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a b s t r a c t

Current methods for energy diagnosis in heating, ventilation and air conditioning (HVAC) systems are not
consistent with process and instrumentation diagrams (P&IDs) as used by engineers to design and oper-
ate these systems, leading to very limited application of energy performance diagnosis in practice. In a
previous paper, a generic reference architecture – hereafter referred to as the 4S3F (four symptoms
and three faults) framework – was developed. Because it is closely related to the way HVAC experts diag-
nose problems in HVAC installations, 4S3F largely overcomes the problem of limited application. The pre-
sent article addresses the fault diagnosis process using automated fault identification (AFI) based on
symptoms detected with a diagnostic Bayesian network (DBN). It demonstrates that possible faults can
be extracted from P&IDs at different levels and that P&IDs form the basis for setting up effective DBNs.
The process was applied to real sensor data for a whole year. In a case study for a thermal energy plant,
control faults were successfully isolated using balance, energy performance and operational state symp-
toms. Correction of the isolated faults led to annual primary energy savings of 25%. An analysis showed
that the values of set probabilities in the DBN model are not outcome-sensitive.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

As noted in [1], for example, fault detection is the detection of
the presence of faults in the functioning of a system by means of
symptoms. To use healthcare as an analogy, faults can be seen as
illnesses which lead to symptoms. These faults are isolated and
evaluated in the diagnosis process.

Despite the many studies of building commissioning and energy
management, building energy analysis systems with fully auto-
mated fault detection and diagnosis are rarely applied in practice,
resulting in unnecessarily high energy consumptions.

In [2] a first draft of the 4S3F method was presented. This
method, based on data provided by the Building Management Sys-
tem (BMS), aims to achieve automated continuous energy diagno-
sis of complex heating, ventilation and air conditioning (HVAC)
systems using a systematic approach based on the information
contained in process & instrumentation diagrams (P&IDs) and the
subsequent analysis of four categories of symptoms and three cat-
egories of faults (4S3F). This 4S3F method is present in the Building
Energy Management System (BEMS), which can either be a sepa-
rate application or be implemented in the BMS. The method was
shown to overcome the problem of energy diagnosis systems sel-
dom being used in practice because their design does not reflect
how HVAC designers work. Furthermore, the process of using
energy diagnosis to isolate faults is far from fully automated at pre-
sent, there is little standardization of energy diagnosis and few
generic methods are applicable which can be applied regardless
of the type of HVAC system. This leads to solutions which are not
only very specific to particular HVAC systems, but which are also
time-consuming to implement.

In [2], a first draft of the 4S3F architecture was tested on a sim-
ple theoretical case. In the current article, the diagnosis phase in
the 4S3F method is applied to a thermal energy plant with real sen-
sor data for a whole year, in the assumption that symptoms have
already been identified at this stage.

A great deal of research has been conducted on automated fault
detection and diagnosis (FDD). Kim and Katipamula presented in
[3] an overview of existing FDD methods for HVAC systems. Vari-
ous diagnosis methods can be applied depending on the detection
method. In the last decade, data-driven detection methods have
been discussed, such as those based on regression formulas, artifi-
cial neural networks (ANN), principal component analysis (PCA)
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Nomenclature

Abbreviations
AFI automated fault isolation
AHU air handling unit
ATES aquifer thermal energy storage
BEMS building energy management system
BMS building management system
cw cold water
DBN diagnostic Bayesian network
EP energy performance
F fault
FDD fault detection and diagnosis
HVAC heating, ventilation and air conditioning
hp heat pump
hw hot water
load load of cold water into the cold well of the ATES system
OS operational state
PCA principle component analysis
P&ID piping & instrumentation diagram
pr primary
reg regeneration

S symptom
syst system
TC temperature controller
THUAS The Hague University of Applied Sciences
TSA heat exchanger
TT temperature transmitter
unload unload of cold water from the cold well of the ATES
4S3F four symptoms and three faults

Symbols
COP coefficient of performance
E energy
EER energy efficiency ratio
Etha efficiency
P Power probability
PER primary energy ratio
SCOP seasonal coefficient of performance
T temperature
g efficiency
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and support vectors, such as the support vector machine (SVM).
Wang and Xiao [4] and Beghi et al. [5], for example, isolated sensor
faults after PCA detection by means of the sensor contribution to
the symptom. Li et al. [6] also estimated the contributions of pos-
sible faults to the symptom for the purpose of isolating faults. They
used a support vector data description (SVDD) algorithm on chiller
FDD to detect a symptom. In [7], Wang and Cui also applied PCA as
a detection method and isolated the faults by means of rules using
a fault diagnostic classifier.

Due to the data-driven nature of these machine learning tech-
niques, their application to the identification of faults remains a
complex process. Furthermore, these approaches to diagnosis
depend on the specific method of data-driven detection applied.
In addition, they rely on the availability of data on healthy opera-
tion and, for some methods, data on healthy operation combined
with data on incorrect operation with known faults. Liang and
Du [8], for example, applied an SVM classifier based on both nor-
mal and faulty conditions.

Besides data-driven methods, the application of model-based
and rule-based methods is also commonly found in recent litera-
ture. Song et al. propose in [9] a model-based method in which
faults are estimated by means of simulation, with a classification
set up on the basis of the calculated symptoms. In rule-based
detection methods, we see that the isolation of faults mainly takes
place using a diagnosis rules table (see e.g. Zhao [10]). In DABO
[11], an FDD application, rule tables are also used to isolate faults.
Another method is a reference-based approach that compares the
behaviour of similar components to isolate a faulty component.
See [12] where this is applied to district heating substations.
Despite the many solutions proposed, an approach to generic auto-
mated fault diagnosis that can be applied regardless of the type of
HVAC system has yet to be developed, and the practical implemen-
tation of current methods calls for considerable effort. In particular,
the IT-based nature of data-driven methods means that by their
very nature they are far removed from the professional practice
of HVAC engineers. Furthermore, HVAC systems are also becoming
more complex due to the many possible combinations of compo-
nents and complex controls that incorporate a large number of
sensors. Generic FDD methods are not available for these new sys-
tems. Moreover, HVAC systems consist of subsystems and a simul-
taneous diagnosis for these subsystems has yet to be proposed. In
research, FDD takes place sequentially either top-down or bottom-
up, but not in both directions, which could help enable quicker,
more comprehensive and more accurate diagnoses. In addition,
all methods provide a true–false result for faults and this can lead
to incorrect conclusions due to inaccuracies in measurements and
method.

