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Abstract

Online social networks showed an enormous growth in the last decade. With the rise of online
social networks such as Twitter and Facebook, researchers got the opportunity to access the
data of social behavior of millions of people, whereas in the past it was limited to hundreds
of people. For these researchers and marketeers it is of great interest to find communities
within these large networks, as this is one of the opportunities to see how people behave in
groups on a large scale.

The most common approach of analyzing community structures in online social networks is
to gather the network by downloading the user profiles one by one (crawling) and afterwards
partition the network into groups or communities by community detection algorithms. How-
ever, crawling an entire social network is very time consuming and analyzing the networks
with community detection algorithms can be computationally expensive.

To overcome these problems, in this thesis a method is proposed for crawling nodes using
the community structure of a network. It enables the researcher to start the analysis be-
fore completing the crawl. This new method performs between 66% and 480% better than
existing crawling techniques such as Breadth First Search (BFS) and Depth First Search
(DFS), because a smaller portion of the networks has to be crawled in order to crawl entire
communities. The computer-generated networks used in this thesis were created using a new
network generator which uniquely combines three features; it creates networks with explicit
community structure, arbitrary degree distributions and adaptable community strength.
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Chapter 1

Introduction

1-1 Background

Online social networks have grown enormously over the last decade. Online social networks
such as Twitter and Facebook enabled social researchers to obtain and analyze the social
behavior of millions of people, where in the past it was limited to hundreds of people. It is of
great interest to find communities in these large networks for researchers and marketeers, as
it is an opportunity to observe how people behave in groups on a large scale.

The most common approach of analyzing community structures in online social networks is
to gather the network by downloading the user profiles one by one (crawling) and afterwards
partition the network into groups or communities by community detection algorithms.

1-2 Motivation

Obtaining these large networks can be very time consuming. To give an example, downloading
all 750 million profiles on Facebook one by one with an average speed of 10 profiles per second,
would take more than 2 years. Reducing the problem by sampling only parts of the network
does not work well because common crawling methods such as Breadth First Search (BFS)
and Depth First Search (DFS) do not crawl entire communities. For instance, BFS has a
preference for high degree nodes which are usually the hubs between communities. The low
degree nodes are crawled last [2]. To make matters even worse, most community detection
algorithms do not scale well with the size of the network and it can take a long time to
calculate the partitioning or they result in poor partitioning.

To overcome these problems, in this thesis a new crawling method is proposed that aims
to crawl entire communities before continuing to other communities. By crawling entire
communities, the analysis of community structure might start before the entire crawl of the
network is finished. This could reduces the amount of work that has to be performed in both
obtaining the network and analyzing the network.

Master of Science Thesis Bas van Kester



2 Introduction

The performance of the proposed crawling method will be measured by the portion of a net-
work that has to be crawled in order to completely crawl a number of clusters. For this
evaluation, each node has to be assigned to a single community, however this explicit com-
munity structure is generally not available for real world social networks. For this purpose,
community detection algorithms are used. Because there is no consensus on the most appro-
priate algorithm, multiple algorithms are considered and compared.

In order to be able to compare the existing and new crawling techniques for a variety of sce-
narios, multiple networks will be used. Real world social networks are considered, but in order
to vary the network properties, artificial networks are used. Existing network generators have
limitations as they can only create networks with one type of degree distribution. Therefore
an improved network generator is proposed, implemented and evaluated. Those generated
networks are also used to compare the performance of community detection algorithms.

Finally, when for the real world networks the explicit community structure is found and the
artificial networks are generated, the new crawling method is evaluated against them and
compared to BFS and DFS.

In short the following goals are set for this thesis:

• Propose and implement a network generator where community strength and degree
distributions can be configured

• Compare community detection algorithms using artificial networks and apply the com-
munity detection algorithm to a network where no explicit community structure is
available

• Propose and implement an algorithm for crawling complete communities

• Evaluate the performance of the proposed crawling algorithm and compare it to existing
crawling methods such as BFS and DFS

The means to achieve these goals of this thesis are presented in the rest of the chapters, as
described in the following overview.

1-3 Thesis Overview

The remainder of the thesis will be structured as follows. In chapter 2 the related work in
literature is presented. Social networks are introduced with a focus on community structure.
Furthermore, community detection algorithms are discussed as well as ways to compare par-
titioning created by those algorithms. Commonly used methods to obtain social networks
will be presented. Afterwards, in chapter 3 an algorithm for creating networks with commu-
nity structure is proposed and evaluated. Using these networks the performance of multiple
community detection algorithms is evaluated. In chapter 4, a method for crawling through a
networks using its community structure is proposed. The method is evaluated using multiple
social networks and networks that will be created using the generator of the previous chapter.
Finally, chapter 5 concludes this thesis by summarizing its conclusions and presenting some
possible directions for future work.

Bas van Kester Master of Science Thesis



Chapter 2

Related Work

In this chapter the related work that is needed for the rest of the thesis will be presented.
To understand the proposed crawling technique, it is necessary to understand what social
networks are and what kind of properties they have (section 2-1). Traditional approaches to
analyze community structures use community detection algorithms (section 2-2) to partition
after the full dataset of the social network is obtained. In this thesis these algorithms will be
used to analyze networks where no “ground truth” for partitioning is available. Because there
is no consensus on the optimal community detection algorithm, the partitioning by different
algorithms have to be compared (section 2-3). The background and properties of datasets of
social networks that will be used later in this thesis, will be addressed (section 2-4). Related
work on network generators will be presented, because networks created by such a generator
will later be used to compare different crawling methods. Finally existing crawling techniques
will be discussed in section 2-5 so they later can be compared with the proposed crawling
algorithm.

2-1 Properties of social networks

First, to be able to crawl social network, it is necessary to understand the properties of these
networks or graphs. In this section various properties observed in social networks are discussed
that are commonly used to characterize them. Two ways in which social networks are obtained
are described in section 2-1-1. In this section also the sizes of social networks (section 2-1-2)
and degree distribution (section 2-1-3) will be introduced, because they influence the way that
the network can be analyzed. Finally community structures are described in section 2-1-4.

2-1-1 Ways to obtain social networks

A social network is a social structure made up of individuals (or organizations) called nodes,
which are tied (connected) by one or more types of interdependency, such as friendship,
kinship, common interest, financial exchange, dislike, sexual relationships, or relationships of
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4 Related Work

beliefs, knowledge or prestige with links. In this thesis two types of social networks are defined
by their way of gathering, traditional social networks and online social networks (OSN).

Social networks are gathered manually by social researchers which follow a group of people
over a period of time to investigate their social interaction. This type of network will be
called traditional social networks because of the way they are obtained. Famous examples
of traditional social networks are the Zachary’s karate club [3] and the football network of
Girvan et al. [1]. In the karate club network the nodes represent members of a karate club
and the links are the social interactions between them. In the football network, the nodes
represent football teams and a link exists if they played a match against each other. More
details about this network can be found in section 2-4.

In online social networks such as Facebook, Hyves and Twitter, user profiles are represented
as nodes and relationships as links. This type of network can be gathered using crawling
techniques such as Breadth First Search and Depth First Search which are discussed in section
2-5, or directly by asking the operator. In Facebook and Hyves if a user befriends another
one, both users have to agree upon the relation. The network is therefore undirected, whereas
in Twitter a user can decide to follow another user without asking for permission which leads
to a directed network.

2-1-2 Sizes

The size of a network which is commonly defined by the number of nodes, determines the
way a network can be obtained and analyzed. While small social networks can be gathered
and interpreted by hand, for larger networks that becomes infeasible and automated methods
have to be used. For large networks even automated methods to analyze networks can be
infeasible due to their runtime. Therefore the size is an important property of a network. The
number of nodes in a social network heavily depends on the type. Traditional social networks
are gathered through field studies by researchers and therefore have a limited number up to
hundreds of nodes. The process of gathering online social networks can be automatized using
the crawling methods discussed in section 2-5 and therefore the networks can be much larger.
For instance, Facebook has 750 million users at the moment of writing [4]. One of the largest
networks that is fully available for researchers is a Twitter dataset from 2009 which contains
50 million users and 1.5 billion links and was made available by Kwak et al. [5].

2-1-3 Degree distribution

Besides the size of the network, another important property of social networks is how the
links are distributed among the nodes, in other words how the distribution of friends is
among the users of a social networks. This property is not only relevant for understanding
the relationships between entities, it also influences the order in which nodes will be obtained
in certain crawling methods. The degree is defined as the number of adjacent neighbors of
a node. The degree distribution P (k) is the probability for a fraction of nodes in a network
having degree k. A frequently observed property in many online social networks is their
power-law degree distribution. A power-law degree distribution is described by the following
relation.

P (k) ∼ k−γ (2-1)

Bas van Kester Master of Science Thesis



2-1 Properties of social networks 5

Here k represents the degree, γ the exponent and P (k) the degree distribution. Nodes with
a high degree are called hubs, because they have a more central position in the network.
According to Newman [6] social networks are assortatively mixed, which means that hubs are
more likely to be connected to other hubs.

2-1-4 Community structure

Community structure is the main focus of this thesis and will be addressed in the following
section. In this thesis a general definition of community structure introduced by Newman
and Girvan [7] is used, namely “The division of network nodes into groups within which the
network connections are dense, but between which are sparser”.

