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Abstract

Recent tremendous progress in electronics, complex-
ity theory and network science provides new opportuni-
ties for intellectual control of complex large-scale sys-
tems operating in turbulent environment via networks
of interconnected miniature devices, serving as actua-
tors, sensors and data processors. Actual dynamics of
the resulting control systems are too sophisticated to be
examined controlled by traditional methods, which pri-
marily deal with ordinary differential equations. How-
ever, their complexity can be dramatically reduced by
fast processes, organizing the elementary units of the
system (called agents) into relatively small number of
clusters. The clusters emerge and deteriorate in re-
sponse to changes in the environment, and the pro-
cesses of their formation and destruction are very short
in time. During the periods of the clusters’ existence,
the system’s dynamics is essentially low-dimensional
due to synchronization between the agents in each clus-
ter. An enormously complicated system is thus reduced
to a finite-dimensional model with time-varying struc-
ture of the state vector. The low-dimensionality of the
reduced model allows to control it by using classical
methods, e.g. model-predictive or adaptive control.

This philosophy of complex systems control is illus-
trated on an experimental setup, called the “airplane
with feathers”. The wings of this airplane are equipped
with arrays of microsensors, microcomputers, and mi-
croactuators (“feathers”). The feathers self-organize
into clusters by using a multi-agent consensus protocol;
the aim of this coordination is to reduce the perturbing
forces, affecting the airplane in a turbulent flow.

Key words
Complex network, singular perturbation, slow-fast dy-

namics, clustering, control of turbulence.

1 Introduction
Whereas interconnected systems have been studied

for many decades, recently it has been realized that
many of them are governed by similar principles
and obey similar mathematical models and thus
can be examined by the same methods. This has
given rise to new paradigms in study of complex
structures and their dynamics, manifested by Net-
work Science [Barabasi, 2002, Newman et al., 2006,
Easley and Kleinberg, 2010], Multi-Agent Systems
(MAS) theory [Shoham and Leyton-Brown, 2008,
Mesbahi and Egerstedt, 2010] and the theory of com-
plex systems (or “complexity”) [Bar-Yam, 1997]. At-
tracting enormous attention of researchers from various
fields, these new emerging areas “break down barriers
between physics, chemistry and biology ... and the
soft sciences of psychology, sociology, economics,and
anthropology” [Bar-Yam, 1997, Wooldridge, 2002].
Interest to system-theoretic properties of com-
plex networks has been motivated by necessity
to develop robust and resilient algorithms to con-
trol large-scale and spatially distributed systems
such as e.g. continental power grids or smart in-
frastructures, functioning in the information rich
world [Murray, 2003, Samad and Annaswamy, 2011,
Annaswamy et al., 2017]. To describe complexity
effects, two types of models can be used: agent-based
(networked, microscopic) and statistical (known under
numerous alternative names, see below).

1.1 Statistical (Macroscopic) Modeling
Historically, statistical models of complex dynamics

had appeared and been examined long before the emer-
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gence of network science. Since elementary parts of a
complex system (e.g. individuals in a society, cars in
dense urban traffic or molecules of some gas in a ves-
sel) are numerous and their trajectories can be chaotic,
the direct measurement of each part’s characteristics is
practically impossible. A natural idea is thus to de-
scribe the distribution of some variable of interest (e.g.
the voters’ preferences before an election or referen-
dum, cars’ or molecules’ velocities etc.) or even some
special metrics of such a distribution (e.g. temperature
or average kinetic energy of the molecules). For exam-
ple, models of fluid dynamics and continuum mechan-
ics [Batchelor, 1967, Mase, 1967] describe the evolu-
tion of density and velocity of flows, where individ-
ual particles are replaced by indistinguishable infinites-
imal elements of the flow. Similar statistical (“macro-
scopic”) models naturally describe flows in transporta-
tion networks [Helbing, 1995].
In biology and social sciences, statistical (compart-

mental) models date back to early works on mathe-
matical epidemics [Kermack and McKendrick, 1927]
and mathematical bioscience [Rashevsky, 1935,
Rashevsky, 1938]. Behaviors between social or
biological agents in such models are portrayed
by interactions of multiple “species” or compart-
ments [Jacquez, 1985]. Compartments are inde-
composable entities that can grow or decline. For
instance, in SIR models of epidemic spread the
three compartments stand for the proportions of
susceptible (S), infectious (I) and recovered (R)
individuals; in the classical Lotka-Volterra model
compartments are populations of predators and preys.
Similar statistical models, arising in evolutionary
game theory [Maynard Smith, 1982] and sociodynam-
ics [Weidlich, 1971], are used to describe behaviors
of social and economic agents. Such models can
e.g. describe how the distribution of opinions evolves
(paying no attention to the opinion of a particular
social actor) and are sometimes also referred as Eule-
rian or “continuum-agent” [Como and Fagnani, 2011,
Canuto et al., 2012, Mirtabatabaei and Bullo, 2012,
Hendrickx and Olshevsky, 2016].

1.2 Agent-Based (Microscopic) Models
The networked or agent-based approach consid-

ers a complex system as a union of simple au-
tonomous units, referred to as agents.1 This
bottom-up approach is broadly used in sociology
since the pioneering works on consensus in social
groups and evolution of social power [French Jr., 1956,
Harary, 1959, Abelson, 1967, DeGroot, 1974], model-
ing large-scale biological populations (e.g. herds,

1In computer and software engineering, an agent is a computer
system or software module that is capable of independent action on
behalf of its owner or user [Wooldridge, 2002]. In control theory,
“agent” is as autonomous dynamical subsystem of a complex system,
having some interoperability capacity.

flocks and schools [Reynolds, 1987]), ensembles
of particles [Vicsek et al., 1995] and coupled oscil-
lators [Kuramoto, 1991, Mirollo and Strogatz, 1990].
Statistical models can be thought as limits of agent-
based models as the number of agents tends to infinity
(in practice, the system becomes very large) and dis-
tinctions between individual agents are neglected.
Usually the agents are mapped to nodes of some

network, or interaction graph. The graph’s arcs rep-
resent connections, or couplings between the agents.
The coupling can stand for a physical interaction
or presence of information flow between the two
agents. In most interesting situations, the connections
are sparse: each agent interacts with only a few
number of neighbors, adjacent to its node in the
graph, and has no information about the remaining
part of the network. The topology of the graph
can be static or time-varying, in the latter case, it
can evolve independently of the agents or co-evolve
with them [Belykh et al., 2014a]. It should be noted
that structural and statistical properties of complex
graphs, representing e.g. large-scale power grids or
human relations in social groups, lead to a number of
difficult problems on the borderline between statistical
physics and graph theory [Watts and Strogatz, 1998,
Barabási and Albert, 1999, Barabási et al., 2000,
Albert and Barabási, 2002, Newman, 2003]. Many
problems in this area has, in fact, been antici-
pated by extensive studies in social network anal-
ysis [Wasserman and Faust, 1994, Freeman, 2004].
However, the most intriguing problems are concerned
with dynamics over complex networks.

1.3 Synchronization and Consensus
Perhaps, the most studied phenomena in dy-

namic complex networks are various effects
of “self-organization” and “spontaneous or-
der” [Néda et al., 2000, Strogatz, 2003] emerging from
local interactions among the agents. The term “spon-
taneous order” has appeared in social philosophy and
economics [Barry, 1982] and means self-organization
of social or economic self-interested actors, established
as a result of their independent actions rather than
governmental regulations. In mathematical theory of
dynamic networks, this term is typically understood
as a kind of synchronization [Blekhman, 1988a,
Blekhman et al., 1997, Strogatz, 2003, Fradkov, 2007,
Pikovsky et al., 2001, Arenas et al., 2008, Wu, 2007,
Fradkov, 2017, Boccaletti et al., 2018] between the
agents’ trajectories. Studies on self-synchronization
among dynamical systems date back to the seminal
experiments by Huygens in 17th century; the efforts
to reproduce his experiments has led to a number of
new results and open problems [Bennett et al., 2002,
Czolczynski et al., 2011, Pena Ramirez et al., 2016].
Several decades after Huygens’ experiments, de
Mairan [de Mairan, 1729] discovered the effect of
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forced synchronization (or entrainment) of plants’
circadian clocks with an environmental periodic
signals. Studies on entrainment of biological rhythms
gave birth to the field of chronobiology and opened
up the new perspectives in control of limit-cycle os-
cillators [Johnson, 1999, Roenneberg et al., 2003,
Efimov, 2011, Sacre and Sepulchre, 2014,
Proskurnikov and Cao, 2017c, Medvedev et al., 2018].
The seminal work [Pecora and Carroll, 1998b] on
master-slave synchronization of chaotic system has
attracted enormous attention of physicists and en-
gineers. The idea of chaotic synchronization has
found numerous applications in telecommunications;
this and other aspects of chaos “taming” can be
found in surveys [Andrievsky and Fradkov, 2004,
Fradkov and Evans, 2005]. Special cases
of synchronization are asymptotic co-
ordinate synchronization and consen-
sus [Olfati-Saber et al., 2007a, Ren and Beard, 2008,
Ren and Cao, 2011] that take their origin in soci-
ological studies [Proskurnikov and Tempo, 2017,
Proskurnikov and Tempo, 2018]. Synchronization
and consensus lie in the heart of many algorithms,
used by living and artificial agents to reach some kind
of coordinated behavior, e.g. motion of large-scale
biological formations [Reynolds, 1987], distributed
optimization [Tsitsiklis et al., 1986, Nedic et al., 2010]
and filtering [Kar and Moura, 2013],
flocking and rendezvous of mobile
robots [Olfati-Saber, 2006, Bullo et al., 2009], load
balancing [Amelina et al., 2015] and synchronization
of computer clocks [Schenato and Fiorentin, 2011].

1.4 From Synchronous to Clustered Behaviors
Synchronization is, however, not the only possible

form of a complex system’s organization. Much more
complicated (and less studied) are various forms of
clustering2, also called partial or cluster synchroniza-
tion. Special case of clustering includes the situation,
where the states or outputs of all agents should be sepa-
rated by a positive distance, as in the problems of colli-
sion avoidance in swarms and mobile sensor deploy-
ment [Ny et al., 2012, Schwager et al., 2011]. Much
more interesting are situations where the number of
clusters is much smaller than the number of agents; as
will be discussed, such a clustering greatly enables ef-
ficient control of the system’s dynamics using a few
control inputs. In terms of statistical models with in-
finite number of agents, synchronization typically cor-
responds to a unimodal distribution with a “weak” tail,
where clustering corresponds to a bimodal (polariza-
tion) or multimodal distribution.

2The term “clustering” has many different meanings; cluster syn-
chronization of dynamical systems should not be confused with prob-
lems of clustering (cluster analysis) in artificial intelligence and prob-
lems of graph clustering (community detection) in algorithmic graph
theory. The latter problem is closely related to percolation theory,
examining the behavior of connected clusters in random graphs.

Paradoxically, models providing agents’ splitting into
a few clusters are much less studied than synchroniza-
tion and consensus algorithms; the structural and dy-
namical properties of the networks leading to forma-
tion and deterioration of stable clusters still remain, to
a great extent, unexplored. The models explaining clus-
ter synchronization can be divided into several classes.

