
 
 

Delft University of Technology

Visualization of unstained DNA nanostructures with advanced in-focus phase contrast
TEM techniques

Kabiri, Yoones; Ravelli, Raimond B.G.; Lehnert, Tibor; Qi, Haoyuan; Katan, Allard J.; Roest, Natascha;
Kaiser, Ute; Dekker, Cees; Peters, Peter J.; Zandbergen, Henny
DOI
10.1038/s41598-019-43687-5
Publication date
2019
Document Version
Final published version
Published in
Scientific Reports

Citation (APA)
Kabiri, Y., Ravelli, R. B. G., Lehnert, T., Qi, H., Katan, A. J., Roest, N., Kaiser, U., Dekker, C., Peters, P. J.,
& Zandbergen, H. (2019). Visualization of unstained DNA nanostructures with advanced in-focus phase
contrast TEM techniques. Scientific Reports, 9(1), Article 7218. https://doi.org/10.1038/s41598-019-43687-5

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1038/s41598-019-43687-5
https://doi.org/10.1038/s41598-019-43687-5


1Scientific RepoRts |          (2019) 9:7218  | https://doi.org/10.1038/s41598-019-43687-5

www.nature.com/scientificreports

Visualization of unstained DNA 
nanostructures with advanced 
in-focus phase contrast teM 
techniques
Yoones Kabiri  1, Raimond B. G. Ravelli2, tibor Lehnert  3, Haoyuan Qi  3, Allard J. Katan1, 
Natascha Roest2, Ute Kaiser3, Cees Dekker  1, peter J. peters2 & Henny Zandbergen1

over the last few years, tremendous progress has been made in visualizing biologically important 
macromolecules using transmission electron microscopy (teM) and understanding their structure-
function relation. Yet, despite the importance of DNA in all forms of life, teM visualization of individual 
DNA molecules in its native unlabeled form has remained extremely challenging. Here, we present 
high-contrast images of unstained single-layer DNA nanostructures that were obtained using advanced 
in-focus phase contrast teM techniques. these include sub-Ångstrom low voltage electron microscopy 
(SALVE), the use of a volta-potential phase plate (VPP), and dark-field (DF) microscopy. We discuss 
the advantages and drawbacks of these techniques for broad applications in structural biology and 
materials science.

Although TEM imaging of DNA, in its native unstained form, is crucial for various applications across life 
sciences, it has remained extremely difficult to obtain such images. The challenges of DNA imaging with TEM 
are indeed manifold. Unstained DNA has only been made visible if freely suspended, i.e., without carbon sup-
port, and success in these experiments was limited to specific DNA structures such as DNA bundles or fib-
ers1–6. When DNA is deposited onto commercial carbon membranes in dry condition, no good contrast can be 
achieved. Unfortunately, reducing the carbon thickness to increase the DNA contrast is not trivial due to difficul-
ties in manufacturing and handling of delicate carbon membranes, as well as due to non-conductive properties of 
amorphous carbon below 4 nm thickness7, which strongly deteriorates the TEM imaging. Although the superior 
mechanical and electrical properties of graphene was conceived to provide a viable solution, the hydrophobic 
interaction between DNA and graphene has proven to be a major obstacle for imaging8.

In this work, we aim to image unstained DNA nanostructures via modifications in the electron optics instead 
of addressing the sample preparation technicalities. We therefore choose the easiest route of sample preparation, 
which is support on commercially-available carbon membranes (i.e., not on delicate thin carbon supports) under 
dry conditions (i.e., not cryo-frozen9). This sample preparation route is thus very reproducible as well as accessi-
ble for every TEM lab. For convenient and reliable evaluation of double stranded (ds) DNA contrast, we utilize a 
single-layer DNA origami nanostructure (Fig. 1). The use of a two-dimensional DNA origami is an innovative and 
very useful approach because the specific shape of the origami structure allows reliable and convenient evaluation of 
dsDNA contrast. In addition, it enables the application of single particle analysis (SPA) to a purely nucleic acid struc-
ture, instead of, for example, using DNA-bound protein structures. Imaging multi-layered three-dimensional DNA 
origami structures is not pursued in this report since we aim for visualization of DNA at the single-helix thickness.

