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Abstract

Jumbo Maritime has worked in the offshore market where it has installed equipment using offshore cranes. The
heave motion of the vessel results in relative motion between the payload and the crane-tip which limits the
conditions the vessel can operate in. A passive heave compensation system has been used but clients desire an
active heave compensation system to be used to award certain work to Jumbo. This project investigates a system
that combines passive and active heave compensation systems to form a hybrid heave compensation system. The
result is a numerical time-domain model of a hybrid heave compensation system coupled with an existing vessel
model.

The problem investigated is introduced. The design operating conditions are significant wave height of 2.5m, peak
period of 8s, beam waves, and a water depth of 2500m. The crane can take a maximum of 900t static load and
a maximum of 650t dynamic load. Using the model of the coupled system the main research question to answer
is: How important is the change in natural period from when the active heave compensation system is disabled to
when the active heave compensation is enabled on resonance?

The methodology is discussed. The starting point is three concepts for an active heave compensation system from
Jumbo Maritime. The concepts are evaluated and a concept chosen. This project uses a numerical approach to the
investigation. A numerical crane-tip motion model is derived. The passive heave compensation system is designed
and put into a numerical model and the natural frequencies determined. The frequency and time responses of the
system are analyzed to verify the natural frequencies. The crane-tip model is combined with the passive heave
compensation system to see the performance of the system in the design sea-state and other sea-states. This is
coupled with an existing vessel model to see the effect of the coupling. The active heave compensation system
is designed and combined with the passive heave compensation system, crane-tip model, and vessel model. This
forms the final model which is assessed on performance and the main research question mentioned in the second
paragraph is answered. Furthermore, a sensitivity study is done to see the effect of considering the Dyneema rope
as a continuous structural element with coupled axial and transverse motion. Previously the Dyneema rope was
discretized as a discrete mass with springs. The continuous model of the Dyneema rope takes into account the
damping and added mass from water at the large water depths considered, such as 2500m.

The main results are summarized. The passive heave compensation system by itself is effective in the design
operating conditions with rms reduction ratio of 0.137 (closer to zero is better), compensation rate of 83% (closer
to 100% is better), and significant double amplitude of 0.38m (closer to zero is better). Coupling this system with
the vessel model produces no remarkable behavior. The performance is essentially the same with a 2.2%, 1.7%,
9.5% difference in the rms reduction ratio, compensation rate and significant double amplitude respectively. The
inclusion of the active system results in worse performance than either the passive system by itself or coupled
with the vessel. The reason for this is that the controller design is done in a relatively simple manner. To achieve
better performance more advanced control design is needed. To answer the main research question mentioned
in the second paragraph, activating the AHCS does not lead to a change in natural period that influences the
resonance behavior. What is found is that the controller design is a key part of any adverse effects when using the
active part. Additionally, from the sensitivity study of the continuous Dyneema rope the main effect is that the
motions of the hook/payload are reduced.

The main contribution of the project is a numerical time-domain model of a hybrid heave compensation system
coupled with a crane-tip and vessel model. An additional model is the passive heave compensation system using
a continuous Dyneema rope model instead of a discrete Dyneema rope model.
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Introduction 1
1.1 Problem description

The handling of payloads by cranes at sea poses numerous logistical and technical challenges. One of
the key technical challenges is the constant movement of the vessel due to the hydrodynamic forces
exerted by the waves. The resulting heave, pitch, and roll of the vessel results in significant crane-tip
motion that needs to be reduced for safe handling of the payload. One way to do this is through
heave compensation. Active heave compensation (AHC) and passive heave compensation (PHC) can
be distinguished. AHC refers to a system that uses energy external to the system to compensate heave
motion. PHC refers to a system that uses only the energy within the system to compensate heave
motion. A system that combines AHC and PHC is known as a hybrid heave compensation (HHC) system.

The relevance of the work at an industry level is that the work is being performed for a com-
mercial company, Jumbo Maritime, who would like more information on using an AHC system on their
existing vessels. Jumbo Maritime would like to use an active heave compensation system (AHCS) on
the 900t cranes on their J-type vessels. The compensation requirements are compensation for 2.5m of
heave within 8 seconds. Potential clients of Jumbo Maritime desire an AHC system to be used otherwise
they will not award certain work to Jumbo Maritime. Jumbo Maritime has used PHC systems in the
past and found them to be good enough for most applications such as seabed landing. There are many
companies that are already using AHC systems on their cranes. For example, Big Lift, a competitor
of Jumbo Maritime, has an AHC system on their Happy-D type vessels [1]. Bourbon Subsea Services
has at least 22 AHC systems for offshore cranes varying from 10t to 250t [2]. Other shipping companies
with AHC systems for offshore cranes in their fleet include:

Ceona Offshore Deep Ocean EMAS AMC Ensco Fincantieri Offshore
Fugro-tsm Harkand Island Offshore Kreuz Subsea McDermott
Oceaneering Saipem Subsea 7 Tasik Subsea Zafiro Marine

Furthermore, there are many equipment suppliers highlighting AHC systems for offshore cranes
as important and they are developing innovations in this application. Some 40 examples of companies
that supply AHC systems for offshore crane/winch applications are:

1



CHAPTER 1. INTRODUCTION 2

AHC Cranes Allied Marine Crane
Axtech Bargemaster
Bosch Rexroth Bourbon Subsea Services
Cargotec EMS Energy
Favelle Favco GustoMSC
Heila Cranes Huisman Equipment
Hydramarine IHC Hytop
IHC Motion Control and Automation International Offshore Equipments
Jebsen and Jessen Offshore Karmoy Winch
Lidan Marine Liebherr
Macgregor Melcal Marine
National Oilwell Varco Norwegian Deck Machinery
Optilift Palfinger
Pellegrini Marine Equipments Preferred Marine
Promac Raoul Engineering
Rapp Marine Rolls-Royce
Scantrol SIM Crane Singapore
SMI Offshore Sormec
Technical and Maritime Services TTS
Ulstein Equipment West Marine

Many of the companies listed above also produce a passive heave compensation system (PHCS).
Specialist suppliers of PHC systems are:

Cranemaster Innovative Input

Considering the large number of suppliers of AHC systems as well as the number of shipping/offshore
companies with AHC systems for cranes it is clear that having an AHC system for cranes is an important
competitive advantage.

Since August 2014 Jumbo Maritime has investigated adapting an AHC system to its cranes. This inves-
tigation included concepts for purely active heave compensation systems and hybrid heave compensation
systems. Jumbo Maritime worked with Bosch Rexroth, the world leader in active heave compensation
systems, to develop eight concepts. The main requirements for the concepts were that they are efficient,
compact, state-of-the-art, and provide compensation for 2.5m of heave within 8 seconds. Following this,
work was done by Jumbo Maritime to narrow the concepts down to those that fit Jumbo Maritime’s
requirements better. This means the starting point of this investigation is three concepts. From these
three concepts one will be chosen that fits the design criteria set for this project.

The relevance of this work at an academic level is that the project investigates a design for a hybrid
heave compensation system and develops a detailed design from this. The hybrid heave compensation
system is assembled from passive and active heave compensation systems. The design is implemented in
a time-domain numerical model. This numerical model is coupled to an existing vessel motion numerical
model. The result is a coupled dynamical model of a heavy lift monohull vessel with a deep-water
hybrid heave compensation system. The coupled dynamical model is implemented in a commercial
software package. The software used is Simulink. Simulink provides a block diagram environment for
multi-domain simulation and model-based design. The reason to use Simulink is that the existing vessel
motion model given as a starting point for the thesis was made in Simulink. Simulink is integrated with
MATLAB, a numerical computing environment. Within MATLAB the post-processing of the model
simulation results is done. The research objective is given in section 1.2 and the research questions are
given in section 1.3.
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1.2 Research objective

Based on the issues described in the section above, the main research objective is given as:

The main research objective is to make a design of a modular and removable deep-water hybrid heave
compensation system for an offshore crane installed on a monohull heavy lift vessel. This is accomplished
by identifying and then assessing designs of heave compensation systems and selecting a design. The
hybrid heave compensation system is modelled as a numerical time-domain model.

To achieved the main research objective several sub-objectives are defined.

• The selected hybrid heave compensation system design is composed of active and passive systems.
The passive system is analyzed and the heave reduction performance is assessed.

• An existing numerical time-domain model of a monohull heavy lift vessel is coupled to the passive
system. This coupled model is assessed to determine the performance of the passive system coupled
with the vessel.

• The active system is combined with the passive system (to form the hybrid system) and the vessel.
This coupled model is assessed to determine the performance of the hybrid system coupled with
the vessel.

• An investigation is made about the effect of the hybrid system relative to the passive system, to
see the effect of activating the active system.

1.3 Research questions

The main research objective and sub-objectives were given in section 1.2. Research questions are written
to achieve the main research objective and sub-objectives. These research questions are used to guide
the modelling and analysis of the hybrid heave compensation system and are not answered explicitly.
These research questions are used to come to the hybrid heave compensation system combined with the
vessel model to form the coupled dynamical model of the vessel and the hybrid heave compensation
system. This constitutes the main achievement of the project. With this model, a further question to
answer is:

How important is the change in natural period from when the active heave compensation system is
disabled to when the active heave compensation is enabled on resonance?

This is based on work by Mannigel from Subsea 7 [3] which claimed activating the AHC system resulted
in auto-excitation of the vessel and load. This is further explained in section 13.2.

1. The ‘basic concept’ is the selected design for the hybrid heave compensation system. What level
of detail in the model of the ‘basic concept’ is required?

(a) How detailed are existing models?

(b) What physical coupling is there between the hook and the active heave compensation system?

2. What methods of analysis should be used to analyze the model of the ‘basic concept’?

(a) What are applicable methods of analysis?

3. To what extent does the model of the ‘basic concept’ satisfy the criteria of performance?

(a) What are the criteria of performance used to measure the performance of AHC systems?

(b) How does the model perform using the criteria of performance?
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(c) What tests can be done on the model to derive data that is assessed by the criteria of perfor-
mance?

4. To what extent do the assumptions behind the model of the ‘basic concept’ affect the accuracy of
the model?

(a) What assumptions are made in creating the model of the ‘basic concept’?

1.4 Structure of report

An overview of the structure of the report is given:

• In chapter 1, the introduction to the report is given.

• In chapter 2, the literature review is given.

• In chapter 3, the design requirements and approach of the thesis are given.

• In chapter 4, the existing numerical time-domain vessel motion model of a monohull heavy lift
vessel is described.

• In chapter 5, the crane-tip motion model is described.

• In chapter 6, the passive heave compensation system is introduced by discussing the principle of
operation of the passive heave compensation cylinder.

• In chapter 7, the passive heave compensation system is developed.

• In chapter 8, more detailed design of the passive heave compensation system is done.

• In chapter 9, the passive heave compensation system is analyzed to obtain more insight into the
system. This is done by investigating the natural frequencies of the passive heave compensation
system.

• In chapter 10, the frequency and time responses of the passive heave compensation system are
investigated.

• In chapter 11, the passive heave compensation system is combined with the crane-tip model and
the performance is assessed.

• In chapter 12, the passive heave compensation system is coupled with the vessel model and the
performance discussed.

• In chapter 13, the active heave compensation system is included to form the hybrid heave compen-
sation system which is coupled to the vessel. The performance is discussed.

• In chapter 14, a sensitivity study is done to see the effect of using a continuous rope model which
takes into account water damping and coupled axial/transverse motion of the rope, rather than
the discrete mass model used in previous chapters.

• In chapter 15, the conclusion to the report is given.

• In chapter A, the appendices are given. The structure of the appendices is as follows. Each
appendix is labelled as A followed with a number for example, A.1 is the first appendix. The other
appendices follow in numerical order such as A.2, A.3, etc.



Literature review 2
2.1 Introduction

This literature review relies much on the review done by Woodacre et al. published in June 2015 [4].
The field of heave compensation on cranes has existed for decades. One of the first investigations into
heave compensation was by Southerland [5] in 1970 who examined passive and active methods of heave
motion compensation. Today, there are numerous existing systems that vary in payload capacity. For
example, AHC systems by Bosch Rexroth have been specified for 5t to 40,000t systems [6]. From the
40 suppliers of active heave compensation systems found in the introduction it has been discovered that
the most common type of system uses a winch.

This literature review will deal with passive heave compensation systems, active heave compensation
systems, and some control theory related to active heave compensation systems.

The main aims of the review are to:

• Provide an overview of active heave compensation systems and passive heave compensation systems

• Review different methods for an active heave compensation system

• Review different methods to model the ropes and payload

• Review control theory

The rest of the review will start with some background information. Then a review of the literature
on active heave compensation systems will be done. The reviewed literature will then be analyzed.
Conclusions will then be made.

2.2 Background

2.2.1 Types of AHCS

Most heave compensation systems have been found to combine a passive and active heave compensation
system. One approach, by IHC Hytop, is to use the passive part to balance the force due to the pressure
of the hydraulic oil and nitrogen gas with the force of the payload [7]. The active part changes the
position of the cylinder in response to the motion of the crane or vessel with these motions being
measured by a motion reference unit (MRU) [7]. This enables the passive part to take most of the force
and the active part takes a smaller part of the force. Since the active part handless less force it requires

5
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less actuation power and so can be physically smaller than the passive part [4], a key advantage of this
hybrid system on a ship where space is limited.

Various types of current AHC systems exist with the primary designs being primary controlled rotary
AHC (hydraulic), secondary controlled rotary AHC (hydraulic), electric rotary AHC, and linear AHC
(hydraulic/pneumatic) as defined by Bosch Rexroth [6]. These are elaborated upon below to show what
is being commonly used today.

2.2.1.1 Rotary AHC (RAHC)

A rotary AHC system uses energy generated from the movement of the vessel to compensate for heave.
When the vessel heaves upwards, the drive unwinds the rope and the drive is acting as a pump, storing
energy. When the vessel then heaves downwards the drive pulls in the rope by acting as a motor, using
the stored energy to partially power the system [8]. Two variations of this design, the primary and
secondary RAHC systems, are elaborated on below.

2.2.1.2 Primary controlled rotary AHC

The primary controlled rotary AHC system works as follows. The motion reference unit (MRU) inputs
a signal to the controller which then controls a hydraulic motor connected to a pump. The winch is
powered by the pump to keep the load stationary [9]. The mechanics are that to rotate the winch drum
the hydraulic pump builds pressure on one side of the winch drum which creates torque in one direction
and rotation. When the controller requires the winch drum to rotate in the other direction the pump
reduces pressure on one side and increases the pressure on the other side. The inherent lag in having the
pump work against the hydraulic spring lowers the speed of response. This leads to the disadvantage
that to rotate the winch drum by an arbitrary angle a fixed amount of flow is needed which requires
over-dimensioning of the pumps if high speed at low load is desired [10]. See Figure 2.1 for a schematic
of the primary control method. Advantages of this system [9]:

• The system is integrated fully into the winch requiring little space on deck.

• The system recovers energy either by returning it to the electric grid or storing the energy in
capacitors or fly-wheels (Kinetic Energy Recovery System, KERS).

• The system can be integrated into already installed winches and cranes, enabling an expanded
operating window at small cost and effort.

Figure 2.1: A schematic of the primary control method [10]

2.2.1.3 Secondary controlled rotary AHC

The secondary controlled rotary AHC system works as follows. The MRU inputs a signal to the controller
which then controls a secondary regulated motor connected to the winch directly [6]. The motor is
controlled using an actuator on the motor which controls the swash-plate angle of the motor [10]. The
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swash-plate angle determines the direction of torque of the motor allowing the winch to be driven in two
directions. This differs from the primary controlled system since the winch is controlled directly by the
motor rather than by a pump. The key advantage of the secondary system is it responds very fast, has
low power consumption [11], and is energy efficient since there is less movement of fluid and associated
losses [10]. Since the motor is connected directly to the winch it is reasonable to say it is faster than
the primary system where the motor is connected to a pump and the pump is connected to the winch.
See Figure 2.2 for a schematic of the secondary control method. Other advantages of the secondary
system [8]:

• Accurate

• High repeatability

• Possibility to store and recover energy

• Safe system

• High responsiveness

• Flexible operation

• Compact system so small deck footprint

• No extra operators required

A supplier, Bosch Rexroth, claims that its secondary-controlled drives are able to compensate for up to
95% percent of heave. The energy generated from the upward motion of the vessel is fed back into the
hydraulic system with up to 70% of the energy being recovered [12].

Figure 2.2: A schematic of the secondary control method [10]

2.2.1.4 Electric rotary AHC

The electric rotary AHC system works like the rotary AHC systems since it stores recovered energy and
reuses the energy. The main difference is that the system uses electric motors. The hardware control
interfaces are the same as for the hydraulic AHC systems [6]. This makes the use of electric and hydraulic
systems in one company simple since some parts can be interchanged.

2.2.1.5 Linear AHC

A linear AHC system (LAHCS) differs from the rotary systems in the components and how the compo-
nents are controlled. A linear system is such that the stroke of the cylinder sizes the winch rope length
and therefore the load position [6]. The principle of operation of the LAHCS is that an MRU inputs a
signal to the controller that controls a cylinder which combines active and passive compensation abilities.
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The cylinder pays out wire when the vessel heaves up and hauls in wire then the vessel heaves down.
The combination of passive and active compensation into one system lowers the required power. The
average load is compensated by the passive part and the wave-induced load changes are compensated by
the active part [13]. Bosch Rexroth claims a 90% compensation of heave motion. See Figure 2.3 for a
schematic of the LAHCS method. Some advantages of the linear AHC system [13]:

• Reduced power consumption relative to alternative AHC controlled winches

• Accurate

• Easy integration into any existing winch system

• Modular option transported in containers enables use on multiple similar vessels

• The modular design enables flexibility on a vessel arrangement

• The LAHCS is based on a closed force loop which means it requires a simple mechanical interface
to the vessel’s structure

Figure 2.3: A schematic of the LAHCS [14]

2.2.2 Operating modes of active heave compensation systems

The operating mode of an AHCS is an important consideration to show the capabilities of an AHCS. In
this thesis, the heave compensation mode is of most interest. This is because the seabed-landing phase
of the lift is of most interest and the heave compensation mode is most relevant for this.

2.2.2.1 Constant tension

The constant tension (CT) mode is when the load in the wire is kept at a constant tension value so that
any snap-load is reduced. The advantage of a reduced snap-load is less crane fatigue. The CT mode
works for a supported or fixed load. This mode is usually available on any AHC system. Another use of
the CT mode is that when a load is pulled from the seabed there may be suction which can cause the
load to be stuck. The high tension in the wire would counteract this suction force. For example, the
CT mode is used to counteract the weight of a mudmat. The tension will be adjusted as the mudmat
is lifted from the seabed by paying in/out wire to maintain the reference load. Once the ‘break’ suction
force is reached the mudmat will be lifted from the seabed and then the crane can switch to AHC mode.
Without the CT mode, the wire tension would vary largely increasing the chance of exceeding the crane’s
safe working load (SWL) and generating a snap-load [2].

2.2.2.2 Heave compensation

In general, the purpose of this mode is to decouple the load’s movement from the boom tip’s movement.
This is important for subsea operations to reduce the landing speed and lower re-bouncing effects.
Similarly, when the load is lowered through the air and through the splash-zone the heave compensation
mode is active. Heave compensation is also used in transfer lifts done entirely in air, for resonance
avoidance during the lowering phase of a lift, and for subsea shock absorption due to overcoming the
suction force when lifting objects off the seabed [15].
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2.2.2.3 Other modes

Other modes are the empty hook mode, when there is no load attached to the crane and the mode
where no heave compensation is used.

2.2.3 The cylinder-type PHCS

PHCS are relatively simple compared to AHCS. The working principle of the most commonly used
PHCS design, the cylinder-type PHCS, is described since this type is used in the thesis.

The cylinder-type PHCS consists of a piston inside a cylinder attached to the payload, and the internal
chamber of the cylinder is attached to an accumulator. The extension of the piston rod causes hydraulic
fluid to flow through orifices which causes a floating piston to compress gas (usually nitrogen). This
results in a spring-damper unit. The spring part comes from the compressed gas and the damping part
comes from the restricted flow through the orifices. The hydraulic fluid in the cylinder is pushed through
an orifice into the accumulator when the payload heaves. This results in damping by flowing through
the orifice and storage of energy by compressing the nitrogen in the accumulator. The device operates
as a low stiffness spring [16]. The spring and damping parameters are adapted to each lifting operation
by specifying the hydraulic fluid volume and gas pressure [17]. This still allows relative motion but
the load variations in the wires are reduced which keeps the load suspended in tolerable limits. PHC
systems are useful to remove or significantly reduce the slamming forces and snap loads that can occur
during the splash-zone crossing [18]. PHC systems require no power for operation. Main applications of
PHC systems are subsea operations where the load is on the seabed and the drill string compensators
in riser systems and dredging systems [16].

The passive heave compensation system of Cranemaster has been modeled by Nam et al. [19]. The
system was modeled as a spring-damper system. This is too simplistic however since it does not take
into account the gas pressure in the accumulator, which is an important parameter.

The main differences between AHC and PHC systems can be summarized as [16]:

• PHC systems use a spring principle whereas AHC systems use an MRU

• PHC systems are powerless whereas AHC systems require power

See Figure 2.4 for key differences between AHC and PHC systems.

Figure 2.4: A diagram from Bosch Rexroth showing the key differences between PHC and AHC systems
[16]

Generally, passive systems cannot deliver greater than 80% heave compensation. To get higher heave
compensation an active or hybrid system should be used [4].
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2.2.4 Hybrid system

A hybrid system includes an active and a passive system to form a hybrid heave compensation system
(HHCS). A hybrid system is usually more efficient since it can have reduced power requirements compared
to a purely active system [4]. In this thesis it is desired to use a HHCS system since this is more efficient
and is commonly used by shipping companies today.

2.2.5 Electric system

Nearly all early active heave compensation systems were hydraulic powered, electric powered systems
are becoming more popular due to their higher efficiency. According to Angelis [20], hydraulic drive
winches have efficiencies of 45-70% and electric drive winches have efficiencies of 70-85%. The higher
efficiencies are due to energy recovery through regenerative braking and winch efficiency. Challenges
with electric systems are their high cost and greater difficulty to troubleshoot when not working. Other
key advantages of an electric winch system over a hydraulic winch are [21]:

• Lower power consumption, for example a 400t, all-electrical driven AHC winch system has 7720kW
power consumption whereas an equivalent electrical-hydraulic system has 9400kW.

• Takes less space, although a hydraulic motor has a higher power density than an electric motor
the hydraulic motor needs an external hydraulic power unit whereas the electric motor just needs
an electric cable for power. This hydraulic power unit is large which means the overall hydraulic
system of a hydraulic motor and power unit takes more space than an electric system.

• Additionally, the hydraulic power unit is continuously running whereas an electric system is only
running when needed, thus the electric system is more efficient.

2.3 State-of-the-art

2.3.1 Previous work on AHCS

Some articles on AHCS that are relevant to the thesis and are well-referenced within the literature
are discussed. This is done to give an over-view of techniques that have been investigated for heave
compensation systems (HCS).

2.3.1.1 AHCS on drill-ships

Actuated harmonic absorber (drillship): Korde [22]
An example of an AHC system for a drill-pipe system on a drill-ship is given by Korde [22]. Korde
assumes small oscillations in environmental loads allowing the use of linear differential equations. Korde
used the idea from Ogata [23] and Meirovitch [24] that if there is an undamped spring-mass system
that is coupled with a second oscillating system excited by a sinusoidal external force then there is an
excitation frequency where the second mass will remain stationary for any excitation magnitude. Korde
used this type of behavior to stabilize an oscillator in a system of three coupled oscillators. Korde also
used active control to enable this behavior over a range of excitation frequencies. The three oscillators
consist of a spring-supported block Mc (to be kept stationary) from where the drill-pipe is driven, a
drill-ship with mass Ms, and a third oscillator of undamped mass Mm. See Figure 2.5 for a schematic
diagram of the system. The three masses are assumed to move in the vertical direction. Active control
was applied to mass Mm such that mass Mc remains stationary over a large frequency range. The masses
are coupled by mass Mm being spring-supported and controlled from Mc by a linear actuator. The drill-
pipe is rotated from mass Mc and Mc is supported on spring-loaded vertical guides and is driven from
the derrick by linear actuators. The damping on Mm should be minimized and the damping force on Mc

can be non-zero. The input actuation is achieved using linear motors or hydraulic rams. Li and Liu [25]
have also used a dynamic vibration absorber, similar in principle to Korde’s system, to form an AHCS
for the lift pipe of a deep-sea mining system. Li and Liu’s system achieved a theoretical 84% reduction
in heave motion.
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Figure 2.5: A diagram of the three coupled masses, for definitions of the variables see the paper by
Korde [22]

Nonlinear controller double rod actuator (drillship): Do and Pan [26]
Another method for heave compensation on a drill-pipe was developed by Do and Pan [26] who designed
a nonlinear controller for an AHCS that uses an electro-hydraulic system to drive a double rod actuator.
Do and Pan have worked with AHC systems for drilling vessels. Do and Pan have stated that an AHCS
is often used with a passive riser compensator to stabilize the crown block relative to the seabed. The
system can keep the crown block position constant relative to the seabed within (0.1-0.5)m with vessel
heave up to (4-5)m. See Figure 2.6 for a schematic of their system. A disturbance observer is included
to estimate the force on the piston of the hydraulic system and the vessel’s heave acceleration. The
inclusion of the disturbance observer results in a high performance control system. Do and Pan used
Lyapunov’s direct method for the control development and stability analysis.

2.3.1.2 Splash-zone crossing

Feedforward control through wave synchronization: Johansen et al. [27]
Johansen et al. have investigated a AHCS for a crane during the water entry phase (splash-zone
crossing) for a subsea installation [27]. The paper introduced the idea of wave synchronization where the
purpose is to use a free surface elevation measurement to compensate directly for the water motion due
to waves inside a moonpool. This means the system uses feedforward control to have wave-synchronized
motion of the load through the splash-zone. This is achieved using feedforward with an estimate of
the vessel’s vertical velocity. The heave compensator makes the payload track a given trajectory in an
Earth-fixed reference frame. The objective is to minimize variations in the hydrodynamic forces on the
payload. Furthermore, this applies only during the water-entry phase, thus a blending factor is used to
couple the wave synchronization and regular heave compensation. The experimental tests (in regular
waves) show that this method can reduce the standard deviation of the wire tension up to 50%. In other
words wave synchronization combined with heave compensation reduces the wire-tension variability.
The system also reduced peak wire-tension. Effects from the vessels roll and pitch motion were neglected.

Feedforward control through wave synchronization: Skaare et al. [28]
Skaare and Egeland [29] discussed Johansen et al. [30] and Johansen et al. [27] as introducing the
concept of wave synchronization where the load was lowered through the splash-zone with a constant
speed relative to the waves in order to minimize the hydrodynamic forces on the load. This work was
furthered by Skaare et al. [28] who have investigated wave synchronization obtained from feedforward
control from a wave observer using measurements of the vessel and load accelerations and wire-tension,
thus avoiding wave-amplitude measurements. One advantage is that there is less noise in the processed
data since numerical differentiation of the wave amplitude to obtain the wave amplitude velocity is not
required. The wave synchronization reduces hydrodynamic forces but the consequent inertial forces of
the load give large oscillations in the wire-tension if the load is massive and wave large.
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Figure 2.6: A schematic of an AHCS using an electro-hydraulic system being driven by a double rod
actuator, for definitions of the variables see the paper by Do and Pan [26]

Parallel force/position controller: Skaare and Egeland [29]
Skaare and Egeland [29] discussed a parallel force/position controller for controlling loads through the
splash-zone. The controller had a large improvement of the minimum value of the wire-tension compared
to the wave synchronization approach used by Johansen et al. [27].

The method of force and position control is a well-developed field. The parallel force/position
control of a load through the splash-zone has been investigated using a simulation study by Skaare and
Egeland [31]. Skaare and Egeland [29] obtained results with a parallel force/position controller from
model scale experiments of a crane vessel with a moonpool. Three control methods were used by Skaare
and Egeland; parallel force/position control, AHC, and wave synchronization. The parallel force/position
control method had the best average performance for wire tension and payload acceleration compared
to the other methods tested of AHC and wave-synchronization. Improvements in the tests with regular
waves ranged from 51% to 1061% which means the operational weather window is increased. Skaare
and Egeland suggest the performance of the parallel force/position control method can be improved
by combining it with a PHCS that shifts the resonance frequency of the wire away from the frequency
area of the measurement noise. Skaare and Egeland have suggested to use position control instead
of speed control in the wave-synchronization method since differentiation of the free surface elevation
measurements is avoided. Combining the parallel force/position controller with an AHCS is simple
since the wire tension measurement is usually available. Thus, it would seem best to use the parallel
force/position control method.
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Although the wave synchronization method provides good results, it is considered too complex by the
author for this thesis.

Inertance control: Sagatun et al. [32]
Skaare and Egeland [29] have mentioned that an “augmented impedance control scheme denoted as
inertance control was introduced for crane control of loads” through the splash-zone crossing by Sagatun
et al. [32] and Sagatun [33]. Sagatun et al. [32] investigated a modified impedance controller with
feedforward corrections and acceleration feed-back. The acceleration feed-back leads to a frequency
dependent virtual mass which provides additional flexibility to the user in tuning the system performance.

These methods seem quite advanced and although provide good accuracy are considered too complex for
this thesis.

2.3.2 Rope and payload

The situation considered for the payload is when the payload is in the water, close to the sea-bed and
about to make the sea-bed landing. This means the forces on the payload when it is in the air are not
considered.

2.3.2.1 Sawodny et al. [34]

Sawodny et al. [34] made a model for an AHCS that takes into account the time-delay between the
winch acting and having an effect on the payload for very long rope lengths used in deep water. This
delay is due to the finite speed of longitudinal pressure waves in ropes. Horizontal forces acting on the
payload and rope due to current are neglected. The system is shown in Figure 2.7. The vertical motion
of the payload is described by combining the rope and payload as a spring-mass-damper system. The
forces acting on a payload submerged in water were given as the self-weight, hydrodynamic forces, and
the rope force. The disadvantage of combining the payload and rope as a spring-mass-damper system
is that is provides less flexibility in modelling the payload. Since this thesis aims to include a PHCS
there needs to be flexibility in separating the rope and payload. Thus, this approach of combining the
payload and rope will likely not be used.

The hydrodynamic forces for a product submerged in water or lowered through the wave zone may be
written as the sum of forces from potential theory and viscous forces. The added mass term at infinite
frequency was used. The added mass term can be determined as:

A33 = ρwCa∇ (2.1)

where Ca is the added mass coefficient and depends on the shape of the object, ρw is the density of water,
and ∇ is the displaced volume. The rope is assumed to only transmit tension. The winch dynamics were
approximated by a first order system.

2.3.2.2 Yuan [35]

Yuan [35] investigated an actively damped heave compensation control method. The relevant part to
this thesis is the way used to model the rope-payload dynamics using a mass-less rope plus an equivalent
spring where the equivalent spring coefficient k(zl) is:

k(zl) =
zl

EAc
(2.2)

where E is the elastic modulus, Ac is the cross-sectional area of the rope, and z1 is the length of the rope.
This is similar to modeling the payload and rope as a pendulum. This is an effective model for a purely
active heave compensation system since there is no other system, such as a passive HCS interacting with
the payload. However, since this thesis will design a hybrid HCS it is preferred not to model the rope
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Figure 2.7: Crane model from Sawodny et al., for definitions of the variables see the paper by Sawodny
et al. [34]

and payload in this way. The equation to model the rope in (2.2) is a reasonable relationship that is
believed to capture the physics well, so it is used in this project.

2.3.2.3 Johansen et al. [27]

As mentioned earlier, Johansen et al. [27] investigated a purely active HCS that uses wave synchroniza-
tion. The method used in this paper to model the rope and payload is similar to that of Yuan [35].
However, there is no stiffness within the rope. This is not suitable for this thesis since the water depths
are significant so the stiffness of the rope becomes important. This is especially the case for synthetic
rope such as Dyneema which acts as a soft spring.

2.3.3 PID control

PID control is widely used in many offshore applications. A few examples are highlighted here.

Nicoll et al. [36] investigated a winch-controlled active heave compensator for a remotely operated vehicle
cage. A P controller was used to control dynamic tension in the rope and a PD controller was used to
control the depth of the cage. This use of PID control proved effective. This is similar to the use of
PID control in the work of Skaare and Egeland [29] in section 2.3.1.2 who used a parallel force/position
controller for controlling loads through the splash-zone.

2.3.4 Analysis

The current understanding of AHCS for use on drill-ships and the splash-zone crossing is well developed.
This is shown by the many examples of investigations into these areas described above. In contrast,
there have been very little articles dealing with the seabed landing. It could be said placing equipment
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on the seabed using AHC is easier than going through the splash-zone so less research has been done on
that, explaining the lack of articles. There have been good experiences in practice using AHC to place
equipment on the seabed [37]. The sea-bed landing phase is also an important part of an offshore lifting
operation. Thus, the sea-bed landing phase is a worthwhile area to investigate.

Furthermore, from the above descriptions it is apparent that much work has been done on AHCS with
various existing models. These systems have primarily been hydraulic systems. To explore the area
of AHCS further it is desirable to investigate electric-driven systems. Modeling of the electric system
based on similar methods presented in the articles reviewed should be possible.

PID control is relatively simple compared to some of the more complex methods described above but
provides effective control. Woodacre et al. [4] have stated that using PID control is the simplest control
algorithm for an AHCS [4]. A more complex method has the potential to provide more effective control
but this is unnecessary since PID can work well enough and is relatively simple. This thesis will use a
PID controller since it showed sufficient effectiveness and is simple.

The approach taken by Sawodny et al. [34] in section 2.3.2.1 of combining the payload and rope as a
spring-mass-damper system is not used since there needs to be flexibility in separating the rope and
payload. Instead, the rope and payload are discretized as separate masses.

Yuan [35] in section 2.3.2.2 modelled the rope stiffness as dependent on the rope length. This approach
will be used since Dyneema rope will likely be used and for this the length should have a strong effect
on the stiffness.

2.4 Conclusion

This thesis will address the seabed landing phase of a payload controlled by a hybrid heave compensa-
tion system. Based on the literature read by the author, all of which is not included in the review, a
hybrid heave compensation system coupled with the vessel for the seabed-landing phase has not been
investigated before. Most papers focus on the splash-zone crossing instead of the seabed-landing phase.
Papers most commonly deal with either a purely active system or a purely passive system, with the
purely active system being most common, although there are examples of hybrid heave compensation
systems being investigated. Few papers couple the heave compensation system with the vessel in
order to provide feed-back to the vessel. Thus, this work is different from previous literature since it
combines three parts; firstly it investigates a hybrid heave compensation system, secondly it examines
the seabed-landing phase, and thirdly it couples the heave compensation system with the vessel.
Furthermore, most active heave compensation systems investigated previously used hydraulic or electric-
hydraulic systems. This work is different since it will use a purely electric-driven system. Additionally,
PID control will be used as the control method. The rope and payload will be modelled as discrete masses.



Design requirements and
approach 3
3.1 Introduction

The design requirements are given in section 3.2, followed by the methodology in section 3.3. The existing
concepts are discussed in section 3.4 and evaluated in section 3.5.

3.2 Design requirements

The main design requirements were given for the thesis by Jumbo Maritime. The compensation require-
ments for the heave compensation system are:

• Compensation for 2.5m of heave motion within 8 seconds, this means a heave amplitude of 1.25m

Jumbo Maritime would like to operate the heave compensation system and vessel for offshore operations
in offshore Brazil. This gives the environmental conditions as:

• Significant wave height of Hs=2.5m and peak period of Tp=8s

• Operating at water depth of 2500m

• Beam waves, which means a wave heading of µ=90◦

The heave compensation system is adapted to a 900t crane. There are two 900t cranes on the J-type
vessel used in the investigation. These two cranes can be operated in dual-lift mode. This gives a
limitation on the maximum payload that can be lifted. These are given as:

• Single lift maximum load of 150t at 2500m

• Dual lift maximum load of 300t at 2500m

See Figure 3.1 for an ideal modelling and simulation process given by Birta and Arbez [38]. This flow-
chart is used as guide to the modelling and simulation process of this thesis.

16
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Figure 3.1: Ideal modelling and simulation process [38]
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3.3 Methodology

The end goal is to have a hybrid heave compensation system. To do this a methodology based on Figure
3.1 is followed that is shown below.

1. The starting point for the investigation is three concepts from Jumbo Maritime. Evaluate the three
concepts.

2. Determine a ‘basic concept’ derived from the evaluation of the three concepts.

3. Using the ‘basic concept’, build a numerical model of the PHCS

• An existing numerical vessel motion model from Jumbo Maritime, developed by Jasper van
Heijst for his MSc thesis [39] was given as a starting point for this thesis. This existing model
will be built upon.

• Build a numerical model of the crane-tip motion

• Model the rope compliance since this is significant in deep water

• Build a numerical model of the PHCS

• The PHCS is not yet providing feed-back to the vessel model, the vessel model and crane-tip
model are used to generate the crane-tip motion as an input to the PHCS. This is done to see
the performance of the PHCS itself.

• Analyze the PHCS by determining the natural frequencies and looking at the frequency and
time responses of the system.

• The PHCS is assessed on how well it can reduce heave motion, quantified with the criteria of
performance.

4. Couple the PHCS, crane, and vessel models so that the PHCS gives feed-back to the vessel model,
this gives the coupled PHCS model (henceforth called C-PHCS), analyze the C-PHCS model

• The C-PHCS model will be assessed on how well the system can reduce heave motion, quan-
tified with the criteria of performance.

• The model will also be assessed on if its natural frequencies coincide with the design wave
frequency

5. Using the ‘basic concept’ make a model of the AHCS combined with the PHCS, giving the HHCS
model. Combine the HHCS, crane, and vessel models, this results in the coupled HHCS model
(henceforth called C-HHCS)

• Build a numerical model of the AHCS.

• Couple the AHCS with the PHCS to form the HHCS

• Couple the HHCS, crane, and vessel models

• The C-HHCS will be assessed on how well the system can reduce heave motion, quantified
with the criteria of performance.

• The effect of the C-HHCS on the vessel’s motion will be assessed.

6. Draw conclusions
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3.4 Existing concepts

The first step in the methodology in section 3.3 is performed.

The AHCS concept, concept 1, is shown in Figure 3.2. This uses a purely active system where a roll
reduction system is used to control roll of the vessel which controls the crane’s movement. Since the
crane is extended from the vessel the vessel roll generates reasonable heave motion of the crane. This
leads to an active heave reduction capability.

Concept 2 is a HHCS concept, shown in Figure 3.3. This is referred to as a linear active heave
compensation system. The system works by having a motion reference unit measure heave motion at
the location where the winch rope leaves the vessel. The system compensates heave motion with a
cylinder combining active and passive capabilities. This dual-purpose cylinder saves power since the
passive part takes most of the load (the average load) and the active part takes the wave-induced load
variations. This system uses hydraulic power and a wet hand-shake is used.

Jumbo’s existing HHCS concept, concept 3, is shown in Figure 3.4. This uses an active traction winch
attached to the crane. The hook is integrated with a passive heave compensation cylinder. The top
of the piston in the passive heave compensation cylinder is attached to the active traction winch via
Dyneema rope. The bottom of the piston is rigidly connected to the hook. The outer surface of the
passive heave compensation cylinder is connected to the main winch of the crane using steel rope.

		

Figure 3.2: Concept 1: using a roll reduction system

wet handshake 

active + passive cylinder 

Figure 3.3: Concept 2: the linear active heave compensation system
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traction winch 
active part 

hook with passive 
cylinder 

Figure 3.4: Concept 3: electric winch at the top of the crane and a passive cylinder integrated with the
hook
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3.5 Multi-criteria analysis

The main criteria of interest are:

1. The efficiency of the system

• Higher efficiency is better

2. The space taken by the system

• Less space is better

3. The transportability of the system

• It is better if the system is more transportable

4. The cost of the system

• Lower cost is better

Using the criteria above each concept is discussed.

Concept 1 is not considered very efficient due to the large volumes of water that need to be moved but
it is integrated with existing ballast tanks so takes little space. Concept 1 is not transportable since it
needs to connect to the ballast tanks which are deep inside the vessel. However, Concept 1 is relatively
low cost since only a limited amount of additional equipment is necessary and the ballast tanks already
exist.

Concept 2 is not that efficient since it uses a hydraulic power unit that is constantly running and this unit
takes up a large amount of space. Concept 2 also requires a moon-pool for the wet handshake but it is
highly transportable since the system is available in a containerized form. Concept 2 is easy to integrate
into an existing winch system and is effective at compensation with compensation of 90% of heave. It is an
existing design used by Bosch Rexroth so it is known that it works. Nevertheless, Concept 2 is expensive.

Concept 3 is highly efficient since the active traction winch is electric-driven, and it does not take a lot
of space since a hydraulic power unit on deck is not required. Concept 3 is not very transportable since
the winch is integrated into the crane but the small size of the system and relatively small number of
parts contributes to making it relatively inexpensive.

Based on this discussion the multi-criteria analysis was performed in Table 3.1. Plus signs indicate the
concept performs well under the specific criteria and minus signs indicate the concept performs poorly.
It can be seen from Table 3.1 that concept 3 is the best concept among the three. Therefore, concept 3
is the chosen design, the ‘basic concept’.

Table 3.1: The multi-criteria analysis

efficiency space transportable cost Total
concept 1 − ++ −− + 0
concept 2 −− − ++ − −−
concept 3 ++ + − ++ ++++

3.6 Conclusion

This concludes step 1 and 2 in the methodology in section 3.3. In chapter 4, step 3 in the methodology
is started with the ship model.



Vessel motion model 4
4.1 Introduction

The vessel model developed by van Heijst [39] was used to predict ship motions. This model was used
since it was given as a starting point for this thesis. Furthermore, this available model is a model of the
J-type vessel of Jumbo and this thesis is investigating a HHCS for the J-type vessel. The ship model
predicts sway, heave, and roll motions of the vessel. The main changes to the model was adding a spring
in the sway direction to prevent excessive sway motion and to add roll moment to account for the HHCS
exerting a force on the crane-tip, which produces a moment.

The model was made in Simulink and MATLAB by van Heijst. Since the vessel model was given as a
starting point for this thesis the model was kept in Simulink and MATLAB. To couple with the vessel
model, the model of the HHCS was made in Simulink and MATLAB. This was done so that the work
of this thesis would be ensured to be compatible with the vessel model.

4.2 Equations of motion

Newton’s second law:
F = Ma (4.1)

is used to derive the equations of motion of the ship. A ship has six degrees of freedom thus Newton’s sec-
ond law must be applied to each degree of freedom. Writing Newton’s second law using the conventional
notation:

6∑
k=1

Mjk · q̈k(t) =
∑
Fj : j = 1...6 (4.2)

The frequency and time domain models are based on Newton’s second law in (4.2). The degrees of freedom
are given by the vector qk with k = 1, 2, 3 being the translations surge, sway, and heave respectively and
k = 4, 5, 6 are the rotations roll, pitch, and yaw respectively.

∑
Fj represents the sum of forces and

moments (collectively called loads) acting on the vessel. Only the time domain model is discussed below
since this will be used in this thesis, with the reason for selecting the time domain model given in section
4.5. The time domain model is discussed in section 4.3.

22
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4.3 Time domain

The time domain equations are based on (4.2). By expanding
∑
Fj , which represents summation of

forces and moments, the following equation is obtained [39]:

6∑
k=1

Mjk · q̈k(t) = FHD
j + FHS

j + FD
j + FA

j + FE
j : j = 1...6 (4.3)

where FHD
j + FHS

j + FD
j + FA

j + FE
j represent the hydrodynamic, hydrostatic, diffraction, actuator, and

environmental loads. Mjk is the 6x6 mass matrix of the ship.

The hydrostatic load FHS
j is proportional to displacement q with the proportionality factor being the

hydrostatic coefficient Cjk, where Cjk is the 6x6 frequency independent hydrostatic restoring coefficient
matrix. The hydrostatic load is given by:

−FHS
j =

6∑
k=1

Cjk · qk(t) : j = 1...6 (4.4)

The hydrodynamic load FHD
j is given by:

−FHD
j = A∞,jk · q̈k(t) +

∫ t
−∞Kjk(t− τ) · q̇k(τ)dτ : j = 1...6 (4.5)

where A∞,jk is the 6x6 frequency independent added mass matrix. K(τ) is the retardation function.
The convolution integral in the hydrodynamic load gives the radiation load which is the damping due to
waves generated by the vessel’s motion. The retardation function K(τ) is given by:

K(τ) =
2

π
·
∫ ∞

0
b(ω) · cos(ωτ)dω (4.6)

where b(ω) is the frequency-dependent hydrodynamic damping coefficient.

A is given using the retardation function K(τ) from (4.6):

A = a(ω) +
1

ω
·
∫ ∞

0
K(τ) · sin(ωτ)dτ (4.7)

where a(ω) is the frequency-dependent hydrodynamic mass coefficient. Since (4.7) is valid for any value
of ω then it is valid for ω =∞. Thus, A∞,jk is obtained from (4.7) by evaluating it at ω =∞
Substituting (4.4) and (4.5) into (4.3) and replacing τ with t − τ to give more convenient integration
limits gives the Cummins equation [39]:

6∑
k=1

(Mjk +A∞,jk) · q̈k(t) +
∫∞

0 Kjk(τ) · q̇k(t− τ)dτ + Cjk · qk(t) = FD
j + FA

j + FE
j : j = 1...6 (4.8)

The added mass matrix was calculated by van Heijst using WAMIT. WAMIT is described in section
4.3.1.

