
 
 

Delft University of Technology

Towards smarter MILP solvers: A data-driven approach to branch-and-bound

Scavuzzo Montaña, L.V.

DOI
10.4233/uuid:8e239ff5-96ba-451b-a1b1-138eb139c390
Publication date
2024
Document Version
Final published version
Citation (APA)
Scavuzzo Montaña, L. V. (2024). Towards smarter MILP solvers: A data-driven approach to branch-and-
bound. [Dissertation (TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:8e239ff5-96ba-
451b-a1b1-138eb139c390

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:8e239ff5-96ba-451b-a1b1-138eb139c390
https://doi.org/10.4233/uuid:8e239ff5-96ba-451b-a1b1-138eb139c390
https://doi.org/10.4233/uuid:8e239ff5-96ba-451b-a1b1-138eb139c390


TOWARDS SMARTER MILP SOLVERS: A
DATA-DRIVEN APPROACH TO BRANCH-AND-BOUND





TOWARDS SMARTER MILP SOLVERS: A
DATA-DRIVEN APPROACH TO BRANCH-AND-BOUND

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus Prof. dr. ir. T.H.J.J. van der Hagen,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op donderdag 30, januari 2025 om 12:30 uur

door

Lara Victoria SCAVUZZO MONTAÑA

Master of Science in Applied Mathematics,
Technische Universiteit Delft,

geboren te Buenos Aires, Argentina.



Dit proefschrift is goedgekeurd door de

promotor: Prof. dr. ir. K.I. Aardal

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof. dr. ir. K.I. Aardal, Technische Universiteit Delft, promotor
Dr. N. Yorke-Smith, Technische Universiteit Delft, copromotor

Onafhankelijke leden:
Prof. dr. S.I. Birbil Universiteit van Amsterdam
Dr. C. Hojny Technische Universiteit Eindhoven
Dr. P. Le Bodic Monash University
Prof. dr. M.M. de Weerdt, Technische Universiteit Delft

Overige leden:
Prof. dr. A. Lodi Cornell Tech
Prof. dr. D.C. Gijswijt Technische Universiteit Delft, reservelid

Het onderzoek beschreven in dit proefschrift is mede gefinancierd door de
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), onder
project OCENW.GROOT.2019.015.

Keywords: Integer Programming, Branch-and-bound, Machine Learning.

Copyright © 2024 by L. Scavuzzo

ISBN 000-00-0000-000-0

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/


To all the cats of Delft, whatever
their secret professions may be.





CONTENTS

Summary xi

Samenvatting xiii

Notation xv

1 Introduction 1
1.1 Goals of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Structure of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Introduction to MILP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.1 Mixed Integer Linear Programming . . . . . . . . . . . . . . . . . 2
1.3.2 The Branch-and-Bound algorithm . . . . . . . . . . . . . . . . . . 3
1.3.3 MILP solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.4 Evaluation metrics for MILP . . . . . . . . . . . . . . . . . . . . . 6

1.4 A brief introduction to Machine Learning . . . . . . . . . . . . . . . . . . 7
1.4.1 Mapping features to predictions . . . . . . . . . . . . . . . . . . . 9
1.4.2 Elements of the learning process . . . . . . . . . . . . . . . . . . 10

2 Machine Learning assisted B&B 13
2.1 Learning tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Primal heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 Branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.3 Cutting planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.4 Node selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.1.5 Configuration decisions . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Problem representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.1 The Bipartite Graph Representation . . . . . . . . . . . . . . . . . 31
2.2.2 Representing Variables Individually . . . . . . . . . . . . . . . . . 31
2.2.3 Representing Constraints Individually . . . . . . . . . . . . . . . . 33
2.2.4 Representing a (sub-)MILP. . . . . . . . . . . . . . . . . . . . . . 33
2.2.5 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Datasets and software. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Conclusions, Perspective and Challenges . . . . . . . . . . . . . . . . . . 36

3 Expert-free learning to branch 43
3.1 Classical branching rules . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2 Learning to branch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 The tree MDP formulation . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.1 Tree MDPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

vii



viii CONTENTS

3.3.2 The branching tree MDP . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.3 Efficiency of tree MDP . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.4 Theoretical limitations . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.5 Connections with hierarchical RL . . . . . . . . . . . . . . . . . . 53

3.4 Experimental validation. . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.1 Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Conclusions and future directions . . . . . . . . . . . . . . . . . . . . . 57
3.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.6.2 Extended results . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.6.3 Instance collections . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Lattice reformulations for IP 65
4.1 Some preliminaries on lattices . . . . . . . . . . . . . . . . . . . . . . . 66
4.2 Non-standard algorithms for IP . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.1 Disjunction-finding algorithms . . . . . . . . . . . . . . . . . . . 68
4.2.2 Lenstra’s algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.3 The Lovasz-Scarf algorithm . . . . . . . . . . . . . . . . . . . . . 70

4.3 Lattice-based reformulations . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.1 The AHL reformulation . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.2 The KP reformulation . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.3 The reformulated volume . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Computational study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.4.1 Instances and setup . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.4.2 Experiments with single-row instances . . . . . . . . . . . . . . . 77
4.4.3 Multi-row instances . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4.4 Comparison with Lovász-Scarf . . . . . . . . . . . . . . . . . . . . 81
4.4.5 Computational experiments with vanilla SCIP . . . . . . . . . . . . 82
4.4.6 Computational experiments on MIPLIB . . . . . . . . . . . . . . . 82
4.4.7 Measuring potential . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.6.1 Equivalence between AHL and KP in the full-dimensional case . . . 89
4.6.2 Instance models . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.6.3 Extended results . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Learning optimal objective values for MILP 99
5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3.1 Optimal value prediction. . . . . . . . . . . . . . . . . . . . . . . 103
5.3.2 Prediction of phase transition . . . . . . . . . . . . . . . . . . . . 104

5.4 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.4.1 Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



CONTENTS ix

5.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6 Conclusions 113

Bibliography 115

Acknowledgements 127

Curriculum Vitæ 129

List of Publications 131





SUMMARY

The available technology to solve Mixed Integer Linear Programs (MILPs) has experi-
enced dramatic improvements in the past two decades. Pushing this algorithmic progress
further is essential for solving even more complex optimization problems that arise in
practice. This thesis examines various methods to enhance Branch-and-Bound (B&B)
based MILP solvers, focusing on areas such as branching and Machine Learning (ML)
assisted rules. Through our analysis of current methodologies and the introduction of
novel techniques, this thesis contributes to the development of more efficient and adap-
tive MILP solvers. We divide the discussion into four chapters, which are preceded by an
introduction to the topics of this thesis (Chapter 1).

Chapter 2 explores the synergy between Machine Learning and B&B-based MILP
solvers. In particular, we are interested in the case where these two technologies co-
operate, enhancing rather than substituting each other. We survey the literature that
falls into this category by first defining a number of abstract learning tasks where ML
can play a key role. We point out methodological trends both in terms of how to frame
and to solve the learning tasks. Further, we highlight some core directions and choices
in terms of problem representation, benchmarks and software.

Chapter 3 dives into the problem of variable selection, i.e., the problem of choos-
ing a variable that will be used for branching. We start with a discussion of the current
challenges faced by some popular methods for branching, both classical and ML-based.
We then propose our new formulation, the tree Markov Decision Process (tree MDP),
which is a generalization of the well-known MDP framework. We show that the variable
selection problem can be cast as a tree MDP and that this allows us to more efficiently
learn a variable selection strategy without the need for expert demonstrations.

Chapter 4 also addresses branching but from a broader perspective. We study lattice-
based reformulations of the feasible set that transform the shape and sometimes also
the dimension of the problem. The variables in the reformulation are hyperplanes in the
original space, hence can be interpreted as a way to generate general branching direc-
tions for the original problem. We study the reformulations from different perspectives,
trying to uncover why and when the reformulations are effective. Our results show that
these techniques have a wide applicability and high potential for speeding-up the solu-
tion of difficult Integer Programs.

Chapter 5 takes up again the perspective of ML-enhanced MILP solvers. This time,
we ask a simple question: can we predict the optimal objective value of an MILP? The
answer to this question is of great relevance to MILP solving, with several sub-routines
and solver strategies having the potential to benefit from such a prediction. We propose

xi



xii SUMMARY

both a static and a dynamic method which outperform the previously proposed models.
These results open the door for more dynamically configurable solvers that automati-
cally adapt their strategy as more information becomes available.



SAMENVATTING

De beschikbare technologie om Mixed Integer Linear Programs (MILPs) op te lossen
is de afgelopen twintig jaar enorm verbeterd. Het doorzetten van deze algoritmische
vooruitgang is essentieel voor het oplossen van nog complexere optimalisatieproble-
men die in de praktijk voorkomen. Deze dissertatie onderzoekt verschillende methoden
om Branch-and-Bound (B&B) gebaseerde MILP oplossers te verbeteren, met de nadruk
op gebieden zoals branching en regels met ondersteuning van Machine Learning (ML).
Door onze analyse van huidige methodologieën en de introductie van nieuwe technie-
ken, draagt dit proefschrift bij aan de ontwikkeling van efficiëntere en adaptievere MILP
solvers. We verdelen de discussie in vier hoofdstukken, die worden voorafgegaan door
een inleiding op de onderwerpen van dit proefschrift (Hoofdstuk 1).

Hoofdstuk 2 verkent de synergie tussen Machine Learning en MILP solvers op basis
van B&B. In het bijzonder zijn we geïnteresseerd in het geval waarin deze twee tech-
nologieën samenwerken en elkaar versterken in plaats van vervangen. We geven een
overzicht van de literatuur die in deze categorie valt door eerst een aantal abstracte leer-
taken te definiëren waarbij ML een sleutelrol kan spelen. We wijzen op methodologische
trends, zowel wat betreft het kader als het oplossen van de leertaken. Verder belichten
we enkele belangrijke richtingen en keuzes in termen van probleemrepresentatie, ben-
chmarks en software.

Hoofdstuk 3 duikt in het probleem van variabelenselectie, d.w.z. het probleem van
het kiezen van een variabele die gebruikt zal worden voor branching. We beginnen met
een bespreking van de huidige uitdagingen van enkele populaire methoden voor bran-
ching, zowel klassiek als ML-gebaseerd. Vervolgens stellen we onze nieuwe formulering
voor, het tree Markov Decision Process (tree MDP), dat een veralgemening is van het be-
kende MDP raamwerk. We laten zien dat het variabelenselectieprobleem kan worden
geformuleerd als een tree MDP en dat dit ons in staat stelt om efficiënter een variabelen-
selectiestrategie te leren zonder de noodzaak van expertdemonstraties.

Hoofdstuk 4 gaat ook in op branching, maar vanuit een breder perspectief. We be-
studeren op roosters gebaseerde herformuleringen van de haalbare verzameling die de
vorm en soms ook de dimensie van het probleem transformeren. De variabelen in de
herformulering zijn hypervlakken in de oorspronkelijke ruimte, en kunnen dus geïnter-
preteerd worden als een manier om algemene branchingrichtingen voor het oorspron-
kelijke probleem te genereren. We bestuderen de herformuleringen vanuit verschillende
perspectieven en proberen te ontdekken waarom en wanneer de herformuleringen ef-
fectief zijn. Onze resultaten tonen aan dat deze technieken breed toepasbaar zijn en een
groot potentieel hebben om de oplossing van moeilijke integer programma’s te versnel-
len.

xiii



xiv SAMENVATTING

Hoofdstuk 5 neemt het perspectief van ML-ondersteunde MILP solvers weer op. Deze
keer stellen we een eenvoudige vraag: kunnen we de optimale doelfunctiewaarde van
een MILP voorspellen? Het antwoord op deze vraag is van groot belang voor het oplossen
van MILP’s, waarbij verschillende subroutines en oplossingsstrategieën het potentieel
hebben om te profiteren van een dergelijke voorspelling. We stellen zowel een statische
als een dynamische methode voor die beter presteren dan de eerder voorgestelde mo-
dellen. Deze resultaten openen de deur voor meer dynamisch configureerbare solvers
die hun strategie automatisch aanpassen als er meer informatie beschikbaar komt.



NOTATION

Vectors are denoted with lowercase in bold: x .

Matrices are denoted with uppercase in bold: A.

Elements of matrices and vectors are denoted with a subscript: Ai j , xi .

Euclidean norm: ||x || :=
√∑n

i=1 x2
i .

Vector multiplication: for two vectors x and y ∈ Rn we use both the notation xTy and
〈x , y〉 to denote the vector multiplication

∑n
i=1 xi yi .

An indexed set of vectors: {x1, . . . , xK } = {x i }K
i=1.

Columns of a matrix: A = [ai ]K
i=1

Kernel of a matrix A: ker A

Rank of a matrix A: rk A

Standard basis vectors: e i is a vector whose coordinates are all zero, except the i-th co-
ordinate which takes value one.

Span of vectors: span{x1, x2, . . . , xK } = {y ∈Rn | y =∑K
i=1αi x i ,αi ∈R}

Orthogonal complement of a subspace W ⊆Rn : W ⊥ = {x |xTy = 0 for all y ∈W }

Independence of two random variables X and Y : X ⊥⊥ Y

[n] := {1, ...,n} is the set of integer numbers from 1 to n.

∝ means “proportional to".

xv





1
INTRODUCTION

1.1. GOALS OF THIS THESIS
Mixed Integer Linear Programs (MILPs) offer a powerful modeling tool for optimiza-
tion problems with a combinatorial nature, and are therefore extensively used in many
real-world applications [123]. Since the advent of the cutting-plane algorithm [69] and
the branch-and-bound algorithm [97, 45], we have witnessed enormous advances in
our capabilities to solve MILPs to optimality. Undoubtedly, improvements in the avail-
able hardware have played a key role, but algorithmic advancements have been equally
pivotal. Most commercial solvers use the branch-and-bound algorithm with cuts (also
known as branch-and-cut). This means that the backbone of MILP solving is the same
as it was back in the 60s, when the field was just starting. Decades of research have
built upon that, with remarkable advances in, e.g., cutting plane generation, domain re-
duction techniques and, notably, smart decision-making rules. An implementation of
the branch-and-bound (or branch-and-cut) algorithm requires, in fact, making a great
number of choices. From the node processing order, to the branching strategy, these
choices have a critical impact in the performance of the algorithm [7]. This thesis revis-
its different aspects of decision-making within solvers. In particular, the contributions
of this thesis can be summarized in the following four perspectives.