In the 4S3F FDD architecture, the fault isolation part of the
diagnosis is carried out using a diagnostic Bayesian network
(DBN) method that largely solves these problems. The DBN
method has been applied successfully to chillers [13], to VAV ter-
minals [14] and to AHU [15,16]. However, these applications are
still HVAC-specific. The automated fault isolation (AFI) in the
4S3F method overcomes this problem and has been demonstrated
at the extensive thermal energy plant at The Hague University of
Applied Sciences (THUAS) building in Delft, the Netherlands,
using the data present in the building’s BMS. The HVAC system
that formed the focus of the study contains a gas boiler and a
heat pump combined with an aquifer thermal energy storage
(ATES) system for storage and supply of both heat and cold. All
buffers and hydronic systems were also included. The analysis
covers a whole year, based on data collected at 16-minute inter-
vals, and demonstrates the practical usability of the 4S3F archi-
tecture for an existing HVAC system.

The basic 4S3F diagnosis architecture for energy performance is
briefly presented in Section 2. In Section 3 the generic approach of
AFI with the 4S3F approach is presented. Section 4 describes the
HVAC system under consideration. In Section 5 the symptoms
detected in the case study are presented, as they form the starting
point for the fault diagnosis method. Section 6 describes the appli-
cation of the AFI method applying DBN models. In this section the
case study results are presented and evaluated and in section 7 the
fault diagnosis without subsystems and fewer symptoms is dis-
cussed. Section 8 energy optimization and savings are discussed.
Additionally, in Section 9, a sensitivity analysis is conducted on
prior probabilities in the case study. Finally, in Section 10, conclu-
sions are drawn and recommendations made concerning the fault
diagnosis element of the 4S3F diagnosis framework.



Fig. 2.2. 4S3F DBN structure.
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2. 4S3F architecture for energy performance detection and
diagnosis

This section presents the salient points of the 4S3F architecture.
For a detailed explanation of this architecture, see [2].

The identification of symptoms starts with the detection of
observable malfunctioning symptoms, based on the HVAC P&IDs
(process and instrumentation diagrams) and the measurement
points and set points present in the BMS, the main purposes of
which are the control and monitoring of the HVAC system.

These symptoms are categorised in four main types (4S), see
Fig. 2.1: balance symptoms (energy, mass and pressure-based),
energy performance (EP) symptoms, operational state (OS) symp-
toms and additional symptoms (based on additional information
such as maintenance information). The results of the symptom
detection phase are supplied to a diagnostic Bayesian network
(DBN) model. In this model, symptoms are linked to possible faults.
We distinguish three types of faults: faults in the models used to
enrich BMS data (e.g. to estimate missing energy data or to set up
balancemodels), component faults and faults affecting control com-
ponents. In this paper, we demonstrate a DBN for energy perfor-
mance purposes, in which we have taken into account that model
faults are not present and that this has been checked. We define
components as being not only trade components but also HVAC sys-
tems at different aggregation levels. Fig. 2.2 shows the relationship
between the four types of symptoms and the three types of faults
as implemented in the 4S3FDBNmodels. The direction of the arrows
in theDBN runs from the fault nodes to the symptomnodes. In other
words, this figure showswhich symptomsmaybe caused by a speci-
fic fault. The components and controls can be extracted from the
HVAC P&ID diagram. The present paper focuses solely on the fault
identification part (3F) of the 4S3F framework.

In the DBN diagnosis, the Present and Absent probabilities of
the faults are estimated on the basis of the presence and absence
of symptoms as established by the symptom detection.

The main advantages of applying DBN for fault isolation pur-
poses, presented in [2], is that the structures of the DBN models
can be extracted from P&IDs and that isolation of multiple faults
takes place simultaneously. This also supports a system approach,
because a DBN model can be built from DBN submodels and can be
set up using aggregated DBN models from a DBN model library. A
DBN model is easy to expand.

Due to its probability-based character, the DBN approach
addresses uncertainties in measurements and in the FDD model
Fig. 2.1. 4S3F architecture for automated energy performance detection and
diagnosis.
and is to some extent insensitive to parameter values of the DBN
nodes. It can handle conflicting symptoms and delivers results
even when only a few symptom nodes are available because the
outcomes are probabilities instead of Boolean. Furthermore, symp-
toms from all kinds of detection methods can be integrated.

3. The fault identification approach based on the 4S3F method

This section discusses the generic approach to identify faults
from symptoms applying DBN models. As explained in Section 2,
many different faults can lead to a single symptom. The reverse
is also true: a fault can result in multiple symptoms. It is therefore
necessary to conduct an analysis of the combination of all observed
symptoms to determine the exact cause(s) of malfunctioning (the
fault(s)). The 4S3F fault diagnosis method, as shown in Fig. 2.1, is
based on Bayesian theory. Using the detected symptoms, the prob-
ability of occurrence of specific faults can be estimated.

Just as all possible symptoms can be identified once from the
HVAC schematic, so all possible faults must also be identified once
for each HVAC system, based on the HVAC P&ID (see for such a dia-
gram Fig. 4.3). This is a relatively simple once-only inventory, as
was noted in [2], and will be demonstrated in Section 3.2. This
inventory results in all possible faults being connected to all possi-
ble symptoms through a DBN. The structure of the DBN closely fol-
lows the structure of the HVAC P&ID and its construction (also a
once-only event) is therefore reasonably straightforward. A dis-
tinction can be made between component faults, control faults
and model faults, see Fig. 2.2. In the present paper, model faults
are left out of the description in order to avoid excessively long
descriptions and because a DBN with a model fault was already
described in [2].

System levels on which DBN models are set up are discussed
first, followed by how to establish the relationships between faults
and symptoms from a P&ID. This chapter ends with the implemen-
tation of the DBN models.