Electron optics in TEM have seen multiple improvements in recent years. While the conventional TEM 
(CTEM) is an ideal tool for imaging materials science samples with atomic resolution, it performs poorly for 
visualization of radiation-sensitive biological molecules such as DNA. Therefore, in order to increase the contrast, 
electron microscopists have tried to develop phase contrast techniques under low-dose conditions with the help 
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of phase plates or low-voltage TEM. However, various technological issues have impeded this goal. For example, 
a commercial phase plate has only been available since 2015, namely the VPP10. Previous generations of phase 
plates including the well-known Zernike-type were difficult to fabricate, align, and integrate into a SPA workflow. 
In the case of low voltage microscopy, the significant deterioration of resolution caused by the chromatic aberra-
tion (Cc) was the major limiting factor.

Here, we present high contrast TEM images of unstained DNA nanostructures onto commercial carbon mem-
branes using advanced “in-focus” TEM techniques through manipulation of electron optics shown in Fig. 2. 
Whereas CTEM renders poor contrast, we find that a chromatic and spherical aberration corrected (Cc + Cs) 
SALVE (sub-Ångstrom low voltage electron) microscopy, or the cosine-type phase shift induced by the VPP 
technology, resulted in an overall visibility of the DNA nanostructures, without the need of labelling. This enabled 
the particle picking and class averaging algorithms in the SPA workflow. The SALVE images of the DNA origami 
extend its application to life science specimens, which makes the low-kV route an attractive approach for imaging 
of both materials science and biological specimens. Next to the small or flexible protein structures under cryo 
condition11, we have here demonstrated VPP application for imaging the non-water embedded unstained nucleic 
acids. Furthermore, we show the visibility of DNA origami using the non-linear phase contrast DF technique. 
Finally, we discuss the prospect of SALVE and VPP techniques in terms of in-focus SPA workflow.

Results
Visualization of unstained DNA origami is not well possible with defocused CteM. We were 
unable to detect sufficient contrast of DNA origami plates supported on commercial carbon membranes using the 
normal CTEM at 200–300 kV acceleration voltages, even with large defocus values (up to 10 µm) for the objective 
lens and even when the micrographs were acquired by a direct detector camera. The poor visibility of unstained 
2D DNA origami on the commercial carbon membranes can be attributed to, on one hand, the low scattering 
of single DNA helix compared to relatively thick carbon support, and on the other hand, a large suppression 
of low-spatial frequencies in CTEM (Supporting Information (SI), Fig. S1), that are essential for particle edge 
detection and the overall visibility of the weak phase objects. Electron optical imperfections such as spherical 
aberration together with objective lens defocus were historically used as rather constructive ways to convert the 

Figure 1. Single-layer DNA origami nanoplates as an innovative microscopy sample for single particle analysis. 
(A) Schematic of the 2D DNA origami design. The origami nanostructure contains various DNA features with 
different lengths and widths including symmetric side arms, cavities inside the main rectangle, and a floppy 
dsDNA loop at the bottom. The bottom-right inset illustrates the DNA helices equivalent. See Methods for the 
full details of the origami design. (B) Liquid-cell atomic force microscopy (AFM) image of an origami nanoplate 
on mica. Note that the bottom dsDNA loop as well as the single dsDNA arm (third from the top) depict a large 
flexibility. The high-resolution liquid-cell AFM image resolves Holliday junctions that are clearly distinguishable 
within the origami plate.
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low-frequency phase components of the exit wave into intensity modulations, though associated with severe 
damping of the higher resolution fringes (SI, Fig. S1). Nevertheless, this defocused CTEM approach could not 
render sufficient contrast to the origami plates supported on thick carbon membranes. Furthermore, acquisition 
of a good dataset in cryo-EM was not possible (exchanging the amorphous carbon substrate with amorphous ice). 
This could be attributed to the intrinsic floppy nature of the 2D DNA origami designs or the interfacial effects 
(air/water interface) during plunge-freezing step of cryo-EM sample preparation.