4.3.1 WAMIT

WAMIT is a program that uses the panel method to solve the velocity potential and fluid pressure on
the submerged surfaces of bodies such as ships, semi-submersibles, and other floating structures [40].
WAMIT is based on the linear and second-order potential theory.
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4.4 Degrees of freedom

For a vessel there are six degrees of freedom these are three translations and three rotations, see Figure
4.1. The three translations are:

• Surge- x, motion in the longitudinal x direction, the motion in direction 1

• Sway- y, motion in the lateral y direction, the motion in direction 2

• Heave- z, motion in the vertical z direction, the motion in direction 3

The three rotations are:

• Roll- φ, motion about the x axis, the motion in direction 4

• Pitch- θ, motion about the y axis, the motion in direction 5

• Yaw- ψ, motion about the z axis, the motion in direction 6

The number of degrees of freedom was limited to three to make the model simple and not too time-
consuming to make [39]. The heave motion was included to account for mass changing over time due to
a roll reduction system. The sway and roll motions are coupled so one cannot be included without the
other. In summary, the heave, sway, and roll are considered. This captures all the degrees of freedom in
the y − z plane shown in Figure 4.1.

Figure 4.1: Six degrees of freedom for three axes with the origin at the center of gravity [41]

4.5 Choice of domain

The frequency domain model is less computationally expensive to solve than the time domain model.
However, the frequency domain model has more limitations. The vessel model can be made with the
wave exciting it being a regular wave with frequency ω and for which the vessel characteristics are
known. Alternatively the wave can be a summation of waves with different amplitudes, phases, and
frequencies for which the vessel characteristics are known. These vessel characteristics can be calculated
using potential theory software such as WAMIT. The main limitation of the frequency domain model is
that it applies only to linear systems [39] since in non-linear systems the superposition principle is not
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applicable. The model of van Heijst is in the time-domain since van Heijst investigated a roll reduction
system which introduced non-linearities meaning the frequency domain model could not be used [39].
Since this thesis uses van Heijst’s model as a starting point the time domain model of van Heijst is used.
Furthermore, the HHCS will use non-linear accumulators, a key reason to keep the vessel model in the
time domain.

4.6 Applying the equations of motion

4.6.1 Coupling of degrees of freedom

The J-type vessel is considered a slender vessel. This means the movements in directions 2-4-6 and 1-3-5
are uncoupled from each other [39]. The vessel is assumed to have lateral symmetry (symmetry about
the x− z plane, called port-starboard symmetry) and the center of gravity is assumed to be at the origin
of the axes. The generalized mass matrix with these assumptions is (4.9):

Mjk =



M 0 0 0 0 0
0 M 0 0 0 0
0 0 M 0 0 0
0 0 0 Ixx 0 I46

0 0 0 0 Iyy 0
0 0 0 I46 0 Izz

 (4.9)

Where M is the mass of the ship, Ijk is the inertia in the j direction from the contribution in the k
direction. I46 is the roll-yaw inertia. Continuing with the lateral symmetry assumption, the added mass
terms are (4.10):

Ajk =



A11 0 A13 0 A15 0
0 A22 0 A24 0 A26

A31 0 A33 0 A35 0
0 A42 0 A44 0 A46

A51 0 A53 0 A55 0
0 A62 0 A64 0 A66

 (4.10)

Ajk is frequency dependent so can be written as Ajk(ω). There is coupling of added mass between
different motion directions. For example, A13 means the added mass in the 1 direction contributed
from motion in the 3 direction. The port-starboard symmetry assumption means the matrix in (4.10) is
symmetric. The Cjk matrix is diagonally symmetric, it is given by (4.11):

Cjk =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 C33 0 C35 0
0 0 0 C44 0 0
0 0 C53 0 C55 0
0 0 0 0 0 0

 (4.11)

As mentioned in section 4.4 only heave, sway, and roll of the vessel are considered. This means the only
non-zero values in Cjk are C33 and C44. Thus (4.11) can be written as (4.12):

Cjk =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (4.12)
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where:
C33 = ρgAwl (4.13)

C44 = ρgGM (4.14)

where ρ is the density of water, g is the gravitational acceleration, Awl is the area at the waterline, and
GM is the metacentric height. C33 is constant by the assumption that the walls of the vessel remain
vertical over the range of the heave motion.

4.6.2 Calculation of M , A, and C coefficients

The values of the coefficient matrix Ajk were calculated by van Heijst using WAMIT. The matrix is
frequency dependent. Using the choice of degrees of freedom in section 4.4 some of the coefficients found
in the coefficient matrices in section 4.6.1 are neglected, resulting in the coefficient matrices:

Mjk =

M 0 0
0 M 0
0 0 Ixx

 (4.15)

Ajk =

A22 0 A24

0 A33 0
A42 0 A44

 (4.16)

Cjk =

0 0 0
0 C33 0
0 0 C44

 (4.17)

4.6.3 Diffraction load

The loads on the right-hand side of (4.8) are described. The diffraction loads are first described. The
diffraction loads FD

j were modelled as sinusoidal functions with amplitudes, frequencies, and phase angles.
To model a regular beam sea a single sine wave is used and to model a complex sea state a superposition
of multiple sine waves is used to give irregular waves [39]. A single sine wave is given as:

µ(t, y) = Asin(ωt− kysin(θ)) (4.18)

The diffraction load for the sway, heave, roll directions shown by j is:

FD
j (t, y) = RD

j Asin(ωt− kysin(θ) + φj) (4.19)

where RD
j is the load response amplitude operator calculated by WAMIT for various frequencies and

headings, φj is the phase in the j direction, the amplitude of the wave is A, θ is the heading of the wave,
t is time, and y is location. The wave number k is related to the wave frequency ω via the dispersion
relationship:

ω2 = gktanh(kd) (4.20)

Where d is water depth, for deep water which is a reasonable assumption for this thesis tanh(kd) = 1,
this gives the deep water dispersion relationship:

ω2 = gk (4.21)

This gives a water depth independent wave number:

k =
ω2

g
(4.22)

The load response amplitude operator RD
j measures the amount of force or moment as a function of the

relative wave height for each motion direction. It was found using WAMIT and depends on frequency
and heading.
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4.6.3.1 Wave spectrum

To represent the sea state in the frequency domain a wave spectrum is used. Various wave spectra are
available for example the Pierson-Moskowitz spectrum. The main parameters for the Pierson-Moskowitz
spectrum are the peak period, Tp, and the significant wave height Hs. The spectrum is represented by
the spectral density function given by:

S(f) = lim
∆f→0

1

∆f

1

2
ā2 (4.23)

where a is wave amplitude and f is frequency.

4.6.3.2 Irregular waves

A single sine wave is not a realistic representation of a sea state. Instead an irregular sea state is more
realistic. This means a linear superposition of sine waves is used with each sine wave having an amplitude,
phase, and frequency. To obtain these parameters the wave spectrum is used. If an irregular sea state
has n sine waves then the frequency range is divided into n bins. For each bin the value of S(ω) is
calculated at the center of the bin. This is used to find the amplitude of a wave i through:

Ai =
√

2S(ωi)∆ω (4.24)

When creating the spectral density function the phase of the wave is lost. Thus, a uniformly distributed
random phase is added to each wave. Re-writing (4.18) gives:

µ(t, y) =
∑

Aisin(ωt− kiysin(θi)− εi) (4.25)

where εi is the phase for each wave. Using (4.19) the diffraction loads are found:

FD
j =

∑
i

RD
j,iAisin(ωit− kiysin(θi) + φj,i − εi) (4.26)

4.6.4 Other loads

Wind and current loads are neglected. This is because it is assumed the workability of the vessel is
limited by wave loads and not wind or current loads. This means FE

j is removed from (4.8).

The actuator load FA
j is used to account for the roll moment due to the payload on the crane. A simple

dynamic positioning system in the form of a spring is used to control the sway motion. This is to keep
the vessel from drifting off since without a sway restoring force the vessel will be free to sway unlimited.

4.6.5 Assumptions of model

The assumptions for the vessel model are summarized below [39]:

• 3 degree of freedom model

• Heave uncoupled

• Inviscid, irrotational fluid

• Viscous loads only modelled in roll

• No wind/current

• Dynamic positioning system is a soft spring

4.7 Conclusion

Now that a vessel model is available the crane-tip motion model can be obtained. In chapter 5, step 3
of the methodology in section 3.3 is continued with the crane-tip model.



Crane-tip motion model 5
5.1 Introduction

The equations to obtain the transformation of the vessel motion to crane-tip motion are described. The
motion of a fixed point on the vessel corresponds to the motion of the crane tip since it is assumed the
crane is sufficiently stiff to hold a fixed position on the vessel.

5.2 Degrees of freedom investigated

To obtain a fully accurate model of the motion (xP, yP, zP) of a fixed point on the vessel (5.1) (5.2) (5.3)
should be used [41]:

xP = x− ybψ + zbθ (5.1)

yP = y + xbψ − zbφ (5.2)

zP = z − xbθ + ybφ (5.3)

where x, y, z, φ, θ, and ψ are surge, sway, heave, roll, pitch, and yaw, respectively, of the vessel about the
center of gravity of the vessel and xb, yb, and zb are the coordinates of the crane-tip. In this thesis, the
motion transformation is only done to obtain the vertical motion:

zP = h (5.4)

where h is the vertical motion of the crane-tip. This is because this is the desired motion to compensate
for and adding more motion directions would add unnecessary complexity. Furthermore, the x, y, ψ,
and θ motions of the vessel are deemed neglectable. Why this is the case will become clear below.
For Jumbo, the AHCS will always be fitted to a vessel that has a dynamic positioning (DP) system.
Therefore, one can assume the DP system works well enough to remove nearly all vessel motion in the
horizontal plane. Thus x, y, and ψ motions of the vessel can be neglected. Since the crane is near the
middle of the vessel, the effect of vessel pitch θ motion is negligible. Thus, it has been justified why the
x, y, ψ, and θ motions of the vessel can be neglected.

The ship-motion-predicting model of van Heijst outputs heave z, sway y, and roll φ. Since the sway y is
neglected only the heave z and roll φ of the vessel are used for the crane-tip model.

28
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5.3 Frequency of encounter

The frequency at which the vessel encounters waves is:

ωe = ω − kV cos(µ) (5.5)

where ω is the wave frequency, k is the wave number, V is the ship’s speed vector, and µ is the wave
direction angle. The wave number is obtained using the dispersion relationship. Assuming deep water
simplifies the dispersion relationship to:

ω2 = kg (5.6)

k =
ω2

g
(5.7)

this gives the frequency at which the vessel encounters waves as:

ωe = ω − ω2

g
V cos(µ) (5.8)

When the vessel is performing lifting operations the vessel will not be moving which means vessel velocity
V = 0. This gives:

ωe = ω (5.9)

the frequency of encounter is the same as the frequency of waves. Since the waves are irregular there is
not one frequency to describe the waves. An approximation is found using the peak period. The peak
period is used since at this period the maximum power in the spectrum occurs so the most energetic
waves occur at this period so these waves are more dominant. Since the frequency of encounter is the
same as the wave frequency then:

ωe =
2π

Tp
(5.10)

5.4 Vertical motion, zP = h

The equation for the absolute harmonic vertical motion of a fixed point P (xb, yb, zb) on the vessel is
given below [41]:

h(ωe, t) = z + ybφ = zacos(ωet+ εzζ) + ybφacos(ωet+ εφζ) (5.11)

Where the variables are defined in Table 5.1. The coordinate system is defined in Figure 5.1.

Table 5.1: Definitions of variables

Variable Definition

z Heave

yb y coordinate of point P in the body-bound coordinate system

φ Roll angle of vessel in steadily translating O(x, y, z) coordinate system

za Heave amplitude

ωe ωe = ω

εzζ Heave phase shift with respect to the harmonic wave elevation at the
origin of the steadily translating O(x, y, z) coordinate system

εφζ Roll phase shift with respect to the harmonic wave elevation at the origin
of the steadily translating O(x, y, z) coordinate system

φa Roll amplitude of vessel in the steadily translating O(x, y, z) coordinate
system
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Figure 5.1: Coordinate system [41]

cos(α+ β) = cos(α)cos(β)− sin(α)sin(β) (5.12)

Using the identity (5.12) to expand (5.11):

h(ωe, t) = za

[
cos(ωet)cos(εzζ)− sin(ωet)sin(εzζ)

]
+ ybφa

[
cos(ωet)cos(εφζ)− sin(ωet)sin(εφζ)

]
(5.13)

Further simplification of (5.13):

h(ωe, t) = cos(ωet)
[
zacos(εzζ) + ybφacos(εφζ)

]
− sin(ωet)

[
zasin(εzζ) + ybφasin(εφζ)

]
(5.14)

Since h(ωe, t) was obtained from a linear superposition of two harmonic motions then h(ωe, t) must be
harmonic:

h(ωe, t) = hacos(ωet+ εhζ) = [hacos(εhζ)]cos(ωet)− [hasin(εhζ)]sin(ωet) (5.15)

Where ha is the motion amplitude and εhζ is the phase lag of the motion with respect to the wave
elevation at the origin of the body-bound coordinate system (the ship’s center of gravity). Equating the
terms with cos(ωet) in (5.15) and (5.14) gives hacos(εhζ). Equating the terms with sin(ωet) in (5.15) and
(5.14) gives hasin(εhζ):

hacos(εhζ) = zacos(εzζ) + ybφacos(εφζ) (5.16)

hasin(εhζ) = zasin(εzζ) + ybφasin(εφζ) (5.17)

The right hand sides of (5.16) and (5.17) are known from the model of the vessel motions. Thus the
amplitude ha and phase shift εhζ can be determined by combining (5.16) and (5.17) and solving for ha

and phase shift εhζ :

ha =
√

(hacos(εhζ))2 + (hasin(εhζ))2 (5.18)

ha =
√

(zacos(εzζ) + ybφacos(εφζ))2 + (zasin(εzζ) + ybφasin(εφζ))2 (5.19)

εhζ = arctan
[hasin(εhζ)

hacos(εhζ)

]
(5.20)

εhζ = arctan
[ sin(εhζ)

cos(εhζ)

]
(5.21)

εhζ = arctan
[ zasin(εzζ) + ybφasin(εφζ)

zacos(εzζ) + ybφacos(εφζ)

]
(5.22)

The vertical motion of the crane-tip is given by:

h(ωe, t) = hacos(ωet+ εhζ) (5.23)
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Figure 5.2: RAO for 6 degrees of freedom [41]

with ha given by (5.19) and εhζ given by (5.22). The required inputs and outputs are listed in Table 5.2

Table 5.2: Inputs and outputs of the crane model

Inputs Outputs

za ha

yb εhζ
φa

εzζ
εφζ

5.5 Applying the equations

5.5.1 Vertical motion, zP = h

The metocean conditions are significant wave height Hs = 2.5m and peak period Tp = 8s. Beam waves
are used, this means the waves have a heading of µ = 90◦. This is because the RAOs of a vessel in
roll and heave for beam waves are generally greatest compared to other wave headings, see Figure
5.2. The figure shows that the pitch RAO is negligible for beam waves. The figure shows RAOs for
an aircraft carrier which is assumed valid for the J-type vessel since both are relatively slender structures.

The equations of motion have been described in section 5.4. The equations are now applied to the vessel.
See Figure 5.3 for an example of the motions of the crane-tip.
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Figure 5.3: Vertical crane-tip motion in the top sub-plot in blue with vessel heave in red, in the bottom
sub-plot the vessel roll is shown

5.6 Conclusion

In chapter 6, step 4 of the methodology in section 3.3 is continued with the model of the PHCS.



Passive heave
compensation cylinder 6
6.1 Introduction

This chapter discusses the principle of the passive heave compensation cylinder.

6.2 Model

To model the cylinder the approach taken was to use the ideal gas law under the assumption of an
isentropic process (adiabatic and reversible), similar to Sverdrup-Thygeson [42]. A diagram of this
system is shown in Figure 6.1.

Figure 6.1: Schematic of the system

The following key assumptions are made (for all simulations):

• Environment

33
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– g = 9.81m/s2

– ρwater = 1025 kg
m3

– Water depth of 2500m assumed

– Water temperature at operating depth is 4◦ Celsius

• Rope

– dc = 0.05m is the diameter of the steel rope and Ac is the cross-sectional area

– dDyneema = 0.052m is the diameter of the Dyneema rope and ADyneema is the cross-sectional
area

– Ec = 1.96e9( N
m2 ) [43], modulus of steel rope

– EDyneema = 6.75e8( N
m2 ), modulus of Dyneema rope

– Lc length of steel rope and LDyneema length of Dyneema rope is the same as the water depth

– The steel rope has stiffness, kc = EcAc
Lc

– The Dyneema rope has stiffness, kd =
EDyneemaADyneema

LDyneema

– The mass of a meter of Dyneema rope is 5.3kg
m , this is for LankoDeep, a Dyneema rope designed

for deep-water applications

– The mass of the Dyneema rope is MDyneema, mass per meter times length

– The mass of a meter of steel rope is 15.3kg
m , for high-tensile steel

– The mass of the steel rope is Mc, mass per meter times length

– Several steel ropes are used to connect the PHCS cylinder to the crane. The interaction of
the steel ropes which each other is neglected so it is decided to combine the steel ropes into
one rope, to simplify the model.

– One Dyneema rope is used to connect the hook/payload mass to the crane.

• Payload and PHCS

– The dimensions of the PHCS are (L,W,H) (1m, 2.3m, 5.9m).

– The PHC cylinder, accumulators, pressure vessel and link frame have a mass Mphc=10e3kg

– The mass of the hook is Mhook=2e3kg

– The mass of the payload, Mpayload =150e3kg, is rigidly attached to the hook, so they are a
rigid mass, the combined mass of the payload and the hook is Mhook,payload = Mpayload+Mhook

– The water drag force on the PHC system is given using the quadratic drag equation,
1
2ρwaterCd,phcDphc|żphc|żphc. The PHCS is modelled as a square rod. This is because the
shape of PHC systems such as the Cranemaster system approximate a square rod so it is
reasonable to use the same shape for this PHCS. Using data for a square rod from DNV-
RP-H103 [44], the drag coefficient is Cd,phc = 0.90. Dphc is the bottom-view area of the
PHCS.

– As mentioned, the PHCS is modelled as a square rod. Added mass is a function of wave
frequency. Using DNV-RP-H103 [44], the added mass of a square rod at infinite wave frequency
is obtained. The added mass at infinite wave frequency is used to simplify the situation. When
the wave frequency increases the added mass coefficient increases and converges to a constant
value [45], so it is reasonable to use the added mass at infinite frequency.

– The water drag force on the payload and hook is included in a similar way as for the PHCS. The
drag force is given by 1

2ρwaterCd,hook,payloadDhook,payload|ż1|ż1. The hook is neglected since it has
a small size relative to the payload. The payload is modelled as a circular cylinder. The reason
to use a circular cylinder shape is that it provides an approximation for shapes of common
subsea equipment. Some common subsea equipment better approximates a rectangular plate.
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However, not all types of subsea equipment can be considered so a decision was made to use a
circular cylinder shape. Using data for a circular cylinder from DNV-RP-H103 [44], the drag
coefficient is Cd,hook,payload = 0.88. Dhook,payload is two times the cylinder radius times the
cylinder length.

– As mentioned, the payload is modelled as a circular cylinder and the hook is neglected.
Using DNV-RP-H103 [44], the added mass of a circular cylinder at infinite wave frequency is
obtained. The reason to use added mass at infinite frequency was given above.

– The crane-tip motion is zin

• Pressure system

– n = 1.4 is the specific heat ratio of nitrogen gas [46]

– The maximum stroke of the piston is Lmax,stroke =3m, based on a Cranemaster system sized
for a maximum 600t payload [47]

– The internal stopper spring length is Ls,phc =0.2m

– The length of the lower chamber and upper chamber of the cylinder is Lm,phc = Lmax,stroke ∗
0.5 + Ls,phc, these are the same since the piston-head is assumed to be in the middle of the
cylinder at equilibrium

– The area the pressure in the lower chamber and upper chamber acts on is the effective piston-
head area Ap

– The initial volume of the upper chamber of the cylinder Vp2,1 = Ap ∗ Lm,phc

– The initial volume of the lower chamber of the cylinder Vp1,1 = Ap ∗ Lm,phc

– Kinematic viscosity of hydraulic fluid, ν =40e-6 m2/s

– Density of hydraulic fluid, ρfluid = 859kg/m3

The mass of the system components is shown in Table 6.1. The total mass is less than the maximum
dynamic load of the crane, 650t. This is to provide for a dynamic amplification factor for safety. Thus,
this constrains the mass of the payload to 150t.

Table 6.1: Mass data

Variable Value [kg] Description

Mphc 10e3
mass of the PHC cylinder, accumulators, pressure vessel

and link frame

Mpayload 150e3 mass of payload

Mhook 2e3 mass of hook

Md 13.25e3 mass of Dyneema rope

Mc 153.2e3 mass of steel rope

Total 328.4e3 Mphc + Mpayload + Mhook + Md + Mc

It is desired to have equations for Pp1 and Pp2. Where Pp1 is the pressure in the lower part of the
cylinder and Pp2 is the pressure in the upper part of the cylinder, shown in Figure 6.1. The subscript
p1 indicates the lower part of the cylinder and the subscript p2 indicates the upper part of the cylinder.
The pressures Pp1 and Pp2 act on the piston-head area, Ap, to produce forces on the piston-head. Since
the pressures act on opposite sides of the piston-head the forces they produce are opposite in sign. This
is because Pp2 acts in the upper part of the cylinder so a downwards force results and Pp1 acts in the
lower part so an upward force results. The difference between the forces produces the resultant force
acting on the piston-head by the passive heave compensation cylinder. Since the piston-head is rigidly
attached to the hook and payload, this is the force acting to accelerate the hook and payload, Fphc:

Fphc = Pp1Ap − Pp2Ap (6.1)
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For an ideal gas, the equation of state is:
PV = NRT (6.2)

where P is pressure, V is volume, N is the amount of gas in moles, R is the ideal gas constant, and T
is temperature. For an isentropic process one can derive the isentropic relations using the equation of
state:

T2

T1
=
(V 1

V 2

)n−1
=
(P2

P1

)n−1
n

(6.3)

where n is the specific heat ratio. The number 1 refers to the state at the initial condition and 2 refers
to the state at a time after the initial condition. Using (6.3) gives:(V 1

V 2

)n−1
=
(P2

P1

)n−1
n

(6.4)

P2

P1
=
(V 1

V 2

)n
(6.5)

The pressure P2 at a time after the initial condition is a function of the volume V 2 at this time, this is
shown by:

P2 = P1
(V 1

V 2

)n
(6.6)

The relationship between pressure and volume from (6.6) is used. This gives the pressure in the lower
part of the cylinder, Pp1:

Pp1 = Pp1,1

(Vp1,1

Vp1

)n
(6.7)

where Pp1,1 is the initial pressure and Vp1,1 is the initial volume.
Using (6.6), the pressure in the upper part of the cylinder, Pp2, is given by:

Pp2 = Pp2,1

(Vp2,1

Vp2

)n
(6.8)

where Pp2,1 is the initial pressure and Vp2,1 is the initial volume.

Substituting (6.7) and (6.8) into (6.1) gives:

Fphc =
[
Pp1,1

(Vp1,1

Vp1

)n]
Ap −

[
Pp2,1

(Vp2,1

Vp2

)n]
Ap (6.9)

6.2.1 Initial pressure across the piston-head

Static dimensioning of the initial pressures Pp1,1 and Pp2,1 is done. The initial pressure in the cylinders
is set to support the wet weight of the hook and payload. This means Pp1,1 and Pp2,1 cannot be the
same since this would result in no support. Instead it is necessary that Pp1,1 > Pp2,1 so there is a net
force upwards. The static relation for supporting the wet weight of the hook and payload by the pressure
difference across the piston-head is:

(Mhook,payload − ρwaterVd)g = (Pp1,1 − Pp2,1)Ap (6.10)

where Vd is the displaced volume of the payload (since the hook is neglected due to its small size), ρwater

is water density, and g is gravitational acceleration. For clarity, the variable P∆p is defined as:

P∆p = Pp1,1 − Pp2,1 (6.11)

substituting P∆p from (6.11) into (6.10) and solving for P∆p gives:

P∆p =
(Mhook,payload − ρwaterVd)g

Ap
(6.12)



CHAPTER 6. PASSIVE HEAVE COMPENSATION CYLINDER 37

6.3 Size the piston-head area

The maximum load on the piston-head is used to size the area of the piston-head. The maximum load
is the load due to the maximum permissible mass suspended from the crane tip, 650t. To size the
piston-head (6.13) is used. This sizes the piston-head for the largest load it is designed to take:

Ap =
Fmax

pLηc
(6.13)

where Fmax is the maximum force on the piston-head, pL is the difference in pressure across the piston,
and ηc is the coefficient of efficiency of the cylinder (this includes losses due to internal friction in the
cylinder) [42]. The internal friction is ignored so ηc = 1.

6.3.1 Model damping

To model viscous damping the approach of having the damping as a dash-pot modeled by the product
of a constant and a velocity was considered. This would give damping such as Fdamping = C ∗ ẋ. This
was tried initially but does not provide a useful model since the actual damping mechanism is more
complex. This is because in PHC systems the damping arises normally from a flow restrictor obstructing
the flow of hydraulic fluid such as done by Ni et al. [48]. This would be used in combination with
an accumulator. The flow restrictor has dynamics connected with the gas pressure and volume in the
accumulator. From the literature review, for PHC systems it was more common to use a flow restrictor
type damping mechanism. For these reasons a flow restrictor is used for the damping.

6.3.2 Dyneema selection

Two ropes manufactured by Lankhorst are considered for the Dyneema rope, the LankoDeep rope [49]
and the LankoForce rope [50]. The LankoDeep has a higher mass per meter which means it provides a
more conservative estimate of the Dyneema mass, so this is used.

6.4 Conclusion

In this chapter the principle of the passive heave compensation cylinder was discussed. This is part of
step 3 of the methodology which is continued in chapter 7. In chapter 7, the equations of motion for the
system are developed and three flow restrictors investigated, the throttle, orifice, and Darcy-Weisbach
system.



Passive heave
compensation system 7
7.1 Introduction

In this chapter, the equations of motion for the PHCS are developed and three flow restrictors investi-
gated, the throttle, orifice, and Darcy-Weisbach system. Two PHC systems were considered, the first
with one accumulator and the second with two accumulators. The PHCS with one accumulator was
first used to determine which flow restrictor to proceed with. The PHCS with one accumulator is briefly
discussed in section 7.2 and the PHCS with two accumulators, discussed in section 7.3, is focused on
since it is used in further analysis.

7.2 PHCS design: one accumulator

Using work done in chapter 6, the rest of the system is added. The steel rope, Dyneema rope, the hook
and payload mass, the flow restrictor, and the accumulator are added. The pressure distribution around
the cylinder means that depth-compensation is automatic. A schematic of the system is shown in Figure
7.1. There is only an accumulator connected to the lower chamber of the cylinder. In the literature, this
is called a plunger cylinder with a schematic from Bauer [51] shown in Figure 7.2.

For the system shown in Figure 7.1 three types of flow restrictors were used, the throttle, the orifice, and
the Darcy-Weisbach equation that governs pipe volume flow. These three restrictors were used while
the rest of the system is kept the same. The Darcy-Weisbach type system provided poor performance
so was discontinued. The orifice and throttle are investigated further.

It was found that the overall design, despite which flow restrictor was used, had some issues. Firstly,
there is a large difference in amplitude between the pressures Pp1 and Pp2. Secondly, the pressures Pp1

and Pa1 were not out of phase significantly. These two issues were thought to occur because there is only
one accumulator. Thirdly, volume flow rate Qr has large amplitude and unrealistically high frequency,
this is due to there being no fluid inertia included in the model. In section 7.3, another accumulator
was added and the throttle and orifice systems further investigated.
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Figure 7.1: Schematic of the PHCS

Figure 7.2: In the literature this system is referred to as the plunger cylinder [51]
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7.3 PHCS design: two accumulators

As discussed in section 7.2 the PHCS with one accumulator had three issues. The volume flow rate Qr

issue is solved by adding fluid inertia. For the two other issues, two hypotheses are made:

1. The lack of an accumulator at the top of the cylinder is hypothesized to contribute to there being
a large difference in amplitude between the pressures Pp1 and Pp2. It is hypothesized that the
amplitudes will be more similar with the new design. This is because the accumulator acts as a
spring so having an accumulator at the top and bottom should provide a more balanced system
leading to more balanced pressures Pp1 and Pp2.

2. The lack of an accumulator at the top is hypothesized to contribute to the pressures Pp1 and Pa1

not being out of phase significantly. It is hypothesized that they will be more out of phase. Again,
this is because of the reason above where the accumulator acts as a spring.

The new design is shown in Figure 7.3. In the literature, this is called a double-acting cylinder with a
schematic from Bauer [51] shown in Figure 7.4. In the following sections, the model is discussed and
equations of motion derived. Fluid inertia is not added immediately but is added in section 7.10.

Figure 7.3: Schematic of the PHCS with two accumulators
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Figure 7.4: In the literature this system is referred to as the double-acting cylinder [51]

7.4 Forces to consider when lifting

The scenario being investigated is a load already through the splash-zone and being lowered to the
seabed. From DNV recommended practice RP-H103 [44], the main forces to consider are shown below:

• W0, weight of the object in air

• FB, buoyancy force

• Fd, drag force

7.5 PHCS equations of motion

The equations of motion are obtained by using Newton’s second law F = Ma. This is done by obtaining
a free-body diagram for each mass Mhook,payload, Mphc, Mc, and Md.

7.5.1 Added mass of payload and PHCS

The added mass is associated with the hydrodynamic force which is in phase with the acceleration of the
body. This means any body accelerating in water will have added mass. Furthermore, the added mass
depends on the direction of the body’s motion. For a non-symmetrical body there are cross-coupling
terms M1,2, M1,3, and M2,3 which mean the hydrodynamic force is in a different direction than the
acceleration [52].

To simplify the model only the added mass of the payload and passive heave compensation cylinder
is considered. These objects are bluff bodies in the sense that their shapes are not stream-lined and
would have significant added mass. The cross-coupling terms are ignored since it is assumed they
are symmetrical shapes. The added mass of the hook is neglected since the hook has a small profile
compared to the payload so the added mass is relatively small compared to that of the payload.

From DNV recommended practice DNV-RP-H103 [44] various added mass values for 3D bodies are
shown in Table 7.1. As mentioned earlier, the square rod was chosen for the PHCS and the circular
cylinder for the payload. The passive heave compensation cylinder dimensions are taken as the same as
shipping dimensions of the Cranemaster system to be conservative, L=1m, W=2.3m, H=5.9m with a
height of b=5.9m and width of a=2.3m.
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Table 7.1: Added mass A = ρCAVR for vertical direction of motion

Variable Flat rectangular plate Square rod Circular cylinder

VR
π
4a

2b a2b πa2b

CA f(a, b) f(a, b) f(a, b)

7.5.2 Hook and payload equation of motion

The mass of the hook and the payload are lumped together in Mhook,payload. The forces acting on the
hook/payload are described. The buoyancy force Fb and gravity force Fm are included. The damping
force due to the movement through water is Fd. The force from the spring in the Dyneema is Fs. The
force generated by the pressure difference across the piston-head inside the cylinder is included as Fphc.
The initial pressure at the bottom of the piston-head, Pp1,1 is greater than the initial pressure at the top
of the piston-head, Pp2,1. In the static case this balances the buoyancy and gravity force. Fwater is the
force due to water pressure on the outside surface of the PHCS cylinder which cancels out since it acts
on both top and bottom. The damping of the piston-head against the cylinder is neglected since this is
likely to be small relative to the damping caused by the hydraulic fluid. Applying Newton’s second law
gives:

(Mhook,payload +Ahook,payload)z̈1 = Fphc + Fwater − Fwater + Fb − Fm − Fd − Fs (7.1)

where Ahook,payload is the added mass of the hook and payload.

Fphc = Pp1Ap − Pp2Ap (7.2)

Fb = ρwaterVdg (7.3)

Vd = 0.5πR2
cylinderLcylinder + LphcWphcHphc (7.4)

Fm = Mhook,payloadg (7.5)

Fd =
1

2
ρwaterCd,hook,payloadDhook,payload|ż1|ż1 (7.6)

Fs = kd(z1 − zd) (7.7)

(Mhook,payload +Ahook,payload)z̈1 = Pp1Ap − Pp2Ap + Fwater − Fwater + ρwaterVdg

−Mhook,payloadg −
1

2
ρwaterCd,hook,payloadDhook,payload|ż1|ż1 − kd(z1 − zd)

(7.8)

(7.8) was verified by taking the Euler-Lagrange approach in appendix A.1.

7.5.3 PHCS equation of motion

zphc is the movement of the PHCS:

(Mphc +Aphc)z̈phc = −Fs − Fd (7.9)

Fs = kc(zphc − zc) (7.10)

Fd =
1

2
ρwaterCd,phcDphc|żphc|żphc (7.11)
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(Mphc +Aphc)z̈phc = −kc(zphc − zc)−
1

2
ρwaterCd,phcDphc|żphc|żphc (7.12)

(7.12) was verified by taking the Euler-Lagrange approach in appendix A.1.

7.5.4 Movement of steel/Dyneema rope

According to Purcell and Forrester [53], assuming no current, the lateral motion of the steel or Dyneema
rope can be ignored for deep water since in depths exceeding 100m the lateral motions of the rope are
rapidly damped by the water drag on the rope. Thus, the steel and Dyneema rope are assumed to not
have any transverse motion but only longitudinal motion, heave. In chapter 14 a sensitivity study is
done to include the damping effect of water for deep water. This is done by modelling the Dyneema rope
as a continuous element with coupled axial and transverse motion and taking into account added mass
and water drag.

7.5.5 Added mass and drag of steel/Dyneema rope

The steel rope and Dyneema rope are very slender and since only vertical motion of the ropes is
assumed the added mass is neglected. If they are allowed to sway or move transversely then added
mass is more important. The added mass coefficient varies for a given rope depending on the
rope length and mode of movement [54]. The ratio ρwater/ρrope is an important parameter with a
relationship with the influence of added mass [54]. For a steel rope this ratio is low which means
the added mass influence is low whereas for the Dyneema rope the ratio is high so added mass has
a stronger effect. This should be kept in mind since this is a limitation of the assumption that the
steel/Dyneema ropes only move vertically. The drag in the longitudinal direction of the steel and
Dyneema rope is neglected. This is because the steel and Dyneema ropes have small cross-sectional areas.

7.5.6 Steel rope equation of motion

zc is the movement of the steel rope, discretized as a mass. Quadratic damping of water and added
mass are neglected, as explained in section 7.5.5. The steel rope is assumed to only move in the vertical
direction, the reason for this was given in section 7.5.4. The reason to discretize the steel rope as one
mass was to simplify the dynamics of the system. Applying Newton’s second law:

(Mc)z̈c = −Fs (7.13)

Fs = kc(zc − zin) + kc(zc − zphc) (7.14)

(Mc)z̈c = −kc(zc − zin)− kc(zc − zphc) (7.15)

(7.15) was verified by taking the Euler-Lagrange approach in appendix A.1.

7.5.7 Dyneema rope equation of motion

zd is the movement of the Dyneema, discretized as a mass. For the same reasons as for the steel rope,
the quadratic damping of water and added mass are neglected and the rope is assumed to only move in
the vertical direction. Applying Newton’s second law:

(Md)z̈d = −Fs (7.16)

Fs = kd(zd − zin) + kd(zd − z1) (7.17)

(Md)z̈d = −kd(zd − zin)− kd(zd − z1) (7.18)

(7.18) was verified by taking the Euler-Lagrange approach in appendix A.1.
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7.6 Cylinder and accumulator equations

Expressions for the masses in the system have been obtained; the hook and payload, the PHCS, the
steel rope and the Dyneema rope. The next step is to model the cylinder and accumulators shown in
Figure 7.3. The type of damping in the system was considered in section 6.3.1 and was decided to be
a flow restrictor. The flow restrictor is in the hydraulic fluid flow-line connecting the cylinder to an
accumulator. The volume flow rate of hydraulic fluid is always a function of the pressure difference
across the flow-line containing the hydraulic fluid. There are several ways to model this. The main ways
found from the literature are the Darcy-Weisbach equation, the throttle (which is a special case of the
Darcy-Weisbach equation), and the orifice. The Darcy-Weisbach equation is first described since it is
the most general equation.

7.6.1 Darcy-Weisbach equation

The Darcy-Weisbach equation gives a volume-flow-rate-pressure relationship commonly used for flow-line
resistance. This gives volume flow rate for a flow-line with a friction factor influencing the volume flow
rate. The Darcy-Weisbach equation is given by:

∆P = f
L

D

ρV 2

2
(7.19)

where f is friction factor, L is the pipe length, D is the flow-line diameter, ρ is the fluid density, V is
the fluid velocity, re-arranging for velocity:

V =

√
2D∆P

Lfρ
(7.20)

Multiplying with the flow-line cross-sectional area to get volume flow rate

Q =

√
2D∆P

Lfρ
A = Qr (7.21)

Since ∆P can be negative or positive the absolute value is taken and the Q term is multiplied with
sign(∆P ) so the direction of flow corresponds with the pressure gradient:

Q = sign(∆P )

√
2D|∆P |
Lfρ

A = Qr (7.22)

It is important to note that this equation is applicable to laminar and turbulent flows with the friction
factor f governing whether the flow is laminar or turbulent. The Darcy-Weisbach equation was used in
simulations with the flow being checked if it was in the laminar or turbulent regime and then applying
the correct friction factor. Although this is the more accurate approach it was judged not necessary to
take such an accurate approach. This is because this adds more variables to the system (such as pipe
roughness to calculate the friction factor) which will make it harder to see what part of the system is
causing what effect. Thus, it was decided to simplify the system by only assuming laminar flow. This
leads to the special case of the Darcy-Weisbach equation, the throttle.

7.6.2 Throttle equation

The equation for the throttle is obtained using the laminar friction factor:

f =
64

Re
(7.23)

Substituting (7.23) into the Darcy-Weisbach relation (7.19) gives:

∆P = Qνρ
128lD
πd4

D

(7.24)
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where ν is the fluid kinematic viscosity, ρ is the fluid density, Q is the volume flow rate, ∆P is the
pressure difference, dD is the diameter of the flow-line, and lD is the length of the flow-line. Re-arranging
for volume flow-rate as a function of pressure drop in (7.25):

Q = ∆P
πd4

D

128lDνρ
(7.25)

Substituting in the relationship between kinematic and dynamic viscosity gives:

Q = ∆P
πd4

D

128lDµ
(7.26)

The characteristics of the throttle can be altered by changing the flow-line diameter and flow-line
length. The dependence on dynamic viscosity gives the throttle a linear flow resistor characteristic.
As mentioned the throttle equation assumes laminar flow and assumes a no-slip condition with the
wall which means the fluid’s viscosity develops the velocity profile. In turn, high shear forces are made
and high pressure losses are generated. These energy losses gives a damping effect in the PHCS. This
throttle type system has been used for a PHCS by Ni et al. [48].

Lower chamber of cylinder and lower accumulator

Applying (7.26) to the system in Figure 7.3 for the lower chamber of the cylinder and accumulator gives
(7.27):

Qr =
πd4

f

128µl
(Pp1 − Pa1) (7.27)

where df is the diameter of the flow-line, µ is the dynamic viscosity, l is the length of the flow-line, Pp1

is the pressure in the lower chamber of the cylinder, and Pa1 is the pressure in the accumulator, and to
simplify the equation a variable is defined:

Cq,r =
πd4

f

128µl
(7.28)

giving:
Qr = Cq,r(Pp1 − Pa1) (7.29)

Upper chamber of cylinder and upper accumulator

Applying (7.26) to the system in Figure 7.3 for the upper chamber of the cylinder and accumulator gives
(7.30):

Qr,2 =
πd4

f,2

128µl2
(Pp2 − Pa3) (7.30)

To simplify the equation a variable is defined:

Cq,r,2 =
πd4

f,2

128µl2
(7.31)

giving:
Qr,2 = Cq,r,2(Pp2 − Pa3) (7.32)

7.6.3 Orifice equation

To further explore options for the flow-line another flow resistor, the orifice is considered. The working
principle of an orifice is that the fluid experiences a sudden transition from a wide to narrow or narrow
to wide stream tube [51]. This sudden change in geometry leads to turbulence which gives internal
fluid friction and conversion of kinetic energy to heat which manifests as damping in the system [51].
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Furthermore, the orifice causes a pressure increase upstream of the orifice, relative to the case if there was
no orifice. This pressure increase acts on the piston-head which creates a retarding force or damping force.

An advantage of using the orifice is that it has a stronger effect on a system, relative to the throttle,
due to the quadratic relationship between pressure drop and volume flow-rate [51]. A throttle creates
a slow transition of the stream tube from wide to narrow and back to wide which is a soft version of
an orifice [51]. The throttle characterizes flow-lines and flow-lines are used in this hydraulic system.
This means in reality throttle and orifice characteristics apply. Bauer [51] states that when throttle and
orifice characteristics exist in parallel it is better to use the prevailing character. It is expected that the
orifice character is dominant so only the orifice is used. Assuming an incompressible steady-state flow
(Bernoulli’s energy equation is used) the volume-flow-rate-pressure equation for an orifice is [55]:

Q = CdischargeA

√
2

ρ
|∆P |sign(∆P ) (7.33)

Lower chamber of cylinder and lower accumulator

Qr = CdischargeA

√
2

ρ
|∆P |sign(∆P ) (7.34)

Upper chamber of cylinder and upper accumulator

Qr,2 = CdischargeA

√
2

ρ
|∆P2|sign(∆P2) (7.35)

Where Cdischarge is the discharge coefficient (0.61) [55], A is the cross-sectional area of the orifice, ∆P
is the pressure drop across the orifice, ρ is the density of the hydraulic fluid, and sign(∆P ) is included
so that a positive pressure drop corresponds to positive flow (from left to right, from the bottom of the
cylinder to accumulator) and vice versa for a negative pressure drop.

The discharge coefficient Cdischarge is a function of the Reynolds number [55]. For turbulent flow and
increasing Reynolds number Cdischarge is relatively constant [55]. To simplify the system, the flow is
assumed turbulent which means that a constant value of Cdischarge is assumed.

7.7 Pressure equations

7.7.1 Lower chamber of cylinder

The convention for Q is that it is positive from left to right (from cylinder to accumulator) and negative
vice versa. This means that if ∆P = Pp1 − Pa1 is positive then Q is positive and if ∆P is negative then
Q is negative.

The governing equation for Pp1 is given by (7.36):

Ṗp1 =
K

Vp1,1

[
−Ap(ż1 − żphc)−Qr

]
(7.36)

The steps to derive (7.36) are described in appendix A.2.

Throttle
(7.36) is adapted to the throttle system using (7.29):

Ṗp1 =
K

Vp1,1

[
−Ap(ż1 − żphc)− Cq,r(∆P )

]
(7.37)
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Orifice
(7.36) is adapted to the orifice system using (7.34):

Ṗp1 =
K

Vp1,1

[
−Ap(ż1 − żphc)− CdischargeA

√
2

ρ
|∆P |sign(∆P )

]
(7.38)

where:
∆P = Pp1 − Pa1 (7.39)

Since (7.36) is an equation for Pp1 an initial condition is needed, this is Pp1,1. This is defined using the
charge pressure PsPHC. The initial pressure, Pp1,1, should be larger than the charge pressure since the
initial pressure is the minimum pressure needed to open the accumulator valve to operate the accumulator.
The charge pressure is there so that only a small pressure change is needed to meet the minimum pressure
to operate the accumulator. This means the initial pressure Pp1,1 is:

Pp1,1 = 1.11 ∗ PsPHC (7.40)

PsPHC is set to 50e5Pa or 50 bar, since the outside water pressure is 250 bar getting 50 bar should be
possible.

7.7.2 Upper chamber of cylinder

The upper cylinder is attached to an accumulator. The pressure in the upper cylinder is Pp2. The
governing equation for Pp2 is given by (7.41):

Ṗp2 =
K

Vp2,1
[−Ap(żphc − ż1)−Qr,2] (7.41)

Throttle
(7.41) is adapted to the throttle system using (7.32):

Ṗp2 =
K

Vp2,1
[−Ap(żphc − ż1)− Cq,r,2(∆P2)] (7.42)

Orifice
(7.41) is adapted to the orifice system using (7.35):

Ṗp2 =
K

Vp2,1
[−Ap(żphc − ż1)− CdischargeA

√
2

ρ
|∆P2|sign(∆P2)] (7.43)

where:
∆P2 = Pp2 − Pa3 (7.44)

7.7.3 Lower accumulator

The pressure in the lower accumulator is Pa1. Using the isentropic ideal gas law the governing equation
for Pa1 was derived and is given by (7.45):

Ṗa1 =
Pa1,1nQr
Va1,1

(7.45)

where n is the specific heat ratio.
Throttle
(7.45) is adapted to the throttle system using (7.29):

Ṗa1 =
Pa1,1nCq,r(∆P )

Va1,1
(7.46)
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Orifice
(7.45) is adapted to the orifice system using (7.34):

Ṗa1 =
Pa1,1nCdischargeA

√
2
ρ |∆P |sign(∆P )

Va1,1
(7.47)

∆P was defined in (7.39).

7.7.4 Upper accumulator

The pressure in the upper accumulator is Pa3. The governing equation for Pa3 is given by (7.48):

Ṗa3 =
Pa3,1nQr,2

Va3,1
(7.48)

Throttle
(7.48) is adapted to the throttle system using (7.32):

Ṗa3 =
Pa3,1nCq,r,2(∆P2)

Va3,1
(7.49)

Orifice
(7.48) is adapted to the orifice system using (7.35):

Ṗa3 =
Pa3,1nCdischargeA

√
2
ρ |∆P2|sign(∆P2)

Va3,1
(7.50)

∆P2 was defined in (7.44).