3.1. System levels

As well for components as for controls levels are distinguished.

3.1.1. Components
According to [2], we should consider components on different

levels, as a simultaneous diagnosis helps to isolate faults more
accurately due to redundancy:

Level A: the total system
Level B: aggregated systems
Level C: (trade) components
Level D: subcomponents inside (trade) components
This also helps to define reusable diagnostic models that may be

available in a library.
For the sake of demonstration, complex DBN schematics are not

shown in this paper, as we have made a conscious effort to limit
the number of DBN nodes. This means that Level A (the complete



Table 3.1
Fault-symptom relation table for a heat pump system.

Fig. 3.1. P&ID heat pump system.
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system) and Level D (parts of components) are not shown, and only
the faults at Levels B (aggregated systems) and C (components) are
included. For instance, a malfunction in the heat pump is a possible
fault but we will not specify the exact location within the heat
pump at Level D, e.g. the compressor, evaporator, condenser or
embedded control. In other words, the heat pump will be treated
as a black box system, which is logical given that it is a commer-
cially available component. In the authors’ view, fault diagnosis
at Level D could be implemented by component suppliers. Fault
results from such as diagnosis could then be used as additional
symptoms in the 4S3F method. For energy diagnosis purposes,
we propose that the aggregated systems are based on generator,
hydronic and emitter systems according to EN 15316-1:2017 [17].

3.1.2. Controls
As with components, for the purposes of this paper faults in the

control system of each system are aggregated to one fault per sys-
tem: for instance, the control of the heat regeneration system may
be faulty, but we do not specify whether the fault is in the temper-
ature set point or in the timer setting. It may of course be possible
and even desirable to consider both in practice, but that is not nec-
essary to demonstrate the method within the context of this paper.

A control contains controllers which derive signals from sensors
and send signals to components acting as actuators. These signals
propagate information, as opposed to components which exchange
energy. Control faults can be errors in controllers (e.g. control rules,
set points), in connections with sensors and in actuators (e.g. bro-
ken wires and interruptions) and caused by incorrect design of the
control circuit, including actuators. Generic controls at level B
applied in thermal plants with an ATES system are the control of
the ATES system, of the cold water, the hot water, and in addition,
controls at Level C: the controls of the supplied condenser and
evaporator water temperature of the heat pump.

The control parts of the P&ID can be based on guidelines (e.g.
documents on hydronic systems, such as the ISSO standard for
hydraulic systems [18,19]), which describe HVAC modules in the
Netherlands.

3.2. Relationships between faults and symptoms

In this section, generic DBN (sub)models are discussed, along
with their implementation.

As depicted in Section 3.1, components at Levels A to D can be
defined. Generic fault isolation models can be developed once only
for each type of component. The fact that this approach takes in
balance, energy performance and operational state symptoms
regardless of components and controls is what makes it generic.
Components at lower levels can be combined to form generic sub-
systems and finally to generic aggregated systems as models for
the thermal generator, hydronic and emitter systems. The first step
is to construct the overall DBN model using DBN models for sys-
tems at level B and C, followed by setting the prior and conditional
probabilities of the fault and symptom nodes. Again, this is done
only once for each model, which can be saved in a model library.

It can be helpful to create a table that lists related errors and
symptoms. See for instance Table 3.1, where such a generic model
has been set up for a heat pump system (a generator system) at
level B. The grey filled cells indicate the presence of a relation. As
example, the cause of a low COP of the heat pump may be a mal-
functioning heat pump, a too high set point in the control of the
outlet water temperature of the condenser or a too low set point
in the control of the outlet water temperature of the evaporator.
However, it can also be approached on the other hand: if a fault
is present, what symptoms can there be?

For the purposes of simplicity and accuracy, we propose that
only strong relations should be set up and weak ones should be
ignored. Such tables can easily be set up with reference to the
HVAC P&ID (which depicts components at level B) as shown in
Fig. 3.1. In this figure, we see the controllers TC1 and TC2 which
controls the evaporator outlet temperature (measured by sensor
TT2) and the condenser outlet temperature (measured by TT3).
The heat pumps’ capacity is estimated by the temperature sen-
sors TT3 and TT4, and the flow sensor FT2. The COP (coefficient
of performance) is calculated from the supplied heat Qcond and
the compressor work Ecompr, measured by ET1. And the EER
(energy efficiency ratio) by the supplied cold Qevap and Ecompr.
Thus, we see that from the P&ID we can extract faults as well
symptoms.
3.3. DBN models

As stated in Section 2, the DBN model calculates the posterior
fault probabilities from the presence and absence of symptoms.
An example of such a calculation is given in Appendix B of [20].



Fig. 3.2. DBN schematic diagram of a heat pump system.

Fig. 3.3. The implemented prior node properties of a fault called Control roof
heating in GeNie.
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3.3.1. DBN schematics
From the relationships between the faults and symptoms, a

DBN model is set up. As example, Table 3.1 results in the DBN
model shown in Fig. 3.2.

Since DBN models of aggregated systems at Level B as shown in
Fig. 3.2 are generic, this can be done once and then be reused.

The software tool we used to construct our models is called
GeNie [21]: a validated software application offering the possibility
to create aggregated DBN models based on DBN submodels. This
makes it possible to develop specific DBN models with the use of
generic DBNs for components or systems, which shorten the
implementation effort in the fault identification layer. Balance,
energy performance and operational state symptom nodes are
linked to fault models, such as heat pumps, boilers, cold water sys-
tems, hydronic systems and ATES systems. The links between fault
and symptom nodes can be set up once only. Some links for faults
and symptoms which concern several systems and components
can be set up once only for well-known system configurations.
These DBN models can be stored in a library.
3.3.2. Node states and probabilities
The parameters of DBN models are probabilities for the node

states. The fault nodes are so-called parent nodes which contain
prior probabilities for the state of the nodes. The corresponding
child nodes, the symptom nodes, have conditional state probabili-
ties that depend on the state of the connected parent nodes. First,
the values of the prior probabilities must be set, followed by those
of the conditional probabilities (see also [2], which proposes distin-
guishing between two states for the fault and symptom nodes: Pre-
sent or Absent). The values only need to be set once when
implementing the DBN model and can be based on HVAC expertise
and later on historical data from the BMS.

