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Abstract

Specular light reflections are the mirror-like reflections from a material interface. They ap-
pear in the observation of any illuminated surface. Specular reflections can be set apart from
the diffuse reflection type, which has a random distribution of reflection directions. The ra-
diance of the specular reflected light is governed by the Fresnel ratio and depends on both
geometrical and spectral properties. A clear distinction can be made between the reflection
properties of dielectric and the much more reflective non-dielectric material types. In certain
cases the presence of specular reflections is useful, for example in object identification or com-
puter graphics applications. However, often the presence of specular reflection causes bright
spots on the image of an object, which results in loss of detail in these areas. Particularly
in computer vision applications it is important to only observe the intrinsic diffuse reflection.
Hence, a variety of specular reflection removal methods have been developed.
Color-space analysis specular reflection removal methods are able to accurately recover the
intrinsic diffuse color of the image of an object. Optimization based methods based on a
non-negative matrix factorization of the data are considered. The reduced characteristic rep-
resentation of the data allows the specular and diffuse reflection component to be separated
more easily. A multi-image approach is considered because it provides more available infor-
mation on the intrinsic diffuse reflection component, which is typically a relatively weak signal
for non-dielectric surface reflections.
A specular reflection removal method is developed, that combines a new reflection model for
colored illumination with a sparse Non-negative Matrix Factorization (NMF) optimization in
a multi-image framework. The proposed method is evaluated on synthetic data and real data
images of non-dielectric materials acquired conform the proposed reflection model.
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“For light I go directly to the source of light, not to any of the reflections.”
– Mildred Norman





Chapter 1

Introduction

Specular reflection highlights appear in many photographed images and are part of the realistic
presentation of an imaged scene. However, the highlights can also obscure information of the
objects in the scene, which is why in certain applications we require ways to remove the
specular highlights. In this chapter we first describe in Section 1-1 the general concept of
specular highlights together with the relevance they have in certain applications. In Section 1-
2 the most important concepts affecting the formation of specular- and diffuse reflection
components are introduced. The motivation and outline for this thesis is given in Section 1-3
and Section 1-4, respectively.

1-1 Specular reflection highlights

Specular reflections are the mirror-like reflections of light that theoretically are present on any
illuminated surface. The main relation governing this phenomenon is the law of reflection,
which states that the angle of the incident light direction is equal to the angle of the reflected
light direction. Specular light reflections typically present themselves as white bright spots
(i.e. specular highlights) to an observer. Figure 1-1 shows such a typical occurrence of
specular reflections on the image of a selection of illuminated objects.
The presence of specular reflections can assist an observer in the depth perception of an
object. Moreover, the specular reflection is an indication of the surface texture and material
type. However, at the bright specular highlights itself there is a loss of detail, because the
underlying color or texture of the object can become harder to distinguish. In contrast with
specular reflection, the diffuse reflection from a surface is not governed by the law of reflection
and is generally assumed to be an intrinsic property of the object. In literature there has been
confusion about the naming convention of reflections. Throughout this study light reflections
obeying the law of reflection will be referred to as specular reflections and all other types of
light reflections will be called diffuse reflections.

The phenomenon of specular reflection has been used in a wide range of applications. For
example in both [5] and [33] the presence of specular reflection and geometrical models are use

Master of Science Thesis J. W. Bonekamp



2 Introduction

Figure 1-1: Left: Specular highlights observed as bright spots on a dielectric object. (source:
[30]). Right: Specular highlights on a aluminum- and manganese, non-dielectric objects. The
specular highlights appearing on non-dielectric objects tend to be more bright and larger in size.

to identify the geometry of an observed object and in [7] the difference in specular reflections
are used to characterize certain carbon-filled polymers. In computer graphics, models of
specular reflections are used to generate realistic scenes, pioneering work has been done in [24].
However, many applications in the field of photography and computer vision require images
with minimal specular reflections. For example the automated road detection algorithm in
[28], where a specular reflection removal method is used to improve the performance. Also in
many computer vision applications that use some form of automated material identification
or defect inspection, the specular highlights can affect the performance significantly.

1-2 Surface reflection of light

In the literature study on specular reflections performed in preparation for this thesis, the
physical phenomenon and mathematical relations governing the reflection of light at the
interface of two media was investigated [34]. In this section the most important notions are
summarized for reference.
Light is a transverse electromagnetic wave with a certain wavelength, denoted by λ. A light-
ray with a certain wavelength can either be reflected or transmitted at the interface of two
media. The direction in which the light is reflected is governed by the law of reflection. This
states that the reflection angle with respect to the surface normal, θr, is equal to the angle
of incident light with respect to the surface normal, θi. A schematic overview of surface
reflection at an interface of two media is given in Figure 1-2. Typically, the first medium is
air and the second medium is an arbitrary material.
The fraction of incident light that is specular reflected is determined through the Fresnel

equations [9]. This implies the portion of specular reflected light, or the Fresnel ratio denoted
by R, is a function of a number of variables:

R = f( wavelength, geometry,material, polarization ). (1-1)

In the context of this thesis the following notions about the variables in Eq. (1-1) are important
to grasp:

J. W. Bonekamp Master of Science Thesis



1-2 Surface reflection of light 3

Figure 1-2: Schematic drawing of the interface reflection geometry in the plane of incidence,
which is defined by the direction of the illumination source, I, and the direction of the surface
normal, N. The direction of the macroscopic perfect specular reflection is given by, R. The vector,
T, denotes the direction of the transmitted light. The angles between the different directions and
the surface normal are given by θi, θr and θt.

• The Fresnel ratio can vary for different wavelengths of the incident light. Typically this
variation is small, which makes it a fair assumption that the Fresnel ratio is equal for all
wavelengths, and therefore the specular color spectrum is the same as the illumination
color spectrum. However for some materials this is not necessarily the case.

• The magnitude of the Fresnel ratio strongly depends on the incident angle of light.
Especially at grazing angles (θi approaching 90 degrees) the ratio can sharply increase,
up to complete specular reflection. The dependency on the geometry can also deviate for
different wavelengths of the incident light. Typically, the dependency of the Fresnel ratio
on both the incident wavelength and incident angle of illumination are less prominent
for normal incident light (θi close to 0 degrees) [4, 23].

• The Fresnel ratio is also a function of the material type, mainly through the magnetic
properties of the material. A clear distinction between dielectric and non-dielectric ma-
terial types can be made. Dielectrics are non-conducting materials, like glass, polymers
and ceramics. Typically, the Fresnel ratio for dielectric materials is approximately the
same over the visible range of wavelengths (380 to 750 nm). It is therefore a fair as-
sumption that the specular reflection of normal incident light is of the same visual color.
However, for non-dielectric (conducting) materials this is not always case. The stronger
magnetic properties for non-dielectric materials also imply that the typical Fresnel ratio
for non-dielectrics are larger values than for dielectric materials, which explains why
non-dielectric materials tend to have brighter and larger specular highlights [4, 23].

Master of Science Thesis J. W. Bonekamp



4 Introduction

• Polarization refers to the orientation of the electromagnetic field of light with respect
to the plane of incidence. The overall Fresnel ratio, R, is actually a weighted sum of
the Fresnel reflection ratio’s for the component of incident light with an electric field
perpendicular- and parallel to the plane of incidence. These individual ratio’s can vary
strongly dependent on geometry and wavelength, and therefore the specular reflections
tend to be polarized light. Again, this effect is stronger for larger incident illumination
angles.

However, not all incident light is reflected directly at the interface. In Figure 1-2 we see that
a portion of the incident light can be aberrated and transmitted. The transmittance angle,
θt, can be described through Snell’s law. And the transmittance ratio is given by:

T = 1−R. (1-2)

The definition for the ratio of transmitted light, T , in Eq. (1-2) indicates that it depends
on the same variables as the Fresnel ratio. Note that a number of things can happen to
the transmitted light. The transmitted light can be emitted back after scattering within the
material. This is referred to as the diffuse reflection of a material. But the light can also
be absorbed by the material or transmitted out of the material on the backside. For opaque
surfaces no light is transmitted out of the material on the backside, thus all light is either
absorbed or re-emitted. The re-emitted diffuse type of reflection generally undergoes scat-
tering within the material before being re-emitted. Therefore this type of reflection tends to
be unpolarized and the random character of scattering implies a homogeneous distribution of
diffuse reflection directions.
Within this thesis it is assumed that the material surfaces are not optically active and do
not have any thin-film properties. However, we do consider the impact of surface roughness
on the specular reflections. For non-perfectly smooth surfaces, locally the surface normal can
deviate from the macroscopic surface normal. In turn the local specular reflection direction
can deviate from the macroscopic specular reflection direction. Typically, we can assume a
random distribution of the local deviations from the macroscopic surface normal. This implies
the specular reflections from a certain illumination direction, have a distribution around the
macroscopic specular reflection direction, dependent on the surface roughness of the material.
In Figure 1-3 a schematic drawing of the distribution of reflection directions is given for both
the diffuse- and specular reflection component. Additionally, an arbitrary observer direction,
denoted by L, is indicated. Often we are confronted with the combination of the diffuse- and
specular reflection components in this particular direction.