Taken all together, we thus note that the de facto defocused phase contrast method that is widely employed in 
the cryo-EM structure determination of proteins remains extremely challenging for contrast enhancement in our 
case study for non-water embedded DNA, which indeed makes the unstained single-layer DNA nanostructures 
one the most difficult samples to probe.

Low-kV (80 kV) CTEM facilitates the DNA detection but results in blurry images. In order to 
increase the DNA contrast in CTEM, one remedy is to decrease the acceleration voltage, ideally down to 80 kV, 
because considerable increase in scattering cross section (both elastic and inelastic) is expected, which conse-
quently facilitates phase contrast imaging. Reducing the high voltage from 300 kV in our Cs-corrected Titan to 
80 kV within the non-Cs-corrected Arctica microscope, shifts the contrast transfer function (CTF) peaks towards 
the low-frequency components in the frequency spectrum (Fig. 3A). This is also indeed accompanied by a differ-
ent performance of the detector as well as yielding a different amplitude contrast. Using this approach, we were 
able to detect a sufficient amount of contrast in single-frame acquisitions (Fig. 3B) at 80 kV acceleration voltage, 
which enabled the particle picking and consequently SPA. Figure 3D shows the 2D class-averaged image after 
CTF correction. We observe that the side arms of the origami, each having a 4 nm width, as well as the small cav-
ity inside the rectangle (4 nm × 19.2 nm) are either severely blurry or hidden. This low-resolution reconstruction 
indicates the importance of Cs-correction in order to obtain high-resolution images. Prior to reconstruction, 
low-resolution outcome could also be predicted based on the CTF plot in Fig. 3A, where a considerable decrease 
in information limit is seen, down to 3.3 Å compared to 2 Å at 200 kV operation voltage of the Arctica microscope 
(SI, Fig. S1). In the next section, we proceed to correct for the aberrations.

Cc + Cs correction at low-kV (20 kV, SALVE) strongly improves the contrast and resolution.  
Low-kV (i.e. 80 kV down to 20 kV) phase contrast electron microscopy was historically abandoned since the 
chromatic aberration of the objective lens severely deteriorated the resolution12. With the elimination of chro-
matic aberration, the resolution substantially improves at 20 kV (Fig. 3E, where we see pronounced low-frequency 
transfer as well as an improved information limit beyond 2 Angstrom). Recently, atomic resolution at 20 kV was 
successfully realized within the framework of the SALVE project13. This is a remarkable step towards studying 
sensitive samples below 80 kV prone to knock-on damage like graphene13. However, hydrogen-containing speci-
mens are still challenging to image14. To probe what is possible, we thus imaged the DNA origami plates with the 
Cc + Cs corrected SALVE microscope to remove the severe delocalization effects at low-kV and at the same time 
obtain enough contrast for visualization of unstained DNA.

Figure 2. Schematics of in-focus phase contrast TEM techniques. The objective aperture design in the back-
focal plane of the microscope for each technique is shown enlarged at the bottom row. SALVE technique does 
not require any special objective aperture design at the back-focal plane, whereas for contrast enhancement 
of DNA at high kV, π/2 phase shift or removal of the un-scattered zero beam is needed for VPP and DF, 
respectively. See the literature for the contrast enhancement mechanisms10,13,17.
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We find that the DNA origami reconstruction using the low-kV dataset provides excellent contrast (see 
Fig. 3H). Strikingly, we observe that the detailed DNA structural features such as the smaller cavity and the single 
DNA helices become visible using class averaging of a relatively small number of manually acquired frames (~100 