7.8 Solving the equations

Table 7.2 shows there are 8 variables and 1 input and 8 equations, in principle the system can be solved.
The equations were solved using a numerical ODE solver. This was achieved using Simulink. The reason
to use Simulink is that the vessel motion model given as a starting point for the thesis was made in
Simulink, as mentioned in chapter 4. To ensure that the work of this thesis would be compatible with
the vessel model Simulink was used.

The initial conditions are shown in section 7.8.2. Applying these initial conditions the equations can
be solved. Initially ode45 was used, this is an explicit solver. The simulation took a long time. It was
suspected the system is stiff so ode15s was used, an implicit solver. This was much faster, suggesting the
system is stiff. Stiffness generally means the system of equations has two solution variables that vary on
significantly different time scales, one has slow and one has fast dynamics [56]. This characterizes the
system since there are fast oscillations for Qr whereas zc has slow oscillations for example. Alternatively,
a system of equations can be said to be stiff if there is a large separation in the largest and smallest
eigenvalues [38].
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Table 7.2: Variables

Variables Equation number

z1 (7.8)

zphc (7.12)

zc (7.15)

zd (7.18)

Pp1 (7.36)

Pp2 (7.41)

Pa1 (7.45)

Pa3 (7.48)

zin input

7.8.1 The zin variable

The zin variable is a sinusoidal input with a frequency of ω = 2π/8s = 0.7854rad/s, a period of 8s is
used since this is the peak period of the waves given in the design requirements in section 3.2. The peak
period is defined only for irregular waves. Since a lot of the energy in the wave spectrum is at this period
it can be taken as the period for a regular wave that approximates the irregular waves. The crane-tip
motion will not necessarily have this period but this is a realistic period of what can be expected. The
amplitude of the sine wave is 1m.

7.8.2 Initial conditions

For the definitions of the initial condition constants see Figure 7.5. The system is initially at static
equilibrium. This means the system initially holds the static weight in water of the hook and payload.
This means the initial pressures Pp1,1 and Pp2,1 need to be defined. From section 6.2.1 the following
relation is used from equation (6.11):

P∆p = Pp1,1 − Pp2,1 (7.51)

Pp1,1 is defined by (7.40). From section 6.2.1, P∆p is obtained from equation (6.12). Pp2,1 is found by
re-arranging (7.51) and substituting in the knowns Pp1,1 and P∆p:

Pp2,1 = Pp1,1 − P∆p (7.52)

The initial pressure in the accumulator Pa1,1 should be equal to the initial pressure at the lower chamber
of the cylinder Pp1,1 so that the system is in equilibrium. The initial volumes of the lower Vp1,1 and
upper Vp2,1 compartments of the cylinder are equal and such that the piston-head is in the middle of the
cylinder. The volume of the accumulator, Va1,1 is chosen as a multiple of Vp1,1 with trial and error used
to find a suitable value. The initial conditions for the pressure system are summarized in Table 7.3.

For the motion degrees of freedom z1, zphc, zc, and zd the initial conditions are summarized in Table 7.4.
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Figure 7.5: Variables for the initial conditions of the pressure system of the PHCS

Table 7.3: Initial conditions for the pressure system

Initial condition constant Value

Pp1,1 1.11 ∗ PsPHC

Pp2,1 Pp1,1 − P∆p

Pa1,1 Pp1,1

Pa3,1 Pp2,1

Vp1,1 based on cylinder dimensions

Vp2,1 Vp1,1

Va1,1
u ∗ Vp1,1, u is a positive real

number

Va3,1 Va1,1

Table 7.4: Initial conditions for the motions

Variable Initial condition value

z1 0[m]

ż1 0[m/s]

zphc 0[m]

żphc 0[m/s]

zc 0[m]

żc 0[m/s]

zd 0[m]

żd 0[m/s]
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7.8.3 State-space equations

The equations above were put into state-space form to determine the eigenvalues. The state variables
are shown in Table 7.5.

Table 7.5: State variables and physical variables

state variable physical variable

q1 z1

q2 ż1 = q̇1

q3 zphc

q4 żphc = q̇3

q5 zc
q6 żc = q̇5

q7 zd
q8 żd = q̇7

q9 Pp2

q10 Pa3

q11 Pp1

q12 Pa1

The state-space equations are given in the form of (7.53) and (7.54). They were derived in appendix
A.3 for the system with the throttle. The throttle was chosen since this is linear. The non-linear water
damping terms were linearized. The state-space vectors are shown in (7.55). The state-space matrices
are shown in (7.56) and (7.57). The eigenvalues are shown in Table 7.6.

The system of equations represented in the state-space system (7.55), (7.56), and (7.57) represent a stiff
system. For the system investigated the eigenvalues are shown in Table 7.6. The magnitude of the largest
eigenvalue is 1.3325e+08 and the magnitude of the smallest eigenvalue is 1.5575e-12. This indicates the
system is stiff. This supports the earlier assumption for the Simulink model to use a stiff solver.

q̇(t) = Aq(t) + Bu(t) (7.53)

ẏ(t) = Cq(t) + Du(t) (7.54)

q̇(t) =



q̇1

q̇2

q̇3

q̇4

q̇5

q̇6

q̇7

q̇8

q̇9

q̇10

q̇11

q̇12



,q(t) =



q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

q12



,u(t) =

 Fexternal

Fexternal,2

zin

 , ẏ(t) =



y1

y3

y5

y7

y9

y10

y11

y12


(7.55)
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A =



0 1 0 0 0 0 0 0 0 0 0 0

− kd
αhook,payload

− βhook,payload
αhook,payload

0 0 0 0 kd
αhook,payload

0
−Ap

αhook,payload
0

Ap

αhook,payload
0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 − kc
αphc

−ρwaterCd,phcDphcxbar,phc
αphc

kc
αphc

0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 kc
Mc

0 −2kc
Mc

0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0
kd
Md

0 0 0 0 0 −2kd
Md

0 0 0 0 0

0
KAp

Vp2,1
0 −KAp

Vp2,1
0 0 0 0 −γ K

Vp2,1
γ K
Vp2,1

0 0

0 0 0 0 0 0 0 0
Pa3,1nγ
Va3,1

−Pa3,1nγ
Va3,1

0 0

0 −KAp

Vp1,1
0

KAp

Vp1,1
0 0 0 0 0 0 − Kφ

Vp1,1
Kφ
Vp1,1

0 0 0 0 0 0 0 0 0 0
Pa1,1nφ
Va1,1

−Pa1,1nφ
Va1,1



(7.56)

B =



0 0 0
1

αhook,payload
0 0

0 0 0
0 1

αphc
0

0 0 0

0 0 kc
Mc

0 0 0

0 0 kd
Md

0 0 0
0 0 0
0 0 0
0 0 0



,C =



1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1


,D =



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0


(7.57)
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Table 7.6: Eigenvalues and natural frequencies

Eigenvalue λ Natural frequency ωn Stable?

-1.3325e+8 0 stable

-1.3324e+8 0 stable

-1.0691e-2 + 2.2361e+0i 4.7810e-3 stable

-1.0691e-2 - 2.2361e+0i 4.7810e-3 stable

-8.4639e-7 + 6.6028e-1i 1.2819e-6 stable

-8.4639e-7 - 6.6028e-1i 1.2819e-6 stable

-1.3947e-1 + 7.9705e-2i 8.6823e-1 stable

-1.3947e-1 - 7.9705e-2i 8.6823e-1 stable

-4.5983e-2 + 1.5198e-1i 2.8959e-1 stable

-4.5983e-2 - 1.5198e-1i 2.8959e-1 stable

1.8514e-11 0 marginally unstable

-1.5575e-12 0 stable
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7.9 Various design iterations

Various design iterations for the PHCS with two accumulators, shown in Figure 7.3, with different flow
restrictors were needed, trying the throttle and orifice iteratively. This is explained by the flow-chart
shown in the design approach in chapter 3, the flow-chart is repeated in Figure 7.6. The ‘Flawed Model
Detected’ part on the right of the flow-chart was encountered in this process. The modification was
not so extreme to go back to the problem description, instead the red line was followed and a different
‘Simulation Model’ was used.

Figure 7.6: Design iteration loop shown [38]

7.9.1 Throttle

The throttle was first used as the flow restrictor. The results are summarized here and the full results
are in appendix A.4. The results were poor. Vp2 and Pp2 are in phase which is not physical. If the upper
cylinder volume shrinks the pressure should increase. This can be attributed to the rod’s position ( z1)
being unbounded, in the sense that it ignores the confines of the cylinder and is able to go through the
cylinder top. Spring stoppers were added to improve the behavior. The spring stoppers did improve the
behavior, with a spring stiffness of 6e8N/m used, but this is an undesirable solution. This is because
repeated hitting of the spring stoppers would fatigue the system. Thus, the spring stiffeners are a last
resort. These should only be used for a rogue wave condition and should not be expected to be used
in normal operation. It is better to adjust the stiffness of the system which is governed by accumulator
volume. This was done in appendix A.4.3 and it was found there was no accumulator volume found
suitable to prevent the piston from hitting the stopper springs. This was considered as reaching the
‘Flawed Model Detected’ block and meeting the condition such that the next step is to change the
‘Simulation Model’. This was implemented by deciding to use the orifice as the flow restrictor, see
section 7.9.2.



CHAPTER 7. PASSIVE HEAVE COMPENSATION SYSTEM 55

Figure 7.7: Throttle: rms reduction ratio as function of accumulator volume

7.9.2 Orifice

The orifice was used. The results could be improved. It was believed there was poor sizing and dimensions
of the system. To solve this, the orifice is removed and the throttle is used again such that the system
does not have the non-linear orifice. This should simplify the dynamics of the system and enabled the
pressure system to be dimensioned better. This was considered as reaching the ‘Flawed Model Detected’
block and meeting the condition such that the next step is to change the ‘Simulation Model’. This was
implemented by deciding to use the throttle as the flow restrictor again, this is done in section 7.9.3.

7.9.3 Throttle again

The throttle was used again since it has weaker characteristics compared to the orifice. This will make
it simpler to size the pressure system. The effect of the accumulator volume is investigated. The results
are summarized here and the full results are in appendix A.5. A sinusoidal heave input for zin is used.
To measure the effectiveness of the PHCS the rms reduction ratio R is used, described in section 11.3.3.
R should be smaller than one for an effective PHCS. The closer R is to 0 means better effectiveness. A
larger accumulator volume should provide better attenuation of z1 motion, this means the rms reduction
ratio R is lower. See Figure 7.7. The R value increases since there is a large oscillation in z1 for the
first approximately 20s that lowers in amplitude thereafter. This is not the expected behavior of the
system. With increasing accumulator volume, the initial amplitude of z1 increases. The large oscillation
is due to the large amplitude pressure signals that occur initially. In contrast, the amplitude of the
pressure signals are smaller for the orifice system for the same time period and accumulator volume.
The pressures control the movement of the piston which in turn controls the movement of the payload.
An explanation for the large pressure amplitude is that the throttle type system is quite sensitive to the
pipe diameter and pipe length. Thus it is likely the combination of pipe diameter and pipe length is not
suitable and the influence of the correct pipe diameter and pipe length may be critical. The throttle is
not investigated further since the orifice system has more promising results.
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7.9.4 Orifice again

The orifice is chosen for further investigation since it provides better attenuation of motion. The orifice
system also physically provides a better mechanism compared to the throttle. A figure of R against the
lower accumulator volume (both accumulators have same volumes) is shown in Figure 7.8. There is no
trend like in the case for the system with the throttle (see Figure 7.7). This can be explained by the
more complicated dynamics of the orifice. For the throttle, the flow rate is proportional to the pressure
drop. In contrast, the orifice system has the flow rate proportional to the square root of the pressure
drop. Nevertheless, the orifice shows superior performance with the R value at V a11≈40 m3 being the
lowest of both systems for the accumulator volume range plotted.

The orifice system produces hydraulic oil flow rates (Qr and Qr,2) that vary extremely high in peak-
to-trough values and have very high frequency. This results in the pressure Pp2 also having highly
varying peak-to-trough values and high frequency. The reason for the high peak-to-trough values is
that the hydraulic oil does not have any inertia. This means for a pressure change the fluid reacts
without restraint resulting in high peak-to-trough values. With fluid inertia added, it takes more effort
to accelerate the fluid and make the fluid move so that the flow-rate cannot vary greatly in magnitude
with a pressure change. This results in the pressure Pp2 changing with a lower peak-to-trough value.
In section 7.10, fluid inertia is added to the equations governing pressure drop across the orifice and
hydraulic oil flow.

Figure 7.8: Orifice: rms reduction ratio as function of accumulator volume

7.10 Adding fluid inertia

7.10.1 Description of fluid inertia

The equation for pressure as a function of volume flow rate is in equation (7.58):

V

E
Ṗ = Qin −Qout (7.58)
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where V is the volume of the control volume, E is the bulk modulus of the fluid, P is the pressure in
the control volume, Qin is volume flow rate into the control volume, and Qout is volume flow rate out of
the control volume.

The equation for fluid inertia is in equation (7.59):

ρoil
L

A
Q̇ = Pin − Pout (7.59)

where ρoil is density of hydraulic oil, L is the orifice length, A is the orifice passage area, Q is the volume
flow rate, Pin is the pressure upstream of the orifice, and Pout is the pressure downstream of the orifice.

From ISO 5167 [57], for a Venturi type orifice the orifice diameters considered are from 0.05m to 0.50m.
Assuming these are reasonable diameters for cylinder systems an orifice diameter of 0.15m is chosen so
that it falls within the range and not far from the minimum and maximum values. The inertia I is given
by:

I = ρoil
L

A
(7.60)

The orifice length L is used to take into account the added volumes on the two sides of the orifice. To
ensure sufficient inertia L = 3.12m is taken. This gives an inertia of:

I = (859kg/m3)
3.12m

0.25 ∗ π ∗ (0.15m)2
= 1.52e5kg/m4 (7.61)

7.10.2 Final non-linear equations: bottom accumulator

See appendix A.6 for the derivation of the non-linear equations for the bottom accumulator. The final
equations are 3 differential equations (7.62) (7.63) (7.64) and 1 algebraic equation (7.65) for 4 unknowns
Pp1, Qr, Vin, and Pa1 so the system is closed. ż1 and żphc are known as inputs. Constants are K, Vp1,1,
Ap, Pa1,1, Va1,1, A, ρoil, L, and Cdischarge. These equations are solved numerically for the time-domain
simulations:

Ṗp1 =
K

Vp1,1

[
−Ap(ż1 − żphc)−Qr

]
(7.62)

Q̇r =
A

ρoilL

[
Pp1 − Pa1 −

sign(Qr)Q
2
r

(CdischargeA)2

ρoil

2

]
(7.63)

V̇in = Qr (7.64)

Pa1 = Pa1,1

( Va1,1

Va1,1 − Vin

)n
(7.65)

7.10.3 Final non-linear equations: upper accumulator

See appendix A.7 for the derivation of the non-linear equations for the upper accumulator. The final
equations are 3 differential equations (7.66) (7.67) (7.68) and 1 algebraic equation (7.69) for 4 unknowns
Pp2, Qr,2, Vin,u, and Pa3 so the system is closed. ż1 and żphc are known as inputs. Constants are K,
Vp2,1, Ap, Pa3,1, Va3,1, A, ρoil, L, and Cdischarge. These equations are solved numerically for time-domain
simulations:

Ṗp2 =
K

Vp2,1
[−Ap(żphc − ż1)−Qr,2] (7.66)

Q̇r,2 =
A

ρoilL

[
Pp2 − Pa3 −

sign(Qr,2)Q2
r,2

(CdischargeA)2

ρoil

2

]
(7.67)

V̇in,u = Qr,2 (7.68)
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Pa3 = Pa3,1

( Va3,1

Va3,1 − Vin,u

)n
(7.69)

7.10.4 Non-linear equations

The non-linear equations for the pressure system from section 7.10.2 and 7.10.3, and the equations for the
hook/payload mass, PHCS mass, steel rope, and Dyneema rope from section 7.5 are collected and shown
in appendix A.8. This set of equations forms the finalized PHCS model. The diagram corresponding to
this system is shown in Figure 7.9.

Figure 7.9: Schematic of the PHCS with two accumulators and orifices, fluid inertia is included in the
model

7.10.5 Non-linear state-space equations

The non-linear equations in appendix A.8 are put into state-space form in appendix A.9. The variables
are simplified for easier readability in appendix A.10.

7.10.6 Linearized state-space equations

The state-space equations with non-linear terms are linearized in appendix A.11 with the resulting
linearized state-space equations shown in appendix A.12. The non-linear terms that were linearized were
the orifices, the accumulators, and the quadratic damping terms.

7.10.7 A matrix from linearized state-space equations

The state-space equations from appendix A.12 are re-arranged into matrix form in appendix A.12.15.
What is important is the A matrix which is shown in (7.70). From (7.70) the eigenvalues can be



CHAPTER 7. PASSIVE HEAVE COMPENSATION SYSTEM 59

determined.

A =



0 1 0 0 0 0 0 0 0 0 0 0 0 0
−kd
α2

−γ2
α2

0 0 0 0 kd
α2

0
Ap

α2
0 0

−Ap

α2
0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 −kc
α4

−γ4
α4

kc
α4

0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 kc
Mc

0 −2kc
Mc

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0
kd
Md

0 0 0 0 0 −2kd
Md

0 0 0 0 0 0 0

0
−KAp

Vp1,1
0

KAp

Vp1,1
0 0 0 0 0 −K

Vp1,1
0 0 0 0

0 0 0 0 0 0 0 0 A
ρoilL

−Aε10
ρoilL

−Aγ10
ρoilL

0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0

0
KAp

Vp2,1
0

−KAp

Vp2,1
0 0 0 0 0 0 0 0 −K

Vp2,1
0

0 0 0 0 0 0 0 0 0 0 0 A
ρoilL

−Aε13
ρoilL

−Aγ13
ρoilL

0 0 0 0 0 0 0 0 0 0 0 0 1 0


(7.70)

7.11 Conclusion

The system with the orifice as the flow restrictor and two accumulators with fluid inertia is the final
model. Fluid inertia was added to smoothen the pressure and hydraulic oil flow-rates. In section 7.3
some hypotheses were made, these are repeated below.

1. The lack of an accumulator at the top of the cylinder is hypothesized to contribute to there being
a large difference in amplitude between the pressures Pp1 and Pp2. It is hypothesized that the
amplitudes will be more similar with the new design.

2. The lack of the accumulator is hypothesized to contribute to the pressures Pp1 and Pa1 not being
out of phase significantly. It is hypothesized that they will be more out of phase.

From the developments in this chapter, comments on each statement above can be made

1. There is a larger difference in amplitude between the pressures Pp1 and Pp2. This is opposite to
what was hypothesized. It was believed that adding an accumulator would make the pressures
more similar in amplitude since each accumulator acts as a soft spring and the symmetry of having
an accumulator on each side of the cylinder would make their amplitudes more similar. This turned
out to be a wrong hypothesis. This is not a large issue since although there is a large difference in
amplitude between the pressures Pp1 and Pp2 the system still works.

2. The pressures Pp1 and Pa1 are still not more out of phase. The hypothesis that the new design
would make the pressures more out of phase is wrong. This is not a significant issue since the
pressures are still out of phase slightly and sufficiently.

The motion response is shown in Figure 7.10. The amplitude of zd, the motion of the Dyneema, is larger
than for zc. This is expected since the Dyneema rope acts as a softer spring than the steel rope so has
a larger response.
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Figure 7.10: Time-series for z1, zphc, zc, and zd are shown

In this chapter, the design and model of the PHCS were finalized. To do this, first the PHCS with one
accumulator was considered with the throttle, the orifice, and the Darcy-Weisbach system used as flow
restrictors. The Darcy-Weisbach system was eliminated. Another accumulator was added to the PHCS
and the throttle and orifice investigated. Analysis was done to come to the conclusion that the orifice
system is most suitable. This led to the final design of two accumulators with the orifice used as the flow
restrictor. For the model, fluid inertia was added to smoothen the hydraulic oil volume flow rates and
system pressures. This is part of step 3 of the methodology in section 3.3. In chapter 8 the methodology
is continued by sizing the pressure system.



Sizing of pressure system 8
8.1 Introduction

The final PHCS model described in section 7.10.4 and shown in Figure 7.9 is used. To size the pressure
system, the volumes and pressures, the PHCS is simplified until just the linearized accumulators and
hook/payload mass is present, shown in Figure 8.1. This model is called the LAM.

8.2 Sizing of the pressure system

An important part of the PHCS is the sizing of the pressures and volumes of the accumulators. This is
done using a more rigorous method in this section, via a hydraulic reference book from Bosch Rexroth [58],
compared to the trial and error approach in chapter 7. The pressures and volumes of the accumulators
were sized such that their natural frequencies are not encountered in operation. This is important to
avoid the counter-productive effect that the PHCS gets excited by the waves via resonance and causes
an increase in the motion of the hook/payload. The approach taken was:

1. Choose a natural frequency of the system that is outside the wave frequency range

2. Simplify the system by removing the flow restrictors so that two pressures are removed (Pp2 and Pp1)
and the steel rope and Dyneema rope are not included. Assume the hydraulic oil is incompressible
so a direct connection exists between the piston-head and the accumulators. These leaves the
system with just accumulators. A diagram of the system is shown in Figure 8.1.

3. Size the accumulator pressure and volume to get the natural frequency chosen in step 1. Do this
for three hook positions in the cylinder.

The above steps are done in section 8.2. The initial conditions found for the base case, which is the
general case, are shown in Table 8.1. A diagram with the variables is shown in Figure 8.2.

For the equations of motion of the system and state-space equations see appendix A.13. The natural
frequencies of the system are found from the A matrix.
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Table 8.1: Base case, the variables are shown in Figure 8.2

Variable Value Unit Note

PSPHC,lower 1.8e7 [N/m2] Charge pressure, lower accumulator

PSPHC,upper 8.2722e+05 [N/m2] Charge pressure, upper accumulator

dp,tot 0.3 [m] Diameter of piston-head

P∆p 1.9081e+07 [N/m2]
Difference in pressure across piston-head required to hold

payload and hook in water

Pa1,1 2e7 [N/m2] Initial pressure in the lower accumulator

Pa3,1 9.1913e+05 [N/m2]
Initial pressure in the upper accumulator,

Pa3,1 = Pa1,1 − P∆p

Va1,1 0.1950 [m3] Initial volume in lower accumulator

Va3,1 0.1769 [m3] Initial volume in upper accumulator

Figure 8.1: A diagram of the PHCS with just accumulators
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Figure 8.2: A diagram showing the variables defined in Table 8.1

8.2.1 Sizing the system

Assumptions for the accumulators

• Isentropic process (adiabatic and reversible)

• Gas charging is done at the same temperature as operating temperature

• Ideal gas is assumed

• Specific heat ratio for nitrogen is n = 1.4

The key pressure and volume parameters are in Table 8.2.

Table 8.2: Key variables

Variable Unit Note

P1 [N/m2] minimum pressure to open the fluid valve

P0 [N/m2] charging pressure of the gas space with fluid space depressurized (P0 ≤ 0.9P1)

P2 [N/m2] maximum operating pressure of the hydraulic system
P2
P0

[-] maximum operating pressure ratio

V0 [m3] effective gas volume at charging pressure

V1 [m3] gas volume at minimum pressure

V2 [m3] gas volume at maximum operating pressure

∆V [m3] useful volume

The accumulator is a hydro-pneumatic accumulator that is of the bladder-type. For an isentropic process
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the gas volume corresponding to the initial condition is defined by V0 which is given by (8.1) [58]:

V0 =
∆V(

P0
P1

) 1
n −

(
P0
P2

) 1
n

(8.1)

8.2.1.1 Lower accumulator

For the base case, the lower accumulator ∆V , the useful volume, is determined by the volume between
the middle position and the bottom spring stoppers. Referenced from the bottom of the cylinder (where
the spring stoppers start) the middle position is 50% of the maximum stroke. This means the useful
length is Luseful in equation (8.2):

Luseful = 0.5Lmax,stroke − 0Lmax,stroke = 0.5Lmax,stroke (8.2)

With the diameter of the piston-head given by dp,tot then:

∆V = Luseful(0.25πd2
p,tot) (8.3)

The general process to find the pressures and volumes and other values in Table 8.2 is described for the
lower accumulator. First Luseful is found. The stroke of the cylinder is Lmax,stroke= 3m since this is a
reasonable length when compared to a comparable Cranemaster PHCS. Then Luseful is calculated from
(8.2). Second, a value for P1 and dp,tot is assumed. P1 is the initial pressure in the lower accumulator,
P1 = Pa1,1. This pressure determines the initial volume of the lower accumulator. According to [58] it is
necessary that:

P0 ≤ 0.9P1 (8.4)

then it is assumed:
P0 = 0.9P1 (8.5)

The value of P2 is assumed based on a general value for maximum operating pressure, 6e7N/m2. This
means P2

P0
can be found. A condition according to [58] is that:

P2

P0
≤ 4 (8.6)

this condition is checked for. If this condition is not met, then P2 is decreased until the condition is met.
∆V is calculated using (8.3) as a function of dp,tot and Luseful. Using (8.1) V0 is calculated as a function
of ∆V , P0, P1, and P2. Using the isentropic relationship:

P0V
n

0 = P1V
n

1 (8.7)

the volume V1 is calculated as a function of V0, P0, and P1.

V2 is found using the isentropic relationship:

P1V
n

1 = P2V
n

2 (8.8)

as a function of V1, P1, and P2 or equivalently:

V2 = V1 −∆V (8.9)

8.2.1.2 Upper accumulator

For the base case, the upper accumulator ∆V , the useful volume, is determined by the volume between
the middle position and upper spring stoppers. Referenced from the upper spring stoppers the middle
position is 50% of the maximum stroke. This means the useful length is Luseful in equation (8.10):

Luseful = Lmax,stroke − 0.5Lmax,stroke = 0.5Lmax,stroke (8.10)
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∆V = Luseful(0.25πd2
p,tot) (8.11)

For the upper accumulator the initial pressure P1 (P1 = Pa3,1) is determined P1 = Pa1,1 − P∆p, where
P∆p is the pressure difference across the piston-head necessary to hold the static weight in water of the
hook and payload given by:

P∆p =
(Mhook,payload − ρwVd)g

Ap
(8.12)

Thus, the upper accumulator initial pressure is dependent on the lower accumulator initial pressure.
Then:

P0 = 0.9P1 (8.13)

The value of P2 is assumed based on a general value for maximum operating pressure, 6e7N/m2. This
means P2

P0
can be found. A condition according to [58] is that:

P2

P0
≤ 4 (8.14)

this condition is checked for. If this condition is not met, then P2 is decreased until the condition is met.
∆V is calculated using (8.11) as a function of dp,tot and Luseful. Using (8.1) V0 is calculated as a function
of ∆V , P0, P1, and P2. Using the isentropic relationship:

P0V
n

0 = P1V
n

1 (8.15)

the volume V1 is calculated as a function of V0, P0, and P1. V2 is found using the isentropic relationship:

P1V
n

1 = P2V
n

2 (8.16)

as a function of V1, P1, and P2 or equivalently:

V2 = V1 −∆V (8.17)

8.2.2 Designed for natural frequency

The design wave condition has Tp=8s. This is a frequency of 0.125Hz or circular frequency 0.7854rad/s.
The wave periods that can be encountered in real-life are assumed to be from 25s to 5s with correspond-
ing frequencies of 0.04Hz to 0.2Hz. The designed for natural frequency should have a period outside this
range, T=3s, this is a frequency fdesign = 0.33Hz or circular frequency ωdesign = 2.0944rad/s. It is better
to have a natural frequency higher than the range of wave frequencies. This is because the system has
damping. If the natural frequency is excited the high frequency means there are many cycles of motion
to remove energy helping to limit the excitation.

8.2.3 Base case initial conditions

The base case is where the piston-head is at the middle position of the cylinder. The piston-head is
0.5Lmax,stroke from the bottom of the cylinder. Using the methods described in sections 8.2.1.1 and
8.2.1.2 the accumulators are dimensioned.

8.2.3.1 Lower accumulator dimensions

Values for the parameters in Table 8.2 are found in Table 8.3 for the lower accumulator using the process
described in section 8.2.1.1.

It is a necessary condition that the initial lower accumulator pressure, P1, is greater than P∆p since the
initial upper accumulator pressure is given by the difference P1−P∆p and pressure must be non-negative.
Since P∆p is a function of piston area and thus piston diameter, dp,tot, then two variables (P1 and dp,tot)
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are changed to change the natural frequency of the hook and payload mass with displacement z2. The
range of values used for P1 was:

0.5e7N/m2 ≤ P1 ≤ 7e7N/m2 (8.18)

(rising in steps of 0.01e7N/m2). This maximum is above what would be designed for (Pmax=6e7N/m2)
but is used to see any trends. The range of values for dp,tot was:

0.10m ≤ dp,tot ≤ 0.40m (8.19)

(rising in steps of 0.01m). It was found for the range:

0.1m ≤ dp,tot ≤ 0.17m (8.20)

that P∆p > Pmax which means the required pressure difference to hold the static weight of the hook and
payload for the diameter exceeded the maximum pressure possible. Thus the pressure difference cannot
be achieved even if one chamber of the cylinder is a vacuum. Thus, the diameters:

0.1m ≤ dp,tot ≤ 0.17m (8.21)

are not considered further.

A reasonable diameter value is 0.3m. This will be assumed as the diameter. See Figure 8.3 for
natural frequency as a function of P1 for dp,tot = 0.3m. Using P1=2.0e7N/m2 the natural frequency is
2.2269rad/s this is close the design natural frequency. Since P∆p = 1.9e7N/m2 and P1=2.0e7N/m2 is
greater than this then P1=2.0e7N/m2 is used.

Figure 8.3: For piston-head diameter dp,tot = 0.3m the natural frequency of the accumulator system is
given as a function of the lower accumulator initial pressure P1 = Pa1,1. The horizontal line corresponds
to the design natural frequency.
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Now that P1 and dp,tot are chosen the other variables in Table 8.2 can be found using the process in
section 8.2.1.1. The values are shown in Table 8.3.

Table 8.3: Key variable values, lower accumulator

Variable Unit value

P0 [N/m2] 1.8e7

P1 [N/m2] 2e7

P2 [N/m2] 6e7
P2
P0

[-] 3.3333

V0 [m3] 0.2102

V1 [m3] 0.1950

V2 [m3] 0.0890

∆V [m3] 0.1060

8.2.3.2 Upper accumulator dimensions

Values for the parameters in Table 8.2 are found in Table 8.4 for the upper accumulator using the process
described in section 8.2.1.2.

Table 8.4: Key variable values, upper accumulator

Variable Unit value

P0 [N/m2] 8.2722e+05

P1 [N/m2] 9.1913e+05

P2 [N/m2] 3.3065e+06
P2
P0

[-] 3.9972

V0 [m3] 0.1908

V1 [m3] 0.1769

V2 [m3] 0.0709

∆V [m3] 0.1060

8.2.3.3 Summary of base case dimensions

Values from Table 8.3 and Table 8.4 are summarized in Table 8.5 for the base case.

8.2.4 Upper case initial conditions

The upper case is where the piston-head is 10% of Lmax,stroke from the top of the cylinder, the top
position. See Figure 8.4. The working out of the upper/lower accumulator dimensions for the upper case
is shown in appendix A.14.1.
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Table 8.5: Base case

Variable Value Unit Note

PSPHC,lower 1.8e7 [N/m2] Charge pressure, lower accumulator

PSPHC,upper 8.2722e+05 [N/m2] Charge pressure, upper accumulator

dp,tot 0.3 [m] Diameter of piston-head

P∆p 1.9081e+07 [N/m2]
Difference in pressure across piston-head required to hold

payload and hook in water

Pa1,1 2e7 [N/m2] Initial pressure in the lower accumulator

Pa3,1 9.1913e+05 [N/m2]
Initial pressure in the upper accumulator,

Pa3,1 = Pa1,1 − P∆p

Va1,1 0.1950 [m3] Initial volume in lower accumulator

Va3,1 0.1769 [m3] Initial volume in upper accumulator

ωz1 2.2269 [rad/s] Natural frequency of accumulator system

ωz1,design 2.0944 [rad/s] Designed natural frequency

ε 6.3 [%]
Percent error of natural frequency of accumulator system,

relative to design

Figure 8.4: A schematic for the upper case

8.2.5 Lower case initial conditions

The lower case is where the piston-head is at 10% of Lmax,stroke above the bottom of the cylinder. See
Figure 8.5. The working out of the upper/lower accumulator dimensions for the lower case is shown in
appendix A.14.2.
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Figure 8.5: A schematic for the lower case

8.2.6 Comparison between cases

8.2.6.1 P-V plot

See Figure 8.6a for the upper case P-V plot. The result is expected. In the upper case, the lower
accumulator has more volume available to compress so there is a large amount of work between state 1
and state 2 possible (as measured by the integral). This is because the piston-head can travel across most
of the cylinder stroke. In contrast, for the upper accumulator, there is less volume to work with so there
is less work possible between states 1 and 2. This is because the piston-head has less room to travel across.

See Figure 8.6b for the lower case P-V plot. The results are opposite to those for the upper case. Using
the base case parameters provides more flexibility since the lower and upper accumulators have equal
volumes available to compress. Thus, the base case parameters are used in future chapters.

(a) P-V plot, upper case, for both accumulators (b) P-V plot, lower case, for both accumulators

Figure 8.6
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8.3 Conclusion

The pressure system of the PHCS has been sized. The base case sizing in Table 8.5 is used in future
chapters. Step 3 of the methodology in section 3.3 is continued in chapter 9. In chapter 9, the finalized
PHCS design made in this chapter is analyzed by determining the natural frequencies of the system.



Natural frequencies of
PHCS 9
9.1 Introduction

In this chapter, the natural frequencies of the PHCS are found for three versions of the PHCS model
using the base case, upper case, and lower case initial conditions found in chapter 8. These three
versions are described below:

1. PHCS with Linearized Accumulators, hook/payload mass, and no quadratic damping Model
(henceforth called LAM), (see Figure 9.1)

2. PHCS with steel Rope/Dyneema rope/PHCS cylinder/Linearized Accumulators/hook and payload
mass and no quadratic damping Model (henceforth called RLAM) (see Figure 9.2)

3. PHCS with linearized Orifices/steel Rope/Dyneema rope/PHCS cylinder/Linearized
Accumulators/hook and payload mass and linearized quadratic damping Model (henceforth
called ORLAM) (see Figure 9.3)

Firstly, the natural frequencies of the LAM are found in section 9.2. Secondly, the natural frequencies
for the RLAM are found in section 9.3. Thirdly, the natural frequencies for the ORLAM are found in
section 9.4.
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Figure 9.1: A diagram of the LAM

Figure 9.2: A diagram of the RLAM
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Figure 9.3: A diagram of the ORLAM

9.2 Natural frequencies of the LAM

The LAM is considered, see Figure 9.1 for a diagram of the system.

9.2.1 Base case natural frequencies

The equations of motion and state-space system are shown in appendix A.13. From the A matrix in
(A.294) the eigenvalues were found. See Table 9.1 for the eigenvalues and natural frequencies obtained
using the base case dimensions in Table 8.5. In the LAM there is one mass (hook/payload) and two
pressures. The mass corresponds to one degree of freedom. This means there should be one pair of
complex conjugate eigenvalues, indeed there is one pair of complex conjugate eigenvalues shown in Table
9.1. This corresponds to a natural frequency of 2.2269rad/s. There is a zero eigenvalue resulting in a zero
natural frequency. This is attributed to the pressure since the non-zero natural frequency is attributed
to the hook/payload mass.

Table 9.1: LAM: base case eigenvalues, natural frequencies, natural periods

Eigenvalue λ Natural frequency ωn [rad/s] Natural period [s] Association

0 0 inf Pressure

0 0 inf Pressure

2.2269i 2.2269 2.8215 Hook/payload mass

-2.2269i 2.2269 2.8215 Hook/payload mass
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9.2.2 Upper case natural frequencies

See Table 9.2 for the eigenvalues and natural frequencies for the upper case.

Table 9.2: Upper case eigenvalues, natural frequencies, natural periods

Eigenvalue λ Natural frequency ωn [rad/s] Natural period [s]

0 0 inf

0 0 inf

1.7689i 1.7689 3.5520

-1.7689i 1.7689 3.5520

9.2.3 Lower case natural frequencies

See Table 9.3 for the eigenvalues and natural frequencies for the lower case.

Table 9.3: Lower case eigenvalues, natural frequencies, natural periods

Eigenvalue λ Natural frequency ωn [rad/s] Natural period [s]

0 0 inf

0 0 inf

4.3213i 4.3213 1.4540

-4.3213i 4.3213 1.4540

9.2.4 Comparison between cases

Table 9.4 shows that the lowest natural frequency occurs when the piston-head is at the upper position.

Table 9.4: Natural frequency for the different cases

Case Location of piston-head Natural frequency [rad/s] Natural frequency [Hz]

Base middle of cylinder 2.2269 0.3544

Upper upper end of cylinder 1.7689 0.2815

Lower bottom of cylinder 4.3213 0.6878

Designed natural frequency - 2.0944 0.3333

9.3 Natural frequencies of the RLAM

In section 9.2, the LAM was considered. Now the steel rope/Dyneema rope/PHCS cylinder are added
to the system to form the RLAM. A diagram of the system is shown in Figure 9.2. The equations of
motion and state-space system are shown in appendix A.15. The natural frequencies were found. Note
that the dimensions obtained in section 8.2 for the base case, lower case, and upper case are the same.
This is because the dimensions are based on the pressures and volumes in the system and the steel rope
and Dyneema rope do not influence this. However, there are three additional natural frequencies with
the addition of the steel rope, Dyneema rope, and PHCS cylinder.

9.3.1 Base case natural frequencies

The natural frequencies for the base case are shown in Table 9.5. The 2.2295rad/s natural frequency
has a 0.1% error with the 2.2269rad/s natural frequency from Table 9.1 for the LAM, so they are the
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same natural frequency, from the hook/payload mass. The 0.5090rad/s natural frequency is associated
with the Dyneema rope since the Dyneema rope stiffness was changed and only this natural frequency
changed. The 0.4095rad/s and 0.1079rad/s natural frequencies are associated with either the steel rope
or PHCS cylinder. This is because both changed when the steel rope stiffness changed. It is assumed the
higher natural frequency (0.4095rad/s) is directly associated with the steel rope and the lower natural
frequency (0.1079rad/s) is associated with the coupled steel rope and PHCS cylinder. This is because
the steel rope is directly connected to the PHCS cylinder, perhaps forming a coupled mass. Since natural
frequency is inversely proportional to mass then the lower natural frequency should be associated with
the higher mass, the coupled mass.

Table 9.5: RLAM: base case eigenvalues, natural frequencies, natural periods

Eigenvalue λ Natural frequency ωn [rad/s] Natural period [s] Association

0 0 inf Pressure

0 0 inf Pressure

0.1079i 0.1079 58.2316 PHCS cylinder

-0.1079i 0.1079 58.2316 PHCS cylinder

0.4095i 0.4095 15.3436 Steel rope

-0.4095i 0.4095 15.3436 Steel rope

0.5090i 0.5090 12.3442 Dyneema rope

-0.5090i 0.5090 12.3442 Dyneema rope

2.2295i 2.2295 2.8182 Hook/payload mass

-2.2295i 2.2295 2.8182 Hook/payload mass

9.3.2 Upper case natural frequencies

See appendix A.15.2 for the natural frequencies for the upper case.

9.3.3 Lower case natural frequencies

See appendix A.15.3 for the natural frequencies for the lower case.

9.4 Natural frequencies of the ORLAM

In section 9.3 the RLAM was considered. Now linearized orifices and linearized quadratic damping are
included to form the ORLAM to see how this affects the natural frequencies. A diagram of the system is
shown in Figure 9.3. Fluid inertia is included. As mentioned, the dimensions obtained in section 8.2 for
the base case, lower case, and upper case are the same. There are additional natural frequencies of the
system with the addition of the orifices. The linearized state-space equations were obtained in section
7.10.7. See equation (7.70) for the A matrix. The base case natural frequencies are discussed below in
section 9.4.1 since the base case is the chosen case of interest.

9.4.1 Base case natural frequencies

See Table 9.6 for the eigenvalues and natural periods. Comparison is made with the LAM in Table
9.1. With the LAM the largest natural frequency is 2.2269rad/s which is nearly equal to the natural
frequency for the ORLAM of 2.2020rad/s shown in Table 9.6.
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Table 9.6: ORLAM: base case eigenvalues, natural frequencies, natural periods

Eigenvalue λ
Natural

frequency ωn

[rad/s]

Natural
frequency [Hz]

Natural period [s] Association

0 0 0 inf Pressure

0 0 0 inf Pressure

-9.6626e-5- 0.1035i 0.1035 0.0165 60.7071 PHCS cylinder

-9.6626e-5 + 0.1035i 0.1035 0.0165 60.7071 PHCS cylinder

-4.5410e-4 - 0.3070i 0.3070 0.0489 20.4664 Steel rope

-4.5410e-4 + 0.3070i 0.3070 0.0489 20.4664 Steel rope

-1.9251e-8 - 0.5090i 0.5090 0.0810 12.3442 Dyneema rope

-1.9251e-8 + 0.5090i 0.5090 0.0810 12.3442 Dyneema rope

-2.8066e-4 - 2.2020i 2.2020 0.3505 2.8534 Hook/payload mass

-2.8066e-4 + 2.2020i 2.2020 0.3505 2.8534 Hook/payload mass

-2.4336e-2 - 301.87i 301.87 48.0437 0.0208 Orifice

-2.4336e-2 + 301.87i 301.87 48.0437 0.0208 Orifice

-2.4171e-2 - 303.96i 303.96 48.3763 0.0207 Orifice

-2.4171e-2+ 303.96i 303.96 48.3763 0.0207 Orifice

In the ORLAM there are four masses (hook/payload, PHCS cylinder, steel rope, Dyneema rope). These
four masses correspond to four degrees of freedom. This means there should be four sets of complex
conjugate eigenvalues at least. There are six sets of complex conjugate eigenvalues shown in Table 9.6.
These correspond to six pairs of natural frequency shown in Table 9.6. These are [0.1035, 0.3070, 0.5090,
2.2020, 301.87, 303.96]rad/s. There are two additional high natural frequencies [301.87, 303.96]rad/s
relative to the RLAM. These natural frequencies can be attributed to the addition of the orifices. These
high natural frequencies did not appear in the system without the orifices, so they are due to the orifices.

With the ORLAM the natural frequency 2.2020rad/s appears. With the RLAM the natural frequency
2.2295rad/s appears. 2.2020rad/s has a 1.2% difference with 2.2295rad/s, so these natural frequencies
arise from the same cause, the hook/payload mass.

For the ORLAM, the natural frequencies [0.1035, 0.3070, 0.5090]rad/s in Table 9.6 are attributed to the
PHCS cylinder, steel rope, and Dyneema rope respectively. For the RLAM the same natural frequencies
are [0.1079, 0.4095, 0.5090]rad/s respectively. The percent errors are [4.1, 33.4,0]%. The PHCS cylinder
natural frequency is nearly the same. The steel rope natural frequency is significantly different, 33.4%.
This reason for the change is likely due to the addition of the linearized quadratic water damping in the
ORLAM relative to the RLAM. This directly affects the PHCS cylinder and since the PHCS cylinder
and steel rope are coupled this affects the steel rope. It seems the effect on the steel rope is greater
than that on the PHCS cylinder. This may be due to the rope stiffness associated with the steel rope
which the PHCS cylinder does not have. The natural frequency associated with the Dyneema rope is
the same. This is expected since the Dyneema rope interacts with the hook/payload mass which is
present in both models.

Sensitivity study of linearization points

Furthermore, it was necessary to choose linearization points to linearize the orifices. The orifices were
linearized about the volume flow rates through the orifices. These volume flow rates were selected
based on what are reasonable values for flow rates from the time-domain simulations. The fourth
to seventh smallest natural frequencies, [0.5090, 2.2020, 301.87, 303.96]rad/s in Table 9.6, are the
most dependent on these linearization points compared to the other natural frequencies. For example,
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increasing the linearization volume flow rate from 1e-3m3/s to 1e-2m3/s gave percent differences of
[1.7e-8, 7.4e-8, 1.2e-6, 1.1e-6]% respectively. For the second and third smallest natural frequencies the
percent differences were three orders of magnitude smaller. For the sixth and seventh smallest natural
frequencies the percent differences are the largest. This supports that the sixth and seventh smallest
natural frequencies, [301.87, 303.96]rad/s are due to the orifices. Various linearization points were tried
but the sixth and seventh smallest natural frequencies still have the largest percent difference.

Changing the linearization point, żphc, for the cylinder displacement, zphc affected the second and
third smallest natural frequencies only, [0.1035, 0.3070]rad/s in Table 9.6. The linearization point was
selected based on a reasonable value for żphc from the time-domain simulations. For example, increasing
żphc from 0.01m/s to 1m/s resulted in a 1.08% and 1.06% difference in the second and third smallest
natural frequencies, whereas the other natural frequencies were unaffected. The difference in small but
shows there is some influence. It is logical the second and third smallest natural frequencies are affected
since these correspond to the PHCS cylinder and steel rope, respectively. The cylinder is connected
to the steel rope so it is reasonable that there is some interaction. Which explains why changing the
linearization point for the cylinder velocity affects these natural frequencies.