• Identification of decision-making tasks for machine learning. We revisit differ-
ent components of the solver, evaluating the potential of machine learning tools
for aiding the decision-making process. We present the advances in this intersec-
tion, providing a methodological overview as well as our own contributions.

• Advances in branching rules. We present our contribution to branching rules. We
study the problem of learning to branch without expert demonstrations, as well as
different methodologies for branching on general disjunctions.

• Reflection on solver metrics. The process of solving MILPs generates plenty of
data. There is a need to better understand how to make effective use of this in-

1



1

2 1. INTRODUCTION

formation. In this line, we study different MILP representation methods that cu-
rate this data in a way that a machine learning model can use. We further study a
number of solver metrics that can be used to make predictions about the optimal
objective value.

• Technological contributions. The aim of this thesis is to also provide accessi-
ble code and resources that contribute to the growing community that creates the
tools for development, testing and deployment of MILP solvers.

1.2. STRUCTURE OF THIS THESIS
We start with an introduction to MILP and MILP solvers (Section 1.3 of this chapter),
which also introduces important notation that will be used throughout the thesis. Also
in this chapter, Section 1.4 provides a short introduction to concepts regarding machine
learning methods that will be of relevance to the thesis. Chapter 2 dives into different
decision-making tasks within MILP solving, and how they can be addressed from a ma-
chine learning perspective. Chapter 3 presents our methodology to learning branch-
ing rules without demonstrations. Chapter 4 also addresses the problem of branching,
but with a wider viewpoint: we study different methodologies that allow us to generate
branching directions that are not necessarily single variables. Finally, Chapter 5 presents
our approach to predicting optimal objective values, with the aim of contributing to-
wards smarter, dynamically configurable MILP solvers.

1.3. INTRODUCTION TO MILP
1.3.1. MIXED INTEGER LINEAR PROGRAMMING
Let us start by formally defining the MILP formulation. We are given a matrix A ∈Qm×n ,
vectors c ∈ Qn and b ∈ Qm , and a partition (A ,B,C ) of the variable index set [n]. A
Mixed Integer Linear Program is the problem of finding

z∗ = min c
T

x

subject to Ax ≥ b,

x j ∈Z≥0 ∀ j ∈A ,

x j ∈ {0,1} ∀ j ∈B,

x j ≥ 0 ∀ j ∈C .

(1.1)

We call z∗ the optimal value, and we say x∗ is an optimal solution if c
T

x∗ = z∗. We
write I := A ∪B to denote the set of integer and binary variables. When C = ;, and
with a slight abuse of notation, we speak of Integer Programming (IP). An MILP is said to
be mixed-binary if A = ; and binary if A = C = ;. Relaxing the integrality constraints
for variables in I yields a Linear Program (LP), known as the LP relaxation of the MILP.

The feasible set of (1.1) is defined as

X := {
x ∈Rn

≥0 | Ax ≥ b, x j ∈Z≥0 ∀ j ∈A , x j ∈ {0,1} ∀ j ∈B
}

. (1.2)



1.3. INTRODUCTION TO MILP

1

3

Table 1.1: Summary of the B&B notation.

z∗ optimal value.
x∗ optimal solution.

zLP LP value (global).
xLP LP solution (global).
zLPi LP value of node i .
xLPi LP solution of node i .

z̄ primal bound.
x̄ incumbent solution.
z dual bound.

The integer variables are key to the wide applicability of the MILP model, since they
allow practitioners to model indivisible entities or yes/no decisions. At the same time,
it is because of the integrality constraints that the decision problem related to (1.1) is
in N P [40]. Indeed, if we allow all variables to take continuous variables, the problem
becomes a Linear Program (LP) for which we have algorithms that are efficient in the-
ory and in practice [146, 153, 75]. This does not mean that MILPs cannot be solved. In
fact, MILPs of practical importance are routinely solved, and research in MILP solution
methods has fostered remarkable advances [7]. At the backbone of these solvers is the
branch-and-bound algorithm, which is the topic of the next section.

1.3.2. THE BRANCH-AND-BOUND ALGORITHM
The Branch-and-Bound (B&B) algorithm was first developed in the 1960s as a general
purpose algorithm for tackling discrete optimization problems [97, 45]. The core idea
behind it is the successive partition of the feasible set into smaller problems. This is
combined with the use of relaxations, which provide bounds that can be used to discard
unpromising sub-problems, thus avoiding complete enumeration. The key components
of the algorithm are explained in the following, and the algorithm as a whole is summa-
rized with pseudocode in Alg. 1. We note that this constitutes a textbook version of the
B&B algorithm, which we call vanilla B&B. In practice, the software dedicated to solv-
ing MILPs uses a plethora of specialized rules and additional components (which will be
mentioned in Section 1.3.3). A summary of the key terminology and notation introduced
in the current section can be found in Table 1.1.

The LP relaxation
Let P := {x ∈ Rn

≥0 | Ax ≥ b}. This is, we obtain P from the feasible set X by dropping the
integrality requirements. Since X ⊂ P , we have that the problem

minimize c
T

x

subject to x ∈ P
(1.3)

is a relaxation of (1.1). Problem (1.3) receives the name of LP relaxation. Solving (1.3),
which as mentioned above can be done efficiently, provides a lower bound to (1.1). In

other words, letting zLP := min{c
T

x | x ∈ P }, we have that zLP ≤ z∗.



1

4 1. INTRODUCTION

Branch...
Solving the LP relaxation of an MILP might yield a solution xLP that satisfies the integral-
ity constraints. However, this is not always the case. In general, there will be a variable
j ∈I such that xLP

j ∉Z. Notice that for any x ∈ X and j ∈I it is true that

x j ≤ ⌊xLP
j ⌋ or x j ≥ ⌈xLP

j ⌉ . (1.4)

These inequalities allow us to partition the feasible set into two subproblems (or branches),
whose LP-relaxations do not contain xLP

X1 = X ∩ {x |x j ≤ ⌊xLP
j ⌋} and X2 = X ∩ {x |x j ≥ ⌈xLP

j ⌉} .

This partitioning step is known as branching. It is also possible to split the problem us-
ing other types of inequalities, which will be discussed in Chapter 4. The B&B algorithm
recursively applies branching, thereby building a search tree. Each node in the tree has
an associated index i and an associated local sub-MILP, with a local LP solution xLPi and
associated LP value zLPi which acts as a local lower bound.

... and bound
The bounds zLPi obtained at each node of the tree play an important role in the B&B
algorithm. Most importantly, whenever a feasible solution x ∈ X is found, all nodes such

that zLPi ≥ c
T

x can be pruned, i.e., discarded. Indeed, if this is the case, any feasible

solution x ′ contained in that node will surely satisfy c
T

x ′ ≥ zLPi ≥ c
T

x , and therefore
cannot be better than x . This procedure avoids complete enumeration of the feasible
region. In practice, these bounds are used for a number of other purposes, such as node
selection.

The termination criterion
At any point during the search, the value of an integer feasible solution provides an upper
bound on z∗. The best, i.e., smallest, known upper bound value is called primal bound,
and we denote it by z̄. The corresponding best known feasible solution x̄ is called incum-
bent solution. Similarly, the bounds zLPi of unprocessed nodes can be used to obtain a
lower bound. In particular, z := mini :i unprocessed{zLPi } provides a lower bound on z∗
and is called dual bound. The B&B algorithm ends when all nodes have been processed,
when z̄ = z, or when another termination condition (e.g., timeout) applies.

1.3.3. MILP SOLVING

In the previous section, we described the basic principles of the B&B algorithm as im-
plemented in commercial MILP solvers, such as CPLEX [84], Gurobi [75] or Xpress [57],
as well as in academic solvers like SCIP [28]. In practice, the execution of the B&B algo-
rithm revolves around some key solver components that handle the different aspects of
the solving process. The most important components are preprocessing, the branching
rule, the cut management and the primal heuristics.



1.3. INTRODUCTION TO MILP

1

5

Algorithm 1 A (vanilla) Branch and Bound algorithm

Input: The root node N0 associated with the original MILP.

1: Initialization: L = {N0}, z̄ =+∞, x̄ =;
2: if L =; then return z̄ and x̄
3: end if
4: Choose Nk ∈L

5: L ←L \ {Nk }
6: Solve the LP relaxation of Nk

7: if infeasible then goto 2
8: end if
9: Let xLPk be the LP solution and zLPk the LP value

10: if zLPk ≥ z̄ then goto 2
11: end if
12: # here we must have zLPk < z̄
13: if xLPk is integer feasible then
14: z̄ ← zLPk

15: x̄ ← xLPk

16: else branch:
17: Choose i ∈ I such that xLPk

i ∉Z.
18: Split Nk into N+ and N− using the inequalities in Eq 1.4 on variable i
19: L ←L ∪ {N+, N−}
20: end if
21: goto 2

Notice that we use the term ‘MILP solver’ rather than the, sometimes more common,
‘MIP solver’, being that we focus especially on the learning developed for solving mixed
integer linear programs, not including the nonlinear case. Nevertheless, most of the
technology is used in the solvers for both linear and nonlinear programs. Notably, ML
has also been applied to the nonlinear case (see, e.g., [30]).

Preprocessing. Most solvers implement a number of procedures that try to reduce the
size of the problem and its difficulty, for example by identifying substructures or ways
to strengthen the LP relaxation. These routines have been shown to be of crucial impor-
tance in speeding up the solution process. For an overview of these methods, together
with a computational analysis of their effectiveness see [10].

Branching and node selection. The procedure of dividing the feasible region is called
branching. There is a choice to be made with respect to which disjunction is used for
branching. The standard1 is to use single variable disjunctions of the type

x j ≤ ⌊xLP
j ⌋∨x j ≥ ⌈xLP

j ⌉ ,

1More generally, it is also possible to split the problem using multi-variable disjunctions (see, e.g., Karamanov
and Cornuéjols [85]).



1

6 1. INTRODUCTION

for some j ∈I such that xLP
j ∉Z. Still, the solution to the LP relaxation is likely to violate

more than one integrality constraint, which means there is more than one candidate
variable for branching. The so-called branching rule is the strategy that the solver uses
to select a variable for branching. Computational studies have shown that this choice
has a critical impact on solver performance [7]. Another important decision, though less
critical in terms of solver performance, is node selection, where the question is which
unprocessed B&B node to consider next.

Cutting planes. The LP relaxation can be strengthened by adding valid linear inequal-
ities. These are inequalities that cut off parts of the relaxation but do not exclude any
integer feasible solutions. This can, in principle, be done in any node of the B&B tree
representing a non-empty feasible region, yet it is standard practice to use cutting planes
more heavily, or even exclusively, at the root node. A B&B routine where cutting planes
are added in other nodes than the root node is typically referred to as branch-and-cut
[122]. There is a vast amount of knowledge on cutting planes (or cuts, for short) for MILP
(see, e.g., [118, 152, 40]) and most solvers implement a plethora of efficient separation2

algorithms. The wide availability of cuts can create an issue: while the addition of cuts
strengthens the local relaxation, a large amount of cuts can slow down LP solving and
lead to numerical instability [46]. For this reason, a judicious cut management strategy,
which includes separation, selection and removal, is of utmost importance.

Primal heuristics. We use the term primal heuristics to refer to routines that try to
find feasible solutions in a short amount of time without a success guarantee of doing so.
Relying solely on integer feasible LP relaxations to find solutions is most often inefficient.
Primal heuristics can provide good solutions early on and help bring down the primal
bound z̄ more effectively. As with cutting planes, primal heuristics can be used in any
node of the tree if desired.

1.3.4. EVALUATION METRICS FOR MILP
In this section, we define a number of metrics that quantify the progress of a branch-and-
bound run. We extend the notation just presented in Section 1.3.2 with a variable t ≥ 0
that represents solving time. We can then define the primal bound z̄(t ) : [0,Tmax] 7→ R

and the dual bound z(t ) : [0,Tmax] 7→R as functions of time. We define z̄(t ) to be infinity
if no integer feasible solution has yet been found at time t . We also make use of a small
tolerance value ϵ that is introduced for numerical stability, typically ϵ= 10−6. Notice that
many of these metrics make use of the optimal solution value z∗ and must therefore be
calculated a posteriori, once the instance is solved.

OPTIMALITY GAP

We define the optimality gap as

g (t ) :=
{

1 if no solution has been found yet or z̄(t ) · z(t ) < 0,
|z̄(t )−z(t )|

max{|z̄(t )|,|z(t )|,ϵ} otherwise.
(1.5)

2The term separation refers to the fact that a cutting plane has an effect when it separates a fractional solution
of an LP relaxation from the convex hull of (mixed) integer feasible solutions.



1.4. A BRIEF INTRODUCTION TO MACHINE LEARNING

1

7

Alternatively, one can track the integrality gap defined as g ′(t ) = |z∗− z(t )|.

PRIMAL GAP AND INTEGRAL

For a given feasible solution x , we define the primal gap γ(x) as

γ(x) :=


1 if z∗ ·c

T
x < 0,

|z∗−c
T

x |
max{|z∗|,|cT x |,ϵ}

otherwise.
(1.6)

We can define a primal gap function that maps the solving time to the primal gap
of the best solution found up until that point. In particular, denoting by x(t ) the best
solution found at time t , we define

p(t ) :=
{

1 if no solution has been found at time t ,

γ(x(t )) otherwise.
(1.7)

The primal integral [22] of a process with time limit Tmax > 0 is defined as

P (Tmax ) :=
∫ Tmax

0
p(t )d t . (1.8)

An extension of the primal integral is the confined primal integral [23] which inte-
grates over an exponentially dampened primal gap function pα(t ) = p(t )e t/α for some
α < 0. This puts emphasis on the early part of the solution process and avoids a high
dependence on the chosen time limit.

PRIMAL-DUAL INTEGRAL

One can extend the concept of primal integral to also account for improvements in the
dual bound. For this purpose, we integrate over the optimality gap instead of the primal
gap, to obtain

PD(Tmax ) :=
∫ Tmax

0
g (t )d t . (1.9)

1.4. A BRIEF INTRODUCTION TO MACHINE LEARNING
This section provides a brief introduction to the key concepts of machine learning that
are necessary in order to follow this survey. For a more detailed introduction to machine
learning we refer to Mitchell [115].

We are interested in the problem of constructing a mapping from some input data to
a desired output space. Let X be the input data space and let Y be the output space. It is
common to refer to X as the feature space, as it basically represents a set of descriptors
of the data samples. The output can be, for example, a prediction based on the input
data. The mapping will be constructed by choosing among a family of parameterized
functions f (·,θ) : X → Y with parameters θ ∈ Θ. In short, the objective is to optimize
the behavior of the mapping f (·,θ) by carefully tuning the parameters, based on sampled
observations and a progress metric of choice.