Indeed light surface reflection models aim to model the radiance and color of light in the ob-
server direction. Early reflection models originate from computer graphics. These models, or
shaders, typically only determined the reflections of a surface based on the type of material,
and the orientation of the surface with respect to the illumination [11]. The Phong shading
model [24] was one of the first models that distinguished between the diffuse- and specular
reflection component with two separate terms.
A more general and widely accepted reflection model is described in [27], where the Dichromatic
Reflection Model (DRM) is proposed. This is a model for opaque, optically inactive and in-
homogeneous materials. This implies that incident light will only interact with a medium
and particles that produce scattering and coloration. Note that this makes the considered

J. W. Bonekamp Master of Science Thesis



1-2 Surface reflection of light 5

Figure 1-3: Schematic drawing of possible reflection directions for the incident light at
macroscale. In red the distribution of the possible directions for the diffuse component. In
blue the distribution of the possible directions of the specular reflections. The illumination direc-
tion is given by I. While L and R, denote the direction to a viewpoint and the macroscopic perfect
specular reflection direction, respectively. The angles between the directions are given by θg, θs

and θe.

model less valid for optically homogeneous materials, like metals, at larger incident angles
of the illumination.. The main mechanisms of reflection that are modeled in the DRM are
illustrated in Figure 1-4. The DRM is a general formulation that takes into account most of
the physical phenomenon governing the surface reflection of light. The incident light is either
specularly reflected or transmitted, governed by the Fresnel ratio. The direction of specular
reflections is determined by the law of reflection, however the actual direction may differ from
the macroscopic perfect specular direction due to surface roughness. The transmitted light
will undergo scattering by the particles within the material. For opaque, non-optically active
materials it is assumed that all light will be re-emitted through the same interface it came
from after scattering. The re-emitted light will have a diffuse distribution due to the scatter-
ing and the color can be changed by the wavelength dependent absorption of the particles.
Because the specular reflection is governed by the Fresnel equations, it tends to be polarized

Master of Science Thesis J. W. Bonekamp



6 Introduction

Figure 1-4: Schematic representation of the Dichromatic Reflection Model (DRM). The inci-
dent light is either specular reflected or diffusely reflected after scattering by particles within the
material. (Figure after [27])

light, while the diffuse reflection is assumed to be unpolarized. The DRM can be described
mathematically as in Eq. (1-3).

L(λ, θi, θe, θg) = Ld(λ, θi, θe, θg) + Ls(λ, θi, θe, θg)
= md(θi, θe, θg)cd(λ) +ms(θi, θe, θg)cs(λ)

(1-3)

Here the total radiance in a viewpoint, L, is modeled as the sum of independent diffuse and
specular radiance terms, Ld and Ls, respectively. The geometric dependence of both parts is
modeled through the geometric scaling factors, md and ms, for the diffuse- and specular part,
respectively. The color composition is modeled through relative spectral power distributions,
cd(λ) and cs(λ). This separation of the geometric and color composition of both reflections,
makes this model applicable to a large range of objects and scenes. Moreover, there are
no assumptions on the geometry of the illumination and reflection. However, it does still
leave the problem of finding accurate functions for the geometric- and color compositions.
Note that especially at larger incident angles it is unrealistic to assume the color composition
of reflected light is totally independent from geometry. This applies in particular for non-
dielectric materials, because the Fresnel ratio can strongly differ for different wavelengths
at larger angles of incidence. The general formulation and decomposition of specular- and
diffuse terms in geometry and spectral factors of makes the DRM model suitable for specular
reflection removal methods, which will be discussed in Section 2-1.

J. W. Bonekamp Master of Science Thesis



1-3 Thesis motivation 7

1-3 Thesis motivation

From the previous sections we gather that the presence of specular highlights can be a nui-
sance for computer vision applications. Especially, non-dielectrics materials have reflection
properties, that can generate relatively large and bright specular highlights. Additionally, the
modeling of reflection components is more difficult for non-dielectrics, because the decoupling
of geometry and spectral factors cannot be generally assumed. In the literature study it has
become clear that there does not exists a simple method for acquiring a specular-free image
of non-dielectric materials. In fact, it is generally posed that a multi-image approach with a
complex imaging setup is required for effective specular reflection removal from non-dielectric
materials. However, Chapter 2 will show that there are single-image methods with working
principles that under a number of assumptions can be effective for specular reflection re-
moval from non-dielectrics. These working principles are rarely used in existing multi-image
specular reflection removal methods. In this thesis a specular reflection removal method is
proposed, that combines Non-negative Matrix Factorization (NMF) optimization techniques
in a multi-image framework.

1-4 Outline

This document has the following structure. In Chapter 2 the advantages and shortcomings
of a selection of specular reflection removal methods will be discussed. This motivates the
development of a new specular reflection removal method for non-dielectric materials, which is
the main contribution of the thesis described in 3. The experiment and results are discussed in
Chapter 4. The thesis is then concluded in Chapter 5, with a summary and recommendations
on ways to further improve the specular reflection removal from non-dielectric materials.
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Chapter 2

Specular Reflection Removal Methods

In this chapter an overview is given of illustrative specular reflection removal methods in lit-
erature. We focus on the effectiveness and shortcomings the working principles display with
respect to the specular reflection removal from non-dielectric materials. In Section 2-1 a selec-
tion of methods are discussed, organised by single-image and multi-image implementations.
Then in Section 2-2, Non-negative Matrix Factorization (NMF) will be described in context
of specular reflection removal.

2-1 Specular reflection removal methods

In this section relevant specular reflection removal methods from literature are described.
The working principles behind the methods can differ strongly and it is evaluated how well
they may perform on achromatic non-dielectric surfaces. First, in Section 2-1-1 single-image
specular reflection removal methods and their working principles are investigated. Then, in
Section 2-1-2 multi-image specular reflection removal methods are discussed.

2-1-1 Single-image specular reflection removal methods

Single image specular reflection removal methods generally aim to separate the specular com-
ponent using colour or intensity information that is available from a single image. An ad-
vantage of single-image specular reflection removal methods is that they tend to require
less complex image acquisition and have relatively fast implementations. In [3] single-image
methods are classified as either color space analysis or neighbourhood analysis. Here the same
classification is used with the added class of optimization based methods. Optimization based
specular reflection removal methods have become more prevalent in recent literature.

In color space analysis based specular reflection removal methods the difference in
color properties of the diffuse- and specular component are used to separate the two from
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10 Specular Reflection Removal Methods

colored input images. In many methods the Dichromatic Reflection Model (DRM) is used to
describe the RGB color of an arbitrary pixel, p:

ip = mdid +msis. (2-1)

In Equation (2-1), ip, id and is, represent the colors of the pixel of the diffuse and specular
component and they correspond to the relative spectral power distributions from Eq. (1-3).
The weighting factors md and ms, correspond to the respective diffuse and specular geometric
scaling factors from Eq. (1-3). Clearly this equation cannot be easily solved, as the known
term, ip, is a sum of the unknown diffuse and specular terms and the individual weighting
factors and colors are both unknown as well. In [27] it was first proposed that pixels cor-
responding to an area on the surface with the same intrinsic diffuse color lie on the same
plane in the RGB color space. This work was extended by Klinker et al. [16, 15, 17]. One
of the main assumptions that is used is that pixels with the same pure diffuse color (with or
without highlights) lie on a plane in the RGB color space spanned by the diffuse and specular
color. This is illustrated in Figure 2-1. Moreover, it is assumed that the color of the specular
reflected light is the same as the color of illumination. This implies the variable, is, is known
in Equation (2-1). Then, the diffuse color is estimated by fitting a color line to purely diffuse
pixels that correspond to the same colored surface. After which the coefficients md and ms

can be computed using the position of the pixel in the plane spanned by id and is.