Figure 3. SPA results for imaging unstained DNA origami nanoplates supported on commercial carbon 
films. The figure compares three techniques: Column (A–D) shows results for 80 kV CTEM; column (E–H) 
for 20 kV SALVE microscope with Cs + Cc correction; and column (I–L) for VPP at 200 kV without Cs 
and Cc correction. (A,E,I) Theoretical CTF plots at near focus (green curves). The red curves indicate the 
total envelopes (spatial and temporal). We observe a significant resolution drop at 80 kV for CTEM due to 
pronounced Cs aberration, but do not observe this in the SALVE microscope. After implementing a VPP in 
a CTEM microscope, it is evident that the low spatial frequencies are hugely enhanced (the dashed area in 
panel I). We consider 0.1 amplitude contrast in all the CTF plots. (B,F,J) Single frame acquisitions. Sufficient 
contrast is achieved in each technique for enabling the particle picking and consequently SPA. Noticeably, 
the VPP depicts remarkable contrast in single frames. (C,G,K) Processed CTFs of micrographs. (D,H,L) 
SPA reconstructions. The CTEM reconstruction results in a blurry image due to presence of Cs aberration. 
Excitingly, the two novel approaches, SALVE and VPP, can alternatively be used to render sufficient contrast as 
well as good resolution for DNA imaging.
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micrographs). Increased total scattering cross section at 20 kV, together with enhanced low-frequency informa-
tion transfer, boosts the phase contrast of the DNA. Specifically, Cc correction has an important role which 
enables focusing both the elastic and inelastic electrons into the same imaging plane and hence strengthening 
the contrast. Here, we presented first images of single-helix-thick unstained DNA nanostructures supported on 
commercial carbon supports at 20 kV obtained with the new Cs + Cs corrected technology. Our results extend 
SALVE microscope application for biomolecular imaging.

Volta-potential phase plate substantially boosts the DNA contrast at high voltages. Although 
the SALVE microscope did provide pivotal results, the instrument availability is still very limited. Furthermore, 
various practical challenges should be overcome in terms of automation in data acquisition, cryo compatibility, 
and etc. If working at standard high kVs (100–300 kV) is desired (which is the norm in most TEM labs), one 
should tackle the historical CTF obstacle. One possible route to enhance the contrast of weak phase objects at 
high kV is to improve the low frequency transfer of the CTF, e.g., by changing the conventional sine-type (zero 
phase shift) into a cosine-type (i.e., π/2 phase shift). Then, a pronounced phase contrast at near-focus can become 
possible. Note, for example, the significant revival of the low-frequency components in the dashed area of Fig. 3I 
after inducing a 0.5 π phase shift. To realize this type of CTF performance, we employed a recent VPP technology 
in CTEM to probe the DNA contrast at 200 kV.

Importantly, we find that VPP micrographs display exceptionally good contrast for unstained DNA (Fig. 3J). 
We observe even the side arms of the DNA origami plates without class-averaging. Such VPP images imply that 
the low-spatial frequencies play crucial role in the overall visibility of the DNA nanostructures. Owing to the 
striking DNA contrast in single acquisitions, the class averaging of the origami plates could be achieved with only 
a handful (~2000) of particles. The reconstructed image (Fig. 3L) provides a detailed view of all the DNA spatial 
features that were incorporated in the origami design, e.g., the side arms (2 and 4 nm wide), and the cavities 
inside the rectangle (4 and 8 nm wide). We thus demonstrated the applicability of VPP at high kV, for imaging 
unstained single-layer flat nucleic acids on commercial carbon supports, resolving features down to the level of 
single dsDNA molecules.

Conjugating a VPP with CTEM without Cs correction at 200 kV was sufficient to obtain a good reconstruction 
of the origami plates. For our case study of nucleic acids, revival of low-frequency components in the frequency 
spectrum has proven to play a more significant role than the expensive aberrations correction. The versatility 
brought by VPP to be used in conjugation with a non-Cs-corrected microscope at high kV is indeed a tremen-
dous advantage compared to other phase contrast techniques.