� Prior probabilities of parent nodes

The absolute values of the prior Present and Absent probabili-
ties for the events are chosen arbitrarily but their relative values
are based on expert knowledge. For the sake of simplicity, we set
separate fixed values for component faults and for control faults.
The actual prior probabilities of component faults are set at 98%,
which means that two out of 100 components are not functioning
properly. However, the Absent prior probabilities of control rules
are set lower to 95% because in practice energy performance often
decreases due to faulty set control rules, changes in building use or
incorrect changes to set points of the control system.
Fig. 3.3 presents an example of the prior properties of a fault
called Control roof heating. We distinguish between two states:
Present or Absent with corresponding probabilities.

� Conditional properties of child nodes

The probabilities of the Present and Absent states of the symp-
tom nodes depend on the state values of the fault nodes. In this
case study, it is assumed that when one of the parents is Present,
the child value is Present with an arbitrary probability of 95%. This
means there is an Absent probability of 5% for the child node when
one or more of the parents are Present, because parent node faults
can cancel each other out and lead to no symptom.

By way of example, Fig. 3.4 presents the set properties in the
dialogue box of a symptom node, in this case for a symptom called
SEERcw. We have applied so-called Noisy-MAX nodes, in which we
assume that the symptom is Absent when all parent states are
Absent (LEAK = 1).

In future, the prior and conditional probabilities can be esti-
mated more precisely as a result of experience and data mining.
However, [20], in which the 4S3F method was conducted on a
demand controlled ventilation system, showed that the absolute
values of the set probabilities are somewhat insensitive for the
diagnosis results. In Section 9 we confirm that rough-set prior
probabilities do not influence the outcomes fundamentally.
4. The thermal energy plant at the Hague University of applied
Sciences in Delft

The identification part of the 4S3F method is tested on the
HVAC system of the THUAS building in Delft (see Figs. 4.1 and
4.2). The ventilation of the building rooms is demand controlled
by CO2 concentration. In the classrooms and general living areas
there is underfloor heating and cooling and in the staff rooms this
has been extended with heat and cold ceiling panels.

Below we present a short description of the thermal energy
plant. The P&ID of the thermal energy plant is presented in
Fig. 4.3. For the sake of simplicity controllers are not depicted.

Fig. 4.4 shows the heat exchanger (8) with at the left a part the
heat pumps’ casing and in Fig. 4.5 the headers (14) and (15) are
presented.

We have simplified this diagram based on generator, hydronic
and emitter systems at level B. See Fig. 4.6, in which relevant
energy variables used for symptom detection are also depicted.
In this figure, controllers for hot and cold water supply tempera-
tures (TChw and TCcw), roof heating (TCroof), regeneration (TCreg)
and ATES (TCATES) systems. Coupled control and sensor signals
are also shown. These controls are explained in Section 6.1. Annual
energy flows and efficiencies measured in 2013 are also depicted.

In this figure, eight aggregated systems are present, based on
systems 1 to 40 depicted in Fig. 4.3. The determination of systems
and subsystems is a one-off task, carried out based on the P&IDs as
explained in [2].



Fig. 4.1. The atrium of the THUAS building.

Fig. 4.2. A staff room in the THUAS building.

Fig. 3.4. The implemented conditional node probabilities of a symptom called SEERcw in GeNie.
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In winter, heat is generated by a heat pump. When the heat
loads are high, a gas boiler delivers additional heat. The heat source
of the heat pump is warm water delivered by the warm well of an
ATES system, which presents the winter mode of the thermal
energy generation system in a schematic. The ATES system can also
deliver heat to the parking lane on the roof to keep it free of ice.

In the summer months, cold water from the cold well of the
ATES system provides cooling. When cooling loads are high, the
heat pump produces additional cold water on the evaporator side.
This type of thermal energy plant with an ATES system is common
in the Netherlands: more than 2,000 of them have been installed in
recent years and their operation is known to be often sub-optimal.

During the summer, heat from the heat pump condenser and
the roof collector can be used to regenerate the warm well of the
ATES system because the amount of thermal energy extracted from
and supplied to the wells must be balanced annually in accordance
with Dutch regulations. In Fig. 4.6 the direction of the arrows
shows positive heat transfer. Work supplied by pumps and the
heat pump compressor is noted as W in these figures.

Measurement data are stored in the BMS at 16-minute intervals.
The codes of the sensors and actuators (from 02 to 48) as imple-
mented in the BMS were supplied by the designer of the HVAC sys-
tem. As example, Fig. 4.7 shows the flow sensor with code FT28-03
which is located in the hot water circuit depicted in Fig. 4.3.

For the case study, the whole of the year 2013 is included due to
the availability of an almost complete dataset.
5. Detected symptoms in the case study

In this section, the symptoms detected by the 4S3F method in
the year of 2013 are listed and form the starting point for the
AFI. Table 5.1 summarises the annual results of the symptom
detection process conducted in the case study. To estimate the
presence or absence of a particular symptom, BMS sensor data
are used. In a separate process, sensor data outliers are left out
and missing data are filled in. Furthermore, biased data are cor-
rected (also using the 4S3F method). This means that the data
available is faultless.

Symptoms concerning efficiencies (g) constitute thermal
energy losses in systems which are required to be lower than 2–
4%, depending on the system. In addition, Table 5.1 shows the effi-
ciency of the TSA heat exchanger of the ATES system gTSA (87%
according to design) and the efficiency of the thermal energy
regeneration of the ATES system greg, which Dutch regulations stip-
ulate must be 100% (i.e. each year, the same amount of thermal
energy must be supplied to the aquifer as is used). These are
defined as balance symptoms because they are calculated on the
basis of energy balances. In addition to balance symptoms, we also
identify energy performance and operational state symptoms. The
first are related to performance indicators such as the seasonal per-
formance coefficient (SCOP) for the generation of thermal energy (a
threshold of �5% is taken into account) and capacities (P) of com-
ponents and systems realized as compared to those specified in the
design (threshold of �10%). The second are symptoms regarding
actual state values such as temperatures. Here we distinguish
between controlled-based state values, which are set in a control
system, and rule-based state values, which are those expected on
the basis of the design. In the case study, a symptom is found when
a controlled or design temperature is lower or higher than needed
(+/�1 to 3 K) for more than 10% of the days on which the associ-
ated system is operational. As Table 5.1 shows, 9 of the 31 possible
symptoms of malfunctioning were shown to be present.