To formalize this, we follow standard practices in machine learning and distinguish
the following two settings.



1

8 1. INTRODUCTION

Supervised learning. The learner has access to a finite collection of pairs
{(Xi ,Yi )}N

i=1, where Xi ∈ X and Yi ∈ Y . Here, Yi is the desired output to input Xi . It is
common to refer to Yi as the ground truth or label. The goal is to minimize the loss func-
tion l : Y ×Y 7→R, a metric that represents the dissimilarity between the prediction and

the desired output. An example is the mean square error loss (MSE) 1
N

∑N
i=1

(
f (Xi ,θ)−

Yi

)2
. Since the true sample distribution is unknown, the loss is minimized with respect

to the observed samples

minimize
θ∈Θ

N∑
i=1

l (Yi , f (Xi ,θ)) .

Reinforcement learning. Reinforcement learning (RL) is defined in the context of se-
quential decision making, where actions have long-term consequences and the optimal
action is either unknown or too expensive to compute. The learning agent has no access
to the ground truth. This methodology is formalized under the framework of Markov
Decision Processes (MDPs), see Figure 1.1 for a diagram summarizing MDPs. In an MDP,
an agent interacts with an environment. The environment has an associated state repre-
senting its internal configuration. We denote the state space S . The agent acts on the
environment by choosing an action from the action space A using a policy π : S 7→ A .
The agent’s action changes the state of the environment, which corresponds to the tran-
sition to a new state. The transitioning mechanism is unknown to the agent.

Apart from the environment’s state, the agent can observe a reward function. We con-
sider the episodic case, where this interaction between agent and environment happens
sequentially in discrete time-steps until a terminal state is reached and the interaction
ends. A realization of such agent-environment interaction is called trajectory

τ := (S0, A0,R1, . . . ,ST−1, AT−1,RT ,ST ) ,

where T denotes the episode length. The goal of the agent is to find a policy that max-
imizes the expected cumulative reward, known as the value function and formally de-
fined as

Vπ := Eτ
[ T∑

t=1
γt−1Rt

]
, (1.10)

where γ ∈ [0,1] is the discount factor. This parameter controls the greediness of the pol-
icy: for γ close to zero, the agent will prioritize obtaining immediate rewards, whereas
for γ close to one the agent is encouraged to follow a strategy that pays off in the long
term. There is a variety of RL methodologies (see, e.g., [137]) that provide ways to train a
parametrized function π(s,θ) with the goal of maximizing Vπ. Notice that the trajectory
distribution depends both on the agent’s policy and the unknown transition mechanism
of the environment. For this reason, RL algorithms use trajectory sampling as a way to
estimate this expectation. Note that −Vπ can be seen as a loss function.

The MDP formulation can also be used in a supervised learning setting. In this case,
the reward signal is substituted by an expert that tells the agent what is the optimal ac-
tion. The expert is typically expensive to query, and for this reason we want the agent to
learn a policy that imitates the expert, but at a lower cost. This methodology is known as
imitation learning.



1.4. A BRIEF INTRODUCTION TO MACHINE LEARNING

1

9

Agent Environment

At

RtSt

St+1

Rt+1

Figure 1.1: Markov Decision Process

1.4.1. MAPPING FEATURES TO PREDICTIONS
A fundamental step in the design of an ML scheme is the choice of function space param-
eterized by θ. This is commonly known as the architecture, and it is independent of the
choice of learning methodology. Modern machine learning favors neural networks as the
computational representation and mechanism of f . A simple form of neural network is
the feed-forward neural network that consists of a series of linear transformations, each
followed by a non-linear transformation called an activation function.

Definition 1 (Feed-forward Neural Network). Let X ∈ Rd be the input data and let d L

be the desired output dimension. An L-layer feed-forward neural network is a function

f :Rd 7→Rd L
that defines a mapping from X to aL ∈Rd L

through the recursive relation

z l =W l al−1 +bl

al =σ(z l )

for l = 1, ...,L, where

• a0 = X , d 0 = d,

• W l ∈Rd l×d l−1
and bl ∈Rd l

are learnable parameters, and

• σ is the activation function.

Some common activation functions are the Rectified Linear Unit (ReLU) or the sig-
moid function, defined, respectively, as

σReLu(x) = max(0, x) ,

σs (x) = 1

1+e−x .

Notice that these functions are applied componentwise.
Another prominent architecture is the graph neural network (GNN) that will be of

particular interest to the discussion in Section 2.2. Consider an undirected graph G =
(V ,E) with vertex set V and edge set E . For a node v ∈ V , we denote N (v) ⊆ V the set of
neighbors of v .



1

10 1. INTRODUCTION

v

N1
N2

N3

ξt
N1

ξt
v ξt

N1 ξt
N2 ξt

N3

+ + =

ξt
v

comb

ξt+1
v

ξt
N2

ξt
N3

Figure 1.2: Embedding computation with a Graph Neural Network. Here, we use the abbreviation ξt
v for

ξt (G , v). To update the embedding ξt
v of node v at time t , the embeddings of neighboring nodes (N 1, N 2

and N 3) are added and then combined with the current embedding using the comb function. The result is
ξt+1

v .

Definition 2 (Graph embedding). A (d-dimensional) graph embedding ξ is a function
that takes in a graph G = (V ,E) and a node v ∈V and returns an element ξ(G , v) ∈Rd .

Definition 3 (Graph Neural Network). A Graph Neural Network is a function that takes as
input a graph G = (V ,E) and an initial embedding ξ0 and defines a recursive embedding
ξt over the vertices of G. This function is characterized by

• A combination function comb: R2d →Rd , and

• An update rule ξt+1(G , v) = comb
(
ξt (G , v),

∑
u∈N (v) ξ

t (G ,u)
)
.

Figure 1.2 depicts one iteration of this recursive embedding mechanism. It is com-
mon to refer to a single iteration as a message-passing operation. A possible combination
function is a feed-forward neural network over the two concatenated vectors. We can
extend graph embeddings to edges. This is, for e ∈ E , we can define ξ(G ,e) ∈ Rd . In the
presence of edge embeddings, we can redefine a GNN update rule as

ξt+1(G , v) = comb

(
ξt (G , v),

∑
u∈N (v)

aggr
(
ξt (G ,u),ξ(G , {u, v})

))
(1.11)

with an aggregation function aggr: R2d →Rd that handles the combination of node and
edge embeddings. An example of aggregation function is a simple component-wise sum.

1.4.2. ELEMENTS OF THE LEARNING PROCESS
The learning process is itself one of (inexact) optimization, termed training.

Optimization algorithms. The goal of the training process is to optimize the behavior
of the mapping f (·,θ) over the parameter space Θ with respect to the loss function. This
is done with algorithms for continuous non-convex optimization, which take gradient
descent as their base. Some examples of commonly-used algorithms are AdaGrad [52]
or Adam [92]. For reinforcement learning, the situation is more complex, in the sense



1.4. A BRIEF INTRODUCTION TO MACHINE LEARNING

1

11

that several learning paradigms are available for approximating the value function and
learning the optimal policy.3

Hyper-parameters. There is a number of additional parameters that influence the learn-
ing process that are not part of the parameters θ to be learned. These meta-level param-
eters are called hyper-parameters. Examples of hyper-parameters are the number of iter-
ations of the optimization algorithm, the learning rate, the size of the learned function,
etc. Tools exist to automatically tune hyper-parameters given a validation dataset (see
below).

Train, validation and test datasets. The data used to tune the parameters of mapping
f is called the training data. The data used to estimate the performance of f in an un-
biased way, and to tune the hyper-parameters, is called the validation data. Finally, the
data used to evaluate the final trained and optimised mapping is called the test set. These
sets must be disjoint.

Data collection. The learner makes use of the available training data to improve its
behavior. This data can be gathered all at once during an initial data collection phase,
before training starts. Alternatively, several data collection and training steps can be run
in an alternating fashion.

Overfitting. We say a learned model suffers from overfitting when the performance
on the training set is distinctively better than the performance on the test set. In other
words, the model is unable to generalise to data unseen during the training phase. This
phenomenon occurs when the chosen model is too large (in terms of number of param-
eters) for the task, or the amount of relevant data is too limited for the size of the model
being learned. See Goodfellow et al. [71] for a discussion of methods to avoid overfitting.

Online versus offline learning. Whenever we can distinguish separate training and ex-
ecution phases we speak of offline learning. That is, in offline learning, we perform the
data collection and learning as a separate, preliminary, once and for all process. After
that, the learned function is fixed and used without further tuning. This training phase
can be computationally costly but this cost is not reflected in the execution time (often
called inference time) of the algorithm, which is typically the metric of interest to the
end user. In fact, this can be seen as doing the heavy work upfront while alleviating the
effort at the moment of execution.

In contrast, in an online learning setting, data becomes available during execution.
Learning must therefore happen dynamically as each data sample becomes available,
and in parallel to the main process. This has the great advantage of generating a function
that is highly adaptive. On the other hand, it entails adding the cost of learning to the cost
of execution and further there is usually less available data.

3A general discussion of those paradigms is outside the scope of this thesis and special cases will be discussed
while surveying specific results from the literature, see Section 2.1.





2
MACHINE LEARNING ASSISTED

B&B

The B&B algorithm is the skeleton upon which MILP software builds its solving capa-
bility, which has seen remarkable progress in the last two decades [7]. Continuing these
waves of algorithmic progress is key to unlocking new application domains and larger
scales, as many areas of potential improvement still exist. For example, several algorith-
mic decisions that must be made within B&B are made by heuristic rules that have been
developed and tuned via computational studies to yield good average performance. For
some of these decisions we know that more successful heuristics exist, which are, how-
ever, too computationally expensive. In the past decade, Machine Learning (ML) method-
ologies have been explored as a potential tool to mimic such time-consuming heuristics
for improved performance. This strategy is particularly promising given the increase in
data availability, not only in terms of problem instances but also data collected by the
solver during the solution process.

This chapter addresses precisely the perspective of enhancing key components of
B&B by ML so as to integrate machine learning and mathematical optimization as com-
plementary technologies, not as competing ones. We note that collecting data about
the solving process and exploiting it to make informed decisions within the algorithm
is standard practice in MILP solving. We survey methods that take this idea one step
further, in the sense that the mapping between the collected data and the decision is
not fixed a priori by an expert, but instead automatically constructed by ‘learning algo-
rithms’ that try to optimize a predefined metric of efficiency.

The survey by Bengio et al. [20] presents the first developments of using machine
learning in the context of optimization, with a focus on combinatorial optimization. In
this chapter, we further zoom in on the B&B framework in an MILP solver for solving a
(class of) MILP. The methods we discuss do not assume any particular problem structure
a priori, in the sense that the structure is instead learned. Our focus is on using ML for

13



2

14 2. MACHINE LEARNING ASSISTED B&B

elements of B&B where choices are being made, such as how to navigate the search tree,
how to quickly find good feasible solutions, and how to improve linear relaxations. We
do not cover solution methods that replace B&B, such as end-to-end ML approaches. By
restricting the attention to the MILP context and its integration with ML, we are able to
make a significant step forward in the characterization of choices like the problem rep-
resentation and of specific aspects like benchmarks and software.

The chapter is organized as follows. Section 2.1 proceeds to survey the tasks in MILP
solving where ML can be useful. Section 2.2 concerns representations of MILP, and Sec-
tion 2.3 rounds out the survey by collating instance benchmarks and software used in
the literature. Some final remarks and perspectives are given in Section 2.4. Note that
the contents of this chapter are based on our published work [136].

2.1. LEARNING TASKS
This section presents different ways to formulate a learning task within the B&B algo-
rithm. We split this discussion by considering each major solver component separately.

Before getting into the details, two considerations are required. First, throughout
the section we will use the symbol X to abstractly denote a representation of an MILP
instance. This representation may include data coming from the problem description
(such as in Equation 1.1) and from the B&B process. Section 2.2 discusses, in more de-
tail, approaches to build such a representation. Second, it is important to highlight that
the learning tasks that we describe next might be associated with different levels of re-
quired generalization. More precisely, the ML models are often trained on data belong-
ing to MILP instances in the same class, for example, set covering, knapsack, etc. In
other words, the characteristics of the constraint matrix in (1.1) are leveraged to obtain
accurate predictions, so the generalization power of the resulting models is generally re-
stricted to that specific MILP class used for training. However, we will also review cases
in which learning happens instance by instance or extends outside of a known MILP dis-
tribution. We will highlight these differences throughout the entire review of the learning
tasks.

2.1.1. PRIMAL HEURISTICS

Primal heuristics play a crucial role in quickly finding feasible solutions and consequently
improving the primal bound z̄ in the early stages of the solution process. In the context
of primal heuristics, ML techniques can be of interest to leverage common structures in
the instances. A number of methodologies have been proposed for this purpose. Con-
ceptually, they can be split into three main approaches: (a) guiding a heuristic search
with a starting predicted solution, (b) solution improvement via a learned neighborhood
selection criterion, and (c) learning a schedule to pre-existing heuristic routines. These
methodologies are summarized in Figure 2.1 and will be discussed in more detail in the
following. At the end of the section, Table 2.2 presents a summary of the reviewed work
and their main characteristics.

An important class of primal heuristics are the so-called Large Neighborhood Search



2.1. LEARNING TASKS

2

15

f( ⋅ , θ)
ML model

Heuristic 1 

Heuristic 2 

Heuristic K

. . .

Heuristic 3

Budget

f( ⋅ , θ)
ML model

MILP

1
0
0

.


.


.

1
1

Reoptimization

routine


Starting

 solution


̂x
.

.

.

̂x1

.


.


.

̂xn−1

MILP 

solver

New

 solution 


̂x

̂xn−2

MILP

f( ⋅ , θ)
ML model

(a)

(b)

(c)

Figure 2.1: Three learning problems related to primal heuristics: (a) predict a reference solution and search in
its neighborhood, (b) neighborhood selection – which and/or how many variables to unfix and re-optimize,
(c) heuristic scheduling – which heuristics to run and/or for how long.

(LNS) [139] heuristics. The idea is to optimize an auxiliary MILP of smaller size, con-
structed by reducing the feasible region of the original MILP. This is typically done by
fixing the value of some of the variables and optimizing the rest. Another strategy is to
search over the neighborhood of a solution x̂ by imposing the constraint

∑
j :x̂ j =0

x j +
∑

j :x̂ j =1
(1−x j ) ≤ η , (2.1)

with η the parameter that controls the neighborhood size. This is known as local branch-
ing [58]. The reader is referred to Fischetti and Lodi [59] for a survey on the use of LNS
heuristics in MILP.