An example of a network with community structure is depicted in Figure 2-1. Nodes in
a commmunity should share more connections with each other than with nodes in other
communities. In the example, nodes within a community are completely connected meaning
that all possible links within the community exists, while there are few links between nodes
of different communities.
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Figure 2-1: Example of a network with 6 communities, highlighted by the dashed circles

Fortunato and Castellano [8] give a good overview on the field of community structures in
networks. In this section hierarchy in communities will be discussed and observations in real
world social networks are described.

Communities can have various levels of organization, where communities consist of multiple
sub-communities. This phenomena is known as hierarchies. For example in a network of
university employees, the community of a university can be subdivided in different faculties
and even further in departments. Hierarchies are used in community detection algorithms such
as Edge Betweenness clustering and Fast Greedy community detection. Because community
detection algorithms such as Label Propagation and Spinglass do not find such hierarchies,
this type of structure is not considered in the analysis of crawling methods.
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6 Related Work

Online social networks analyzed with community detection algorithms showed that there is not
an average community size, but rather is a power-law distribution for the community size [9].
Small communities seem to coexist with large communities. However, in the networks that
were used, relationships or links were formed based on common interest. However, a recent
paper of Leskovec et al. [10] showed that in nearly all real world networks they observed,
communities gradually get less and less community-like and instead gradually “blend in”
with the rest of the network, as the communities steadily grow in size. They observed that
for communities size of about 100 nodes, the “quality” of communities gets worse and worse.
This agrees well with an intuitive notion of communities where people have interpersonal ties
with each other. For instance on schools, each class has a similar size and students are densely
connected. On a higher level, students from different classes can know each other, but are
less densely connected that within the classes itself. Students from different schools are even
less likely to form a relation. For the networks that will be generated, the focus will be on
those small and dense groups therefore equally sized communities are used.

2-1-5 Summary

In this section various properties of social networks were presented. Two ways to obtain so-
cial networks are considered, traditional social networks constructed by researchers and online
social networks which can be automatically obtained by crawlers. The datasets used in tra-
ditional social networks are small compared to online social networks. In those online social
networks are often power-law degree distributions are observed. Nodes in social networks can
be grouped together to form communities. In this thesis the definition of Newman [7] for
community structure is used: “The division of network nodes into groups within which the
network connections are dense, but between which are sparser”. Hierarchy is a property in
which communities can be divided into sub-communities, which is used by community de-
tection algorithms such as Fast Greedy and Edge Betweenness community detection. Recent
observations showed that community sizes have a limited size and therefore in the networks
in section 3 will be generated using equally sized communities of about a 100 nodes.

2-2 Community detection algorithms

The aim of community detection in graphs is to identify groups based on the network topology.
These algorithms will be used for networks to assign nodes to clusters where there is no
“ground truth” available. This section gives a brief overview of commonly used community
detection algorithms. For some community detection algorithms the runtime to complete
partitioning does not scale well with the size of the network and do not give results in a
reasonable amount of time for large networks; therefore the time complexity of each algorithm
is discussed.

2-2-1 Edge betweenness clustering

Girvan and Newman [1] proposed an algorithm one of the first successful algorithms to par-
tition a graph into communities. This paper sparked a big activity in the field of community
detection. The results of this algorithm are often used as a reference when there is no “ground

Bas van Kester Master of Science Thesis



2-2 Community detection algorithms 7

truth” available for testing the performance of new community detection algorithms. Edge
betweenness measures the number of all shortest paths passing a link, which gives an intu-
itive measure for the importance of that link when connecting two communities. The most
important link according to the edge betweenness is removed and the edge betweenness is re-
calculated. This process is repeated until all links are removed. The recalculation of the edge
betweenness after each removal is important for the algorithm to give good results, but this
step also makes it time consuming to calculate the community structure for large networks.
The time complexity of the original algorithm is O(nm2) where m is the amount of links
and n is the amount of nodes. Therefore it is only feasible to use this method on networks
containing with up to about 10000 nodes on commodity hardware. Improvements can be
made by parallelization [11], sampling and the use of specialized hardware [12]. Because this
method is not usable for large networks, three other community detection algorithms with
better time complexity are discussed and which are available in the commonly used IGraph
library.

2-2-2 Label propagation

Label propagation works in near linear time and is therefore a good candidate for being used
as a community detection algorithm for online social networks. In this method all nodes get
a unique label and based on their topology nodes that share many links merge their label
until the network is partitioned in communities. Label propagation was first proposed by
Raghavan et al. [13]. The low time complexity comes at the expense that the algorithm is
greedy and therefore does not give the optimal solution and vary for each run.

2-2-3 Spinglass

The Spinglass community detection uses an analogy with a phenomena from physics. In a
ferromagnetic system the spins of elements should have the same orientation to have minimum
energy. Links inside a cluster that exist and non-existing links between clusters are rewarded
while links that do not exists within a cluster and links between clusters are penalized [14].
This is considered the energy of the system and should be minimal. Because there can be
multiple local minima, there should be optimized for the global minimum to get the best
partitioning for this algorithm. This can be achieved using simulated annealing (Bertsimas
et al. [15]).

The time complexity of the Spinglass algorithm combined with simulated annealing is not
provided by the documentation of IGraph or the paper in which Spinglass was proposed. It
is determined by the maximum number of iterations which is an input parameter and by the
time complexity for calculating the energy of the system.

2-2-4 Fast greedy community detection

The Fast Greedy community detection algorithm is a method which works on modularity and
was proposed by Clauset et al. [9]. At the start, each node is assigned to an individual cluster.
Initially for connected combinations of clusters the change in modularity ∆Qij is calculated.
The combination with the highest increase is merged together into a new cluster. Only for
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the affected clusters, the ∆Qij is updated. Again the combination with the highest increase
in ∆Qij is merged. This process is repeated until all the nodes are in one giant cluster. The
partitioning with the highest modularity is selected as the partitioning.

This process is both memory efficient and fast, because the ∆Qij only has to be updated for
affected clusters. The time complexity of the algorithm for sparse graphs such as online social
networks is O(nlog2n) which is near linear time.

2-2-5 Summary

Community detection algorithms are used to group sets of nodes based on their topology.
Four commonly used algorithms are discussed. Edge betweenness community detection is the
most known algorithm and although it is commonly used as a test bench for new community
detection algorithms, its time complexity makes it unusable for large online social networks (>
10000 nodes). Spinglass community detection can handle larger networks. Label propagation
and Fast Greedy community detection have near linear time complexity and can be used for
a wide variety of network sizes.

2-3 Comparison of community detection algorithms

To be able to compare algorithms, three different metrics are described in this section. These
metrics are meaningful as they quantify differences in partitioning by community detection
algorithms. In section 3-3 these comparison methods will be used to find the most appropriate
community detection algorithm for partitioning generated networks. This algorithm can
then be used to analyze a network without a “ground truth”. The three metrics that will
be presented are modularity, fsame and Jaccard index. Modularity is a global metric and
compares the result to random graphs whereas the fsame and the Jaccard index compare
results to each other.

2-3-1 Modularity

A measure for quantifying how well a graph is partitioned in clusters is modularity [7]. This
measure is commonly used to quantify the performance of community detection algorithms
against a null hypothesis. Modularity measures the fraction of links in a network that connect
nodes of the same community minus the expected value of the same quantity in a random
network. It can be written as

Q =
∑
i

(eii − a2
i ) (2-2)

where eii is the fraction of links inside community i and a2
i is the fraction of links that connect

to community i which can be calculated using a2
i =

∑
j eij .

If the number of intra-cluster links is as high as in random graph, than Q = 0. Values
approaching Q = 1 indicate a strong community structure. In practice values for strong
community structure typically fall in the range from 0.3 to 0.7 [7]. With this measure it is

Bas van Kester Master of Science Thesis



2-3 Comparison of community detection algorithms 9

difficult to compare two graphs with similar modular structure but different sizes because the
larger graph will get a higher modularity [16].

2-3-2 F same

The fsame measure can be used to find the similarity of two partitions with each other. It
uses an intuitive notion of similarity, it quantifies the percentage of nodes put in the same
community by different community detection algorithms. To calculate fsame first a matrix
M has to be constructed in which Mij is the number of nodes assigned to one community by
community detection algorithm i and community detection algorithm j. fsame is calculated
as following in Raghavan et al. [13]:

fsame = 1
2(
∑
i

maxj{Mij}+
∑
j

maxi{Mij})
100
n

(2-3)

When the community structure is known a priori, this can be used as an input for the measure.
Then the performance of the community detection algorithms is measured against a “ground
truth”. The metric can identify how close one solution is to another one, but is not sensitive
to the seriousness of the errors. An example given in Raghavan et al. [13] is: when a few nodes
form several different communities in one solution are fused together as a single community;
this does not change the value of fsame much. To compensate this problem, the Jaccard index
is introduced.

2-3-3 Jaccard index

A second measure for similarity of partitions is the Jaccard index which is discussed by
Fortunato et al. [8]. It looks at the amount of pairs of nodes that are shared in both partitions.
Given two partitions A and B into communities, the Jaccard index is defined as

Ijaccard(A,B) = n11
n11 + n01 + n10

(2-4)

where n11 is the number of pairs of nodes which are in the same community in both partitions
and n10 and n01 denotes the numbers of pairs of elements which are put in the same community
in by algorithm A but not by algorithm B and vice versa. The output of the Jaccard index is
between 0 and 1 where 1 is the highest possible similarity. Although it is less intuitive than
fsame , the Jaccard index is known to be more sensitive to errors in partitioning than the
fsame index and therefore useful for finding the similarity in partitions of networks.