Changing the linearization point, ż1, for the hook/payload displacement, z1 affected the fourth and
fifth smallest natural frequencies mainly, [0.5090, 2.2020]rad/s in Table 9.6. The linearization point was
selected based on a reasonable value for ż1 from the time-domain simulations. For example, increasing
ż1 from 0.01m/s to 1m/s resulted in a 6.4e-8% and 6.8e-8% difference in the fourth and fifth smallest
natural frequencies respectively, whereas the other natural frequencies had two orders of magnitude
smaller percent differences. These are very small changes but shows there is some influence. It is
reasonable that the fourth and fifth smallest natural frequencies are affected since these correspond to
the Dyneema rope and hook/payload mass. The hook/payload mass has interaction with the Dyneema
rope directly. So it reasonable that changing the linearization point for the hook/payload mass velocity
affects these natural frequencies.

9.4.2 Upper case natural frequencies

See appendix A.16.1 for the natural frequencies for the upper case.

9.4.3 Lower case natural frequencies

See appendix A.16.2 for the natural frequencies for the lower case.

9.4.4 Comparison between cases

Table 9.7 shows that the base case, where the piston-head is in the middle of the cylinder the natural
frequency is second lowest. The natural frequency is highest for when the piston-head is at the lower
position. Nevertheless, the base case provides the natural frequency closest to the design natural
frequency.

The natural frequency due to the PHCS cylinder, steel rope, and Dyneema rope should not change in the
base, upper and lower cases. This is because they are a property of the physical parameters not piston-
head position. For the base case in Table 9.6 these natural frequencies are [0.1035, 0.3070, 0.5090]rad/s
respectively. In appendix A.16, for the upper case in Table A.13 these natural frequencies are [0.1035,
0.3070, 0.5090]rad/s. For the lower case in Table A.14 these natural frequencies are [0.1035, 0.3070,
0.5093]rad/s. The natural frequencies essentially do not change as would be expected.
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Table 9.7: Natural frequency for the different cases

Case Location of piston-head Natural frequency [rad/s] Natural frequency [Hz]

Base middle of cylinder 2.2020 0.3505

Upper upper end of cylinder 1.7558 0.2794

Lower lower end of cylinder 4.2060 0.6694

Designed natural frequency - 2.0944 0.3333

9.5 Conclusion

The natural frequencies of the PHCS have been identified. This continues step 3 of the methodology in
section 3.3. In chapter 10, step 3 is continued with the frequency and time responses of the system to
verify the natural frequencies.



Frequency and time
responses of PHCS

10
10.1 Introduction

The three versions of the PHCS model in chapter 9 are used to obtain the frequency responses (LAM,
RLAM, ORLAM). To obtain the time-domain response the PHCS model with non-linear orifices/steel
rope/Dyneema rope/PHCS cylinder/non-linear accumulators/hook and payload mass and non-linear
quadratic damping (and fluid inertia) is used (henceforth called NLORLAM). The ORLAM used
in chapter 9 is a linearized version of the NLORLAM. The NLORLAM system is the same as that
described in section 7.10.4 and the diagram of this system is shown in Figure 7.9. The reason to use
the fully non-linear system is that the time-domain response is found so there is no need to linearize
any elements. Furthermore, the fully non-linear system represents the system closest to reality. This
means the results from this system are the most meaningful physically. Thus, it is reasonable to use
these time-domain results to verify the frequency domain results.

The frequency response of pressures is shown in section 10.2 and the time response is shown in section
10.3. The frequency response of hook/payload motion z1 is shown in section 10.4 and the time response
is shown in section 10.5.

10.2 Frequency response of pressures

The frequency response is obtained for the LAM and ORLAM. The LAM is chosen since it is the
simplest model while still including the pressures and accumulators and the pressures are of interest.
The ORLAM includes more elements of the system and is used to verify the LAM results. The frequency
response is obtained for the base case initial conditions shown in Table 8.1. The base case is chosen as
the case to focus on since this represents the assumed design condition. The frequency responses are
obtained using the transfer function obtained from the state-space system.

10.2.1 Base case

79
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10.2.1.1 LAM

In Figures 10.1a and 10.1b the frequency response for the LAM is shown for the base case initial
conditions. There is only one peak at 0.354Hz.

(a) Bode plot for Pa3, peak at 0.354Hz (b) Bode plot for Pa1, peak at 0.354Hz

Figure 10.1: Base case, for the LAM

10.2.1.2 The ORLAM

From the ORLAM results in section 9.4.1 in Table 9.6, the closest natural frequency is 0.3505Hz which
has a 1% difference with 0.354Hz. These natural frequencies are almost the same.

10.2.2 Upper case

The frequency response of pressures for the upper case initial conditions are in appendix A.17.1.

10.2.3 Lower case

The frequency response of pressures for the lower case initial conditions are in appendix A.17.2.

10.2.4 Three cases

The natural frequencies for the ORLAM are summarized in Tables 10.1/10.2. The natural frequencies
are used for the time-domain results in section 10.3.

Table 10.1: Three cases, frequency and magnitude for Pa3

Base case Upper case Lower case

Frequency [Hz] Frequency [Hz] Frequency [Hz]

0.3505 0.2794 0.6694

10.3 Time response of pressures

The time-series response of the pressures is obtained. This is to verify the frequency response results in
section 10.2. To do this the NLORLAM described in section 10.1 is used.
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Table 10.2: Three cases, frequency and magnitude for Pa1

Base case Upper case Lower case

Frequency [Hz] Frequency [Hz] Frequency [Hz]

0.3505 0.2794 0.6694

(a) Using the NLORLAM, input frequency is the design
wave frequency of 0.125Hz

(b) Using the NLORLAM, input frequency is the natural
frequency of 0.3505Hz

Figure 10.2: Base case, time-response of Pa3 and Pa1

For the design wave condition, the harmonic crane tip motion is assumed to have a period the same as
the design wave condition, 8s. This corresponds to a frequency of f = 0.125Hz or circular frequency
ω = 2 ∗ π/8 = 0.7854rad/s. The amplitude is 1m for simplicity. A sine wave is used as the harmonic
crane tip motion. Other frequencies are used later but the amplitude is 1m always.

10.3.1 Base case

Figure 10.2a shows the pressures Pa1 and Pa3 for the design wave condition.

From section 10.2.1.2 the natural frequency corresponding to the peak in the frequency response for
pressures Pa1 and Pa3 is 0.3505Hz, this is used as the input frequency of the crane tip in Figure 10.2b.
There is a beating character in the time-series. This is indicative of the frequency being close to the
natural frequency since beating is a phenomenon that occurs when the natural frequency and forcing
frequency are close. This is expected because 0.3505Hz is a natural frequency of the system.

10.3.2 Upper case

See appendix A.18.1 for the time response of pressures for the upper case initial conditions.

10.3.3 Lower case

See appendix A.18.2 for the time response of pressures for the lower case initial conditions.
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10.3.4 Conclusion, time response of pressures

These time domain results have verified to some extent the frequency response characteristics found in
section 10.2.

10.4 Frequency response of hook/payload motion

Firstly, the frequency response is obtained for the RLAM. This system is used instead of the LAM
since the RLAM includes the steel/Dyneema rope and PHCS cylinder and these are important for the
frequency response of the hook/payload motion. Secondly, the frequency response is obtained for the
ORLAM, this is to verify the results from the RLAM.

10.4.1 Base case

See Figure 10.3 for the frequency response of the hook displacement with respect to a harmonic crane
tip motion, for the base case. The frequency and magnitude of peaks is shown in Table 10.3. For the
ORLAM in section 9.4.1 in Table 9.6 the closest natural frequencies are extracted and put into Table
10.4. The very high natural frequencies of 48.0437Hz and 48.3763Hz in Table 9.6 are not considered
since these are not realistic frequencies for real wave conditions thus there would be little value in seeing
their effect. The percent differences with the corresponding values in Table 10.3 are shown in Table 10.4.
Most of the percent differences are low as would be expected since they are supposed to be the same
natural frequencies.

Figure 10.3: Base case, bode plot for z1, the RLAM.
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Table 10.3: Frequency and magnitudes for peaks in Figure 10.3 (RLAM)

Frequency [Hz] Magnitude [dB]

0.0172 144

0.0652 121

0.081 85

0.355 48.9

Table 10.4: Base case, natural frequencies for the ORLAM with percent differences of values in Table
10.3

Frequency [Hz] % difference

0.0165 4.2

0.0489 25.1

0.0810 0

0.3505 1.3

10.4.2 Upper case

See appendix A.19.1 for the frequency response of the hook displacement, for the upper case.

10.4.3 Lower case

See appendix A.19.2 for the frequency response of the hook displacement, for the lower case.

10.4.4 Three cases

For the three cases there is a peak at [0.0165, 0.0489, 0.0810]Hz and a peak at another frequency specific
to the case. The first three frequencies were discussed in section 9.4.1. They are due to the PHCS
cylinder, steel rope, and Dyneema rope respectively.

10.5 Time response of hook/payload motion

The time response of the z1 motion is obtained. This is to verify the frequency response results in
section 10.4. The NLORLAM is used, as mentioned in section 10.3.

The same design wave condition input as in section 10.3 is used.

10.5.1 Base case

Figure 10.4a shows z1 for the design wave condition. The four frequencies found in the frequency
response in Table 10.4 are used as input frequencies to verify the frequency response.

For 0.0165Hz see Figure 10.4b , there is a large amplification of the maximum value of z1 relative to the
design wave condition in Figure 10.4a.

For 0.0489Hz see Figure 10.4c, the maximum value of z1 is larger relative to the design wave
condition case but smaller than the maximum z1 in the 0.0165Hz case.

For 0.0810Hz see Figure 10.4d , the maximum z1 is larger relative to the design wave condition
but still smaller than the maximum z1 in the 0.0165Hz case.
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For 0.3505Hz see Figure 10.4e, the amplitude of z1 is the smallest. Since this frequency is an or-
der of magnitude higher than the other frequencies it is likely due to the input frequency being so high
that the damping in the system is removing a significant amount of energy. This leads to a limit on the
maximum value of z1.

(a) Using the NLORLAM, input frequency is the
design wave frequency of 0.125Hz

(b) Using the NLORLAM, input frequency is the
natural frequency of 0.0165Hz

(c) Using the NLORLAM, input frequency is the
natural frequency of 0.0489Hz

(d) Using the NLORLAM, input frequency is the
natural frequency of 0.0810Hz

(e) Using the NLORLAM, input frequency is the
natural frequency of 0.3505Hz

Figure 10.4: Time-series for z1 for five input frequencies
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10.5.2 Upper case

The time response using upper case initial conditions is shown in appendix A.20.1.

10.5.3 Lower case

The time response using lower case initial conditions is shown in appendix A.20.2.

10.5.4 Conclusion, time response of hook/payload motion

These time domain results have verified to some extent the frequency response characteristics found in
section 10.4. The results of the base case are discussed since the initial conditions for the base case are
used in further work. As mentioned in section 8.2.2 the design wave period is Tp=8s. This is a frequency
of 0.125Hz or circular frequency 0.7854rad/s. The natural frequencies and periods for the base case are
shown in Table 10.5. The periods for feasible wave conditions are from 25s to 5s. None of the natural
periods are close to the design wave period which is good for avoiding resonance. The real threat is due
to the lowest natural frequency 0.0165Hz since this causes a large amplification of z1 amplitude relative
to the input amplitude of 1m, see Figure 10.4b. This frequency has a circular frequency 0.1035rad/s and
period 60.7s. This is a large period and outside the wave conditions considered of 25s to 5s hence it is
unlikely to be encountered. The next natural frequency 0.0489Hz (20.5s) falls within the wave conditions
but does not have a large amplification effect, only slightly when compared to the design wave condition
case. Similarly the third natural frequency 0.0810Hz (12.3s) is within the wave conditions but does not
have a large amplification effect either. The last natural frequency 0.3505Hz (2.8s) is the designed for
natural frequency (0.33Hz or 3s) and though it is a natural frequency because the frequency is so high
and there is damping in the system the energy is quickly dissipated so this natural frequency does not
get excited much.

Table 10.5: Natural frequencies and periods for the base case

Frequency [Hz] Frequency [rad/s] Period [s]

0.0165 0.1035 60.7

0.0489 0.3070 20.5

0.0810 0.5090 12.3

0.3505 2.2020 2.8

10.6 Verifying Simulink results

In appendix A.24, the time-domain results from Simulink are verified by executing the same simulation
in MATLAB. The results are essentially the same indicating that Simulink solves the equations correctly.
This means either Simulink or MATLAB can be used to contain the numerical model.

10.7 Conclusion

In this chapter, the final design was analyzed by determining the natural frequencies and looking at the
frequency and time responses of the system. The main conclusion is that the natural frequencies of the
system have been identified. This provides a criterion to check the system’s performance in relation to
the operating environment. If the operating environment has a frequency close to a natural frequency
of the system, then it should be checked if this will be an issue in operation. Since the main objective
is to design a hybrid heave compensation system the passive part of the hybrid compensation system
has been designed. It has been verified that this passive heave compensation system will not experience
resonance in the design wave condition (Tp=8s and Hs=2.5m). In chapter 11, step 3 of the methodology
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in section 3.3 is finalized by assessing how well the PHCS can reduce the heave motion, quantified with
some criteria of performance.



Performance of the
PHCS

11
11.1 Introduction

This chapter will investigate the time-domain results of the PHCS by itself. To obtain the time-domain
results the NLORLAM described in section 10.1 is used. The irregular and regular crane-tip motion
signals are described. Then, three measures of performance are described and applied to the results for
various wave periods and wave heights. Additionally, the natural periods of the PHCS (obtained from
the ORLAM) are used as the wave periods. Finally, the time-domain results of key variables in the
PHCS, such as pressure, are discussed.

11.2 Number of wave frequency components

To generate an irregular sea the Pierson-Moskowitz wave spectrum is used. Other spectrums can be
used, such as the JONSWAP spectrum. The Pierson-Moskowitz spectrum assumes deep-water and
a fully-developed sea. In contrast, the JONSWAP spectrum assumes a not fully-developed sea state
and also deep-water. The JONSWAP spectrum represents a sea with short fetch (fetch is the distance
to the upwind coastline). This means the waves grow rapidly. Whereas with the Pierson-Moskowitz
spectrum the waves do not grow since the wave breaking balances the transfer of energy from wind to
waves. For the Pierson-Moskowitz spectrum, the significant wave height and peak frequency depend
only on the wind speed [59]. This means the Pierson-Moskowitz spectrum relies on the wind-speed and
is independent of the fetch. Since the vessel will in reality by at varying distance to the coast, meaning
fetch is changing, it is simpler to assume a fully-developed sea instead of taking into account a sea state
varying with fetch. Thus, the Pierson-Moskowitz spectrum is chosen.

It is assumed the free surface elevation is statistically stationary and normally distributed for the duration
of the time simulation. To define the number of wave frequencies in the simulation, the minimum interval
for discrete frequencies of ω was calculated using the simulation time (11.1) [60] [44]:

∆ω <
2π

tsim
(11.1)

It is assumed the energy in the wave spectrum is negligible outside the frequency range from ωmin to
ωmax. This means the number of wave frequencies present, N , can be calculated using ∆ω, ωmin, and

87
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ωmax (11.2) [60]:

N >
(ωmax − ωmin)

∆ω
(11.2)

Using a simulation time tsim = 1800s in (11.1) gives ∆ω =0.0035rad/s. A trial and error approach was
used by varying N and sorting the wave spectrum frequencies to obtain ωmax and ωmin. It was found
that using N = 582 produced ωmax = 2.5312rad/s and ωmin = 0.5 rad/s. Using these values of ωmax,
ωmin, and ∆ω in (11.2) gives N = 582. Since this agrees with the inequalities in (11.1) and (11.2), then
N = 582 is used as the number of wave frequencies.

The number of wave frequency components for a simulation time of tsim = 1800s is 582. This means the
Pierson-Moskowitz spectrum is discretized with 582 bins, show in Figure 11.1. Having a sufficient number
of wave frequency components is important so that the Pierson-Moskowitz spectrum is well-discretized.
Discretizing the Pierson-Moskowitz spectrum with 10 bins, shown in Figure 11.2, illustrates this point.
Since not enough bins are used the energy in the time-series representation will not reflect the energy in
the spectrum accurately. Furthermore, since an irregular sea is desired it is important to have sufficient
wave frequency components so that in the time-domain the waves do not repeat too much, leading to a
less random sea. This can occur for a long simulation time with an insufficient number of wave frequencies.

Figure 11.1: Pierson-Moskowitz spectrum discretized with 582 frequency bins
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Figure 11.2: Pierson-Moskowitz spectrum discretized with 10 frequency bins

11.3 Parameters of performance

The three parameters used to quantify the performance of the PHCS are defined below.

11.3.1 Significant double amplitude

The significant double amplitude (SDA) of the z1 (hook/payload motion) time-series is given by the
symbol γ. The SDA is defined as the mean of the one-third highest crest-to-trough values of the z1

time-series [61].

11.3.2 Compensation rate

The compensation rate is given by the symbol β. The compensation rate is defined by (11.3) [48]:

β =
(Ain −A1)

Ain
∗ 100% (11.3)

where:
Ain = max[zin −mean(zin)] (11.4)

A1 = max[z1 −mean(z1)] (11.5)

A compensation rate of 0% indicates neither attenuation nor amplification of hook and payload motion
whereas a value closer to 100% indicates the PHCS is more effective and a negative value indicates the
PHCS is amplifying the motion.

11.3.3 Rms reduction ratio

The rms reduction ratio is given by the symbol R. The rms reduction ratio is defined by (11.6) [62]:

R =
σz1
σzin

(11.6)
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where σz1 is the standard deviation of the z1 signal and σzin is the standard deviation of the zin signal
(crane-tip motion).

R should be less than one for an effective PHCS. The closer R is to 0 means the system is more effective.
If σz1 is small this means the z1 signal is close to the mean of the signal most of the time. Ideally the
mean of z1 is 0 so there is no static offset. The standard deviation of zin for the regular input is H

2
√

2
,

where H is the wave height, since the input is a sine wave.

11.4 Obtaining results

11.4.1 Obtaining SDA

To obtain the SDA of z1 the vertical distances between consecutive crests and troughs in the time series
were obtained using a peak-finding algorithm. The distances were sorted and the mean of the highest
one-third values taken to obtain the SDA.

To see if the simulation time is sufficient it is estimated what maximum wave height can be expected for
a 3 hour simulation time. Assuming the irregular wave elevations generated by the Pierson-Moskowitz
spectrum can be described using a normal distribution then the wave amplitude statistics will follow a
Rayleigh distribution [41]. The probability density function of the Rayleigh distribution is given by:

f(x) =
x

σ2
exp

(
−
( x

σ
√

2

)2
)

(11.7)

where σ is the standard deviation. The probability that a wave amplitude ζa exceeds a value a is given
by integrating (11.7) from a to ∞:

P{ζa > a} =

∫ ∞
a

f(x)dx (11.8)

P{ζa > a} =
1

σ2

∫ ∞
a

xexp

(
−
( x

σ
√

2

)2
)

dx (11.9)

P{ζa > a} = exp

(
− a2

σ22

)
(11.10)

The crest-to-trough wave height is Hw, an arbitrary wave height is H = 2a, and the significant wave
height is H1/3 = 4σ, putting these into (11.10):

P{Hw > H} = exp

(
−

(H2 )2

(
H1/3

4 )22

)
(11.11)

P{Hw > H} = exp

(
− 2
( H

H1/3

)2
)

(11.12)

(11.12) gives the probability that a wave height H is exceeded in a wave field with significant wave height
H1/3. As a rule of thumb, the maximum wave height that can be expected in a 3 hour storm is the wave
height exceeded once in every 1000 waves. The reasoning is that it will take at least 3 hours for 1000
waves to appear and in 3 hours the worst part of a storm will likely be over [41]. To find this maximum
wave height (11.12) is used with H = Hmax and P{Hw > Hmax} = 1

1000 = 0.001:

0.001 = exp

(
− 2
(Hmax

H1/3

)2
)

(11.13)

Solving for Hmax:

ln(0.001) = −2
(Hmax

H1/3

)2
(11.14)
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Hmax =

√
ln(0.001)

−2
H1/3 (11.15)

Hmax ≈ 1.86H1/3 (11.16)

In the time-domain simulation it is seen if the maximum wave height observed exceeds the theoretical
maximum wave height in (11.16). The results are shown in Table 11.1. As expected the trend for
increasing H1/3 is an increasing maximum wave height observed. Using a 6 hour simulation resulted in a
maximum wave height slightly below that given by (11.16) with a 0.9% percent error. It is not necessary
that the maximum wave height is exceeded since the waves are random. However, there is a high chance
that it is exceeded and an explanation could be that the waves are not truly random. This is because
the toolbox WAFO [63] was used and since it is uses algorithms it can only generate pseudo-random
waves. Nonetheless, it is computationally expensive to run a 6 hour simulation. Furthermore, the
equation (11.16) is based on an assumption and there is no law from nature that the assumption is
necessarily correct. Thus, it is acceptable that the maximum wave height from (11.16) is not exceeded.
The simulation time is kept at 1800s (half an hour) since this is judged as sufficiently long from a
statistical point of view and from a computationally cost-effective point of view.

Table 11.1: For H1/3 =0.5m, the maximum wave height observed and the theoretical maximum wave
height for various simulation times

Simulation time [hr] Maximum wave height observed [m] Theoretical maximum wave height [m]

0.5 0.6221 0.92

2 0.6226 0.92

3 0.73 0.92

6 0.91 0.92

11.5 Results irregular and regular input: various periods and wave
heights

The PHCS was used with irregular and regular input.

• To specify the irregular input an irregular wave spectrum was used. To specify the irregular wave
spectrum a peak period, Tp, and significant wave height, Hs, were used. These parameters were
used to generate the wave spectrum, from the wave spectrum the vessel motions were obtained,
and the crane-tip motion was then obtained from these vessel motions. This irregular crane-tip
motion was the input to the PHCS. Beam waves were assumed. The reason to use beam waves
was explained in section 5.5.1 but is essentially that roll and heave response to beam waves is
generally larger than roll and heave response to other wave headings. Since a wave spectrum and
uniformly distributed random phases for the wave components are used then crane-tip motions are
random for each simulation. This means a stochastic approach is used since the crane-tip motion
is unpredictable due to the random variables present.

• To specify the regular input a sinusoidal motion for the crane-tip motion was assumed. To specify
the sine wave a period, T, and wave height, H, were used.

The reason to use regular wave input is two-fold, one is to verify the irregular wave results and another
is to see more clearly the effect of a certain wave period. This is because the irregular wave results
depend on the peak period and significant wave height, which are statistical quantities. This means the
actual waves will have energy distributed among many wave periods. So if a certain period is used as
the peak period there may not be an obvious response to this since wave energy is present at many
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other wave periods. With the regular wave input a specific period is used so that the response to this
period can be clearly seen.

The design conditions are irregular waves with Tp=8s and Hs=2.5m. Thus, this Tp and Hs are used as
a basis for the analysis below. Three measures of motion of the hook and payload mass, z1, are used.
These are the SDA, compensation rate, and rms reduction ratio R, defined in section 11.3.

The results for SDA are shown in section 11.5.1, for compensation rate β in section 11.5.2, and for R
ratio in 11.5.3. For each measure of motion four sets of parameters were used. Two sets for irregular
input:

• Fixed Tp=8s, various Hs values [0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 2.75, 3.00, 3.25,
3.50]m and various water depths [1000, 1500, 2000, 2500]m

• Fixed Hs=2.5m, various Tp values [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]s and various water depths
[1000, 1500, 2000, 2500]m

And two sets for regular input:

• Fixed T=8s, various H values [0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 2.75, 3.00, 3.25,
3.50]m and various water depths [1000, 1500, 2000, 2500]m

• Fixed H=2.5m, various T values [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]s and various water depths
[1000, 1500, 2000, 2500]m

11.5.1 SDA

The SDA was defined in section 11.3.1. A larger SDA value indicates the hook and payload moves more
which is undesirable. The input signal has a peak-to-trough value of 2.5m for the regular input and
Hs=2.5m for the irregular input. This means the double amplitude for the input signal is 2.5m for the
regular input. This provides a measure to judge the performance of the PHCS when looking at the SDA
values. An SDA value below 2.5m means the PHCS reduces heave motion. The regular input results
show a clearer trend since all the wave energy is concentrated at one period, so these results are focused on.
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(a) SDA(Hs,wd) (irregular), for Tp=8s (b) SDA(Tp,wd) (irregular), for Hs=2.5m

(c) SDA(H,wd) (regular), for T=8s (d) SDA(T,wd) (regular), for H=2.5m

(e) Water depth: 2500m (f) Water depth: 2500m

Figure 11.3: SDA: Irregular and regular input results

11.5.1.1 Varying Tp/T

For the irregular input, the SDA values were found for fixed Hs=2.5s as a function of Tp and water
depth, see Figure 11.3b for results. For the regular input, the SDA values were found for fixed H=2.5m
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as a function of T and water depth, see Figure 11.3d for results.

Since the 2500m water depth is the operating condition of interest this water depth is used in Figure
11.3f to more clearly show the effect of wave period. The regular input result shows the trend clearly,
with increasing wave period the SDA increases. This indicates that lower frequency waves (larger
periods) are able to excite the hook and payload mass more than higher frequency waves (lower periods
waves). This is logical since lower frequency waves provide less opportunity for the damping present in
the system to remove energy which allows a higher SDA value.

For SDA as a function of T, for water depth of 1000m, there is a peak in SDA at 12s
period in Figure 11.3d .

Natural frequency is dependent on a system’s mass and stiffness. It was chosen to vary the stiffness of the
Dyneema and steel rope. This was done instead of changing the mass (by density) since for the long ropes
considered changing the stiffness seems more interesting. For example, the effect of an object’s change in
stiffness when holding the object is more interesting than a change in its mass. Furthermore, from a man-
ufacturing point of view changing the stiffness of the Dyneema rope is likely easier since a different fiber
can be used whereas changing the mass is more difficult since all fibers are relatively light. The stiffness is
changed by changing the length of the Dyneema and steel rope since the stiffness is inversely proportional
to length. The length used to calculate the mass is kept at the default value, so the mass does not change.

The natural periods for the water depths of [2500, 2000, 1500, 1000]m were found in Table 11.4. A natu-
ral period exists at close to 12s for the 1000m water depth in Figure 11.3d. As shown in Table 11.4, this
natural period is 11.36s. The peak in SDA at 12s period shifts to a lower period with increasing steel rope
stiffness. For example, with a 50% higher steel rope stiffness the peak at 12s shifts to 9s, see Figure 11.4b.
A natural period exists at 9.28s for the 50% higher steep rope stiffness as shown in Table 11.2. Thus, the
shifted peak is due to the shifted natural period from 11.36s to 9.28s. This natural period is associated
with the steel rope. The effect on natural period of other increased steel rope stiffnesses is shown in
Table 11.2. Since the natural period is inversely proportional to rope stiffness, a larger stiffness results in
a smaller natural period. To clearly show the effect of steel rope stiffness, only the 1000m water depth is
considered in Figure 11.4c. The black line is the case for normal steel rope stiffness, with a peak in SDA at
12s. An increasing steel rope stiffness results in a decrease of the period associated with the peak in SDA.

Furthermore, note that a peak in SDA for the water depth of 1500m appears at 12s when increasing
the steel rope stiffness by 50% in Figure 11.4b. This is explained with the same reasoning of a natural
period being shifted to a lower period. For 1500m with normal steel rope stiffness there is a natural
period at 14.95s (out of the range of the graph) and for 1000m the natural period shifts to 12.21s. Thus,
the peak at 12s is due to the natural period of 12.21s.
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(a) Figure 11.3d is repeated for comparison (b) SDA(T,wd), steel rope stiffness increased by 50%
relative to the case in Figure 11.4a

(c) SDA(T), water depth of 1000m, steel rope stiffness
increased by various factors. For the natural periods
associated with the increases in stiffness see Table 11.2

Figure 11.4

Table 11.2: Natural periods for 1000m water depth as function of increased steel rope stiffness

Steel rope stiffness increase [%] 0 (default case) 25 50 75 100 125

Natural period 11.36 10.16 9.28 8.59 8.03 7.57

In contrast, in Figure 11.3d the peak at 5s for a water depth of 1000m does not shift with a 50% higher
steel rope stiffness. A natural period exists at 4.95s and the peak at 5s is due to the influence of this
natural period. This natural period is associated with the Dyneema rope. This is demonstrated by
increasing the Dyneema rope stiffness by 50%, shown in Figure 11.5b. Considering the water depth of
1000m, the peak at 12s is unaffected but the peak at 5s shifts to a lower period, 4s (since the natural
period of 4.95s shifts to 4.05s, due to the increase in Dyneema stiffness). This is expected since a larger
stiffness results in a smaller natural period. The effect on the associated natural period of increasing
the Dyneema rope stiffness by other amounts is shown in Table 11.3.

To verify that the peak in SDA at 5s in Figure 11.3d is due to exciting a natural period the time-series
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is shown. Using T=5s for the 1000m water depth the z1 (hook and payload mass displacement) and zd

(Dyneema rope displacement) time-series have a beating character verifying that 5s is close to a natural
period, see Figure 11.6a. For water depths of [1500, 2000, 2500]m there is no beating character to z1,
see Figures 11.6b, 11.6c, and 11.6d respectively.

Furthermore, when increasing the Dyneema rope stiffness by 50%, in Figure 11.5b, for the 1500m water
depth there is a peak in SDA appearing now at 6s. This is close to the natural period of 6.05s which
was at 7.41s when the normal Dyneema rope stiffness was used in Figure 11.5a. This natural period at
7.41s is not close enough to the input period of 8s for the natural period to have a significant effect on
the SDA in Figure 11.5a although it has some influence on the motion of zd as shown in Figure 11.8b.

(a) Figure 11.3d is repeated for comparison (b) SDA(T,wd), Dyneema rope stiffness increased by
50% relative to the case in Figure 11.5a

Figure 11.5

Table 11.3: Natural periods for 1000m water depth as function of increased Dyneema rope stiffness

Dyneema rope stiffness increase [%] 0 25 50 75 100 125

Natural period 4.95 4.43 4.05 3.75 3.52 3.33
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(a) water depth: 1000m, T=5s, H=2.5m (b) water depth: 1500m, T=5s, H=2.5m

(c) water depth: 2000m, T=5s, H=2.5m (d) water depth: 2500m, T=5s, H=2.5m

Figure 11.6

For the larger water depths of 2000/2500m, the steel/Dyneema ropes are less stiff (since stiffness is
inversely proportional to rope length and rope length is proportional to water depth) which means the
natural periods are higher. In other words, natural period is proportional to rope length. In Figure
11.3d, the natural period associated with the Dyneema rope is within the range of the graph. However,
the natural period does not coincide with the periods used in the graph. Although some of the natural
periods are close. For example, for 2000m there is a natural period at 9.88s, as shown in Table 11.4.
There is no clear peak as was the case for the shallower water depths such as 1000m. In Figure 11.3d,
for 1000m a natural period at 11.36s manifested itself as a clear peak at a 12s period on the graph.
The response is more sensitive at the shallower water depths. It is not clear why this occurs. Taking
into account lateral motion of the steel/Dyneema rope, which contributes drag thus dissipating energy
and reducing SDA for large water depths would be an explanation. However, lateral motion of the
steel/Dyneema rope was not included so this explanation is not correct.

It should be noted that the natural period associated with the Dyneema rope is smaller than the natural
period associated with the steel rope. The mass of the steel is significantly larger than that of the
Dyneema. The natural period is proportional to the mass. This contributes to the natural period of the
Dyneema rope being smaller than the natural period associated with the steel rope.
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Table 11.4: Natural periods for [2500, 2000, 1500, 1000]m water depths

Natural period [s]

Water depth [m] 2500 2000 1500 1000

Natural period 1 2.85 2.85 2.85 2.85

Natural period 2 12.34 9.88 7.41 4.95

Natural period 3 20.47 17.91 14.95 11.36

Natural period 4 60.72 49.66 38.64 27.68

Time-series for T=12s, H=2.5m, and 1000m water depth

The time-series data associated with the T=12s, H=2.5m, and 1000m water depth situation is shown in
Figure 11.7. The enlarged motion of z1 relative to the input zin is clear in Figure 11.7.

Figure 11.7: z1 (hook and payload motion) and zin (crane-tip motion), top sub-plot shows data for time
from 0s to 500s. There is some transient behavior initially, as would be expected. The bottom sub-plot
shows the full simulation time from 0s to 1800s.

11.5.1.2 Varying Hs/H

For the irregular input, the SDA values were found for fixed Tp=8s as a function of Hs and water
depth, see Figure 11.3a for results. For the regular input, the SDA values were found for fixed T=8s as
a function of H and water depth, see Figure 11.3c for results.

Since the 2500m water depth is the operating condition of interest this water depth is used in Figure
11.3e to more clearly show the effect of wave height. The regular input result shows the trend clearly,
with increasing wave height the SDA increases as would be expected. This shows that for more violent
wave conditions the PHCS passes through more energy to the hook and payload mass. This is an
expected result.

For SDA as a function of H (for fixed T=8s) there is a difference in magnitude and trend
for water depth of 1000m compared to other water depths in Figure 11.3c.



CHAPTER 11. PERFORMANCE OF THE PHCS 99

In Figure 11.3c, for water depths of [1500, 2000, 2500]m the trend is that SDA is larger for a given
H value for smaller water depths. A possible explanation is that the ropes have smaller mass for
smaller water depths meaning they have less inertia so have more motion for a given acceleration.
This competes with the larger rope stiffness for smaller water depths which would decrease the
motion for a given force. For the 1000m water depth this trend does not hold. It is seen that for
water depths of [1500, 2000, 2500]m the SDA value increases more steeply as a function of H than
for the 1000m water depth. This gives the line for the 1000m water depth a different trend and magnitude.

In Table 11.4 it is shown that none but one of the natural periods for any water depth is close to 8s (the
closest being 7.41s for water depth of 1500m). For H=2m and T=8s the time-series results for various
water depths are shown in Figure 11.8. Figure 11.8b shows that for water depth of 1500m there is a
beating character to zd indicating the input period is close enough to the natural period of 7.41s to have
an effect, although the effect is not that large, as mentioned earlier. For water depths of [1000, 2000,
2500]m for zd there is no beating trend, indicating a natural period does not have influence. Thus, it
seems the different trend for the 1000m water depth line is not related to a natural period issue.

A possible explanation for the break away from the trend for 1000m water depth is that the non-
linearities in the system (orifice, accumulators, quadratic water drag) have some contribution. Although
it is unclear what the contribution is.
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(a) water depth: 1000m, H=2m, T=8s (b) water depth: 1500m, H=2m, T=8s

(c) water depth: 2000m, H=2m, T=8s (d) water depth: 2500m, H=2m, T=8s

Figure 11.8

11.5.2 Compensation rate β

The SDA results in section 11.5.1 give measures of the motion of the hook and payload mass. However,
they do not provide a clear measure of how effective the PHCS is at reducing the motion. To quantify this
a relative measure is needed, the compensation rate β defined in section 11.3.2 is such a relative measure.
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(a) β(Hs,wd) (irregular), for Tp=8s (b) β(Tp,wd) (irregular), for Hs=2.5m

(c) β(H,wd) (regular), for T=8s (d) β(T,wd) (regular), for H=2.5m

(e) Water depth: 2500m (f) Water depth: 2500m

Figure 11.9: Compensation rate: Irregular and regular input results

11.5.2.1 Varying Tp/T

For the irregular input, the compensation rate was found for fixed Hs=2.5s as a function of Tp and
water depth, see Figure 11.9b for results. For the regular input, the compensation rate was found for
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fixed H=2.5m as a function of T and water depth, see Figure 11.9d for results. The regular results are
focused on, as explained earlier. For the 1000m water depth there are sharp decreases in β at 5s and
12s periods. This corresponds to the peaks in SDA at 5s and 12s periods in Figure 11.3d for the SDA.
The meaning is logical, a peak in SDA means there is poor compensation rate.

Since the 2500m is the operating condition of interest this water depth is used in Figure 11.9f to more
clearly show the effect of wave period. The regular input result shows the trend clearly, with increasing
wave period the compensation rate decreases. This indicates the PHCS is less effective with increasing
wave period. This can be explained by the fact that lower frequency (higher period) waves will cause
motion in the system to experience less damping compared to a higher frequency wave.

11.5.2.2 Varying Hs/H

For the irregular input, the compensation rate was found for fixed Tp=8s as a function of Hs and water
depth, see Figure 11.9a for results. For the regular input, the compensation rate was found for fixed
T=8s as a function of H and water depth, see Figure 11.9c for results. The regular results are focused
on, as explained earlier. There is a consistent trend in Figure 11.9c, with increasing water depth the
compensation rate increases (better performance).

Since the 2500m is the operating condition of interest this water depth is used in Figure 11.9e to more
clearly show the effect of wave height. The regular input result shows the trend clearly, with increasing
wave height the compensation rate increases. This means the PHCS is more effective for larger wave
height. This can be explained by the fact that a larger wave height can provide more energy which
enables the system to work more effectively.

11.5.3 R ratio

The rms reduction ratio (R) was defined in section 11.3.3. It gives a measure of the standard deviation
of the z1 signal. The results for R are shown below.
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(a) R(Hs,wd) (irregular), for Tp=8s (b) R(Tp,wd) (irregular), for Hs=2.5m

(c) R(H,wd) (regular), for T=8s (d) R(T,wd) (regular), for H=2.5m

(e) Water depth: 2500m (f) Water depth:2500m

Figure 11.10: R ratio: Irregular and regular input results

11.5.3.1 Varying Tp/T

For the irregular input, R was found for fixed Hs=2.5s as a function of Tp and water depth, see Figure
11.10b for results. For the regular input, R was found for fixed H=2.5m as a function of T and water
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depth, see Figure 11.10d for results. The regular results are focused on, as explained earlier. There is
a peak in R at 5s and 12s. This is consistent with the SDA results in Figure 11.3d. This is because a
peak in R means there is poor compensation which corresponds to a high SDA value. The reasons for
the peaks were given earlier and are not repeated

Since the 2500m is the operating condition of interest this water depth is used in Figure 11.10f to more
clearly show the effect of wave period. The regular input result shows the trend clearly, with increasing
wave period R increases. This indicates the PHCS has lower performance with increasing wave period.
This was explained when discussing the results of the compensation rate in section 11.5.2.

11.5.3.2 Varying Hs/H

For the irregular input, R was found for fixed Tp=8s as a function of Hs and water depth, see Figure
11.10a for results. For the regular input, R was found for fixed T=8s as a function of H and water
depth, see Figure 11.10c for results. The regular results are focused on, as explained earlier. Considering
water depths [1500, 2000, 2500]m with increasing water depth the R value decreases for a given H. This
is consistent with the decrease in SDA, for fixed H, for increasing water depth when considering [1500,
2000, 2500]m in Figure 11.3c. This is because a lower R means better compensation performance which
means a lower SDA. The trend for 1000m water depth deviates from the rest of the water depths. This
was discussed earlier.

Since the 2500m is the operating condition of interest this water depth is used in Figure 11.10e to more
clearly show the effect of wave height. The regular input result shows the trend clearly, with increasing
wave height the R decreases. This means the PHCS is better when working with larger wave height.
This was explained when discussing the results of the compensation rate in section 11.5.2.

11.5.4 Summary

The numerical data is shown in the tables below for the water depth of 2500m. For irregular input, see
Table 11.5 for key parameters as a function of Hs and see Table 11.6 for key parameters as a function of
Tp. For regular input, see Table 11.7 for key parameters as a function of H and see Table 11.8 for key
parameters as a function of T.

A summary of results for irregular and regular input for the design condition of Tp/T=8s and
Hs/H=2.5m for water depth of 2500m is shown in Table 11.9. Focusing on regular input, the results
show that at design conditions the PHCS provides attenuation of motion with R = 0.137 and a
compensation rate of 83.2%.
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Table 11.5: SDA, R, and β as a function of Hs, for Tp=8s, for water depth of 2500m

Hs [m] SDA [m] R [-] β [%]

0.50 0.123 0.522 75.54

0.75 0.111 0.306 86.85

1.00 0.150 0.340 78.28

1.25 0.179 0.288 80.54

1.50 0.299 0.348 80.36

1.75 0.159 0.199 89.08

2.00 0.354 0.371 82.62

2.25 0.239 0.212 86.87

2.50 0.271 0.213 87.30

2.75 0.287 0.229 86.52

3.00 0.372 0.305 80.45

3.25 0.350 0.249 85.53

3.50 0.231 0.129 91.98

Table 11.6: SDA, R, and β as a function of Tp, for Hs=2.5m, for water depth of 2500m

Tp [s] SDA [m] R [-] β [%]

2 3.1e-5 0.027 98.09

3 0.002 0.084 93.53

4 0.060 0.505 79.02

5 0.085 0.194 89.96

6 0.103 0.160 91.91

7 0.234 0.251 85.97

8 0.293 0.216 86.27

9 0.695 0.587 71.42

10 0.624 0.480 78.43

11 1.970 1.604 42.01

12 2.975 1.254 2.43

13 2.828 0.782 44.34
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Table 11.7: SDA, R, and β as a function of H, for T=8s, for water depth of 2500m

H [m] SDA [m] R [-] β [%]

0.50 0.095 0.156 80.84

0.75 0.137 0.153 81.71

1.00 0.174 0.149 81.76

1.25 0.213 0.149 81.87

1.50 0.248 0.147 82.62

1.75 0.284 0.147 81.70

2.00 0.316 0.141 82.23

2.25 0.348 0.137 83.10

2.50 0.380 0.137 83.24

2.75 0.411 0.138 83.40

3.00 0.441 0.135 83.14

3.25 0.472 0.136 83.46

3.50 0.501 0.134 83.78

Table 11.8: SDA, R, and β as a function of T, for H=2.5m, for water depth of 2500m

T [s] SDA [m] R [-] β [%]

2 0.112 0.037 95.47

3 0.170 0.057 93.13

4 0.210 0.072 91.51

5 0.254 0.089 89.15

6 0.295 0.105 87.71

7 0.340 0.123 85.06

8 0.380 0.137 83.24

9 0.422 0.154 81.10

10 0.461 0.171 80.49

11 0.504 0.184 77.96

12 0.545 0.196 76.29

13 0.656 0.225 69.15

Table 11.9: SDA, R, and β for regular and irregular input, for water depth of 2500m

Hs [m] (Tp=8s) SDA [m] R [-] β [%]

2.50 0.271 0.213 87.30

H [m] (T=8s) SDA [m] R [-] β [%]

2.50 0.380 0.137 83.24

11.6 Results irregular and regular input: natural periods and
Hs/H=2.5m

Using Table 10.4, the natural frequencies of the ORLAM are converted to natural periods in Table
11.10. These natural periods are used to obtain SDA, β, and R below as was done in section 11.5.
The reason to use the natural frequencies of the ORLAM is that this is the linearized version of the
NLORLAM and the time-domain results are obtained using the NLORLAM. These natural frequencies
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are the closest approximation to the natural frequencies of the NLORLAM.

Table 11.10: Base case, natural periods for the ORLAM

Frequency [Hz] Natural period [s]

0.0165 60.7

0.0489 20.5

0.0810 12.3

0.3505 2.9

The results are shown in sections 11.6.1, 11.6.2, and 11.6.3. For each measure of motion two sets of
parameters were used. One set for irregular input:

• Fixed Hs=2.5m, various Tp values [2.9, 12.3, 20.5, 60.7]s and various water depths [1000, 1500,
2000, 2500]m

And one set for regular input:

• Fixed H=2.5m, various T values [2.9, 12.3, 20.5, 60.7]s and various water depths [1000, 1500, 2000,
2500]m

11.6.1 SDA, natural periods

For the irregular input, the SDA values were found for fixed Hs=2.5s as a function of Tp and water
depth, see Figure 11.11a for results. For the regular input, the SDA values were found for fixed H=2.5m
as a function of T and water depth, see Figure 11.11b for results. It is important to note that the
natural periods were determined assuming a water depth of 2500m. For the regular input case this
explains why the SDA value as a function of T for a water depth of 1500m does not reach the same
magnitude as for a water depth of 2500m, for example.

In Figure 11.11c the regular and irregular input results are shown for the operating water depth of
2500m. As the natural period is increased the SDA is increased. The SDA values are relatively small
for the first two natural periods 2.9s and 12.3s. This indicates they are not as important as the last two
natural periods 20.5s and 60.7s where SDA is very large. Nevertheless, these two periods are large for
real seas, it is unlikely these periods would be encountered in real-life so they are not a real threat. The
natural period of 12.3s seems to pose the largest threat since this is a realistic wave period and the SDA
value is quite large, although smaller than the input signal height of 2.5m.
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(a) SDA(Tp,wd) (irregular), for Hs=2.5m

(b) SDA(T,wd) (regular), for H=2.5m

(c) SDA, water depth: 2500m

Figure 11.11: Irregular and regular input results

11.6.2 Compensation rate β, natural periods

For the irregular input, the compensation rate was found for fixed Hs=2.5s as a function of Tp and
water depth, wd, see Figure 11.12a for results. For the regular input, the compensation rate was found
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for fixed H=2.5m as a function of T and wd, see Figure 11.12c for results.

In Figure 11.12e the results are shown for the operating water depth of 2500m. The regular results
are focused on, as explained earlier. As the natural period is increased the compensation rate becomes
negative indicating an amplification of the motion. It is expected there is an amplification motion since
these periods correspond to the natural periods of the system. At the last two natural periods 20.5s and
60.7s, the compensation rate is negative by a large degree.
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(a) β(Tp,wd) (irregular), for Hs=2.5m (b) R(Tp,wd) (irregular), for Hs=2.5m

(c) β(T,wd) (regular), for H=2.5m (d) R(T,wd) (regular), for H=2.5m

(e) β, water depth: 2500m (f) R, water depth: 2500m

Figure 11.12: Irregular and regular input results

11.6.3 R ratio, natural periods

For the irregular input, R was found for fixed Hs=2.5s as a function of Tp and water depth, wd, see
Figure 11.12b for results. For the regular input, R was found for fixed H=2.5m as a function of T and
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wd, see Figure 11.12d for results.