One can expect that clustering may be caused by the
agents’ heterogeneity. One can expect, for instance,
that in a network constituted by agents of K ≥ 2
different types, agents of the same type should reach
synchrony, constituting thus K different clusters.
Such models of clustering have been examined e.g.
in [Smet and Aeyels, 2009, Lu et al., 2010], see also
recent works [Lu et al., 2017, Du et al., 2018] and
references therein. Heterogeneity does not necessarily
implies different dynamics of agents. Heterogeneous
dynamics of agents can be caused by presence of
non-identical exogenous signals, that can be con-
sidered as control inputs, disturbances or exclusive
information [Wu et al., 2009, Aeyels and Smet, 2011,
Xia and Cao, 2011]. In social networks, agents differ
in their susceptibility to external influence, being
fully or partially closed to assimilation of the peers’
opinions [Acemoglu et al., 2013, Friedkin, 2015,
Parsegov et al., 2017]. Besides agents, heterogeneity
may occur in couplings, e.g. agents can split into
communities or clusters such that couplings within a
single community are stronger, in some sense, than
couplings between different communities; different
clusters may even repulse [Xia and Cao, 2011,
Fläche and Macy, 2011, Altafini, 2012,
Altafini, 2013, Proskurnikov and Cao, 2014,
Proskurnikov et al., 2014,
Ruiz-Silva and Gonzalo Barajas-Ramı́rez, 2018].

Homogeneous networks, however, also exhibit cluster
synchronization. One of the reasons for that can be
the symmetry of couplings, enabling stable invariant
manifolds of partial synchrony [Belykh et al., 2000,
Pogromsky et al., 2002, Pogromsky, 2008]; similar
effects have been earlier revealed in oscillator net-
works [Okuda, 1993]. Desynchronization and cluster
formation in oscillator networks may be caused
by presence of common noise [Gil et al., 2009].
Recently, it has been demonstrated that cluster-
ing is possible even if the agents and couplings
are identical during special structure of the cou-
pling functions that can e.g. vanish as the distance
between agents grows (the principle of bounded
confidence models [Hegselmann and Krause, 2002,
Deffuant et al., 2001, Proskurnikov and Tempo, 2018])
or the agents approach some stationary
points [Proskurnikov and Cao, 2016]. The distri-
bution of agents between clusters can be uniform
or highly unequal, e.g. one huge cluster includ-
ing all opinions and few clusters of 1-2 elements
each. In oscillator networks, such dispropor-
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tional structures of clusters are known as “chimera
states” [Abrams and Strogatz, 2004].

1.5 Clusters and Control of Networks
Besides portraying important phenomena, observed

in natural, social and robotic networks, models of
synchronization and clustering play an important role
in control of complex networks. It has been shown
in [Zubarev, 1974] that no finite number of variables
(degrees of freedom) can be sufficient to describe a
non-equilibrium process with a variable number of de-
grees of freedom. At the same time, it is known that
complex phenomena such as turbulence and spatiotem-
poral chaos [Xiao et al., 1998, Grigoriev et al., 1997]
can be very controlled in a very “parsimonious” way.
For instance, to suppress turbulence efficiently3, one
needs a finite number of control inputs that is much
less than the number of positive Lyapunov expo-
nents [Xiao et al., 1998], provided that these controls
are injected in proper points of the system.
This seminal idea is known as pinning con-

trol [Grigoriev et al., 1997, Wu et al., 2009,
Yu et al., 2014, Fu et al., 2017a]. In multi-
agent control, this idea is illustrated by al-
gorithms of leader-following synchroniza-
tion [Ren and Beard, 2008, Lewis et al., 2014]: a
group of agents applied a usual consensus algorithm in
order to follows a single leader agent (influencing the
remaining systems directly or indirectly), which can
be externally controlled. Similar in spirit algorithms
of containment control [Ren and Cao, 2011] gather a
group of agents inside a convex polytope, spanned by
the states of several leaders; controlling the leaders’ tra-
jectories, one then can control the motion of the whole
swarm without precise synchronization of their trajec-
tories with the leaders. A similar role in social net-
works is played by stubborn agents [Yildiz et al., 2013,
Proskurnikov and Tempo, 2017, Parsegov et al., 2017].
The clustered structure of a network substantially

simplifies its structure as a control system and en-
ables relatively simple (low-dimensional) controllers,
which can operate in uncertain conditions, as exem-
plified by modern methods of robust and stochastic
model predictive control (MPC) [Mayne et al., 2000,
Mesbah, 2018, Seron et al., 2018], adaptive con-
trol [Fradkov et al., 1999, Fradkov, 2007], data-driven
and learning-based control [Benosman, 2018].

1.6 Forced Clustering and Slow-Fast Dynamics
Summarizing the discussion from the previous sub-

sections, it can be said that “spontaneous order” ef-
fects such as synchronization and clustering in com-
plex networks are not only crucial for understanding
natural and social phenomena, but also important from

3Notice that, unlike the case of linear equations in semi-
groups [Nefedov and Sholokhovich, 1986], most of control problems
for nonlinear equations remain, to many extent, open.

control-theoretic prospective and enable efficient con-
trol of very complex dynamics. In spite of enormous
progress in understanding these effects, as well as con-
trollability properties of complex systems, most of the
existing results are limited in several aspects.

First, the existing results are primarily focused
on understanding the roles of couplings between
the agents and connectivity properties of the in-
terconnection topology in reaching full or partial
synchronization. Much less understood is the role of
environment, which can exert heterogeneous forces
on one or several agents (one can imagine viscous
friction forces, arising when agents move through
some medium, or beams of particles that are bom-
barding agents). In turn, the environment can depend
on the agents’ states, e.g. neural cells can secrete
neurotransmitter peptides, changing conductivity
of the intercellular medium [Gonze et al., 2005,
Vasalou and Henson, 2011], moving charged
particles create a time-varying electromagnetic
field etc. The arising clusters can be forced by
the environmental “cues” and thus adapt to the
changing environment. Vortex-wave turbulence
structures in fluid, gas, multiphase and plastic
streams [Meshcheryakov and Khantuleva, 2015,
Khantuleva and Meshcheryakov, 2016] can also be
described in terms of birth and dissolution of clusters.
Although cluster synchronization dramatically reduces
the dimension of a control system, this dimension (and
structure of the state vector) is time-varying. One
paradigm to cope with such systems is hybrid systems
theory [Goebel et al., 2009], imposing however a
number of restrictions on the system’s dynamics. In
statistical physics, studies on cluster dynamics in fact
date to Boltzmann’s works [Gabrielov et al., 2008].

Second, most of the existing results consider systems
with a single time scale, whereas in reality some
processes within an agent or unfolding in the whole
network can be much faster than others, as exempli-
fied by spiking (very fast) and rest (relatively slow)
dynamics in neuron ensembles [Pereira et al., 2007].
One way to describe fast processes is to consider them
as pulses; such networks can be studied by methods of
impulsive systems theory [Gelig and Churilov, 1998]
or hybrid systems [Goebel et al., 2009]. Most studied
systems of this type are pulse-coupled oscillator
(PCO) networks that portray behavior of biological
neurons and have found many applications in elec-
tronics [Mirollo and Strogatz, 1990, Kuramoto, 1991,
Proskurnikov and Cao, 2017d, Núñez et al., 2015].
Another approach is the method of singular per-
turbations, broadly used in physics and mechan-
ics [Cole, 1968, Dyke, 1964]. Networks with sin-
gularly perturbed agents have not been thoroughly
studied, most of them stipulate linear dynamics of the
agents [Yang et al., 2017, Rejeb et al., 2018] or cope
with very special type of networks, e.g. Kuramoto-like
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oscillator ensembles [Dörfler and Bullo, 2012]. In
practice, external control can be rather slow compared
to the internal processes of cluster formation and dete-
rioration. Understanding of interrelation between fast
processes of clustering and slow-input controllability
of the network remains an unsolved problem.

1.7 The Paper’s Contribution and Organization
In this paper, we propose a new general “philosophy”

of complex processes modeling, exploiting multi-agent
dynamical models with variable structures4 of clusters.
The relevant mathematical concepts and brief literature
survey are given in Section 2. This philosophy has
been, to a great extent, inspired by a practical problem
of reducing an aircraft’s vibration in a turbulent flow.
In Section 3, we present a novel approach to this prob-
lem, employing a special equipment (“feathers”, con-
sisting of miniature sensors, computers and actuators)
installed on the wing surface and used to equalize the
air pressure. Section 4 concludes the paper, discussing
some open problems and directions for future research.

2 Clusters Formation and Related Problems
As has been already mentioned, many complex phe-

nomena studied in natural, engineering and social sci-
ences can be described as emergence and deteriora-
tion of clusters in complex dynamical networks. The
clusters can emerge due to some endogenous structural
and/or dynamical properties of the system (that is, the
topology and structure of coupling), but can be also in-
fluenced by external factors (including e.g. control in-
puts). As a result of fast external processes, the clusters
deteriorate, and the agents reassemble into a different
configuration of clusters. Supposing that the processes
of clusters’ formation and destruction are sufficiently
fast, so that the configuration of clusters remains stable
for sufficiently long time, one can replace each cluster
by a single “averaged” system and thus dramatically
reduce the state space of the overall complex systems.
This general program decomposes into a number of dif-
ficult problems, in particular:

1. why and how do the agents split into clusters?
2. how to predict the structure and number of clus-

ters, given their previous configuration?
3. how fast is the cluster formation process?
4. how to control a cluster in a non-destructive way,

preserving consensus of constituent agents?
5. which properties of the original complex system

are inherited by its reduced-order model, obtained
by “gluing together” agents from the same cluster
and treating them as a single “macro-agent”?

The existing literature on cluster synchronization
mainly focuses on the first two problems, which, how-

4The theory of cluster dynamics should not be confused with
variable-structure systems (VSS) theory, focusing on sliding-mode
control of uncertain systems [Emelyanov, 1967, Utkin, 1992].

ever, are also far from being thoroughly studied. Prob-
lems 3 and 4 are mainly considered for special situa-
tions (e.g. linear dynamics of the agents). Problem 5
relates to the advanced theory of singularly perturbed
systems, studying coupled dynamics on different time
scales (dynamics of the cluster restructuring are very
fast, compared to periods of the clusters’ co-existence).

2.1 Multi-Agent Networks
Henceforth we confine ourselves to the special situa-

tion, where the system is constituted by a finite5 (yet
large) number of agents N ≫ 1, indexed 1 through N ;
we use N = {1, . . . , N} to denote the set of agents.
Agent i is described by the differential equations

ẋi(t) = fi(xi(t), θi(t), ui(t), Ui(t)), t ≥ 0,

yi(t) = gi(xi(t), θi(t)), zi(t) = hi(xi(t), θi(t)).
(1)

Here xi(t) ∈ Rni stands for the state vector of agent
i ∈ N . The joint state vector of the system X(t) =
[x⊤

1 , . . . , x
⊤
N ]⊤ ∈ X = Rn̄ thus belongs to the space

of very high dimension n̄ =
∑

i∈N ni. Each agent can
depend on the (finite- or infinite-dimensional) uncer-
tain vector θi ∈ Θi, generally, time-varying (in some
situations, it is convenient to consider θi as a stochas-
tic variable). The components of this vector can repre-
sent parameters of the agent or external signals, which
can stand for e.g. reference trajectories or disturbances.
The functions fi and θi should, of course, be “good”
enough to guarantee a solution’s existence; both of
them, however, may become discontinuous due to rapid
changes in the structure of the agent and its environ-
ment. The relevant existence theorems can be found in
classical monographs on functional equations and dif-
ferential inclusions [Coddington and Levinson, 1955,
Hale, 1977, Gelig et al., 2004].
Along with the continuous-time model (1), discrete-

time agents may be considered whose states evolve as

xi(t+ 1) = fi(xi(t), θi(t), ui(t), Ui(t)). (2)

Continuous-time dynamics naturally describe physical
processes, and discrete-time equations arise in mod-
els in digital devices and software components. Many
“cyberphysical” systems arising in engineering include
both physical and digital components, and hence are
described by impulsive [Gelig and Churilov, 1998] or
hybrid models [Goebel et al., 2009], where some state
components evolve in continuous-time as in (1), and