Figure 2-1: Pixel clustering in RGB color space of pixels from an image with a single diffuse color
and a specular highlight. The pixels lie on the same plane spanned by the diffuse color direction,
id, and specular color direction, is. (Figure after [15])

The color space analysis specular reflection removal methods have shown successful result for
dielectric materials. However, they do suffer from a number of shortcomings and assump-
tions, that are more severe for non-dielectric materials. One problem is that for images with
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2-1 Specular reflection removal methods 11

saturated pixels the color estimation can fail, because some of the data is distorted. Also,
the color space methods require some type of image segmentation into groups with the same
diffuse color. Furthermore, the specular color is assumed exactly equal to the illumination
color, which does not necessarily hold for non-dielectric materials at larger incident angles
of illumination. The DRM is assumed, which is really only a valid model for non-dielectric
materials at angles of incidence of illumination close to the surface normal. Additionally,
color space analysis methods typically have trouble estimating the correct diffuse color when
the diffuse color and specular color vectors are similar. Again this forms a problem for non-
dielectric objects, because the often assumed white illumination color is close to the typically
achromatic (grey) color of non-dielectric materials.

Neighbourhood analysis based specular reflection removal methods use local color-
and/or intensity information to separate reflection components. Generally these methods are
have a simple and fast implementation. Moreover, it is often unnecessary to do any image
segmentation for neighbourhood analysis type methods, because as opposed to color analysis
based methods there is no assumption on the amount of diffuse colors present in the global
image. Tan et al. [32, 31, 30] propose the specular-to-diffuse mechanism. This is based on the
maximum of chromaticity and intensity values of diffuse and specular pixels. The main idea
is that the maximum chromaticity of diffuse pixels will always be larger than that of specular
points, under the assumption of white illumination. Furthermore it is shown that the spec-
ular points can be iteratively projected along a curve to its corresponding maximum diffuse
chromaticity in order to eliminate specular reflection component. In general neighbourhood
analysis specular reflection removal methods use local intensity differences and image specific
thresholds for reflection component separation. This can result in better recovery of the sur-
face texture. Again the DRM and white illumination is assumed, which makes neighbourhood
analysis based methods less suitable for non-dielectric materials.

Recently, optimization based specular reflection removal methods have become more
prevalent in literature. This type of method combines working principles from color space
analysis and neighbourhood analysis type methods into one optimization framework. Typi-
cally, a model of the expected reflection is proposed and used to form an optimization problem,
which is solved to identify and separate the diffuse and specular components of the model.
Optimization based methods conclude to be applicable to a wider range of image scenes be-
cause of the global approach to the reflection separation problem. The global approach also
implies there is automatic segmentation of the image into diffuse color groups. Akashi and
Okatani [1] propose an optimization method for reflection separation using sparse NMF. The
DRM is assumed and additionally it is assumed that there are only a finite amount, q, of
diffuse colors present in the image. The results of [1] indicate that this optimization based
approach can give satisfactory results for achromatic non-dielectric objects as well. The global
approach ensures a more accurate estimation of the diffuse color, which makes this type of
method more suitable for non-dielectric materials, because here typically the diffuse intensity
is low compared to the specular intensity at the specular highlights. In Chapter 2 the method
by [1] is described in more detail. In both [2] and [12] the Alternating Direction Method of
Multipliers (ADMM) is used to solve a similar optimization problem. ADMM is particularly
suitable for image manipulation problems since it can deal with large optimization problems
in a robust manner and easily incorporate constraints within the optimization framework [6].
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12 Specular Reflection Removal Methods

More recent optimization based specular reflection removal methods aim to improve separa-
tion performance further by incorporating more spatial priors into an optimization framework.
For example, in both [20] and [10] the assumption that specular highlights are typically small
in size and sparsely distributed in an image, is used as an additional constraint within an
optimization framework. Similarly, in [13], improved results are obtained by using the addi-
tional prior information from a user that indicates which pixels contain specular reflections.

Single-image methods in general have shown to obtain excellent specular reflection removal
results for dielectric materials. However, problems start to occur whenever a larger amount
of different diffuse colors must be identified or when the specular highlights are no longer
sparse. Different methods with additional global and local constraints have been proposed to
solve this problem. Some are successful but typically the constraints imply that the method
is only applicable to a small set of image scenes. Most single-image methods are based on
the Dichromatic Reflection Model (DRM), which is only in limited cases applicable to non-
dielectric materials. It has been found however, that some of the working principles of the
single image specular reflection removal methods can still be effectively used for non-dielectric
materials. This is constrained however to image scenes where the illumination is normal to
the object surface. Especially optimization based specular removal methods have shown that
they may be applied to non-dielectric materials as well, because of the global approach to the
diffuse color estimation. Inherent to the problem, all single-image type methods are ill-posed.
This may be solved using multiple image of the same scene, which will be investigated in the
next section.

2-1-2 Multi-image specular reflection removal methods

Multi-image methods generally require a more complex imaging setup, but have more in-
formation available. This is advantageous because the separation of diffuse and specular
reflection components from a single image is inherently an ill-posed problem. Most multi-
image methods are based on the assumption that the diffuse component changes minimally
with imaging geometry, while the specular component can completely disappear for different
viewing or illumination angles.

Examples of multi-image specular reflection removal methods are [19] and [26]. Here mul-
tiple views of the same scene under the same illumination are used. A model is defined to
explain the spectral difference (differences in color) between views. They show that the extra
information available from the additional viewing angles can be used to separate specular re-
flection components. Moreover, it is shown that this method is less effective for non-dielectric
surfaces, because the intensity of the diffuse reflection component is small and the specular
highlights are often large in size. A simple multi-image method is proposed in [29]. Here
feature correspondence between images of the same object are used to find the pixels cor-
responding to the same location on a object, after which the intensity is simply changed to
the minimum value of corresponding pixels. The method described here all require enough
images to ensure that from at least one viewing angle the image contains a purely diffuse
pixel.
A different type of multi image specular reflection removal methods is based on the tendency
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2-2 Non-negative matrix factorization 13

of the specular reflection components to be polarized. Recall that the polarization of reflected
light is governed by two separate Fresnel ratio’s for s- and p-polarized light. Assuming unpo-
larized incident light the specular reflected light can still be polarized dependent on the angle
of incidence. Polarization based specular reflection removal methods like [36, 22, 21] all take
multiple images of a scene through a polarization filter at different orientations. The intensity
of pixels will change in between images if there is a (assumed polarized) specular reflection
component. The diffuse reflection component is separated with help of the definition of an
polarization ratio. Polarization based specular reflection removal methods are less effective
for non-dielectric materials, because the polarization ratio is typically less distinctive com-
pared to dielectric materials. This leads to incomplete separation of the specular reflection
component.
In general multi-image specular reflection removal methods have shown to be able to identify
the location of specular components much more accurately. Typically multi-image specular
removal methods do not assume the Dichromatic Reflection Model (DRM). They can there-
fore be applied to images of non-dielectric materials without major false assumptions on the
physics of light reflection. However, in multi-image methods the unrealistic assumption (es-
pecially for non-dielectric materials) is made that in one of the available images the intrinsic
diffuse information is available undistorted by any specular component. In the limited case
where a large number of images of an object from different viewpoints is available, polarization
based specular reflection removal methods are very good at identifying and separating the
specular reflection component from dielectric objects. Still the use of multiple images can be
effective for the elimination of specular reflections from non-dielectric materials. Mainly be-
cause information from multiple images can be combined, to obtain more information on the
diffuse reflection component, which is typically low in magnitude for non-dielectric materials.

2-2 Non-negative matrix factorization

In this section we first describe the model and optimization framework; Non-negative Matrix
Factorization (NMF), in Section 2-2-1. In Section 2-2-2 we describe an optimization based
method that successfully uses NMF for specular reflection removal.

2-2-1 Non-negative matrix factorization

In many data-analysis applications a better representation of the available data is desired.
Non-negative Matrix Factorization (NMF) refers to such a representation of data but also
to the problem of finding this representation [18, 14]. Consider a non-negative data matrix,
M ∈ Rm×n. The goal is to find an approximate factorization of two non-negative factorization
matrices, such that:

M ≈WH (2-2)

In Eq. (2-2) the factorization matrices, W ∈ Rm×p and H ∈ Rp×n, are both non-negative
and typically describe some characteristic property of the data. In [14] it is stated that the
columns of W are basis vectors and can be thought of as ‘building blocks’ of the data and
the coefficients in H describe how much each building block is present in parts of the data.
Typically, NMF leads to a reduction of dimensionality and a more sparse representation of
the data.
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14 Specular Reflection Removal Methods

Generally, the problem of finding the factorization matrices is formulated as a minimization
problem that minimizes the squared residual:

min
W,H≥0

1
2 ‖M −WH‖22 . (2-3)

This is not a straightforward optimization problem since there are two unknowns. In fact this
is an ill-posed bi-convex problem. A variety of methods have been proposed that solve the
NMF optimization problem from Eq. (2-3). In [18] a relatively simple algorithm is proposed,
where the factorization matrices, W and H, are alternately fixed such that two well-posed
convex optimization sub-problems (in W and H alternately) remain. Those are then solved
with relatively simple multiplicative update rules for W and H:

Hk+1 = Hk � W TM

W TWH
(2-4)

W k+1 = W k � MHT

WHHT
. (2-5)

In Eq. (2-4) and Eq. (2-5) the parameter, k, denotes the iteration and � describes the element-
wise product. The non-negativity of both matrices is ensured by initializing them as such.
The factorization matrices are iteratively updated until some convergence criteria is reached.
It should be noted that there is ambiguity in the solution of Eq. (2-3), because scalings or
permutations of solutions can approximate the same data matrix. However, this may be
solved by adding additional constraints on the factorization matrices within the optimization
problem. Because the factorization matrices represent characteristic properties of the data,
the factorization may be improved further by smartly adding constraints to the optimization
problem depending on the application. NMF is particularly suitable for image processing
applications, since it give a more compact representation of the typically large data images,
using color- and intensity factorization matrices. An example of NMF applied to specular
reflection removal is given in the next section.