2-3-4 Summary

Modularity is a measure for the strength of a partitioning of a graph and is often used to
quantify the performance of community detection algorithms. The Jaccard index and fsame
index can be used to compare the partitioning of multiple community detection algorithms.
The fsame index uses a more intuitive notion of how many nodes are shared in the two
partitioning. The Jaccard index is more sensitive to the seriousness of errors in partitioning
than the fsame index.
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2-4 Datasets

For testing the crawling methods, three sources of datasets are used and these are introduced
in the following section. A college football network introduced by Girvan and Newman and
an email communication network of the Enron corporation [17] are presented, as well as
generated cluster networks are discussed.

2-4-1 Football network

Girvan and Newman [1] introduced the United States college football network which is a
representation of the schedule of Division I games for the season of year 2000. Nodes in the
graph represent teams (identified by their college names) and links represent regular-season
games between the two teams they connect. What makes this network interesting is that it
incorporates a known community structure which will be called explicit community structure.
The teams are divided into conferences containing around 8 and 12 teams each. Games are
more frequent between members of the same conference than between members of different
conferences, with teams playing on average about seven intra-conference games and four
inter-conference games in the 2000 season. Inter-conference play is not uniformly distributed;
teams that are geographically close to one another but belong to different conferences are
more likely to play one another than teams separated by large geographic distances.

Its relatively small size and explicit community structure makes it suitable for manually
verifying the performance of different crawling techniques which will be introduced in section
2-5.

2-4-2 Enron network

The Enron email network is a social network constructed from email communication in a
large corporation. Although it has no explicit community structure, due to its size it can be
partitioned by algorithms such as Label Propagation, Spinglass and Fast Greedy community
detection. Other networks such as Hyves and Twitter are infeasible to partition using those
three algorithms due to their run time.

The Enron corpus, a large set of email messages, was made public during the legal investigation
concerning the Enron corporation. The raw Enron corpus contains 619,446 messages sent to
and received by 158 Enron employees. From this email corpus a network was constructed
in which the email addresses are represented by nodes and emails between two addresses
are represented by links [17, 18]. This network contains 36692 nodes and 183831 undirected
links. Only the connected component is used in crawling techniques and therefore the network
can further be reduced to a connected network of 33692 nodes and 180811 undirected links.
Non-Enron email addresses act as sinks and sources because only emails from and to Enron
employees were included in the corpus. The network does not contain an explicit community
structure, but the community structure will be found using community detection algorithms
in section 4-2-2.
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2-4-3 Computer-generated cluster networks

A generator which creates networks with an explicit community structure where the density
of intra-cluster links can be varied, is essential to verify the performance of crawling methods
under different conditions. Furthermore, the generator should at least support the gener-
ation of networks with power-law degree distribution as they are often observed in online
social networks. The most famous and commonly used model for generating networks is the
Erdos-Reyni model. This model creates a graph with N nodes where the links are chosen
independently with a probability p which results in a binomial degree distribution. This type
of network does not have an explicit community structure. Girvan and Newman [1] proposed
a generator which uses two probabilities, one for inter-cluster links and one for intra-cluster
links. In this type of network an explicit community structure is available, but the shape of the
degree distribution can not be influenced. A graph generator in which the degree distribution
could be defined would be convenient to test the performance of crawling methods.

Lancichinetti et al. [19] proposed a generator that produces networks with power-law degree
distribution and power-law cluster size distribution. However, recent observations showed
that communities should have a maximum size which indicate that communities have similar
sizes. Furthermore, for verifying the behavior of the crawling methods, equally sized clusters
would be more insightful. This generator produces networks in which all nodes have the
same ratio of links going inside and outside the community, even for hubs. Hubs interconnect
different parts of the network and should therefore have more links to other clusters than
low degree nodes. In chapter 3 a generator is proposed that has an explicit equally sized
community structure, definable degree distribution and variating community strength.

2-5 Crawling techniques

An important step in the analysis of social networks is to obtain the network. Decisions taken
in this step determine the outcome in the further analysis. In this section first ways to access
data on online social networks are discussed. Finally two well known crawling methods are
presented.

In online social network analysis there are three ways to obtain the network. Getting the
corpus from other researchers or the social network operator itself are the least challenging
in a technical sense. However most social network operators are not willing to share their
corpus. Therefore in a lot of cases it is necessary to obtain the network through crawling. In
general there are two ways to interact with the social network; access the online social network
through an API or by screen scraping. Both types have advantages and disadvantages which
are listed in the table 2-1. Generally API usage is preferred above screen scraping because
it uses less resources in data traffic and processing power. However, generally more data is
available by screen scraping than by API requests.

For both screen scraping and API access, there are several algorithms to obtain a network,
which will be discussed below.
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Table 2-1: Comparison of crawling through API requests and screen scraping

API Screen scraping
+ Bandwidth efficient - Bandwidth inefficient
+ Easy to parse - HTML / javascript has to be parsed
+ Less likely to violate the terms of usages - Likely to violate terms of usage
- Number of request per hour can be lim-
ited

o less likely to be limited

- In most cases not all data on website is
available using an API

+ In principle all data visible to website
visitors is available

1

2

3

4 5

Figure 2-2: Example of DFS

2-5-1 Crawling algorithms

Two well known algorithms to traverse a graph are Breadth First Search (BFS) and Depth
First Search (DFS). These algorithms are used in numerous applications. To give a few
examples, BFS can be used to find shortest paths in unweighted graphs and verifying if a
path exists between two nodes. DFS can be also be used to verify if there is a path between
two nodes and find a path out of a maze. In this thesis both algorithms will be used for
crawling networks and finding connected components.

The pseudo code for BFS is given by algorithm 1 and an example is shown in Figure 2-3
where a crawl is halted after 5 iterations. The green nodes represent the nodes that have

1

2 3 4

5

Figure 2-3: Example of BFS
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been visited and the red nodes are in the queue.

DFS works in a similar way as BFS, the main difference is that it uses a stack in stead of
a queue. The pseudo code can be found in algorithm 2 and an example can be found in
Figure 2-2. For both algorithms an iterative implementation is chosen because the recursive
variant can cause stack overflows in most common implementations for large networks. The
iterative implementation does not have this issue.

A Breadth First Search visits all the successors of a visited node before visiting any successor
of any of its child nodes. This in contrast to depth first traversal method, which visits the
successor of a visited node before visiting any of its brothers, i.e., children of the same parent.
Depth First Search tends to create very long, narrow trees; whereas BFS tends to create very
wide, short trees.

BFS is well known to introduce bias towards high degree nodes according to Gjoka et al. [2].
Because hubs have more links pointing towards them, they are more likely to be crawled than
low degree nodes. BFS is more commonly used to crawl online social networks than DFS.

None of these two algorithms take advantage of the community structure in networks. There-
fore, in chapter 4, a method that aims to crawl a complete community before crawling other
communities is proposed. This technique is helpful as the analysis may start while the network
is still being crawled.

Data: Node to start s,Graph G
1 // visitedNodes keeps track which nodes have already been visited
2 visitedNodes←− ∅;
3 Q←− EMPTY QUEUE;
4 Enqueue(Q, s);
5 while queue 6= ∅ do
6 v ←− Dequeue(Q);
7 INSERT (visitedNodes, v);
8 foreach u ∈ Adj[v] do
9 if u /∈ visitedNodes then

10 Enqueue(Q, u);
11 end
12 end
13 end

Algorithm 1: Breadth first search

2-6 Summary

In this section the related work that is needed for the rest of the thesis was presented. Social
networks and their characteristics were introduced in section 2-1, with a focus on community
structures. Ways to detect communities in networks are discussed in section 2-2 as well as ways
to compare the partitioning of those algorithms in section 2-3. Various networks will be used
in this thesis and were presented in section 2-4. Related work showed that current generators
for networks with explicit community structure only support specific degree distributions. For
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Data: Node to start s,Graph G
1 // visitedNodes keeps track which nodes have already been visited
2 visitedNodes←− ∅;
3 Q←− EMPTY STACK;
4 Push(Q, s);
5 while queue 6= ∅ do
6 v ←− Pop(Q);
7 INSERT (visitedNodes, v);
8 foreach u ∈ Adj[v] do
9 if u /∈ visitedNodes then

10 Push(Q, u);
11 end
12 end
13 end

Algorithm 2: Depth first search

verification of the proposed crawling method, it is necessary to use networks with different
degree distributions. Therefore in the next chapter an improved network generator will be
proposed. Finally methods to obtain online social networks were described in section 2-5. A
crawling method that is more useful for obtaining entire communities will be presented in
chapter 4.
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Chapter 3

Computer-generated cluster networks

In order to compare the performance of the crawling methods for a variety of scenarios,
generated networks with community structure are needed. In commonly used computer-
generated random networks such as Erdös-Rényi or Barabási-Albert, the generators do not
produce graphs with predefined clusters. In this thesis a method is proposed to generate
networks with explicit community structure where each node is assigned to one cluster. The
strength of the clustering can be varied by defining the probability of intra- and inter-cluster
links using a Pin value.