2

16 2. MACHINE LEARNING ASSISTED B&B

Table 2.1: Three methods to define the target probability distribution pT , given a collection D(X ) =
{x̂(1), x̂(2), ..., x̂(K )} of feasible solutions to problem X . The goal is to learn a function pθ(x j = 1|X ) that rep-
resents the probability that variable x j takes value 1 given problem X by imitating the target probablity
pT (x j = 1|X ).

Authors Target

Ding et al. [51]
pT (x j = 1|X ) = x̂(1)

j for every j s.t.

x̂(k)
j = x̂(1)

j for all k ∈ {1, ...,K }

Nair et al. [117]
pT (x̂ (k)|X ) = e−c T x̂ (k)

/
∑K

i=1 e−c T x̂ (i )

and pθ(x̂ |X ) :=∏n
j=1 pθ(x j = x̂ j |X )

Khalil et al. [89] pT (x j = 1|X ) = 1
K

∑K
k=1 x̂(k)

j

SOLUTION PREDICTION TO GUIDE THE SEARCH

Some authors explore the idea of using predictions of the optimal solution. The goal is to
produce a (partial) assignment of the binary variables1 in a binary or mixed binary MILP,
that can then be used to guide the search. This idea has been implemented in different
ways, both in terms of how to obtain the predictions and how to use them. Let us start
by discussing the latter.

Ding et al. [51] use a local branching constraint (see Eq. 2.1) with respect to predicted
values of a subset J ⊆ B of the binary variables. This restricts the search to a neighbor-
hood of the predicted partial solution. In contrast, both Nair et al. [117] and Khalil et al.
[89] propose to fix the variables in J to their predicted value and hand over this partial
assignment to an MILP solver that optimizes over the remaining variables. In MILP ter-
minology, this corresponds to a warm start. Khalil et al. [89] further use the predictions
to guide node selection (see Section 2.1.4).

The question still remains as to how to obtain these predictions. This problem is
naturally formulated as a supervised learning task, where the desired output is the opti-
mal solution. However, optimal solutions to be used as labels in the training phase are
costly to obtain and do not capture information about the region where they lie. The
aforementioned work of Ding et al. [51], Nair et al. [117], Khalil et al. [89] make use of a
set of feasible (not necessarily optimal) solutions to learn predictions. This is, the learn-
ing process starts with a data collection phase that, for each instance X , gathers a set of
feasible solutions D(X ) = {x̂ (1), x̂ (2), ..., x̂ (K )}. Once the data collection phase is finished,
the prediction task can be formulated as learning a probability distribution pθ(x j = 1|X )
that represents the probability that variable x j takes value 1 given problem X , and is
parametrized by θ. The parameters are tuned to make the behavior of these functions
resemble as closely as possible that of a target probability distribution pT (x j = 1|X ). Ta-
ble 2.1 summarizes the proposed targets.

1Note that the focus on binary variables is justified because, in most well-established instance collections,
binary variables account for the great majority of integer variables. As an example, more than 68% of the
instances in the MIPLIB [68] are purely binary, and in the remaining ones, more than 90% of the integer
variables are in fact binary. See, e.g., Nair et al. [117] for extensions to integer variables.



2.1. LEARNING TASKS

2

17

SOLUTION IMPROVEMENT VIA NEIGHBORHOOD SELECTION

Alternatively to solution prediction, one may be interested in learning a destroy heuristic
criterion. That is, given an initial feasible solution x̂ , we select a subset of the integer
variables to be re-optimized, leaving the remaining integer variables fixed. This process
can be run iteratively. The goal is to identify substructures of the problem that can be
used to decompose it into smaller, more manageable subproblems.

Following this line, Song et al. [141] learn to partition the set of integer variables I

into K disjoint subsets {Si }K
i=1 such that I = S1 ∪ ...∪SK . They iteratively unfix and re-

optimize the variables in each subset, fixing the rest to the value in the best known solu-
tion. The variable subsets are of fixed size, which means that the variables simply need
to be classified into the subset they belong to. Alternatively, Wu et al. [154], Sonnerat
et al. [142] and Huang et al. [82] propose a method to select a single flexible-sized sub-
set of variables to unfix. Their approach resembles the value-prediction methodology
discussed in the previous section. However, instead of predicting the value that a vari-
able takes in an optimal solution, they aim at predicting whether the variable is already
assigned to its optimal value in the current best solution x̂ . The number of unfixings
is learnt implicitly through the conditionally-independent probabilities pθ(x̂ j = x∗

j |X )

from which they sample variable unfixings. While Wu et al. [154] use a reinforcement
learning algorithm to train their policy, Sonnerat et al. [142] explicitly calculate the best
solution at most η unfixings away from x̂ and use it as a target unfixing policy. Huang
et al. [82] follow a similar approach, while also providing the learner with negative ex-
amples. This means variable unfixings that do not lead to a sufficiently large improve-
ment, as compared to the best. This provides additional information for the learner to
distinguish good and bad unfixings.

The methods of Song et al. [141], Wu et al. [154], Sonnerat et al. [142] and Huang et al.
[82] were compared against continuously running the MILP solvers they use as a subrou-
tine. Given the same amount of time, the ML-assisted methods are able to find better so-
lutions. Interestingly, using a random selection of the variables to unfix often results in
a performance improvement compared to running the solver continuously. This high-
lights the fact that MILP solvers are typically tuned to optimize different performance
metrics, such as the optimality gap, which means that a significant part of the compu-
tational effort is spent in, e.g., obtaining good dual bounds. Nonetheless, the proposed
methods provide a relevant methodology to make use of the MILP solver in a black-box
manner when the goal is to obtain high-quality but not necessarily optimal solutions in
a short amount of time.

Related to this line of work, Liu et al. [106] point out that the optimal value of the
neighborhood size parameter η is strongly dependent on the class of instances being
solved. They work in the context of local branching and propose to learn two policies.
A first policy fi ni t (X ), obtained in a supervised way, determines an appropriate neigh-
borhood size η0 for a first iteration. Another policy fa(X ), obtained by RL, decides how
to adapt the neighborhood size in successive iterations given the previous solver statis-
tics. Compared to the simple neighborhood size selection proposed in Fischetti and Lodi
[58], these two policies close the primal gap (see Eq. 1.6) faster, especially when com-
bined together. Their computational experiments demonstrate that these selection rules
have great generalization ability across different instance sizes and types, especially for



2

18 2. MACHINE LEARNING ASSISTED B&B

fa(X ), also across different classes of instances, proving the wide applicability of their
approach.

LEARNING TO SCHEDULE HEURISTICS

Whether they use ML or not, many successful primal heuristics for MILP have been pro-
posed. Experimentally, we observe that no single heuristic dominates the others on all
problems [79]. Their performance is highly dependent on the problem, and even on the
solving stage. A new decision problem arises: given a collection of primal heuristics,
which one should be run? In a broader sense, heuristic scheduling also tries to answer
questions such as how frequently should heuristics be run, or under what computational
budget. In this section, we review the line of research on using learning methods to an-
swer such questions.

Hendel [78] proposes Adaptive Large Neighborhood Search (ALNS), a heuristic that,
whenever called, makes a choice among eight Large Neighborhood Search methods.
This choice is framed as a Multi Armed Bandit problem [32], an online learning method-
ology that learns a selection policy per instance. The learned policy is based on the ob-
served (a posteriori) performance of the chosen heuristics. This simple formulation en-
capsulates the classical exploitation versus exploration dilemma: we must balance run-
ning heuristics that have performed well in the past with running heuristics whose per-
formance is unknown because they have not been selected a sufficient number of times.
The author uses the α-UCB algorithm [32] with a reward function that combines several
aspects of a heuristic’s performance: whether an incumbent was found, the objective
improvement and the computational time the heuristic needs. The experiments on MI-
PLIB 2017 [68] show a considerable improvement in the primal integral (see Eq. 1.8), as
well as a speed-up. The Multi Armed Bandit formulation was also used by Hendel et al.
[79] and Chmiela et al. [38], who extend it to new types of heuristics.

Chmiela et al. [37] take a different perspective: instead of a selection policy per in-
stance, they create a prioritization order that applies to a given class of instances. In fact,
these authors’ method constructs a schedule that assigns both a priority and a compu-
tational budget to each heuristic. In contrast with the abovementioned work of Hendel
et al. [79] and Chmiela et al. [38], which use online learning, the schedule is now crafted
offline, after a data collection phase where different heuristics are evaluated. They for-
mulate a MIQP that minimizes the computational budget while finding feasible solu-
tions for a large fraction of the B&B nodes, and they solve this using a greedy heuristic.
The proposed method produces schedules for a number of different heuristics, which re-
sult in improvements in the primal integral compared to default SCIP and even a version
of the solver that has been manually tuned for the considered class of instances.

Other than deciding which heuristics to run and for how long, there is the question
of when to run them. The work discussed so far uses conventional rules to decide at
which nodes heuristics will be run. The methodology proposed by Khalil et al. [88] is
to instead build a mapping between B&B nodes and a yes/no decision for running each
heuristic. This decision problem is challenging. Even with perfect knowledge of when
a heuristic will be successful, a run-when-successful rule does not necessarily minimize
solving time. Khalil et al. [88] analyze the competitive ratio of such a rule compared to
an optimal offline decision policy. They then imitate the imperfect run-when-successful



2.1. LEARNING TASKS

2

19

Table 2.2: Summary of different learning approaches for primal heuristic management. We use the acronyms
SL for supervised learning and RL for reinforcement learning.

ML paradigm Online/offline Model

Ding et al. [51] SL Offline GNN
Nair et al. [117] SL Offline GNN
Khalil et al. [89] SL Offline GNN
Song et al. [141] SL & RL Offline PCA[72]+NN

Wu et al. [154] RL, policy gradient Offline GNN
Sonnerat et al. [142] SL, imitation Offline GNN

Huang et al. [82] SL, contrastive Offline GNN
Liu et al. [106] SL & RL Offline GNN

Hendel [78] Multi-Armed Bandit Online -
Chmiela et al. [38] Multi-Armed Bandit Online -
Chmiela et al. [37] Greedy heuristic Offline -

Khalil et al. [88] SL, classification Offline
Logistic

regression

rule by learning to predict when a heuristic will succeed. Their computational study
shows the effectiveness of this method: heuristics are called less often, but with a higher
success rate, resulting in a better primal integral. This effect is even stronger when the
policy is trained on data coming from the same instance class.

FUTURE OUTLOOK

The success of most of the approaches discussed in Section 2.1.1 is rooted in the ability
of learning within the distribution of specific classes of MILP instances. Generalizing
outside of a specific class, has proven difficult so far. This is certainly the main challenge
for the integration of ML-augmented primal heuristics within MILP solvers. Studies like
the one in Liu et al. [106] indicate that some significant generalization is achievable, es-
pecially in the context of algorithms that sequentially adapt while exploring the solution
space as in classical RL schemes. This is a promising direction that, however, conflicts
with the MILP solver’s general need of executing (extremely) fast primal heuristics. Fur-
ther, in the context of solution prediction, the case of general integer variables has been
comparatively less studied; see Nair et al. [117] for a discussion of how to treat this case.

2.1.2. BRANCHING

Branching is one of the core mechanisms on which the B&B algorithm operates. The
branching rule, i.e., the criterion used to select a variable for branching, has been iden-
tified as having a critical impact on performance [7, 105]. Computational studies have
served to identify a number of metrics that are good indicators of how a variable will per-
form. Notably, state-of-the-art branching rules look at the change in objective value in
the resulting children nodes. More specifically, let zLPi be the objective value of the cur-
rent node i and let zLPi+ and zLPi− be the objective values of the two nodes resulting from



2

20 2. MACHINE LEARNING ASSISTED B&B

branching on candidate variable xk . This variable will be scored using a combination2

of ∆+ := zLPi+ − zLPi and ∆− := zLPi− − zLPi . These values can be explicitly calculated
for each candidate at the moment of branching (thus solving two LPs per candidate).
Such strategy, known as strong branching, was introduced in the context of the traveling
salesman problem [15] and later standardised by CPLEX.

Strong branching is known to produce small B&B trees, but at high computational
cost per branching. Alternatively, one can attempt to estimate the objective change
based on past values, once they become naturally available through node processing.
In particular, solvers typically store the values of ∆+ and ∆− normalized by the variable’s
fractionality, and keep track of the per-variable average, known as pseudocosts. The so-
called reliability branching rule [8] performs strong branching at the top of the tree as
an initialization phase, and then switches to using pseudocosts as soon as a variable has
been branched on enough times. The initialization phase is not only important to build
a branching history, but also because branching decisions have the most impact at the
top of the tree. This is because judicious branching decisions here can lead to much
smaller tree sizes, due to the earlier finding of feasible solutions and the stronger prun-
ing of nodes.

In this section, we will discuss different approaches to learning to branch. Their
common goal is to learn a function that maps a description of the candidate variables
to scores. We note that alternative strategies exist, such as learning a weighting scheme
for a portfolio of branching rules (see, e.g., Balcan et al. [18]). Ultimately, the objective is
to minimize the solving time, which typically entails a favorable balance among differ-
ent sub-targets. For example, (i) being computationally cheap, (ii) generating small trees
as a result of their scoring, and (iii) adapting to the different situations that may arise.
These objectives are often at odds with each other. At the end of the section, Table 2.3
presents a summary of the reviewed work and their main characteristics.

A FIRST APPROACH TO LEARNING FROM STRONG BRANCHING

There is a well-established body of research on fast approximations of the strong branch-
ing rule. This idea was first explored by Alvarez et al. [12] who propose to learn a pre-
diction of the strong branching score of each variable. The predictor is learned offline
(see Section 1.4) and tested on both heterogeneous and homogeneous instance collec-
tions. The experiments of Alvarez et al. [12] show that the method achieves the desired
objective of imitating strong branching decisions without the large computational over-
head. Indeed, when compared with strong branching on a fixed number of nodes, the
closed gap is only moderately worse, indicating that the branching decisions are of high
quality. Simultaneously, for a fixed time, the method explores a much larger number of
nodes and closes a greater proportion of the gap, therefore achieving an overall better
trade-off. However, reliability branching still outperforms the learned branching rule in
closed optimality gap. The experimental results seem to indicate that the former makes
smarter decisions, and is on average faster in making them. It is interesting to note that
the method of Alvarez et al. [12] performs better on homogeneous instance collections,
i.e., when the problems in the training and the test set are of the same type.