5The concepts related to synchrony and clustering can be intro-
duced to continuum agents, however, the dynamics of such agents
are infinite-dimensional, since the relevant models deal with evolu-
tion of probability measures or densities. To keep things simple, we
confine ourselves to finite-dimensional dynamics.
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the others obey recurrent equations as in (2). Un-
less otherwise stated, we consider continuous-time
agents (1).
Each agent has two control inputs, which we refer to

as “fast” and “slow” controls respectively. The first of
them, ui(t) is used for coupling between the agents that
provides global consensus or cluster synchronization
(such algorithms will be considered below in detail).
The second input Ui(t) is used to control the agent. It
can be e.g. identical for each agent in a cluster, treating
thus clusters as “macro-agents”, and depend on some
averaged characteristics such as the average of agents
in a cluster (as the number of agents N → ∞, such an
average can be approximated by an integral over some
domain). Such an example will be considered below in
Subsection 2.5. Another paradigm (known as “pinning
control”) is to influence a single agent or few agents in
each cluster, in this situation, Ui(t) = 0 for most agents
except for a few “pinned” leaders.
Notice that in general the agents may be not only het-

erogeneous, but even have state vectors of different di-
mensions (more generally, belonging to different vector
spaces). To describe clustering of agents, some “dis-
tance” between the agents has to be introduced. For
this reason, the output zi(t) is introduced, containing
some characteristics of interest. We always assume that
zi have same dimension dim zi(t) = dim zj(t)∀i, j,
which allows to measure distances between these out-
puts. In examples considered below, usually zi = xi.
Besides zi, the agent has another output yi that is used

for the interactions, or coupling, among the agents. At
each time t, the set N i(t) ⊆ N is defined (possibly,
empty), whose members we refer to as neighbors of
agent i. Decision of agent i at time t is based on the
outputs yj(t), “displayed” by the neighbors.6 The set
of outputs {yj(t)}j∈N i can be measured by the agent
(e.g. a mobile robot can detect positions and velocities
of its neighbors) or communicated by the neighbors.
As a result of interaction with neighbors, each agent
takes a decision or computes the control command

ui(t) = Fi(Y
i(t)), Y i(t) = (yj(t))j∈N i(t). (3)

Here Fi, i ∈ N are functions, defined on appropri-
ate spaces. The coupling algorithm (3) (also called
protocol) is distributed in the sense that each agent
uses only “local” information Y i(t) from its neigh-
bors. Notice that Fi can be random functions; also,
in the case of constant sets N i one can consider more
general functionals, depending on the whole trajectory
{Y (s) : 0 ≤ s ≤ t}. Notice that the coupling (3)
can stand for some physical connection between the
agents. For instance, agents can represent mechanical

6For the reasons of simplicity, we do not consider numerous com-
munication issues such as e.g. delays, dropouts and asynchronous
messaging between the agents.

oscillators (pendulums or vibrating using), installed on
the same platform [Blekhman, 1988b].
In many situations, it is convenient to depict the rela-

tions j ∈ N i(t) (agent j influences agent i at time t)
by directed arcs i −→ j. A collection of such arcs E(t)
along with the set of nodes N constitutes the directed
interaction graph G(t) = (N , E(t)), referred also to as
the topology of the network (1),(3).

Definition 1. The triple consisting of 1) family of
agents (1); 2) interaction graph G(t); and 3) coupling
protocol (3) is called multi-agent network.

For the subsequent definition, it is convenient to intro-
duce the deviations between the outputs

∆ij(t∗)
∆
= ∥zi(t∗)− zj(t∗)∥, ∆ij(∞) = lim

t∗→∞
∆ij(t∗).

Here ∥ · ∥ stands for some predefined norm in the space
of outputs. On finite-dimensional spaces, all norms are
equivalent, however, from technical viewpoint compu-
tation of some norm may appear simpler. Most typi-
cally, ∥z∥ stands for one of the norms |z|1 =

∑
i |zi|,

|z|∞ = maxi |zi| or |z| = |z|2 =
√
z⊤z.

Definition 2. We say that agents i and j are (output)
synchronized, or reach (output) consensus at time t∗ if
∆ij(t∗) = 0. Similarly, agents i and j are asymptoti-
cally (output) synchronized if ∆ij(∞) = 0. More gen-
erally, the agents are ε-synchronized at time t∗ (respec-
tively, asymptotically ε-synchronized) if ∆ij(t∗) ≤ ε,
(respectively, if ∆ij(∞) ≤ ε).
A subset of agents M ⊆ N is synchronized (at time t∗

or asymptotically) if any pair i, j ∈ M is synchronized
in this sense. If this holds for all agents (M = N ), the
system is said to be globally synchronized. The same
definitions apply to ε-synchronization.

It should be noticed that synchronization from Def-
inition 2 is a special case of coordinate synchro-
nization. In this paper, we do not consider gen-
eral concept of synchronization in dynamic systems;
the interested readers are referred to monographs
and surveys [Blekhman, 1988b, Blekhman et al., 1997,
Fradkov, 2017, Proskurnikov and Fradkov, 2016]. No-
tice that synchronization of two agents at time t∗, in
general, does not imply synchronization at any t ≥ t∗:
as the system evolve, synchronization can be destroyed.
However, usually algorithms used to reach consensus
provide the invariance of global synchronization: if
zi(t∗) = zj(t∗) holds for any i, j, this relation retains
its validity for t ≥ t∗ (more formally, it holds until the
system is “singularly” disturbed, see below).

Definition 3. Assume that N = M1∪ . . .∪Mk, where
Ml ̸= ∅ are disjoint. We say that {Ms}ks=1 is (ε, δ)-



108 CYBERNETICS AND PHYSICS, VOL. 7, NO. 3

clustering of the agents at time t∗ if

∆ij(t∗) ≤ ε ∀i, j ∈ Ms, s = 1, . . . , k

∆ij(t∗) > δ ∀i ∈ Ml ∀j ∈ Mm, l ̸= m.
(4)

Similarly, {Ms}ks=1 is the asymptotical (ε, δ)-
clustering of the agents if

∆ij(∞) ≤ ε ∀i, j ∈ Ms, s = 1, . . . , k

lim
t∗→∞

∥zi(t∗)− zj(t∗)∥ > δ

∀i ∈ Ml ∀j ∈ Mm, l ̸= m.

(5)

Some clusters Mj may consist of only one agent. A
(0, 0)-clustering is henceforth referred to simply as
clustering (or cluster synchronization) of the agents.

Notice that in the second inequality of (5) we use the
lower limit rather than the upper one, thus, for t∗ being
large, agents from different clusters are δ-separated for
any t ≥ t∗. Obviously, ε-synchronization is a special
case of (ε, δ)-clustering with the only cluster M1 = N
(in this case, δ ≥ 0 can be arbitrary). The most inter-
esting situation of (ε, δ)-clustering is the case where,
first, δ ≥ ε (the inter-cluster distance is greater than the
clusters’ diameters) and, second, the number of clusters
k is relatively small compared to N = |N |.
Effects of full or cluster synchronization (as well

as other “spontaneous order” phenomena that are be-
yond the scope of this paper) among the agents are
explained by presence of couplings among them. A
natural question arises how a network synchronizes
or splits into clusters. This problem has attracted
enormous attention of different research communi-
ties in the recent decades. In spite of a substan-
tial progress, the behaviors of quite simple models of
dynamic networks (such as e.g. Kuramoto oscilla-
tors [Dörfler and Bullo, 2014a] or models of opinion
dynamics [Proskurnikov and Tempo, 2018]) remain, in
many extent, mysterious. In the next subsections, we
consider several most studied situations.

2.2 Consensus via Iterative Averaging
We start with consensus algorithms, based on

the principle of iterative averaging (similar dy-
namics appear in the literature under different
names, e.g. local voting [Amelina et al., 2015,
Vergados et al., 2018], Laplacian flows [Bullo, 2018,
Proskurnikov and Cao, 2017a] or rendezvous al-
gorithm [Lin et al., 2007a]). Historically, such
algorithms originate from mathematical sociol-
ogy and rational choice theory [French Jr., 1956,
French and Raven, 1959, Friedkin, 1986,
DeGroot, 1974, Abelson, 1964, Abelson, 1967].

2.2.1 The French-DeGroot and Abelson Models
One of the first models, explaining how consensus
among the agents can arise, was suggested by French
[French Jr., 1956]. Consider a group of N social ac-
tors, whose opinions at the stage t = 0, 1, 2, . . . are ex-
pressed by some scalar values x1(t), . . . , xN (t). The
pattern of interpersonal relations is described by a
graph G = (V,E), whose nodes are in one-to-one cor-
respondence with the actors and each arc corresponds
to direct communication between the actor at the head
of the arc and that at its tail. At each step agents si-
multaneously calculate the means of their own opinions
with opinions, communicated by their neighbors. In-
troducing the adjacency matrix A = (aij) of the graph,
the dynamics of the ith opinion is given by

xi(t+1) =

∑N
j=1 aijxj(t)∑N

j=1 aij
, i ∈ 1 : N ; t = 0, 1, . . .

(6)
This model was investigated by F. Harary
[Harary, 1959], who established the first graph-
theoretic criterion of asymptotic consensus (“una-
nimity”) which means that all of the opinions xi(t)
converge to the same limit7: xi(t) → x0 = x0(x(0))
as t → ∞ for all i ∈ 1 : N or, equivalently,

x(t) −−−→
t→∞

x∗ = 1Nx0, 1N
∆
=

1
...
1

 ∈ RN . (7)

The iteration (6) is a special case of more gen-
eral dynamics, referred to as linear opinion pool-
ing [DeGroot, 1974]. DeGroot’s model involves a row-
stochastic8 matrix W = (wij) and is given by

xi(t+1) =
N∑
j=1

wijxj(t) ⇔ X(t+1) = WX(t). (8)

Here X(t) = [x1(t), . . . , xN (t)]⊤ stands for the stack
vector of opinions. Establishing of consensus among
the opinions xj(t) under any initial conditions X(0)
means that the limit W∗ = lim

t→∞
W t exists, and W∗ =

7Consensus in this sense may seem a more restrictive condition
than asymptotic synchrony from Definition 2, but in fact the conver-
gence of the opinions to the same limit (7) and vanishing of their de-
viations appear to be equivalent in the case of linear algorithms. The
corresponding fact remains valid for time-varying matrices W (t) and
is known as the equivalence of weak and strong ergodicity of Markov
chains (or infinite matrix products) [Seneta, 1981].