Related work showed that most network generators create networks with certain degree distri-
butions. The algorithm proposed below can generate networks with any degree distribution,
so that the crawling method can be tested for a variety of scenarios.

First the cluster graph generator algorithm is explained in section 3-1. Secondly the output
of the generator is verified in section 3-2. Finally in section 3-3 a set of generated networks
is used for verifying the performance of various community detection algorithms.

3-1 Cluster graph generator algorithm

The algorithm uses three stages: Node generation, wiring and rewiring in order to create
connected graphs These stages are visualized in figure 3-1, 3-2 and 3-3.

The algorithm uses the concept of slots for generating the desired degree distribution. Initially
each node gets an amount of slots determined by a slot distribution which is used as anchor
points for creating links in a later stage. This is visualized in figure 3-1. According to the
provided number of clusters, each node is assigned to a specific cluster, resulting in an explicit
community structure. In the current implementation each cluster holds the same amount of
nodes.

When the nodes with their slots are created and grouped into clusters, the nodes are linked
using a wiring process. A random number p and the intra-cluster link probability Pin deter-
mine whether an intra- or inter-cluster link will be created. For intra-cluster links, slots of
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A B

C D

Figure 3-1: Example of a network where nodes with slots are created and assigned to clusters.
This network contains four clusters with each 5 nodes. Each node has between 2 and 7 slots

on which links can be attached.

A B

C D

Figure 3-2: Example of a network where nodes are wired
This network contains 36 intra-cluster links and 4 inter-cluster links. Cluster B is not

connected to the other clusters and is therefore not reachable when a crawl start in another
cluster.

A B

C D

Figure 3-3: Example of a network where nodes are rewired to it one connected component (GCC)
An inter-cluster link is moved from connecting cluster A and C to connecting cluster B and

C.
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3-1 Cluster graph generator algorithm 17

different nodes inside one cluster are randomly selected, the corresponding nodes connected
using a link and the two slots are removed. If an inter-cluster link is created, two slots of
nodes in different clusters are selected, their nodes linked and the slots are removed. When
there are no slots available at a particular node, that node cannot be selected for creating a
link and therefore the number of slots of a node determines its maximum possible degree. The
process of determining the type of link, selecting the slots, creating the link and removing the
slots is repeated until the defined amount of links is created.

When all links are created, nodes can be rewired until all nodes are in one connected com-
ponent (optional) which will be referred to as “force GCC”. In crawling it is necessary that
all nodes are reachable from every starting point and therefore the network can be rewired in
such a way that a path exists between every pair of nodes.

In short the graph generation algorithm contains the following stages:

1. node generation and slot assignment

2. assigning nodes to clusters

3. creating the links

4. force giant connected component (GCC)

These steps are described in more detail in the following paragraphs.

3-1-1 Steps in cluster graph generator algorithm

Node generation The predefined number of nodes is created where each node gets a number of slots
assigned. These slots are later required for connecting the nodes using links. The
number of slots is determined by the desired degree distribution which is given to the
algorithm as an input parameter. The current implementation supports three types
of slot distributions: an equal number of slots for each node, a power-law distributed
number of slots for each node and an uniformly distributed number of slots between
a lower and upper boundary. For an equal distribution, each node get the same fixed
amount of slots assigned. For an uniform distribution, each node gets a random number
of slots assigned which is uniformly distributed between lower bound a and upper bound
b. These two distributions are useful for verifying the performance of the crawling
methods. For a power-law distribution, the slot distribution follows equation 2-1 with
a parameter γ and this distribution is useful because it is often observed as the degree
distribution in online social networks.

Cluster assignment In order to have an explicit community structure, each node is assigned to a cluster,
using the provided number of clusters. Each cluster has the same size except the last
cluster.

Creating links The nodes are randomly wired to slots of nodes inside and outside their cluster, depend-
ing on the Pin value. This value determines the ratio between inter- and intra-cluster
links and therefore determines the community strength of the generated network. The
pseudo code can be found in algorithm 3. L represents the number of links to be created,
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N the number of nodes and Nodes is the set of nodes in the graph. The p value is a
uniform random variable with values between 0 and 1. If p < Pin then an intra-cluster
link is created, otherwise an inter-cluster link.
When creating an intra-cluster link, two nodes with available slots inside the same
community are linked. This is done in the following way: First a source node is randomly
selected from the set selection which contains all nodes with available slots. This
selection set makes sure that only nodes are selected that have available slots. Then
the destination node is selected from all the nodes in the same clusters that have slots
available. The nodes are randomly selected weighted by their number of available slots.
A node with a high number of available slots is more likely to be selected than a node
with only a few available slots. The source node and its neighbors are excluded from the
random selection, so that no duplicate links can be created. If no destination node can
be found matching these criteria, the source node is excluded from the selection and
another iteration is started until the source node and destination node are successfully
selected. When no source and destination node pair can be found, the process is halted.
When creating an inter-cluster link, the source and destination node are selected in
such a way that they belong to different clusters. First, the source node is selected in
the same way as an intra-cluster link. Then the destination node is selected from all
the nodes with available slots, but excluding the nodes in the same cluster so that only
nodes in other clusters are left. Again the source node and its neighbor are excluded to
prevent duplicate links.
When the source node and destination node are successfully selected, the link is created
and in case there is no slot available anymore, the node is excluded from the set of
nodes with slots available. The whole process is repeated until all links are created or
when it is not possible to find a source and destination node.

Force GCC The network is not necessarily connected. The graph can be rewired in such a way
that all nodes are connected in one component (GCC). Because each link is randomly
generated, nodes with a low number of slots can be unconnected. Using Breadth First
Search (BFS) the largest connected component is discovered. If not all nodes belong
to this connected component, the unconnected nodes are rewired until the network
forms a connected component. Pin remains unchanged, because if a complete cluster is
disconnected, an inter-cluster link will added and a random other inter-cluster link will
be removed. In all other cases where only parts of a single community are unconnected,
a random intra-cluster link will be removed and an unconnected node will be connected
to another node inside the same cluster.

However, in some cases it is not possible to generate a network with the provided input
parameters. In the next section a selection of problems is introduced, with corresponding
checks that can detect problems in an early stage of the graph generation to prevent long and
unnecessary run times which can not result in successfully generating a network.

3-1-2 Verification of input parameters

Some of the input parameter can be in conflict with each other. In this section two scenarios
that can not result in successfully generating a network are discussed. First a check is provided
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Data: Nodes, L
1 nodesWithOpenSlots←− Nodes;
2 for l←− 1 to L do
3 selection←− nodesWithOpenSlots;
4 success←− FALSE;
5 if p < Pin then
6 // Find two nodes for an intra-cluster link
7 while !success do
8 source←− getRandomNode(selection,NULL);
9 success←− slotAvailableInSameCluster(source);

10 if success then
11 destination←−

getRandomNode(nodesInSameCluster(source), source);
12 end
13 else
14 selection←− selection− source;
15 end
16 end
17 end
18 else
19 // Find two nodes for an inter-cluster link
20 source←− getRandomNode(selection,NULL);
21 selection←− selection− nodesInSameCluster(source);
22 destination←− getRandomNode(selection, source);
23 end
24 // Wire source and destination node
25 connect(source, destination);
26 // Remove slots
27 if !hasSlots(source) then
28 nodesWithOpenSlots←− nodesWithOpenSlots− source;
29 end
30 if !hasSlots(destination) then
31 nodesWithOpenSlots←− nodesWithOpenSlots− destination;
32 end
33 end

Algorithm 3: Wiring
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that can detect whether the required number of links can be created given a certain slot
distribution. Secondly an algorithm is presented that can estimate if a certain Pin can be
achieved given a certain slot distribution. Both checks are performed after the slot and cluster
assignment and prior to the link creation.

Total number of links

For each link two slots are required so if the number of links L > (2 × Total number of slots)
the network cannot be generated. This check is performed after the slot assignment and
before the links are created. In this case an exception is thrown and the program ended.

Pin

The Pin value can be in conflict with the number of clusters and the slot distribution. The Pin
value determines how many intra-cluster links will be created. On the other hand, the number
of clusters results in a certain cluster size, which in turn leads to a maximum amount of intra-
cluster links per cluster. This number is constrained even further by the slot distribution.

A mathematical description follows below. Furthermore a numerical example will be given to
clarify the problem. Finally an algorithm is proposed which can detect whether the required
Pin can be achieved given a certain slot distribution and number of clusters.

The Pin value and its resulting number of intra-cluster links can be modeled in the following
way. Every time a link is created, a uniform random number between 0 and 1 is generated to
determine whether an intra-cluster link or an inter-cluster link should be created. This can
be considered a Bernoulli trial. This is done independent of the previously generated links
and therefore the generation of all links follows a binomial distribution. The probability that
a number k of intra-cluster links Li−i is generated is given by:

Pr[Li−i = k] =
(
L

k

)
PLinP

L−k
out (3-1)

where L is the number of links in the network.

Based on the Pin value and the number of links follows an expected value for the number of
intra-cluster links which can be calculated as following:

E[Li−i] = LPin (3-2)

The standard deviation is given by

σ[Li−i] =
√
LPinPout (3-3)

However, this does not mean that all intra-cluster links can be created. The number of possible
intra-cluster links is also determined by the number of nodes inside a cluster. Because all
clusters except one are equally sized, the cluster size can be calculated from the number of
clusters and the number of nodes in the network. No duplicate links are allowed, so in the
optimal scenario each cluster forms a complete subgraph with the nodes in its own cluster
which follows the following equation.
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Lmax = N(N − 1)
2 (3-4)

where N = |Ncluster| is the number of nodes in a cluster and Lmax = Li−i is the maximum
number of links inside a cluster.