Fig. 4.3. Principal diagram (P&ID) of the thermal energy plant at THUAS.

Fig. 4.5. The headers (14) and (15).

Fig. 4.4. The heat exchanger (8).
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5.1. Energy balance symptoms

Regeneration efficiency symptom greg was Present. This indica-
tor represents the degree of thermal energy balance in the ATES
system.
5.2. Energy performance symptoms

Symptom SCOProofwas Present, indicating that the roof heating
system used more energy than expected. Furthermore, the thermal
capacities of the cold water system A (Pcw) and of the heat exchan-
ger of the ATES system (PTSA) were lower than expected from the
design values.
5.3. Operational state symptoms

In addition to the balance and EP symptoms, OS symptoms were
detected: the hot water supply temperature to system H was too
low and the cold water supply temperature to system A too high.
Unexpected temperatures were also found at the warm and cold
wells of the ATES system.



Fig. 4.6. The relevant aggregated systems at Level A (red dotted line, whole system) and at Level B (consisting of systems A to H), and system controls. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4.7. Flow sensor FT28-03.
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6. Automated fault isolation in the case study

In this section, the AFI is conducted in the THUAS case study.
The considered faults are discussed in Section 6.1. Section 6.2 pre-
sents the relationships between faults and symptom. Next, the
implementation of the DBN models are presented in Section 6.3.
And finally, in Section 6.4, the results of the fault isolation process.

6.1. Selected component and control faults

In aggregated hydronic systems A, E, G and H, we assume that
only one fault can be present which covers faults in pipes, valves,
heat exchangers, headers and pumps. In the other aggregated sys-
tems, multiple component faults are present. In the roof system F,
faults in the roof collector (TSA roof) and hydronic system F can be
present; in the heat pump system C, the heat pump (12) and the
hydronic system can be present; in the boiler system D, we assume
that the hydronic system D and the boiler can be faulty, and in the
ATES system B, faults in the heat exchanger TSA (8) and hydronic
system B are present. In total, therefore, there are 11 possible com-
ponent faults to consider.

6.1.1. Control faults
From the control description of the thermal energy plant, which

was present in the design document and the P&ID, the following
five control faults at Level B, as depicted in Fig. 4.6, can be
distinguished:

� Control ATES
� Control heat regeneration
� Control roof heating
� Control cw
� Control hw

In addition, we take into account two controls at Level C in the
heat pump system (system C):

� Control cond
� Control evap

We explain the implemented controls in the thermal energy
plant of THUAS below in greater detail for the ATES and regenera-
tion systems. The other five are described in Appendix A.

6.1.2. Control ATES
Control ATES depicts the faulty control of the ATES system.

Fig. 6.1 presents a simple schematic of the control of the ATES sys-
tem B. When unloading cold water, the controller of the ATES sys-
tem controls the flow rate of pump CP02-01 in the cold well to
obtain the desired supply temperature in the warm well, measured
by TT02-03. In the same way, the temperature of the supply water
to the cold well is controlled when unloading heat from the ATES.

6.1.3. Control regeneration
Control regeneration depicts the control of the heat regeneration

for the ATES system. The schematic of this control is shown in
Fig. 6.2. At high outdoor temperatures in summer, the roof and
ATES systems are switched on. The roof system supplies heat to
warm well 32 via systems 17 to 19.

6.2. Relationships between faults and symptoms.

We will examine 11 possible component faults. In addition,
seven control faults are present. As seen in Table 5.1, 31 outcomes
for symptoms are present. A DBN model is therefore built with 18
fault nodes and 31 symptom nodes.

Table 6.1 presents the completed Table 3.1 for the case study. As
noted in Section 3.2 weak relations between faults and symptoms
are ignored. For instance, the relation between the heat pump
capacity Php symptom and the Control ATES fault: the table sup-
poses no relation between the two because the warm water well



Table 5.1
Overview of the detection results from BMS data for the 31 possible symptoms found in the year 2013 (P = symptom present, A = symptom absent).

Balance symptoms Energy performance (EP) symptoms Operational state (OS) symptoms

Efficiencies A/P Performance indicators A/P Capacity indicators A/P Controlled-based A/P Design based A/P

gsystB A SCOPhw A Phw A Thw_supply P Thw_return A
gsystC A SEERcw A Pcw P Tcw_supply P Tcw_return A
gsystD A SCOProof P Php A Tcond_out A Tevap_in A
gsystG A SCOPreg A Proof A Tevap_out A Tcold_well_out A
gsystH A SCOPhp A Preg A Tcold_well_in P Twarm_well_out P
gTSA A SEERhp A PTSA P Twarm_well_in P
greg P Pboiler A

B = ATES, C = heat pump, D = boiler, G = hydronic cold water, H = hydronic hot water, hp = heat pump, hw = hot water, cw = cold water).
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temperature is thought always to be high enough to deliver heat to
the evaporator of the heat pump. Only if the warm water well tem-
peratures were to drop to an unrealistically low level (e.g. 4 �C)
would the heat pump be incapable of delivering enough heat.
Fig. 6.1. Control of the ATES system.
6.3. The implementation of DBN models in GeNie

Based on Table 6.1, DBN models are built in GeNie. The overall
DBN model is presented in Fig. 6.3 and is constructed based on
Fig. 4.6. Both figures contain the eight main aggregated systems
A to H at Level B, shown in blue. Fault nodes are shown in purple
while symptoms which can be caused by more than one system
at Level B, see Table 6.1, are shown in yellow.