8A square matrix W = (wij) is row-stochastic, if all of
its entries are non-negative wij ≥ 0 and the sum in each row∑

j=1 wij = 1. Any such matrix is the transition matrix of a sta-
tionary Markov chain [Norris, 1998], where wij is a probability of
transition from the state i to state j.
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(1, 1, . . . , 1)⊤π⊤
∗ , where π⊤

∗ = (π1, . . . , πN ) is a non-
negative row vector. Obviously, W∗W = W∗, and
hence π⊤

∗ W = π∗. Thus π∗ is the Perron-Frobenius
left eigenvector of W , corresponding to the maximal
eigenvalue 1. Since W∗ is row-stochastic, one also has∑

i πi = 1. It can be easily shown that π∗ is the only
eigenvector with such properties. Notice also that the
consensus opinion, on which the agents converge, is

x0 = π⊤
∗ x(0). (9)

Conditions ensuring the existence of vector π∗ have
been thoroughly investigated in the theory of Markov
chains; the aforementioned consensus property is
equivalent to the ergodicity of the Markov chain with
the transition matrix W , whose unique stationary dis-
tribution is π∗. Starting at any initial distribution π0 =
(π0

1 , . . . , π
0
N ), the chain converges to the stationary dis-

tribution π∗ = π0W∗ = limt→∞ π0W t. A necessary
and sufficient condition on W , guaranteeing the ergod-
icity, is being a SIA matrix (stochastic, indecompos-
able, aperiodic) [Ren and Beard, 2008]. From the alge-
braic viewpoint, this means that all eigenvalues of W
except for λ1 = 1 are strictly stable (|λj | < 1, j =
2, . . . , N ), and λ1 has multiplicity 1 (such matrices
are also called fully regular [Gantmacher, 2000].) In
terms of the Markov chain, this means that all recur-
rent states [Norris, 1998] of the Markov chain commu-
nicate to each other and aperiodic. A more convenient
graphical condition can be obtained, introducing the in-
teraction graph of the multi-agent system. The set of
the ith agent’s neighbors is N i = {j : wji > 0}
(obviously, the ith agent is affected by the jth one
if and only if wij ̸= 0). Communicating recurrent
classes correspond to the only source strongly con-
nected component [Harary et al., 1965], from which
all other components can be reached by paths. The
existence of such a component is equivalent to the
existence of a directed (out-branching) spanning tree
in a graph [Harary et al., 1965, Ren and Beard, 2008,
Blondel et al., 2005, Cao et al., 2008]. Consensus is
reached if and only if this source component is ape-
riodic, that is, greatest common divisor of all cy-
cles’ lengths is 1. In the simplest situation where
wii > 0 ∀i, aperiodicity automatically holds, and the
system reaches consensus if and only if the graph
has a directed spanning tree [Ren and Beard, 2008,
Blondel et al., 2005, Cao et al., 2008].
The mulit-agent system (8) can be easily rewritten in

the general form (2), (3), for instance,

xi(t+ 1)− xi(t) = ui(t), yi(t) = xi(t)

ui(t) =

N∑
j ̸=i

wij(yj(t)− yi(t)).
(10)

Hence, the evolution of an agent’s opinion is driven

by its deviations yj − yi from the neighbors’ out-
puts9. This coupling mechanism is often called diffu-
sive [Pogromsky and Nijmeijer, 2001].
A continuous-time counterpart of (10), replacing the

opinion’s increment by the instantaneous “velocity”, is

ẋi(t) = −
N∑
j=1

εij(xi(t)− xj(t)) ⇔

⇔ Ẋ(t) = −LX(t).

(11)

Here L = (lij) is a so-called Laplacian matrix
[Ren and Beard, 2008, Mesbahi and Egerstedt, 2010,
Olfati-Saber and Murray, 2004a], its off-diagonal
entries lij = −εij are non-positive (i.e. εij ≥ 0)
and the rows sum to zero: lii =

∑N
j=1 εij . It is

remarkable that the algorithm (11) first appeared
and was studied in [Abelson, 1964], long before the
recent “boom” in multi-agent and networked control.
Consensus in (11) holds if and only of the interac-
tion graph, corresponding to the adjacency matrix
(εij), has a directed spanning tree. This criterion
has been formulated in [Abelson, 1964], however,
the proof was incomplete. The first correct proof
appeared in [Agaev and Chebotarev, 2000]. Similarly
to the discrete-time case, the consensus value can
be represented as (9), where π∗ ≥ 0 is the (unique)
left eigenvector of the Laplacian matrix L, such that
π⊤
∗ L = 0,

∑
j πj = 1. The detailed history and

analysis of properties of the algorithms (8),(11) is
available in [Proskurnikov and Tempo, 2017].
The consensus algorithm (11) is in fact a spe-

cial case of speed gradient (or gradient descent)
dynamics [Fradkov et al., 1999, Fradkov, 2005,
Khantuleva and Shalymov, 2017]. Consider the “cost
function” that penalizes disagreement between the
agents

Q(x) =
1

2

N∑
i,j=1

εij |xi − xj |2. (12)

A straightforward computation
shows [Olfati-Saber and Murray, 2004b,
Olfati-Saber et al., 2007b] that (41) is nothing else
than the conventional speed-gradient algorithm

ẋi = − ∂Q

∂xi
, i = 1, . . . , N.

In other words, each agent is constantly moving in the

9The agent’s equation could also be written as xi(t+1) = ui(t),
from control viewpoint, (10) is more natural (the state usually cannot
be controlled directly) and stands for the discretized integrator.
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direction of fastest descent of the cost function. Since

d

dt
Q(x(t)) = −

N∑
i=1

(
∂Q

∂xi

)2

, (13)

and the graph is connected, the set where Q̇ = 0 (equiv-
alently, ẋi = 0) coincides with the synchronous mani-
fold, i.e. the set of all X such that xi = xj ∀i, j.
An important property of the algorithms (8) and (11)

is the robustness of synchronization against external
disturbances. For instance, the algorithm

ẋ(t) = −Lx(t) + θ(t), (14)

where θ(t) ∈ RN is the vector of bounded distur-
bances, provides ε-synchronization with the accuracy
ε proportional to supt≥0 maxi,j |θi(t) − θj(t)|.
In the case of vanishing at infinity θ(·), asymp-
totic synchronization is preserved. Mathe-
matical results on consensus robustness for
continuous-time and discrete-time cases are avail-
able in [Shi and Johansson, 2013a]. Besides this,
consensus algorithms are robust against delays in mea-
surements [Münz et al., 2010, Münz et al., 2011,
Tian and Liu, 2008, Blondel et al., 2005,
Proskurnikov, 2012, Shi and Johansson, 2013a,
Amelina et al., 2015, Seuret et al., 2008,
Proskurnikov and Matveev, 2018].
Another important property of the consensus proto-

col has been established in [Fu et al., 2017b]. Assum-
ing that the initial vector x(0) is a continuous random
variable with a finite entropy h(x(0)), the same holds
for any x(t) (also being random). Furthermore, the en-
tropy is non-increasing along the trajectories, in partic-
ular, h(x(t)) ≤ h(x(0)). Another relation between the
entropy and consensus will be discussed in Section 2.3.

2.2.2 Convergence Rate and Time A natural
question arises how to measure the convergence speed
of algorithms (8),(11). Algebraically, this speed de-
pends on the eigenvalues of matrix W (respectively,
Laplacian L). Denoting the vector of consensus opin-
ions x∗ = W∗x(0) = (π⊤

∗ x(0))1N and recall-
ing that W∗1N = W1N = 1N (the matrices W
and W∗ = limt→∞ W t are row-stochastic), one has
(W − W∗)x∗ = 0. Furthermore, π⊤

∗ x(t + 1) =
π⊤
∗ Wx(t) = π⊤

∗ x(t), that is, π⊤
∗ x(t) ≡ π⊤

∗ x∗ and
W∗x(t) ≡ W∗x∗ = x∗. Hence,

x(t+ 1)− x∗ = (W −W∗)(x(t)− x∗), (15)

entailing that |x(t) − x∗| ≤ cρtx(0), where c > 0 is a
constant and ρ

∆
= ρ(W − W∗) stands for the spectral

radius of the matrix W −W∗. Let λ1 = 1, λ2, . . . , λN

be the eigenvalues of W , sorted in a way that
|λ1| > |λ2| ≥ . . . ≥ |λN |. Then, as can be shown,
the eigenvalues of W − W∗ are 0, λ2, . . . , λN ,
and hence ρ = |λ2| [Xiao and Boyd, 2004,
Olshevsky and Tsitsiklis, 2011]. In other words,
the asymptotic convergence rate depends on the
second largest eigenvalue of W . Similarly, in
the case of continuous-time dynamics (11), one
has [Olfati-Saber et al., 2007a, Ren and Beard, 2008]
|x(t) − x∗| ≤ ce−Reλ2(L)t, where λ2 stands for the
eigenvalue of L with the second minimal real part10.
For practical reasons, it is often more important to

know the convergence time of the algorithm, namely,
how long will it take the agents to reach ε-synchrony.
Instead of the maximal deviation maxi,j |xi − xj |,
it is often more convenient to evaluate the deviation
∥x(t) − x∗∥; the choice of norm here can be arbitrary,
however, for technical reasons the norm ∥ · ∥ = | · |∞
is usually considered [Olshevsky and Tsitsiklis, 2011,
Nedić and Ozdaglar, 2010]. Using (15), one has
∥x(t) − x∗∥ ≤ ∥(W − W∗)

t∥∥x(0) − x∗∥, and the
problem is to estimate the number

T (r)
∆
= min{t : ∥(W −W∗)

t∥ = ∥W t −W∗∥ ≤ r}.

Obviously, the agents reach ε-consensus in no longer
than T (ε/∥x(0)− x∗∥) iterations.
A question arises how to estimate ρ and T (r) in a gen-

eral situation11. The most studied is the case of bidi-
rectional graphs (i ∈ N j ⇔ j ∈ N i) with self-loops
(i ∈ N i), where each agent assigns equal influence
weights to its neighbors. wij = 1

|Ni| ∀j ∈ N i. The
result by [Olshevsky and Tsitsiklis, 2011] states that

ρ ≤ 1− γN−3,

in such a situation, where γ > 0 is a constant, inde-
pendent of N or any specific graph. Moreover, this
asymptotical estimate cannot be improved: there exist
graphs, on which ρ ≥ 1 − γ̃N−3. Using this result, it
can be shown [Olshevsky and Tsitsiklis, 2011] that

T (r) = O
(
N3 log(N/r)

)
,

however, the tightness of this estimate remains an
open problem (it is known, however, that T (r) =
Ω(N3 log r) for an appropriate graph with N nodes.

10In can be shown that if the graph has a directed spanning tree,
then λ1 = 0 is the only eigenvalue on the imaginary axis and
Reλj > 0 for j = 2, . . . , N . Without loss of generality, one may
assume that 0 = Reλ1 < Reλ2 ≤ . . . ≤ ReλN .

11It can be noticed that for a general Laplacian matrix L and suf-
ficiently small α > 0, the matrix I − αL is row-stochastic, which
reduces the estimation of the continuous-time system’s convergence
rate of to the discrete-time case [Xiao and Boyd, 2004].
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The problem of convergence rate’s estimation
becomes even more challenging for randomized
algorithms, where either matrix W (t) is ran-
dom (as e.g. in gossiping algorithms, surveyed
in [Proskurnikov and Tempo, 2018]) or the system
is disturbed by random noises. In such situa-
tions, synchronization is often understood in mean-
square sense; however, one may also try to
estimate (random) time of reaching ε-consensus,
provided that disturbances are sufficiently small
compared to ε. The relevant results can be
found in [Amelina et al., 2015, Vergados et al., 2018,
Granichin and Khantuleva, 2017].

2.2.3 Extensions and Applications The
properties of SIA matrices [Cao et al., 2008,
Jadbabaie et al., 2003, Ren and Beard, 2008]
and Lyapunov-based arguments [Moreau, 2005,
Blondel et al., 2005, Münz et al., 2011] allow to
obtain consensus criteria under non-stationary
interactions among the agents, where the row-
stochastic matrix W = W (t) in (8) or the Laplacian
matrix L = L(t) in (11) evolves; the relevant
results can be found in [Ren and Beard, 2008,
Proskurnikov and Tempo, 2018]. These criteria re-
quire the existence of spanning tree in the union
of interaction graphs over sufficiently long pe-
riod and in general are only sufficient for reaching
agreement. Necessary and sufficient conditions are
known only for special types of interaction graphs
[Matveev et al., 2013, Hendrickx and Tsitsiklis, 2013,
Shi and Johansson, 2013b].
It should be noticed that dynamics similar to (8)

and (11) naturally arise in many applications. Con-
sensus algorithms (called also protocols) similar to
(8) were independently introduced by J. Tsitsik-
lis [D.Bertsekas and Tsitsiklis, 1989, Tsitsiklis, 1984]
in some distributed algorithms for multi-processor
clusters. Similar dynamics were suggested for
modeling of alignment in ensembles of moving
particles [Vicsek et al., 1995, Helbing, 2001], that
can be considered as a deterministic analogue of
phase transitions in thermodynamics. First-order
protocols (11) (with delayed couplings) arise in
microscopic traffic flow models [Helbing, 2001,
Chandler et al., 1958, Michiels et al., 2009a,
Sipahi et al., 2007, Proskurnikov, 2013], where the
graph has a structure of chain or cycle.