An example network was generated using the following parameters: 100 nodes with each
22 slots and grouped into 20 clusters; 1000 links with a Pin = 0.7. All clusters contain 5
nodes. According to equation 3-4, 10 intra-cluster links can be created per cluster. In total
10 ∗ 20 = 200 intra-cluster links are possible. The required Pin = 0.7 cannot be achieved
because according to equation 3-2 this would require 0.7 ∗ 1000 = 700 intra-cluster links.

Networks with other slot distributions are checked whether it is possible to create all intra-
cluster links after the assignment of slots and assignment of clusters. This is done prior to the
link phase of the algorithm. The pseudo code can be found in algorithm 4 and an example
is given in table 3-1. This check counts the amount of possible intra-cluster links per cluster
and is based on the distribution of available slots in a cluster. It basically emulates the wiring
of a cluster in a scenario where the nodes are connected from a low amount of slots to a
high amount of slots until no more links inside that cluster can be created. The sum over all
clusters gives an upper bound for the amount intra-cluster links that can be created. A more
detailed description of the algorithm is as followed.

For each cluster the number of possible links inside that cluster is counted. Because nodes
inside a cluster can have different numbers of free slots, this has to be taken into account.
The number of possible links inside a particular cluster is done in the following way. The
number of free slots per node in a cluster A is put in a list. This list is sorted and the function
LinksPossible(slots) is called for the list having an ascending and descending sorting. This
function emulates the wiring of nodes in cluster A based on its sorting. The first node of the
list is selected. If the second node has a slot available, one slot is subtracted from the first
and second node. The counter for possible intra-cluster links is increased. When the first
and third node have a slot available, from both nodes the number of slots is decreased by
one and the counter is increased. This process is continued until one of the two nodes has no
slot available or the end of the list is reached. Then the second node is selected as a starting
point and the process is repeated for all nodes next to this starting node. This is done until
all nodes are used as a starting point. When the list is sorted from large to small, this gives
an upper bound for the amount of possible links in cluster A. When the list is sorted from
small to large, this shows how many intra-cluster links can be at least created. In table 3-1
an example is given for a cluster with 5 nodes. If the expected number of intra-cluster links
given by equation 3-2 is higher than the upper bound, it is unlikely that a network can be
created with the required amount of links and an error is shown and the wiring process is
not started. If the expected number of intra-cluster links is lower than the lower bound the
network it is very likely that the network can be created and the wiring process is started. If
the expected number of intra-cluster links is between the lower upper bound but higher than
the lower bound, it might not be possible to create the desired number of links. The wiring
process is started, but a warning is shown.
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Data: Clusters, L, Pin
1 num_intralinkslower ←− 0;
2 num_intralinksupper ←− 0;
3 for cluster in clusters do
4 for i←− 1 to cluster.size do
5 node←− cluster[i];
6 slotslower[i]←− getNumSlots(node);
7 slotsupper[i]←− getNumSlots(node);
8 end
9 SortAscending(slotslower);

10 num_intralinkslower+ = linksPossible(slotslower);
11 SortDescending(slotsupper);
12 num_intralinkslower+ = linksPossible(slotsupper);
13 end

Algorithm 4: Check the possible number of intra-cluster links

Data: slots
links←− 0;
for j ←− 0 < slots.length− 1 do

slotsavailable←− slots[j];
for k ←− 0 < slotsavailable do

item←− k + j + 1;
if item ≥ slots.length then

BREAK;
end
if slots[item] > 0 then

slots[item]−−;
slots[j]−−;
links+ +;

end
end

end
Function LinksPossible(slots) Calculates the number of possible links in a cluster

Table 3-1: Example of intra-cluster link check. The cluster has 5 nodes with a slot distribution
of {4, 5, 2, 3, 2}. The slots are sorted ascendingly to give a lower bound of the number of
intra-cluster links in this cluster. In this worst case scenario, only 5 links can be created.

start item counter
- - 2 2 3 4 5 0
0 1 1 1 3 4 5 1
0 2 0 1 2 4 5 2
1 2 0 0 1 4 5 3
2 3 0 0 0 3 5 4
3 4 0 0 0 2 4 5
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3-2 Verifying the output of the cluster graph generator

Multiple networks were created to evaluate the network generator. The generator will be
used for creating networks ranging from 100 to 10000 nodes and 1000 to 100000 links. First
the amount of nodes and links will be verified. Then the Pin and degree distribution will
be checked. The number of clusters and the cluster size distribution will be verified. These
networks will be generated for two slot distributions; equal distribution and power-law distri-
bution. In order to successfully test the crawling methods, the generated networks that they
are tested against should have the previously mentioned properties and are therefore verified
in this section.

3-2-1 Equal distribution

The degree distribution of traditional networks such as the Football network can be approx-
imated by equal degree distribution. In such a network each node has the same degree. For
the equal slot distribution of 22 slots, the Pin and the size of the network are varied. The
ratio between nodes and links is a factor of 10, which implies an average degree of 20. Each
network has 20 clusters so the cluster size varies as a function of the number of nodes. Each
node gets 22 slots assigned. It is necessary to assign more slots than required by the ratio
between nodes and links, because not every combination of free slots can be used for creating
a link. It could happen that when almost all links are created and few slots are available, the
following scenario occurs. There are only available slots on nodes which have already been
connected by links. These slots cannot be used and therefore extra slots are required.

The result of networks with equal distributions are shown in appendix B. It was possible
to create networks with 100 nodes with Pin ≤ 0.2 as expected in the calculation above.
Networks with larger Pin are not possible to generate because not enough intra-cluster links
can be created. The same issue arises for networks Pin > 0.4 with 200 nodes. All successfully
generated networks have the desired number of nodes, number of links an average degree
of 20, which is caused by the ratio between the number of links and the number of nodes.
The standard deviation of the degree ranges from 1.24 to 1.42 as can be expected because
of the extra slots that were provided. 20 clusters are created with each containing the same
amount of nodes, just as expected. All networks are connected which means that each node
is reachable from every other node. All input parameters are exactly matched in the resulting
networks except for the degree distribution and Pin . We also introduce a local Pin value,
which represents the ratio between intra-cluster degree and total degree for each individual
node. In figure 3-4 the local Pin is plotted as a function of the degree and shows that there is
a variation in the local Pin . This corresponds to real world social networks where not every
entity has the exact same ratio between neighbors in their community and total neighbors.

3-2-2 Power-law distribution

In online social networks, power-law degree distributions are observed quite often and there-
fore networks with this type of distribution are generated and used to test the crawling
methods. The same parameters for equal distribution were used, except that a power-law slot
distribution was applied with a γ = 1.5. These generated networks have the correct number
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Figure 3-4: Local Pin for a network of 10000 nodes with 20 clusters, Pin=0.7 and an equal slot
distribution of 22

of nodes and number of links and all networks are connected. In figure 3-5 the local Pin is
plotted as a function of the degree and shows that there is a variation in the local Pin . The
average local Pin is higher than the global Pin . This means that low degree nodes share a
higher portion of their links in their cluster than their high degree counterparts. In real world
social networks high degree nodes also act as hubs between clusters and should therefore also
have lower local Pin values.

The network generator works as expected and can create networks with arbitrary degree
distributions and with an explicit community structure. In the following section a number
of community detection algorithms is tested on networks generated by the above proposed
algorithm.

3-3 Evaluation community detection algorithms

In this section the networks generated in section 3-2 are used as a test bench for multiple
community detection algorithms. The results will be used to select the most appropriate
algorithm to partition real world networks without explicit community structure. The parti-
tioning created by the community detection algorithms are compared to the “ground truth”
of the cluster generator algorithm using modularity, Jaccard index and fsame (section 2-2
and 2-3) as a function of Pin which relates to the community strength. The algorithm that
produces the partitioning that is most similar to the “ground truth” will be considered the
most appropriate algorithm for partitioning social networks. The three algorithms used for
partitioning the networks in communities are Spinglass, Fast Greedy and Label Propagation
where Spinglass is the most computationally expensive algorithm and Label Propagation is
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Figure 3-5: Local Pin for a network of 10000 nodes with 20 clusters, Pin=0.7 and a power-law
distribution with exponent γ = 1.5

computationally the cheapest. There are 10 networks generated per configuration and the
results are averaged.

In figure 3-6 to 3-8 the results of the comparison are shown for networks generated with an
equal slot distribution. Figure 3-6(a) shows that the modularity of Fast Greedy and Spinglass
are highly correlated to the modularity of the generator. For Pin < 0.6 Label Propagation
has low modularity which means that the partitioning is no better than random partitioning.
When looking at the fsame and Jaccard index in Figure 3-7 and Figure 3-8 the Spinglass
community detection algorithm performs well above Pin ≥ 0.4. Although the modularity
score of Fast Greedy seems to be similar to the cluster generator, the fsame and Jaccard
index scores the lowest of all algorithms. Clearly the Spinglass algorithm performs best of the
three algorithms for partitioning the generated networks with an equal distribution based on
all three measurements. However this algorithm is also the most computationally expensive.