In Figure 11.12f the results are shown for the operating water depth of 2500m. The regular results are
focused on, as explained earlier. As the natural period is increased the R becomes larger indicating an
amplification of the motion. The response at the last two natural periods 20.5s and 60.7s, has R greater
than one and much greater than one for 60.7s.

11.6.4 Summary

For irregular and regular input, see Table 11.11 and Table 11.12 respectively, for the parameters of
performance as a function of the natural periods for water depth of 2500m.

Considering Table 11.12, there is a large amplification of the hook/payload motion at the natural periods
of 20.5s and 60.7s. For the natural period of 2.9s there is small amplification of motion. This is likely due
to this period being relatively low which corresponds to a high frequency. This high frequency of input
motion in combination with the damping within the system will cause the motion to be attenuated. This
is because there are many cycles of motion due to the high frequency allowing damping to have a strong
effect. For the natural period of 12.3s there is a no amplification of motion as measured by β.

Table 11.11: Irregular input: SDA, R, and β as a function of Tp, for Hs=2.5m, for water depth of 2500m

Tp [s] SDA [m] R [-] Compensation rate, β [%]

60.7 17.39 12.61 -732.76

20.5 5.08 1.24 10.70

12.3 3.36 1.14 22.88

2.9 0.01 0.25 85.22

Table 11.12: Regular input: SDA, R, and β as a function of T, for H=2.5m, for water depth of 2500m

T [s] SDA [m] R [-] Compensation rate, β [%]

60.7 27.93 10.19 -1014.56

20.5 4.18 1.38 -74.27

12.3 1.34 0.36 11.28

2.9 0.16 0.06 93.09

11.7 Time domain results

The time domain results are shown for the design condition of Tp=8s and Hs=2.5m in water depth of
2500m in sections 11.7.1 and 11.7.2.

11.7.1 Irregular input results

For the irregular input the design conditions mean Tp=8s, Hs=2.5m, and a water depth of 2500m is
used. See Figures 11.13a, 11.14a, 11.15a, 11.16a, and 11.17a. The first 500s of the simulation is not
focused on since during this time a ramp function is used to increase the wave input to the vessel model
to avoid transient behavior in the system. This works by multiplying a linear function y(t) = 1

500 t with
the wave amplitude to gradually increase the forces on the vessel.
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11.7.2 Regular input results

The design conditions for the regular input are T=8s, H=2.5m, and a water depth of 2500m. See Figures
11.13b, 11.14b, 11.15b, 11.16b, and 11.17b.

11.7.3 Discussion of results

In the discussion below, the regular input results are focused on.
In Figure 11.13, the time-series for z1 (hook and payload motion) and zin (crane-tip motion) are shown
for irregular and regular input. The regular input results show the attenuation of motion clearly.

In Figure 11.14, the time-series for z1, zphc, zc, and zd are shown for irregular and regular input.
The regular input results are focused on and are as expected. The regular input results show the
displacement of Dyneema rope, zd, is much larger than the displacement of the other degrees of freedom.
This is reasonable since the Dyneema acts as a much softer spring than the steel rope. z1 is small in
maximum value since this is the movement of the hook/payload mass which is the mass to be controlled.
Furthermore, zphc has a small maximum value since this degree of freedom corresponds to the PHCS
cylinder. The piston connected to the hook/payload mass oscillates within the PHCS cylinder so it is
important the PHCS cylinder does not move significantly so that the hook/payload mass motion can be
controlled effectively. Thus, zphc should have a small maximum value.

In Figure 11.15, the time-series for Qr and Qr2 are shown for irregular and regular input. The regular
input results show that the flow-rate has lower frequency and magnitude now that fluid inertia is
included, compared to when there was no fluid inertia in section 7.9.4. With the fluid inertia the
flow-rate through the orifice cannot change instantaneously with a pressure change. The fluid inertia also
limits the magnitude of the flow-rate. These were issues when the fluid inertia was not included, where
flow-rate would change at an unrealistically high frequency and would have highly-varying magnitude.

In Figure 11.16, the pressures Pa1, Pp1, Pa3, and Pp2 are shown for irregular and regular input. The
regular input results show pressure magnitudes that vary across a reasonable range and do not have
unrealistically high frequency, as was the case without fluid inertia. The fluid inertia means it takes
more time for the fluid to move resulting in a slower pressure change. Without the inertia the pressure
would respond instantaneously to a volume change in the accumulator or PHC cylinder chamber. The
fluid inertia also limits the magnitude of the pressures. Having smoother changes in the pressures is
important so that the PHCS works as intended.

In Figure 11.17, the volume Vp1 (volume in lower chamber of cylinder) and Vp2 (volume in upper chamber
of cylinder) are shown for irregular and regular input. For both types of input the volumes vary inversely
proportional, when one volume increases the other decreases. This is physically correct. This is be-
cause the PHCS cylinder is a fixed control volume and the piston-head can only move within this volume.
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(a) Irregular input. z1 (hook and payload motion) and zin (crane-tip motion)

(b) Regular input. z1 and zin

Figure 11.13: Irregular and regular input results
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(a) Irregular input. z1, zphc, zc, and zd are shown in the sub-plots. The simulation is shown
from 500s to 1800s since the first 500s is the ramp-up transient period of the vessel model
so is not meaningful to discuss.

(b) Regular input. z1, zphc, zc, and zd are shown in the sub-plots. The simulation is shown
from 500s to 1800s to be consistent with the time-range for irregular input in Figure 11.14a

Figure 11.14: Irregular and regular input results
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(a) Irregular input. Qr is the volume flow-rate through the lower orifice and Qr,2 is the
volume flow-rate through the upper orifice, top sub-plot shows time from 500s to 1000s, this
is to show the frequency of the signal. The bottom sub-plot shows the simulation from 500s
to 1800s to show the overall time-series.

(b) Regular input. Qr is the volume flow-rate through the lower orifice and Qr,2 is the
volume flow-rate through the upper orifice. Comparison can be made with the irregular
input in Figure 11.15a.

Figure 11.15: Irregular and regular input results
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(a) Irregular input. Pa1, Pp1, Pa3, and Pp2 are the pressures in the system.

(b) Regular input. Pa1, Pp1, Pa3, and Pp2 are the pressures in the system. Comparison can
be made with the irregular input in Figure 11.16a.

Figure 11.16: Irregular and regular input results
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(a) Irregular input. Vp1 is the volume in the lower chamber of the cylinder and Vp2 is the
volume in the upper chamber of the cylinder.

(b) Regular input. Vp1 is the volume in the lower chamber of the cylinder and Vp2 is the
volume in the upper chamber of the cylinder. Comparison can be made with the irregular
input in Figure 11.17a.

Figure 11.17: Irregular and regular input results
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11.8 Conclusion

In this chapter, step 3 of the methodology in section 3.3 was completed by assessing the PHCS by itself
to see how well it can reduce heave motion by quantifying the performance with criteria of performance.
In chapter 12, step 4 of the methodology is started by coupling the PHCS with the vessel.
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12.1 Introduction

The PHCS is coupled with the vessel and crane models so that the PHCS gives feed-back to the vessel
model, this gives the coupled PHCS model defined as C-PHCS. A regular wave is used as input to the
vessel model and from the vessel model the crane-tip model produces the input signal to the PHCS.
This is step 4 of the methodology outlined in section 3.3

12.2 Time-domain results

The design conditions of T=8s, H=2.5m and water depth of 2500m are used. It was found that the
feed-back to the vessel provided by the PHCS has a negligible effect on the vessel. Thus, there is hardly
a difference with the results of the PHCS when using regular input, as was done in chapter 11. The
results for T=8s are shown in Figure 12.1 with R= 0.140, β=84.65%, and SDA=0.344m. This is similar
to the results without coupling with the vessel of R=0.137, β=83.24%, and SDA=0.380m. The results
are compared in Table 12.1, the percent differences are [2.2%, 1.7%, 9.5%] respectively for R, β, and
SDA.

Table 12.1: Difference between PHCS and C-PHCS

PHCS C-PHCS Percent difference

Wave period [s] R[-] β [%] SDA [m] R[-] β [%] SDA [m] R [%] β [%] SDA [%]

8 0.14 83.24 0.38 0.14 84.65 0.34 2.2 1.7 9.5

12.34 0.36 11.28 1.34 0.19 63.04 0.51 46.4 458.9 61.9

20.46 1.38 -74.27 4.18 1.57 -76.46 3.69 13.8 2.9 11.7

60.70 10.19 -1014.56 27.93 11.48 -959.70 24.53 12.7 5.4 12.2

Selected natural periods of the PHCS from Table 9.6 are used as periods for the wave. The chosen
natural periods are [12.34, 20.46, 60.70]s. The natural periods of [0.0207, 0.0208, 2.85]s are too small.
The natural periods are used to see if there is any special behavior occurring since the natural periods
are used. For natural periods [12.34, 20.46, 60.70]s the results are shown in Figures 12.3a, 12.3b, and
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12.3c respectively. The results are compared in Table 12.1. The results are similar except for the 12.34s
period here the percent differences are [46.4%, 458.9%, 61.9%] respectively for R, β, and SDA. This can
be explained by Figure 12.2 which shows the result when only the PHCS is used. The zin amplitude
is close to 1.25m whereas for the C-PHCS it is approximately 1m in Figure 12.3a. The reduction in
amplitude is because the vessel model and crane-tip model attenuate the motion. The z1 signal grows in
time for both cases although it grows quicker in the case of the PHCS since the zin amplitude is larger,
this explains the large difference in R, β, and SDA values.

The main effect of the coupling with the vessel is that the input signal zin to the PHCS is atten-
uated due to the vessel model and crane-tip model. This results in lower SDA values relative to
the PHCS only (better performance). The β values are improved as well whereas the R values are
slightly worse (higher). This is likely because the standard deviation of zin (σzin) for the C-PHCS is
lower relative to the PHCS since the wave amplitude is lower and standard deviation is proportional
to the amplitude. Since σzin is in the denominator of the equation for R it will increase R for smaller σzin .

To see the importance of the vessel’s natural roll period on the PHCS the natural roll period of the
vessel 16.3s is used, see Figure 12.3d. The results is an enlarged crane-tip motion with no special
behavior due to using the vessel’s natural roll period.

The feed-back of the PHCS on the vessel is negligible as shown in Figure 12.4. There is no visible
difference by eye between the coupled and uncoupled system.

Figure 12.1: C-PHCS: T=8s, the first 500s are a ramp-up period for the vessel model and are removed
from the analysis
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Figure 12.2: PHCS: T=12.34s, the first 500s are removed to be consistent with the figures above
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(a) T=12.34s (b) T=20.46s

(c) T=60.70s (d) T=16.3s

Figure 12.3: C-PHCS: The first 500s are a ramp-up period for the vessel model and are not included in
the analysis
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Figure 12.4: Coupled refers to the C-PHCS and uncoupled refers to the PHCS only

12.3 Conclusion

The effect of coupling the PHCS with the vessel model is not significant since the PHCS does not have
a significant feed-back effect on the vessel. The primary effect is that the input signal zin to the PHCS
is lowered in magnitude due to the vessel and crane-tip. This results in improved PHCS performance as
shown by the SDA value. Furthermore, for the design condition of T=8s there is no amplification of the
z1 motion indicating the C-PHCS does not have a natural frequency coinciding with the design wave
frequency. Overall, the C-PHCS model has good performance in reducing heave motion with R, β, and
SDA values generally close to those for the PHCS only. In chapter 13, the active heave compensation
system is coupled to the C-PHCS model. This is step 5 of the methodology in section 3.3.
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13.1 Introduction

The AHCS design is chosen and coupled with the PHCS, crane-tip and vessel models, to form the
C-HHCS model. The effect of enabling the AHCS on the performance of the C-HHCS is discussed.

13.2 Research question

In section 1.3, the main research question is:

How important is the change in natural period from when the active heave compensation system is
disabled to when the active heave compensation is enabled on resonance?

The research question was obtained by considering the scenario described by Mannigel [3] shown in
Figure 13.1. The natural period of the pile is 11s, the natural roll period of the vessel is 12.3s, and the
swell period is 12s. The natural period of the coupled pile and vessel system is 18.5s. From the research
question it is assumed when the AHCS is disabled the coupled pile and vessel system has a natural
period. It is assumed when the AHCS is enabled the effect is for there to be some de-coupling between
the vessel and the pile. This means the natural period of the coupled pile and vessel system does not
exist anymore. Instead, the vessel assumes its natural roll period and the pile assumes its natural
period. This is what is meant by the change in natural period from when the AHCS is disabled to when
it is enabled. For the case of Mannigel [3] since the vessel roll natural period, pile natural period, and
wave period are quite close (11s, 12.3s, and 12s respectively) then resonance does occur. The influence
of resonance is shown by the crane tip acceleration in Figure 13.2a and by the vessel roll amplitude
increase in Figure 13.2b.

The research question is addressed in section 13.9.6.
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Figure 13.1: Scenario [3]

(a) Resonance shown by crane tip acceleration [3] (b) Resonance shown by roll of vessel [3]

Figure 13.2

13.3 AHC design

The PHCS balances the load of the payload with the pressure difference in the cylinder. This means
the passive part takes a larger proportion of the force and the active part takes a smaller proportion of
the force. The AHCS is an electric rotary design. The main reasons to use an electric system are the
lower power consumption, higher efficiency, and smaller size relative to a hydraulic system, as discussed
in the literature review in section 2.2.5.

13.3.1 Variable frequency drive (VFD)

Since this thesis aims to use an electric winch for the AHCS part it is useful to consider ways to operate
an electric winch. To power the electric winch a motor is used. There are various motors available. The
main types of motors, in order of increasing efficiency, are: salient-pole permanent magnet (PM), non-
salient PM, synchronous-reluctance, switched-reluctance, and induction [64]. Although the induction
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motor is the least efficient in this comparison it is a relatively simple design, widely manufactured and
thus is relatively inexpensive. Therefore, the induction motor is selected. Various drives can be used
to control the electric motor. For induction motors the variable frequency drive (VFD) has been used
extensively and shown to be effective. Thus, the VFD is used to control the electric induction motor.
There are various motor-control methods. These methods are how the VFD controls the motor. There
are four main types of motor-control methods for an induction motor coupled to a VFD [65]:

1. V/f (volts-per-hertz)

2. V/f with encoder

3. open-loop vector

4. closed-loop vector

The main difference between these control methods is how they calculate the motor’s voltage require-
ments in time. These methods use pulse-width modulation (PWM), which is a method that varies the
width of a fixed signal by modulating pulse durations to generate a variable analog signal [65].

Since torque is more important than speed for an electric crane winch it seems the best way is to use
closed-loop vector control. This is because closed-loop vector control uses encoder feed-back with vector
control which enables 200% of the motor’s rated torque at 0 rpm. This is attractive for cranes which
need to hold a load without moving. Also, closed-loop control can operate a motor in torque-control
mode which lets the VFD control motor torque rather than motor speed. This is vital whenever torque
is more important than speed, which is the case for the crane winch [65].

To control the electric motor a variable frequency drive (VFD) is used. A specific motor-control method
is not used since modelling in this detail would result in the simulations taking a long time and would
not be practical for this thesis. With a VFD it is possible to assume that the motor torque generated
is independent of the motor rotation speed [36]. This allows the electric motor to be controlled using a
throttle so that that torque Te of the motor is controlled with the throttle d via equation (13.1). This is
better than modelling the entire electric motor such as current and voltage since these simulations would
take very long and would be impractical for this thesis.

Te =
{
Te,maxd : −1 ≤ d ≤ 1 (13.1)

13.3.2 Methods for controlling heave

One method to control heave is to prevent any changes in rope tension [53]. Another method is to use
trajectory tracking of the payload in an earth-fixed coordinate frame [34]. Johansen et al. achieved this
using feedforward with an estimate of the vessel’s vertical velocity [27]. Since the sea-bed landing is
of most interest, the trajectory tracking can be modified to hold the payload at a fixed position, right
above the sea-bed.

The trajectory tracking was used by controlling the motion of the payload and hook mass with the winch.
Since the Dyneema rope is connected to the winch to connect to the payload/hook mass this affects the
Dyneema rope extension as well. The result is shown in Figure 13.3a. The Dyneema displacement zd

is too large. Thus, trajectory tracking was combined with controlling rope tension. The result is shown
in Figure 13.3b. The Dyneema displacement is smaller and more reasonable. This means two control
loops should be used, one for the displacement of the hook/payload and the other for the tension in
the Dyneema. The disadvantage of having two loops is that there is the chance they interfere with
each other. Nicoll et al. tried this approach [36] and stated that the controllers should not interfere
significantly with each other since the tension controller responds to high frequency disturbances from
the heaving motion of the crane-tip whereas the displacement controller limits the low frequency drift
from the desired position. Thus, this approach with two loops is used. This concept is similar to that of
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Skaare and Egeland [29] discussed in the literature review section 2.3.1.2 where a parallel force/position
controller was used. The time-delay between the actuator and the payload at the end of the rope is
neglected. In reality there is a time-delay due to the finite speed of longitudinal pressure waves in
ropes [34].

(a) One control loop is used, using P control, controlling
z1

(b) Two control loops used, using P control for both
loops, controlling z1 and Fd

Figure 13.3

13.3.3 PID control

The use of PID control is investigated. The main components of a PID control system are the PID
controller, the reference signal, and the plant, see Figure 13.4. The equation for a PID controller is given
by (13.2) [66]:

u(t) = kpe(t) + ki

∫ t

0
e(τ)dτ + kd

d

dt
e(t) (13.2)

where u(t) is the plant input and e(t) is the tracking error which is the difference between the desired
input value r(t) and the plant output y(t). kp is the proportional gain which is multiplied with the
error. This is useful to decrease the steady-state error in the output. ki is the integral gain which is
multiplied with the integral of the error. This is used to remove the steady-state error left over. kd is
the derivative gain which is multiplied with the derivative of the error. This is used to decrease the time
it takes to have a steady output.

Taking the Laplace transform of (13.2) gives:

U(s) = kpE(s) + ki
E(s)

s
+ kd

(
sE(s)− e(0)

)
(13.3)

where e(0) is the initial error signal.

Figure 13.4: PID controller with plant [67]
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If it is possible to derive a mathematical model of the plant then various design techniques can be used to
determine parameters of the controller [68]. If the plant is too complex for a mathematical model to be
derived then an analytical approach cannot be used to determine the parameters of the controller. The
plant in this project is complex but an analytical expression for the mathematical model can be obtained.
This was done by obtaining the state-space equations and using the MATLAB function ‘ss2tf’ to obtain
the transfer function matrix. Despite having obtained this model, the transfer functions of interest are
high order, for the transfer function z1(s)

r1(s) the numerator is order 10 and denominator order 16. This
makes it complicated to use analytical methods such as the frequency-response approach. This means
that an experimental approach is used. A common experimental approach is to use the Ziegler-Nichols
rules. The Ziegler-Nichols rules approach gives a reasoned guess for the parameters and gives a starting
point for fine tuning [68]. To do this, values for kp, ki and kd are determined based on the transient
response characteristics of the plant. This was tried using the method of first having only proportional
control and increasing the gain until a critical value where the output has sustained oscillations. It
was not possible to find this critical gain. Since the system is quite complex it was decided to use the
numerical optimization algorithm within Simulink to find the gain constants.

13.3.4 Designing for stability

• First, the controller should be stable. Stability is defined as: all the poles of closed-loop transfer
function of the system must have negative real parts. This can be expressed as the real parts of
the eigenvalues of the system being negative [68]. For a multiple-input multiple-output system
like that used here, the system is stable if and only if every pole of every transfer function in the
transfer function matrix has a negative real part and every transfer function is proper (meaning
the number of poles is greater than or equal to the number of zeros)

• Second, it is important that the controller has enough relative stability [68]. To quantify this, the
gain and phase margins are used as design criteria.

13.3.4.1 Gain and phase margin

The phase margin γ is 180◦ plus the phase angle φ of the open-loop transfer function at the gain crossover
frequency [68]:

γ = 180◦ + φ (13.4)

The phase margin is the amount of additional phase lag at the gain cross-over frequency required to
bring the system to the beginning of instability. The gain cross-over frequency is the frequency where
the magnitude of the open-loop transfer function (|G(jω)| is 1. For a system to be stable, the phase
margin must be positive, ideally the phase margin is between 45◦ and 60◦.

The gain margin is the reciprocal of the magnitude |G(jω)| at the frequency where the phase angle is
−180◦ [68] (phase cross-over frequency). If ω1 is the frequency at which the phase angle of the open-loop
transfer function is −180◦ the gain margin is Kg:

Kg =
1

|G(jω1)|
(13.5)

In dB the gain margin is:
Kg = 20log(Kg) = −20log(|G(jω1)|) (13.6)

Kg in dB is positive if Kg > 1 and Kg in dB is negative if Kg < 1. For a stable system, the gain margin
tells how much the gain can be increased before the system is unstable. For an unstable system, the gain
margin indicates the magnitude by which the gain must be decreased to make the system stable [68].
The gain margin ideally is between 5 and 10 dB.
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13.3.5 LTI v time-varying

The state-space system has time-varying coefficients. This means the A,B,C,D matrices are not all
time-invariant. To obtain the transfer function matrix using ‘ss2tf(A,B,C,D)’ the assumption is that
the matrices are linear and time-invariant (LTI). Since they are not actually time-invariant, then the
transfer function matrix is not entirely correct, a limitation of this analysis.

13.4 Equations of motion

The contribution of the AHCS to the Dyneema extension is zd,a shown in (13.7):

zd,a = φwrw (13.7)

Where φw is the angle of the winch and rw is the winch radius.

From appendix A.8 the equation for zd for the PHCS is given by (A.140). This is repeated in (13.8). To
indicate this is the contribution of the PHCS to the movement of the Dyneema rope the variable zd is
re-written as zd,p, this is shown in (13.9):

z̈d =
1

(Md)

[
− kd(zd − zin)− kd(zd − z1)

]
(13.8)

z̈d,p =
1

(Md)

[
kd(−zd,p + zin − zd,a)− kd(zd,p − z1)

]
(13.9)

The first term in (13.9) introduces coupling between the PHCS and AHCS. This is why it depends on
zd,a and zd,p. This term is written as Fd in (13.10). The Dyneema spring force Fd depends on the winch
payout zd,a, the Dyneema rope displacement zd,p interacting with the PHCS, and the crane-tip motion
zin. The reason to use zd,a is that a positive value means the Dyneema is fed out, if the Dyneema mass
is pulled downwards (causing an upwards force on the Dyneema mass) then the Dyneema being fed out
acts to reduce the extension of the Dyneema and the tension. The Dyneema spring force Fd acts on the
crane-tip to cause a roll moment on the vessel, shown in (13.12). It is assumed the worst case scenario,
where the crane jib is extended as far horizontally as possible by a distance yb to produce moments
Pd and Pc. It is also assumed the roll moment acts in the positive roll direction, acting as a positive
moment. The steel rope spring force from the PHCS cylinder and steel rope is included as a force acting
at the same location as the crane-tip shown in (13.11), this also produces a roll moment on the vessel,
shown in (13.13):

Fd = kd(zin − zd,p − zd,a) (13.10)

Fc = kc(zin − zc) (13.11)

Pd = ybFd (13.12)

Pc = ybFc (13.13)

Applying Newton’s second law to the winch in Figure 13.5 gives:

Jwφ̈w = Te + Fdrw − sign(φ̇w)Tb −Bwφ̇w (13.14)

Where Jw is the moment of inertia of the winch, φw is the rotation angle of the winch, Te is the torque
of the motor, Fd is the tension in Dyneema, Tb is the brake torque, and Bw is a rotational damping
coefficient. A paper on an AHCS using a winch by Nicoll et al. [36] was used.
Re-arranging for φ̈w gives (13.15).
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Figure 13.5: Winch

φ̈w =
Te + Fdrw − sign(φ̇w)Tb −Bwφ̇w

Jw
(13.15)

To control the winch a throttle is used d. This governs the torque produced by the winch motor. There
is a linear relationship between torque and throttle:

Te =
{
Te,maxd : −1 ≤ d ≤ 1 (13.16)

Where Te,max is the maximum torque produced by the motor, which is a constant. This is because it
is assumed the motor torque generated is independent of the motor rotation speed. This is possible
through using a VFD [36]. To limit the payout speed of Dyneema a brake controller is needed [36].

A payout penalty is defined:

p = |żd,a| − żd,a,max (13.17)

where p is the payout penalty. This payout penalty governs the brake torque, Tb:

Tb =

{
2Te,max

0.05żd,a,max
p : p ≥ 0

0 : p < 0
(13.18)

żd,a,max is the constant maximum allowable payout rate, and żd,a is the payout rate:

żd,a = φ̇wrw (13.19)

It is assumed that the pressures from the accumulators in the PHCS cancel out the static wet weight
of the hook/payload. This is because the static wet weight of the hook/payload is held by the piston
and the piston is floating inside the cylinder, held in place by the pressures from the accumulators.
Thus, the static weight of the hook/payload is transferred to the accumulator system. This means
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that the Dyneema, which is attached to the piston, does not experience tension due to the static wet
weight of the hook/payload. This is an idealization and in reality there will likely be some tension in
the Dyneema. This tension is included since the Dyneema should be in tension so that the winch can
work. Furthermore, the PHCS cylinder is held by the steel ropes which are attached to the crane. The
connection is made to the crane and not to the AHCS winch. Thus, in this sense the steel ropes are
independent of the AHCS winch. This means the AHCS winch only interacts with the forces acting on
the Dyneema.

The zd,p is used with other elements of the system. It is used with the equation of motion for the
hook/payload mass (A.137) from appendix A.8 repeated below in (13.20). By using zd,p in (13.20) the
hook and payload mass is controlled by the winch to some extent. The is because zd,p is coupled with
zd,a:

z̈1 =
1

(Mhook,payload +Ahook,payload)[
Pp1Ap − Pp2Ap + Fwater − Fwater + ρwaterVdg

−Mhook,payloadg −
1

2
ρwaterCd,hook,payloadDhook,payload|ż1|ż1 − kd(z1 − zd,p)

] (13.20)

13.4.1 Equation of motion for winch

Substituting (13.19) into (13.17) gives:

p = |φ̇wrw| − żd,a,max (13.21)

Substituting (13.21) into (13.18) gives (13.22):

Tb =

{
2Te,max

0.05żd,a,max
(|φ̇wrw| − żd,a,max) : p ≥ 0

0 : p < 0
(13.22)

Substituting (13.10) for Fd, (13.22) for Tb, into (13.15) gives (13.23):

φ̈w =
Te +

(
kd(zin − zd,p − zd,a)

)
rw − sign(φ̇w)

(
2Te,max

0.05żd,a,max
(|φ̇wrw| − żd,a,max)

)
−Bwφ̇w

Jw
(13.23)

Substituting (13.16) for Te into (13.23) gives (13.24), the equation of motion for the winch:

φ̈w =
Te,maxd+

(
kd(zin − zd,p − zd,a)

)
rw − sign(φ̇w)

(
2Te,max

0.05żd,a,max
(|φ̇wrw| − żd,a,max)

)
−Bwφ̇w

Jw
(13.24)

13.4.2 System parameters

See Table 13.1 for the system parameters. The radius is based on the radius of a winch Jumbo has used
in the design from Parkburn, a radius rw = 1.5m. The mass of the same winch is Mw = 32t. To calculate
the moment of inertia of the winch, Jw, it is assumed the winch is a solid cylinder with the moment of
inertia taken around the central axis of the cylinder, this means:

Jw =
1

2
Mwr

2
w (13.25)

A solid cylinder is assumed instead of a hollow cylinder since this is a closer approximation to the winch
than a hollow cylinder. The mass of the winch is assumed to not include the rope. This is because the
winch is a traction winch so only four loops of Dyneema are around the winch at any time and the mass



CHAPTER 13. C-HHCS 132

of four loops is small. The rest of the Dyneema is stored on the storage winch, this part is not modelled
to simplify the dynamics. Furthermore, the maximum torque the motor can provide is determined by
considering the power of the motor. The total power is 440kW. The relationship between power and
torque is:

P = τω (13.26)

where P is power, τ is torque, and ω is angular velocity. Re-arranging for torque:

τ =
P

ω
(13.27)

It was assumed that the motor torque is independent of the rotation speed since a VFD is used. This
means an arbitrary ω is used to obtain maximum torque. The angular velocity is limited by the maximum
payout rate. The maximum payout rate is the maximum value of:

żd,a = φ̇wrw (13.28)

or:
żd,a,max = φ̇w,maxrw = ωmaxrw (13.29)

ωmax =
żd,a,max

rw
(13.30)

Assuming the maximum payout rate is 10m/s then the maximum angular velocity is:

ωmax =
10m/s

1.5m
= 6.67rad/s (13.31)

Assuming the maximum power is 95% of the total power, to take into account friction and resistance
losses, then the maximum power is Pmax = 418kW. Using (13.27) gives an expression for maximum
torque:

τmax =
Pmax

ωmin
(13.32)

The minimum pay-out rate, ωmin, is arbitrarily chosen as 1% of ωmax, thus ωmin = 0.0667rad/s. Substi-
tuting Pmax = 418kW and ωmin = 0.0667rad/s into (13.32):

τmax =
418kW

0.0667rad/s
(13.33)

τmax = 6.27e6Nm (13.34)

To determine the rotational damping coefficient, the work by Nicoll et al. [36] was used. Nicoll et al.
used a rotational damping value of Bw = 0.025Nms and a maximum torque Te,max = 1e5Nm. This
gives a ratio of rotational damping value to maximum torque of 2.5e-7s. Assuming the same ratio, the
rotational damping value for this motor is given by:

Bw = 6.27e6Nm ∗ 2.5e− 7s = 1.57Nms (13.35)

Table 13.1: System parameters

Parameter Value

rw 1.5 [m]

Mw 32e3 [kg]

Jw 36e3 [kgm2]

Te,max 6.27e6 [Nm]

Bw 1.57 [Nms]

żd,a,max 10[m/s]
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Figure 13.6: Closed loop control block diagram
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13.4.3 PID controller interaction

The control block diagram used is shown in Figure 13.6. As mentioned in section 13.3.2, two control
loops are used. One controls the tension in the Dyneema, Fd, and the other controls the displacement
of the hook/payload, z1.
The controller blocks are described:

• The controller for the displacement (controller 1) has input as the error between the displacement
set point and the current displacement of hook/payload, the output is a throttle.

• The controller for the tension (controller 2) has input as the error between the tension set point
and the current Dyneema tension, the output is a throttle.

The two throttle outputs are summed to produced the summed throttle which is used in (13.16) to
produce the motor torque, Te. This motor torque is put into the winch equation (13.15) to determine
φw which is used in (13.7) to calculate zd,a. zd,a is then used in (13.9) to find zd,p, this zd,p is used in
(13.20) to find z1.

13.5 PI controller, open-loop model

The open-loop model of Figure 13.6 is in Figure 13.7. The transfer function for this is obtained below.

Figure 13.7: Open loop model

13.5.1 Loop controlling z1, displacement

u1(t) = kp,1r1(t) + ki,1

∫ t

0
r1(τ1)dτ1 (13.36)

Removing the integral for convenience so that there is only one dependent variable t:

u1(t) = kp,1r1(t) + ki,1(r1(t)− r1(0)) (13.37)

13.5.2 Loop controlling Fd, tension

u2(t) = kp,2r2(t) + ki,2

∫ t

0
r2(τ2)dτ2 (13.38)

Removing the integral for convenience so that there is only one dependent variable t:

u2(t) = kp,2r2(t) + ki,2(r2(t)− r2(0)) (13.39)
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Combining (13.37) and (13.39) to give the throttle d:

d(t) = u1(t) + u2(t) (13.40)

d(t) = kp,1r1(t) + ki,1(r1(t)− r1(0)) + kp,2r2(t) + ki,2(r2(t)− r2(0)) (13.41)

Collecting like terms:

d(t) = [kp,1 + ki,1]r1(t)− ki,1r1(0) + [kp,2 + ki,2]r2(t)− ki,2r2(0) (13.42)

13.5.3 Final equation of motion for winch

The equation of motion for the winch in (13.24) changes since the throttle d has open-loop control. This
changes the motor torque Te. Substituting (13.42) for d into the equation for Te (13.16) gives (13.43):

Te = Te,max

(
[kp,1 + ki,1]r1(t)− ki,1r1(0) + [kp,2 + ki,2]r2(t)− ki,2r2(0)

)
(13.43)

Substituting (13.43) for Te, (13.10) for Fd, and (13.22) for Tb into (13.15) gives (13.44):

φ̈w =

Te,max

(
[kp,1 + ki,1]r1(t)− ki,1r1(0) + [kp,2 + ki,2]r2(t)− ki,2r2(0)

)
+
(
kd(zin − zd,p − zd,a)

)
rw

Jw
+

−sign(φ̇w)
(

2Te,max

0.05żd,a,max
(|φ̇wrw| − żd,a,max)

)
−Bwφ̇w

Jw
(13.44)

13.6 HHCS equations

The equations for the PHCS and AHCS combined to form the HHCS are in appendix A.21.

13.7 Non-linear HHCS state-space equations

The non-linear state-space equations for the HHCS are in appendix A.22.

13.8 Linear HHCS state-space equations

The linearized state-space equations for the HHCS are in appendix A.23.

13.9 Response

13.9.1 Simulink tuning

The reference signal for displacement z1 is 0 since it is aimed to minimize motion of the hook/payload.
The Dyneema rope needs to be in tension this means there should be initial tension and the reference
signal for tension should be non-zero. The reference signal for tension Fd is 10% of the static wet weight
of the hook and payload mass. The numerical optimization algorithm within Simulink was used to find
the gain constants.
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Initially, proportional (P) control was used for both controllers in Figure 13.6. To improve the results,
proportional integral control was used (PI) this was more effective. Proportional derivative (PD) control
and PID control were tested but did not provide better results than PI control. Using D control is
undesirable since the non-linear nature of the system means the signals are not always smooth. This
presents a problem when differentiating the signal to use the derivative control. In theory PID control
provides the best control since it takes into account the past, present, and future of the signal. It was
decided to not investigate PID or PD control further.

Still the HHCS does not out-perform the PHCS in every measure of performance. A possible explanation
is that that numerical optimization algorithm in Simulink has found a local optimization point instead
of a global optimization point. More detailed control design can be done but this is outside the scope
of this thesis. For industrial active heave compensation systems the control schemes are much more
complex thus it cannot be expected that a PID-type controller implemented in this thesis would be
highly effective. Further discussion on why the HHCS does not out-perform the PHCS is in section 13.9.5.

13.9.2 Stability by eigenvalues

From section 13.9.1, the parameters for controller 1 in Figure 13.6 are kp,1 = 0 (P gain) and ki,1 =-2.38e-6
(I gain) and for controller 2 kp,2 =-5.24e-7 (P gain) and ki,2=-1.14e-10 (I gain) . The state-space matrices
for the open-loop system are shown in appendix (A.23.4). From the A matrix the eigenvalues are found
using these parameters for the controller in Table 13.2. All the real parts are negative, meaning the
system is stable.

Table 13.2: Eigenvalues, natural frequencies, natural periods

Eigenvalue λ Natural frequency ωn [rad/s] Natural period [s]

-4.6266e-18 0 inf

-3.1367e-16 0 inf

-5.1338e-05 0 inf

-1044.9 0 inf

-0.00046 - 0.1835i 0.1835 34.2323

-0.00046 + 0.1835i 0.1835 34.2323

-2.5747e-05 - 0.5090i 0.5090 12.3434

-2.5747e-05 + 0.5090i 0.5090 12.3434

-9.5059e-05 - 0.5472i 0.5472 11.4814

-9.5059e-05 + 0.5472i 0.5472 11.4814

-0.00028 - 2.2020i 2.2020 2.8534

-0.00028 + 2.2020i 2.2020 2.8534

-0.0243 - 301.8674i 301.8674 0.0208

-0.0243 + 301.8674i 301.8674 0.0208

-0.0242 - 303.9571i 303.9571 0.0207

-0.0242+ 303.9571i 303.9571 0.0207

13.9.3 Gain and phase margin

The phase and gain margins are found for the PI gains used in section 13.9.2. Four transfer functions
are available; z1(s)

r1(s) , Fd(s)
r1(s) , z1(s)

r2(s) , and Fd(s)
r2(s) . Where r1 is the reference signal for z1 and r2 is the reference

signal for Fd. The transfer function of interest is z1(s)
r1(s) since this gives the motion of the hook/payload.

Table 13.3 shows the gain/phase margins. The gain margin is 97.1dB and the phase margin is infinite.
The phase margin is infinite since the gain cross-over frequency is never encountered. These gain and
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phase margins are unrealistic. This is because generally a real physical system should not have any
parameter that is tending to infinity. As mentioned in section 13.3.5 to obtain the state-space matrices
the equations for the AHCS had to be simplified and the terms in the A matrix are not all constant.
This could lead to the gain and phase margins being unrealistic. Nevertheless, the gain and phase
margins indicate the system is relatively robust. If the gain and phase margins have a large error it is
still possible the correct gain and phase margins provided good relative stability. The time response is
shown in section 13.9.4.

Table 13.3: Gain and phase margins

Transfer function Gain margin [dB]

Phase
cross-over
frequency

[rad/s]

Phase margin [◦]

Gain
cross-over
frequency

[rad/s]
z1(s)
r1(s) 97.1 0.5090 Inf not defined
Fd(s)
r1(s) -4.161 0 -88.1 0.0015
z1(s)
r2(s) 110.2 0.5090 Inf not defined
Fd(s)
r2(s) 8.9 0 -81.3 3.3e-4

13.9.4 Time response

For the design conditions of H=2.5m, T=8s, water depth of 2500m the C-HHCS performance parameters
are SDA=0.402m, R=0.203, and β=63.06%. Performance is worse than the C-PHCS which achieved
SDA=0.344m, R = 0.140 and β = 84.65% from Table 12.1. For the C-HHCS the SDA is 16.9% higher
than for the C-PHCS, the R is 45.0% higher, and the β is 25.5% lower.

Figure 13.8: C-HHCS: Motion results (8s period)
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(a) T=12.34s (b) T=20.46s

(c) T=60.70s (d) T=16.3s

Figure 13.9: C-HHCS: The first 500s are a ramp-up period for the vessel model and are not included in
the analysis

13.9.5 Comparison with C-PHCS

Table 13.4: Summary of data from C-PHCS, C-HHCS

C-PHCS C-HHCS Percent difference

Wave period [s] R[-] β [%] SDA [m] R [-] β [%] SDA [m] R [%] β [%] SDA [%]

8 0.14 84.65 0.34 0.20 63.06 0.40 42.9 25.5 17.6

12.34 0.19 63.04 0.51 1.13 -55.75 2.10 494.7 188.4 311.8

16.30 0.18 64.64 1.69 0.53 42.78 5.34 194.4 33.8 215.9

20.46 1.57 -76.46 3.69 0.83 -13.19 1.74 47.1 82.7 52.8

60.70 11.48 -959.70 24.53 1.56 -104.34 3.15 86.4 89.1 87.2

The design conditions of H=2.5m and water depth of 2500m are considered with various periods. The
time response for 8s period shows attenuation of motion, see Figure 13.8. As was done in chapter 12,
in Figure 13.9 the time response for the natural periods of the PHCS [12.34, 20.46, 60.70]s and the roll
natural period of the vessel, 16.3s, are shown.
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See Table 13.4 for the numerical values of the results from the C-PHCS and C-HHCS. To compare
performance the SDA is used since this provides a measure of how much the hook/payload moves. This
provides a clear way to observe the effect of the active system.

Figure 13.10a shows SDA as a function of input period for the C-PHCS and C-HHCS. The C-HHCS
has higher values than the C-PHCS. This means the AHCS amplifies the motion relative to when only
the PHCS is used. At 12s the C-HHCS has a peak in SDA. For the C-PHCS, there is a peak at 13s
but the magnitude of the peak is smaller than for the C-HHCS. These peaks arise from resonance due
to the natural period at 12.34s. The AHCS amplifies the motion from the resonance. A time-series
comparison between the C-PHCS and C-HHCS at the 12.34s period is shown in Figure 13.11a, showing
the influence of resonance by beating in the C-HHCS results. The influence on the vessel of the C-PHCS
and C-HHCS is negligible, see Figure 13.11b. This means the peak in SDA for the C-HHCS is due to
the effect of the AHCS rather than the coupling with the vessel. Furthermore, at the 16.3s natural roll
period of the vessel, the C-HHCS has worse performance than the C-PHCS from comparing Figure
13.9d with Figure 12.3d. For the design period, T=8s, in Figure 13.12, the time-series of z1 from the
C-HHCS and C-PHCS results are shown. The C-HHCS again has worse performance than the C-PHCS.

At the 20.46s natural period the C-HHCS has better performance than the C-PHCS, comparing Figure
13.9b with Figure 12.3b. This is also the case for the 60.70s natural period. This is opposite to the case
of the 8s, 12.34s, and 16.3s periods, where the C-HHCS has worse performance. It appears at the higher
periods the C-HHCS has better performance than the C-PHCS. This could be related to the two loop
control strategy where one loop controls the displacement z1 and another the tension in the Dyneema
rope. The I gain for the controller for z1 has a larger magnitude than the P and I gains for the controller
for the tension, suggesting the controller for z1 has a larger influence. The larger input periods mean
there are lower frequency z1 and tension disturbances. Since the controller for z1 sees lower frequency
disturbances and likely has a larger influence than the other controller this enables the controller to be
more effective than the other one. The lower frequency disturbances mean there is more time for a control
action to correct a particular disturbance before the disturbance changes. This could explain why at
larger input periods the AHCS is more effective than at smaller periods, so the C-HHCS is more effective.

It is attempted to explain why when the AHCS is enabled the heave compensation performance is worse
relative to when the AHCS is disabled, independent of the period used. The simplest explanation is
that the controller parameters are not optimal. However, this is not the only explanation. Another
explanation is that the control strategy of two control loops, one for tension in the Dyneema and
one for displacement z1 is not ideal for the way the PHCS is coupled with the AHCS. The controller
is directly controlling the Dyneema rope attached to the hook/payload. The steel rope connecting
the PHCS cylinder to the crane-tip is not controlled directly. The steel rope has a role in the
movement of the hook/payload, though less of a role than the Dyneema rope. Nevertheless, the steel
rope displacement, zc, should perhaps be considered more directly in the control strategy. This is
because the steel rope acts as a stiffer spring than the Dyneema rope so it has a strong influence
in the entire HHCS. The displacement of the steel rope, zc, could be considered in a third control
loop leading to a different control strategy. As mentioned in section 13.3.2, it is possible that the
two loops interfere with one another. Nicoll et al. [36] said this was unlikely since the loop for
tension responds to high frequency disturbances and the loop for displacement responds to lower
frequency disturbances. However, for the HHCS this may not be the case, there could be interference
between the two controllers. Furthermore, the kind of controller used is a PI controller. Other
kinds of controllers within the PID scope were used such as PI, PD, and PID. PI provided the most
effective control out of these. Another kind of controller could be attempted while using the same
control strategy of the two control loops mentioned earlier. Alternatively, a different control strategy
with a different kind of controller could provide a better control effect. This can be done for further work.

To show the performance using the other parameters, see Figure 13.10b for R v. T, see Figure 13.10c
for β v. T, these results agree with those in Figure 13.10a for SDA v. T.
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(a) SDA v. T

(b) R v. T (c) β v. T

Figure 13.10
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(a) Motion results (12.34s period), for C-HHCS and C-
PHCS

(b) Vessel heave, roll, and sway motions for 12.34s wave
period. There is a negligible difference between the C-
PHCS and C-HHCS.

Figure 13.11
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Figure 13.12: Motion results (8s period)

13.9.6 Addressing research question

The research question in section 1.3 is addressed:

How important is the change in natural period from when the active heave compensation system is
disabled to when the active heave compensation is enabled on resonance?

From the research question it is assumed when the AHCS is disabled the C-HHCS has a natural
period. It is assumed when the AHCS is enabled the effect is for there to be some de-coupling between
the vessel and the PHCS. This means the natural period of the C-HHCS does not exist anymore.
Instead, the vessel assumes its natural roll period (16.3s) and the PHCS assumes its natural periods
(12.34s, 20.46s, 60.70s). If the wave period is close to any of these natural periods, then resonance occurs.

It was found the issues of vessel roll amplitude increase and crane-tip acceleration, in section 13.2, when
activating the AHCS did not appear. The answer to the research question is: the change in natural
period when activating the AHCS is not important on resonance. In fact, enabling the AHCS does
not lead to a change in natural period that influences the resonance behavior. Instead it was found,
assuming the wave period is at a natural period of the PHCS, the controller is responsible for the
resonance motion being amplified. It should be noted that the resonance occurs whether or not the
AHCS is enabled, but enabling the AHCS amplifies the resonance.

The natural period of the C-HHCS was not determined since this was not important to know, what
is important is the behavior of the vessel and PHCS when the AHCS is enabled. The natural roll
period of the vessel (16.3s) as well as the natural periods of the PHCS (12.34s, 20.46s, 60.70s) were
used as wave periods and the compensation performance found in Table 13.4. To measure resonance,
the SDA value is used. At 12.34s and 16.3s, the resonance of the C-HHCS was larger than that for the
C-PHCS. Enabling the AHCS enlarges the resonance. This was explained in section 13.9.5 as due to
the controller. At 16.3s, there is resonance in the roll motion of the vessel since this is the natural roll
period, this contributes to the enlarged SDA. However, at the other natural periods the vessel motions
are not noticeably influenced by the HHCS, whether the AHCS is enabled or not. At 20.46s and 60.70s,
the resonance of the C-HHCS was smaller than that of the C-PHCS. This was explained in section
13.9.5 as being because the AHCS had more time to have an effect due to the lower wave period so it
could reduce the resonance.
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A replication of the scenario investigated by Mannigel [3] described in section 13.2 is considered. This
means the vessel roll period is the same as one of the natural periods of the PHCS, for example 12.34s
and the wave period is also 12.34s. Then it is expected the SDA for the C-HHCS will be larger than
that for the C-PHCS. The factor by which the SDA for the C-HHCS is larger than for the C-PHCS is
expected to be even larger than that found for 12.34s in Table 13.4, where the vessel natural period is
16.3s so the vessel was not excited at resonance. If the vessel is excited at resonance it will contribute
to larger crane-tip motion and hook/payload motion and thus SDA.