2.3 From Consensus to Clustering
While the phenomenon of consensus has been stud-

ied up to certain exhaustiveness, opinions of social
actors often do not reach any agreement but rather
form highly irregular fractions or clusters of different
sizes. Along with the consensus problem, the prob-
lem of describing clustering mechanisms has arisen
in mathematical sociology [Abelson, 1967], where

it is now referred to as the community cleavage
problem [Friedkin, 2015] or Abelson’s diversity puz-
zle [Kurahashi-Nakamura et al., 2016]. Since convex-
combination mechanisms (8),(11) have been widely
adopted in opinion dynamics modeling, a question has
arisen which factors lead to clustering of opinions un-
der such a protocol. The proposed explanations can be
(roughly) divided into several major classes.

2.3.1 Clustering Due to Lack of Connectivity
The most obvious explanation for absence of consen-
sus is the absence of connectivity in the network, e.g.
if the graph is composed of two or more disjoint com-
ponents (equivalently, W is a block-diagonal matrix),
then the opinions in these components may become dis-
parate. Less obvious is the situation where the graph is
weakly connected yet does not have a directed span-
ning tree, that is, its condensation [Harary et al., 1965]
has several source components, and any other compo-
nent is reachable from them (equivalently, the graph is
covered by a spanning forest of several trees).
As a simple example, one may consider the system (8)

with several stubborn agents. Agent i is stubborn if
wii = 1, whereas wij = 0 ∀j ̸= i. Such an agent is an-
chored at its initial opinion xi(t) ≡ xi(0), being insus-
ceptible to social influence; at the same time, stubborn
agents can influence the others.
In presence of several stubborn agents with heteroge-

neous opinions, the group does not reach consensus,
but rather demonstrates clustering behavior. Typically,
the opinions of normal (“open-minded”) agents get into
the convex hull, spanned by the stubborn agents’ opin-
ions. This containment property of consensus dynam-
ics is explored in problems of containment control with
multiple static or dynamic leaders [Ren and Cao, 2011,
Proskurnikov and Tempo, 2017]. Notice, however, that
there is no simple relation between the number of stub-
born agents and number of clusters. The structure
of clusters, formed by consensus-like algorithms over
weakly connected graphs, depends on the matrix of
spanning forests, whose computation for large-scale
graph is challenging [Chebotarev and Agaev, 2002,
Chebotarev and Agaev, 2014].

2.3.2 External Inputs and Information The idea
of stubborn agents can be further extended, replac-
ing the (static) radical opinions by additional exter-
nal inputs, static or dynamic, that influence some of
the agents. Consider, for instance, the system (14),
where θi(t) = 0 for all agents except for i ∈
I0, where I0 is a set of several “informed” lead-
ers, whose inputs {θj(t) : j ∈ I0}, are mutu-
ally different. One can expect that such a group
also exhibits cluster synchronization; the relevant con-
ditions have been found in [Smet and Aeyels, 2009,
Xia and Cao, 2011, Aeyels and Smet, 2011]. A similar
idea lies in the heart of the so-called Friedkin-Johnsen
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(FJ) model [Friedkin and Johnsen, 1999], squarely
based on the DeGroot dynamics (8),

x(t+ 1) = AWx(t) + (I −A)u. (16)

Similar to (8), here W is a row-stochastic matrix, A
is a non-negative diagonal matrix, 0 ≤ aii ≤ 1,
and u is a constant vector. In the original model
from [Friedkin and Johnsen, 1999], ui = xi(0), and
the diagonal entry aii is treated as an agent’s suscep-
tibility to opinion assimilation. If aii = 0, the agent is
totally stubborn xi(t) ≡ xi(0). A maximally suscepti-
ble agent with aii = 1 assimilates opinions of the other
agents in the same way as in (8)

xi(t+ 1) =
∑
j

wijxj(t).

An agent with aii ∈ (0, 1) is partially “an-
chored” at its initial opinion ui and factors it
into every iteration of the opinion. As discussed
in [Proskurnikov and Tempo, 2017], in general ui may
be considered as a “prejudice” of agent i, influencing
dynamics of its opinion. In spite of its simplic-
ity, many properties of the model (16), including
graph-theoretic conditions for its stability, conver-
gence rate and the structure of final opinions have
been studied only recently [Parsegov et al., 2017,
Proskurnikov and Tempo, 2017,
Proskurnikov et al., 2017]. Recently, extensions
of the Friedkin-Johnsen models have been proposed,
allowing to describe dynamics of multidimensional
opinions, representing individual positions on several
logically related topics [Parsegov et al., 2017].

2.3.3 Balance and Negative Weights An elegant
extension of the consensus algorithms (8) and (11), al-
lowing the agents’ splitting into two clusters with oppo-
site opinions (“polarization”) is known as the Altafini
model [Altafini, 2012, Altafini, 2013, Liu et al., 2017,
Xia et al., 2016]. The discrete-time Altafini model is
coincident to (8) with the only difference is that W may
have negative off-diagonal entries wij , i ̸= j, how-
ever, the diagonal weights are non-negative and the ma-
trix of absolute values (|wij |)i,j is row-stochastic. The
continuous-time Altafini model is coincident to (11),
however, L is a signed Laplacian matrix, which means
that lij , i ̸= j, may be positive or negative and lii =∑

j |lij |. Note that the Altafini model steps away from
the convex combination mechanism, in particular, the
convex hull of the opinions can expand.
In the case of non-negative coefficients (respectively,
wij or εij = (−lij)), the Altafini model reduces
to the usual consensus algorithm. Otherwise, the
positive sign of a coupling gains can be considered
as “trust” or “friendship” between the corresponding

agents, whereas the negative gain means “distrust” or
“enmity”. If the graph has a directed spanning tree
and is structurally balanced [Harary, 1953], i.e. agents
split into two “hostile camps” such that members of the
same camp are “friends” (wij ≥ 0), and the members
of different camps are “enemies” (wij ≤ 0), then the
Altafini model provides polarization of the opinions:
members of the two camps agree on the opposite val-
ues x0 and −x0, where x0 depends on the initial con-
ditions and the graph’s structure. If these conditions
do not hold, the model can provide a more compli-
cated type of clustering, called “interval bipartite con-
sensus” [Meng et al., 2016]. A degenerate situation is
also possible, where the system is exponentially stable
and all opinions converge to 0.
For the detailed analysis of Altafini mod-

els over static and time-varying graphs the
reader is referred to [Proskurnikov et al., 2014,
Proskurnikov and Cao, 2014, Meng et al., 2016,
Xia et al., 2016, Proskurnikov and Cao, 2017a,
Proskurnikov and Cao, 2017b, Liu et al., 2017].

2.3.4 Nonlinear Couplings It can be noticed that
the aforementioned models of clustering stipulate some
heterogeneity of the agents (e.g. presence of hetero-
geneous disturbances, different levels of attachment
to the initial opinions) or their couplings (e.g. posi-
tive/negative). Also, the number of clusters in such
models is usually very large (in general, each agent
can form its own cluster), except for the Altafini
model, which can lead to polarized opinions (with
only two clusters). It appears, however, that the clus-
ter synchronization (with arbitrary number of clus-
ters, which can be greater than two but much smaller
than the number of agents) can be provided by spe-
cial structure of couplings among the agents. Un-
like (8) and (11), the relevant models of clustering are
essentially nonlinear. The nonlinearity of couplings
is, however, is not sufficient for clustering: consensus
is guaranteed by many nonlinear algorithms, preserv-
ing the convex hull [Moreau, 2005, Lin et al., 2007b,
Matveev et al., 2013, Proskurnikov, 2013].
A number of clustering models can be written as

ẋi =
N∑
j=1

εijφ(xj , xi), (17)

where φ(·) is a (nonlinear) coupling maps and εij ≥ 0
are coupling gains, encoding the interaction graph. In
the case where φ(ξ, ζ)(ξ − ζ) > 0 for any ξ ̸= ζ
and φ is continuous, this protocol guarantees consen-
sus [Lin et al., 2007b, Papachristodoulou et al., 2010,
Matveev et al., 2013]. It is remarkable that algo-
rithm (17) naturally arises in some models of sta-
tistical mechanics, e.g. considering x as a dis-
crete probability distribution (

∑
i xi = 1) and as-
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suming that φ(xi, xj) = log(xj/xi) = log xj −
log xi and εij = εji, one obtains the speed-gradient
dynamics maximizing the conventional Shannon en-
tropy H(x) =

∑
i xi log xi [Fradkov et al., 2016].

Consensus at the uniform distribution corresponds to
the maximum of the entropy. Remarkably, sim-
ilar entropy-maximizing (MAXENT) algorithms for
other types of entropies arising in statistical physics
lead to non-uniform distributions, corresponding to
clustering behavior [Khantuleva and Shalymov, 2018,
Shalymov and Fradkov, 2018].

One way to provide clustering is to require clus-
tering is to assume that φ(x) = 0 for |x| ≥ R,
which is in harmony with effects of homophily and
biased assimilation [Dandekar et al., 2013] in social
dynamics: a social actor readily accepts opinions of
like-minded individuals (agents j such that |xj(t) −
xi(t)| < R), examining the deviant opinions with dis-
cretion or rejecting them. The discrete-time counter-
part of this model was first proposed in [Krause, 2000]
and is now referred to as the Hegselmann-Krause
model [Hegselmann and Krause, 2002]

xi(t+ 1) =
1

|N i(x(t))|
∑

j∈N i(x(t))

xj(t),

N i(x)
∆
= {j : |xj − xi| < R}.

(18)

The model (18) is a modification of DeGroot’s dynam-
ics (8), where the graph is state-dependent and evolves
together with the agents’ opinions (such networks are
called co-evolutionary or coevolving).

Bounded confidence models (in continuous and
discrete time) have been extensively studied in
the literature [Hegselmann and Krause, 2002,
Deffuant et al., 2001, Lorenz, 2007,
Blondel et al., 2009, Blondel et al., 2010,
Ceragioli and Frasca, 2012, Motsch and Tadmor, 2013,
Jabin and Motsch, 2014, Frasca et al., 2016], how-
ever, their nonlinear structure makes them very
difficult for analysis; in particular, the results. Some
results on stability analysis of fixed points in the
state space (standing for possible configurations of
opinion clusters) are given in [Blondel et al., 2009,
Blondel et al., 2010, Ceragioli and Frasca, 2012]; it
was noticed, in particular, that some trajectories
can converge to unstable equilibria. A novel model
of opinion dynamics with bounded confidence has
been proposed in [Pilyugin and Campi, 2018]. In the
latter model, agents’ attitudes belong to a symmetric

interval, e.g. [−1, 1], and evolve as follows

xi(t+ 1) =


x̃i(t+ 1), x̃i(t+ 1) ∈ [−1, 1]

−1, x̃i(t+ 1) < −1

+1, x̃i(t+ 1) > 1.

,

x̃i(t+ 1) = xi(t) +
h

|N i(x(t))|
∑

j∈N i(x(t))

xj .