2For example, the variable’s score can be computed as max{∆+,10−8} ·max{∆−,10−8}. See, e.g. Achterberg [5]
for a discussion.



2.1. LEARNING TASKS

2

21

ONLINE LEARNING TO BRANCH

The results presented in Alvarez et al. [12] call for several reflections. First, experiments
seem to indicate that performing strong branching at the top of the tree, where branch-
ing decisions have the most impact, is highly advantageous. Second, the authors already
point towards more adaptation to the problem structure as a promising direction of im-
provement.

These ideas are studied in Khalil et al. [87] and the follow-up work of Marcos Alvarez
et al. [112]. Independently, these authors proposed to use online learning with a strong
branching initialization at the top of the tree. One key difference is that, while Marcos Al-
varez et al. [112] continue to frame learning to branch as a prediction task (i.e., predict-
ing the strong branching score of a variable), Khalil et al. [87] formulate the task as that
of ranking. Indeed, one does not necessarily need to accurately predict the variables’
scores, but rather which variables have relatively better ones. The latter task is easier
from a learning perspective.

Framing an online learning task allows to learn a specialized ML model per instance,
in this case a simple linear function. Khalil et al. [87] analyse their learned models by
studying the weight assigned to each of the features. The first question they ask is: are
the learned models obtained for each of the instances similar? Their analysis concludes
that there is only a weak correlation among the models. This supports the idea that adap-
tation plays a key role. In spite of the learned models being quite different, they were able
to identify some features that are often given high importance (large absolute weight),
such as the product of the pseudocosts, and data related to the constraint matrix. For a
more detailed discussion of this analysis see Khalil [86].

OFFLINE LEARNING WITH STRUCTURE SPECIALIZATION

Marcos Alvarez et al. [112] and Khalil et al. [87] use a linear mapping from variable fea-
tures to output. This offers the advantage of interpretability and low computational cost.
The more complex GNN model proposed by Gasse et al. [66] (see Section 2.2 for a de-
scription) has proven to be remarkably effective in representing MILPs for the task of
variable selection and beyond. The GNN architecture that we presented in Section 1.4.1
consists of a number of parametric function compositions that enable learning more
complex relations between input and output. They also require a larger amount of train-
ing data, which rules out the online learning methodology previously discussed. In order
to still ensure some level of specialization, Gasse et al. [66] propose a middle point: they
argue that in many realistic cases instances of the same class are routinely solved. This
justifies learning a branching rule per instance type, as a sensible trade-off between a
completely general rule (such as the one in Alvarez et al. [12]) and a completely instance-
tailored rule (like in Marcos Alvarez et al. [112], Khalil et al. [87]).

Gasse et al. [66] propose training this GNN to imitate strong branching via behavioral
cloning [127]. In short, this means that we again disregard the actual variable scores and
focus on learning relative magnitudes among them. Through this approach the authors
were able to outperform reliability branching, marking a breakthrough in the learning
to branch literature. Building on this work, Gupta et al. [73, 74] propose modifications
of the original loss function that further improve the performance of the learned model.
Nair et al. [117] test the methodology of Gasse et al. [66] on a variety of instance types,



2

22 2. MACHINE LEARNING ASSISTED B&B

including heterogeneous sets. Seyfi et al. [138] additionally propose a mechanism that
incorporates information about past branchings into the scoring system.

TOWARDS A GENERAL BRANCHING RULE

We have discussed methodologies that specialize to certain combinatorial structures
(such as Gasse et al. [66]) or that yield a custom strategy per instance (e.g., Khalil et al.
[87]). As discussed at the beginning of this section, these methodologies are a response
to the great difficulty of learning one unique policy on a heterogeneous set of instances.
Zarpellon et al. [156] argue that, while learning such a general policy poses a big chal-
lenge, it is possible to overcome it by using a representation of the search tree to in-
form variable selection. Their hypothesis is that there is a higher-order shared structure
among MILPs, even among those with different combinatorial structure, and that this
shared structure can be captured in the space of B&B trees. To test this they define a set
of features describing the state of the search which, together with variable descriptors,
are mapped into scores. We discuss these features in more detail in Section 2.2. The
experiments in Zarpellon et al. [156] show that, while the model of Gasse et al. [66] strug-
gles to learn over a heterogeneous data distribution, adding the tree context is beneficial
to the generalisation performance of the model. Lin et al. [104] take this idea one step
further and propose to keep a record of the features in [156] at each node where branch-
ing was performed. At every step, branching decisions are informed by this historical
data, which is carefully aggregated and combined with the descriptions of the variables.

The work in [156, 104] highlights the potential of using solver statistics to influence
branching decisions. It is unclear how the features proposed in Zarpellon et al. [156] are
used to score branching candidates, since neural networks lack explainability. Nonethe-
less, this information certainly opens the door to branching rules that switch among
different behaviors at different parts of the tree, or stages of the solving process. It is
important to note that reliability branching still outperforms both Zarpellon et al. [156]
and Lin et al. [104], perhaps because of the overhead of computing and processing these
comprehensive descriptors. Nonetheless, this work calls for further research on exploit-
ing tree information.

EXPERT-FREE LEARNING TO BRANCH

So far, we have discussed methods for building fast approximations of strong branch-
ing. The general consensus is that strong branching yields relatively small B&B trees
compared to other classic branching strategies, and it is therefore advantageous to try
to imitate it. This idea can be challenged with two arguments. First, as pointed out by
Gamrath and Schubert [62], standard implementations of strong branching benefit from
using data obtained as a by-product of the score calculation, such as bound tightenings
and other statistics. A rule that imitates strong branching cannot profit from such side-
effects, which means that, even in the case of perfect emulation, the imitator’s perfor-
mance would be worse than expected. Second, strong branching relies on the LP relax-
ation for scoring variables, which can provide little information in cases when the opti-
mal LP objective value does not change with branching. In such cases strong branching
cannot be considered a reliable expert. In the absence of a better alternative to strong
branching, the following question arises: can we learn branching rules without expert
knowledge? This question is addressed by Etheve et al. [55] and Scavuzzo et al. [135],



2.1. LEARNING TASKS

2

23

Table 2.3: Summary of different learning approaches for branching. We use the acronym SL for supervised
learning and RL for reinforcement learning.

ML paradigm Online/offline Model

Alvarez et al. [12] SL, regression Offline ExtraTrees
Marcos Alvarez et al. [112] SL, regression Online Linear

Khalil et al. [87] SL, ranking Online Linear
Gasse et al. [66] SL, imitation Offline GNN

Etheve et al. [55] RL, Q-learning Offline NN
Scavuzzo et al. [135] RL, policy gradient Offline GNN
Zarpellon et al. [156] SL, imitation Offline NN

Lin et al. [104] SL, imitation Offline Transformer

who use RL to learn branching rules from scratch. The computational study in Scav-
uzzo et al. compares one such RL methodology against the imitation learning method
of Gasse et al. [66]. The experiments show that on instances where strong branching
performs very well, the imitation method of Gasse et al. is superior. Yet, when strong
branching struggles, the RL-based method is able to find a better branching strategy,
proving the point that expert-free learning is of great interest in certain cases. A more
in-depth discussion of this topic is presented in Chapter 3.

FUTURE OUTLOOK

Adaptiveness. The computational studies suggest that no single branching rule out-
performs others universally across all instances. Consequently, a desirable approach in-
volves a rule that dynamically adapts its behavior to the specific characteristics of each
situation. One way in which one can introduce such adaptiveness is by controlling the
distribution of data samples that the model uses for learning. Some authors propose to
specialize to each given instance. This means that a set of parameters θ is generated for
each new instance, obtained by allowing the ML model to only see data coming from that
instance. Another possibility is to use data samples coming from instances of the same
problem class. This gives us parameters θ that specialize to a given class and work well,
on average, on different instances with shared combinatorial structure. We can there-
fore achieve adaptiveness on different scales. We can also understand adaptiveness of
a branching rule as some sort of mechanism to change its behavior on different parts
of the search process. Some progress has also been made in this regard by investigating
different statistical measures that can inform branching (see Section 2.1.2). Yet, little is
understood about how these metrics are used or in which ways we can further enhance
performance without sacrificing speed.

Expert guidance. The strong branching heuristic has been used by many as an expert
from which we can learn effective decision-making. The claim that strong branching
is a desirable strategy to follow has recently been challenged, with some notable exam-
ples of instances where strong branching scores provide no useful information. Interest-
ing research directions include identifying new experts, new strategies to better imitate
them, or, conversely, more efficient approaches to learning without expert knowledge.



2

24 2. MACHINE LEARNING ASSISTED B&B

The latter case is what is referred to in Bengio et al. [20] as experience: there is no clear
mathematical understanding of what should be statistically learned (the expert), so ex-
ploration should be performed. In turn, this clearly calls for RL methods that are also
natural candidates to extend the work in Zarpellon et al. [156], Lin et al. [104] and exploit
tree information.

New directions. The work we surveyed showcases the potential in mixing the exten-
sive body of domain knowledge in variable selection with new learning techniques. Still
a lot of open questions remain. For example, little attention has been directed towards
highlighting important subsets of variables, as opposed to choosing a single one at each
node. Khalil et al. [90] propose an approach to finding such important subsets, in this
case the so-called backdoors [50], and show promise in using them as prioritized branch-
ing candidates. Another relevant gap is the absence of expert knowledge for certain
classes of MILPs. In any case, it is clear that new ML-based methods need to build upon
the pre-existing knowledge on variable selection to achieve a fruitful combination.

2.1.3. CUTTING PLANES

Cutting plane routines are another essential part of modern MILP solvers. They tend
to work in rounds, also called separation rounds. Given an LP-relaxation solution xLP ,
one round consists of generating a number of valid cuts from different families, select-
ing a subset of them via a selection criterion, adding them and finally resolving the LP
relaxation, where xLP will now be infeasible. A good selection criterion is critical to im-
proving the LP relaxation while avoiding an excessive number of cuts, which would slow
down LP solving as well as lead to numerical instability [14, 46]. Several metrics have
been proposed for the purpose of scoring cuts (see, e.g., Wesselmann and Stuhl [150]
for an overview). For example, the objective parallelism, measured as the cosine of the
angle between the objective function and the cut, or the cutoff distance, measured as
the Euclidean distance between the cut and the LP-relaxation solution. More recently
the question of cut selection has been addressed with ML-driven predictions, which is
the topic of this section. We review different work in this area and, at the end, present
in Table 2.4 a summary of the different methodologies and their main characteristics.
For further discussion of ML for cut selection in MILP and beyond we refer to Deza and
Khalil [48].

As noted in Section 1.3.3, cuts are typically more heavily applied at the root node, and
for this reason the work that we survey focuses on cut selection at the root node. Still,
there is no obstacle to applying these methods in other nodes. However, it is unclear
whether using cuts outside the root node is computationally beneficial (see Berthold
et al. [26] for a discussion of this topic).

SINGLE-CUT SELECTION

Tang et al. [144] and Paulus et al. [126] frame the task of cut selection as an MDP. At
each step k, a single cut ck is selected from a cutpool Ck , after which the LP relaxation is
resolved. In particular, let C be a collection of cuts, and let z(C ) be the result of solving
the root LP relaxation after adding all cuts in C . The metric of interest to these authors



2.1. LEARNING TASKS

2

25

is the LP-bound improvement attained by a cut c at step k, defined as

∆k (c) := z ({c1, ...,ck−1,c})− z ({c1, ...,ck−1}) .

This MDP model is summarized in Figure 2.2a, where we use the abbreviation zk =
z ({c1, ...,ck }).

Paulus et al. [126] use imitation learning. Their expert is the result of explicitly cal-
culating ∆k (c) for each possible cut c in the cutpool Ck , and then picking the cut with
highest ∆k . This means that their approach is greedy: they look at bound improvement
one step ahead. Their computational studies show that this greedy heuristic that they
aim to imitate is in fact very effective in improving the LP bound after T cuts have been
added, compared to other selection heuristics.

Another approach is that of Tang et al. [144], who use RL with reward Rk = ∆k (ck ).
Due to to the discount factor (see Equation 1.10), this RL strategy offers the possibility
to learn less greedy policies, and doing so without explicitly computing ∆k (c) for each k
and c ∈Ck . However, many RL algorithms are known to suffer from sample inefficiency
and lack of generalization [53, 93]. Paulus et al. [126] compare their approach to the one
of Tang et al. [144] and to SCIP’s v.7.0.2 default rule. They use the sum of gaps as a metric
(lower value is better)

SG :=
T∑

k=1

z∗− zk

z∗− z0
, (2.2)

with T = 30 being the total number of cuts added, and z∗ being the pre-computed op-
timal solution. Notice that this metric is constructed in a way that might favour greedy
policies. The computational results favor the method of Paulus et al. [126]. The authors
also show promising results in solving time when their method is incorporated into SCIP
and instances are solved to optimality, though they do not include root node processing
time.

MULTI-CUT SELECTION

A potential criticism to the cut selection models is that solvers usually add more than one
cut per round, in order to reduce the number of times the LP needs to be resolved. In fact,
historically this proved crucial to the efficiency of cutting plane routines [17, 42]. Having
information about the LP solution after the addition of each cut is therefore unrealistic.
Paulus et al. [126] do not include root node processing times in their report, a metric
under which their method is likely unfavored. Furthermore, metrics like the one in Eq.
2.2 encourage greedy bound improvements, whereas in practice cuts can work together
to achieve a better bound improvement at the end of the round. In other words, the
optimality gap closed after a full separation round is likely a more informative metric.

To address the potential interactions among cuts, Wang et al. [149] propose a policy
that decides the fraction of cuts from the pool to be selected, and scores ordered subsets
of this size. See Figure 2.2b for a summary of this selection model. The authors train the
policy with an RL algorithm and use end-of-run statistics like solving time as the reward.
This requires solving an MILP to optimality for each training sample. While this allows
to learn a mapping from cut selection to actual solver performance (instead of the root
node bound improvement, which is just a proxy for performance) this sample collection
comes at a great computational cost.



2

26 2. MACHINE LEARNING ASSISTED B&B

(a) S0 S1 · · · ST

c1 c2

∆1 ∆T

z0 z1 zT

Action: choose a cut ck from the
cut pool Ck

Transition: apply cut, resolve LP
Objective: ∆k = zk − zk−1

(b) S0 ST

C

r

Action: an ordered subset C
of the cut pool C

Transition: apply the cuts and
solve the instance
Objective: r =−PD(tmax )

(c) S0 ST

µ

r

z0 z(µ)

Action: parameters µ ∈R4

Transition: N separation rounds
with parameters µ

Objective: r = z(µ)−z(µde f )
z∗−z(µde f )

Figure 2.2: Three models for learning to cut: (a) Tang et al. [144], Paulus et al. [126], (b) Wang et al. [149], (c)
Turner et al. [145]. Here PD(tmax ) refers to the primal-dual integral (see Section 1.3.4).