Mannigel [3] claimed for the scenario described in section 13.2 that when disabling the AHCS the res-
onance motion stopped abruptly. This is supported by Figure 13.2a where the crane-tip acceleration
has a steep reduction. Mannigel’s explanation is that this was because the natural period of the system
changed when the AHCS was disabled so the resonance stopped. It can be argued that if this was the
reason the resonance motion would not stop so abruptly. If the reason is that the controller was am-
plifying the motion due to an issue with the controller design this seems more likely. This is because
the pile was at a 1200m water depth. There is a reasonable amount of damping and added mass from
water at this water depth. For the change in natural period to have an effect it is expected it would take
some time due to the system being distributed over such a large water depth. Furthermore, there is a
time-delay for motion at one of the rope to propagate to the other end. The longitudinal propagation
of motion for the rope can be described with the rod model, using the wave speed the time-delay for
motion to propagate from one end to the other is:

Td = Lc

√
ρ

E
(13.45)

where ρ is the density, E is the modulus, and Lc is the length. Assuming high tensile steel, for a 1200m
rope the time-delay is approximately 2.4s. If the controller was amplifying the motion this time-delay is
sufficiently small to allow for the abrupt end of the resonance motion. It is smaller than the expected
time for a change in natural period of the system to have an effect. Thus, Mannigel’s explanation is not
favored, instead it is believed the phenomenon was due to an issue with the controller design. However,
a limitation of this argument is that the controller used by Mannigel is different from the one used in
this investigation, so it is difficult to provide a clear answer.

13.10 Conclusion

In this chapter, modelling of the AHCS was done. The PHCS and AHCS were combined with the
vessel model and crane-tip model and results shown. The effect of the AHCS is to amplify the motion,
especially at certain natural periods of the PHCS. When enabling the active part the vessel motions are
not affected noticeably for any of the periods considered. This means the amplification of motion when
enabling the active part is due to the HHCS solely and not from an interaction with the vessel. This is
part of step 5 of the methodology in section 3.3. In chapter 14 a sensitivity study is done to see the effect
of taking into account water damping and added mass on the Dyneema rope by considering coupled axial
and transverse motion.



Sensitivity study:
continuous rope model

14
14.1 Introduction

The large design water depth of 2500m means the damping due to water will reduce the heave motion
of the rope attached to the hook/payload. In this chapter, this reduction in heave motion of the rope
will be considered to do a sensitivity study.

14.2 Steel rope versus Dyneema rope

The Dyneema rope is more susceptible to the damping from water in deep water. This is because the
Dyneema rope has a much smaller weight in water than the steel rope. This means, in the absence of
current, the Dyneema rope forms a shallow catenary whereas the steel rope forms a large catenary. The
larger catenary can absorb more energy by reducing the catenary [69]. In contrast, the Dyneema rope
benefits less from this mechanism meaning it has larger motions when the rope is being moved at its
ends by the crane-tip for example.

Furthermore, as mentioned in section 7.5.5 the ratio ρwater/ρrope is higher for the Dyneema rope than
the steel rope. This means the added mass has a stronger effect for the Dyneema rope than the steel rope.

For the two reasons above it is decided to model the Dyneema rope as a continuous structural element
and not the steel rope. The rope is modelled as a string and rod that are coupled. The equations of
motion and coupling are described below.

14.3 String

The coordinate system is shown in Figure 14.1.

144
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Figure 14.1: Coordinate system

14.3.1 Equation of motion

The equation of motion for a string in a general form is:

ρA
∂2w(z, t)

∂t2
=

∂

∂z

(
T
∂w(z, t)

∂z

)
+ q1(z, t) (14.1)

where ρ is the density of the Dyneema rope, A is the cross-sectional area of the Dyneema rope, w is the
transverse displacement, z is the coordinate along the axis, T is the tensile axial force in the rope, and
q1 is external force.

14.3.2 Assumptions

• Continuous

• One-dimensional model

• Cross-sectional area A is constant along the length

The mechanical behavior of the rope, which is much longer in one direction than in the two others,
depends on the time and position along the rope.

14.4 Rod

14.4.1 Equation of motion

A general form of the equation of motion is:

ρA
∂2u

∂t2
= EA

∂

∂z

(∂u
∂z

)
+ q(z, t)A (14.2)

where E is the modulus of the material and q is the body force.
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14.4.2 Assumptions

• Thin rod

• Particles move along the longitudinal axis only

• Straight, prismatic rod, cross-sectional area A is constant along the length

• Elastic, homogeneous rod, E is constant along the length

14.4.3 Wave equation

Both (14.2) and (14.1) are analogies of the wave equation. This means for motion at one end to have an
effect at the other end a finite amount of time is needed.

14.5 Coupling terms

The string (14.1) and rod (14.2) equations of motion are coupled with the coupling terms described below.

14.5.1 String

In (14.1) the T term is given by:

T = EA
∂u

∂z
(14.3)

This is derived by considering the stress in the rod σ:

T = σA (14.4)

Where σ is from:
σ = Eε (14.5)

Where the strain ε is:

ε =
∂u

∂z
(14.6)

Substituting T into (14.1) gives:

ρA
∂2w

∂t2
− EA ∂

∂z

(∂u
∂z

∂w

∂z

)
= q1(z, t) (14.7)

Where q1 is the external force due to the water:

q1(z, t) = −Amass
∂2w

∂t2
− 1

2
ρwaterCdDrope|

∂w

∂t
|∂w
∂t

(14.8)

where Amass is the added mass per meter, ρwater is the density of water, Cd is the drag coefficient, Drope

is the diameter of the rope.
Substituting q1 into (14.7) and then simplifying and applying the product rule gives:

∂2w

∂t2
=

EA

ρA+Amass

(
∂u

∂z

∂2w

∂z2
+
∂2u

∂z2

∂w

∂z

)
−

1
2ρwaterCdDrope

ρA+Amass
|∂w
∂t
|∂w
∂t

(14.9)

14.5.2 Rod, q

In (14.2) the q term is given by:

q = E
∂w

∂z

∂2w

∂z2
(14.10)

Substituting q into (14.2) and simplifying:

∂2u

∂t2
=
E

ρ

∂2u

∂z2
+
E

ρ

∂w

∂z

∂2w

∂z2
(14.11)
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14.5.3 Equations

The equations to solve are (14.9) and (14.11), they are repeated below:

∂2w

∂t2
=

EA

ρA+Amass

(
∂u

∂z

∂2w

∂z2
+
∂2u

∂z2

∂w

∂z

)
−

1
2ρwaterCdDrope

ρA+Amass
|∂w
∂t
|∂w
∂t

(14.12)

∂2u

∂t2
=
E

ρ

∂2u

∂z2
+
E

ρ

∂w

∂z

∂2w

∂z2
(14.13)

14.6 Boundary conditions

14.6.1 String

The equation is second order in space so at each end there is one boundary condition (BC).

14.6.1.1 Crane-tip side

At the end of the string attached to the crane-tip there is a kinematic BC, sway motion of the crane-tip:

w(z = 0, t) = ycrane−tip(t) (14.14)

14.6.1.2 Hook side

At the end of the string attached to the payload there is a dynamic BC, given by the product of the
mass of the hook/payload and second time derivative of w:

T
∂w

∂z
= −Mhook,payload

∂2w

∂t2
(14.15)

T was given earlier in (14.3), substituting this in and re-arranging for ∂w
∂z :

∂w

∂z
(z = L, t) =

−Mhook,payload
∂2w(L,t)
∂t2

(EA∂u(L,t)
∂z )

(14.16)

14.6.2 Rod

14.6.2.1 Crane-tip side

At the end of the rod attached to the crane-tip there is a kinematic BC, heave motion of the crane-tip:

u(z = 0, t) = zcrane−tip(t) (14.17)

14.6.2.2 Hook side

At the end of the rod attached to the payload there is a dynamic BC, given by the product of the mass
of the hook/payload and second time derivative of u:

EA
∂u

∂z
= −Mhook,payload

∂2u

∂t2
(14.18)

Re-arranging for ∂u
∂z :

∂u

∂z
(z = L, t) = −

Mhook,payload
∂2u(L,t)
∂t2

EA
(14.19)
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14.7 Initial conditions

The equations are second order in time so two initial conditions (IC) are needed for each equation. Both
string and rod are initially not displaced nor having a velocity.

14.7.1 String

w(z, t = 0) = 0 (14.20)

∂w

∂t
(z, t = 0) = 0 (14.21)

14.7.2 Rod

u(z, t = 0) = 0 (14.22)

∂u

∂t
(z, t = 0) = 0 (14.23)

14.8 Solution

The equations of motion are given by (14.13) and (14.12). The boundary conditions are given in section
14.6 and the initial conditions in section 14.7. With these governing equations the system can be solved.
The partial differential equation (PDE) represented by (14.13) and by (14.12) are both non-linear. In
general, a non-linear PDE can be solved analytically for only certain types of equations [70]. It is not
known if there is an analytical solution to the PDEs considered. In contrast, a numerical solver can
in most cases obtain the numerical solution. For this reason, the PDEs are solved with a numerical solver.

As mentioned in chapter 12 the effect of the coupling between the vessel and the PHCS is negligible.
So it is not necessary to considered the PHCS coupled with the vessel, the PHCS can be considered by
itself. As mentioned in chapter 13 the HHCS has performance that is highly dependent on the control
parameters used. Since the control parameters were selected in a relatively simple manner they do not
provide very effective performance. To more clearly see the effect of using the continuous rope model
it is better to use it with the simplest model possible, thus the PHCS by itself is used. The PHCS is
implemented in a numerical solver in MATLAB thus MATLAB is used to solve the PDEs so that the
PDEs can be coupled with the PHCS.

14.8.1 Numerical method of lines

The method of lines is used to solve the PDEs numerically. This is done by discretizing the PDEs in
space and then solving the equations in time using an available solver, ‘ode45’ was used since this was
the fastest. When coupling the PDEs with the PHCS a stiff solver, ‘ode23s’, was used since the PHCS
has a stiff system of equations. The PDEs alone were solved using ‘ode23s’ to compare with the results
of ‘ode45’, the results were essentially the same. The difference is the ‘ode23s’ solver took longer than
the ‘ode45’ solver. Nevertheless, the ‘ode23s’ solver was used to solve the coupled system of the PDEs
with the PHCS, since the PHCS is stiff.

To discretize in space various methods can be used such as finite difference, finite volume, and finite
element [71]. The finite difference method is chosen since this method is relatively simple and sufficient
for the one-dimensional case considered. A reference used for the implementation of the method of lines
is a book by Schiesser and Griffiths [72].
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14.8.2 Finite difference scheme

The equations of motion (14.12) and (14.13) are both non-linear. There is no generalized numerical
scheme that can solve every type of non-linear PDE. This means a trial-and-error approach is needed to
obtain a numerical scheme that works. For a numerical solver the key things to know are if it has stability
and if it converges [73]. Convergence means if the numerical solution converges to an analytical solution
when the grid in time and space is refined. Stability means the solution does not grow un-bounded in time.

The equations of motion (14.12) and (14.13) both involve first and second derivatives with respect to
the spatial coordinate z. The terms involving first derivatives with respect to z are convective and the
terms involving second derivatives are diffusive. The convective property means the variable is convected
along the spatial coordinate from left to right if the coordinate system starts on the left. For this type
of physics an upwind finite difference scheme is more suitable than a centered finite difference scheme.
This is because this takes into account the direction the information is being propagated in, whereas the
centered difference scheme uses information from both directions [73]. It is better to use a higher order
finite difference (FD) approximation than first order, since first order FD can give numerical diffusion
due to severe truncation of the Taylor series.

A 4th order biased upwind discretization was used to obtain the first derivative. This was successively
applied to obtain the second derivative. Schiesser [71] provides various codes for obtaining first and
second derivatives using various order centered and upwind methods. With these codes a trial-and-error
approach in the finite difference scheme could be done relatively quickly.

14.8.3 Stability and convergence

Despite trying various finite difference schemes the results eventually became unstable in time. This is
likely due to the non-linear coupled terms in the equations of motion. To make the results more stable,
artificial viscosity was added [74]. This was done by adding the term:

νw
∂2w

∂z2
(14.24)

to the right-hand side of (14.12) and the term:

νu
∂2u

∂z2
(14.25)

to the right-hand side of (14.13), where νw and νu are artificial viscosities. This dissipation of the
variables gave better stability although this influences the physics of the problem. The solution is not
accurate and becomes closer to the correct solution when the constants νw and νu go to zero. However,
the solution is useful since it is relatively stable and has values that are reasonable physically, but the
accuracy is limited. It is better to avoid using artificial viscosity and trying a different discretization
especially adapted to non-linear PDEs should be tried. Furthermore, the convergence of the solutions
was not verified. This is because the artificial viscosity will always make the solution inaccurate so having
convergence is not believed to be meaningful.

14.8.4 Coupling to PHCS

The input to the PHCS model is the longitudinal displacement of the rod at the end of the rod, u(z = L, t),
a function of time. This replaces the zd input in (14.26) to get (14.27):
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z̈1 =
1

(Mhook,payload +Ahook,payload)[
Pp1Ap − Pp2Ap + Fwater − Fwater + ρwaterVdg

−Mhook,payloadg −
1

2
ρwaterCd,hook,payloadDhook,payload|ż1|ż1 − kd(z1 − zd)

] (14.26)

z̈1 =
1

(Mhook,payload +Ahook,payload)[
Pp1Ap − Pp2Ap + Fwater − Fwater + ρwaterVdg

−Mhook,payloadg −
1

2
ρwaterCd,hook,payloadDhook,payload|ż1|ż1 − kd(z1 − u(z = L, t))

] (14.27)

For coupling the rope and PHCS, the boundary conditions discussed in section 14.6 of ∂w
∂z (z = L, t) and

∂u
∂z (z = L, t) need to be considered. These two boundary conditions are functions of the acceleration
at the rope tip and the hook/payload mass, which is the inertia of the hook/payload mass. In reality,
since the rope tip is attached to the piston of the PHCS cylinder the effect of the PHCS on the rope
includes the dynamics from the pressure forces acting on the piston inside the cylinder. Since this effect
is excluded, this limits the amount of coupling between the rope and PHCS. Nevertheless, the inertia
of the hook/payload mass likely dominates the dynamics at this location and is the more important
information to consider.

14.9 Results

The effect of the continuous Dyneema rope model relative to the discrete Dyneema rope model used to
obtain results in chapter 11 is investigated. The goal of the sensitivity study is to investigate the effect
of the damping of Dyneema rope motion due to the large water depths on the hook/payload motion.
Thus, the performance of the PHCS is not as important as the motion of the hook/payload motion.
The SDA gives a direct measure of the motion of the hook/payload motion so is used.

The SDA as a function of period for H=2.5m and regular input is shown in Figure 14.2a from section
11.5.1. The same results but using the continuous model of the Dyneema rope is shown in Figure 14.2b.
The effect of using the continuous model of the Dyneema rope is to reduce the magnitude of the SDA.
This is most noticeable at close to the natural periods. In Figure 14.2a there are peaks for 1000m water
depth at 5s and 12s. As mentioned earlier these peaks are due to there being natural periods close to
5s and 12s. With the continuous rope model in Figure 14.2b the peaks are not there. This is likely
due to the natural periods not existing anymore at these periods due to the different rope model used.
Furthermore, the Dyneema rope motion is reduced due to taking into account the damping due to the
water. Since the hook/payload is directly coupled to the Dyneema rope then this should result in a
reduced hook/payload motion thus smaller SDA.
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(a) Discrete (b) Continuous

Figure 14.2

14.10 Conclusion

The sensitivity study of replacing the discrete Dyneema rope model with a continuous model shows that
the SDA is reduced for the water depths and periods considered. This shows that the damping at large
water depths has an important effect on reducing the motions of the Dyneema rope.
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15
In the introduction of the report the main research objective of the project was given as:

The main research objective is to make a design of a modular and removable deep-water hybrid heave
compensation system for an offshore crane installed on a monohull heavy lift vessel. This is accomplished
by identifying and then assessing designs of heave compensation systems and selecting a design. The
hybrid heave compensation system is modelled as a numerical time-domain model.

In this chapter, a summary is given in section 15.1 of the steps taken towards achieving the main research
objective. The results are discussed in section 15.2. Discussion is made on the modelling choices in this
project in section 15.3. Recommendations for further work are given in section 15.4. Finally, a summary
of the contributions of this project is given in section 15.5.

15.1 Summary

In chapter 2, a literature review was done to mainly review existing active heave compensation methods.
This formed a theoretical basis for the project. In chapter 3, a multi-criteria analysis was done to choose a
HHCS concept. In chapter 4, the available numerical vessel model was described. To obtain the crane-tip
motions from the vessel model a crane-tip model was needed, this was described in chapter 5. In chapter
6, the PHCS part of the HHCS was investigated by first introducing the PHCS cylinder. In chapter 7,
this cylinder was used to create the entire PHCS. First, one accumulator was used and this was tested
with the throttle, orifice, and Darcy-Weisbach type flow restrictors. The throttle and orifice were used
further since the Darcy-Weisbach system had poor performance. Two accumulators were used in the
PHCS and this was tested with the throttle and orifice. After trying these different flow restrictors, the
final flow restrictor chosen was the orifice. This model was further improved by including fluid inertia
in the model to remove un-physical behavior such as instantaneous changes in pressure and hydraulic
oil flow-rate. The initial pressures and volumes of the PHCS were sized for a natural frequency outside
of realistic wave frequencies in chapter 8. This was done to avoid the PHCS being excited through
resonance by any realistic sea-state. The natural frequencies of the PHCS were identified in chapter 9.
In chapter 10, the natural frequencies were verified by looking at the frequency and time response of
the PHCS. The performance of the PHCS was assessed in chapter 11. In chapter 12, the PHCS was
combined with the crane-tip and vessel model and the influence of this coupling assessed. The AHCS
was designed in chapter 13 and combined with the PHCS to form the HHCS. The HHCS was coupled
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with the crane-tip and vessel model to see the effect of activating the active part on the response of the
system. In chapter 14, the Dyneema rope was modelled as a continuous structural element to account
for damping due to water. This was done as a sensitivity study to compare with the results of modelling
the rope as a discrete mass.

15.2 Results

Firstly, the results from chapter 11 are described since this gives the performance of the PHCS by itself.
It was found for the design conditions of 8s period, 2.5m wave height, and 2500m water depth that the
PHCS works with reasonable performance. Decreasing the water depth can result in an amplification
of the hook/payload motion due to the natural periods of the system being shifted. This is due to the
natural period being inversely proportional to rope stiffness. Thus, it is important to take this into
account when designing a PHCS. The natural periods of the PHCS in design conditions showed a large
amplification of motion at the larger natural periods, as would be expected. For the smaller natural
periods, the larger frequency of motion enables the damping present to drain energy, avoiding a large
amplification of motion.

Secondly, the results from chapter 12 of the coupled PHCS model are described to show the impact of
coupling with the vessel. There was a negligible effect on the vessel of using the PHCS. The influence
on the PHCS is that the wave motions transferred to the crane-tip are attenuated due to the vessel and
crane. This means the PHCS sees a smaller zin input signal compared to when the PHCS operates by
itself.

Thirdly, the results from chapter 13 of the coupled HHCS model are described to show the effect of
activating the active part of the HHCS. This answers the main research question mentioned in the
introduction in section 1.3:

How important is the change in natural period from when the active heave compensation system is
disabled to when the active heave compensation is enabled on resonance?

Activating the AHCS does not lead to a change in natural period that influences the resonance behavior.
Therefore, the change in natural period is not important on resonance. It was found that the controller
can result in pre-existing resonance motion to be amplified, depending on which natural period of the
PHCS is considered. Thus, the controller design is a key part of the HHCS and careful controller design
is needed when using HHC systems in practice.

The influence of water depth on the performance of the PHCS, C-PHCS, and C-HHCS is shown in
Figure 15.1. The performance is measured by the compensation rate β where 0% is no compensation
and 100% is complete compensation. With decreasing water depth the following occurs; the PHCS has
decreasing β, the C-PHCS has greater decreasing β, and the C-HHCS has the greatest decreasing β.
A possible explanation for decreasing β with decreasing water depth is that there is a smaller mass
of Dyneema/steel rope with decreasing water depth. This smaller mass produces larger movements
of the Dyneema/steel rope for a given input acceleration since the ropes have less inertia. Since the
hook/payload is directly coupled to the Dyneema rope an increase in Dyneema rope motion results in
an increase in hook/payload motion, leading to lower β.

It is expected the C-HHCS has the greatest decrease in β with decreasing water depth since the
controller parameters are optimized for a certain water depth, 2500m. If the C-HHCS operates at
another water depth than 2500m it is reasonable the performance worsens. In reality, if the controller
parameters are optimized for each water depth than at smaller water depths the performance should be
greater than at larger water depths, with everything else being equal. This is because at smaller water
depths the motions of the rope takes less time to propagate between the crane-tip and hook/payload.
This is because the motion is governed by physics similar to that of waves, as mentioned in chapter 14.
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This means the control action of the controller has less delay which generally leads to better performance.

The design requirement in section 3.2 of compensation for 2.5m of heave motion within 8 seconds was
not satisfied. This was likely due to the relatively simple controller design used. Commercial systems
use more advanced methods that would likely be able to satisfy this design requirement. These methods
were not made available for this thesis by Bosch Rexroth, a company Jumbo Maritime is working with
for the AHCS. So it was necessary for the author to come up with a controller design leading to the
simple controller design used.

Figure 15.1: Compensation rate β as a function of water depth, for H=2.5m and T=8s

15.3 Discussion

To produce the models in this project various simplifications and assumptions were needed. These are
discussed.

For the PHCS cylinder the assumptions used are described in section 6.2. To size the pressure system
further assumptions were used in section 8.2.1. To obtain the equations of motion of the PHCS various
assumptions were used, given in section 7.5.

A key simplification is that the added mass and water drag on the PHCS and hook/payload are included
but neglected for the Dyneema and steel rope. Furthermore, the steel and Dyneema rope are assumed
to only move in the vertical direction. If both these simplifications for the steel and Dyneema rope are
undone then they would move transversely. This transverse motion would be damped by the damping
present for the long lengths of rope considered. This would result in smaller transverse motions of the
ropes and consequently smaller heave motions of the ropes. In the sensitivity study in chapter 14 this
was considered and resulted in smaller motions of the hook/payload mass. This means that the damping
from water has an effect at large water depths.

The added mass for the PHC cylinder and hook/payload mass is taken from the added mass at infinite
frequency. The added mass is actually frequency dependent and is generally lower for lower frequencies
meaning the added mass would likely be smaller if this frequency dependence was accounted for. This
would generate larger motions meaning the results obtained are under-predicting the motions.

A key assumption for the PHCS cylinder is that the accumulators undergo adiabatic and reversible
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processes. The adiabatic assumption is close to reality since the gas in the accumulators experiences
quick compression and expansion meaning there is little time for heat to escape. However, the reversible
assumption means there are no losses in energy due to friction. This implies the accumulators act more
efficiently than in reality. Since the accumulators store energy there is more energy stored allowing for
more effective heave compensation. This means the performance is better than possible in reality.

15.4 Recommendations

In this project it was assumed there is no current. When a current exists vortex-induced vibration can
occur. This means the rope moves in a direction transverse to the current due to a modified pressure
distribution around the rope. There would be coupling into the vertical plane which would affect the
heave motion of the ropes and thus the hook/payload. This is why vortex-induced vibration could be
examined in future work since it can amplify the motion of the hook/payload.

The inclusion of a roll-reduction system could be done which reduces the roll of the vessel since this is a
large contributor to the heave motion of the crane-tip. If this system operates in parallel to the HHCS
it is likely more effective heave compensation can be achieved. Since the roll-reduction system is also
an active system it is important to design the controller parameters to take into account the HHCS, to
ensure an effective choice of parameters.

The HHCS and vessel model could be combined into a state-space system. Using this state-space
system, the transfer functions of the system can be obtained and the open-loop performance can be
found. This will give the gain and phase margins of the coupled system which is likely more accurate
than the gain and phase margins obtained in this project.

The PID controller design could be investigated further. This can be done by using the state-space
system of the combined HHCS and vessel model. Alternatively, more advanced controller design using
an optimization procedure can be used to design the controller. Furthermore, the time-delay existing
between the winch and the hook/payload from the large water depths could be taken into account, in a
similar way to work by Kuchler and Sawodny [34].

For solving the coupled PDEs for the continuous model of the rope different numerical schemes could
be attempted. Using artificial viscosity it not an ideal method due to the inaccuracies this introduces.
More advanced numerical schemes especially adapted to non-linear PDEs can be attempted.

15.5 Contributions

The main contribution of this work is a numerical time-domain model of a hybrid heave compensation
system coupled with a crane-tip and vessel model. A further model is the passive heave compensation
model using a continuous Dyneema rope model instead of a discrete Dyneema rope model.



List of Figures
2.1 A schematic of the primary control method [10] . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 A schematic of the secondary control method [10] . . . . . . . . . . . . . . . . . . . . . . 7
2.3 A schematic of the LAHCS [14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 A diagram from Bosch Rexroth showing the key differences between PHC and AHC

systems [16] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 A diagram of the three coupled masses, for definitions of the variables see the paper by

Korde [22] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 A schematic of an AHCS using an electro-hydraulic system being driven by a double rod

actuator, for definitions of the variables see the paper by Do and Pan [26] . . . . . . . . 12
2.7 Crane model from Sawodny et al., for definitions of the variables see the paper by

Sawodny et al. [34] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Ideal modelling and simulation process [38] . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Concept 1: using a roll reduction system . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Concept 2: the linear active heave compensation system . . . . . . . . . . . . . . . . . . 19
3.4 Concept 3: electric winch at the top of the crane and a passive cylinder integrated with

the hook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Six degrees of freedom for three axes with the origin at the center of gravity [41] . . . . 24

5.1 Coordinate system [41] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 RAO for 6 degrees of freedom [41] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Vertical crane-tip motion in the top sub-plot in blue with vessel heave in red, in the

bottom sub-plot the vessel roll is shown . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.1 Schematic of the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.1 Schematic of the PHCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.2 In the literature this system is referred to as the plunger cylinder [51] . . . . . . . . . . 39
7.3 Schematic of the PHCS with two accumulators . . . . . . . . . . . . . . . . . . . . . . . 40
7.4 In the literature this system is referred to as the double-acting cylinder [51] . . . . . . . 41
7.5 Variables for the initial conditions of the pressure system of the PHCS . . . . . . . . . . 50
7.6 Design iteration loop shown [38] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.7 Throttle: rms reduction ratio as function of accumulator volume . . . . . . . . . . . . . 55
7.8 Orifice: rms reduction ratio as function of accumulator volume . . . . . . . . . . . . . . 56
7.9 Schematic of the PHCS with two accumulators and orifices, fluid inertia is included in

the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.10 Time-series for z1, zphc, zc, and zd are shown . . . . . . . . . . . . . . . . . . . . . . . . 60

156



LIST OF FIGURES 157

8.1 A diagram of the PHCS with just accumulators . . . . . . . . . . . . . . . . . . . . . . 62
8.2 A diagram showing the variables defined in Table 8.1 . . . . . . . . . . . . . . . . . . . 63
8.3 For piston-head diameter dp,tot = 0.3m the natural frequency of the accumulator system

is given as a function of the lower accumulator initial pressure P1 = Pa1,1. The horizontal
line corresponds to the design natural frequency. . . . . . . . . . . . . . . . . . . . . . . 66

8.4 A schematic for the upper case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.5 A schematic for the lower case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

9.1 A diagram of the LAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
9.2 A diagram of the RLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
9.3 A diagram of the ORLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

10.1 Base case, for the LAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
10.2 Base case, time-response of Pa3 and Pa1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
10.3 Base case, bode plot for z1, the RLAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
10.4 Time-series for z1 for five input frequencies . . . . . . . . . . . . . . . . . . . . . . . . . 84

11.1 Pierson-Moskowitz spectrum discretized with 582 frequency bins . . . . . . . . . . . . . 88
11.2 Pierson-Moskowitz spectrum discretized with 10 frequency bins . . . . . . . . . . . . . . 89
11.3 SDA: Irregular and regular input results . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
11.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
11.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
11.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
11.7 z1 (hook and payload motion) and zin (crane-tip motion), top sub-plot shows data for

time from 0s to 500s. There is some transient behavior initially, as would be expected.
The bottom sub-plot shows the full simulation time from 0s to 1800s. . . . . . . . . . . 98

11.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
11.9 Compensation rate: Irregular and regular input results . . . . . . . . . . . . . . . . . . . 101
11.10 R ratio: Irregular and regular input results . . . . . . . . . . . . . . . . . . . . . . . . . 103
11.11 Irregular and regular input results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
11.12 Irregular and regular input results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
11.13 Irregular and regular input results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
11.14 Irregular and regular input results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
11.15 Irregular and regular input results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
11.16 Irregular and regular input results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
11.17 Irregular and regular input results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

12.1 C-PHCS: T=8s, the first 500s are a ramp-up period for the vessel model and are removed
from the analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

12.2 PHCS: T=12.34s, the first 500s are removed to be consistent with the figures above . . 121
12.3 C-PHCS: The first 500s are a ramp-up period for the vessel model and are not included

in the analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
12.4 Coupled refers to the C-PHCS and uncoupled refers to the PHCS only . . . . . . . . . 123

13.1 Scenario [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
13.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
13.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
13.4 PID controller with plant [67] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
13.5 Winch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
13.6 Closed loop control block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
13.7 Open loop model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
13.8 C-HHCS: Motion results (8s period) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



LIST OF FIGURES 158

13.9 C-HHCS: The first 500s are a ramp-up period for the vessel model and are not included
in the analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

13.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
13.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
13.12 Motion results (8s period) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

14.1 Coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
14.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

15.1 Compensation rate β as a function of water depth, for H=2.5m and T=8s . . . . . . . . 154

A.1 Cylinder control volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
A.2 Packet control volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
A.3 Check the spring stopper works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
A.4 Throttle: rms reduction ratio as function of accumulator volume . . . . . . . . . . . . . 182
A.5 Throttle: pressure time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
A.6 Throttle: time series for key degrees of freedom . . . . . . . . . . . . . . . . . . . . . . . 183
A.7 Bottom accumulator, note that Qa = Qr . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
A.8 Upper accumulator, note that Qa,u = Qr,2 . . . . . . . . . . . . . . . . . . . . . . . . . . 186
A.9 A schematic for the upper case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
A.10 A schematic for the lower case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
A.11 Upper case, for the LAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
A.12 Lower case, for the LAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
A.13 Upper case, time-response of Pa3 and Pa1 . . . . . . . . . . . . . . . . . . . . . . . . . . 218
A.14 Lower case, time-response of Pa3 and Pa1 . . . . . . . . . . . . . . . . . . . . . . . . . . 218
A.15 Upper case, bode plot for z1, the RLAM. . . . . . . . . . . . . . . . . . . . . . . . . . . 220
A.16 Lower case, bode plot for z1, the RLAM. . . . . . . . . . . . . . . . . . . . . . . . . . . 220
A.17 Time-series for z1 for five input frequencies . . . . . . . . . . . . . . . . . . . . . . . . . 222
A.18 Time-series for z1 for five input frequencies . . . . . . . . . . . . . . . . . . . . . . . . . 223
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A.1 Euler-Lagrange method

The Euler-Lagrange approach uses the Euler-Lagrange equation defined by:

d

dt

( ∂L
∂q̇k

)
− ∂L

∂qk
= QNPk (A.1)

Where QNPk refers to the generalized forces and subscript NP means from non-potential sources. L is
the Lagrangian. k indicates the number of the degree of freedom considered. q represents the variable
for the degree of freedom. (A.1) is applied to each coordinate so there will be as many equations as
coordinates [75].

The degrees of freedom are zc = q1,

zc q1

zd q2

zphc q3

z1 q4

zin q5

The kinetic energy part of the Lagrangian is

T =
1

2
Mcż

2
c +

1

2
Mdż

2
d +

1

2
Mhook,payloadż

2
1 +

1

2
Mphcż

2
phc (A.2)

The potential energy part of the Lagrangian is

V =
1

2
kd(zin − zd)2 +

1

2
kd(zd − z1)2 +

1

2
kc(zin − zc)

2 +
1

2
kc(zc − zphc)

2 (A.3)

Thus

L = T − V =
1

2
Mcż

2
c +

1

2
Mdż

2
d +

1

2
Mhook,payloadż

2
1 +

1

2
Mphcż

2
phc

−
(1

2
kd(zin − zd)2 +

1

2
kd(zd − z1)2 +

1

2
kc(zin − zc)

2 +
1

2
kc(zc − zphc)

2
) (A.4)

For k = 1, q1 = zc the equation of motion, with QNP,1 = 0

d

dt

( ∂L
∂q̇1

)
− ∂L

∂q1
= 0 (A.5)

d

dt

( ∂L
∂q̇1

)
=
∂L

∂q1
(A.6)

d

dt

( ∂L
∂żc

)
=
∂L

∂zc
(A.7)

d

dt

(
∂

∂żc

[1

2
Mcż

2
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1

2
Mdż

2
d +

1

2
Mhook,payloadż

2
1 +

1

2
Mphcż

2
phc

−
{1

2
kd(zin − zd)2 +

1

2
kd(zd − z1)2 +

1

2
kc(zin − zc)

2 +
1

2
kc(zc − zphc)

2
}])

=
∂

∂zc

[1

2
Mcż

2
c +

1

2
Mdż

2
d +

1

2
Mhook,payloadż

2
1 +

1

2
Mphcż

2
phc

−
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2
kd(zin − zd)2 +

1

2
kd(zd − z1)2 +

1

2
kc(zin − zc)

2 +
1

2
kc(zc − zphc)

2
}]

(A.8)

Using the product rule of calculus
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d

dt

(
2

2
Mcżc

∂żc

∂żc

)
=

∂

∂zc

[
−
{1

2
kc(zin − zc)

2 +
1

2
kc(zc − zphc)

2
}]

(A.9)

d

dt

(
Mcżc

∂żc

∂żc

)
= −

{2

2
kc(zin − zc)

∂(zin − zc)

∂zc
+

2

2
kc(zc − zphc)

∂(zc − zphc)

∂zc

}
(A.10)

d

dt

(
2

2
Mcżc(1)

)
= −

{2

2
kc(zin − zc)(−1)(1) +

2

2
kc(zc − zphc)(1)(1)

}
(A.11)

(Mc)z̈c = kc(zin − zc) + kc(zphc − zc) (A.12)

The steps in equations (A.5) to (A.12) are repeated for the other degrees of freedom, zd and zphc. Similar
to zc no external forces are assumed since quadratic damping due to water is ignored. These steps are
omitted for brevity, the results are:

(Md)z̈d = kd(zin − zd) + kd(z1 − zd) (A.13)

(Mphc +Aphc)z̈phc = kc(zc − zphc) (A.14)

For z1 there are external forces these are the force generated by the pressure difference on the piston
head, the water pressure force which is cancelled out, the buoyancy force, and the gravity weight force.
Using (A.1)

d

dt

( ∂L
∂q̇4

)
− ∂L

∂q4
= QNP,4 (A.15)

d

dt

( ∂L
∂ż1

)
=
∂L

∂z1
+QNP,z1 (A.16)

With

QNP,z1 = Pp1Ap−Pp2Ap +Fwater−Fwater +ρwaterVdg−Mhook,payloadg−
1

2
ρwaterCd,hookDhook,payload|ż1|ż1

(A.17)
This gives:

(Mhook,payload +Ahook,payload)z̈1 = kd(zd − z1) +QNP,z1 (A.18)

(Mhook,payload +Ahook,payload)z̈1 =

kd(zd − z1) + Pp1Ap − Pp2Ap + Fwater − Fwater + ρwaterVdg −Mhook,payloadg

−1

2
ρwaterCd,hookDhook,payload|ż1|ż1

(A.19)

In summary the equations of motion are:

(Mhook,payload +Ahook,payload)z̈1 =

kd(zd − z1) + Pp1Ap − Pp2Ap + Fwater − Fwater + ρwaterVdg −Mhook,payloadg

−1

2
ρwaterCd,hookDhook,payload|ż1|ż1

(A.20)

(Mphc +Aphc)z̈phc = kc(zc − zphc) (A.21)

(Mc)z̈c = kc(zin − zc) + kc(zphc − zc) (A.22)

(Md)z̈d = kd(zin − zd) + kd(z1 − zd) (A.23)

These are identical to those obtained using the displacement method, verifying the original equations
are correct.
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Figure A.1: Cylinder control volume

Figure A.2: Packet control volume

A.2 Derivation of equation (7.36)

Since the fluid is oil it has a high bulk modulus so an approach to take is to use the bulk modulus
relationship

−K∆V = V∆P (A.24)

Applying (A.24) taking the cylinder as the control volume, see Figure A.1, a positive increase in volume
is upwards, for a given pressure change ∆P

−K
(
Ap(z1 − zphc)

)
= V1∆P (A.25)

Applying (A.24) taking a packet of volume in the pipe as the control volume, see Figure A.2, a positive
increase in volume is leftwards, for the same given pressure change ∆P

−K∆Vr = V2∆P (A.26)

Adding together (A.25) and (A.26)
Taking a packet of volume in the pipe as the control volume

−K∆Vr −K
(
Ap(z1 − zphc)

)
= V1∆P + V2∆P (A.27)

−K∆Vr −K
(
Ap(z1 − zphc)

)
= (V1 + V2)∆P (A.28)
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Defining V = V1 + V2

−K∆Vr −K
(
Ap(z1 − zphc)

)
= (V )∆P (A.29)

Taking infinitesimally small pressure change and using the time derivative operator d
dt on both sides of

(A.29)

d

dt

[
−K∆Vr −K

(
Ap(z1 − zphc)

)]
= (V )

dP

dt
(A.30)

(V )
dP

dt
=

d

dt

[
−K∆Vr −K

(
Ap(z1 − zphc)

)]
(A.31)

(V )
dP

dt
=

d

dt

[
−K

(
Ap(z1 − zphc)

)
−K∆Vr

]
(A.32)

(V )
dP

dt
= K

[
−
(
Ap

d

dt
(z1 − zphc)

)
− d

dt
(∆Vr)

]
(A.33)

Defining qr = d
dt(∆Vr), ż1 = d

dt(z1), żphc = d
dt(zphc), V = Vp1,1, and Ṗp1 = dP

dt , gives

Ṗp1 =
K

Vp1,1

[
−Ap(ż1 − żphc)− qr

]
(A.34)

(A.34) is the same as equation (7.36), this concludes the derivation.
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A.3 Derivation of linearized state-space equations

Need to get everything in the form of a linear, time-invariant system [68]

q̇(t) = Aq(t) + Bu(t) (A.35)

ẏ(t) = Cq(t) + Du(t) (A.36)

A.3.1 Hook and payload equation of motion

The non-linear hook and payload equation of motion is shown in (A.37):

(Mhook,payload +Ahook,payload)z̈1 =

Pp1Ap − Pp2Ap + Fwater − Fwater + ρwaterVdg

−Mhook,payloadg −
1

2
ρwaterCd,hook,payloadDhook,payload|ż1|ż1 − kd(z1 − zd)

(A.37)

(A.37) needs to be linearized. This is done using the Taylor series approach given by steps given by [68].
Where:

y = f(x) (A.38)

with operating condition around x̄ gives

y = f(x̄) +
df

dx
(x− x̄) +

1

2!

d2f

dx2
(x− x̄)2 + ... (A.39)

Derivatives such as df
dx are evaluated at x = x̄, if the variation x− x̄ is small then higher-order terms in

x− x̄ can be neglected, resulting in
y = ȳ +K(x− x̄) (A.40)

with:
ȳ = f(x̄) (A.41)

and:

K =
df

dx
|x=x̄ (A.42)

which gives a linear relationship between y and x.
Linearizing (A.37) with (A.40). The only thing to linearize is:

1

2
ρwaterCd,hook,payloadDhook,payload|ż1|ż1 (A.43)

the magnitude operator is removed otherwise there would be a time-dependent coefficient in the state-
space matrices, which violates the assumption of a time-invariant system. Thus, linearize:

y = f(ż1) =
1

2
ρwaterCd,hook,payloadDhook,payload(ż1)2 (A.44)

It is chosen to linearize at the operating point ż1 = xbar. This gives:

ȳ =
1

2
ρwaterCd,hook,payloadDhook,payload(xbar)

2 (A.45)

Applying the chain rule

df

dż1
=

2

2
ρwaterCd,hook,payloadDhook,payload(ż1)

dż1

dż1
= ρwaterCd,hook,payloadDhook,payload(ż1) (A.46)

Evaluating at ż1 = xbar, this gives

K =
df

dż1
|ż1=xbar = ρwaterCd,hook,payloadDhook,payload(xbar) (A.47)
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Thus the linearized equation is

y =
[1

2
ρwaterCd,hook,payloadDhook,payload(xbar)

2+ρwaterCd,hook,payloadDhook,payload(xbar)(ż1−xbar)
]

(A.48)

Using this form in (A.37)

(Mhook,payload +Ahook,payload)z̈1 = Pp1Ap − Pp2Ap + Fwater − Fwater + ρwaterVdg −Mhook,payloadg

−
[1

2
ρwaterCd,hook,payloadDhook,payload(xbar)

2 + ρwaterCd,hook,payloadDhook,payload(xbar)(ż1 − xbar)
]
− kd(z1 − zd)

(A.49)

(Mhook,payload +Ahook,payload)q̇2 = Pp1Ap − Pp2Ap + Fwater − Fwater + ρwaterVdg −Mhook,payloadg

−
[1

2
ρwaterCd,hook,payloadDhook,payload(xbar)

2 + ρwaterCd,hook,payloadDhook,payload(xbar)(q2 − xbar)
]
− kd(q1 − q7)

(A.50)

(Mhook,payload +Ahook,payload)q̇2 = Pp1Ap − Pp2Ap + Fwater − Fwater + ρwaterVdg −Mhook,payloadg

−
[
− 1

2
ρwaterCd,hook,payloadDhook,payload(xbar)

2 + ρwaterCd,hook,payloadDhook,payload(xbar)(q2)
]
− kd(q1 − q7)

(A.51)
Defining Fexternal for the constant terms:

Fexternal = Fwater−Fwater +ρwaterVdg−Mhook,payloadg+
1

2
ρwaterCd,hook,payloadDhook,payload(xbar)

2 (A.52)

Substituting Fexternal into (A.51) gives:

q̇2 =

1

(Mhook,payload +Ahook,payload)

(
q11Ap − q9Ap + Fexternal − ρwaterCd,hook,payloadDhook,payload(xbar)(q2)

−kd(q1 − q7)

)
(A.53)

To shorten the equation (Mhook,payload +Ahook,payload) is defined as αhook,payload:

αhook,payload = (Mhook,payload +Ahook,payload) (A.54)

Substituting in αhook,payload gives:

q̇2 =

1

(αhook,payload)

(
q11Ap − q9Ap + Fexternal − ρwaterCd,hook,payloadDhook,payload(xbar)(q2)

−kd(q1 − q7)

) (A.55)

ρwaterCd,hook,payloadDhook,payload(xbar) is defined as βhook,payload

βhook,payload = ρwaterCd,hook,payloadDhook,payload(xbar) (A.56)

Substituting in βhook,payload gives:
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q̇2 =

1

(αhook,payload)

(
q11Ap − q9Ap + Fexternal − βhook,payload(q2)

−kd(q1 − q7)

) (A.57)

A.3.2 PHCS equation of motion

The non-linear PHCS equation of motion is shown in (A.58):

(Mphc +Aphc)z̈phc = −kc(zphc − zc)−
1

2
ρwaterCd,phcDphc|żphc|żphc (A.58)

Following the same steps as in appendix A.3.1, the function to linearize is:

y = f(żphc) =
1

2
ρwaterCd,phcDphc(żphc)

2 (A.59)

The linearization point is żphc = xbar,phc.

y =
[1

2
ρwaterCd,phcDphc(xbar,phc)

2 + ρwaterCd,phcDphc(xbar,phc)(żphc − xbar,phc)
]

(A.60)

Substitute (A.60) into (A.58). Collect like terms.