Here h > 0 is a constant, and N i(x) is the same as
in (18). Two main differences with the model (18) are
the opinion saturation at the extremal values and the
effect of opinion reinforcement: if N i(x(t)) = {i},
agent i gets no counter-argument against its attitude
and tends to “strengthen” it: xi(t) 7→ (1 + h)xi(t).
It has been shown in [Pilyugin and Campi, 2018]
that this model leads to polarization of opinions
at the extremal values ±1; the structure of aris-
ing clusters can be determined. Unlike the model
from [Ceragioli et al., 2016] with similar properties,
the model from [Pilyugin and Campi, 2018] does not
employ negative couplings between the agents.
There are other models with nonlinear couplings,

admitting clusters. For instance, a model proposed
in [Fläche and Macy, 2011] allows repulsion between
distant opinions, whereas close opinions attract12.
The structure of clusters in this model still remains
a challenging question; in the experiments reported
in [Fläche and Macy, 2011], no more than 5 clusters are
reported. Another model of cluster dynamics has been
proposed in [Proskurnikov and Cao, 2016]

ẋi = (h′(xi))
[α]

N∑
j=1

aij(h(xj)− h(xi)),

y[α]
∆
= |y|α sgn y.

(19)

Here α > 0 is a positive constant and h(x) is a
coupling function, controlling the structure of clus-
ters. In the simplest situation of linear coupling maps
h(x) = kx, k ̸= 0, the model (19) becomes a spe-
cial case of the consensus algorithm (11), where lij =
−|k|aij . Consensus is the most typical outcome (under
the assumption of the network’s connectivity) when-
ever h is strictly monotone. Otherwise, the dynam-
ics (19) allows clustered equilibria that can be classi-
fied [Proskurnikov and Cao, 2016] and are determined,
to a great extent, by the stationary points of h (i.e. the
points where h′(xi) = 0). Notice that an agent starting
at such a point is usually13 stubborn: xi(t) ≡ xi(0) in

12This type of repulsion should not be confused with the afore-
mentioned Altafini’s model, where the relation between the agents
depends on their relations, rather than on the distance of opinions.

13Formally, this requires the uniqueness of the Cauchy problem’s
solution; we do not consider the relevant conditions now.
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view of (19). Under some conditions (e.g. the all-to-all
communication case where aij = 1 ∀i, j), it has been
proved [Proskurnikov and Cao, 2016] that any of the
solutions converges to one of the equilibria; the gen-
eral case is a topic of ongoing research.

2.4 Synchronization of Agents with High-Order
and Nonlinear Dynamics

In the previous subsections, we primarily consid-
ered agents with the simplest first-order dynamics
∆xi(k) = ui(k) or ẋi(t) = ui(t). In the re-
cent decades, synchronization problems have been
considered for agents of some other types, e.g.
ensembles of phase-coupled [Kuramoto, 1984,
Kuramoto, 1991, Strogatz, 2000, Arenas et al., 2008,
Dörfler and Bullo, 2014b] and pulse-coupled
[Mirollo and Strogatz, 1990, Kuramoto, 1991,
Izhikevich, 2007, Proskurnikov and Cao, 2017d]
oscillators, circadian clocks [Gonze et al., 2005,
Proskurnikov and Cao, 2017c] and chaotic systems
[Wu, 2007, Pecora and Carroll, 1998b, Fradkov, 2007].
In this section, we consider only a few general classes

of agents, for which synchronization problems have
been most studied.

2.4.1 Linear Stationary Networks Recall that
system (11) may be considered as a group of agents

ẋj(t) = uj(t) ∈ R, (20)

coupled via the following protocol

uj(t) =

N∑
k=1

εjk(xk(t)− xj(t)). (21)

A natural extension of the first-order integrator agent
(20) is a general linear time-invariant agent

ẋj(t) = Axj(t) +Buj(t), yj(t) = Cxj(t). (22)

where xj(t) stands for the state vector of the agent,
uj(t) ∈ Rm is its control or input, and yj(t) ∈
Rl is some output. The state vectors are gener-
ally unavailable for measurement, and the only in-
formation agents can use comes to their own and
neighbors’ outputs, or even deviation among the
outputs. Introducing joint stack vectors X(t) =
[x1(t)

⊤, . . . , xN (t)⊤], Y (t) = [y1(t)
⊤, . . . , yN (t)⊤]

and U(t) = [u1(t)
⊤, . . . , uN (t)⊤], a natural extension

of the protocol (21) is as follows [Ren and Beard, 2008,

Olfati-Saber et al., 2007a]:

uj(t) =
N∑

k=1

εjkK(yk(t)− yj(t)) ⇔

⇔ U(t) = −(L⊗K)Y (t).

(23)

Here K is a m × l-matrix and ⊗ stands for the Kro-
necker product of two matrices [Laub, 2005]: if A =
(aij) anf B are arbitrary matrices, their product is

A⊗B
∆
=


a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
. . .

...
am1B an2B . . . amnB

 .

As we have discussed, the matrix L always has a zero
eigenvalue λ1 = 0, corresponding to the eigenvector
(1, 1, . . . , 1)⊤ ∈ RN . This is the only eigenvector at 0
if and only if the interaction graph of the network has
a directed spanning tree. In this case, all the remaining
eigenvalues of λ2, . . . , λN lie in the open right half-
plane of C: Reλj > 0 [Agaev and Chebotarev, 2005].
We are interested in asymptotic synchronization of

the agents’ states (the synchronization outputs are
zi = xi); henceforth we refer to is as synchro-
nization among the agents (22) for brevity. The
following fundamental result [Fax and Murray, 2004,
Olfati-Saber et al., 2007a, Li et al., 2010] establishes
criterion for such a synchronization.

Theorem 1. The protocol (23) establishes asymp-
totic synchronization among the agents (22) for any
{xi(0)}Ni=1 if and only if two conditions hold:

1. the interaction graph has a directed spanning tree
(and hence λ1 = 0 is a simple eigenvalue of L);

2. for other eigenvalues λ2, . . . , λN of L the matrices
A− λjBKC are Hurwitz.14

Theorem 1 can be extended to more sophisti-
cated models of networks, including those with
time-delays [Olfati-Saber and Murray, 2004a,
Michiels et al., 2009b]. Another approach
to analysis of linear time-invariant net-
works is the frequency-domain technique
[Tian and Liu, 2008, Tian and Zhang, 2012,
Tian, 2012,Lestas and Vinnicombe, 2010,Münz, 2010,
Münz et al., 2010], operating with Fourier or Laplace
transforms of the solutions xj(t). Some extensions to
heterogeneous agents and time-varying topologies can
be found in [Wieland et al., 2011, Ren and Cao, 2011,
Trentelman et al., 2013].

14The matrix P is called Hurwitz if all of its eigenvalues have neg-
ative real parts or, equivalently, the system of differential equations
ż(t) = Pz(t) is exponentially stable.
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2.4.2 Nonstationary Networks with Static
Graphs and MSF Approach Whereas The-
orem 1 appeared (in a modified form) only
in [Fax and Murray, 2004] (see also [Wu, 2007]),
its non-stationary extension, based on the Mas-
ter Stability Function (MSF) approach has been
widely known in physical literature since the sem-
inal paper [Pecora and Carroll, 1998a], offering a
synchronization criterion for the agents

ẋi(t) = A(t)xi(t) +B(t)ui(t), yi(t) = C(t)xi(t),
(24)

applying a non-stationary distributed algorithm

ui(t) =

N∑
j=1

εijK(t)(yj(t)− yi(t)). (25)

It should emphasized that the topology of the net-
work here remains fixed, whereas the agents and cou-
pling gains may evolve. The system (24),(25) arises
in [Pecora and Carroll, 1998a] from linearization15 of
a time-invariant nonlinear network

ẋi(t) = f(xi(t)) +

N∑
k=1

εij [g(xj(t))− g(xi(t))] (26)

around a non-equilibrium solution (e.g. a cycle)
x1(t) = . . . = xN (t) = x∗(t).
For any z ∈ C consider a system of ordinary differen-

tial equations

ξ̇(t) = [A(t)− zB(t)K(t)C(t)]ξ(t),

and let λmax(z) be its maximal Lyapunov exponent.
The function λmax is referred to as the master sta-
bility function (MSF) of the system. In the station-
ary case λmax(z) is simply the maximal real part of
the eigenvalues of the matrix A − zBKC and hence
λmax(z) < 0 if and only if this matrix is Hurwitz.
Condition 2 in Theorem 1 can be now reformulated
as follows: λmax(λj) < 0 for j = 2, . . . , N . In
this form it appears to be valid in the non-stationary
case [Pecora and Carroll, 1998a]:

Theorem 2. The protocol (25) establishes asymptotic
synchronization among the agents (24) if and only if
two conditions hold:

1. the interaction graph has a directed spanning tree
(thus λ1 = 0 is a simple eigenvalue of L);

15In general, the asymptotic stability of a time-varying lineariza-
tion does not imply the stability of a solution, this holds only un-
der additional regularity assumption [Leonov and Kuznetsov, 2007].
This assumption is valid e.g. for linearization at an equilibrium or a
cycle [Leonov and Kuznetsov, 2007].

2. for other eigenvalues λ2, . . . , λN of L one has
λmax(λj) < 0.

In the case where the coefficients are periodic, the
Lyapunov exponents are negative if and only if the Flo-
quet multipliers are less than 1 in modulus; this con-
dition can be validated by e.g. solving the periodic
Riccati equation [Yakubovich et al., 2007]. Notice that
Theorem 2, applied to (26), guarantees only local con-
ditions for synchronization; the estimation of the rele-
vant basin of attraction remains a non-trivial problem.
It is remarkable that a relaxation of the condi-

tions from Theorems 1 and 2, in some situations,
leads to cluster synchronization. This happens when
the graph has some symmetries, which means that
SL = LS for some permutation matrix S. Exis-
tence of symmetries enables the existence of clusters,
whose structure is determined by the graph’s symme-
try group [Pecora et al., 2014]. These clusters are sta-
ble (locally in the case of nonlinear agents) if the condi-
tions of Theorem 2 hold for some spectral points of the
Laplacian matrix. It is remarkable that results on global
stability of such clusters are available only in special
situations [Pogromsky et al., 2002, Pogromsky, 2008].

2.4.3 Synchronization among Gen-
eral Nonlinear Agents In spite of sig-
nificant progress in recent years, see e.g.
[Arenas et al., 2008,Belykh et al., 2014b], the problem
of reaching synchronization or other type of regular
behavior in a general complex network where both
nodes and couplings may be nonlinear, and the topol-
ogy may evolve, still remains a challenge. A wide class
of such networks can be described by the following
mathematical model. Let the dynamics of nodes be

ẋj(t) = f(xj(t), uj(t)), yj(t) = h(xj(t)), (27)

coupled via the following non-stationary protocol

uj(t) =

N∑
k=1

εjk(t)φjk(yk(t)− yj(t)). (28)

Here φjk(·) are some mappings (in general, nonlin-
ear), referred to as coupling maps or couplings, and
εjk(t) are coupling gains that characterize the cou-
plings’ “strengths” and define, in particular, the in-
teraction topology (generally time-varying and discon-
nected). The goal is to disclose conditions, providing
asymptotic state synchronization between the agents.
As was discussed in the foregoing, for stationary net-

works (εjk = const) synchronization can be proved
locally, under some technical assumptions, via the
MSF approach [Pecora and Carroll, 1998a]. More sub-
tle techniques, applicable to time-varying topologies,
were proposed in [Lü and Chen, 2005, Lu et al., 2007].
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These methods, however, allow to estimate neither the
basin of attraction for a synchronous solution nor the
convergence speed.
The results, establishing global synchronization in a

general network (27),(28), mostly employ either con-
traction principles [DeLellis et al., 2011] or Lyapunov
functions. Many result explicitly or implicitly employ
“incremental” Lyapunov function of the form V̄ (X) =∑N

j,k=1 V (xj − xk), where V stands for the positive
definite quadratic form or another radially unbounded
function. Often one can prove the protocol (28) to sat-
isfy an “incremental” quadratic constraint:

N∑
j,k=1

F (uj − uk, yj − yk) ≥ 0. (29)