Often a regularization term is added to the NMF optimization problem. This ensures the
noise present in the data image is partially ignored. Typically the 1-norm of one of the
factorization matrices is added to the cost function, leading to the following optimization
problem:

min
W,H≥0

1
2 ‖M −WH‖22 + ρ ‖H‖1 . (2-6)

In Eq. (2-6) ρ is a regularization parameter, which has to be selected depending on the noise
level in the data. This type of problem is referred to as sparse NMF.

2-2-2 Akashi and Okatani’s specular reflection removal method

Akashi and Okatani [1] propose an optimization method for reflection separation using sparse
Non-negative Matrix Factorization (NMF). The DRM is assumed and additionally it is as-
sumed that there are only a finite amount, R, of diffuse colors present in the image. Each
pixel can then be described as in Equation (2-7).

ip =
R∑

k=1
md,kid,k +msis ∈ R+[3×1] (2-7)
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2-2 Non-negative matrix factorization 15

Again in Eq. (2-7), ip, represents the RGB pixel value and id and is are the diffuse- and
specular normalized color vectors, respectively. It is additionally assumed that the specular
color is known and white; is = 1√

3 [1, 1, 1]T . Eq. (2-7) is then written for all, N , total pixels
in one equation as a non-negative matrix factorization.

M = WH ∈ R+[3×N ] (2-8)

In Eq. (2-8) the vectorized image,M ∈ R3×N , is written as the product of a matrix containing
the colors present in a image and a coefficient matrix,W andH, respectively. They are defined
below:

W =
[
Wd is

]
∈ R+[3×(R+1)]

,

H =
[
Hd

Hs

]
=
[
hd,1 hd,2 . . . hd,N

ms,1 ms,2 . . . ms,N

]
∈ R+[(R+1)×N ]

.

Here, M is the vectorized image and W contains the illumination color and a finite number
of unknown diffuse colors. H, is a matrix with unknown coefficients that represent how much
their corresponding color is present for that pixel. Indeed Eq. (2-8) is an example of a NMF
data representation. Following the DRM, in Eq. (2-7) it is assumed there can only be one non-
zero diffuse coefficient for each pixel, which imposes a zero-norm constraint on the columns
of H. This constraint is relaxed as a regularization term in the minimization function. Which
gives the following optimization problem in [1]:

min
Wd,H≥0

1
2 ||M −WH||22 + ρ||H||1. (2-9)

In Equation (2-9), ρ is a regularization parameter. It should be noted that the regularization
term enforcing sparsity is exactly the same as the regularization term in Eq. (2-6), which
ensures noise in the data is ignored. The regularization parameter in Eq. (2-9) should be
selected dependent on both the noise level in the data and the desired degree of sparsity in
the solution. Note that Equation (2-9) is an ill-posed bi-convex optimization problem. In [1]
the problem is solved using alternating multiplicative update rules for Wd and H.

Hk+1 = Hk � W TM

W TWH + ρ
(2-10)

W k+1
d = W k

d �
VlH

T +Wd �AWdHH
T

WdHHT +Wd �AVlHT
(2-11)

Where in Eq. (2-11) Vl = M − isHs, which is added because only the diffuse basis vectors in
W are updated. Moreover, �, indicates the entry-wise product and A is a 3×3 matrix whose
entries are all 1. In [8] the update rules are derived and the algorithm is shown to converge to
a local minimum in finite iterations. Once the method has converged, a diffuse- and specular
(vectorized) image can be reconstructed.

Id = WdHd (2-12)

Is = isHs (2-13)

Note that in the ideal case we have M = Id + Is, with the diffuse- and specular reflection
component completely captured in the respective vectorized image.
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16 Specular Reflection Removal Methods

In Figure 2-2 the results of the method from Akashi and Okatani [1] for both a dielectric and
non-dielectric input image. All results were obtained using the MATLAB© implementation
of the method provided by [25]. Note that for the dielectric object the specular highlights
are correctly identified, and nearly completely eliminated from the diffuse image. The non-
dielectric data-image contains more and brighter specular highlights. The specular highlights
are only partially identified and the results are noisy. This is mainly caused by the fact that
the diffuse signal is relatively weak compared to the specular component at the highlight.
Moreover, the diffuse color of the non-dielectric object is closer to the assumed white specular
color. However, the results for the non-dielectric object in Figure 2-2 do show that the
method is able to accurately determine the diffuse color of the object and partially eliminate
the specular reflection component.

Figure 2-2: Results for the method in [1] for both a dielectric and non-dielectric object. The
input image on the left is separated into a specular and diffuse image. Individual images are scaled
for maximum contrast.

In this section NMF has been described to be a more sparse factorization of data using two
characteristic factorization matrices. The factorization matrices are found by formulating an
optimization problem, which also allows for easy incorporation of additional constraints on
the factorization matrices. The results of the method in [1] show that NMF formulation is
particularly useful within the context of specular reflection removal, because here we are in-
terested in separating certain characteristic ‘building blocks’ of the data. Moreover, it shows
that this approach to the specular reflection removal problem can even be applied to images
of non-dielectric materials. NMF methods may be improved by adding additional constraints
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2-2 Non-negative matrix factorization 17

representing prior knowledge on the factorization matrices to the optimization problem.

In this chapter it has been shown that there does not exist a specular reflection removal
method with a simple imaging setup, that can successfully remove specular highlights from
images of non-dielectric materials. Most single-image methods assume the Dichromatic Re-
flection Model (DRM), which is only a valid model for non-dielectric materials when the
illumination direction is close to the surface normal. Additionally often white illumination
and therefore a white specular color is assumed, which makes it harder to distinguish the
typically achromatic color of non-dielectric materials. Multi-image method generally require
a much more complex imaging setup, however they have shown adequate specular reflection
removal even for non-dielectric materials. The main advantage is that multi-image methods
provide more information on the diffuse signal, which is relatively low in magnitude for non-
dielectric materials. In the next chapter a new model and specular reflection removal methods
is described, which aims to avoid the shortcomings of existing methods.
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Chapter 3

Multi-image optimization based
specular reflection removal for

non-dielectric objects

In this chapter a new specular reflection removal method and the main contribution of this
thesis is described. A multi-image optimization based specular reflection removal method
is proposed specifically designed to work for the removal of specular highlights from non-
dielectric materials. First in Section 3-1 the surface reflection model used within the method
is described, together with the physical assumptions that are made. Then in Section 3-2 the
description of the proposed specular reflection removal method is given.

3-1 Surface reflection model

This section gives a detailed description of the surface reflection model used within the
method. This model is an extension of the model proposed by [1] from Eq. (2-7). It aims
to deal with two problems wit specular reflection that were identified in the previous chap-
ters. Firstly, the model does not require white illumination/ specular color, which makes
the typically achromatic non-dielectric colors easier to distinguish. Moreover, the model is
formulated in such a way that it can be extended for multiple input images, which allows for
more available information on the diffuse- and specular image.

Again the Dichromatic Reflection Model (DRM) is assumed, which indicates that the surface
reflection consists of a diffuse- and specular reflection component. And the diffuse color there-
fore originates from the initially transmitted incident light, after which it is re-emitted with
a different spectrum, because the absorption within the material is wavelength dependent.
Similar to other specular reflection methods the specular reflection color is assumed known
and equal to the illumination color. However, in this case we do not assume the illumination
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20 Multi-image optimization based specular reflection removal for non-dielectric objects

is white, which allows for a different formulation of the pixel values. The following model for
the pixel values is proposed:

ip =
R∑

k=1
md,kid,k � is +msis ∈ R+[3×1]

. (3-1)

Note that Eq. (3-1) is similar to the description used by [1] in Eq. (2-7), however now the
diffuse component has the color of the true normalized diffuse color vector, id, projected onto
the known normalized specular color vector, is. This is denoted by the element-wise product,
id,k � is. Again we assume that there are, R, diffuse colors present in the image and we can
write Eq. (3-1) simultaneously for all, N , pixels of the vectorized image, M ∈ R3×N :

M = is �WH = is �

1
1
1

Hs + is �WdHd ∈ R[3×N ]. (3-2)

The factorization matrices now then defined with:

W =
[
1 Wd

]
=
[
1 id,1 . . . id,R

]
∈ R[3×(1+R)],

H =
[
Hs

Hd

]
∈ R[(1+R)×·N ].