Figs. 6.4 to 6.11 show the DBN models for systems A to H at
Level C. As can be seen, these figures contain the 18 fault and 31
symptom nodes depicted in Table 6.1. These DBN models are
extracted from the P&ID of Fig. 4.3. Congruent to Fig. 2.2, the arrow
directions run from the fault nodes to the symptom nodes.

For example, Fig. 6.5 shows that the fault node TSA ATES is
linked to the symptom nodes gTSA, PTSA, Tcold_well_in, Twarm_-
well_in, Tcold_well_out and Twarm_well_out, which are present in
the DBN model of the ATES system. In addition, TSA ATES is linked
to the symptoms SEERcw and Pcw (see Fig. 6.3), and Tcw_supply and
Tcw_return (see Fig. 6.4). The above is consistent with Table 6.1.
Fig 6.2. Control of the regeneration system.
6.4. Fault isolation results

The symptom detection results presented in Table 5.1 are
imported into the DBN model. This was done manually in our case
study, but it is possible to automate this process. Note here that the
symptoms were obtained using one year of 16-minute data and
looking at yearly, monthly or weekly indicators. However, for the
fault isolation itself, time steps are irrelevant and therefore not
included in the DBN. Symptoms found over a period of less than
a year (monthly, weekly, daily or even shorter timespans) can sim-
ply be fed into the DBN, resulting in shorter timespan outcomes.

We propose taking action when the Present probabilty outcome
of a fault is higher than 30%. Isolation by the DBN resulted in four
identified faults with 100% (see Fig. 6.12): Present outcomes that
led to 4 observed symptoms: Control hw, Control ATES, Control
regeneration and Control roof heating are faulty.
6.5. Discussion of the isolation results

We also contacted the maintenance company and the facility
manager at THUAS to ask about other disruptions in the thermal
power plant. They stated that there had been no thermal comfort
complaints due to a malfunction in the thermal power plant. The
four faults that were isolated would appear to be the only ones pre-
sent. We will discuss them separately below.
6.5.1. Control hw
The control fault of the hot water system was identified as Pre-

sent. This diagnosis result seems to be correct because detection
revealed that the supply hot water temperature was often too
low. Faults were not found in the installed capacities of the heat
pump and the boiler. In addition, the control of the condenser
seems to be correct, because no symptom was found in the con-
denser outlet temperature. Apparently, an excessively low supply
water temperature is caused by Control hw.

6.5.2. Control ATES
The inlet water temperatures to the warm and cold well are too

low and too high. As shown in Table 7.1, two main faults can cause
this: TSA ATES or ATES control.

TSA ATES can be excluded because the efficiency of the heat
exchanger efficiency gTSA was correct. In addition, the capacity
of the cold water system A was low, while no thermal comfort
complaints from users had been received. It would appear that
the cold water system A needs less capacity than stated in its
design specifications. The resulting symptom was a lower-than-
expected PTSA capacity. This leads to the justified conclusion that



Table 6.1
Main relations between the 31 symptoms and the 18 faults to build the DBN models. hp = heat pump, hw = hot water, cw = cold water)

Fig. 6.3. Overall DBN model at Level B with systems A to H.

Fig. 6.4. DBN model of the cold water system A.
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ATES control has been correctly identified as faulty, leading to
excessively high and excessively low load temperatures for the
ATES wells.

6.5.3. Control regeneration
No symptom was found for the capacity of the roof collector.

TSA roof therefore seems to be correct. However, the thermal
energy balance of the ATES system was incorrect, leading to an
greg symptom, linked to the control of the regeneration system
which is identified as Present.

6.5.4. Control roof heating
A survey of the 16-minute energy exchange to the roof showed

that the roof was also heated by the boiler. This was not in confor-



Fig. 6.6. DBN model of the heat pump system C.

Fig.6.7. DBN model of the boiler system D.

Fig. 6.8. DBN model of the hot water system E.

Fig. 6.9. DBN model of the roof system F.

Fig. 6.10. DBN model of the cold water hydronic system G.

Fig. 6.11. DBN model of the hot water system H.

Fig. 6.12. Posterior fault probabilities.

Fig. 6.5. DBN model of the ATES system B.
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mity with the design. Adapting the control of the roof heating
would therefore appear to be a reasonable course of action.
7. Effects of a DBN with only aggregated systems a to H (Level B)

The overall DBN model at aggregated Level B presented in
Fig. 6.3 contains DBN models of components at Level C. In this sec-
tion, we discuss DBNmodels for aggregated systems A to H at Level
B only, with and without capacity and operational state symptoms.
This is to test the importance of the combined top-down/bottom-
up approach in identifying faults. Fig. 7.1 shows the DBN model
with both capacity and OS symptoms. For the sake of simplicity,
we have left out return water OS symptoms and efficiency symp-
toms. In Appendix B, DBN models at Level B without capacity or
OS symptoms are also presented.

Fig. 7.2 presents the posterior present probabilities after diag-
nosis. In green the results from Section 6.4 are shown. As this fig-
ure shows, diagnosis restricted to Level B (orange) shows the same
outcomes as the diagnosis at Level B with DBN subsystems for
components at Level C. However, it is more difficult to find a fault
inside the aggregated system at Level C (e.g. the control condenser
or heat pump) if the heat pump system has been isolated as a fault.
Faults are not isolated correctly when capacity or OS symptoms are
missing. In Fig. 7.3 these incorrect outcomes (present fault proba-
bility above 30%) are shown with the value 1.

7.1. Conclusion

Diagnosis using a DBN at Level B already delivers useful results.
However, faults inside the DBN model cannot be isolated. Perfor-
mance and capacity indicators, as well as operational state symp-
toms, are needed to isolate faults effectively. The correct and
precise isolation of faults therefore requires the use of aggregated
systems and their subsystems, at the same time as using multiple
types of symptoms.
8. Fault analysis, correction and effect on energy usage

In this section, the evaluation process after fault isolation will
be discussed with reference to the case study. The primary energy



Fig. 7.1. DBN model at Level B.