Suppose, for instance, that the interaction graph is
undirected and the couplings are anti-symmetric

εjk = εkj ≥ 0, φjk(y) = −φkj(y), (30)

assume also that φjk(y)
⊤y ≥ 0. A straightforward

computation yields that
∑

j uj = 0 and

0 ≤
∑
j

∑
k

εjkφjk(yk − yj)
⊤(yj − yk) =

= 2
∑
j

u⊤
j yj =

∑
j,k

(uj − uk)
⊤(yj − yk),

which is a special case of (29). More subtle cos-
traints (29) arise when the coupling obey general sector
inequalities [Proskurnikov, 2014]. Assuming that (29)
holds, to construct an incremental Lyapunov function
V̄ (X), it suffices to find such a function V (x) that for
any solutions x1, u1, y1 and x2, u2, y2 of (27) one has

V̇ (x1(t)−x2(t))+F (u1(t)−u2(t), y1(t)−y2(t)) ≤ 0.
(31)

This principle is applicable to many net-
works with linear couplings φjk(y) = Ky
[Hamadeh et al., 2012, Stan and Sepulchre, 2007,
Belykh et al., 2006b, Belykh et al., 2006a,
Belykh et al., 2007, Belykh et al., 2005]. The con-
dition (31) is a special case of incremental dissipa-
tivity [Stan and Sepulchre, 2007] which extends the
conventional Willems dissipativity [Willems, 1972]
has proved to be an important tool in network
analysis [Liu et al., 2011, Proskurnikov et al., 2015].
In the case of linear agents (22) and nonlinear

couplings (28), considered in [Proskurnikov, 2014,
Proskurnikov and Matveev, 2015], incremental
Lyapunov functions enable to derive counter-
parts of the seminal circle and Popov’s crite-

ria [Gelig et al., 2004]; in the discrete-time, coun-
terparts of the Tsypkin and Jury-Lee criteria are
obtained [Proskurnikov and Matveev, 2018].
Notice that up to now we have dealt with

homogeneous (identical) agents. In the case
where agents are passive in Willems sense,
some strong synchronization criteria, applica-
ble to heterogeneous agents as well, were ob-
tained in [Arcak, 2007, Chopra and Spong, 2006,
Proskurnikov and Mazo, 2017]. In general, hetero-
geneity of the agents is recognized as a potential
reason for clustering, e.g. K different types of
systems can be clustered into K synchronous groups
[Lu et al., 2010, Lu et al., 2017, Du et al., 2018].

2.5 Consensus-preserving Control and Slow-Fast
Dynamics in Networks

Up to now, we have considered a group of agents,
reaching a consensus at some point; as follows
from (9), this point depends on the initial condition and
the structure of coupling matrix; the latter dependence
is highly nonlinear. A natural question arises whether
it is possible to control the multi-agent system (via ad-
ditional inputs Ui(t), as in (1)) in such a way that,
first, synchrony among the agents is not destroyed and,
second, the consensus value is driven towards the de-
sired trajectory. The answer to this question is affirma-
tive, and the construction used to solve this problem is
known as the mean-field control [Kadanoff, 2009]. To
keep things simpler, we confine ourselves to the case of
balanced Laplacian matrix in (11), which means that
1
⊤
NL = 0, and therefore (9) holds with π∗ = N−1

1N

(average consensus) [Olfati-Saber et al., 2007a]. No-
tice first that an identical control input, added to all
agents in (11), does not destroy consensus:

ẋ(t) = −Lx(t) + 1NU(t) =⇒

x(t) = e−Ltx(0) +

∫ t

0

e−L(t−s)
1NU(s)ds =

= e−Ltx(0) + 1N

∫ t

0

U(s)ds.

(32)

Here we used the fact that L1N = 0 and therefore
e−Lt

1N = 1N . Since, by assumption, e−Ltx(0) → x∗
and x∗ = x0

1N , the asymptotic synchrony is preserved
(furthermore, agents need the same time to reach ε-
synchrony as in the uncontrolled system (11)).
Now it can be noticed that the consensus value x0 =
N−1

1Nx(t) obeys the integrator dynamics

ẋ0(t) = U(t).

If one is capable to measure the average value x0(t) by
some sensor (e.g. by organizing an opinion poll in the
case of social network), it becomes possible to control
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it by applying the proper control input U(t) to all of
the agents. For instance, one is able to drive it to a
predefined value x0

des (constant or slowly changing) by
using e.g. the conventional PI controller

U(t) = k1(x
0
des − x0(t)) + k2

∫ t

0

(x0
des − x0(s))ds.

Notice the properties of such a control algorithm:

– each agent directly interacts only with neighboring
agents from N i = {j : lij ̸= 0};

– implicitly, each agent is also influenced by a (com-
mon) control input, preserving consensus;

– the external control input depends on an averaged
characteristics of the cluster and may be consid-
ered as a “mean field”, depending on all the agents;

– the resulting motion is a superposition of the two
motions, caused respectively by the local cou-
plings and the mean-field control;

– the “mean field” control depends only on some av-
eraged characteristics;

A similar idea can be applied in a more general situa-
tion of multi-dimensional agents. Consider a group of
linear agents, having a common input Ui(t) = U(t)

ẋj(t) = Axj(t) +Buj(t) +B0U(t), yj(t) = Cxj(t).
(33)

Assume that the agents are coupled via the proto-
col (28), obeying symmetry conditions (30). Introduc-
ing the new variables x̃i(t) = xi(t) − B0

∫ t

0
U(s) ds,

the system (33),(28) reduces to (22),(28), which
means that if the algorithm (28) establishes consen-
sus, this consensus is not destroyed by the mean-
field control U(t). Introducing the function x0(t) =
N−1

1Nx(t), which is no longer constant, and noticing
that

∑
i ui(t) = 0, one gets

ẋ0(t) = Ax0(t) +B0U(t). (34)

In other words, similar to the first-order case, the dy-
namics of the (single) cluster’s center is decoupled
from the “centripetal” consensus dynamics of individ-
ual agents. This separation principle opens up the per-
spective to control the large-scale formation of agents
efficiently by controlling the formation’s center x0(t),
being an averaged characteristics of the multi-agent
system. A similar principle can be applied to contin-
uum agents (N → ∞) under the assumption of cou-
pling symmetry [Hendrickx and Olshevsky, 2016]; in
the latter case, the average value has to be replaced by
the integral over the cluster of agents. As the dynam-
ics of an agent (and the cluster’s center) become high-
dimensional, partially uncertain and various constraints
occur that have to be taken into account, for controlling

U(t) efficient methods of advanced control theory have
to be employed, such as e.g. MPC and adaptive control.

The idea of mean-field control thus appears to be a
simple yet efficient technique to control the dynam-
ics of clusters without destroying them; its practical
implementation in the case of multiple clusters (dis-
cussed in the next sections), heterogeneous dynam-
ics of agents or asymmetric coupling remains an open
problem. A disadvantage of this approach is the ne-
cessity to create a “homogeneous” field, equally influ-
encing all agents. An alternative approach is to con-
trol a single agent in the community; it can be ex-
pected that (under some conditions) the couplings be-
tween the agents make the whole group follow this ded-
icated “leader”. The relevant algorithms are known as
leader-following or reference-tracking consensus pro-
tocols. In the case of non-trivial desired trajectory of
the leader one, however, either needs to estimate its
derivative or use sliding-mode control. We do not con-
sider such algorithms in this paper and refer the reader
to [Ren and Beard, 2008, Lewis et al., 2014].

Another conjecture, inspired by the aforemen-
tioned decoupling property, is that general complex
systems can be decoupled into low-dimensional
dynamics and “slow” of a few cluster’s centers
(average values, or integrals of the states over the
clusters) and high-dimensional and “fast” dynamics
of individual agents, forming a cluster due to some
coupling law. Whereas in general situation simple
separation of these dynamics, similar to (34), does
not seem to be possible, methods of averaging and
singular perturbations could be employed, allowing
to separate slow and fast processes in dynami-
cal systems [Mitropolsky, 1967, Blekhman, 2000,
Kokotovic et al., 1986, O’Malley, 1991, Cole, 1968].
It should be noticed, however, that the existing
theory of singularly perturbed systems is mainly
focused on two problems. The first problem, pio-
neered in [Tikhonov, 1948] is the convergence of
the solutions of the “perturbed” system to “unper-
turbed” ones (such a convergence appears to be
uniform only on compact intervals, which does
not allow to investigate asymptotic behaviors of
the perturbed systems) [Lizama and Prado, 2006,
Parand and Rad, 2011]. The second problem
developed in [Klimushev and Krasovskii, 1961,
Khalil, 1981, Kokotovic et al., 1986] is the global
asymptotic stability of singularly perturbed sys-
tems with a unique equilibrium. Behavior of
other types of attractors under singular pertur-
bations has been studied only in special situa-
tions [Fenichel, 1979, Krupa and Wechselberger, 2010,
Jardon-Kojakhmetov et al., 2016]. Recently, a
progress has been achieved in examining pendulum-
like systems with multiple equilibria under singular
perturbations; it has been shown, in particular, that
“gradient-like” behavior (convergence of all solutions)
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is usually preserved for small values of the parameter,
as well as some characteristics of the solutions such as
the number of slipped cycles [Smirnova et al., 2015b,
Smirnova et al., 2015a, Smirnova et al., 2016,
Smirnova and Proskurnikov, 2017]. The analysis
of the aforementioned slow-fast dynamics effects in
multi-agent networks remains, however, a difficult
problem that is a subject of ongoing research.

3 Airplane with “Feathers” in a Turbulent Airflow
In this section, we give a detailed ex-

position of the problem formulated
in [Granichin and Khantuleva, 2017].

3.1 Flight Stabilization in a Turbulence Region
The problem of reducing the aerodynamical forces in-

fluence force on the hull arises for an airplane that has
fallen into a turbulence zone, where it is subject to
rapidly changing forces and their moments that lead to
potentially dangerous ride. Birds can partially control
the influence of forces and moments with their feath-
ers. Suppose we are able to construct an airplane with
a large number of “feathers” that would smooth the
influence of turbulent wind flows. From a traditional
point of view we need a central fastest computer which
performs very quickly complex computations collect
based on collected data from all “feathers”. In parallel
with computation it feeds to all “feathers” computed
control actions. This can be avoided if we take into
account the possibility for self-organization between
“feathers”. For this purpose, at the first, we need to
organize the local interaction between neighbor “feath-
ers” by transmitting electric signals that by exchanging
data regarding the forces acting on each “feather”. At
the second, we suppose that the “feathers” are able to
turn in such a way that equalizes the forces between
them induced by the turbulent flow. In the process of
equating the induced forces, dynamic structures will
form on the surface in the form of clusters with virtu-
ally identical values of induces forces. With time, these
clusters will grow and merge with each other, reducing
their number on the airplane’s surface until they form a
single cluster. By smoothing force fields acting on the
airplane in a turbulence region, we can make its flow
mode close to laminar.
Let an airplane with the total mass M is flying at a

velocity V(t) due to the sum of forces acting on it

M
dV(t)

dt
= Fe − Fd − Fg + Fl (35)

where the forces Fe,Fd,Fg,Fl are engine thrust, air
drag force, gravity and lift respectively. If the regime of
the flight is stationary all the forces are counterbalanced
Fe −Fd −Fg +Fl = 0, the plane is moving along the
straight line at a constant velocity V0 = col(V0, 0, 0).

The gas flow over the plane considers being laminar
and known for the given body’s form. It means that the
distribution of the forces over the body’s surface is also
known. When the airplane gets into the turbulent wind
flow the forces distribution changes, the total balance
of forces is broken, the flight becomes non-stationary
and jolting

V = V0 +V1, m
dV1

dt
= F1(t).