In figure 3-6 to 3-8 the same analysis is performed for networks generated with a power-
law slot distribution. Again the Spinglass community detection algorithm performs best
of the three, because this method shows highest similarity with the “ground truth” of the
generator for networks with Pin ≥ 0.5. It shows the highest similarity for both the fsame
and Jaccard index. This means that the Spinglass algorithm is able to partition graphs
where on average each node shares about half of its neighbors inside the same community. In
laymen terms, Spinglass is able to find groups when users share half of their friends are in the
same community. Both other community detection algorithms only give reasonable results
for Pin ≥ 0.8 and resulting modularity ≥ 0.75. However, in real world online social networks
these high values for modularity are not commonly found. The Spinglass algorithm performs
well for Pin ≥ 0.5 with modularity ≥ 0.5 which can be found in online social networks with
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community structures. Therefore the Spinglass algorithm will give the best partitioning in
communities out of these three algorithms.

(a) Equal (b) Power-law

Figure 3-6: Comparison of community detection algorithms using modularity

(a) Equal (b) Power-law

Figure 3-7: Comparison of community detection algorithms using fsame to the “ground truth”

(a) Equal (b) Power-law

Figure 3-8: Comparison of community detection algorithms for networks using Jaccard index to
the “ground truth”

3-4 Conclusion

The network generator successfully creates graphs with explicit community structure and
the desired degree distribution. Three commonly used community detection algorithms were
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tested using the “ground truth” created by the network generator. This analysis showed that
partitioning created by the Spinglass community detection algorithm shows the highest sim-
ilarity with the “ground truth”. The Spinglass algorithm clearly performs better than Label
Propagation and Fast Greedy community detection, but is computationally more expensive.
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Chapter 4

Mutual friend crawling

Frequently used crawling techniques such as Breadth First Search (BFS) and Depth First
Search (DFS) do not take advantage of the topological structure of the network to find
communities. In this section an approach is investigate to steer the crawl to stay inside a
community.

In section 4-1, a crawling algorithm is proposed that aim to crawl a smaller portion of the
network in order to crawl entire communities. In section 4-2 the performance of the algorithm
is evaluated for the Football network, the Enron network and computer generated networks
and compared to existing crawling methods such as BFS and DFS. For the Enron network,
no explicit community structure is available and therefore created using community detection
algorithms.

4-1 Explanation of the algorithm

Suppose you crawl an online social network (OSN) with users and their friends. In this
network the users are represented as nodes and the friendships between users as the links.
The algorithm for crawling inside a cluster is based on an intuitive heuristic. Users within
a community should share more links between them than with users in other communities.
The priority in which friends are crawled is based on the number of users that are referring
to them divided by their degree. An example is given in figure 4-1. The red nodes represent
nodes that have been discovered (Gs) and the green nodes are in the queue. Both nodes in
the queue {1,8} have 2 links referring from the discovered network to them which is defined as
a found reference. With the found reference and degree, the score for the node is calculated
using:

CalculateScore =


foundreference(u)

degree(u) if u /∈ startpoints,
1 if otherwise,

(4-1)

Node 1 has a score of 2
2 = 1, node 8 has a score of 2

5 , thus node 1 will first be crawled.
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Figure 4-1: Explanation of the found reference metric using an example graph.
The red nodes denote the visited nodes which already have been crawled, the green nodes
represent the uncrawled nodes which are in the scores queue to be crawled. The number

indicates the identifier of the node.

Iteration Node Q (node: score) Next node
0 2 0: 1

5 1: 1
5 3: 1

4 4: 1
5 3

1 3 0: 2
5 1: 2

5 4: 2
5 0

2 0 1: 3
5 4: 3

5 10: 1
6 1

3 1 4: 4
5 10: 1

6 28: 1
6 4

4 4 10: 1
6 22: 1

6 28: 1
6 10

5 10 11: 1
6 12: 1

4 13: 1
4 14: 1

4 18: 1
6 22: 1

6 28: 1
6 12

6 12 11: 2
6 13: 2

4 14: 2
4 18: 1

6 22: 1
6 28: 1

6 13
7 13 11: 3

6 14: 3
4 18: 1

6 22: 1
6 28: 1

6 14
8 14 11: 4

6 18: 1
6 22: 1

6 28: 1
6 11

9 11 18: 2
6 22: 1

6 28: 1
6 18

10 18 15: 1
4 16: 1

4 17: 1
6 19: 1

6 22: 1
6 28: 1

6 15

Table 4-1: Crawl of graph 4-2 using mutual algorithm.
The first 10 iterations are shown.

An example of crawling a small network is given figure 4-2. This example shows that the
proposed algorithm crawls entire communities before continuing to other communities, while
BFS and DFS do not. This indicates that the concept works.

For this algorithm, the following assumptions are taken:

1. The network is connected. As in BFS and DFS, there needs to be a path between every
pair of nodes in the graph. Otherwise the unconnected nodes will not be discovered.

2. The network is un-directed. All links in the network need to be bi-directional.

3. The degree of all nodes in the discovered subgraph Gs and the direct neighbors of
the discovered subgraph Gs is known. In other words, the degree of nodes that are
discovered (Gs) and nodes in the queue Q are known. The nodes in the queue are
not yet crawled for their adjacency lists. In most social networks, gathering profile
information such as the number of friends (degree) costs very few resources compared
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(c) DFS
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(d) Mutual

Figure 4-2: Example of a graph being crawled using three crawling methods.
Nodes are grouped into communities(a), Nodes colored and labeled according to crawl

iteration (b), (c) and (d)
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to gathering the full friends list (adjacency list). Gathering the profile data can be done
right when it is placed in the queue, so that the degree information is available and is
therefore not a hard constraint on the algorithm.

4. The number of friends found in the adjacency list should be the same as the degree
found in the profile information. This implies that the degree in the profile information is
public as well as all the identifiers of the neighboring nodes. Therefore both information
sources should be public and none of the neighboring nodes should be hidden by privacy
settings of the social network.

With these assumptions the following algorithm is constructed. There are three important
data structures used in algorithm 5. V isitedNodes is a set of all nodes that have been
visited so far and prevents that nodes are crawled multiple times. FoundReference is an
integer which represents the number of discovered links to an uncrawled node. This value is
important for calculating the priority in which the nodes are crawled. FoundReferences is
a set of nodes and its corresponding found references. The scores data structure works as a
queue for nodes that have to be crawled. It consists of the nodes and their corresponding
score.

Data: Startpoints,GraphG
1 // foundreferences counts the number of links towards a node
2 foundreferences←− ∅;
3 // scores works as a queue for the nodes to be crawled
4 scores←− ∅;
5 // visitedNodes keeps track which nodes have already been visited
6 visitedNodes←− ∅;
7 foreach v ∈ V [G] do
8 foundreferences[v]←− 0;
9 end

10 foreach s ∈ startpoints do
11 scores[s]←− 1;
12 end
13 while scores 6= ∅ do
14 v ←−MaximumScore(scores);
15 scores[v]←− NIL;
16 INSERT (visitedNodes, v);
17 foreach u ∈ Adj[v] do
18 if u /∈ visitedNodes then
19 foundreferences[u]←− foundreferences[u] + 1);
20 scores[u]←− CalculateScore(u);
21 end
22 end
23 end

Algorithm 5: Mutual friend crawling algorithm

First the starting points are initialized with the highest possible score, to let them be the
first nodes to crawl (line 10). Then the node with the highest score is selected (line 14) and
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removed from the scores (line 15), so it does not exists in the queue anymore. The node is
added to the visitedNodes so it is not crawled again (line 16). Then the adjacency list is
obtained (line 19). When crawling a social network this would mean that the list of friends is
downloaded. Then for all the unvisited friends, the value of their foundreferences is increased
(line 17) and their score is recalculated (line 20). This process is looped until all the nodes
in the scores data structure are found.

The algorithm would ideally crawl a full cluster before starting on another cluster. An example
of such an ‘ideal’ network is given in figure 4-2(a). Node 2 is the starting point for the crawl.
The labels inside the node depict the iteration of the crawl. The nodes in 4-2(b) to figure
4-2(d) are colored using a rainbow coloring scheme starting with red and labeled according
to the iteration in the crawl. The values in the score data structure are shown in table 4-1.

4-2 Performance evaluation

The performance of BFS, DFS and the proposed algorithm is tested in a variety of topologies.
The networks should have an implicit community structure, community structure where the
partitioning in communities is unknown. An explicit community structure where the par-
titioning is known is not required for the algorithm, but such a network is only selected to
simplify the validation. These networks are not very common, but there are a few examples of
social networks where each node is assigned to a specific group, such as a Football network [1].
This network is selected because of its small scale and therefore the results can easily be veri-
fied by hand. Afterwards a large scale social network is analyzed, but unfortunately there are
no large social networks (>10000 users) available that have an explicit community structure,
in which each node is assigned to a single community. Because of the time complexity of
Spinglass community detection algorithm (see section 3-3), a relatively small corporate email
network, Enron, was selected. Because the nodes are not assigned to specific communities, it
is first clustered using the community detection algorithms and afterwards analyzed using dif-
ferent crawling techniques. Finally computer-generated networks are tested using the cluster
graph generator described in chapter 3. In this way, the crawling method can be tested under
various scenarios, such as different degree distributions and changing community strength.