Fig. 7.3. Faulty isolation (1 = faulty).Fig. 7.2. Posterior present fault probabilities [%]
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savings after fault correction will also be discussed. Unfortunately,
it was impossible to carry out interventions, so we can only exam-
ine the energy savings due to corrections from a theoretical per-
spective. However, we checked manually whether the faults
found were indeed errors by analyzing the BEMS data, consulting
maintenance logs, interviewing the building manager and employ-
ees of the maintenance company, so that we can say with certainty
that we have not overlooked any faults. We will discuss the four
faults isolated by the energy performance diagnosis separately. In
the Netherlands, electricity is mainly generated by steam and gas
power plants with an overall efficiency of 40%. We have taken this
value into account when estimating primary energy.
Estimating energy waste and savings as a result of fault correc-
tions is possible simply because of the availability of 16-minute
data on energy levels in the BEMS.

8.1. Evaluation

8.1.1. Fault control hw
As shown in Table 5.1, a symptom was detected for Thw_supply,

the hot water supply temperature. An excessively low supply tem-
perature could lead to thermal comfort complaints among users of
the building, but the facility management at THUAS received no
complaints to this effect. Excessively high supply temperatures
were supposed to lead to lower energy performance, but again
no such indications emerged. We nevertheless propose that the



Fig. 8.1. Primary energy consumption for the emitter systems and the ATES system.

Table 9.1
Influence of prior probabilities on the outcomes of the posterior fault Present
probabilities.

Prior Absent probabilities

Components 98 98 98

Control rules 90 95 99.9
Posterior fault Present probabilities

Control hot water 100 100 100
Control ATES system 100 100 100
TSA roof system 0 0 2
Control regeneration 100 100 100
Control roof heating 100 100 98
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set values of the hot water supply controller should be checked to
avoid user complaints in the future.

8.1.2. Fault control roof heating
Calculations showed that part of the heat supplied to the roof

was in fact supplied by the boiler (62 GJ) instead of the warm well
of the ATES system. This was easy to correct by adjusting the roof
control rules, and this was carried out in 2014 by the maintenance
company.

8.1.3. Fault control regeneration
The data suggests that the ATES system is not thermally bal-

anced. As shown in Fig. 4.6, the difference between stored cold
(Qload = 1768 GJ) and heat (Qunload = 1107 GJ) was 661 GJ in
2013. An additional 661 GJ of heat therefore had to be supplied
to the warm well (32). This can be achieved in several ways, which
are explained below.

1. By means of the heat pump

This is the solution described in the design documentation. The
roof would then serve as a heat source.

2. By supplying less heat to the roof

An analysis of the roof heating revealed that heat was being
delivered even when outdoor temperatures were as high as 8 �C,
conditions in which there is no risk of ice. Adapting the outdoor
set point and rules could reduce the heat required by 162 GJ.

3. Loading additional heat naturally from the roof

Analysis of the energy data shows that regeneration only took
place in July and August, while the ATES system of the HVAC sys-
tem was in discharge mode, i.e. in cooling mode for the cold water
system A. Furthermore, the flow rates of the pumps for regenera-
tion purposes were shown to be very low. By extending the time
period and setting the flow rate of the pump to higher speeds, in
theory an additional 885 GJ can be generated.

8.1.4. Fault control ATES
The cold and warmwell temperatures are higher and lower than

the designed values. However the lowerwarmwell temperatures in
loadmode (whenheat is deliveredby thewarmwell) donot lead to a
significant underperformance of the heat pump: the outgoingwater
temperatures of the evaporator show no symptoms and the SCOP
and the capacity of the heat pump are as expected. In addition, the
higher unload cold well temperatures have not led to problems in
the cold supply. In light of this, a correction to the control of theATES
system would not lead to significant energy savings.

8.2. Primary energy savings

Here wewill discuss the energy savings after correction in terms
of primaryenergy. Fig. 8.1 presents theprimaryenergy consumption
before and after corrections. We have assumed that electricity is
generated with a mean SCOP of 0.4, which is commonly used in
the Netherlands to calculate the primary energy ratio (PER).

The SCOP of components are known from design and actual per-
formance. Before correction, the actual primary energy consump-
tion of the thermal energy plant measured with BMS data from
2013 amounts to 1918 GJ/yr. After the adjustments described in
Section 8.1, we see that the primary energy consumption is 1437
GJ / year due to the reduction of energy consumption for the roof
and to a large extent for the ATES system. Thus, a primary energy
saving of 481 GJ/yr (25.1%) is plausible, even though the thermal
energy plant was assessed beforehand by experts and facility man-
agers as performing well.
9. Sensitivity analysis of the assumed probabilities in the fault
layer

The prior fault probabilities of components and controls are dif-
ficult to estimate due to the lack of information about failures.
Below, a sensitivity analysis is carried out to estimate the impor-
tance of accurate prior probabilities.

Table 9.1 presents the results of this experiment. In the case
study, the prior Absent probabilities were set to 98% for compo-
nents and 95% for the control rules. The prior fault probabilities
for all control nodes vary for the sensitivity analysis.

The results of 5 faults for the reference probabilities are pre-
sented in the highlighted column 2 in Table 9.1.

The second and fourth columns show the results for the poste-
rior probabilities, with the prior fault Absent probabilities of the
control systems being 90 and 99.9%. The latter is extremely high
compared to the component probabilities because experience with
HVAC maintenance has shown that control faults occur more often
than component errors. Nevertheless, the 4 control faults are still
isolated correctly among a wide range of prior probabilities.

Given the simplicity and limited scope of our analysis, it is
remarkable that in our experiments the Bayesian method correctly
identifies possible faults even when the absolute values of prior
and conditional probabilities are unknown. However, the sign of
the differences (positive or negative) between prior probabilities
helps in achieving a more accurate diagnosis. In practice, the HVAC
maintenance technician is very knowledgeable about the fre-
quency of faults present and this knowledge should be used by
the HVAC engineers in designing the DBN. Alternatively, libraries
of these values could be set up.
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10. Conclusions and recommendations

In this article, the focus is on the fault diagnosis phase based on the
4S3F architecture. In the fault diagnosis phase symptoms identified on
the basis of balance, EP and OS indicators (e.g. efficiency, performance
factors, capacity indicators) are fed into a DBNmodel constructed from
the P&ID. This DBN model is built from predefined DBN models of
aggregated systems (generator, hydronic and emitter systems) and
corresponding subsystems (components and control systems).