Note that in Eq. (3-2) the only unknowns are H and Wd.
Another important proposition to improve the specular reflection removal performance is to
use multiple input images. A number of assumptions are made on the different sub-images
used as inputs. Firstly, the same scene is captured under the same illumination direction and
with the same illumination intensity for all sub-images. This, together with the assumption
that the specular reflection is equal for all wavelengths, ensures that within the sub-images
the specular highlights have the same intensity profile. Or equivalently, Hs is the same for
all sub-images. Furthermore, because the illumination intensity in between sub-images is the
same and because the diffuse color is an intrinsic property of the object, we can assume the
diffuse factorization, WdHd, is the same for all sub-images. Also note that it is assumed that
the scene for each sub-image is of a single illumination color. For images captured under these
conditions, we can rewrite the model for an arbitrary sub-image with subscript i:

Mi = is,i �WH = is,i �

1
1
1

Hs + is,i �WdHd ∈ R+[3×N ]
. (3-3)

In Eq. (3-3) the same non-negative matrix factorization,WH, is projected with an elementwise
product with is,i, to the corresponding i’th sub-image. Note that this model implies that each
sub-image only contains partial information on the diffuse image, Id = WdHd, and the specular

intensity profile,

1
1
1

Hs.
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3-2 Multi-image optimization based specular reflection removal for
non-dielectric objects

This section describes a new multi-image sparse non-negative matrix factorization specular
reflection removal method for non-dielectric objects, based on the model in Eq. (3-3) from
Section 3-1. The problem of specular reflection removal is posed as an optimization problem
and solved by alternately solving two sub-optimization problems.

Suppose we have q input images, the goal is to find a factorization that minimized the residual
error with the data for all sub-images, while also ensuring that the factorization can be
split into specular- and diffuse reflection components. The following optimization problem is
proposed:

min
Wd,H≥0

J1 =
q∑

i=1
‖Mi − is,i � (1Hs +WdHd)‖22 + ρ ‖H‖1 (3-4)

In Eq. (3-4) we essentially try to simultaneously minimize the q different data-residuals of
the sub-images with the color projected non-negative matrix factorization. As in [1] we again
add a regularization term on the coefficient matrix H, which functions as regularization of
possible noise in the data but also ensures sparsity of the solution. Eq. (3-4) again forms
an ill-posed bi-convex optimization problem, which can be solved using iterative alternating
sub-optimization problems. In this method we define the following iterative steps, with k
denoting the current iteration:

Hk+1 = min
H≥0

( q∑
i=1

∥∥∥Mi − is,i � (1Hs +W k
dHd)

∥∥∥2

2
+ ρ ‖H‖1

)
, (3-5a)

W k+1
d = min

Wd≥0

( q∑
i=1

∥∥∥Mi − is,i � (1Hk+1
s +WdH

k+1
d )

∥∥∥2

2
+ ρ

∥∥∥Hk+1
∥∥∥

1

)
, (3-5b)

W k+1
d (:, j)← W k+1

d (:, j)∥∥∥W k+1
d (:, j)

∥∥∥
2

for j = 1, ..., R. (3-5c)

The sub-optimization problems in Eq. (3-5a) and Eq. (3-5b) are both constrained quadratic
optimization problems, which can be efficiently solved. Note that the update for the coefficient
matrix, H, is separable in its columns, which implies the intensity coefficients are estimated
pixel-wise. The iterative update for the diffuse color matrix in Eq. (3-5b) is separable in its
rows (i.e. color channels). In Eq. (3-5c) the columns of Wd are normalized after each update
for the factorization matrices. This step is added to eliminate the ambiguity in the scale of
the solution. In [8] it was shown that this normalization step does not affect the solution.
Note that similar to the implementation in [1], the regularization parameter, ρ, serves a double
purpose. It serves as regularization of possible noise in the data but also ensures sparsity of
the diffuse color selection by putting extra weight on the columns of H. However, really
the sparsity regularization term should only be put on the columns of the diffuse coefficient
matrix Hd. Therefore, it is proposed to separate the regularization on the diffuse and specular
coefficients. We obtain the following optimization problem:

min
Wd,H≥0

J2 =
q∑

i=1
‖Mi − is,i � (1Hs +WdHd)‖22 + ρs ‖Hs‖1 + ρd ‖Hd‖1 (3-6)
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In Eq. (3-6) the specular- and diffuse regularization parameters, ρs and ρd respectively, can
now be individually determined. The following iterations are used to solve the problem:

Hk+1 = min
H≥0

( q∑
i=1

∥∥∥Mi − is,i � (1Hs +W k
dHd)

∥∥∥2

2
+ ρs ‖Hs‖1 + ρd ‖Hd‖1

)
, (3-7a)

W k+1
d = min

Wd≥0

( q∑
i=1

∥∥∥Mi − is,i � (1Hk+1
s +WdH

k+1
d )

∥∥∥2

2

)
, (3-7b)

W k+1
d (:, j)← W k+1

d (:, j)∥∥∥W k+1
d (:, j)

∥∥∥
2

for j = 1, ..., R. (3-7c)

Note, that now in Eq. (3-7b) the regularization terms are omitted because they do not affect
the solution.

To initialize the implementation all known variables are loaded. All data matrices Mi and
the normalized specular color vectors, is,i, are assumed known. The factorization matrices
are initialized randomly. The coefficient matrix, H, is initialized with uniformly distributed
random numbers over the range [0,255] for 8-bit input images. The values of the entries of the
diffuse color matrix, Wd, are initialized with random positive values, after which the columns
are normalized. Then the iterations in Eq. (3-7) are executed until some convergence criteria
is reached. The iterations will be stopped when the relative change in the cost function value
is smaller than a convergence threshold, ε, or if the iteration count reaches a predefined max-
imum.

In this method a number of parameters must be selected. Firstly, the amount of input images
to be used should be selected. It is expected that using more input images will result in better
results, because it provides more information on the reflection components. However, this
does require a more work in acquiring the data and the implementation is more computation-
ally intensive. Note that the increase in computational time is marginal, because the amount
of optimization variables in Eq. (3-6) is independent on the amount of input images. More-
over, the number of diffuse color vectors, R, should be determined beforehand. Typically, this
can be set by the user, by estimating the amount of diffuse color present in the imaged scene.
In [1] it was shown that there is no significant difference in results for a range of, R. Still this
parameter should be determined according to the diffuse colors present in the imaged scene.
We have two regularization parameters that should be selected. Both ρs and ρd should be
selected according to the noise present in the image, but they also account for the sparsity
of the specular- and diffuse component, respectively. This is not a straightforward selection,
because it is strongly dependent on the magnitude of noise-, specular- and diffuse signals in
the imaged scene.

In this chapter a new specular reflection removal methods is proposed. The proposed reflection
model can be used to model multiple input images as a projection of the specular and intrinsic
diffuse reflection components onto the specific illumination colors. The unknown variables
are estimated by posing the model as a sparse Non-negative Matrix Factorization (NMF)
problem. The resulting ill-posed bi-convex optimization problem is solved using alternating
regularized quadratic sub-optimization problems. The method is designed in such a way that
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it can also be used for the specular reflection removal from non-dielectric materials. Similar
working principles as in the color-space and optimization based method discussed in Section 2-
1 are used, however now they are extended to allow for more distinct available information,
through multiple input images and colored illumination. The next chapter will discuss the
experiment and results used for the evaluation of the proposed method.
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Chapter 4

Results and discussion

In this chapter we will evaluate the multi-image optimization based specular reflection removal
method for non-dielectric materials proposed in Chapter 3. First in Section 4-1 the different
experiments that are used will be described, together with the method of evaluation. Then in
Section 4-2 the experiment results and interpretation of results is given. General observations
on the results are given in Section 4-3.

4-1 Experiment description

In this section the experiments performed in order to evaluate the proposed method are
described. The method is tested on captured images of non-dielectric materials in a lab
environment and on a synthetic data set. First in section Section 4-1-1 the type of data and
image scene is described together with the manner of acquiring the data. In Section 4-1-2 the
way of evaluating the results is described.

