisy velocity profiles compared to MPC using ideal
forecast without noise. The relative difference is shown in brackets.
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Chapter 8

Conclusion & Discussion

A nonlinear Model Predictive control (MPC)-based control strategy for the Thermal
Management System (TMS) of Electric Vehicle (EV)’s was presented and compared to a
benchmark control strategy. The advantages, reducing High Voltage Battery (HVB) ageing
and overall vehicle energy consumed, were quantified. Depending on the drive cycle, up to
84 Wh can be saved, while maintaining an equal ageing rate. A decrease in power
consumption between 7% and 11% is achieved for 5 out of 6 use cases, while additionally
decreasing the ageing rate by 0% to 7%. For one use case, an increase in energy
consumption is achieved by 2.5%, but the relative ageing rate is decreased by 44%.

The sensitivities with respect to predictable disturbances were analyzed. The energy is saved
partly by taking into account temperature-dependent component efficiencies. At long drive
cycles and drive cycles with high average torque, the most energy can be saved. Secondly,
by modelling the chiller Coefficient Of Performance (COP), an energy-efficient battery
cooling trajectory can be achieved at hot ambient conditions. The behavior of the control
strategy is analyzed when no forecast information is used, but the forecasted parameters are
frozen throughout the prediction horizon, based on the current disturbances. Highly
fluctuating behavior is observed, overreacting to the current disturbances, which results in
inferior performance compared to when forecast information is used, but an improved
performance compared to the benchmark. The loss in performance when using imperfect,
noisy, forecast information instead of perfect forecast information is quantified. Using noisy
forecast information, the energy consumption and ageing rate increase by between 0.0% to
1.2%, depending on the drive cycle. The losses are highest for the Stelvio drive cycle, where
a small change in forecasted velocity has a relatively large effect on the predicted losses.

The optimal control strategy developed in this thesis is also fast enough for real-time use, as
the maximum computation time is less than the sample time Ts = 5s. By using a
fixed-stepsize integrator, a prediction horizon of 300 seconds, and the Forces NLP optimizer,
both energy-efficient control and fast enough computation are achieved.

The methodology using white box models and simple tuning of the weights of ageing and
energy consumption costs allow for scalability and reusability, which are important design
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requirements in the automotive context. It has to be noted that actual ageing tests are
required for vehicle deployment, in order to say anything about the true vehicle performance.

In this thesis, the effect of adding noise to the velocity profile, used to estimate the vehicle
torque and battery current, was quantified. However, noise in real life may have a different
distribution, which in future research has to be validated by using actual driver data. Also,
several assumptions were used in this thesis. In real life, the navigation system may not
always be turned on, in which case the taken route is not known in advance. Next to that,
even if the route is known, the driver might change destination which can have an impact on
the optimal temperature trajectories.

The current methodology is fast enough for online control in the simulation platform.
Following the controller design methodology shown in Figure 8-1, there are steps to take
until the method would be suitable for vehicle deployment. System identification tests need
to be done using the real vehicle, instead of the simulation platform. The tests used in this
thesis are suitable for real-vehicle experiments as well. Then, controller validation should be
done on a prototype vehicle. If the control strategies fulfil the functional requirements, the
controller should be prepared for embedded implementation, and integrated into the vehicle
compute platform.

Figure 8-1: Process from the development onto real-vehicle deployment
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Appendix A

Integrated Model Validaton

In this appendix, complete model validation results are shown for the thermal model,
hydraulic model and electrical model parameters. Finally the complete results for the
integrated model validation are shown.

A-1 Thermal model validation

The thermal model validation results for the battery, motor, inverter and radiator are shown
in Figure A-1.
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(a) Heat transfer coefficient from battery to
coolant

(b) Heat transfer coefficient from motor to
coolant

(c) Heat transfer coefficient from inverter to
coolant

(d) Heat transfer coefficient from coolant to
air

Figure A-1: Heat transfer coefficient for each of the different components

A-2 Hydraulic model validation

The hydraulic model parameters for the case when the battery is cooled through the chiller,
when w1 =1 and when the battery is cooled through the radiator, when w1=0, are shown in
Figure A-2.
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(a) Pump 1 power consumption when w1 =
1

(b) Pump 2 power consumption when w1 =
1

(c) Combined power consumption of the two
pumps when w1 = 0

Figure A-2: Hydraulic model validation results
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A-3 Electrical model validation

The inverter losses, depending on function are plotted in Figure A-3, whereas the different
types of motor losses are shown in Figure A-4

Figure A-3: Inverter losses are described as a function of torque

(a) Temperature dependent winding losses
(b) Temperature-independent motor losses
are described as a function of torque and speed