A third model to learning cut selection is proposed in the work of Turner et al. [145]
(see Fig 2.2c). The procedure builds upon SCIP’s default strategy, a rule that has been
carefully curated through computational studies [5, 150]. This rule combines four cut
scoring functions si :Rn+1 →R+, i = 1, . . . ,4 via a convex combination

s(c,µ) =µ1s1(c)+µ2s2(c)+µ3s3(c)+µ4s4(c) ,

4∑
i=1

µi = 1, µi ≥ 0, i ∈ {1,2,3,4} .

Cuts are then selected sequentially based on their score (the higher the better) and
their parallelism to already selected cuts (too ‘parallel’ cuts are discarded). We refer to
Turner et al. [145] for the definition of the scoring functions si , i = 1, ...,4. The problem
of choosing a good set of parameters µ ∈R4 has been studied from a learning theoretical
perspective by Balcan et al. [19]. As a next step, Turner et al. [145] argue, through both
theoretical and computational arguments, in favor of adapting the coefficients µ to the
instance being solved, as opposed to a unique, static choice. One of their experiments
consists of finding a custom set of parameters µ per instance through grid search. While
impractical, this experiment uncovers the large potential for improvement when adapt-
ing the value of µ. In order to exploit this potential in a more realistic way, Turner et al.
[145] devise a policy that, given an instance, chooses custom parameters µ, and they
train it via RL. The computational study shows that the learned policy is competent in
its task, outperforming random selection in terms of closed optimality gap at the root
node. However, and perhaps surprisingly, their policy does not perform consistently
better than SCIP’s default settings when it comes to final solving time.



2.1. LEARNING TASKS

2

27

Table 2.4: Summary of different learning approaches for cut management. We use the acronym SL for super-
vised learning and RL for reinforcement learning.

ML paradigm Online/offline Model

Tang et al. [144]
RL, evolutionary

Offline Attention + LSTM
strategies

Paulus et al. [126] SL, imitation Online GNN

Wang et al. [149] RL, policy gradient Offline
LSTM + NN

+ Pointer

Turner et al. [145] RL, policy gradient Offline GNN

Li et al. [103] Contextual bandits Offline GNN

BEYOND SCORING

Cut scoring for selection is an essential part of cut management. Yet, there are other
important decisions. Wang et al. [149] incorporate the number of cuts added as a deci-
sion that the policy must make. Very recently, Li et al. [103] defined a learning task for
separator configuration. The objective is to select a subset of the available separators.
Only the selected separators will then be active and contribute to the cutpool, meaning
that this selection step happens before the cut selection phase. Li et al. [103] propose a
methodology to overcome the high dimensionality of the configurations space, which is
2M ·R , with M the number of separators and R the number of cutting rounds. Their ex-
perimental findings show a lot of promise. More research into adapting other parametric
choices could provide further insights.

FUTURE OUTLOOK

Measuring performance. What is the purpose of the cutting routines? One is inclined
to believe that cuts should strengthen the LP relaxation, hence bringing the LP bound
closer to the optimal value. However, will this result in a faster solve? Turner et al. [145]
experimentally measure the (kind of folklore) fact that a better root LP bound does not
always translate into a shorter solving time. Other than the clear influence of the number
of added cuts, many solver components can be affected by the cut choice resulting in
different performance. Wang et al. [149] address this by incorporating solving time as a
reward signal, instead of root LP bound. However, observing final performance comes at
great computational cost, which could be prohibitive for larger instances. More research
is needed on how to efficiently navigate this trade-off.

Multi-cut rounds. The selection model of Tang et al. [144] and Paulus et al. [126] adds
one cut at a time, resolving the LP at each iteration. Their work constitutes an important
step towards learning cut selection rules. However, in a practical setting, such procedure
is unlikely to outperform models that do limited LP resolving by adding multiple cuts at
once. Going forward, models like the one of Wang et al. [149] or Turner et al. [145] have
more potential for improvement.



2

28 2. MACHINE LEARNING ASSISTED B&B

2.1.4. NODE SELECTION
Primal heuristics have the clear goal of improving the best known MILP-objective value
(primal bound). Analogously, branching rules and cutting routines are typically de-
signed to improve the dual bound. Node selection policies have the difficult task of bal-
ancing both goals, which are often at odds. As usual, a better node selection rule is one
that results in the shortest solving time. This is typically associated with smaller search
trees. For that, one needs to avoid processing nodes that could be pruned if the optimal
solution was known in advance. Finding a good (or even optimal) solution fast makes
that task easier to accomplish.

One strategy is to first process nodes with the best (lowest) known lower bound. This
is called best first search (BFS) and has the benefit of quickly improving the dual bound.
Note that for all B&B trees there is a node selection policy of BFS type3 that minimizes the
number of processed nodes [5]. However, it is well known that such an approach delays
finding good (or even optimal) solutions. The depth first search (DFS) strategy prioritizes
children or siblings of the node that was last processed. This approach sequentially pro-
vides more constrained sub-MIPs therefore increasing the chances of finding feasible so-
lutions both naturally and via primal heuristics. Furthermore, DFS has the added benefit
of faster node processing times, on account of the similarity between sub-problems that
are solved consecutively, which usually differ in one variable bound change. In practice,
node selection rules alternate between both behaviors, while considering other statistics
about branching that allow for estimating the cost of integrality.4

Different methodologies have been proposed for learning a node selection strategy
over a homogeneous instance set (see Table 2.5 for an overview). He et al. [77] propose
to learn from a node selection oracle that always chooses to process the node that is on a
path to the optimal solution. This requires knowledge of the optimal solution during the
training process, but not at test time. Similarly, Yilmaz and Yorke-Smith [155] prioritize
nodes that contain high-quality solutions using a policy that always picks a child of the
current node and uses an ML-based prediction to choose among these children. Once
the dive is finished, they propose different ways in which the next node can be selected.
Labassi et al. [96] learn a function that compares any two nodes in the tree. This can
be used to substitute lower bounds as the proxy of a node’s potential. The learned com-
parison function can be used in combination with different selection strategies, such as
picking the child node with highest potential. Finally, Khalil et al. [89] guide the search
based on a prediction of the optimal solution. They look at the fixed variables at each
node and measure the similarity between the fixed and predicted values. This favors
nodes where the partial solution aligns with the predicted solution.

FUTURE OUTLOOK

The experimental results of the papers surveyed above show promise, yet the margins of
improvement remain small. Often, an effective heuristic schedule and branching strat-
egy are much more crucial and, when chosen correctly, make the impact of the node se-
lection strategy relatively small. Still, it is interesting to observe that ML has opened new
opportunities in an area where research has been pretty much inexistent for decades.

3There can be more than one BFS policy because of ties.
4The literature in node selection is not extensive, good discussions can be found for example in [5, 9].



2.1. LEARNING TASKS

2

29

Table 2.5: Summary of different learning approaches for node selection. We use the acronyms SL for supervised
learning.

ML paradigm Online/offline Model

He et al. [77] SL, imitation Offline Linear
Yilmaz and Yorke-Smith [155] SL, imitation Offline NN

Labassi et al. [96] SL, classification Offline GNN
Khalil et al. [89] SL, classification Offline GNN

This suggests that there is some potential for looking at an “old" problem from a differ-
ent perspective and with new tools. For example, one could pair different node selection
strategies with restarts [13], i.e., changing the node selection in a more dramatic way
over time.

2.1.5. CONFIGURATION DECISIONS

MILP solvers are highly parametric. To illustrate this, consider SCIP version 8.0.0: it has
more than 2000 parameters that the user can tune. A good parameter configuration that
suits the instances being solved (for example a certain class of instances) can have a cru-
cial effect on the solving process. Again, we can look at this problem with a Machine
Learning lens: we can base certain parametric decisions on a prediction given by an ML
model. One can see this as falling under the realm of Automatic Algorithm Configuration
(AAC). However, AAC methods typically entail configuring a large number of parameters
at the same time (see, e.g. Hutter et al. [83]). Here, we are interested in the use of ML to
answer a single parametric question or, at least, one question at a time. Furthermore,
and contrary to other AAC methodologies, the ML models make use of a description of
the instance. These models are trained on a heterogeneous collection of instances and
allow for instance-dependent parameter prescriptions, as opposed to a single config-
uration for the given instance distribution. Some work in this area is summarized in
Table 2.6. Notice that the aforementioned work of Turner et al. [145] on cut selection can
also be seen in this light. The work of Hendel et al. [79] can be further highlighted as a
dynamic parameter setting scheme. They update the pricing rule throughout the search
depending on the observed runtime in the already processed nodes.

This avenue of research has already fostered considerable success. Notably, the method
presented in Berthold and Hendel [24] is used by default in FICO Xpress v.8.9. The great
potential of customised configurations is highlighted in problems where the preprocess-
ing techniques have a broader impact, such as in mixed integer nonlinear program-
ming. A prime example of this is Bonami et al. [30, 31], where the authors prescribe
for each mixed integer quadratic programming instance if the quadratic objective func-
tion should be linearised or not. However, note that preprocessing has been shown to
be the single most impactful component of MILP solvers [7, 10], hence the use of ML to
configure the MILP algorithmic decisions based on the characteristics of an instance or
a class of instances has a strong potential.



2

30 2. MACHINE LEARNING ASSISTED B&B

Table 2.6: Five examples of using ML to set a solver parameter. The ML model is responsible for answering a
single parametric question by choosing one of the available options.

Component Question Options

Kruber et al. [95] General
Should the Dantzig-Wolfe

yes / no
decomposition be used?

Hendel et al. [79] LP solver
Which simplex pricing devex / steepest /

rule to use? quick-start steepest

Berthold et al. [24] Presolve
Which scaling method Standard /

to apply? Curtis-Reid

Berthold et al. [26] Cutting
Should cuts be applied

yes / no
outside the root node?

Turner et al. [145] Cutting
How should cut scores

µ ∈R4
≥0be weighted?

FUTURE OUTLOOK

Related to the work discussed in this section is the line of research dedicated to pre-
dicting search completion (see, e.g., Fischetti et al. [60], Hendel et al. [80]) by using a
range of solver statistics. This is an established field with contributions to state-of-the-
art solvers, e.g., the incorporation of a search completion estimation in SCIP v.7.0. These
predictions can be used to trigger a restart [13], a technique that has gained a lot of at-
tention and that allows to reconfigure algorithmic decisions based on the evolution of
the solving process. Following this line of thought, one can envision that, in the future,
ML models such as the ones in Table 2.6 can be used not just during preprocessing, but
also to prescribe a change in strategy during the solve. This is especially appealing be-
cause before a restart some (sometimes) extensive data collection has happened, data
to be leveraged by ML. Along the same lines, it is worth mentioning the recent attempts
to leverage data to better solve sequences of MILP instances that differ very little from
each other. This has been the focus of the 2023 MIP challenge [29], and again it per-
tains to effectively configure an MILP solver, i.e., its algorithmic decisions, by exploiting
data associated with instance similarities and data collected from previous runs. For the
challenge, several classes of instances were proposed, where the instances in each class
differ very little, for example, only in the coefficients of the objective function. The solver
that won the competition [125] was able to leverage the data of the (previous) runs, for
example, the pseudocosts for making better branching decisions.

Many open questions in this vast research area still exist, making this a promising
area of future work.

2.2. PROBLEM REPRESENTATION
The standard form of Mixed Integer Linear Programs is the one presented in Equation 1.1.
Given A ∈ Qm×n , c ∈ Qn , b ∈ Qm and the partition (A ,B,C ) of the variables, an MILP
solver can start solving the instance. The ML contributions to the solving process sur-
veyed in Section 2.1 also require information about the problem, but the data {A, c , b,
(A ,B,C )} may be insufficient or unfit for the task at hand. In this section we review dif-
ferent methodologies to construct a representation X of the problem being solved. This



2.2. PROBLEM REPRESENTATION

2

31

representation is the input to a parameterized policy f (X ,θ) to be trained for a specific
task.

Let us start by listing the desirable properties of a representation.

1. Permutation invariance:5 permuting the order of the variables and/or constraints
should leave the representation unchanged.

2. Scale invariance: scale invariance is preferred to keep values within controlled
ranges, which helps the learning process. This can be achieved with a normal-
ization step.

3. Size invariance: the size of the representation should not depend on the size of the
instance. This is, we require a fixed-sized description of each element that needs
representation, e.g., each variable or each node.

4. Low computational cost: low cost of extracting, storing and processing the data.

In the following, we will make a distinction with respect to descriptors that repre-
sent general properties of the MILP and descriptors that relate to a specific variable or
constraint. These descriptors may be static in nature or they may dynamically change
during the solving process. We will also discuss global descriptions of the process ver-
sus local (subproblem) properties. Note that some approaches use no description of the
instance, and instead learn exclusively from the performance metric (see, e.g., Chmiela
et al. [37], Hendel [78]).

2.2.1. THE BIPARTITE GRAPH REPRESENTATION
MILPs can be represented as a bipartite graph, as shown in Figure 2.3. This graph is
constructed as follows: each constraint and each variable have a corresponding repre-
sentative node. A constraint node is connected to a variable node if the corresponding
variable has a non-zero coefficient in the corresponding constraint. Each node has an
associated vector descriptor. The advantage of using a graph representation is that this
data structure can be parsed by a Graph Neural Network (GNN, see Section 1.4.1 for a for-
mal definition). This type of architecture automatically handles inputs of different sizes.
The data aggregation step that ensures size invariance is one of the learnable mappings
(function comb in Definition 3). This is, instead of manually engineering a mechanism
to aggregate information, this mechanism is automatically learned. The use of GNNs
for combinatorial optimization has experienced a rise in popularity in recent years [34]
because of their ability to capture the structural properties of the instances without ex-
cessive engineering.

2.2.2. REPRESENTING VARIABLES INDIVIDUALLY
Some of the learning tasks discussed in Section 2.1 require a description of each variable
individually. Clearly, branching rules fall under this category. This is also the case for

5Note that permutation invariance is an issue beyond the ML context. The performance of MILP solvers can be
affected by a change in the order of the variables or constraints. Such seemingly irrelevant changes that have
an impact on the solution process are a known issue called performance variability (see Lodi and Tramontani
[107]).