4-1-1 Data acquisition

Following the description of the reflection model and specular reflection removal method in
Chapter 3, we have a number of constraints on the data. A suitable set of input images must
display exactly the same scene. The illumination colors have to be known and the illumina-
tion intensity should be equal for all images. There should be one unique illumination color
per sub-image. Additionally, the data should contain minimal saturated pixels, because oth-
erwise the reflection model fails. Because we focus on non-dielectric materials and assume the
Dichromatic Reflection Model (DRM), it is especially important that both the illumination
direction and the observer direction are close to the surface normal. Such image sets are not
readily available online. Therefore, an experimental setup has been used to obtain a number
of image sets for actual objects. Also, a synthetic data set is created, such that we have an
image set that is completely conform the proposed reflection model.
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The real data sets are obtained in a lab environment, that can be completely obfuscated. For
the colored illumination, a THORLABS© LIU365A LED array light source is used together
with a set of dichroic color filters. A 12-bit camera, UI-3060CP-C-HQ Rev.2, and short focus
lens, IDS-10M11-C1616, from IDS-Imaging© are used. The images are captured using the
uEye Cockpit© software. A number of different non-dielectric materials are used as sample.
When capturing the data it is made sure that all camera parameters in between images are
the same, and saturation is avoided. In Figure 4-1 an indicative picture of the setup is given.

Figure 4-1: Overview of the experimental setup for acquiring data images of non-dielectric
objects. A non-dielectric sample is illuminated by a (color-filtered) LED-array illumination. The
images are captured by a scientific camera positioned in the direction of the sample surface normal.
Note that for acquisition of the actual data sets the room illumination is switched off and the
camera/illumination source positions are different.

Recall that within the implementation it is assumed that the specular color vectors are known
and have the same color as the illumination color. We therefore must identify the specular
colors corresponding to our setup. The white LED-array has a certain illumination spectrum,
which combined with the transmission spectrum of the color filters define the illumination
spectrum. In order to obtain a set of known illumination colors in RGB-space, the illumina-
tion source can be directly image by the camera. Then we can compute the average RGB
values, to obtain the illumination color in RGB-space. Note that the different illumination
spectra do not necessarily have the same intensity. Therefore, the average intensity is also
registered and used to scale the input sub-images in pre-processing, such that they all have
the same illumination intensity. In Figure 4-2 the resulting images of the illumination source,
together with their average normalized RGB-color vector and relative average intensity are
shown.
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Figure 4-2: Set of images of the color-filtered LED-array illumination source used within the
experiment. The corresponding normalized average RGB-color and relative average intensity with
respect to the white illumination source are shown. These colors are used within the implemen-
tation as the known normalized specular color vectors.

It is difficult to obtain the ground truth of the diffuse reflection component for the image set
of actual non-dielectric objects. Therefore, it is proposed to use a synthetic data set for which
the ground truth is known. Moreover, we can create the synthetic data set in such a way that
it is completely conform the model from Section 3-1.
A synthetic circular object with three regions of different diffuse colors is generated. It is
assumed the synthetic illumination generates a circular patch of uniform intensity overlapping
the three diffuse color regions. In Figure 4-3 the image and composition of the generated data
set is given. The diffuse intensity is set much weaker relative to the specular intensity, since
this is typical for non-dielectric materials. Additionally, a small noise signal is added to the
data to mimic the acquisition of data within an actual imaging setup. The relative intensities
of the specular- diffuse- and noise signal are set to 0.8, 0.2 and 0.01, respectively. For easier
comparison, the specular colors are picked from the illumination colors which were identified
in Figure 4-2.

Figure 4-3: Overview of the generated synthetic data set. The true diffuse image (top-right) is
assumed to be uniformly illuminated with different illumination colors equal to the specular colors,
which gives the projected diffuse images. The projected diffuse images summed with the specular
images gives the data images, which can be used as input within the implementation. Note that
the intensity of individual images is scaled for maximum contrast.
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4-1-2 Evaluation method

It is important to show the effectiveness of the proposed method in removing the specular
reflection component and recovering the intrinsic diffuse image. A problem is that we do not
have a good way of acquiring the ground truth for the diffuse image, approximated in the
implementation by Id = WdHd. If the ground truth diffuse image is not available we can still
do an informative evaluation with visual comparison. The localization of specular highlights
can be evaluated in this way. And using visual inspection together with the numerical results
for the specular- and diffuse coefficients in Hs and Hd, it should also be clear if the algorithm
succeeds in eliminating the specular reflection component at least partially. We can also
use a multi-image method similar to [26], where a specular-free image is obtained by taking
take a lot of images from different orientations with a fixed illumination direction. However,
the diffuse intensity profile will not match the data for the specular reflection method, but
assuming we have a sample consisting of one diffuse color, we can use the average color of the
reconstructed image for validation of the diffuse color estimation by our implementation.
We should also test the sparsity of the columns of the diffuse coefficient matrix, Hd, because
the DRM is assumed , which implies for each column of Hd there is only one non-zero entry.
To test this we use the average sparsity metric defined in Eq. (4-1) based on the sparseness
measure from [14]. Recall that Hd ∈ RR×N , where R is the amount of diffuse color vectors
and N the amount of pixels per sub-image. The i’th column of Hd is denoted by hd,i. The
metric ranges from 0, to perfect sparsity at a value of 1.

sparseness(Hd) = 1
N

N∑
i=1

√
R− (

∑
hd,i)/ ‖hd,i‖22√
R− 1

(4-1)

For the synthetic data-set the ground-truth is available, and we can use quantitative perfor-
mance metrics. A commonly used measure in image reconstruction evaluation is the Mean
Squared Error (MSE). Additionally in [35] the Structural Similarity Index (SSIM) is proposed,
which provides an indication of the performance of the structural recovery of the reference
image. This measure ranges from 0 to 1 at perfect recovery of the reference image. In Sec-
tion 4-2-1 the Mean Squared Error (MSE) and Structural Similarity Index (SSIM) will be are
used to compare the recovered diffuse image to the ground truth.

4-2 Experimental results

In this section a number of experiments are performed in order to evaluate the optimization
based multi-image specular reflection removal method for non-dielectric materials, proposed
in Chapter 3. First in Section 4-2-1 the method is tested on a synthetic data set, where the
performance of the method is evaluated using quantitative measures and visual comparison.
Moreover, the sensitivity to parameters in the implementations is investigated. In Section 4-
2-2 the method is tested on the captured data sets of non-dielectric samples. It should be
noted that for all experiments we set a fixed convergence threshold, ε = exp(−15) and for
experiments with the same data set the factorization matrices Wd and H, are initialized with
the same random matrices.
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4-2-1 Results for synthetic data sets

First the proposed method is tested on the synthetic data set from Figure 4-3. This implies
we have three input images, with three known illumination colors. The true diffuse image
consists of a circular patch with three different diffuse color regions. We set R = 3, and the
specular- and diffuse regularization terms are set to the best empirically found values; λs = 1
and λs = 3, respectively. The known specular colors are set to the same colors as in the lab
experiment as identified in Figure 4-2. The results are given in Figure 4-4 and Figure 4-5.
The resulting images can visually be compared with the images from Figure 4-3.

Figure 4-4: Results for synthetic data set as input, with three input images and R = 3, ρs = 1
and ρd = 3. The intensity of individual images is scaled for contrast.

From the results it immediately becomes apparent that the proposed method succeeds in
separating the specular- and diffuse reflection component. Looking closer at the diffuse image
estimate in Figure 4-4, we do observe some intensity differences at the location of the specular
highlight, and the results are noisy. The small MSE value and SSIM index show that the
diffuse image is a close representation of the ground truth. Note that the specular- and
diffuse regularization parameters, ρs and ρd, are unequal. Both parameters are to be selected
dependent on the noise in the image versus the amount and intensity of the specular- or diffuse
reflection component in the image, respectively. Additionally, a larger diffuse regularization
parameter is preferred because this ensures the column sparsity of Hd. However, if the ratio
between the two regularization parameters is too large, the algorithm will end up trying to
explain the data as solely specular or solely diffuse, and no reflection component separation
is obtained. The individual normalized diffuse color vectors are not an accurate estimation
of the actual diffuse colors. We have:

Wd =

0.435 0.791 0.284
0.302 0.544 0.862
0.848 0.279 0.419

 , TRUE Wd =

0.398 0.891 0.056
0.199 0.445 0.958
0.896 0.089 0.281

 .
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Figure 4-5: Double logarithmic convergence results for the synthetic data set with 3 input images.
The total cost function value J2 from Eq. (3-6) shows a decreasing behaviour and the convergence
criteria is reached after 4280 iterations in 1561 seconds.