(Mphc+Aphc)z̈phc = −kc(zphc−zc)−
[1

2
ρwaterCd,phcDphc(xbar,phc)

2+ρwaterCd,phcDphc(xbar,phc)(żphc−xbar,phc)
]

(A.61)

(Mphc +Aphc)z̈phc = −kc(zphc− zc)−
[
− 1

2
ρwaterCd,phcDphc(xbar,phc)

2 + ρwaterCd,phcDphc(xbar,phc)(żphc)
]

(A.62)
Substitute in state-space variables.

q̇4 =
1

(Mphc +Aphc)

(
− kc(q3− q5)−

[
− 1

2
ρwaterCd,phcDphc(xbar,phc)

2 + ρwaterCd,phcDphc(xbar,phc)(q4)
])

(A.63)

q̇4 =
1

(Mphc +Aphc)

(
− kc(q3 − q5) +

1

2
ρwaterCd,phcDphc(xbar,phc)

2 − ρwaterCd,phcDphc(xbar,phc)(q4)

)
(A.64)

Defining Fexternal,2 for the constant terms:

Fexternal,2 =
1

2
ρwaterCd,phcDphc(xbar,phc)

2 (A.65)

Substituting Fexternal,2 into (A.64) gives:

q̇4 =
1

(Mphc +Aphc)

(
− kc(q3 − q5) + Fexternal,2 − ρwaterCd,phcDphc(xbar,phc)(q4)

)
(A.66)

To shorten the equation (Mphc +Aphc) is defined as αphc

αphc = (Mphc +Aphc) (A.67)

Substituting in αphc gives:

q̇4 =
1

(αphc)

(
− kc(q3 − q5) + Fexternal,2 − ρwaterCd,phcDphc(xbar,phc)(q4)

)
(A.68)
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A.3.3 Steel rope

(Mc)z̈c = −kc(zc − zin)− kc(zc − zphc) (A.69)

(Mc)z̈c + kczc + kczc = kczin + kczphc (A.70)

(Mc)z̈c + 2kczc = kczin + kczphc (A.71)

(Mc)z̈c + 2kczc = kczin + kczphc (A.72)

Substitute in state-space variables:

q̇6 =
1

Mc

[
− 2kcq5 + kczin + kcq3

]
(A.73)

A.3.4 Dyneema rope

(Md)z̈d = −kd(zd − zin)− kd(zd − z1) (A.74)

z̈d =
1

Md

[
− 2kdzd + kdzin + kdz1

]
(A.75)

q̇8 =
1

Md

[
− 2kdq7 + kdzin + kdq1

]
(A.76)

A.3.5 Upper chamber of cylinder and upper accumulator

A.3.5.1 Fluid flow between upper chamber of cylinder and upper accumulator

Qr,2 =
πd4

f,2

128µl2
(Pp2 − Pa3) (A.77)

Defining the constant coefficient γ:

γ =
πd4

f,2

128µl2
(A.78)

Substituting in γ into (A.77):
Qr,2 = γ(q9 − q10) (A.79)

A.3.5.2 Upper chamber of cylinder

Ṗp2 =
K

Vp2,1
[−Ap(żphc − ż1)−Qr,2] (A.80)

Substituting in state variables and (A.79) for Qr,2:

q̇9 =
K

Vp2,1
[−Ap(q4 − q2)− γ(q9 − q10)

]
(A.81)

A.3.5.3 Upper accumulator

Ṗa3 =
Pa3,1nQr,2

Va3,1
(A.82)

Substituting in state variables and (A.79) for Qr,2:

q̇10 =
Pa3,1nγ(q9 − q10)

Va3,1
(A.83)
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A.3.6 Lower chamber of cylinder and lower accumulator

A.3.6.1 Fluid flow between lower chamber of cylinder and lower accumulator

Qr =
πd4

f

128µl
(Pp1 − Pa1) (A.84)

Defining the constant coefficient φ:

φ =
πd4

f

128µl
(A.85)

Substituting in φ into (A.84):
Qr = φ(q11 − q12) (A.86)

A.3.6.2 Lower chamber of cylinder

Ṗp1 =
K

Vp1,1

[
−Ap(ż1 − żphc)−Qr

]
(A.87)

Substituting in state variables and (A.86) for Qr:

q̇11 =
K

Vp1,1

[
−Ap(q2 − q4)− φ(q11 − q12)

]
(A.88)

A.3.6.3 Lower accumulator

Ṗa1 =
Pa1,1nQr
Va1,1

(A.89)

Substituting in state variables and (A.86) for Qr:

q̇12 =
Pa1,1nφ(q11 − q12)

Va1,1
(A.90)

A.3.7 State-space equations

The state-space equations are given in the form of (A.91) and (A.92):

q̇(t) = Aq(t) + Bu(t) (A.91)

ẏ(t) = Cq(t) + Du(t) (A.92)

The vectors are shown in (A.93). The matrices are shown in (A.94) and (A.95)

q̇(t) =



q̇1

q̇2

q̇3

q̇4

q̇5

q̇6

q̇7

q̇8

q̇9

q̇10

q̇11

q̇12



,q(t) =



q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

q12



,u(t) =

 Fexternal

Fexternal,2

zin

 , ẏ(t) =



y1

y3

y5

y7

y9

y10

y11

y12


(A.93)
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D
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E
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A =



0 1 0 0 0 0 0 0 0 0 0 0

− kd
αhook,payload

− βhook,payload
αhook,payload

0 0 0 0 kd
αhook,payload

0
−Ap

αhook,payload
0

Ap

αhook,payload
0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 − kc
αphc

−ρwaterCd,phcDphcxbar,phc
αphc

kc
αphc

0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 kc
Mc

0 −2kc
Mc

0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0
kd
Md

0 0 0 0 0 −2kd
Md

0 0 0 0 0

0
KAp

Vp2,1
0 −KAp

Vp2,1
0 0 0 0 −γ K

Vp2,1
γ K
Vp2,1

0 0

0 0 0 0 0 0 0 0
Pa3,1nγ
Va3,1

−Pa3,1nγ
Va3,1

0 0

0 −KAp

Vp1,1
0

KAp

Vp1,1
0 0 0 0 0 0 − Kφ

Vp1,1
Kφ
Vp1,1

0 0 0 0 0 0 0 0 0 0
Pa1,1nφ
Va1,1

−Pa1,1nφ
Va1,1



(A.94)

B =



0 0 0
1

αhook,payload
0 0

0 0 0
0 1

αphc
0

0 0 0

0 0 kc
Mc

0 0 0

0 0 kd
Md

0 0 0
0 0 0
0 0 0
0 0 0



,C =



1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1


,D =



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0


(A.95)
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q̇1

q̇2

q̇3

q̇4

q̇5

q̇6

q̇7

q̇8

q̇9

q̇10

q̇11

q̇12



=



0 1 0 0 0 0 0 0 0 0 0 0

− kd
αhook,payload

− βhook,payload
αhook,payload

0 0 0 0 kd
αhook,payload

0
−Ap

αhook,payload
0

Ap

αhook,payload
0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 − kc
αphc

−ρwaterCd,phcDphcxbar,phc
αphc

kc
αphc

0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 kc
Mc

0 −2kc
Mc

0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0
kd
Md

0 0 0 0 0 −2kd
Md

0 0 0 0 0

0
KAp

Vp2,1
0 −KAp

Vp2,1
0 0 0 0 −γ K

Vp2,1
γ K
Vp2,1

0 0

0 0 0 0 0 0 0 0
Pa3,1nγ
Va3,1

−Pa3,1nγ
Va3,1

0 0

0 −KAp

Vp1,1
0

KAp

Vp1,1
0 0 0 0 0 0 − Kφ

Vp1,1
Kφ
Vp1,1

0 0 0 0 0 0 0 0 0 0
Pa1,1nφ
Va1,1

−Pa1,1nφ
Va1,1





q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

q12


(A.96)
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+



0 0 0
1

αhook,payload
0 0

0 0 0
0 1

αphc
0

0 0 0

0 0 kc
Mc

0 0 0

0 0 kd
Md

0 0 0
0 0 0
0 0 0
0 0 0



 Fexternal

Fexternal,2

zin

 (A.97)



y1

y3

y5

y7

y9

y10

y11

y12


=



1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1





q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

q12



+



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0



 Fexternal

Fexternal,2

zin

 (A.98)
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A.4 Throttle

A.4.1 Preliminary results

Vp2 and Pp2 are in phase which is not physical. If the upper cylinder volume shrinks the pressure should
increase. This can be attributed to the rod’s position ( z1) being unbounded, in the sense that it ignores
the confines of the cylinder and is able to go through the cylinder top. Spring stoppers are added to
improve the behavior.

A.4.2 Spring stoppers

It is aimed to answer the question what effect do the spring stoppers have and what spring
stiffness is necessary to achieve this effect?

The answer to this question is repeated below: So 6e8N/m is used as a value going
forward since the stoppers should not be used in normal operation.

Spring stoppers are added to the inside of the cylinder at the top and bottom. If the piston-head
reaches the spring stopper a force is applied in the opposite direction. The spring stiffness first is
5e3N/m. The result of using these stiffness is not noticeable, the spring stiffness is increased across a
range. Stiffness values from 5e1N/m to 5e10N/m were examined to determine when the spring stoppers
become effective, see Table A.1. From 5e7N/m to 5e8N/m the volume is no longer negative, below this
the volume is negative. At 5e8N/m the stopper springs are activated much more than for 5e7N/m and
below. For 5e7N/m, z1 oscillates around a mean of 6m this is a similar pattern for all stiffnesses below
this. For 5e8N/m z1 oscillates around 1m and this trend continues for higher stiffnesses. 5e8N/m is
used as a value going forward since the response is reasonable and the stoppers should not be used in
normal operation in any case.

In fact the spring stiffeners are a last resort. These should only be used for a rogue wave condition and
should not be expected to be used in normal operation. It is better to adjust the stiffness of the system
which is governed by accumulator size, this will be manipulated in appendix A.4.3.

Table A.1: Time when spring stops acting as a function of spring stiffness value

ks [N/m] Time when spring stops [s]

5e1 9

5e2 9

5e3 9

5e4 9

5e5 7

5e6 9

5e7 9

5e8 75

6e8 never stops

5e9 never stops

5e10 never stops

A.4.2.1 Verify spring stopper working

To verify the spring stopper works the graph of (z1-zphc) is examined, see Figure A.3. The difference
between z1 and zphc becomes smaller which is expected since the spring pushes the hook+payload mass
downwards making z1 smaller and since z1 was just larger than zphc the immediate effect is to make the
relative distance smaller. The difference converges to 1.5m which is logical since the spring is active
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Figure A.3: Check the spring stopper works

when 1.5m<(z1-zphc)<1.7m. What this means is the spring is acting with a downwards force but due to
the motion of the system z1 is naturally pushed to be greater than zphc so the spring is reached again
soon after a downwards force is applied. The fact that the bottom spring is never touched reinforces
this.
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A.4.3 Accumulator volume influence on stiffness

It is desired to answer the question
What accumulator volume (in first and second accumulator) is suitable to prevent the
piston from hitting the stopper springs?

The answer to this question: there was no accumulator volume found suitable to
prevent the piston from hitting the stopper springs, the system should be further inves-
tigated and designed such that in normal operation the piston doesn’t hit the stopper
springs, thus the stopper springs are there for emergencies only

Increasing the accumulator volume so far does not prevent the top of the cylinder being hit, from small
values to unrealistically large values of accumulator volume, the stopper spring at the top still acts. It
is decided to use the orifice type damper.
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Figure A.4: Throttle: rms reduction ratio as function of accumulator volume

A.5 Throttle again

A.5.1 Accumulator volume effect on effectiveness

The question to be answered: What is the effect of increasing accumulator volume on
effectiveness of the passive heave compensator, measured by the rms reduction ratio R?

The effect of the accumulator volume is investigated. A sinusoidal heave input for zin is used. Various
V a11 factors are tried ([1:1:20]). A larger accumulator volume should provide better attenuation of z1

motion, this means the rms reduction ratio R is lower. See Figure A.4. The R value increases since
there is a large oscillation in z1 for the first approximately 20s that lowers in amplitude thereafter. This
is not the expected behavior of the system. With increasing accumulator volume, the initial amplitude
of z1 increases, see Figure A.6. The large oscillation is due to the large amplitude pressure signals that
occur initially, shown in Figure A.5 for V a31=V a11=25.9m3. In contrast the amplitude of the pressure
signals are smaller for the orifice system for the same time period and accumulator volume. The pressures
control the movement of the piston which in turn controls the movement of the payload. An explanation
for the large pressure amplitude is that the throttle type system is quite sensitive to the pipe diameter
and pipe length. Thus it is likely the combination of pipe diameter and pipe length is not suitable.
Adding the fact that the overall design with 2 accumulators is more complicated, the influence of the
correct pipe diameter and pipe length may be critical. The throttle is not investigated further since the
orifice system has more promising results.
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Figure A.5: Throttle: pressure time series

Figure A.6: Throttle: time series for key degrees of freedom
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Figure A.7: Bottom accumulator, note that Qa = Qr

A.6 Bottom accumulator

A.6.1 Non-linear equations: bottom accumulator

The system is shown in Figure A.7 with relevant parameters defined here. There are two pressure drops,
one is inertial pressure drop:

∆Pi = Pi1 − Pi2 (A.99)

the other is resistive pressure drop due to the orifice:

∆Pr = Pr1 − Pr2 (A.100)

The relationship between hydraulic fluid flow rate and pressure drop for the orifice is in equation (A.101)

Qa = CdischargeA

√
2

ρoil
|∆Pr|sign(∆Pr) (A.101)

Where Cdischarge is the discharge coefficient and Qa is the volume flow rate of hydraulic fluid through the
orifice and to the accumulator. Note that Qa = Qr.
Using (7.59) the equation for inertia of the fluid is given by (A.102)

ρoil
L

A
Q̇a = ∆Pi (A.102)

The total pressure drop ∆Ptot is given by the sum of the inertial and resistive pressure drop

∆Ptot = ∆Pi + ∆Pr (A.103)

Now there are 3 equations (A.101) (A.102) (A.103) with 4 unknowns (Qa,∆Pr,∆Pi,∆Ptot). In the
current state it is not possible to solve the system since at least one more equation is needed.
Refer to the system in Figure A.7. Using (7.58) the pressure, Pp1, in the lower chamber of the cylinder
is given by (A.104).

Ṗp1 =
K

Vp1,1

[
−Ap(ż1 − żphc)−Qa

]
(A.104)

Where K is the bulk modulus of the hydraulic oil, Vp1,1 is the initial volume, Ap is the area of the
piston-head, z1 is the displacement of the mass of the hook and payload, zphc is the displacement of the
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mass of the PHC cylinder.
The pressure in the accumulator, Pa1, is obtained from the isentropic relationship:

P1V
n

1 = P0V
n

0 (A.105)

this is applied to the lower accumulator

Pa1V
n

a1 = Pa1,1V
n

a1,1 (A.106)

where Pa1,1 is the initial pressure, Va1,1 is the initial volume and n is the gas constant and Va1(t) and
Pa1(t) are functions of time, re-arranging for Pa1

Pa1 = Pa1,1

(Va1,1

Va1

)n
(A.107)

In equation (A.107) Va1 is given by

Va1 = Va1,1 −
∫
Qadt (A.108)

Defining Vin =
∫
Qadt equivalently V̇in = Qa and substituting into (A.108)

Va1 = Va1,1 − Vin (A.109)

Substituting (A.109) into (A.107)

Pa1 = Pa1,1

( Va1,1

Va1,1 − Vin

)n
(A.110)

Physically the total pressure drop in (A.103) is equal to the difference of the pressures Pp1 and Pa1 from
(A.104) and (A.110)

∆Ptot = Pp1 − Pa1 (A.111)

The other pressure drops, ∆Pi,∆Pr, in (A.103) are needed. (A.101) is rearranged for ∆Pr

∆Pr =
sign(Qa)Q2

a

(CdischargeA)2

ρoil

2
(A.112)

∆Pi is obtained from (A.102). Substituting (A.102) (A.112) and (A.111) into (A.103) gives

Pp1 − Pa1 = ρoil
L

A
Q̇a +

sign(Qa)Q2
a

(CdischargeA)2

ρoil

2
(A.113)

re-arranging for Q̇a

Q̇a =
A

ρoilL

[
Pp1 − Pa1 −

sign(Qa)Q2
a

(CdischargeA)2

ρoil

2

]
(A.114)

A.6.1.1 Final non-linear equations: bottom accumulator

Final equations, 3 differential equations (A.115) (A.116) (A.117) and 1 algebraic equation (A.118) for 4
unknowns Pp1, Qa, Vin, and Pa1 so the system is closed. ż1 and żphc are known as inputs. Constants
are K, Vp1,1, Ap, Pa1,1, Va1,1, A, ρoil, L, Cdischarge. These equations are solved numerically for the
time-domain simulations.

Ṗp1 =
K

Vp1,1

[
−Ap(ż1 − żphc)−Qa

]
(A.115)

Q̇a =
A

ρoilL

[
Pp1 − Pa1 −

sign(Qa)Q2
a

(CdischargeA)2

ρoil

2

]
(A.116)

V̇in = Qa (A.117)

Pa1 = Pa1,1

( Va1,1

Va1,1 − Vin

)n
(A.118)
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Figure A.8: Upper accumulator, note that Qa,u = Qr,2

A.7 Upper accumulator
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A.7.1 Non-linear equations: upper accumulator

The system is shown in Figure A.8. There are two pressure drops, one is inertial pressure drop:

∆Pi,u = Pi1,u − Pi2,u (A.119)

the other is resistive pressure drop due to the orifice:

∆Pr,u = Pr1,u − Pr2,u (A.120)

The relationship between hydraulic fluid flow rate and pressure drop for the orifice is in equation (A.121).

Qa,u = CdischargeA

√
2

ρoil
|∆Pr,u|sign(∆Pr,u) (A.121)

Where Qa,u is the volume flow rate of hydraulic fluid through the orifice and to the upper accumulator.
Note that Qa,u = Qr,2.

Re-arranging (A.121) for ∆Pr,u

∆Pr,u =
sign(Qa,u)Q2

a,u

(CdischargeA)2

ρoil

2
(A.122)

The inertial pressure drop is given by (A.123)

ρoil
L

A
Q̇a,u = ∆Pi,u (A.123)

(A.103) applied to the upper accumulator gives (A.124)

∆Ptot,upper = ∆Pi,u + ∆Pr,u (A.124)

With ∆Ptot,upper given by Figure A.8 as

∆Ptot,upper = Pp2 − Pa3 (A.125)

Substituting (A.125) (A.123) (A.122) into (A.124)

Pp2 − Pa3 = ρoil
L

A
Q̇a,u +

sign(Qa,u)Q2
a,u

(CdischargeA)2

ρoil

2
(A.126)

re-arranging for Q̇a,u

Q̇a,u =
A

ρoilL

[
Pp2 − Pa3 −

sign(Qa,u)Q2
a,u

(CdischargeA)2

ρoil

2

]
(A.127)

The upper cylinder is attached to an accumulator. The pressure in the upper cylinder is Pp2 and the
pressure in the accumulator is Pa3. A differential equation for the pressure in the upper cylinder is found
using (7.58) in (A.128)

Ṗp2 =
K

Vp2,1
[−Ap(żphc − ż1)−Qa,u] (A.128)

Where Vp2,1 is the initial volume. Volume flow rate Qa,u is positive left to right so a positive volume
flow rate is generated by Pp2 being greater than Pa3.

Using the isentropic relationship an expression for Pa3 is given by

Pa3 = Pa3,1

(Va3,1

Va3

)n
(A.129)
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Where Va3,1 is the initial volume, Pa3,1 is the initial pressure, and Va3 is given by (A.130)

Va3 = Va3,1 −
∫
Qa,udt (A.130)

Defining Vin,u =
∫
Qa,udt equivalently V̇in,u = Qa,u, substituting this into (A.130)

Va3 = Va3,1 − Vin,u (A.131)

Substituting (A.131) into (A.129) gives an equation for Pa3, (A.132)

Pa3 = Pa3,1

( Va3,1

Va3,1 − Vin,u

)n
(A.132)

A.7.1.1 Final non-linear equations: upper accumulator

Final equations, 3 differential equations (A.133) (A.134) (A.135) and 1 algebraic equation (A.136) for 4
unknowns Pp2, Qa,u, Vin,u, and Pa3 so the system is closed. ż1 and żphc are known as inputs. Constants are
K, Vp2,1, Ap, Pa3,1, Va3,1, A, ρoil, L, Cdischarge. These equations are solved numerically for time-domain
simulations.

Ṗp2 =
K

Vp2,1
[−Ap(żphc − ż1)−Qa,u] (A.133)

Q̇a,u =
A

ρoilL

[
Pp2 − Pa3 −

sign(Qa,u)Q2
a,u

(CdischargeA)2

ρoil

2

]
(A.134)

V̇in,u = Qa,u (A.135)

Pa3 = Pa3,1

( Va3,1

Va3,1 − Vin,u

)n
(A.136)

A.8 Non-linear equations

The non-linear equations that will be put into state-space form are repeated from previous sections
below.
From (7.8)

z̈1 =
1

(Mhook,payload +Ahook,payload)[
Pp1Ap − Pp2Ap + Fwater − Fwater + ρwaterVdg

−Mhook,payloadg −
1

2
ρwaterCd,hook,payloadDhook,payload|ż1|ż1 − kd(z1 − zd)

] (A.137)

From (7.12)

z̈phc =
1

(Mphc +Aphc)

[
− kc(zphc − zc)−

1

2
ρwaterCd,phcDphc|żphc|żphc

]
(A.138)

From (7.15)

z̈c =
1

(Mc)

[
− kc(zc − zin)− kc(zc − zphc)

]
(A.139)

From (7.18)

z̈d =
1

(Md)

[
− kd(zd − zin)− kd(zd − z1)

]
(A.140)
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From (7.62)

Ṗp1 =
K

Vp1,1

[
−Ap(ż1 − żphc)−Qr

]
(A.141)

From (7.63)

Q̇r =
A

ρoilL

[
Pp1 − Pa1 −

sign(Qr)Q
2
r

(CdischargeA)2

ρoil

2

]
(A.142)

From (7.64)
V̇in = Qr (A.143)

From (7.65)

Pa1 = Pa1,1

( Va1,1

Va1,1 − Vin

)n
(A.144)

From (7.66)

Ṗp2 =
K

Vp2,1
[−Ap(żphc − ż1)−Qr,2] (A.145)

From (7.67)

Q̇r,2 =
A

ρoilL

[
Pp2 − Pa3 −

sign(Qr,2)Q2
r,2

(CdischargeA)2

ρoil

2

]
(A.146)

From (7.68)
V̇in,u = Qr,2 (A.147)

From (7.69)

Pa3 = Pa3,1

( Va3,1

Va3,1 − Vin,u

)n
(A.148)

A.9 Non-linear state-space equations

The chosen state-space variables are shown in Table A.2.

Table A.2: q variables

state variable original variable

q1 z1

q2 ż1

q3 zphc

q4 żphc

q5 zc

q6 żc

q7 zd

q8 żd

q9 Pp1

q10 Qr

q11 Vin

q12 Pp2

q13 Qr,2

q14 Vin,u
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The state-space equations are obtained by substituting in the state variables in Table A.2 into the
equations in section A.8. These equations are solved numerically for the time-domain simulations.

q̇1 = q2 (A.149)

From (A.137)

q̇2 =
1

(Mhook,payload +Ahook,payload)[
q9Ap − q12Ap + Fwater − Fwater + ρwaterVdg

−Mhook,payloadg −
1

2
ρwaterCd,hook,payloadDhook,payload|q2|q2 − kd(q1 − q7)

] (A.150)

q̇3 = q4 (A.151)

From (A.138)

q̇4 =
1

(Mphc +Aphc)

[
− kc(q3 − q5)− 1

2
ρwaterCd,phcDphc|q4|q4

]
(A.152)

q̇5 = q6 (A.153)

From (A.139)

q̇6 =
1

(Mc)

[
− kc(q5 − zin)− kc(q5 − q3)

]
(A.154)

q̇7 = q8 (A.155)

From (A.140)

q̇8 =
1

(Md)

[
− kd(q7 − zin)− kd(q7 − q1)

]
(A.156)

From (A.141)

q̇9 =
K

Vp1,1

[
−Ap(q2 − q4)− q10

]
(A.157)

From (A.142) and (A.144)

q̇10 =
A

ρoilL

[
q9 − Pa1,1

( Va1,1

Va1,1 − q11

)n
− sign(q10)q2

10

(CdischargeA)2

ρoil

2

]
(A.158)

From (A.143)
q̇11 = q10 (A.159)

From (A.145)

q̇12 =
K

Vp2,1
[−Ap(q4 − q2)− q13] (A.160)

From (A.146) and (A.148)

q̇13 =
A

ρoilL

[
q12 − Pa3,1

( Va3,1

Va3,1 − q14

)n
− sign(q13)q2

13

(CdischargeA)2

ρoil

2

]
(A.161)

From (A.147)
q̇14 = q13 (A.162)

Pa1 and Pa3 are not state variables and are obtained from a non-linear combination of the state variables.
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A.10 Non-linear state-space equations simplified

A.10.1 q̇1

q̇1 = q2 (A.163)

A.10.2 q̇2

From (A.137)

q̇2 =
1

(Mhook,payload +Ahook,payload)[
q9Ap − q12Ap + Fwater − Fwater + ρwaterVdg

−Mhook,payloadg −
1

2
ρwaterCd,hook,payloadDhook,payload|q2|q2 − kd(q1 − q7)

] (A.164)

Defining
ζ2 = Mhook,payload +Ahook,payload (A.165)

η2 = Fwater − Fwater + ρwaterVdg −Mhook,payloadg (A.166)

θ2 =
1

2
ρwaterCd,hook,payloadDhook,payload (A.167)

Finally,

q̇2 =
1

ζ2[
q9Ap − q12Ap + η2 − θ2sign(q2)q2

2 − kd(q1 − q7)

] (A.168)

A.10.3 q̇3

q̇3 = q4 (A.169)

A.10.4 q̇4

From (A.138)

q̇4 =
1

(Mphc +Aphc)

[
− kc(q3 − q5)− 1

2
ρwaterCd,phcDphc|q4|q4

]
(A.170)

Defining
ζ4 = Mphc +Aphc (A.171)

η4 =
1

2
ρwaterCd,phcDphc (A.172)

Finally,

q̇4 =
1

ζ4

[
− kc(q3 − q5)− η4sign(q4)q2

4

]
(A.173)

A.10.5 q̇5

q̇5 = q6 (A.174)
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A.10.6 q̇6

From (A.139)

q̇6 =
1

(Mc)

[
− kc(q5 − zin)− kc(q5 − q3)

]
(A.175)

A.10.7 q̇7

q̇7 = q8 (A.176)

A.10.8 q̇8

From (A.140)

q̇8 =
1

(Md)

[
− kd(q7 − zin)− kd(q7 − q1)

]
(A.177)

A.10.9 q̇9

From (A.141)

q̇9 =
K

Vp1,1

[
−Ap(q2 − q4)− q10

]
(A.178)

A.10.10 q̇10

From (A.142) and (A.144)

q̇10 =
A

ρoilL

[
q9 − Pa1,1

( Va1,1

Va1,1 − q11

)n
− sign(q10)q2

10

(CdischargeA)2

ρoil

2

]
(A.179)

Defining

ζ10 =
A

ρoilL
(A.180)

η10 =
sign(q10)

(CdischargeA)2

ρoil

2
(A.181)

Finally,

q̇10 = ζ10

[
q9 − Pa1,1

( Va1,1

Va1,1 − q11

)n
− η10q

2
10

]
(A.182)

A.10.11 q̇11

From (A.143)
q̇11 = q10 (A.183)

A.10.12 q̇12

From (A.145)

q̇12 =
K

Vp2,1
[−Ap(q4 − q2)− q13] (A.184)
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A.10.13 q̇13

From (A.146) and (A.148)

q̇13 =
A

ρoilL

[
q12 − Pa3,1

( Va3,1

Va3,1 − q14

)n
− sign(q13)q2

13

(CdischargeA)2

ρoil

2

]
(A.185)

Defining

ζ13 =
A

ρoilL
(A.186)

η13 =
sign(q13)

(CdischargeA)2

ρoil

2
(A.187)

Finally,

q̇13 = ζ13

[
q12 − Pa3,1

( Va3,1

Va3,1 − q14

)n
− η13q

2
13

]
(A.188)

A.10.14 q̇14

From (A.147)
q̇14 = q13 (A.189)

Pa1 and Pa3 are not state variables and are obtained from a non-linear combination of the state variables.
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A.11 Linearized state-space equations

The state-space equations with non-linear terms are linearized in appendices A.11.1, A.11.2, A.11.3, and
A.11.4.

A.11.1 Linearizing q̇2

The equation for q̇2 given by (A.150) is repeated in (A.190)

q̇2 =
1

(Mhook,payload +Ahook,payload)[
q9Ap − q12Ap + Fwater − Fwater + ρwaterVdg

−Mhook,payloadg −
1

2
ρwaterCd,hook,payloadDhook,payload|q2|q2 − kd(q1 − q7)

] (A.190)

The non-linear term is identified with j(q2)

q̇2 =
1

(Mhook,payload +Ahook,payload)[
q9Ap − q12Ap + Fwater − Fwater + ρwaterVdg

−Mhook,payloadg − j(q2)− kd(q1 − q7)

] (A.191)

The non-linear term in (A.191) is j(q2)

j(q2) =
1

2
ρwaterCd,hook,payloadDhook,payload|q2|q2 (A.192)

j(q2) =
1

2
ρwaterCd,hook,payloadDhook,payloadsign(q2)q2

2 (A.193)

j
′
(q2) is found by applying the chain rule

j
′
(q2) =

1

2
ρwaterCd,hook,payloadDhook,payloadsign(q2)2q2

dq2

dq2
(A.194)

j
′
(q2) = ρwaterCd,hook,payloadDhook,payloadsign(q2)q2 (A.195)

Applying the first order Taylor series with linearization point q∗2

j(q2) = j(q∗2) + j
′
(q∗2)(q2 − q∗2) (A.196)

Substituting in j
′
(q∗2) from (A.195)

j(q2) = j(q∗2) + ρwaterCd,hook,payloadDhook,payloadsign(q∗2)q∗2(q2 − q∗2) (A.197)

Substituting in j(q∗2) from (A.193) gives the linearized equation (A.198) for j(q2)

j(q2) =
1

2
ρwaterCd,hook,payloadDhook,payloadsign(q∗2)q∗22 +ρwaterCd,hook,payloadDhook,payloadsign(q∗2)q∗2(q2− q∗2)

(A.198)
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Inserting the linearized term j(q2) from (A.198) into (A.191) gives (A.199), the linearized equation for
q̇2

q̇2 =
1

(Mhook,payload +Ahook,payload)

[
q9Ap − q12Ap + Fwater − Fwater + ρwaterVdg −Mhook,payloadg

−

{
1

2
ρwaterCd,hook,payloadDhook,payloadsign(q∗2)q∗22 + ρwaterCd,hook,payloadDhook,payloadsign(q∗2)q∗2(q2 − q∗2)

}

−kd(q1 − q7)

]
(A.199)

A.11.2 Linearizing q̇4

The equation for q̇4 given by (A.152) is repeated in (A.200)

q̇4 =
1

(Mphc +Aphc)

[
− kc(q3 − q5)− 1

2
ρwaterCd,phcDphc|q4|q4

]
(A.200)

The non-linear term is identified with k(q4)

q̇4 =
1

(Mphc +Aphc)

[
− kc(q3 − q5)− k(q4)

]
(A.201)

The non-linear term in (A.201) is k(q4)

k(q4) =
1

2
ρwaterCd,phcDphc|q4|q4 (A.202)

k(q4) =
1

2
ρwaterCd,phcDphcsign(q4)q2

4 (A.203)

k
′
(q4) is found by applying the chain rule

k
′
(q4) =

1

2
ρwaterCd,phcDphcsign(q4)2q4

dq4

dq4
(A.204)

k
′
(q4) = ρwaterCd,phcDphcsign(q4)q4 (A.205)

Applying the first order Taylor series with linearization point q∗4

k(q4) = k(q∗4) + k
′
(q∗4)(q4 − q∗4) (A.206)

Substituting in k
′
(q∗4) from (A.205)

k(q4) = k(q∗4) + ρwaterCd,phcDphcsign(q∗4)q∗4(q4 − q∗4) (A.207)

Substituting in k(q∗4) from (A.203) gives the linearized equation (A.208) for k(q4)

k(q4) =
1

2
ρwaterCd,phcDphcsign(q∗4)q∗24 + ρwaterCd,phcDphcsign(q∗4)q∗4(q4 − q∗4) (A.208)

Inserting the linearized term k(q4) from (A.208) into (A.201) gives (A.209), the linearized equation for
q̇4

q̇4 =
1

(Mphc +Aphc)

[
−kc(q3−q5)−

{
1

2
ρwaterCd,phcDphcsign(q∗4)q∗24 +ρwaterCd,phcDphcsign(q∗4)q∗4(q4−q∗4)

}]
(A.209)
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A.11.3 Linearizing q̇10

The equation for q̇10 given by (A.158) is repeated in (A.210)

q̇10 =
A

ρoilL

[
q9 − Pa1,1

( Va1,1

Va1,1 − q11

)n
− sign(q10)q2

10

(CdischargeA)2

ρoil

2

]
(A.210)

The non-linear terms are identified with f(q11) and g(q10)

q̇10 =
A

ρoilL

[
q9 − f(q11)− g(q10)

]
(A.211)

The first non-linear term in (A.211) is f(q11)

f(q11) = Pa1,1

( Va1,1

Va1,1 − q11

)n
(A.212)

f
′
(q11) is found by applying the chain rule

f
′
(q11) = Pa1,1V

n
a1,1(−n)(Va1,1 − q11)−n−1(−dq11

dq11
) (A.213)

f
′
(q11) = nPa1,1V

n
a1,1(Va1,1 − q11)−n−1 (A.214)

Applying the first order Taylor series with linearization point q∗11

f(q11) = f(q∗11) + f
′
(q∗11)(q11 − q∗11) (A.215)

Substituting in f
′
(q∗11) from (A.214)

f(q11) = f(q∗11) + nPa1,1V
n

a1,1(Va1,1 − q∗11)−n−1(q11 − q∗11) (A.216)

Substituting in f(q∗11) from (A.212) gives the linearized equation (A.217) for f(q11)

f(q11) = Pa1,1

( Va1,1

Va1,1 − q∗11

)n
+ nPa1,1V

n
a1,1(Va1,1 − q∗11)−n−1(q11 − q∗11) (A.217)

The second non-linear term in (A.211) is g(q10)

g(q10) =
sign(q10)q2

10

(CdischargeA)2

ρoil

2
(A.218)

g
′
(q10) is found by applying the chain rule

g
′
(q10) =

ρoil

2

sign(q10)2q10

(CdischargeA)2

dq10

dq10
(A.219)

g
′
(q10) =

ρoilsign(q10)q10

(CdischargeA)2
(A.220)

Applying the first order Taylor series with linearization point q∗10

g(q10) = g(q∗10) + g
′
(q∗10)(q10 − q∗10) (A.221)

Substituting in g
′
(q∗10) from (A.220)

g(q10) = g(q∗10) +
ρoilsign(q∗10)q∗10

(CdischargeA)2
(q10 − q∗10) (A.222)

Substituting in g(q10) from (A.218) gives the linearized equation (A.223) for g(q10)

g(q10) =
sign(q∗10)q∗210

(CdischargeA)2

ρoil

2
+
ρoilsign(q∗10)q∗10

(CdischargeA)2
(q10 − q∗10) (A.223)

Inserting the linearized terms f(q11) from (A.217) and g(q10) from (A.223) into (A.211) gives (A.224)

q̇10 =
A

ρoilL

[
q9 −

{
Pa1,1

( Va1,1

Va1,1 − q∗11

)n
+ nPa1,1V

n
a1,1(Va1,1 − q∗11)−n−1(q11 − q∗11)

}

−

{
sign(q∗10)q∗210

(CdischargeA)2

ρoil

2
+
ρoilsign(q∗10)q∗10

(CdischargeA)2
(q10 − q∗10)

}] (A.224)
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A.11.4 Linearizing q̇13

The equation for q̇13 given by (A.161) is repeated in (A.225)

q̇13 =
A

ρoilL

[
q12 − Pa3,1

( Va3,1

Va3,1 − q14

)n
− sign(q13)q2

13

(CdischargeA)2

ρoil

2

]
(A.225)

The non-linear terms are identified with h(q14) and i(q13)

q̇13 =
A

ρoilL

[
q12 − h(q14)− i(q13)

]
(A.226)

The first non-linear term in (A.226) is h(q14)

h(q14) = Pa3,1

( Va3,1

Va3,1 − q14

)n
(A.227)

h
′
(q14) is found by applying the chain rule

h
′
(q14) = Pa3,1V

n
a3,1(−n)(Va3,1 − q14)−n−1(−dq14

dq14
) (A.228)

h
′
(q14) = nPa3,1V

n
a3,1(Va3,1 − q14)−n−1 (A.229)

Applying the first order Taylor series with linearization point q∗14

h(q14) = h(q∗14) + h
′
(q∗14)(q14 − q∗14) (A.230)

Substituting in h
′
(q∗14) from (A.229)

h(q14) = h(q∗14) + nPa3,1V
n

a3,1(Va3,1 − q∗14)−n−1(q14 − q∗14) (A.231)

Substituting in h(q14) from (A.227) gives the linearized equation (A.232) for h(q14)

h(q14) = Pa3,1

( Va3,1

Va3,1 − q∗14

)n
+ nPa3,1V

n
a3,1(Va3,1 − q∗14)−n−1(q14 − q∗14) (A.232)

The second non-linear term in (A.226) is i(q13)

i(q13) =
sign(q13)q2

13

(CdischargeA)2

ρoil

2
(A.233)

i
′
(q13) is found by applying the chain rule

i
′
(q13) =

ρoil

2

sign(q13)2q13

(CdischargeA)2

dq13

dq13
(A.234)

i
′
(q13) =

ρoilsign(q13)q13

(CdischargeA)2
(A.235)

Applying the first order Taylor series with linearization point q∗13

i(q13) = i(q∗13) + i
′
(q∗13)(q13 − q∗13) (A.236)

Substituting in i
′
(q∗13) from (A.235)

i(q13) = i(q∗13) +
ρoilsign(q∗13)q∗13

(CdischargeA)2
(q13 − q∗13) (A.237)

Substituting in i(q∗13) from (A.233) gives the linearized equation

i(q13) =
sign(q∗13)q∗213

(CdischargeA)2

ρoil

2
+
ρoilsign(q∗13)q∗13

(CdischargeA)2
(q13 − q∗13) (A.238)

Inserting the linearized terms h(q14) from (A.232) and i(q13) from (A.238) into (A.226) gives (A.239)

q̇13 =
A

ρoilL

[
q12 −

{
Pa3,1

( Va3,1

Va3,1 − q∗14

)n
+ nPa3,1V

n
a3,1(Va3,1 − q∗14)−n−1(q14 − q∗14)

}

−

{
sign(q∗13)q∗213

(CdischargeA)2

ρoil

2
+
ρoilsign(q∗13)q∗13

(CdischargeA)2
(q13 − q∗13)

}] (A.239)
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A.12 Resulting linear state-space equations

The linearized state-space equations are shown below.

A.12.1 q̇1

q̇1 = q2 (A.240)

A.12.2 q̇2

q̇2 =
1

(Mhook,payload +Ahook,payload)

[
q9Ap − q12Ap + Fwater − Fwater + ρwaterVdg −Mhook,payloadg

−

{
1

2
ρwaterCd,hook,payloadDhook,payloadsign(q∗2)q∗22 + ρwaterCd,hook,payloadDhook,payloadsign(q∗2)q∗2(q2 − q∗2)

}

−kd(q1 − q7)

]
(A.241)

Defining
Fexternal,1 = Fwater − Fwater + ρwaterVdg −Mhook,payloadg (A.242)

α2 = (Mhook,payload +Ahook,payload) (A.243)

β2 =
1

2
ρwaterCd,hook,payloadDhook,payloadsign(q∗2)q∗22 (A.244)

γ2 = ρwaterCd,hook,payloadDhook,payloadsign(q∗2)q∗2 (A.245)

gives (A.246)

q̇2 =
1

α2

[
q9Ap − q12Ap + Fexternal,1

−

{
β2 + γ2(q2 − q∗2)

}

−kd(q1 − q7)

] (A.246)

q̇2 =
1

α2

[
q9Ap − q12Ap + Fexternal,1

−β2 − γ2q2 + γ2q
∗
2

−kdq1 + kdq7

] (A.247)

Collecting the constant terms and defining

FU,2 = Fexternal,1 − β2 + γ2q
∗
2 (A.248)

Finally,

q̇2 =
1

α2

[
q9Ap − q12Ap

−γ2q2

−kdq1 + kdq7 + FU,2

] (A.249)
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A.12.3 q̇3

q̇3 = q4 (A.250)

A.12.4 q̇4

q̇4 =
1

(Mphc +Aphc)

[
−kc(q3−q5)−

{
1

2
ρwaterCd,phcDphcsign(q∗4)q∗24 +ρwaterCd,phcDphcsign(q∗4)q∗4(q4−q∗4)

}]
(A.251)

Defining
α4 = (Mphc +Aphc) (A.252)

β4 =
1

2
ρwaterCd,phcDphcsign(q∗4)q∗24 (A.253)

γ4 = ρwaterCd,phcDphcsign(q∗4)q∗4 (A.254)

gives (A.255)

q̇4 =
1

α4

[
− kc(q3 − q5)−

{
β4 + γ4(q4 − q∗4)

}]
(A.255)

q̇4 =
1

α4

[
− kc(q3 − q5)− β4 − γ4q4 + γ4q

∗
4

]
(A.256)

Collecting the constant terms and defining

FU,4 = −β4 + γ4q
∗
4 (A.257)

Finally,

q̇4 =
1

α4

[
− kc(q3 − q5)− γ4q4 + FU,4

]
(A.258)

A.12.5 q̇5

q̇5 = q6 (A.259)

A.12.6 q̇6

q̇6 =
1

(Mc)

[
− kc(q5 − zin)− kc(q5 − q3)

]
(A.260)

Collecting like terms

q̇6 =
1

Mc

[
kcq3 − 2kcq5 + kczin

]
(A.261)

A.12.7 q̇7

q̇7 = q8 (A.262)

A.12.8 q̇8

q̇8 =
1

(Md)

[
− kd(q7 − zin)− kd(q7 − q1)

]
(A.263)

Collecting like terms

q̇8 =
1

Md

[
kdq1 − 2kdq7 + kdzin

]
(A.264)
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A.12.9 q̇9

q̇9 =
K

Vp1,1

[
−Ap(q2 − q4)− q10

]
(A.265)

A.12.10 q̇10

q̇10 =
A

ρoilL

[
q9 −

{
Pa1,1

( Va1,1

Va1,1 − q∗11

)n
+ nPa1,1V

n
a1,1(Va1,1 − q∗11)−n−1(q11 − q∗11)

}

−

{
sign(q∗10)q∗210

(CdischargeA)2

ρoil

2
+
ρoilsign(q∗10)q∗10

(CdischargeA)2
(q10 − q∗10)

}] (A.266)

Defining

β10 = Pa1,1

( Va1,1

Va1,1 − q∗11

)n
(A.267)

γ10 = nPa1,1V
n

a1,1(Va1,1 − q∗11)−n−1 (A.268)

δ10 =
sign(q∗10)q∗210

(CdischargeA)2

ρoil

2
(A.269)

ε10 =
ρoilsign(q∗10)q∗10

(CdischargeA)2
(A.270)

q̇10 =
A

ρoilL

[
q9 −

{
β10 + γ10(q11 − q∗11)

}

−

{
δ10 + ε10(q10 − q∗10)

}] (A.271)

q̇10 =
A

ρoilL

[
q9 − β10 − γ10q11 + γ10q

∗
11

−δ10 − ε10q10 + ε10q
∗
10

] (A.272)

Collecting the constant terms and defining

FU,10 = −β10 + γ10q
∗
11 − δ10 + ε10q

∗
10 (A.273)

Finally,

q̇10 =
A

ρoilL

[
q9 − γ10q11

−ε10q10 + FU,10

] (A.274)

A.12.11 q̇11

q̇11 = q10 (A.275)

A.12.12 q̇12

q̇12 =
K

Vp2,1
[−Ap(q4 − q2)− q13] (A.276)
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A.12.13 q̇13

q̇13 =
A

ρoilL

[
q12 −

{
Pa3,1

( Va3,1

Va3,1 − q∗14

)n
+ nPa3,1V

n
a3,1(Va3,1 − q∗14)−n−1(q14 − q∗14)

}

−

{
sign(q∗13)q∗213

(CdischargeA)2

ρoil

2
+
ρoilsign(q∗13)q∗13

(CdischargeA)2
(q13 − q∗13)

}] (A.277)

Defining

β13 = Pa3,1

( Va3,1

Va3,1 − q∗14

)n
(A.278)

γ13 = nPa3,1V
n

a3,1(Va3,1 − q∗14)−n−1 (A.279)

δ13 =
sign(q∗13)q∗213

(CdischargeA)2

ρoil

2
(A.280)

ε13 =
ρoilsign(q∗13)q∗13

(CdischargeA)2
(A.281)

q̇13 =
A

ρoilL

[
q12 −

{
β13 + γ13(q14 − q∗14)

}

−

{
δ13 + ε13(q13 − q∗13)

}] (A.282)

q̇13 =
A

ρoilL

[
q12 − β13 − γ13q14 + γ13q

∗
14

−δ13 − ε13q13 + ε13q
∗
13

] (A.283)

Collecting the like terms and defining

FU,13 = −β13 + γ13q
∗
14 − δ13 + ε13q

∗
13 (A.284)

Finally,

q̇13 =
A

ρoilL

[
q12 − γ13q14

−ε13q13 + FU,13

] (A.285)

A.12.14 q̇14

q̇14 = q13 (A.286)

A.12.15 A matrix from linearized state-space equations

The state-space equations are re-arranged into matrix form, shown in (A.287). What is important is the
A matrix which is extracted from (A.287) and shown in (A.288). From (A.288) the eigenvalues can be
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determined.



q̇1

q̇2

q̇3

q̇4

q̇5

q̇6

q̇7

q̇8

q̇9

q̇10

q̇11

q̇12

q̇13

q̇14



=



0 1 0 0 0 0 0 0 0 0 0 0 0 0
−kd
α2

−γ2
α2

0 0 0 0 kd
α2

0
Ap

α2
0 0

−Ap

α2
0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 −kc
α4

−γ4
α4

kc
α4

0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 kc
Mc

0 −2kc
Mc

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0
kd
Md

0 0 0 0 0 −2kd
Md

0 0 0 0 0 0 0

0
−KAp

Vp1,1
0

KAp

Vp1,1
0 0 0 0 0 −K

Vp1,1
0 0 0 0

0 0 0 0 0 0 0 0 A
ρoilL

−Aε10
ρoilL

−Aγ10
ρoilL

0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0

0
KAp

Vp2,1
0

−KAp

Vp2,1
0 0 0 0 0 0 0 0 −K

Vp2,1
0

0 0 0 0 0 0 0 0 0 0 0 A
ρoilL

−Aε13
ρoilL

−Aγ13
ρoilL

0 0 0 0 0 0 0 0 0 0 0 0 1 0





q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

q12

q13

q14



+



0 0 0 0 0
1
α2

0 0 0 0

0 0 0 0 0
0 1

α4
0 0 0

0 0 0 0 0

0 0 kc
Mc

0 0

0 0 0 0 0

0 0 kd
Md

0 0

0 0 0 0 0

0 0 0 A
ρoilL

0

0 0 0 0 0
0 0 0 0 0

0 0 0 0 A
ρoilL

0 0 0 0 0




FU,2

FU,4

zin

FU,10

FU,13



(A.287)

A =



0 1 0 0 0 0 0 0 0 0 0 0 0 0
−kd
α2

−γ2
α2

0 0 0 0 kd
α2

0
Ap

α2
0 0

−Ap

α2
0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 −kc
α4

−γ4
α4

kc
α4

0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 kc
Mc

0 −2kc
Mc

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0
kd
Md

0 0 0 0 0 −2kd
Md

0 0 0 0 0 0 0

0
−KAp

Vp1,1
0

KAp

Vp1,1
0 0 0 0 0 −K

Vp1,1
0 0 0 0

0 0 0 0 0 0 0 0 A
ρoilL

−Aε10
ρoilL

−Aγ10
ρoilL

0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0

0
KAp

Vp2,1
0

−KAp

Vp2,1
0 0 0 0 0 0 0 0 −K

Vp2,1
0

0 0 0 0 0 0 0 0 0 0 0 A
ρoilL

−Aε13
ρoilL

−Aγ13
ρoilL

0 0 0 0 0 0 0 0 0 0 0 0 1 0


(A.288)
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A.13 Equations of motion for the LAM

A.13.1 EOM

A.13.1.1 1 mass

(Mhook,payload)z̈2 =

Pa1Ap − Pa3Ap + Fwater − Fwater + ρwaterVdg

−Mhook,payloadg

(A.289)

Where Mhook,payload is the mass of the hook and payload, z2 is the displacement of the hook and payload,
Pa1 is the pressure in the lower accumulator, Pa3 is the pressure in the upper accumulator, Ap is the
area of the piston-head the pressures act on, Fwater is the force of water pressure on the top and bottom
of the cylinder that cancels out, ρwater is the water density, Vd is the volume of displaced fluid, and g is
gravitational acceleration.