2

32 2. MACHINE LEARNING ASSISTED B&B

minx c1x1 + ·· · + cn xn

a11x1 + ·· · + a1n xn ≤ b1

...

am1x1 + ·· · + amn xn ≤ bm

C1

...

Cm

x1

...

xn

a11

amn

Figure 2.3: The bipartite graph representation of an MILP.

prediction-driven heuristics and neighborhood selection policies, for which variables
are mapped to values or probabilities. In this section, we will discuss three important
approaches to building variable representations and how they relate to the different ap-
proaches of Section 2.1.

A straightforward approach to building variable representations is to gather a num-
ber of descriptors into a vector representation for each variable. Khalil et al. [87] propose
a number of such descriptors, including different statistics about the set of constraints
in which each variable participates. These statistics aggregate information whose length
would otherwise depend on the problem size. For example, for a variable j ∈ I , us-
ing the constraint coefficients {ai j }m

i=1 would yield a vector whose length depends on
m, which is undesirable. On the contrary, using the average of these coefficients gives a
size-independent descriptor. This is a necessary step but calls to question which statis-
tics should be included or excluded in this feature engineering step.

Alternatively, one can use the bipartite graph representation of the MILP as described
in Section 2.2.1. Gasse et al. [66] were the first to use such representation to make pre-
dictions about variables, using a GNN as a mapping. The descriptors associated to the
elements in the graph include structural information, such as constraint coefficients.
This data is not given in the form of aggregated statistics like before. Instead, the aggre-
gation function is part of the learnable mappings of the GNN (see Definition 3). Apart
from the structural information, both Khalil et al. [87] and Gasse et al. [66] include in-
formation about the LP solution and other basic variable features such as their objective
coefficient or variable type. Zarpellon et al. [156] take a different perspective, stressing
the importance of historical data collected during the B&B tree. This strategy resembles
SCIP’s default branching rule, which considers information about past branchings, col-
lected conflicts or cutoffs. The representation used in Zarpellon et al. [156] includes this
variable information and, additionally, global information about the search tree. They
argue that such a description can uncover shared structures among very diverse MILPs
(see Section 2.1.2). The information collected includes statistics about the node being
processed, tree composition and shape, and bound statistics, with a particular focus on
unprocessed nodes.

These three approaches to MILP variable representation are compared in Table 2.7.
We report on features that describe variables individually, therefore excluding the com-



2.2. PROBLEM REPRESENTATION

2

33

plete list of tree features of Zarpellon et al. [156] (which can be found in their appendix).
Table 2.7 showcases that, while some common features exist, the different representa-
tions have distinct focuses.

Most of the work surveyed in Section 2.1 uses the graph representation of Gasse et al.
[66], either exactly (e.g., [142, 74, 135]) or with small modifications of the variable de-
scriptors (e.g., [154, 106, 89]). Hybrid models also exist. In particular, Gupta et al. [73]
propose extracting the Gasse et al. representation at the root node and the Khalil et al.
[87] representation in the rest of the nodes of the search tree. The reason is that, while
the graph representation is rich, it is also computationally expensive. Gasse et al. over-
come this by using a GPU (graphics processing unit) to accelerate the execution of their
learned function. Such computation on GPUs is common practice in the ML commu-
nity, but one could argue that it is unrealistic to require the availability of a GPU. The
hybrid model of Gupta et al. [73] reuses the rich but expensive representation of the root
node in combination with the features of Khalil et al. [87] that are cheap and update the
description at every node. This proves very effective, with their best performing model
outperforming both reliability branching and the model of Gasse et al. when executed
without GPU acceleration.

2.2.3. REPRESENTING CONSTRAINTS INDIVIDUALLY
Analogously to variables, a description of the problem’s constraints may be needed. Here,
we refer both to original problem constraints and additional valid constraints that can
be added as cuts. A constraint representation is necessary in two cases. First and un-
doubtedly, whenever the task requires a decision over said constraints (e.g., which cuts
to add). Second, the bipartite graph representation of MILPs discussed in the previous
section (see Figure 2.3) also calls for a description of the constraints, even in the case
where they are to be aggregated at a later stage.

Gasse et al. [66] first proposed the bipartite graph representation using a small num-
ber of descriptors for the constraint nodes. In particular, they use the cosine similarity6

with the objective coefficients, the constraint right-hand-side, and LP information such
as basis status and dual bound. This type of concise descriptions of the constraints is
frequently used for the learning tasks associated with branching or primal heuristics.

In the case of cut selection, a more detailed description is preferred. Paulus et al.
[126] extend the graph representation of Gasse et al. [66] with metrics that are typically
considered in cut selection, such as violation, objective parallelism or sparsity. Wang
et al. [149] describe each cut with a single vector of classical cut scores (see. e.g., [150]). In
the case of Turner et al. [145], the classical cut scores are intrinsically taken into account
in the definition of their learning task (see Section 2.1.3). For this reason, they use a graph
representation of the model with a small amount of variable and constraint descriptors.

2.2.4. REPRESENTING A (SUB-)MILP
To conclude, it is worth observing that some decision tasks are formulated at an instance
or node level, therefore needing a global representation of the MILP and perhaps also the
solving process. One possible approach is to aggregate variable and constraint descrip-

6The cosine similarity between two vectors a and b of the same length is defined as a ·b/||a||2||b||2, that is,
their dot product divided by the product of their norms.



2

34 2. MACHINE LEARNING ASSISTED B&B

tors coming from the bipartite graph representation. Liu et al. [106] use the average of
the variable descriptors, while Labassi et al. [96] concatenate the average variable de-
scriptors and the average constraint descriptors.

Other approaches include the one of Khalil et al. [88], who, in the context of schedul-
ing of primal heuristics, build a vector representation of the current node. This represen-
tation includes comparisons to the root node and context on the node’s position within
the tree. Great focus is put on information coming from the LP solution, such as the ob-
jective value, average fractionalities, and statistics on the constraint activity. Berthold et
al. [24, 26] build representations that are more specialized to the particular configuration
task. We refer to their work for a more detailed discussion of the problem descriptors.

2.2.5. OUTLOOK
In this section, we have reviewed different methodologies that build a suitable represen-
tation of MILPs that can be parsed by learning models. This includes both the selection
of relevant data and data structures. At the beginning of the section, we anticipated the
desired properties of such representations. All of the presented methodologies ensure
permutation invariance and, to some degree, try to normalize data to establish some
scale invariance without excluding important information. We also discussed the im-
portance of the graph representation to handle input of different sizes. In the following,
we elaborate on the importance of Graph Neural Networks for MILP representation, as
well as the determining trade-off between model expressivity and speed.

Expressivity versus speed. In the context of machine learning, model size refers to the
number of parameters and operations that define the mapping function f (·,θ). Larger
models allow us to learn more complex relationships between input and output. How-
ever, there is a clear trade-off between model size and computational cost of execution
and training. In stark contrast to other fields of application of ML, such as large lan-
guage models [120] or strategic game playing [147] where the goal is super-human per-
formance, the computational cost per execution of the ML model is decisive to whether
or not it will beat its competitors, i.e., already highly efficient optimization software. It is
desirable for the MILP representation to ensure low computational cost, both in terms
of data extraction and processing. The work discussed in Section 2.1 shows that navi-
gating this trade-off is an active field of research, with promising results in both small
(e.g., [87]) and large models (e.g., [66]), as well as in compressing ML models without
compromising the accuracy of their predictions (e.g., [73]).

The case for Graph Neural Networks. GNNs offer a powerful representation tool for
MILP. They enable instance parsing with less feature engineering, as well as size and per-
mutation invariance. Computationally, they have shown excellent performance across
different tasks. Yet, we have limited understanding of the reasons behind this success.
Some recent studies have uncovered some of the factors that contribute to the success
of GNNs.

Chen et al. [36] study the separation and representation power of GNNs for LP. In
particular, they study this in the context of three prediction tasks: predicting feasibil-
ity, boundedness, and the optimal solution vector for LP. The separation power is the



2.3. DATASETS AND SOFTWARE

2

35

ability of GNNs to distinguish different instances, i.e., their ability to output different re-
sults when given two different instances as input. Chen et al. [36] prove that given two
LPs, if no GNN7 can distinguish them, then both LPs have the same status in terms of
feasibility and boundedness. Furthermore, they both have the same minimum-l2-norm
optimal solution up to a permutation. Finally, they also show that the three tasks men-
tioned above can in fact be approximated using GNNs. Continuing this line of work,
Qian et al. [129] prove that GNNs can be used to reproduce interior point methods. In
particular, they show that there exists a GNN using O (m) message-passing operations
(see Definition 3), with m the number of constraints, that can replicate any one itera-
tion of the algorithm by Nocedal and Wright [119]. They show the same result for the
more practical algorithm by Gondzio [70]. Notably, this is true when representing the LP
using a modified version of the aforementioned bipartite graph representation (see Fig-
ure 2.3), where a new node is added and connected to all variable and constraint nodes.
This global node adds alternative routes of communication among constraint and vari-
able nodes and is said to represent the objective function. Qian et al. [129] also provide
a computational comparison of different GNN implementations, i.e., different comb and
aggr functions (see Eq. 1.11). This is also an active area of research, with recent works
advocating for the so-called graph attention networks (e.g., [104, 138]) and other sophis-
ticated architectures and training methods.

These results shed some light on the representation power of GNNs for MILP and
strengthen the case for using them in the context of optimization problems.

2.3. DATASETS AND SOFTWARE

2.3.1. DATASETS

The modeling power of MILP makes it a suitable language for a large range of applica-
tions. With the goal of measuring the performance of different algorithms, the MILP
research community has curated large benchmarks, such as MIPLIB [68], that provide a
heterogeneous set of instances coming from diverse applications. It should be noted that
these benchmarks are considered large for MILP standards, but are orders of magnitude
smaller than typical ML benchmarks. In the light of the methods surveyed in Section 2.1,
which combine an ML component with classical optimization, there is a renewed need
for collections of MILP instances. In this section we provide an overview of the collec-
tions that have been used in the growing body of literature. We restrict our discussion to
benchmarks that are publicly available or whose generation code is easily accessible.

ML methodologies usually require vast amounts of data. For this reason, it is com-
mon to resort to instance generators, which complement the existing instance collec-
tions. Tables 2.8 and 2.9 provide a summary of both commonly used instance collections
(with their size specification) and instance generators.

Apart from the size, there is the consideration of the composition of instances. When
implementing a learning-augmented solver component a specification needs to be made
regarding the instances of interest. In machine learning terms, we typically talk of an
instance distribution, where the instances that are outside the scope of interest are as-

7The authors consider the family of functions defined in Equation 1.11, where the combination and aggrega-
tion functions are feed-forward neural networks.



2

36 2. MACHINE LEARNING ASSISTED B&B

signed a zero probability of occurring. For some applications, it can be assumed that
the representative instances have a shared combinatorial structure. The machine learn-
ing model is then expected to specialize to this structure. Conversely, some approaches
are designed to detect patterns across instances of any class. Throughout Section 2.1 we
have surveyed examples of both situations.

Table 2.10 summarizes which of the discussed approaches uses a collection of in-
stances with mixed structures (mixed), and which use the assumption that all instances
belong to the same class (homogeneous). From this we can observe that configuration
decisions are more naturally framed over mixed instance collections than other tasks,
like the more complex matter of branching, where some instance specialization seems
valuable. Table 2.11 further shows an overview of the homogeneous datasets used in the
work presented in Section 2.1. We can observe a pattern that highlights differences in
the instances, based on which task is more challenging. Instances like GISP or FCMNF
are more commonly chosen as a challenging test bed for primal heuristics, indicating
that for these problems the difficulty lies in finding (optimal) solutions. On the contrary,
branching is usually tested on instances where proving optimality is the main challenge,
such as the ones provided by Ecole.

2.3.2. SOFTWARE

In connection to instance generators, there has been increasing interest in developing
libraries that help the process of data generation, training and testing in the context of
ML-augmented MILP solving. Some examples of these are the library Ecole [128], or
the more recent MIPLearn [130]. Their goal is to provide a standardized platform for the
research community for fast prototyping and testing by removing the barrier of challeng-
ing software implementation. These libraries provide ways to easily implement learning
tasks, such as branching or warm-starting. For an up-to-date specification of the fea-
tures they provide we refer to their documentation.

We end the section by remarking that developing software of this type is far from
trivial and present some structural challenges. Depending on the problem representa-
tion (see Section 2.2), one needs to provide an increasingly tight interface with the MILP
solver in order to collect the required data. This is both in the case of offline and (even
more so) online learning. For example, in the case of Ecole, the development in strict
correlation with SCIP has been instrumental. Clearly, in the case one wants to use a
commercial solver, a sufficiently tight interface and integration might be impossible to
reach, thus limiting the type of methods one can implement. We extend the discussion
on the challenges in the following section.

2.4. CONCLUSIONS, PERSPECTIVE AND CHALLENGES
The work covered in this chapter testifies to the growing interest in the integration of ML
methodologies within MILP solvers. This is an emerging technology that has already fos-
tered remarkable success within its short history,8 and is likely to play a key role in future
algorithmic developments. Beyond the discussion of the literature, we have highlighted

8This is the case of methods that have been included in commercial (e.g., [31, 24]) or non-commercial (e.g.,
[80, 13]) MILP solvers.



2.4. CONCLUSIONS, PERSPECTIVE AND CHALLENGES

2

37

some methodological trends and characterised the common grounds with respect to in-
stance representation, learning algorithms and benchmarking.

Meaningful steps forward have been taken in answering the more pressing research
questions. For example, the literature shows that some learning tasks seem to be formu-
lated more naturally than others over heterogeneous instance collections. In other cases,
an argument can be made in favour of the applicability of specializing to a certain struc-
ture, which makes the learning task easier. Studies like the ones in Zarpellon et al. [156]
and Fischetti et al. [60] indicate that instance representations that describe the global
solution process allow to more easily recognize patters across different combinatorial
structures. This is especially promising because a key challenge for the integration of
ML-augmented methods into MILP solvers is their generalization properties, at least as
long as solvers are conceived as one-configuration-fits-all software.

It is also interesting to note the various efforts to define efficient success metrics for
the different learning tasks, such as imitation targets or reward functions. Solving in-
stances to optimality is to be avoided because of the computational effort, but perfor-
mance proxies that substitute solving time must be carefully chosen.