Besides deviations from the given trajectory due to the
force F1 applied to the resultant force point r1(t), mo-
ment of the force M1(t) = [r1(t) × F1(t)] causes ir-
regular rotation of the plane around its center of mass
changing angular momentum of the plane L1(t) =

[r1(t)×mV1(t)] according to the law dL1(t)
dt = M1(t).

Hereinafter [·×·] denotes the vector product. This rota-
tion leads not only to deviations from a given trajectory
but also to a ride due to inertia and rapid turns around
the center of mass in different directions. To a large
extent the irregular rotation of the plane is connected
to the effect of jolting. It is impossible to completely
avoid the influence of a turbulent flow, but it is desir-
able to make it less chaotic.
In order to reduce jolting it would be desirable to com-

pensate the forces acting on the plane from the turbu-
lent flow by additional forces. To achieve this goal the
special constructive elements like the bird’s feathers on
the body’s surface may be used. Assume that the sur-
face of an airplane wing consists of N similar elements
(“feathers”) a1, . . . , aN (see. Fig 1) Here i ∈ N =
{1, . . . , N} stands for the number of “feather”. Denote

Figure 1. A scheme of an individual “feather”.

ri is a vector from the center of mass of airplane to the
center of “feather” ai. Each element is equipped with
a pressure sensor (force-sensitive resistor), allowing to
measure pressure force yi, and an actuator ui with two
servomechanisms, allowing to change the air pressure.
Each feather can rotate in two directions, parameterized
by tilt angle αi ∈ [α−, α+] in the vertical plane and by
rotation angle βi ∈ [β−, β+] in horizontal plane. The
tilt and rotation angle determine, respectively, the ver-
tical and cross components of the air drag force.
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The integral air force acting on i-th element with area
S has three components and three degrees of freedom
(normal reaction of the plate and two angles αi and ro-
tation βi) are needed to control the feathers

di(t) = ni(t)Cd(αi(t), βi(t))Sρ(vi(t))
2/2

where ni(t) is the normal vector to i-th plate,
Cd(αi(t), βi(t)) is the aerodynamic coefficient of i-th
plate defined by two angles αi(t), βi(t), vi(t) is the ve-
locity magnitude of the flow over the i-th plate on the
plane’s surface at instant t. The force di(t) has three
projections: one component along x-axis defines air re-
sistance, vertical component determines the lift and the
third is lateral yaw component. Summarizing the activ-
ities of all the feathers one gets a total force acting on
the plane and changing its trajectory. For rotations of
agent i we can use micro-control action ui(t)

α̇i(t) = u
(1)
i (t),

β̇i(t) = u
(2)
i (t).

(36)

The macro control action Ui(t) for agent i is defined by
airplane engine power.
Suppose that airplane moves in a laminar stationary

air flow from the initial instant t0 till some instant t1,
during this time period [t0, t1] the integral air force act-
ing on i-th element (“feathers”) is constant d0

i and all
“feathers” are lying on the surface: αi = 0 and βi = 0
(see Fig. 2).

Figure 2. The aircraft in a laminar wind flow.

Let xi(t) be the state vector of agent (“feathers”) i. It
consists of 11 components x

(j)
i (t), j = 1, 2, . . . , 5: 3

coordinates, 3 velocities, 3 rotations, and two angles.
We assume that yi(t) = ∥di(t)∥ without loss of gener-
ality. Let zi(t) = di(t)−d0

i be the deviation of the in-
tegral air force acting on i-th element from initial vector
d0
i in laminar wind flow. For the forces Fe,Fd,Fg,Fl

we have in laminar wind flow

Fe =
∑
i∈N

θ
(e,0)
i U

(1)
i +mN+1U

(1)
N+1,

Fd =
∑
i∈N

θ
(d,0)
i d0

i ,

Fg =
∑
i∈N

θ
(g,0)
i g +mN+1g,

Fl =
∑
i∈N

θ
(l,0)
i d0

i ,

(37)

where we introduce additional agent N + 1 located in
the center of mass with rN+1 = 0 and mN+1 = M −∑

i∈N θ
(g)
i , and θ

(e,0)
i = θ

(g,0)
i = mi is an agent mass,

U
(1)
i = const is a constant engine power, coefficients

θ
(d,0)
i and θ

(l,0)
i depend on the position and orientation

of agent on the surface, g is gravity constant.
In the laminar wind flow, when the plane is moving

along the straight line at a constant velocity V0, dynam-
ics of agent i is described by the differential equations

ẋ
(1)
i (t) = V0, t ∈ [t0, t1],

ẋ
(j)
i (t) = 0, j = 2, 3, 6, . . . , 11,

ẋ
(4)
i (t) = θ

(e,0)
i U

(1)
i − θ

(d,0)
i d0

i = 0,

ẋ
(5)
i (t) = θ

(d,0)
i d0

i − θ
(g,0)
i g = 0,

yi(t) = ∥d0
i ∥,

ui(t) = 0,

U
(1)
i (t) = e,

U
(j)
i (t) = 0, j = 2, 3

(38)

where constant e is determined by a constant engine
power.
In turbulent flow “feathers” begin to rise and turn.

Each feather is a plate on which the force is acting de-
pending on its position relative to the flow direction.
Fig. 3 shows the different forces (different colors) for
different units of airplane in case of a turbulent wind
flow when all feathers remain the initial (equal) orien-
tations.
The forces deviations zi(t) are induced by the laminar

flow small perturbations during the plates’ turns and by
the turbulent flow around them. We consider “intellec-
tual feather” which are able to arrange a self-regulation
in the system. We denote set N i of feather i neigh-
bors and assume that each feather i gets the information
about dj(t) and angles αj(t), βj(t) for j ∈ {i} ∪ N i.
This process should be much faster and can be repeated
at any change of the turbulent flow. The system of
such miniature intellectual agents has the ability to self-
organization. As a result of the forces synchronization,
groups of agents get approximately equal components
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Figure 3. The aircraft in a turbulence wind flow.

of the forces deviations acting on agents and form clus-
ters on the surface of the plane (see Fig. 4). Such struc-
turing is provided by the goal-directed collective be-
havior of the system.

Figure 4. The aircraft in a turbulence wind flow. Clustering of
“feathers”.

Suppose that with respect to the airplane’s axis of mo-
tion the wings are large in the direction perpendicu-
lar to the motion and small lengthwise, while the size
of the airplane hull in the perpendicular direction is
also small. Under these assumptions, among disturb-
ing forces zi(t) with amplitudes of approximately the
same order of magnitude acting on the entire surface
of the airplane the only vertical and lateral projections
of the forces deviations are important for the problem
of reducing the jolting, and the total effect of all other
moments is small. For the mentioned above disturbing
force F1(t) we have

F1(t) =
∑
i∈N

zi(t). (39)

We can use micro-control actions ui(t) to equalize de-
viation forces zi(t) if the changing of turbulent wind
flow is sufficiently slow so that we have no any signif-
icant changing before instant t2. Assume that we can
do it during a small time interval τ : t1 + τ < t2, and
zi(t) = z1. By virtue (39) we obtain that F1(t) =
Nz1 = const during time interval [t1 + τ, t2]. Hence,
we have for the rotation moment that

M1(t) =
∑
i∈N

[ri × zi(t)] = N [
∑
i∈N

ri × z1].

For homogeneous distribution of feathers on the sym-
metrical body

∑n
i=1 r

i = 0 and we have M1 = 0. So,
the most disturbing factor connected to jolting disap-
peared during the process of equalization of the forces
acting on different feathers.
When the forces deviations induced by the turbulent

wind flow are equalized the total force correction on
account of the feather’s work tends to F1 = const and
the flow over the body becomes almost laminar again
until the turbulent wind will not change. Because of
the small and constant force F1 the trajectory of the
plane is slowly changing in one direction and can be
corrected by the macro control Ui. More precisely, dur-
ing time interval [t1 + τ, t2] we can use the following
model of agent dynamics

ẋi(t) = fi(xi(t), θi(t), ui(t), Ui(t)),

yi(t) = ∥di(t)∥.
(40)

where model parameters θi(t) are determined by force
F1, mass, position, orientation, and initial parameters
of motion in the laminar wind flow.

3.2 Consensus Algorithm
We are interested in synchronization of the agents

with respect to the outputs zi(t), i = 1, . . . , N , intro-
duced above. If it were possible to control directly the
velocities żi, the vector-valued modification of the pro-
tocol (11) could be used

żi(t) = γ
∑
j∈Ni

bij(zj − zi), i = 1, . . . , N. (41)

Here B = (bij) is a non-negative weighted adjacency
matrix of the communication graph, Ni = {j : bij ̸=
0} is the set of neighboring nodes for node i and γ > 0
is the control gain, introduced for convenience. Al-
gorithm (41) coincides with (11), where εij = γbij .
Henceforth we always assume that communication is
bidirectional (bij = bji) and connected, which, as
has been discussed, guarantees the exponential conver-
gence of (41) to consensus. We have also seen that (41)
in the case of undirected graph is nothing else than an
algorithm of gradient descent, applied to the “energy”
function

Q(Z) =
1

2

N∑
i,j=1

bij |zj − zi|2. (42)

The algorithm (41), however, cannot be directly ex-
ploited in our situation since the actual control inputs
are the rates α̇i and β̇i.
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Notice that

∂z
(1)
i

∂αi
= −yi sin(αi),

∂z
(1)
i

∂βi
= 0,

∂z
(2)
i

∂αi
= yi cos(αi) cos(βi),

∂z
(2)
i

∂βi
= −yi sin(αi) sin(βi),

∂z
(1)
i

∂yi
= cos(αi),

∂z
(2)
i

∂yi
= sin(αi) cos(βi).

Consider now the control algorithm

α̇i = −

(
γ

∂Q

∂z
(1)
i

+
∂z

(1)
i

∂yi
ẏi

)(
∂z

(1)
i

∂αi

)−1

= (43)

= − γ

yi sin(αi)

∑
j∈N i

bi,j(z
(1)
j − z

(1)
i ) +

ẏi
yi

cot(αi),

β̇i = −

(
γ

∂Q

∂z
(2)
i

+
∂z

(2)
i

∂αi
α̇i +

∂z
(2)
i

∂yi
ẏi

)(
∂z

(2)
i

∂βi

)−1

=

(44)

= − γ

yi sin(αi) sin(βi)

∑
j∈N i

bi,j×

×
(
(z

(2)
j − z

(2)
i )− cotαi cosβi(z

(1)
j − z

(1)
i )
)
+

+
ẏi
yi

cotβi

(sinαi)2
.

Here γ > 0 is a control gain, and we assume that α̇i =
β̇i = 0 if yi = 0.
A straightforward computation shows that the algo-

rithm (43),(44) is equivalent to (41) and hence expo-
nentially converges to consensus. More important, it is
possible to estimate time needed to reach an approxi-
mate consensus in the sense that

|Q(Z(t))| ≤ ε. (45)

The estimate involves ε, γ, initial conditions (that
is, the values of Z(t1+) and characteristics of
the graph. The exact formulation is available
in [Granichin and Khantuleva, 2017].

4 Conclusion and Future Work
The problem of determination of the constants θi(t))

in equations (40) is not considered in this paper. This
parameters remain constants during a finite time hori-
zon. Traditional asymptotic methods cannot be used
and we plan to apply for this case extended LSCR
(Leave-out Sign-dominant Correlation Regions) ap-
proach [Amelin and Granichin, 2016], which was pro-
posed earlier by M. Campi with co-authors to in-
crease the effectiveness of adaptive control based

on finite (not large) set of experimental data only
[Campi et al., 2009, Campi and Weyer, 2010]. Another
useful SPS (Sign-Perturbed Sums) method is proposed
in [Care et al., 2017].
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