A.13.1.2 2 pressures

The pressure in the lower accumulator is given by (A.290)

Ṗa1 =
Pa1,1nQa1

Va1,1
(A.290)

Where Pa1 is the pressure in the lower accumulator, Pa1,1 is the initial pressure in the lower accumulator,
n is the gas constant, Qa1 is the volume flow-rate with respect to the lower accumulator, and Va1,1 is the
initial volume in the lower accumulator.

Qa1 = −Ap(ż2) (A.291)

Where Qa1 is the volume flow-rate with respect to the lower accumulator, Ap is the area of the
piston-head, and ż2 is the velocity of the piston-head.

The pressure in the upper accumulator is given by (A.292)

Ṗa3 =
Pa3,1nQa3

Va3,1
(A.292)

Where Pa3 is the pressure in the upper accumulator, Pa3,1 is the initial pressure in the upper accumulator,
n is the gas constant, Qa3 is the volume flow-rate with respect to the upper accumulator, and Va3,1 is
the initial volume in the upper accumulator.

Qa3 = Ap(ż2) (A.293)

Where Qa3 is the volume flow-rate with respect to the upper accumulator, Ap is the area of the piston-
head, ż2 is the velocity of the piston-head.

A.13.1.3 State space system

See (A.294) and (A.295) for the state-space system corresponding to equations (A.289), (A.290), (A.292).
The state variables are shown in Table A.3.

Table A.3: q variables

State variable Physical variable

q1 Pa3

q2 z2

q3 ż2 = q̇2

q4 Pa1
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q̇1

q̇2

q̇3

q̇4

 =


0 0

Pa3,1nAp

Va3,1
0

0 0 1 0

− Ap

(Mhook,payload) 0 0
Ap

(Mhook,payload)

0 0
−Pa1,1nAp

Va1,1
0



q1

q2

q3

q4

+


0
0
1

Mhook,payload

0

 [Fexternal

]
(A.294)

y1

y2

y4

 =

1 0 0 0
0 1 0 0
0 0 0 1



q1

q2

q3

q4

+


0
0
0
0

 [Fexternal

]
(A.295)
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A.14 Working out upper/lower case initial conditions for section 8.2

A.14.1 Upper case initial conditions

The upper case is where the piston-head is 10% of the maximum stroke length from the top of the cylinder,
the top position. See Figure A.9. This means the piston-head is displaced Lupper,case = 0.4Lmax,stroke

upwards from the middle of the cylinder. The change in the system is referenced relative to the base
case. This change in volume is

∆Vupper,case = Lupper,case(0.25πd2
p,tot) (A.296)

Figure A.9: A schematic for the upper case

A.14.1.1 Lower accumulator dimensions

The effect on the system is that the lower accumulator will have an increased initial volume relative to
the base case

Va1,1,UC = Va1,1 + ∆Vupper,case (A.297)

where Va1,1 is for the base case.
V1 is defined as the initial volume:

V1 = Va1,1,UC (A.298)

Since the initial volume is specified the initial pressure P1 will change. The useful volume ∆V has
changed. ∆V is calculated using (8.3) as a function of dp,tot and Luseful. For the lower accumulator:

Luseful = 0.9Lmax,stroke (A.299)

Since ∆V has changed then V0 must change. V0 is a function of ∆V , P0, P1, and P2. It is assumed P2

and V2 are the same as for the base case since these correspond to the maximum pressure state. Using:

P1V
n

1 = P2V
n

2 (A.300)

P1 can be found. As mentioned before:
P0 = 0.9P1 (A.301)

Then V0 can be found. See Table A.4 for the calculated values.
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Table A.4: Upper case, key variable values for the lower accumulator, variables with * changed relative
to the base case

Variable Unit value

*P0 [N/m2] 1.0856e+07

*P1 [N/m2] 1.2062e+07

P2 [N/m2] 6e7

*P2
P0

[-] 5.5268

*V0 [m3] 0.3017

*V1 [m3] 0.2798

V2 [m3] 0.0890

*∆V [m3] 0.1909

A.14.1.2 Upper accumulator dimensions

The upper accumulator will have a decreased initial volume relative to the base case

Va3,1,UC = Va3,1 −∆Vupper,case (A.302)

where Va3,1 is for the base case.
V1 is defined as the initial volume:

V1 = Va3,1,UC (A.303)

Since the initial volume is specified the initial pressure P1 will change. The useful volume ∆V has
changed. ∆V is calculated using (8.3) as a function of dp,tot and Luseful. For the upper accumulator:

Luseful = 0.1Lmax,stroke (A.304)

Since ∆V has changed then V0 must change. V0 is a function of ∆V , P0, P1, and P2. It is assumed P2

and V2 are the same since these are the maximum states. Using:

P1V
n

1 = P2V
n

2 (A.305)

P1 can be found. As mentioned before:
P0 = 0.9P1 (A.306)

Then V0 can be found. See Table A.5 for the calculated values.

Table A.5: Upper case, key variable values for the upper accumulator, variables with * changed relative
to the base case

Variable Unit value

*P0 [N/m2] 2.0631e+06

*P1 [N/m2] 2.2924e+06

P2 [N/m2] 3.3065e+06

*P2
P0

[-] 1.6027

*V0 [m3] 0.0993

*V1 [m3] 0.0921

V2 [m3] 0.0709

*∆V [m3] 0.0212

A.14.1.3 Upper case dimensions

Values from Table A.5 and Table A.4 are summarized in Table A.6 for the upper case.
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Table A.6: Upper case, variables with * are changed relative to the base case

Variable Value Unit Note

PSPHC,lower 1.0856e+07 [N/m2] Charge pressure, lower accumulator

PSPHC,upper 2.0631e+06 [N/m2] Charge pressure, upper accumulator

dp,tot 0.3 [m] Diameter of piston-head

P∆p 1.9081e+07 [N/m2]
Difference in pressure across piston-head required to hold

payload and hook in water

*Pa1,1 1.2062e+07 [N/m2] Initial pressure in the lower accumulator

*Pa3,1 2.2924e+06 [N/m2] Initial pressure in the upper accumulator

*Va1,1 0.2798 [m3] Initial volume in lower accumulator

*Va3,1 0.0921 [m3] Initial volume in upper accumulator

*ωz1 1.7689 [rad/s] Natural frequency of accumulator system

ωz1,design 2.0944 [rad/s] Designed natural frequency

*ε 15.5 [%] Percent error of natural frequency, relative to design

Base case ωz1 2.2269 [rad/s] Natural frequency of accumulator system

A.14.2 Lower case initial conditions

The lower case is where the piston-head is at 10% Lmax,stroke above the bottom of the cylinder. See
Figure A.10. This means the piston-head is displaced Llower,case = 0.4Lmax,stroke downwards from the
middle of the cylinder. The change in the system is referenced relative to the base case. This change in
volume is

∆Vlower,case = Llower,case(0.25πd2
p,tot) (A.307)

Figure A.10: A schematic for the lower case
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A.14.2.1 Lower accumulator dimensions

The effect on the system is that the lower accumulator will have a decreased initial volume relative to
the base case

Va1,1,LC = Va1,1 −∆Vlower,case (A.308)

where Va1,1 is for the base case.
V1 is defined as the initial volume:

V1 = Va1,1,LC (A.309)

Since the initial volume is specified the initial pressure P1 will change. The useful volume ∆V has
changed. ∆V is calculated using (8.3) as a function of dp,tot and Luseful. For the lower accumulator:

Luseful = 0.1Lmax,stroke (A.310)

Since ∆V has changed then V0 must change. V0 is a function of ∆V , P0, P1, and P2. It is assumed P2

and V2 are the same since these are the maximum states. Using:

P1V
n

1 = P2V
n

2 (A.311)

P1 can be found. As mentioned before:
P0 = 0.9 ∗ P1 (A.312)

Now V0 can be found. See Table A.7 for the calculated values.

Table A.7: Lower case, key variable values for the lower accumulator, variables with * changed relative
to the base case

Variable Unit value

*P0 [N/m2] 4.0032e+07

*P1 [N/m2] 4.4480e+07

P2 [N/m2] 6e7

*P2
P0

[-] 1.4988

*V0 [m3] 0.1188

*V1 [m3] 0.1102

V2 [m3] 0.0890

*∆V [m3] 0.0212

A.14.2.2 Upper accumulator dimensions

The upper accumulator will have an increased initial volume relative to the base case.

Va3,1,LC = Va3,1 + ∆Vlower,case (A.313)

where Va3,1 is for the base case.
V1 is defined as the initial volume V1 = Va3,1,LC. Since the initial volume is specified the initial pressure
P1 will change. The useful volume ∆V has changed. ∆V is calculated using (8.3) as a function of dp,tot

and Luseful. For the upper accumulator:

Luseful = 0.9Lmax,stroke (A.314)

Since ∆V has changed then V0 must change. V0 is a function of ∆V , P0, P1, and P2. It is assumed P2

and V2 are the same since these are the maximum states. Using:

P1 ∗ V n
1 = P2 ∗ V n

2 (A.315)
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P1 can be found. As mentioned before:
P0 = 0.9 ∗ P1 (A.316)

Now V0 can be found. See Table A.8 for the calculated values.

Table A.8: Lower case, key variable values for the upper accumulator, variables with * changed relative
to the base case

Variable Unit value

*P0 [N/m2] 4.7807e+05

*P1 [N/m2] 5.3119e+05

P2 [N/m2] 3.3065e+06

*P2
P0

[-] 6.9163

*V0 [m3] 0.2822

*V1 [m3] 0.2618

V2 [m3] 0.0709

*∆V [m3] 0.1909

A.14.2.3 Lower case dimensions

Values from Table A.8 and Table A.7 are summarized in Table A.9 for the lower case.

Table A.9: Lower case, variables with * are changed relative to the base case

Variable Value Unit Note

PSPHC,lower 4.0032e+07 [N/m2] Charge pressure, lower accumulator

PSPHC,upper 4.7807e+05 [N/m2] Charge pressure, upper accumulator

dp,tot 0.3 [m] Diameter of piston-head

P∆p 1.9081e+07 [N/m2]
Difference in pressure across piston-head required to hold

payload and hook in water

*Pa1,1 4.4480e+07 [N/m2] Initial pressure in the lower accumulator

*Pa3,1 5.3119e+05 [N/m2] Initial pressure in the upper accumulator

*Va1,1 0.1102 [m3] Initial volume in lower accumulator

*Va3,1 0.2618 [m3] Initial volume in upper accumulator

*ωz1 4.3213 [rad/s] Natural frequency of accumulator system

ωz1,design 2.0944 [rad/s] Designed natural frequency

*ε 106.3 [%]
Percent error of natural frequency of accumulator system,

relative to design

Base case ωz1 2.2269 [rad/s] Natural frequency of accumulator system
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A.15 Natural frequencies, the RLAM

For the equations of motion and the state-space system.

A.15.1 EOM

A.15.1.1 4 masses

The equation of motion (EOM) for the hook and payload is shown.

(Mhook,payload)z̈1 =

Pa1Ap − Pa3Ap + Fwater − Fwater + ρwaterVdg

−Mhook,payloadg − kd(z1 − zd)

(A.317)

The EOM for the cylinder is shown.

(Mphc)z̈phc = −kc(zphc − zc) (A.318)

The EOM for the steel rope is shown.

(Mc)z̈c = −kc(zc − zin)− kc(zc − zphc) (A.319)

The EOM for the Dyneema is shown.

(Md)z̈d = −kd(zd − zin)− kd(zd − z1) (A.320)

A.15.1.2 2 pressures

Assumptions

• Isentropic process

The pressure in the lower accumulator is given by (A.321)

Ṗa1 =
Pa1,1nQr,1

Va1,1
(A.321)

Qr,1 = Ap(żphc − ż1) (A.322)

The pressure in the upper accumulator is given by (A.323)

Ṗa3 =
Pa3,1nQr,3

Va3,1
(A.323)

Qr,3 = Ap(ż1 − żphc) (A.324)

A.15.1.3 State space system

See (A.325) and (A.326) for the state-space system corresponding to equations (A.317), (A.318), (A.319),
(A.320), (A.321), and (A.323). The state variables are shown in Table A.10.
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Table A.10: q variables

State variable Physical variable

q1 z1

q2 ż1 = q̇1

q3 zphc

q4 żphc = q̇3

q5 zc
q6 żc = q̇5

q7 zd
q8 żd = q̇7

q9 Pa1

q10 Pa3
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q̇1

q̇2

q̇3

q̇4

q̇5

q̇6

q̇7

q̇8

q̇9

q̇10


=



0 1 0 0 0 0 0 0 0 0

− kd
Mhook,payload

0 0 0 0 0 kd
Mhook,payload

0
Ap

Mhook,payload
− Ap

Mhook,payload

0 0 0 1 0 0 0 0 0 0

0 0 − kc
Mphc

0 kc
Mphc

0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 kc
Mc

0 −2kc
Mc

0 0 0 0 0

0 0 0 0 0 0 0 1 0 0
kd
Md

0 0 0 0 0 −2kd
Md

0 0 0

0 −Pa1,1nAp

Va1,1
0

Pa1,1nAp

Va1,1
0 0 0 0 0 0

0
Pa3,1nAp

Va3,1
0 −Pa3,1nAp

Va3,1
0 0 0 0 0 0





q1

q2

q3

q4

q5

q6

q7

q8

q9

q10


+



0 0
1

Mhook,payload
0

0 0
0 0
0 0

0 kc
Mc

0 0

0 kd
Md

0 0
0 0



[
Fexternal

zin

]

(A.325)



y1

y3

y5

y7

y9

y10

 =



1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1





q1

q2

q3

q4

q5

q6

q7

q8

q9

q10


+



0 0
0 0
0 0
0 0
0 0
0 0


[
Fexternal

zin

]
(A.326)
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A.15.2 Upper case natural frequencies

See Table A.11

Table A.11: Upper case eigenvalues, natural frequencies, natural periods

Eigenvalue λ Natural frequency ωn [rad/s] Natural period [s]

0 0 inf

0 0 inf

0.1079i 0.1079 58.2316

-0.1079i 0.1079 58.2316

0.4095i 0.4095 15.3436

-0.4095i 0.4095 15.3436

0.5088i 0.5088 12.3490

-0.5088i 0.5088 12.3490

1.7723i 1.7723 3.5452

-1.7723i 1.7723 3.5452

A.15.3 Lower case natural frequencies

See Table A.12

Table A.12: Lower case eigenvalues, natural frequencies, natural periods

Eigenvalue λ Natural frequency ωn [rad/s] Natural period [s]

0 0 inf

0 0 inf

0.1079i 0.1079 58.2316

-0.1079i 0.1079 58.2316

0.4095i 0.4095 15.3436

-0.4095i 0.4095 15.3436

0.5093i 0.5093 12.3369

-0.5093i 0.5093 12.3369

4.3226i 4.3226 1.4536

-4.3226i 4.3226 1.4536
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A.16 Upper/lower case for the ORLAM

A.16.1 Upper case natural frequencies

See Table A.13 for the natural frequencies when the piston-head is in the upper position. Comparison
with Table 9.6 shows that the second, third, and fourth largest natural frequencies are the same. This is
reasonable since these natural frequencies are due to the steel rope, Dyneema, and cylinder respectively.
So they should be independent of piston-head position. The fifth largest natural frequency, 1.7558rad/s,
is due to the hook/payload mass and is different from the base case natural frequency, 2.2020rad/s.
This is expected since the hook/payload mass natural frequency is a function of piston-head position.

Table A.13: Upper case: Eigenvalues, natural frequencies

Eigenvalue λ Natural frequency ωn [rad/s] Natural frequency [Hz] Natural period [s]

0 0 0 inf

0 0 0 inf

-9.6626e-5 - 0.1035i 0.1035 0.0165 60.7071

-9.6626e-5 + 0.1035i 0.1035 0.0165 60.7071

-4.5410e-4 - 0.3070i 0.3070 0.0489 20.4664

-4.5410e-4 + 0.3070i 0.3070 0.0489 20.4664

-5.1028e-8 - 0.5090i 0.5090 0.0810 12.3442

-5.1028e-8 + 0.5090i 0.5090 0.0810 12.3442

-2.8155e-4 - 1.7558i 1.7558 0.2794 3.5785

-2.8155e-4 + 1.7558i 1.7558 0.2794 3.5785

-2.4370e-2 - 301.86i 301.86 48.0420 0.0208

-2.4370e-2 + 301.86i 301.86 48.0420 0.0208

-2.4136e-2 - 303.37i 303.37 48.2822 0.0207

-2.4136e-2 + 303.37i 303.37 48.2822 0.0207

A.16.2 Lower case natural frequencies

See Table A.14. Comparison with Table 9.6 shows that the second, third, and fourth largest natural
frequencies are nearly the same. This is reasonable since these natural frequencies are due to the steel
rope, Dyneema, and cylinder respectively. So they should be independent of piston-head position. The
fifth largest natural frequency, 4.2060rad/s, is due to the hook/payload mass and is different from the base
case natural frequency, 2.2020rad/s. This is expected since the hook/payload mass natural frequency is
a function of piston-head position.
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Table A.14: Lower case: Eigenvalues, natural frequencies

Eigenvalue λ Natural frequency ωn [rad/s] Natural frequency [Hz] Natural period [s]

0 0 0 inf

0 0 0 inf

-9.6626e-5 - 0.1035i 0.1035 0.0165 60.7071

-9.6626e-5 + 0.1035i 0.1035 0.0165 60.7071

-4.5410e-4 - 0.3070i 0.3070 0.0489 20.4664

-4.5410e-4 + 0.3070i 0.3070 0.0489 20.4664

-1.3034e-9 - 0.5093i 0.5093 0.0811 12.3369

-1.3034e-9 + 0.5093i 0.5093 0.0811 12.3369

-2.7410e-4 - 4.2060i 4.2060 0.6694 1.4939

-2.7410e-4 + 4.2060i 4.2060 0.6694 1.4939

-2.4279e-2 - 302.04i 302.04 48.0713 0.0208

-2.4279e-2 - 302.04i 302.04 48.0713 0.0208

-2.4234e-2 - 308.26i 308.26 49.0609 0.0204

-2.4234e-2 + 308.26i 308.26 49.0609 0.0204
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(a) Bode plot for Pa3, peak at 0.282Hz (b) Bode plot for Pa1, peak at 0.282Hz

Figure A.11: Upper case, for the LAM

A.17 Frequency response of pressures, upper/lower case initial con-
ditions

A.17.1 Upper case

A.17.1.1 The LAM

In Figures A.11a and A.11b the frequency response for the LAM (from Figure 9.1) is shown for the upper
case initial conditions. There is only one peak at 0.282Hz.

A.17.1.2 The ORLAM

For the ORLAM in appendix A.16.1 in Table A.13. The closest natural frequency is 0.2794Hz which has
a 0.9% difference with 0.282Hz. These natural frequencies are almost the same.

A.17.2 Lower case

A.17.2.1 The LAM

In Figures A.12a and A.12b the frequency response for the LAM (from Figure 9.1) is shown for the lower
case initial conditions. There is only one peak at 0.688Hz.

A.17.2.2 The ORLAM

For the ORLAM in appendix A.16.2 in Table A.14. The closest natural frequency is 0.6694Hz which has
a 2.7% difference with 0.688Hz. These natural frequencies are almost the same.
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(a) Bode plot for Pa3, peak at 0.688Hz (b) Bode plot for Pa1, peak at 0.688Hz

Figure A.12: Lower case, for the LAM



APPENDICES 218

(a) Using the NLORLAM, input frequency is the design
wave frequency of 0.125Hz

(b) Using the NLORLAM, input frequency is the natural
frequency of 0.2794Hz

Figure A.13: Upper case, time-response of Pa3 and Pa1

(a) Using the NLORLAM, input frequency is the design
wave frequency of 0.125Hz

(b) Using the NLORLAM, input frequency is the natural
frequency of 0.6694Hz

Figure A.14: Lower case, time-response of Pa3 and Pa1

A.18 Time response of pressures, upper/lower case initial conditions

A.18.1 Upper case

Figure A.13a shows the pressures Pa1 and Pa3 for the design wave condition. Figure A.13b shows the
pressures using an input frequency of 0.2794Hz the same as the frequency in appendix A.17.1.2.

A.18.2 Lower case

Figure A.14a shows the pressures Pa1 and Pa3 for the design wave condition. Figure A.14b shows the
pressures using an input frequency of 0.6694Hz the same as the frequency in appendix A.17.2.2.
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A.19 Frequency response of hook/payload motion, upper/lower case
initial conditions

A.19.1 Upper case

See Figure A.15 for the frequency response of the hook displacement with respect to a harmonic crane
tip motion, for the upper case. The frequency and magnitude of peaks is shown in Table A.15.

For the ORLAM in section A.16.1 in Table A.13 the closest natural frequencies are extracted and put
into Table A.16. The percent differences with the corresponding values in Table A.15 are shown in Table
A.16. Most of the percent differences are low as would be expected since they are supposed to be the
same natural frequencies.

Table A.15: Frequency and magnitudes for peaks in Figure A.15 (RLAM)

Frequency [Hz] Magnitude [dB]

0.0172 144

0.0652 121

0.081 89

0.282 56.7

Table A.16: Upper case, natural frequencies for the ORLAM with percent differences of values in Table
A.15

Frequency [Hz] % difference

0.0165 4.2

0.0489 25.1

0.0810 0

0.2794 0.9

A.19.2 Lower case

See Figure A.16 for the frequency response of the hook displacement with respect to a harmonic crane
tip motion, for the lower case. The frequency and magnitude of peaks is shown in Table A.17.

For the ORLAM in section A.16.2 in Table A.14 the closest natural frequencies are extracted and put
into Table A.18. The percent differences with the corresponding values in Table A.17 are shown in
Table A.18. Most of the percent differences are low as would be expected since they are supposed to be
the same natural frequencies.

Table A.17: Frequency and magnitudes for peaks in Figure A.16 (RLAM)

Frequency [Hz] Magnitude [dB]

0.0172 141

0.0652 121

0.0811 201

0.688 26.1
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Figure A.15: Upper case, bode plot for z1, the RLAM.

Table A.18: Lower case, natural frequencies for the ORLAM with percent differences of values in Table
A.17

Frequency [Hz] % difference

0.0165 4.2

0.0489 25.1

0.0811 0.1

0.6694 2.7

Figure A.16: Lower case, bode plot for z1, the RLAM.
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A.20 Time response of hook/payload motion, upper/lower case initial
conditions

A.20.1 Upper case

The four frequencies found in the frequency response in Table A.16 are used as input frequencies to verify
the frequency response, the table is repeated in Table A.19.

Table A.19: Upper case, natural frequencies

Frequency [Hz] % difference

0.0165 4.2

0.0489 25.1

0.0810 0

0.2794 0.9

For 0.0165Hz see Figure A.17b, there is a large amplification of the maximum crest-to-trough value of
z1 relative to the design wave condition in Figure A.17a.

For 0.0489Hz see Figure A.17c, the maximum crest-to-trough value of z1 is larger relative to the
case of the design wave condition.

For 0.0810Hz see Figure A.17d, the maximum crest-to-trough value of z1 is larger than in the
case of the design wave condition and increases in time. As mentioned in section 10.5.1 this is most
likely due to an interaction with the accumulators.

For 0.2794Hz see Figure A.17e, the maximum crest-to-trough value of z1 is approximately the
same as the case of the design wave condition. The high frequency leads to damping have a greater
effect which is why the crest-to-trough value of z1 decreases in time.

A.20.2 Lower case

The four frequencies found in the frequency response in Table A.18 are used as input frequencies to
verify the frequency response, the table is repeated in Table A.20.

Table A.20: Lower case, natural frequencies

Frequency [Hz] % difference

0.0165 4.2

0.0489 25.1

0.0811 0.1

0.6694 2.7

For 0.0165Hz see Figure A.18b, there is a large amplification of maximum crest-to-trough value of z1

relative to the design wave condition in Figure A.18a.

For 0.0489Hz see Figure A.18c, the maximum crest-to-trough value of z1 is larger relative to the
case of the design wave condition.

For 0.0811Hz see Figure A.18d , the maximum crest-to-trough value of z1 is higher than the
case of the design wave condition. In time, the crest-to-trough value of z1 grows. As mentioned in
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(a) Using the NLORLAM, input frequency is the
design wave frequency of 0.125Hz

(b) Using the NLORLAM, input frequency is the
natural frequency of 0.0165Hz

(c) Using the NLORLAM, input frequency is the
natural frequency of 0.0489Hz

(d) Using the NLORLAM, input frequency is the
natural frequency of 0.0810Hz

(e) Using the NLORLAM, input frequency is the
natural frequency of 0.2794 Hz

Figure A.17: Time-series for z1 for five input frequencies

section 10.5.1 this is most likely due to an interaction with the accumulators.

For 0.6694Hz see Figure A.18e , the maximum crest-to-trough value of z1 is approximately the
same as in the case of the design wave condition. In time the crest-to-trough value of z1 diminishes
due to the frequency being relatively larger which enables the damping in the system to have a larger
influence.
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(a) Using the NLORLAM, input frequency is the
design wave frequency of 0.125Hz

(b) Using the NLORLAM, input frequency is the
natural frequency of 0.0165Hz

(c) Using the NLORLAM, input frequency is the
natural frequency of 0.0489Hz

(d) Using the NLORLAM, input frequency is the
natural frequency of 0.0811Hz

(e) Using the NLORLAM, input frequency is the
natural frequency of 0.6694Hz

Figure A.18: Time-series for z1 for five input frequencies
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A.21 HHCS equations

A.21.1 PHCS equations

From appendix (A.8) the non-linear PHCS equations are repeated below. However, the equation for z1

(A.137) is modified to take into account the AHCS. (A.137) is modified to (A.327) by replacing zd with
zd,p

z̈1 =
1

(Mhook,payload +Ahook,payload)[
Pp1Ap − Pp2Ap + Fwater − Fwater + ρwaterVdg

−Mhook,payloadg −
1

2
ρwaterCd,hook,payloadDhook,payload|ż1|ż1 − kd(z1 − zd,p)

] (A.327)

z̈phc =
1

(Mphc +Aphc)

[
− kc(zphc − zc)−

1

2
ρwaterCd,phcDphc|żphc|żphc

]
(A.328)

z̈c =
1

(Mc)

[
− kc(zc − zin)− kc(zc − zphc)

]
(A.329)

(A.140) was modified by replacing zd with zd,p to form (A.330)

z̈d,p =
1

(Md)

[
kd(−zd,p + zin − zd,a)− kd(zd,p − z1)

]
(A.330)

Ṗp1 =
K

Vp11

[
−Ap(ż1 − żphc)−Qr

]
(A.331)

Q̇r =
A

ρoilL

[
Pp1 − Pa1 −

sign(Qr)Q
2
r

(CdischargeA)2

ρoil

2

]
(A.332)

V̇in = Qr (A.333)

Pa1 = Pa1,1

( Va1,1

Va1,1 − Vin

)n
(A.334)

Ṗp2 =
K

Vp21
[−Ap(żphc − ż1)−Qr,2] (A.335)

Q̇r,2 =
A

ρoilL

[
Pp2 − Pa3 −

sign(Qr,2)Q2
r,2

(CdischargeA)2

ρoil

2

]
(A.336)

V̇in,u = Qr,2 (A.337)

Pa3 = Pa3,1

( Va3,1

Va3,1 − Vin,u

)n
(A.338)

A.21.2 AHCS equations

Repeating (13.24) from section 13.4.1

φ̈w =
Te,maxd+

(
kd(zin − zd,p − zd,a)

)
rw − sign(φ̇w)

(
2Te,max

0.05żd,a,max
(|φ̇wrw| − żd,a,max)

)
−Bwφ̇w

Jw
(A.339)
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A.21.3 Including PI controller, open loop

The only difference is that (A.339) is replaced with (13.44) from section 13.5.3

φ̈w =

Te,max

(
[kp,1 + ki,1]r1(t)− ki,1r1(0) + [kp,2 + ki,2]r2(t)− ki,2r2(0)

)
+
(
kd(zin − zd,p − zd,a)

)
rw

Jw
+

−sign(φ̇w)
(

2Te,max

0.05żd,a,max
(|φ̇wrw| − żd,a,max)

)
−Bwφ̇w

Jw
(A.340)

A.22 Non-linear HHCS state-space equations

The chosen state-space variables are shown in Table A.21.

Table A.21: q variables

state variable original variable

q1 z1

q2 ż1

q3 zphc

q4 żphc

q5 zc
q6 żc
q7 zd,p

q8 żd,p

q9 Pp1

q10 Qr

q11 Vin

q12 Pp2

q13 Qr,2

q14 Vin,u

q15 φw

q16 φ̇w

A.22.1 Non-linear PHCS state-space equations

The state-space equations for the PHCS were found in appendix A.10, they are repeated below.

A.22.1.1 q̇1

q̇1 = q2 (A.341)
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A.22.1.2 q̇2

(A.342) was modified to take into account the AHCS using (A.327), so use (A.342)

q̇2 =
1

ζ2[
q9Ap − q12Ap + η2 − θ2sign(q2)q2

2 − kd(q1 − q7)

] (A.342)

A.22.1.3 q̇3

q̇3 = q4 (A.343)

A.22.1.4 q̇4

q̇4 =
1

ζ4

[
− kc(q3 − q5)− η4sign(q4)q2

4

]
(A.344)

A.22.1.5 q̇5

q̇5 = q6 (A.345)

A.22.1.6 q̇6

q̇6 =
1

(Mc)

[
− kc(q5 − zin)− kc(q5 − q3)

]
(A.346)

A.22.1.7 q̇7

q̇7 = q8 (A.347)

A.22.1.8 q̇8

(A.348) was modified to take into account the AHCS using (A.330)

q̇8 =
1

(Md)

[
kd(−q7 + zin − q15rw)− kd(q7 − q1)

]
(A.348)

A.22.1.9 q̇9

q̇9 =
K

Vp11

[
−Ap(q2 − q4)− q10

]
(A.349)

A.22.1.10 q̇10

q̇10 = ζ10

[
q9 − Pa1,1

( Va1,1

Va1,1 − q11

)n
− η10q

2
10

]
(A.350)

A.22.1.11 q̇11

q̇11 = q10 (A.351)

A.22.1.12 q̇12

q̇12 =
K

Vp21
[−Ap(q4 − q2)− q13] (A.352)
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A.22.1.13 q̇13

q̇13 = ζ13

[
q12 − Pa3,1

( Va3,1

Va3,1 − q14

)n
− η13q

2
13

]
(A.353)

A.22.1.14 q̇14

q̇14 = q13 (A.354)
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A.22.2 Non-linear AHCS state-space equations

A.22.2.1 q̇15

q̇15 = q16 (A.355)

A.22.2.2 q̇16

Putting (A.339) into state-space form

q̇16 =
Te,maxd+

(
kd(zin − q7 − q15rw)

)
rw − sign(q16)

(
2Te,max

0.05żd,a,max
(|q16rw| − żd,a,max)

)
−Bwq16

Jw
(A.356)

A.22.2.3 Including PI controller open loop

Putting (A.340) into state-space form gives (A.357). (A.357) replaces (A.356).

q̇16 =

Te,max

(
[kp,1 + ki,1]r1(t)− ki,1r1(0) + [kp,2 + ki,2]r2(t)− ki,2r2(0)

)
+
(
kd(zin − q7 − q15rw)

)
rw

Jw
+

−sign(q16)
(

2Te,max

0.05żd,a,max
(|q16rw| − żd,a,max)

)
−Bwq16

Jw
(A.357)

A.23 Linear HHCS state-space equations

A.23.1 Linear PHCS state-space equations

The linearized PHCS equations from section (A.12) are repeated below.

A.23.1.1 q̇1

q̇1 = q2 (A.358)

A.23.1.2 q̇2

q̇2 =
1

α2

[
q9Ap − q12Ap

−γ2q2

−kdq1 + kdq7 + FU,2

] (A.359)

A.23.1.3 q̇3

q̇3 = q4 (A.360)

A.23.1.4 q̇4

q̇4 =
1

α4

[
− kc(q3 − q5)− γ4q4 + FU,4

]
(A.361)
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A.23.1.5 q̇5

q̇5 = q6 (A.362)

A.23.1.6 q̇6

q̇6 =
1

Mc

[
kcq3 − 2kcq5 + kczin

]
(A.363)

A.23.1.7 q̇7

q̇7 = q8 (A.364)

A.23.1.8 q̇8

Using (A.348) gives (A.365)

q̇8 =
1

(Md)

[
kdq1 − 2kdq7 − kdrwq15 + kdzin

]
(A.365)

A.23.1.9 q̇9

q̇9 =
K

Vp11

[
−Ap(q2 − q4)− q10

]
(A.366)

A.23.1.10 q̇10

q̇10 =
A

ρoilL

[
q9 − γ10q11

−ε10q10 + FU,10

] (A.367)

A.23.1.11 q̇11

q̇11 = q10 (A.368)

A.23.1.12 q̇12

q̇12 =
K

Vp21
[−Ap(q4 − q2)− q13] (A.369)

A.23.1.13 q̇13

q̇13 =
A

ρoilL

[
q12 − γ13q14

−ε13q13 + FU,13

] (A.370)

A.23.1.14 q̇14

q̇14 = q13 (A.371)
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A.23.2 Linear AHCS state-space equations

The AHCS state-space equations are always linear and are the same as in appendix A.22.2. They are
repeated here.

A.23.2.1 q̇15

q̇15 = q16 (A.372)

A.23.2.2 q̇16

q̇16 =
Te,maxd+

(
kd(zin − q7 − q15rw)

)
rw − sign(q16)

(
2Te,max

0.05żd,a,max
(|q16rw| − żd,a,max)

)
−Bwq16

Jw
(A.373)

Expanding

q̇16 =
Te,maxd+ rwkd(zin − q7 − q15rw)− sign(q16)

(
2Te,max

0.05żd,a,max
(|q16rw| − żd,a,max)

)
−Bwq16

Jw
(A.374)

Removing sign(q16) and the absolute value sign

q̇16 =
Te,maxd+ rwkdzin − rwkdq7 − r2

wkdq15 − 2Te,max

0.05żd,a,max
q16rw +

2Te,max

0.05żd,a,max
żd,a,max −Bwq16

Jw
(A.375)

Defining

FR,16 =
2Te,max

0.05żd,a,max
żd,a,max (A.376)

Inserting FR,16 and collecting like terms

q̇16 =
Te,maxd+ rwkdzin − rwkdq7 − r2

wkdq15 + q16(− 2Te,max

0.05żd,a,max
rw −Bw) + FR,16

Jw
(A.377)

For matrices see section A.23.3

A.23.2.3 Including PI controller open loop

Repeating (A.357)

q̇16 =

Te,max

(
[kp,1 + ki,1]r1(t)− ki,1r1(0) + [kp,2 + ki,2]r2(t)− ki,2r2(0)

)
+
(
kd(zin − q7 − q15rw)

)
rw

Jw
+

−sign(q16)
(

2Te,max

0.05żd,a,max
(|q16rw| − żd,a,max)

)
−Bwq16

Jw
(A.378)

Simplifying

q̇16 =

Te,max[kp,1 + ki,1]r1(t)− Te,maxki,1r1(0) + Te,max[kp,2 + ki,2]r2(t)− Te,maxki,2r2(0) + rwkd(zin − q7 − q15rw)

Jw
+

−sign(q16)
2Te,max

0.05żd,a,max
(|q16rw| − żd,a,max)−Bwq16

Jw
(A.379)
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The sign(q16) term is removed since it creates a time-dependent coefficient. The abs function is removed
since it does not work for the state-space system with constant coefficients.
For readability new constants are defined for (A.379)

ξ16 = Te,max[kp,1 + ki,1] (A.380)

o16 = Te,maxki,1r1(0) (A.381)

π16 = Te,max[kp,2 + ki,2] (A.382)

ρ16 = Te,maxki,2r2(0) (A.383)

σ16 =
2Te,max

0.05żd,a,max
(A.384)

Substituting in the new constants.

q̇16 =

ξ16r1(t)− o16 + π16r2(t)− ρ16 + rwkd(zin − q7 − q15rw)

Jw
+

−σ16(q16rw − żd,a,max)−Bwq16

Jw

(A.385)

Collecting like terms

q̇16 =

ξ16r1(t) + π16r2(t)− o16 − ρ16 + σ16żd,a,max + rwkdzin − rwkdq7 − r2
wkdq15

Jw
+

q16(−σ16rw −Bw)

Jw

(A.386)

Defining the constant terms as

FQ,16 = −o16 − ρ16 + σ16żd,a,max (A.387)

Substituting
q̇16 =

ξ16r1(t) + π16r2(t) + FQ,16 + rwkdzin − rwkdq7 − r2
wkdq15

Jw
+

q16(−σ16rw −Bw)

Jw

(A.388)

For matrices see section A.23.4.

A.23.3 A,B,C,D matrices

The outputs of interest are y1 = z1 = q1 and y2 = Fd = kd(zin − zd,p − zd,a) = kd(zin − q7 − q15rw). The
state-space equations are re-arranged into matrix form, shown in (A.389) and (A.390).
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q̇1

q̇2

q̇3

q̇4

q̇5

q̇6

q̇7

q̇8

q̇9

q̇10

q̇11

q̇12

q̇13

q̇14

q̇15

q̇16



=



0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−kd
α2

−γ2
α2

0 0 0 0 kd
α2

0
Ap

α2
0 0

−Ap

α2
0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −kc
α4

−γ4
α4

kc
α4

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 kc
Mc

0 −2kc
Mc

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
kd
Md

0 0 0 0 0 −2kd
Md

0 0 0 0 0 0 0 −kdrw
Md

0

0
−KAp

Vp11
0

KAp

Vp11
0 0 0 0 0 −K

Vp11
0 0 0 0 0 0

0 0 0 0 0 0 0 0 A
ρoilL

−Aε10
ρoilL

−Aγ10
ρoilL

0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0
KAp

Vp21
0

−KAp

Vp21
0 0 0 0 0 0 0 0 −K

Vp21
0 0 0

0 0 0 0 0 0 0 0 0 0 0 A
ρoilL

−Aε13
ρoilL

−Aγ13
ρoilL

0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 −rwkd
Jw

0 0 0 0 0 0 0 −r2wkd
Jw

(− 2Te,max
0.05żd,a,max

rw−Bw)

Jw





q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

q12

q13

q14

q15

q16



+



0 0 0 0 0 0 0
1
α2

0 0 0 0 0 0

0 0 0 0 0 0 0
0 1

α4
0 0 0 0 0

0 0 0 0 0 0 0

0 0 kc
Mc

0 0 0 0

0 0 0 0 0 0 0

0 0 kd
Md

0 0 0 0

0 0 0 0 0 0 0

0 0 0 A
ρoilL

0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 A
ρoilL

0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 rwkd
Jw

0 0 1
Jw

Te,max

Jw





FU,2

FU,4

zin(t)

FU,10

FU,13

FR,16

d(t)
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[
y1

y2

]
=

[
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −kd 0 0 0 0 0 0 0 −kdrw 0

]



q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

q12

q13

q14

q15

q16



+

[
0 0 0 0 0 0 0
0 0 kd 0 0 0 0

]


FU,2

FU,4

zin(t)

FU,10

FU,13

FR,16

d(t)


(A.390)



APPENDICES 235

A.23.4 Open loop A,B,C,D matrices

The outputs of interest are y1 = z1 = q1 and y2 = Fd = kd(zin − zd,p − zd,a) = kd(zin − q7 − q15rw). The
state-space equations are re-arranged into matrix form, shown in (A.391) and (A.392).
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q̇1

q̇2

q̇3

q̇4

q̇5

q̇6

q̇7

q̇8

q̇9

q̇10

q̇11

q̇12

q̇13

q̇14

q̇15

q̇16



=



0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−kd
α2

−γ2
α2

0 0 0 0 kd
α2

0
Ap

α2
0 0

−Ap

α2
0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −kc
α4

−γ4
α4

kc
α4

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 kc
Mc

0 −2kc
Mc

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
kd
Md

0 0 0 0 0 −2kd
Md

0 0 0 0 0 0 0 −kdrw
Md

0

0
−KAp

Vp11
0

KAp

Vp11
0 0 0 0 0 −K

Vp11
0 0 0 0 0 0

0 0 0 0 0 0 0 0 A
ρoilL

−Aε10
ρoilL

−Aγ10
ρoilL

0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0
KAp

Vp21
0

−KAp

Vp21
0 0 0 0 0 0 0 0 −K

Vp21
0 0 0

0 0 0 0 0 0 0 0 0 0 0 A
ρoilL

−Aε13
ρoilL

−Aγ13
ρoilL

0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 −rwkd
Jw

0 0 0 0 0 0 0 −r2wkd
Jw

(−σ16rw−Bw)
Jw





q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

q12

q13

q14

q15

q16



+



0 0 0 0 0 0 0 0
1
α2

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 1

α4
0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 kc
Mc

0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 kd
Md

0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 A
ρoilL

0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 A
ρoilL

0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 rwkd
Jw

0 0 1
Jw

ξ16
Jw

π16
Jw





FU,2

FU,4

zin(t)

FU,10

FU,13

FQ,16

r1(t)
r2(t)
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[
y1

y2

]
=

[
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −kd 0 0 0 0 0 0 0 −kdrw 0

]



q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

q12

q13

q14

q15

q16



+

[
0 0 0 0 0 0 0 0
0 0 kd 0 0 0 0 0

]


FU,2

FU,4

zin(t)

FU,10

FU,13

FQ,16

r1(t)
r2(t)


(A.392)
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A.24 Verifying Simulink results with MATLAB results

To verify that Simulink is correctly solving the system of equations the equations were implemented in
MATLAB and ode23s was used to solve the equations. ode23s was used in MATLAB and Simulink since
the problem is stiff. Another stiff solver, ode15s, was tried in MATLAB and Simulink. For MATLAB
and Simulink, ode15s gives the same result as ode23s when using relative tolerance (RelTol) of 1e-7
but if use RelTol=1e-3 then there is a difference in result between ode15s and ode23s (in MATLAB
and Simulink). For MATLAB and Simulink tried ode15s with RelTol=1e-7 gives essentially the same
result as ode23s with 1e-3. This means ode23s is more effective for this problem since a lower relative
tolerance is needed to have the same result.

To verify the results, ode23s with RelTol=1e-3 (default value) for MATLAB and Simulink was used. See
Figures A.19, A.20, A.21, and A.22 for the results. The input signal zin is the same for MATLAB and
Simulink, shown in Figure A.22. The design condition is used, period of 8s and amplitude of 1.25m. The
results match essentially exactly. This is shown in Figure A.23 where the time-series for z1 from 624s to
625s is enlarged, showing a small difference between MATLAB and Simulink results. Since the results
from MATLAB and Simulink are nearly the same it is reasoned Simulink solves the equations correctly
meaning Simulink and MATLAB can be used equivalently.

Figure A.19: z1, ż1, zphc, żphc time series
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Figure A.20: zc, żc, zd, żd time series

Figure A.21: Pp1, Qr,Vin,Pp2 time series
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Figure A.22: Qr,2, Vin,u, zin time series

Figure A.23: z1 time series
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