Figure A-4: Temperature-dependent and independent motor losses

A-4 Integrated model validation

The integrated model validation results for the WLPT moderate and hot use case are shown
in Figure A-5 and Figure A-6 respectively, for the Artemis moderate and hot use case in
Figure A-7 and Figure A-6 respectively and finally for the Stelvio moderate and hot use
case in Figure A-9 and Figure A-10 respectively.
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Figure A-5: Component temperatures compared at WLTP - moderate weather use case

Figure A-6: Component temperatures compared at WLTP - hot weather use case
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Figure A-7: Component temperatures compared at Artemis - moderate weather use case

Figure A-8: Component temperatures compared at Moderate - hot weather use case
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Figure A-9: Component temperatures compared at Stelvio - moderate weather use case

Figure A-10: Component temperatures compared at Stelvio - hot weather use case
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Appendix B

Control Strategy Validation

In this appendix, the complete results are given for the benchmark control strategy and the
MPC-based control strategy. Detailed results for each use case are shown, including
component temperature trajectories, all control trajectories and computation times.

B-1 Benchmark controller

For the benchmark controller, first, the control trajectories are shown for each use case.
Then the component temperature trajectories are shown.

B-1-1 Control behavior

The control trajectories for the WLPT moderate and hot use case are shown in Figure B-1
and Figure B-4 respectively, for the Artemis moderate and hot use case in Figure B-2 and
Figure B-5 respectively and finally for the Stelvio moderate and hot use case in Figure B-3
and Figure B-6 respectively.
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Figure B-1: Resulting control actions using the benchmark control strategy for the moderate
WLTP use case

Figure B-2: Resulting control actions using the benchmark control strategy for the moderate
Artemis use case
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Figure B-3: Resulting control actions using the benchmark control strategy for the moderate
Stelvio use case

Figure B-4: Resulting control actions using the benchmark control strategy for the hot WLTP
use case
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Figure B-5: Resulting control actions using the benchmark control strategy for the hot Artemis
use case

Figure B-6: Resulting control actions using the benchmark control strategy for the hot Stelvio
use case
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B-1-2 Resulting temperature trajectories

The component temperature trajectories for the WLPT moderate and hot use case are
shown in Figure B-7 and Figure B-10 respectively, for the Artemis moderate and hot use
case in Figure B-8 and Figure B-11 respectively and finally for the Stelvio moderate and hot
use case in Figure B-9 and Figure B-12 respectively.

Figure B-7: Resulting component temperature trajectories using the benchmark control strategy
for the moderate WLTP use case
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Figure B-8: Resulting component temperature trajectories using the benchmark control strategy
for the moderate Artemis use case

Figure B-9: Resulting component temperature trajectories using the benchmark control strategy
for the moderate Stelvio use case
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Figure B-10: Resulting component temperature trajectories using the benchmark control strategy
for the hot WLTP use case

Figure B-11: Resulting component temperature trajectories using the benchmark control strategy
for the hot Artemis use case
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Figure B-12: Resulting component temperature trajectories using the benchmark control strategy
for the hot Stelvio use case

B-2 MPC-based controller

For the MPC-based control strategy, first, the control trajectories are shown for each use
case. Then the component temperature trajectories are shown, as well as the computation
times per drivecycle.

B-2-1 Control behavior

The control trajectories for the WLPT moderate and hot use case are shown in Figure B-13
and Figure B-16 respectively, for the Artemis moderate and hot use case in Figure B-14 and
Figure B-17 respectively and finally for the Stelvio moderate and hot use case in
Figure B-15 and Figure B-18 respectively.
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Figure B-13: Resulting control actions using the MPC-based control strategy for the moderate
WLTP use case

Figure B-14: Resulting control actions using the MPC-based control strategy for the moderate
Artemis use case
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Figure B-15: Resulting control actions using the MPC-based control strategy for the moderate
Stelvio use case

Figure B-16: Resulting control actions using the MPC-based control strategy for the hot WLTP
use case
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Figure B-17: Resulting control actions using the MPC-based control strategy for the hot Artemis
use case

Figure B-18: Resulting control actions using the MPC-based control strategy for the hot Stelvio
use case
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B-2-2 Resulting temperature trajectories

The control trajectories for the WLPT moderate and hot use case are shown in Figure B-19
and Figure B-22 respectively, for the Artemis moderate and hot use case in Figure B-20 and
Figure B-23 respectively and finally for the Stelvio moderate and hot use case in
Figure B-21 and Figure B-24 respectively.