Dark-field microscopy provides necessary contrast for DNA visualization at high voltages 
but is not suitable for spA. Alternatively, dark-field microscopy could be another approach for contrast 
enhancement at high kVs. The conventional DF and scanning TEM (STEM) techniques are the prevailing meth-
ods in materials science for studying inorganic samples. Since the diffracted beams in such inorganic samples 
are stronger (compared to biomolecules), the collection of only a fraction of diffracted beams suffices to form 
a DF image. However, in the case of single-DNA origami structures, a DF image can only be formed with high 
contrast after all scattered electrons are gathered in the wide-field TEM mode. For this reason, we fabricated a 
“Mercedes star” aperture (Fig. 4A) to remove the unscattered central beam while letting virtually all the scattered 
beams pass through. The aperture consists of a very delicate ion-milled central disc of ~1 µm in diameter, and a 
cut-off frequency of 1 Angstrom (Fig. 4B), see the Methods section of the manuscript for details on the aperture 
fabrication and imaging.

Interestingly, we find that utilization of a DF aperture in conjugation with a direct electron camera leads to 
DNA visualization at 300 kV (Fig. 4E). Whereas these DF acquisitions exhibit high contrast, the counterpart 
images of DNA nanoplates in bright-field TEM mode remain invisible (Fig. 4C). Note that acquisition and illumi-
nation parameters are the same in Fig. 4C,E, except that the DF aperture is inserted and aligned in the back-focal 
plane in Fig. 4E. We previously imaged the positively stained origami structures with DF using a conventional 
CCD camera8. But, the unstained images (current work) were not optimal until we replaced the CCD with a 
direct electron device (DE-16 Direct Electron, California). The is related to the lower noise and higher detective 
quantum efficiency (DQE) of direct electron cameras, which facilitates the contrast in DF.

With the DF technique, we intended to probe for an easier replacement for SALVE and VPP for facile visuali-
zation of weak-phase objects at high kVs. The DF technique is indeed easy and helpful for sample screening, espe-
cially because the DF aperture can be easily integrated into the objective aperture holder of any TEM machine 
without high costs. One should note that the size of DF aperture would differ substantially at low kVs due to 
expansion of diffraction space. Moreover, the image contrast would be affected by the residual Cs at the low kVs8. 
Therefore, DF imaging below 300 kV was not desired or conducted. Since alignment of the DF aperture should 
be carried out before every DF acquisition, and due to absence of Thon rings (Fig. 4F) that are critical for defocus 
measurement and data acquisition, it is unlikely that DF would become a routine in the SPA workflow15, until 
further software and automation obstacles are overcome.

Discussion
We presented high contrast images of unstained single-layer DNA nanostructures on commercial carbon mem-
branes using advanced in-focus phase contrast TEM techniques. We notice significant contrast enhancement 
at low acceleration voltages such as 20 kV, which was possible via Cs + Cc aberration correction (in the SALVE 
approach), or at high acceleration voltages such as 300 kV after inducing π/2 phase shift (in the VPP approach).

To understand and compare the suitability of SALVE and VPP for SPA in structural biology, one should con-
sider the effect of defocus. Indeed, phase contrast methods that deliver both contrast and resolution at in-focus 
conditions (<±100 nm) are highly desired since they provide computational advantages over the prevailing 
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defocused-based CTEM approaches in terms of data processing16. SALVE and VPP techniques differ from CTEM 
since they can be fully exploited at the in-focus conditions. Therefore, we discuss the effect of defocus on the 
expected resolution for these two techniques. Note that our definition of expected resolution for the in-focus 
condition differs substantially from the one mostly used in materials science, i.e., that is the information limit (as 
indicated in Fig. 3A). We define the resolution based on the 0.5 amplitude threshold in the CTF plot without any 
zero-crossing at the low-frequency domain of the CTF16.