This is mostly due to the fact that the average column sparsity of Hd is very low (0.418).
The convergence plot in Figure 4-5 shows a gradual decline of the cost function value and
residual of the data with the reconstructed factorization. The sum of the regularization term
stays approximately equal during the optimization. This particular simulation converged in
4280 iterations after 1561 seconds. The simulation time is strongly dependent on the random
initialization of the factorization matrices.
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We can test the added value of using more input images by using a ground truth data set
with additional input sub-images with different illumination colors. We now use the same
synthetic data set as before, with two added sub-image with different illumination colors.

Figure 4-6: Results for synthetic data set as input, with five input images and R = 3, ρs = 1
and ρd = 3. The intensity of individual images is scaled for contrast.

The results in Figure 4-6 show only a slight improvement in reconstruction of the diffuse
image. The SSIM index is somewhat higher and MSE now equals 0.009. We observe that
adding more input images does not improve the results significantly, if the set of illumination
colors already illuminate all color channels. The algorithm converged in 2687 iterations after
1860 seconds. This indicates that the simulation time does not increase significantly when
using more input images. This is due to the fact that the amount of optimization variables
is independent of the number of input images.

In Section 3-2 it was mentioned that the specular- and diffuse regularization parameters, ρs

and ρd, should be carefully selected according to a number of properties of the data. To
test the sensitivity of the method to these two parameters, we run the same experiment as
in Figure 4-4 for several combinations of values for the two regularization parameters. The
resulting recovered diffuse image, together with performance metrics is shown in Figure 4-7.
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Figure 4-7: Recovered diffuse image (WdHd) for different combinations of the specular- and
diffuse regularization parameters, (ρs, ρd). Additionally, the Structural Similarity Index (SSIM),
Mean Squared Error (MSE) and average column sparsity of Hd are given.

From Figure 4-7 we observe that the recovered diffuse image is sensitive to the regularization
parameters. The magnitude of the the regularization parameters both should match the noise
present in the image. For this data set we know the mean of the noise signal is equal to 2.55,
and therefore values for the regularization parameter in this order of magnitude are suitable.
However, a distinction between specular- and diffuse regularization was implemented. This
implies the ratio of the specular- and diffuse regularization parameter values should represent
the ratio or sparsity of specular and diffuse reflection component present in the data. From
the results in Figure 4-7, we observe that the ratio, ρs/ρd ≈ 1/3, is suitable. Namely, for
(ρs = 3, ρd = 1) and (ρs = 3, ρd = 3) the algorithm prefers the diffuse reflection components
and falsely explains some of the specular reflection component to be diffuse. Visually, the pa-
rameter set (ρs = 3, ρd = 9) seems to give a better result, because the artefact in the location
of the specular highlight has disappeared. However, the result is noisy and the diffuse color
estimation is less accurate, which is indicated by the deteriorated values for the MSE and
SSIM. By increasing the diffuse regularization parameter to ρd = 9, we indeed can confirm
the ideal model is followed more accurately. Now the average column sparsity of Hd equals
0.764.

Another test, where only one synthetic input image with blue illumination is used, failed to
give a good reconstruction of the diffuse image. Mainly, because there was effectively only
information available on the blue color channel. It is thus important to select illumination
colors that together cover all color channels and of which at least one is dissimilar from the
diffuse colors.

4-2-2 Results for non-dielectric data sets

In this section the proposed method from Chapter 3 is tested on non-dielectric data sets. The
data images are acquired in a lab environment as described in Section 4-1-1.

Figure 4-8 shows the first data set with images of an aluminum plate with profile, used
to test the method. The images are very dark, this is because the relative intensity of the
specular highlights are much larger compared to the mean diffuse signal in the image. For
clarity all results will be shown with gamma correction, γ = 2, and the intensity is scaled for
maximum contrast.
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Figure 4-8: Acquired data images of a non-dielectric aluminum plate with profile. Both the
original images and gamma corrected (γ = 2) data is shown. Multiple specular highlights appear
on the edges of the profile and one larger specular highlight is present on the main surface. The
location of specular highlights are indicated in the green sub-image. The images are scaled for
maximum contrast.

For the simulation we first fix the parameters of the method. Again we set the convergence
threshold to ε = exp(−15). The data images are of a single object with a single color so we
let R = 1. The regularization parameters are empirically set to the following values: ρs = 2
and ρd = 1. The results are given in Figure 4-9 and Figure 4-10.

The first thing we can observe from Figure 4-9 is that the algorithm is able to accurately
reconstruct the data input images, by comparing it with the gamma corrected images in Fig-
ure 4-8. In the specular image estimate, we observe that the algorithm has identified the
large specular highlight on the main plate surface, and also the smaller highlights on the
profile edges are identified. Looking at the projected diffuse image estimate in Figure 4-9,
we observe that the a significant portion of the specular reflection components have been
eliminated. An exact quantification of this cannot be given, because there is no ground truth
data available on the individual reflection components. In the brightest part of the larger
specular highlight, the diffuse image estimate shows zero intensity pixel value and thus fails
to give a correct reconstruction. This is caused by the fact that here the data images have
saturated pixel values, and thus the reflection model and optimization algorithm fails. An
indication of the accuracy of the diffuse color estimation can be given by determining the
diffuse color in an alternate manner with a multi-image method as described in Section 4-1-2.
We find: TRUE Wd = [0.429, 0.523, 0.736]T , which is close to the estimated diffuse color,
Wd = [0.522, 0.464, 0.716]T .
The convergence results are shown in Figure 4-10, they indicate a faster convergence com-
pared to the synthetic data set, caused by the fact that we now only have one unknown diffuse
color, R = 1. But again the convergence speed strongly depends on the random initialization
of the matrix factorization.
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Figure 4-9: Results for input data images of a non-dielectric aluminum profile plate, with pa-
rameters set to R = 1, ρs = 2 and ρd = 1. The data is reconstructed through the summation of
a specular image and projected diffuse image estimate. The specular estimate image indicates a
correct localization of the specular highlights in the data.

Figure 4-10: Left: Reconstructed diffuse image (WdHd) of the non-dielectric aluminum profile,
corresponding to the results in Figure 4-9. The image is gamma corrected (γ = 2) and scaled
for maximum contrast. Right: Double logarithmic convergence results for the data set of a non-
dielectric profile plate. The convergence criteria is reached after 294 iterations in 598 seconds.

Next we test the proposed method on a data set with images of a golden colored achromatic
non-dielectric messing object in front of a black background. This experiment will show
if the method is able to identify achromatic colors. Moreover, it is investigated whether two
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additional input sub-images compared to the previous data set, will improve the results. The
acquired data set is given in Figure 4-11. Note, that these are images of a curved object. This
implies that for the area’s in the image where the surface normal does not point towards the
camera, the assumptions made in the Dichromatic Reflection Model (DRM) do not hold.

Figure 4-11: Acquired data images of a non-dielectric messing object. Both the original data
images and gamma corrected (γ = 2) data are shown and scaled for maximum contrast. A large
single specular highlight can be distinguished on each of the sub-images, together with a weaker
specular highlight where the surface normal of the object is in the direction of the camera.

Because there are two color regions expected in the recovered diffuse image, we set R = 2.
The regularization parameters are empirically determined and set to the following values:
ρs = 5 and ρd = 2. Again the convergence threshold is the same, ε = exp(−15). The results
are given in Figure 4-12 and Figure 4-13.
The first thing we observe from these results is that we obtain correct localization of the spec-
ular highlights. In Figure 4-12 the specular image estimate, correctly identifies the specular
reflection component and eliminates this at least partially. Again we cannot confirm the accu-
racy of the recovered diffuse image estimate, because there is no ground truth available. How-
ever, we can retrieve the diffuse color by using a data set with white illumination all from dif-
ferent directions, as described in Section 4-1-2. We find the TRUE Wd = [0.633, 0.646, 0.425],
while the estimated diffuse color of the object is equal to: Wd = [0.653, 0.614, 0.444]. This
does confirm the diffuse color is accurately estimated. The recovery of the diffuse color is
better compared to the data set with the aluminum profile plate, because now we have two
additional input images and here the specular reflection component is more sparse compared
to the other data set. The convergence plot in Figure 4-13 shows a continuous decrease in the
specular regularization term, this is caused by the fact that the ratio between the specular-
and diffuse regularization term is too large.

In Figure 4-14 a selection of the factorization coefficients for the reconstructed specular- and
diffuse reflection components are given. We observe that at the specular highlight as the
brightness increases and the color changes, the pixel values are explained as a combination of
a specular- and diffuse reflection component. Especially at the peak of the specular highlight
(row 410 to 420), we observe that a relatively larger fraction is explained as a specular reflec-
tion component. However, the overall ratio of specular- and diffuse coefficients is still smaller
than expected for non-dielectric materials. This can be caused by the fact that the specular
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Figure 4-12: Results for input data images of a non-dielectric messing object, with parameters
set to R = 2, ρs = 5 and ρd = 2. The data is reconstructed through the summation of a specular-
and projected diffuse image estimate. The images are with gamma correction (γ = 2) and scaled
for maximum contrast.