Figure B-19: Resulting component temperature trajectories using the MPC-based control strat-
egy for the moderate WLTP use case
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Figure B-20: Resulting component temperature trajectories using the MPC-based control strat-
egy for the moderate Artemis use case

Figure B-21: Resulting component temperature trajectories using the MPC-based control strat-
egy for the moderate Stelvio use case
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Figure B-22: Resulting component temperature trajectories using the MPC-based control strat-
egy for the hot WLTP use case

Figure B-23: Resulting component temperature trajectories using the MPC-based control strat-
egy for the hot Artemis use case
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Figure B-24: Resulting component temperature trajectories using the MPC-based control strat-
egy for the hot Stelvio use case

B-2-3 Computation times

The computation times for the WLPT moderate and hot use case are shown in
Figure B-25a and Figure B-25d respectively, for the Artemis moderate and hot use case in
Figure B-25b and Figure B-25e respectively and finally for the Stelvio moderate and hot use
case in Figure B-25c and Figure B-25f respectively.
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(a) Computation times
for the MPC-based control
strategy for the moderate
WLTP use case

(b) Computation times
for the MPC-based control
strategy for the moderate
Artemis use case

(c) Computation times
for the MPC-based control
strategy for the moderate
Stelvio use case

(d) Computation times
for the MPC-based control
strategy for the hot WLTP
use case

(e) Computation times
for the MPC-based con-
trol strategy for the hot
Artemis use case

(f) Computation times
for the MPC-based control
strategy for the hot Stelvio
use case

Figure B-25: Computation times for different combinations of integrators and optimizers
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B-2-4 Prediction horizon

This section shows the complete results elaborating on the relation between the length of
the prediction Np horizon and the computation time as well as the energy consumption of
the Thermal Management System (TMS) of the the Electric Vehicle (EV) in each of the
three drive cycles. The computation times for different prediction horizons are shown in
Figure B-26a. The energy consumption at different lengths of the prediction horizon for the
moderate Stelvio, Artemis and WLTP use cases are shown in Figure B-26b, Figure B-26c
and Figure B-26d, respectively.

(a) Computation time for different prediction
horizons

(b) Energy consumption for the moderate
Stelvio use case

(c) Energy consumption for the moderate
Artemis use case

(d) Energy consumption for the moderate
WLTP use case

Figure B-26: The effect of the prediction horizon on the computation times and the energy
consumption for each of the three drivecycles.
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List of Acronyms

EV Electric Vehicle
TMS Thermal Management System
HVAC Heating, Ventilation and Air Conditioning
HVB High Voltage Battery
FHU Front Hex Unit
MPC Model Predictive control
NN Neural Network
DP Dynamic Programming
SoC State of Charge
SoH State of Health
COP Coefficient Of Performance
PLR Partial Load Ratio
OCP Optimal Control Problem
NTU Number of Transfer Units
LMTD Log-Mean Temperature Difference
BDF Backward Differentiation Formula
RK Runge-Kutta
SEI Solid Electrolyte Interface
MLD Mixed Logical Dynamical
ODE Ordinary Differential Equation
IVP Initial Value Problem
SQP Sequential Quadratic Programming
NLP Nonlinear Programming
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QP Quadratic Programming
PSO Particle Swarm Optimization
LUT Look-Up Table
BVP Boundary Value Problem
LTE Local Truncation Error
GE Global Error

List of Symbols

Abbreviations
αroad Road slope
ṁ Mass flow rate kg s−1

Q̇ Heat flow rate W
V̇ Volumetric flow rate m3s−1

ϵ Heat transfer efficiency coefficient -
ηdt Drivetrain efficiency p.u.
µ Dynamic Viscosity Pa ·s
ω Rotational speed rad s−1

ρ Density kg m−3

A Area m2

a Acceleration m s−2

C Thermal capacity J K−1

c Specific heat capacity J K−1kg−1

Cd Aerodynamic drag coefficient -
Clost Battery capacity fade Wh
Coriginal Original unused battery capacity Wh
crr Rolling resistance coefficient -
Cused Remaining attery capacity after usage Wh
Cr Heat capacity rate W K−1

DH Hydraulic Diameter m
E Energy J
Faccel Inertial force N
Faero Aerodynamic drag force N
Fgrav Gravitational force N
Froll Rolling drag force N
Ftr Total traction force N
g Gravitational acceleration m/s2

H Enthalpy J
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h Step size s
I Electric Current A
kb Boltzmann constant J K−1

m Mass kg
n Speed s−1

Nu Nusselt number -
P Power consumption W
p Absolute pressure Pa
Ppr Vehicle propulsion power W
R0 Resistance at reference temperature Ω
Raged Aged battery cell resistance Ω
Rbat Battery pack resistance Ω
Rcell Battery cell resistance Ω
Rgas Specific gas constant J K−1mol−1

Re Reynolds number -
T Temperature °C
T0 Reference temperature °C
U Heat transfer coefficient W m−2K−1

v Velocity m s−1

w Valve position -
τ Torque Nm
Q Heat J
t Time s
ts Sample time s
Voc Battery open circuit voltage V
COP Coefficient of performance -
NTU Number of Transfer Units -
PLR Partial Load Ratio -
SoC State of Charge %
SoH State of Health %
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