Figure 5 depicts the effect of defocus on the expected resolution for SALVE and VPP. Let us start to investigate 
such an effect for the SALVE approach (Fig. 5A,B). Figure 5A shows SALVE CTF plots at three different defocus 
values. At zero focus (green dotted line), we expect a 2.4 Å resolution based on the |CTF = 0.5| criterion. This 
point is indicated as * in both panel A and B. Over-focusing (defocus >0) shifts this peak to the left-hand side of 
the frequency spectrum, where its amplitude reaches the |CTF = 0.5| threshold without any phase flipping at the 
low spatial frequencies, resulting in drop of resolution from 2.4 Å at zero focus to about 10 Å at +30 nm defocus. 
The right curve in Fig. 5B thus shows the resolution evolution for the defocus >0 illumination. On the contrary, 
for under-focus values (defocus <0), we observe that a second peak develops in the CTF plot (see the red dashed 
curve for −3 nm defocus). At −5 nm defocus, it fulfils the |CTF = 0.5| criterion at the resolution of 3.1 Å, indi-
cated as # in both panel A and B. Greater under-focus values deteriorate the expected resolution from 3.1 Å at −5 
nm defocus to 10 Å at −25 nm defocus (left curve in Fig. 5B depicting the resolution evolution for defocus <0 
illumination). The green-highlighted area in Fig. 5B is restricted according to CTF performance, meaning that 
obtaining better resolution would not be possible. We note that the allowed defocus range at certain resolution is 
very narrow in the SALVE technique, which practically affects the SPA data collection.

For the VPP technique, similar analyses are provided in Fig. 5C-D. The major difference in VPP CTF is the 
cosine-type CTF. Note that the cut-on frequency is ignored in these plots and we consider complete 0.5 π phase shift 
performance for the volta-potential phase plate. We find that VPP allows for a greater acceptable defocus range, indi-
cating that VPP is a superior technique than SALVE for SPA in terms of in-focus data collection. Figure 5E,F shows 
the effect of Cs correction on VPP. This CTF performance can nowadays be achieved with a commercial Titan Krios 
instrument equipped with VPP operating at 300 kV. We see that removing Cs in conjugation with a 0.5 π VPP phase 
plate increases the allowed defocus range at comparable resolution (compare with Fig. 5D). Moreover, the observed 
phase-flipping in the CTFs of SALVE and VPP following over- or under-focusing is absent in the Cs-corrected VPP, 
where we obtain a symmetric defocus-resolution plot in Fig. 5F.

Figure 4. Dark-field visualization of unstained DNA nanostructures. (A) Fabrication of the delicate DF 
aperture by FIB milling on a 5-µm thick platinum foil. (B) Image of the aperture located in the diffraction plane. 
We see blocking of the zero beam, and a cutoff frequency of about 1 Angstrom (calibrated by a polycrystalline 
Au sample). (C,E) Bright- and dark-field images of the DNA nanostructures, respectively. We observe that the 
DNA structures are invisible in bright-field, but they do appear visibly in the dark-field image after insertion of 
the DF aperture. (D,F) Fourier transform of high-resolution images in panels C and E, respectively. The absence 
of carbon Thon rings in panel (F) is attributed to removal of central beam (linear interaction is absent). Thon 
rings in panel D are seen to extend beyond 3 Angstrom, which indicates a good performance of the DE-16 
direct detector camera.
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TEM imaging of unstained nucleic acids opens up ample opportunities in life sciences. Studying label-free 
DNA-protein interactions, imaging the native chromatin structure, and imaging conjugated DNA nanostructures 
are just a few examples. More specifically, the 2D DNA origami, with its ample and diverse available sequences at 
its surface, provides a promising approach for biophysical assays such as probing sequence-specific protein inter-
actions. It has been a long endeavor to develop TEM techniques for such applications. In the current work, we 
have shown that such images can be obtained using advanced in-focus phase contrast TEM techniques. Although 
our focus was on imaging nucleic acids, the insights provided by these techniques will be of further interest for 
broader applications in structural biology and materials science.