Figure 4-13: Left: Reconstructed diffuse image (WdHd) of the non-dielectric messing object,
corresponding to the results in Figure 4-12, image is with gamma correction (γ = 2) and scaled
for maximum contrast. The dashed red line indicates the pixels for which the specular- and diffuse
coefficients are given in Figure 4-14. Right: Double logarithmic convergence results for the data
set of a non-dielectric profile plate. The convergence criteria is reached after 205 iterations in
403 seconds.
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Figure 4-14: The reconstructed specular coefficients (from Hs) and object color diffuse coef-
ficients (from Hd) for the pixels indicated by the dashed line on the left image in Figure 4-13
located at the specular highlight.

.

regularization parameter, ρs, has been set relatively high and also due to small errors in the
determination of the known specular color vectors.

4-3 Discussion

From the results described in Section 4-2 we can make a number of general observations.
The proposed multi-image optimization based specular reflection removal method is able to
accurately recover the diffuse image from a synthetic data set that is generated conform the
proposed reflection model. For a data set with real input images of non-dielectric objects
the proposed method is able to accurately identify the locations of specular highlights. The
specular reflection component is at least partially eliminated in the recovered diffuse image.
The accuracy of the reconstructed image cannot be confirmed, because there is no ground
truth data available. Especially with a larger number of input images with differently colored
illumination, the diffuse color is estimated correctly.
The performance of the method strongly depends on the selection of the right values for the
specular- and diffuse regularization parameters, ρs and ρd, respectively. Both parameters
should be selected according to the noise present in the data, the sparsity of the respective
reflection component and the ratio between both parameters. Additionally the diffuse reg-
ularization parameter should be selected with a larger value in order to enforce the column
sparsity of the diffuse coefficients in Hd. Finding such a combination of parameters suitable
for all pixels in the image has proven to be difficult, leading to sub-optimal values for the
estimation of the reflection components in individual pixels.
The acquired data-sets with real images of non-dielectric objects typically have a relatively
weak diffuse reflection magnitude relative to the specular reflection magnitude at the specular
highlights. And because for these data sets saturation is avoided, the signal-to-noise ratio for
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the diffuse reflection component is small. Additionally because there is no available ground
truth data, it can not be validated to what degree the acquired data sets are conform the
proposed reflection model.
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Chapter 5

Conclusion

In this chapter the thesis is concluded. The main findings and contribution will be summarized
in Section 5-1. In Section 5-2 recommendations are given for further improvements of specular
reflection removal from non-dielectric materials.

5-1 Summary of study

Specular highlights can appear on any illuminated surface. The presence of these highlights
can obscure details, like color and texture information of the surface. Certain computer vi-
sion applications that aim to identify properties of a surface from photographed images, suffer
from specular highlights. Especially non-dielectric materials present large and bright specular
highlights. Governed by the Fresnel equations the reflection components of these materials
are particularly dependent on the imaging geometry and spectral properties.
To solve this problem a variety of specular reflection removal methods have been developed.
Optimization based and color-space analysis based single-image methods have shown to be
efficient and effective in the elimination of the specular reflection components from images of
dielectric objects. A sparse non-negative matrix factorization of the input images, is useful in
specular reflection removal methods because of its characteristic representation of the data.
Single-image methods however, are not generally applicable to images with reflections from
non-dielectric materials, because of the reflection properties of this material type. Multi-
image methods have been successfully applied for the removal of specular reflections from
non-dielectric material, however typically these method require a complex imaging setup.

A new reflection model is proposed, based on the Dichromatic Reflection Model (DRM). The
model allows for colored illumination, by writing the data pixel values as a sum of specular
term and a projected diffuse term. The model can be written for all pixels simultaneously as
a non-negative matrix factorization. Images of the same scene but with a different illumina-
tion color, can be modeled as a projection of the specular intensity profile and diffuse image,
which are identical for each image. This implies multiple images can be represented with a
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significant reduction of the dimensionality of the data.
A multi-image optimization based specular reflection removal method is proposed based on
the new model. The specular reflection component is eliminated by minimizing the residual
between the model and data. A regularization term on the intensity coefficients is added
to the cost function, such that possible noise in the data is ignored and a sparse solution
is obtained. The distinction between specular- and diffuse regularization is made, such that
the sparsity in the solution of the respective reflection components can be individually tuned
to the data. The ill-posed bi-convex optimization problem is solved, using the alternating
optimization of two constrained quadratic optimization problems.

The proposed method is evaluated by experiments on a number of data sets. A synthetic
data set is generated exactly conform the proposed model, for which the ground truth of the
reflection components is known. Real data sets of non-dielectric samples is acquired through
the design of an imaging setup in a lab environment. The imaging setup is such that reflection
components in the photographed images, closely resemble the reflection model.
The performance of the specular reflection removal method on synthetic data is evaluated by
computing the Mean Squared Error (MSE) and Structural Similarity Index (SSIM) of the
estimated diffuse image. The results for the synthetic data indicate that, assuming the data
is indeed conform the proposed model, the diffuse image can be accurately recovered (i.e. the
specular reflection component is successfully eliminated). The synthetic data set is used to test
the sensitivity of the method to the specular- and diffuse regularization parameters. The result
show that a good selection for these parameters is difficult to find. The optimal parameter
selection depends on the noise in the data, the sparsity and magnitude of the respective
specular- and diffuse reflection components, but the ratio between the two parameters also
strongly affects the results.
The results of the proposed method on real images of non-dielectric objects indicate that the
algorithm is able to accurately determine the intrinsic diffuse color of the object. Because there
is no ground-truth available, the accuracy of the recovered diffuse image cannot be quantified.
However. the results show that at the location of specular highlights, significant parts of the
pixel values are explained as a specular reflection component. This allows us to conclude
that the developed method is able to successfully locate and at least partially separate the
specular reflection component from a small set of images of a non-dielectric object. Again
the performance of the method proves sensitive to the selection of regularization parameters.
Finding a good combination of parameters is especially difficult for real non-dielectric data
sets, because typically the average diffuse signal is very weak compared to the intensity at
the specular highlights.

5-2 Outlook

We can propose a number of recommendations for future improvements of the developed
method and multi-image optimization based specular reflection removal from non-dielectric
materials in general.
Firstly, the available information in the acquired data images may be improved by adding
an ambient illumination source. This would improve the magnitude of the diffuse reflection
component with respect to the noise- and specular signal. Currently this does not fit with the
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formulation and assumption of the reflection model. But it should be investigated whether
the model can be extended to account for (colored) ambient illumination. Additionally, we
can consider acquiring data with a hyperspectral camera. Using a spectral representation
of the data, the specular- and diffuse reflection components may be separated more easily
according to their respective spectral distributions.
The regularization parameters are currently selected based on global properties of the input
data, which leads to sub-optimal parameters for the identification of the reflection coefficients
of individual pixels. This may be improved by defining two different set of regularization
parameters for pixels with and without a suspected specular reflection component. Alterna-
tively, the regularization parameter can be scaled depending on the local pixel intensities.
The Alternating Direction Method of Multipliers (ADMM) may also prove useful in efficiently
solving the sparse Non-negative Matrix Factorization (NMF) optimization problem. In [6]
it is stated that ADMM can be used for large-scale bi-lateral problems, and is able to deal
with non-linear constraints. It should be investigated whether additional prior knowledge on
specular highlights can be added as constraints within this optimization framework.
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Glossary

List of Acronyms

DCSC Delft Center for Systems and Control
NMF Non-negative Matrix Factorization
ADMM Alternating Direction Method of Multipliers
N4CI Numerics for Control and Identification
DRM Dichromatic Reflection Model
MSE Mean Squared Error
SSIM Structural Similarity Index

List of Symbols

ε Convergence threshold value
λ Wavelength of light
θi Incident angle with respect to the surface normal
θr Specular reflection angle with respect to the surface normal
θt Transmittance angle with respect to the surface normal
ρ Regularization parameter

id Normalized diffuse color vector
ip RGB pixel value
is Normalized specular color vector
R Fresnel ratio
H Coefficient factorization matrix in NMF
Hd Diffuse coefficient factorization matrix
Hs Specular coefficent factorization matrix
L Observer direction

Master of Science Thesis J. W. Bonekamp



48 Glossary

M Non-negative data matrix
Mi Reconstruction of the i’th input image
N Total pixel amount
R Amount of diffuse colors
W Basis vector factorization matrix in NMF
Wd Normalized diffuse color factorization matrix
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