10.1. Results from the case study

The potential of the fault diagnosis method has been demon-
strated in the case study for a thermal energy plant with an ATES
system. A full year was covered to show how faults can be isolated
automatically.

Although the 4S3F system normally considers three types of
faults, for the sake of demonstration only two types of faults were
included: component faults caused by faulty capacity, efficiency
degradation or component failure, and control faults such as the
incorrectly set point of a controller or the inaccurate control of a
process mode. For the sake of simplicity, the prior fault Absent
probabilities of all components were set to 98% and those of all
control rules to 95%. In addition, all conditional fault Present prob-
abilities were set to 95% when a symptom is present.

The proposed 4S3F framework was successful in diagnosing
faults in a thermal energy generation plant. It shows that the
results are adequate even when prior and conditional probabilities
in the DBN nodes are assumed. A sensitivity analysis showed that
other prior values lead to the same fault diagnosis results. Energy
savings of up to 25% are possible after fault corrections.

In addition to the results of the energy performance diagnosis of
the HVAC system examined, the article proposes a general
approach for setting up a library of diagnosis models. These models
for systems can be applied to other installations.

10.2. Recommendations

� Although the results are very promising, further research is
desirable to extend the framework, improve its accuracy and
make it even easier for practitioners to use. The diagnosis aspect
of the framework should be applied to other systems, such as air
handling systems and heat and cooling facilities in rooms.

� A guideline for the necessary dataset of the BMS needs to be
drawn up to estimate energy amounts to and from systems.

� A generic library of diagnosis models is needed from which DBN
models can be selected in specific cases. For the sake of this
paper, we initiated such a generic library. A relevant research
objective would be to detect the strong and weak relationships
between symptom and fault nodes.

� Software is needed to implement the state values of the symp-
tom nodes in the DBN model, feed in the set probabilities of the
nodes, interface with the DBN model and automate the output
of the DBN diagnosis.

� In this case study, GeNie has been used as the DBN software
tool. Research is needed to identify the most suitable software
tool, capable of handling the libraries of DBNmodels and redun-
dant symptom information in the right way. The software must
be able to deal with the adapted probabilities of events based on
information from data mining and should be suited to imple-
mentation in BEMS.

� In this case study, only main heat exchange components (heat
pump, boiler, heat exchangers) were considered to be faults.
The DBNmodel can be extended with fault nodes for all compo-
nents at Level C (e.g. piping, pumps and valves).
� Further research is needed on implementation in DBN. In this
paper, Boolean events (Present and Absent) were implemented,
meaning that the prior and conditional probabilities give the
probability of the event being Present or Absent. When more
events for fault and symptom nodes are introduced, it may be
possible to estimate the kind of fault, for instance in the case
of a negative or positive deviation. It may then also be possible
to weigh the degree of the estimated deviation. This can help
influence the correction of faults.

� Lastly, research into ways of automating the evaluation aspect
of the diagnosis should be conducted. The application of energy
balance and EP symptoms in the detection phase ensures the
availability of energy levels and performance indicators, which
helps to estimate energy savings by corrections.

In future, research should be carried out to see whether the
HVAC can be started up automatically by the BMS in a range of
modes to speed up the estimation of a fault. For instance, the
BMS could estimate bias errors in temperature sensors by starting
the pumps and fans at night or at weekends when no heat or cold is
needed. Faulty control rules could then also be observed.
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Appendix A

Control systems for roof heating, and cold water, hot water, condenser
and evaporator supply temperatures

Control roof heating system
The roof is heatedwhenoutdoor temperatures are low. Pumps in the
roof system extract heated cold water from the hydronic cold water
system G. The control for this purpose is presented in Fig. A.1.
Control cold water supply temperature (Control cw)

Fig. A.2 is a schematic of the control of the coldwater supply tem-
perature of the cold water system G (Control cw). As the schematic
shows, the controller of the coldwater supplyactivates theATES sys-
tems (pump CP02-01 is turned on and off). The set point of the cold
water supply temperature is basedon theoutdoor temperature. This
cold water supply temperature is measured by TT29-02 and is con-
trolled by the three-way valve TCV29-01 (depicted in Fig. 3.1) in the
hydronic system cold water G. When the supply temperature is not
reached, the heat pump is set to deliver additional cooling.
Control hot water supply temperature (Control hw)

The hot water supply temperature to system E is measured by
sensor TT28-02 and controlled by the controller of the outlet con-
denser temperature at the heat pump. However, when the set point
value is not reached, the boiler system is turned on to derive the
desired set point value. See Fig. A.3. in which Control hw is shown.



Fig. A4. Control of the condenser outlet water temperature.

Fig. A5. Control of the evaporator outlet water temperature.Fig. A2. Control of the supply temperature of the cold water system.

Fig. A1. Control roof heating system.
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Control condenser outlet temperature (Control cond)

The control of the condenser outlet temperature of the heat
pump (Control cond) is presented in Fig. A.4. The outlet condenser
temperature is measured by TT04-01 and the heat pump system is
controlled using set points and depends on the outdoor
temperature.
Control evaporator outlet temperature (Control evap)

The evaporator outlet temperature is controlled by TT04-04 and
a controller. See Fig. A.5 in which Control evap is shown.
Fig. A3. Control of the supply tempe
Appendix B

DBN models with only aggregated systems A to H without capacity or
OS symptoms

In this appendix, DBN models are presented at Level B with and
without capacity or operational state symptoms. Fig. B.1 presents
the DBN model without capacity symptoms and Fig. B.2 without
OS symptoms. Fig. B.3 then shows the DBN model without both
capacity and OS symptoms. In this model, only performance indi-
cators are present.
rature of the hot water system.



Fig. B1. DBN model at Level B without capacity symptoms.

Fig. B2. DBN model at Level B without Operational State symptoms.
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Fig. B3. DBN model at Level B without capacity and Operational State symptoms.
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Appendix C. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.enbuild.2020.110289.
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