4-2-1 Football network

The first network that is analyzed is a college football network (not soccer) in the United
States which was introduced in Girvan et al [1].

In this network there are 115 teams which played 616 games, thus the resulting interaction
network contains 115 nodes and 616 links. The degree distribution is shown in figure 4-5(a),
which shows that each team plays between 7 and 12 games. All teams are grouped into one
of the 12 leagues or ‘conferences’, which results in 12 clusters. The cluster size distribution
is shown in figure 4-5(b). This figure shows that the sizes of the clusters are between 5 and
13 nodes, so there are 5 to 13 teams in a conference.

We define a Pin and Pout where Pin+Pout = 1 and Pin is the probability that a link is between
two nodes of the same cluster and Pout is the probability that a link is between nodes of
different clusters. In total there are 397 games played within conferences and 219 games played
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Figure 4-3: Graph of the football network introduced in [1]
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Figure 4-4: Graph of the clusters in the football network
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i Clustername |Ncluster| Li−i Li−imax

Li−i

Li−imax
Li−j

0 Atlantic Coast 9 36 36 1.0000000 10
1 Big East 8 28 28 1.0000000 9
2 Big Ten 11 44 55 0.8000000 11
3 Big Twelve 12 49 66 0.7424242 9
4 Conference USA 10 31 45 0.6888889 10
5 Independents 5 1 10 0.1000000 11
6 Independents 13 51 78 0.6538462 9
7 Mountain West 8 28 28 1.0000000 11
8 Pacific Ten 10 40 45 0.8888889 8
9 Southeastern 12 49 66 0.7424242 9

10 Sun Belt 7 10 21 0.4761905 10
11 Western Athletic 10 30 45 0.6666667 11

Table 4-2: Properties of the clusters in the football network

between teams of different conferences. For the football network Pin = #gamesinsidecluster
#games =

397
616 = 0.6444805. This means that a team has a probability of Pin to play against a team of
its own conference. This metric was also used for generating networks in section 3.

More properties of the network can be found in table 4-2. This table shows how well connected
the nodes inside a cluster are connected which is related to the property the algorithm steers
its crawl on. In conference 5 called “independents” the 5 teams played only one single game
(Li−i ). This conference contains teams such as the naval team and other teams that are
not geographically connected. From a topological point of view this can hardly be regarded
as a cluster. This will probably effect the results of our algorithm. The maximum number
of possible games is given by the number of links in a complete graph, which is shown in
equation 3-4

In all other clusters the ratio of actually played games versus the number of possible games
is much higher ( Li−i

Li−imax
). When the ratio is 1 all possible games are played inside that

conference, which means that cluster is full mesh. Finally Li−j shows to how many clusters
a cluster is connected. This does not show how often a game is played between two clusters.
In figure 4-4 the graph of the clusters is shown. The size of the nodes shows how many teams
there are in the conference. The width of the links show how many games are played between
the conferences. The data for plotting these widths can be found in appendix A-1.

Results The network is crawled using a Breadth First Search, Depth First Search and the
proposed crawling technique. Because of the relatively small size of the network, it is feasible
to compare all crawling techniques for all possible starting points.

Figure 4-6 shows a box plot of the part of the network that is crawled as a function of
number of completely crawled clusters for crawls from all possible starting points. Goal of
the proposed algorithms is to crawl the nodes of a cluster before starting on another cluster
and therefore the part of the network that is crawled should be as low as possible. The box
plot shows the average portion of the network that has to be crawled in order to complete a
number of clusters and also depicts the outliers. The figure clearly shows that the proposed

Master of Science Thesis Bas van Kester



36 Mutual friend crawling

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Degree D

P
r(

D
i=

D
)

(a) Degree distribution

2 4 6 8 10 12

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

|{Ncluster}|
P

r[|
{N

ci
}|=

|{N
cl

us
te

r}|
]

(b) Cluster size distribution

Figure 4-5: Characteristics of football network

Figure 4-6: Part of the network crawled before completing a cluster of the football network (box
plot)
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Figure 4-7: f(x) for football network

algorithm needs crawl a smaller portion of the network in order to complete clusters. Also
the variance is lower than in BFS and DFS, meaning that the performance depends less on
the starting point.

Figure 4-7 shows how many times the size of a cluster has to be crawled in order to complete
a cluster, which is defined as f(x). DFS clearly needs to crawl much more nodes to complete
a cluster and does not stay inside a cluster before going to another cluster.

Figure 4-8 shows a zoom in on the average f(x) and ideally only one time the size of the cluster
has to be crawled to completely crawl one cluster. The figure shows that approximately 1.5
times the cluster size has to be crawled before a full cluster is completely crawled using the
proposed algorithm. For BFS one needs to approximately crawl 2.5 times the cluster in order
to achieve the same result and for DFS it is necessary to crawl more than 5 times the size of
the first cluster in order to completely crawl it.

The proposed algorithm performs better than BFS and DFS for the football network, because
it has to crawl a smaller portion of the network in order to completely crawl a community.
In the next section the performance is tested on a larger email network.
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Figure 4-8: f(x) for football network (zoom)
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4-2-2 Enron email network

The Enron email network is a social network constructed from email communication in a
large corporation. A large set of email messages, the Enron corpus, was made public during
the legal investigation concerning the Enron corporation. The raw Enron corpus contains
619,446 messages sent to and received by 158 Enron employees [17]. It was chosen because of
its relatively small size which made it feasible to partition it using the community detection
algorithms discussed in section 2-2.

Characteristics of the network From this email corpus a network is constructed in which the
email addresses are represented by nodes and emails are represented by links. This network
contains 36692 nodes and 183831 links. Only the connected component is used in crawling
techniques and therefore the network can further be reduced to a connected network of 33696
nodes and 180811 undirected links. Non-Enron email addresses act as sinks and sources
because only emails from and to Enron employees were included in the corpus.

Community detection The network does not contain an explicit community structure. For
the analysis, each node has to be assigned to specific community. Using various commu-
nity detection algorithms mentioned in section 2-2, each node is assigned to a community.
This analysis showed that Spinglass creates the best partitioning. However, the other two
algorithms, Fast Greedy and Label Propagation community detection are also considered.
Unfortunately it was not feasible to use Edge Betweenness community detection, because the
run time would be too large. The run time was estimated using Erdos-Renyi graphs with dif-
ferent sizes. From this trend an expected run time for edge betweenness community detection
on the Enron network would be 2500 days, which is not feasible. Label propagation, Spin-
glass and Fast Greedy run on the Enron network in 28 seconds, 45 minutes and 88 seconds
respectively.

Comparing crawling results for community detection algorithms There is no “ground
truth” available for the Enron network. Therefore Spinglass is taken as the most proper
community detection algorithm. The partitioning of the different community detection algo-
rithms are compared among themselves to see if they give similar partitions. A commonly
used indicator for testing how well a network is divided into communities is modularity which
is explained in section 2-3-1 and the results are shown in table 4-3. The similarity between
the results of the algorithms are compared using the Jaccard index and the fsame index which
are introduced in section 2-3 and the results are shown in Appendix C-1(a) and C-1(b).
A direct pairwise comparison of the partitioning of the algorithms is not possible because
of differences in number of clusters and cluster size distributions, Therefore the algorithms
are compared to a partitioning where all nodes are placed in the same community called
“oneclust”’. If the similarity with “oneclust” is high, this shows that a large portion of the
nodes are put in a single community. The measurements can be found in Appendix on page
65. For Label Propagation, there is a high similarity with “oneclust” indicated with an fsame
index of 0.836.
To be able to compare the results to randomly assigning clusters, the fsame and Jaccard index
are used to compare the real partitioning for the three algorithms with a cluster assignment
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Algorithm Clusters inside outside P Modularity Run time
Label 880 169886 10925 0.940 0.296 28.19 seconds
Spinglass 25 135248 45563 0.748 0.606 2737 seconds
Fastgreedy 559 145875 34936 0.807 0.506 87.88 seconds

Table 4-3: Community detection algorithms

based on randomly assigning nodes into the given community size distribution. If the simi-
larity to this shuffled partitioning is high this means that the partitioning is no better than
random and indicates poor partitioning.

Spinglass has the highest modularity (0.606) of the three algorithms which indicates the
best partitioning in communities. 25 communities were found in a network of 33 thousand
nodes. In Figure C-1(c) the cluster size distribution is depicted and shows that the sizes
of the clusters are large (234-5408 nodes) for social networks. Because of the relatively low
number of clusters, it is not possible to infer a reasonable distribution by visual inspection.

Fast greedy has a modularity of 0.506 which is according to Girvan et al. a reasonable
partitioning in communities. However the three largest clusters contain 67 % of the nodes of
the full network which is high for a social network. This observation together with the poor
performance for generated networks, makes this partitioning questionable.

Label propagation has the lowest modularity of the three algorithms. In Girvan et al. [1]
modularity’s between 0.3 and 0.7 are considered normal values for communities therefore the
0.3 value of Label Propagation is reasonably low. This indicated that the algorithm does not
partition the Enron network well. The algorithm puts most of the nodes in a single cluster
and puts all other nodes in tiny clusters containing only a few nodes. This can be observed
in the cluster size distribution in figure C-1(a). Having such a diverse distribution does not
correspond to an intuitive notion of communities. The P value is relatively high because most
nodes are in the same cluster.