Methods
2D DNA origami design. A 2D DNA origami was designed (Fig. 1A) in order to have the same scattering yield 
as in a single dsDNA molecule. The rectangular shape of the origami facilitates its detection on carbon membranes 
and enables particle picking and consequently SPA. The full details of the origami design and its characterization can 
be found elsewhere8. An additional side arm was incorporated in the design to have single DNA helix (~2 nm as in 
B-form DNA) extruding from the oligomer sequence within the main rectangle. The liquid-cell AFM data (Fig. 1B) 
showed that this arm was very flexible and therefore hard to resolve in the TEM class averaging.

teM sample preparation. The investigated samples were similar for all of the techniques discussed in 
this manuscript. They were unstained single-layer DNA origami (Fig. 1) deposited on commercially available 
TEM grids (Electron Microscopy Science, USA, 3–4 nm carbon supported on 5–6 nm formvar). 3 µL of purified 
origami sample with a concentration of 5 nM was drop casted on freshly glow-discharged TEM grids, and left to 
incubate for 2 minutes. Subsequently, the grids were thoroughly washed with Milli-Q water and gently blown dry 
with a nitrogen flow. Following this protocol, we achieve a high density and homogenous distribution of the DNA 
origami plates on TEM grids.

Figure 5. Effect of focus on the expected resolution for VPP and SALVE techniques. (A,C,E) Representative 
CTF plots at different focus values for SALVE, non-corrected VPP and Cs-corrected VPP, respectively. The 
resolution criterion is 0.5 amplitude threshold in each CTF plot. (B,D,F) Expected resolution vs defocus for 
each technique mentioned above. The data points are extracted according to CTF plots (see, for example, the 
* and # in panels A and B). The green highlighted areas are prohibited in terms of 0.5 CTF criterion. These 
analyses indicate that the defocus range for SALVE technique is very narrow, which makes the data acquisition 
very challenging. On the contrary, VPP depicts a greater defocus tolerance at comparable resolution, hence 
facilitating the SPA workflow. We also note that removing the Cs could further improve the VPP performance in 
terms of resolution and permitted defocus range.
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sALVe data acquisition and processing. The Cc + Cs corrected SALVE microscope was operated at 
20 kV at room temperature to image DNA origami. The aberration coefficients Cc and Cs were tuned to −10 µm 
and −20 µm, respectively. The microscope is equipped with a Ceta 16 M camera (FEI). The exposure time was 
set to 1 s and a dose rate of 61 e s−1 nm−2 was applied for the manually collected dataset. We used Lentzen con-
ditions (Microsc. Microanal. 14, 16–26, 2008) for the defocus which is around 10 nm with fifth order spherical 
aberration of ~3 × 106 nm in our case. After initial screening of the dataset, the low-kV collected dataset con-
tained 108 images. The CTFs were fitted on the dose-weighted micrographs with Zhang’s Gctf (Kai Zhang, 2015), 
a GPU-accelerated program for real-time CTF determination and correction. The following parameters were 
used: spherical aberration −20 µm, voltage 20 kV, amplitude contrast 0.1, minimum resolution 40 Å, maximum 
resolution 4 Å, minimum defocus 1000 Å, maximum defocus 10000 Å (step size 500 Å). Additionally, the astig-
matism was 500 Å, B-Factor of 300 Å and the additional validation option was used. After visual inspection, 92 
CTF-corrected images were used for the selection of particles. Particle picking was carried out manually using the 
GPU-accelerated beta version of Relion 2.1 (Scheres, 2017), with a particle diameter of 1500 Å, pixel size 1.698 Å. 
Particles were extracted with a box size 1024, based on the particle diameter and pixel size. From the 92 images, 
240 particles were extracted and were subjected to 2D-classification using the following parameters: 5 classes, 
with regularization parameter of 3, 25 iterations and a mask diameter of 1600 Å. After 2D classification, the par-
ticles were sorted and selected on a Zmas score of 0.8. These particles were again subjected to 2D classification (3 
classes, regularization parameter 3, 25 iterations and a mask diameter of 1600 Å).