All three community detection algorithms have difficulty to partition the Enron network and
that shows that the network does not have a strong community structure. In the follow-
ing section the three crawling techniques are tested on the results of the three community
detection algorithms.

Crawling results Figure 4-9 shows the results for crawling the network using the different
crawling techniques and comparing them to the output of the three community detection
algorithms. Figure 4-9 a and b shows the average trajectory of the proposed crawling method
for the partitioning of the Spinglass algorithm. A large part ( > 90%) of the network has
to be crawled in order to completely crawl a cluster. Still the proposed crawling method
performs better than BFS and DFS.

As previously shown, the similarity of Label Propagation to “oneclust” and the randomly
assigned clusters is high and therefore this partitioning is not optimal. Because of the poor
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results of the community detection algorithms, it is difficult to assess and compare the per-
formance of the crawling techniques. According to the other two algorithms Figure 4-9 c,d,e
and f, it is necessary to crawl a lot of extra nodes in order to completely crawl a cluster ( >
10 times as much nodes as are in the clusters itself). A possible explanation for the “knee”
shaped trajectory in Figure 4-9 c and e is caused the existence of a small number of large
clusters.

As observed in the figures, DFS appears to perform quite well. An explanation for this behav-
ior could be the preference for DFS to crawl towards the “whiskers” of the network. Because
of their skewed cluster size distribution defined by Label Propagation and the resulting exis-
tence of a huge number of small clusters, a high proportion of “whiskers” is assigned to single
communities. This could explain the apparent good performance of DFS.
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(a) Spinglass (b) Spinglass

(c) Fast greedy (d) Fast greedy

(e) Label propagation (f) Label propagation

Figure 4-9: Part of network crawled before completely crawling clusters of Enron network
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4-2-3 Computer-generated networks

The three crawling methods are also tested against synthetic networks created by the al-
gorithm which was in introduced in chapter 3. By variating the community strength, it is
possible to see how the crawling method functions in networks with very strong to very weak
community structure. The networks have the following configuration: 10000 nodes, 100000
links and 100 clusters. Two degree distributions are investigated, equal degree distribution
where each nodes as approximately a degree of 22 and power-law distribution with a γ = 1.5.
The strength of the community structure is varied using a 0.1 ≤ Pin ≤ 0.9. Each network
configuration is generated 10 times and the results below are averaged over those 10 samples
unless otherwise noted.

Figure 4-10 and Figure 4-11 shows which part of the network has to be crawled before a
number of clusters is fully crawled. Because the clusters are equally sized, the optimal scenario
is when a crawl follows the diagonal of the plot. This figure shows that for all large Pin the
mutual crawling algorithm performs better than BFS and DFS, because a smaller portion of
the network has to be crawled in order to completely crawl clusters. There is also a clear
difference between the performance of BFS and DFS; BFS performs better than DFS.

Figure 4-12 shows how many times the size of the cluster has to be crawled in order to
completely crawl a cluster for networks generated using an equal slot distribution. This
figures show that the proposed algorithm requires the least amount of nodes to crawl a
complete cluster. For networks with community structure (Pin ≥ 0.4) at least 2.0 times the
cluster size has to be crawled in order to completely crawl the first cluster. For BFS it is
necessary to crawl 53.9 times the cluster size and for DFS it is 92.5 times the cluster size which
is almost the entire network. In order to complete the first community, you need to crawl
26.9 times more nodes in BFS than with the proposed method. For DFS it is even worse,
you need to crawl 46.2 times more nodes! Figure 4-13 shows that for power-law distributed
networks you need to crawl 1.6, 7.7 and 73.5 times the first community size for the proposed
algorithm, BFS and DFS respectively. Here the proposed algorithm shows an improvement
of 4.8 times compared to BFS and 45.9 times for DFS.

The proposed algorithm performs significantly better than BFS and DFS for the computer-
generated networks if there sufficient community structure.

4-3 Conclusion

The performance of proposed method for crawling nodes inside a community structure of a
network is determined by the community size distribution and the degree distribution itself
and the community strength of the network. The method performs better than existing
crawling techniques such as BFS and DFS for the football network and computer-generated
networks. The proposed algorithm has to crawl a smaller portion of a network in order to
completely crawl communities. This improvement is measured to be between 66% and 480%.

Comparing the crawling techniques for real world social networks proved to be difficult, be-
cause there is no “ground truth” community structure available for existing networks. Find-
ing the community structure using community detection algorithms such as Spinglass, Fast
Greedy and Label Propagation put constrains on the selection of the network under test.
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Figure 4-10: Part of the network crawled before completing a cluster for networks generated
using an equal slot distribution
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Figure 4-11: Part of the network crawled before completing a cluster for networks generated
using a power-law slot distribution

(a) f(x) (b) f(x) zoom

Figure 4-12: f(x) for networks generated with an equal slot distribution
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(a) f(x) (b) f(x) zoom

Figure 4-13: f(x) for networks generated with a power-law distribution

The network size is the main influence on the time complexity of those algorithms. For the
relatively small Enron network (compared to Facebook) the community detection algorithms
gave skewed cluster size distributions. The community detection algorithms showed no similar
partitioning, which indicates a weak community structure. Therefore comparing the crawling
techniques for this network proved to be difficult. However, the proposed algorithm performed
similar to BFS and DFS.

Bas van Kester Master of Science Thesis



Chapter 5

Conclusion & Future work

5-1 Summary

In this thesis, a new crawling method is proposed that aims to crawl entire communities before
continuing to other communities. By crawling entire communities, the analysis of community
structure can start before the complete crawl of the network is finished.

A method was proposed for crawling nodes inside a community structure of a network. This
new method performs better than existing crawling techniques such as Breadth First Search
(BFS) and Depth First Search (DFS) for a football network and computer-generated networks,
because a smaller portion of the networks had to be crawled in order to completely crawl
communities. For these networks the proposed method performs between 66% and 480%
better than BFS and DFS.

Comparing the crawling techniques for real world social networks proved to be difficult, be-
cause there is no “ground truth” community structure available for most available networks.
Therefore, community detection algorithms were used to find the community structure. Three
commonly used community detection algorithms were compared using computer-generated
networks. The Spinglass algorithm clearly performed better than Label Propagation and
Fast Greedy community detection, but is computationally more expensive. The time com-
plexity of Spinglass puts constrains on the network size and therefore the Enron network was
selected. For the relatively small Enron network all community detection algorithms gave
inconclusive results and therefore comparing the crawling techniques for this network proved
to be difficult.

The computer-generated networks used in this thesis where created using a new network
generator. This network generator uniquely combines three features; it creates networks
with explicit community structure, arbitrary degree distributions and adaptable community
strength. The generator was validated for equal and power-law degree distributions and
variating community strengths. This generator enabled us to create networks that were used
to verify the performance of the crawling method and comparing the community detection
algorithms.
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5-2 Future Work

This section concludes this thesis by suggesting ideas for future work. Some of these proposals
are the following:

1. Network generator

(a) Support multiple cluster size distribution: Currently only networks with equally
sized communities are generated. With some modifications it should be possible
to generate networks with arbitrary cluster size distributions.

(b) Support overlapping communities: The current implementation assigns each node
to a single community. However, in real world social networks, a person can be
part of multiple communities. A useful addition to the generator would be the
support of overlapping communities.

2. Proposed crawling method

(a) Multiple starting points in the same community: In the first iteration of the
crawling method, a neighbor in a different community can be selected. By using
multiple starting point in the same community, this “startup problem” can be
avoided.

(b) Verify the performance for large scale online social networks: Because of the time
complexity of Spinglass, we were unable to obtain the community structure of a
large scale online social network. More work should be put in finding the commu-
nity structure of a network such as Facebook or Hyves, so that the algorithm can
fully be verified.

(c) Parallelization of the proposed crawling method: The proposed algorithm supports
only single threaded download of profiles. With a parallel algorithm, the time it
takes to obtain the network can be reduced. This might be achieved by starting
multiple crawls which are “far way” from each other.

(d) Community detection using the proposed crawling technique: Manual verification
of the performance of the crawler for the Football network showed leads for identi-
fying communities using the proposed crawler. The iteration in which the method
completed crawling a community coincided with drops in the ‘score’. These drops
might be a way to identify the community strength or even identify communities.
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Appendix A

Football network

Table A-1: Number of games between conferences

clusterid 1 2 3 4 5 6 7 8 9 10 11 12
1 36 5 2 1 2 3 1 2 0 5 2 2
2 5 28 1 0 5 8 7 1 1 0 1 1
3 2 1 44 5 3 2 10 1 5 1 2 4
4 1 0 5 49 3 3 2 4 3 0 6 7
5 2 5 3 3 31 4 1 1 0 8 7 11
6 3 8 2 3 4 1 8 4 3 1 6 2
7 1 7 10 2 1 8 51 1 0 4 0 1
8 2 1 1 4 1 4 1 28 8 3 2 5
9 0 1 5 3 0 3 0 8 40 1 3 6

10 5 0 1 0 8 1 4 3 1 49 7 2
11 2 1 2 6 7 6 0 2 3 7 10 9
12 2 1 4 7 11 2 1 5 6 2 9 30
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Appendix B

Cluster graph generator
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64 Enron network
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Figure C-1: Cluster size distribution for partitioning of the enron network by three community
detection algorithms.
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