Vpp data acquisition and processing. The data was collected on an FEI Tecnai Arctica (FEI) cryogenic 
TEM, operated at 200 kV at liquid nitrogen temperature and equipped with a Falcon III detector (FEI). The data 
was acquired using the following parameters: magnification x53,000, 50 µm C2 aperture, spot size 5, 40.718% 
C2 lens, 35.129% diffraction lens, pixel size 1.97 Å, dose rate on the detector 47.7 electrons/pixel/s. The data was 
acquired by the automatically with EPU software (FEI). The phase plate was aligned to provide optimum phase 
shift performance. Exposure time 5 s, with 200 frames and 20 fractions per movie (10 frames/fraction). The perio-
dicity of the phase plate was set to 50 exposures, with an activation time of 10 s. After initial screening of the data-
set, the VPP collected dataset contained 1848 images. The movies were aligned using MotionCorr2. Parameters 
were 5 × 5 patches, dose-weighting 2 electrons/Å2, pixel size 1.97 Å and a b-factor of 100 was applied. The CTFs 
were fitted on the dose-weighted micrographs with Zhang’s Gctf (Kai Zhang, 2015). The following parameters 
were used: spherical aberration 2.7 mm, voltage 200 kV, amplitude contrast 0.1, minimum resolution 30 Å, max-
imum resolution 4 Å, minimum defocus 1000 Å, maximum defocus 10000 Å (step size 500 Å), minimum phase 
shift 20 degrees, maximum phase shift 160 degrees with a step size of 10 degrees, the astigmatism was 150 Å and 
the additional validation option was used. After visual inspection, 1720 CTF-corrected images were used for the 
selection of particles. Particle picking was carried out manually using the GPU-accelerated beta version of Relion 
2.1 (Scheres, 2017), with a particle diameter of 1500 Å, pixel size 1.97 Å. Particles were extracted with a box size 
1024, based on the particle diameter and pixel size. From the 1720 images, 2193 particles were extracted and were 
subjected to 2D-classification using the following parameters: 3 classes, with regularization parameter of 2, 25 
iterations and a mask diameter of 1600 Å. After 2D classification, the particles were sorted and selected on a Zmas 
score of 0.8. These particles were again subjected to 2D classification (3 classes, regularization parameter 3, 25 
iterations and a mask diameter of 1600 Å).

Dark-field image acquisition. The DF images were acquired in a post-specimen Cs-corrected Titan micro-
scope at room temperature. The DF aperture, which is positioned and aligned in the back-focal plane (Figs 2 and 
4), was fabricated by a FEI Helios dual beam machine assisted by an automated CAD software for milling, see full 
details of our DF aperture fabrication and alignment procedures provided elsewhere8. Briefly, the microscope was 
initially aligned in bright-field mode to remove the Cs and axial aberrations such as astigmatism. The DF aperture 
was then inserted and aligned in the diffraction space. No change in astigmatism was observed after DF aperture 
insertion, tested via image sharpness of small (5 nm) Au nanoparticles (since the FFT of DF images lack Thon 
rings to correct for astigmatism). A direct electron camera (DE-16, Direct Electron, California) was employed to 
efficiently collect all the scattered electrons (Fig. S2).

CteM. The CTEM data were recorded with the same VPP microscope at liquid nitrogen temperature, though 
the phase plate capability was switched off and the operating voltage was tuned down to 80 kV. This microscope 
features uncorrected Cs and Cc values of 2.7 mm and 3 mm, respectively.

Data Availability
The raw data will be deposited in the Electron Microscopy Public Image Archive EMPIAR. Additional represent-
ative micrographs for each technique is shown in Fig. S3.
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