Already substantial progress has also been made in creating the right environment
for easily implementing and testing ML models for MILP solving. Existing software in-
frastructure includes, for example, curated instance generators, code that simplifies the
solver interface and standardized testing procedures. This further helps in evaluating
and comparing the different methodologies. Other efforts to bring the research com-
munity together are competitions, like ML4CO [67], which encourage progress in well-
defined tasks as well as fair comparisons among the proposed methods. A significant
challenge resides on the software versus hardware side: many learning methods, e.g.,
those relying on neural networks, especially benefit from the use of GPUs, while MILP
technology is inherently CPU based. The CPU versus GPU interaction is currently a rel-
evant obstacle for ML-augmented MILP.

Overall, a key trend seems to be building more dynamic solving strategies. MILP
solvers generate a plethora of statistics during execution that often go unused. This is
fertile ground for learning algorithms, which can unlock more dynamic solvers that au-
tomatically adapt the solving strategy based on prescriptions derived from such solving
statistics. This poses exciting new questions and challenges.

Finally, we remark that the phase the field is entering now is that of a more systematic
transfer of the proofs of concept discussed in this survey to the MILP software. The suc-
cessful transfers reviewed in this chapter – and recalled at the beginning of this section –
give solid evidence but do not define yet a mature path for such a transfer to happen be-
cause of the challenges above. This is the next, in our opinion achievable, step to make.



2

38 2. MACHINE LEARNING ASSISTED B&B

Table 2.7: Three key approaches to variable descriptors. Features marked as ‘implied’ do not appear explicitly
as a variable descriptor, but can be inferred from the bipartite graph representation.

Khalil et al. Gasse et al. Zarpellon et al.
Basic

objective coefficient ✔ ✔
upper/lower bound ✔

type ✔

Structural

# of constraints the variable is in ✔ implied
min and max ratios ai j to bi ✔ implied

min and max ratios ai j to
∑

k ak j ✔ implied
stats for constraint degrees ✔ implied

stats for constraint coefficients ✔ implied
stats for active constraints ✔ implied

LP solution

LP basis status ✔
LP sol value ✔ ✔

LP sol at bound ✔
LP sol fractionality ✔ ✔

LP sol reduced cost ✔
LP sol age ✔

Root LP sol value ✔

Incumbent

incumbent value ✔
average incumbent value ✔ ✔

Tree statistics

average branching depth ✔
conflict score ✔

conflict length score ✔
average conflict length ✔

pseudocost score ✔ ✔
pseudocost count stats ✔
average inference score ✔

average number of inferences ✔
average cutoff score ✔

average cutoffs of variable ✔ ✔
# of implications derived ✔

# of cliques of variable ✔



2.4. CONCLUSIONS, PERSPECTIVE AND CHALLENGES

2

39

Table 2.8: A list of some of the most relevant instance collections

Benchmark Composition Size Source URL

MIPLIB 2017 Mixed 1065 [68]
Cor@l Mixed 364 -

NN verification Homogeneous 3692 [117]
ML4CO_1 Homogeneous 10,000 [67]
ML4CO_2 Homogeneous 10,000 [67]
ML4CO_3 Homogeneous 118 [67]

Table 2.9: A list of some of the most relevant instance generators

Benchmark Problem type(s) Source

Tang et al.

Max-cut,

[144]
Planning,
Packing,

Bin packing

Ecole

Set cover,

[128]
Combinatorial auctions,

Maximum independent set,
Capacitated facility location

MIPLearn

Bin packing,

[130]

Multi-dimensional knapsack,
Capacitated p-median,

Set cover,
Set packing,
Stable set,

Traveling salesman,
Unit commitment,

Vertex cover
GISP Generalized independent set [39]

FCMNF Capacitated fixed-charge network flow [81]

https://miplib.zib.de/
https://coral.ise.lehigh.edu/data-sets/mixed-integer-instances/
https://github.com/deepmind/deepmind-research/tree/master/neural_mip_solving
https://github.com/ds4dm/ml4co-competition/blob/main/DATA.md
https://github.com/ds4dm/ml4co-competition/blob/main/DATA.md
https://github.com/ds4dm/ml4co-competition/blob/main/DATA.md


2

40 2. MACHINE LEARNING ASSISTED B&B

Table 2.10: Classification of the literature based on whether they use a mixed or an homogeneous instance
collection (or both).

Mixed Homogeneous
Ding et al. [51]

Nair et al. [117]
Khalil et al. [89]
Song et al. [141]

Wu et al. [154]
Sonnerat et al. [142]

Liu et al. [106]
Huang et al. [82]
Khalil et al. [88]

Chmiela et al. [37]
Hendel [78]

Primal heuristics

Mixed Homogeneous
Khalil et al. [87]
Gasse et al. [66]
Gupta et al. [73]

Etheve et al. [55]
Nair et al. [117]

Zarpellon et al. [156]
Gupta et al. [74]

Scavuzzo et al. [135]

Branching

Mixed Homogeneous
Tang et al. [144]

Paulus et al. [126]
Wang et al. [149]

Turner et al. [145]
Li et al. [103]

Cut selection

Mixed Homogeneous
He et al. [77]

Yilmaz and Yorke-Smith [155]
Labassi et al. [96]

Node selection

Mixed Homogeneous
Kruber et al. [95]
Hendel et al. [79]

Berthold and Hendel [24]
Berthold et al. [26]
Turner et al. [145]

Configuration decisions



2.4. CONCLUSIONS, PERSPECTIVE AND CHALLENGES

2

41

Table 2.11: Common homogeneous instance collections and where they are used.

Ecole NNv GISP FCMNF Tang et al. Other

Ding et al. [51]
Nair et al. [117]
Khalil et al. [89]
Song et al. [141]

Wu et al. [154]
Sonnerat et al. [142]

Liu et al. [106]
Huang et al. [82]
Khalil et al. [88]

Chmiela et al. [37]

Primal heuristics

Ecole NNv GISP FCMNF Tang et al. Other

Gasse et al. [66]
Gupta et al. [73]

Etheve et al. [55]
Nair et al. [117]

Gupta et al. [74]
Scavuzzo et al. [135]

Branching

Ecole NNv GISP FCMNF Tang et al. Other

Tang et al. [144]
Paulus et al. [126]

Wang et al. [149]
Li et al. [103]

Cut selection

Ecole NNv GISP FCMNF Tang et al. Other

He et al. [77]
Yilmaz et al. [155]
Labassi et al. [96]

Node selection





3
EXPERT-FREE LEARNING TO

BRANCH

Branching is the core mechanism on which the B&B algorithm operates. There is a
choice to be made with respect to which disjunction is used for branching. The standard
is to use single variable disjunctions such as the ones in Eq. 1.4. General disjunctions for
branching will be the topic of Chapter 4. Still, the solution to the LP relaxation is likely to
violate more than one integrality constraint. This means that there are several candidate
variables that can be used for branching.

The branching strategy, i.e., the rule that selects among branching candidates, has a
critical impact on the efficiency of the B&B algorithm. In fact, Achterberg and Wunder-
ling [7] point to branching rules as one of the most important components of an MILP
solver. For this reason, this topic has been heavily studied in the literature. However,
given the complex nature of the branching process, analytical studies of branching work
only under simplified models (see, e.g., [98]). In practice, branching strategies are tested
computationally.

In Chapter 2 we offered a high-level overview of the topic of branching strategies and
the different approaches to learning to branch. In the present chapter, we dive deeper
into the topic, and discuss in detail our methodology to learning to branch without ex-
pert demonstrations. We start with an overview of classical branching rules, followed by
a discussion of learning paradigms applied to branching. We present the MDP frame-
work in more detail, to then introduce our tree MDP formulation in contrast. This chap-
ter presents our theoretical and computational contributions and highlights the great
potential of tree MDP for branching and beyond. The contents of this chapter are based
on our published work [135]. The code for reproducing all experiments is available on-
line [131].

43



3

44 3. EXPERT-FREE LEARNING TO BRANCH

3.1. CLASSICAL BRANCHING RULES
As introduced in Section 1.3.2, branching consists in partitioning the search space into
smaller subproblems. For the purpose of this chapter we will consider the most standard
approach to branching: single-variable disjunctions that create two subproblems. That
is, for some j ∈I such that xLP

j ∉Zwe impose

x j ≤ ⌊xLP
j ⌋ or x j ≥ ⌈xLP

j ⌉ . (3.1)

This creates the left child and the right child respectively. The variable selection step, i.e.,
the selection of j ∈ I , is of utmost importance. As a result of the computational stud-
ies, we know that certain metrics tend to be good indicators of high-quality branching
decisions. The prime example is LP bound degradation.

Definition 4 (Left/right LP bound degradation). Consider the LP bound of the current
node zLP and assume variable j ∈ I takes a fractional value in the LP solution, which
means it is a branching candidate. If we branch on j by imposing (3.1), two nodes are cre-
ated with associated LP bounds zLP+ and zLP−, respectively. The left and right LP bound
degradation associated with branching on j at the current node are respectively defined as

∆− = zLP−− zLP and ∆+ = zLP+− zLP

Intuitively, a good branching candidate is one that proves a better global lower bound.
This is, the one that maximizes min{zLP−, zLP+}. It is advantageous to make improve-
ments on both sides. Considering this, variables are typically scored using a function
that combines∆− and∆+. For example, SCIP v.7.0.0 [64] uses the following scoring func-
tion by default

scor e = max(∆−,ϵ) ·max(∆+,ϵ)

with ϵ a small number.

STRONG BRANCHING

LP bound degradation is a popular proxy for branching potential, but this metric comes
with a caveat. At the time of making the branching decision, the LP bounds of all the
potential children are not known. This can be remedied in two ways. The first one is
to explicitly compute these bounds for all candidates. This strategy is known as strong
branching and requires solving two LPs per candidate. Undoubtedly, this comes at great
computational cost. Yet, the gathered information can be used for more purposes. For
example, tightening the LP relaxation whenever infeasible children are found. The al-
ternative to explicit calculation is estimating the bound degradation using past data, a
strategy called pseudocost branching.

PSEUDOCOST BRANCHING

Pseudocost branching relies on the fact that the values ∆+ and ∆− can be obtained ret-
rospectively at no extra cost once that branching has taken place and the children nodes



3.2. LEARNING TO BRANCH

3

45

have been processed. Every time this happens, the solver records

P−
j = ∆−

xLP
j −⌊xLP

j ⌋ and P+
j = ∆+

⌈xLP
j ⌉−xLP

j

where j is the variable used for branching. The recorded values of P−
j and P+

j obtained

throughout the search are averaged to obtain P̄−
j and P̄+

j . The latter are known as the

pseudocosts of variable j . Pseudocosts can be used to calculate an estimate of the LP
bound degradation on the next branching where j is a candidate. In particular, the esti-
mates are

∆̄− = P̄−
j · (xLP

j −⌊xLP
j ⌋) and ∆̄+ = P̄+

j (⌈xLP
j ⌉−xLP

j )

RELIABILITY BRANCHING

The strong branching rule has been shown (computationally) to produce very small trees
compared to other rules [7]. While the quality of the decisions seems to be very high, the
cost of making each of these decisions outweighs the benefits of a smaller tree. For this
reason, strong branching is typically discarded as a viable option in practice. On the
other hand, the pseudocost estimation strategy has proven effective in predicting good
branching candidates, while maintaining a low cost of deciding. However, this strategy
relies on data collected throughout the tree, which poses a problem at the beginning of
the search. It is in fact the first branching decisions that have the most impact on the so-
lution process, which is unfortunate, as it is precisely at this moment that the estimates
are the least reliable. This is the motivation behind the reliability branching rule [8],
which smartly combines strong and pseudocost branching. The idea is to apply the ex-
plicit calculation of strong branching until enough samples of P±

j are obtained, for each

variable j ∈I . Once a variable is associated with enough samples, the pseudocost P̄±
j is

deemed reliable and henceforth trusted to make branching decisions.

SCIP’S DEFAULT BRANCHING RULE

SCIP v.7.0.0 [64] assigns maximum priority by default to the so-called hybrid branch-
ing rule [6]. This means that strong branching is used for initialization, but further, the
choice of branching variable is based on a weighted sum of different criteria. The largest
weight is placed on the variable’s pseudocosts. Other than pseudocosts, SCIP also con-
siders information about the implied reductions of other variables’ domains and con-
flicts where the variable is involved, though with smaller importance. It is important
to consider that a call to strong branching can trigger a series of side-effects within the
solver that are not accounted for in the node count. This was first observed by Gamrath
and Schubert [62], who point out that this gives an unfair advantage to methods that use
strong branching when comparing branching rules according to the final tree size.

3.2. LEARNING TO BRANCH
Approaches that frame branching as a learning problem have gained significant atten-
tion recently. Section 2.1.2 presented a discussion of the literature in this field. As seen
in Table 2.3 of that section, it is common to frame learning to branch using either imita-
tion learning (IL) or reinforcement learning (RL). Both paradigms, introduced in Section



3

46 3. EXPERT-FREE LEARNING TO BRANCH

1.4, are formalized using the MDP formulation (see Figure 1.1). In this section, we start
by presenting the necessary notation to formulate the branching task as an MDP. We
then direct our attention towards the two paradigms of interest, i.e., imitation and rein-
forcement learning, and point out some trends and key challenges with respect to this
distinction.

LEARNING TO BRANCH AS A MARKOV DECISION PROCESS
The methodology that will be discussed in this chapter requires a formal model of branch-
ing based on Markov Decision Processes (MDPs). We start by extending the brief defin-
ion of Chapter 1. We consider the episodic case, of the form M = (S ,A , pinit, ptrans,r ),
with states s ∈S , actions a ∈A , initial state distribution pinit(s0), state transition distri-
bution ptrans(st+1|st , at ), and reward function r : S →R. For simplicity, we assume finite
episodes of length T , that is, τ = (s0, a0, . . . , sT ), |τ| = T . Together with a control mecha-
nism represented by a stochastic policy π(at |st ) : A ×S → [0,1], with

∑
a∈A π(a|s) = 1,

the MDP defines a probability distribution over trajectories, namely

pπ(τ) = pinit(s0)
|τ|−1∏
t=0

π(at |st ) ptrans(st+1|st , at ).

The MDP control problem is to find a policy that maximizes the expected cumulative
reward, π⋆ ∈ argmaxπV π, with

V π := E
τ∼pπ

[ |τ|∑
t=0

r (st )

]
. (3.2)

Here the subscript τ ∼ pπ denotes that the expected value is computed with respect to
trajectories τ which are drawn from the probability distribution pπ. The policy is in fact
a parameterized function πθ(at |st ) with parameters θ. With a slight abuse of notation
and for ease of reading, we omit the dependence on θ.

A key property of MDPs is the Markov property: future states are independent from
states visited in the past conditional to the current state or action. We denote this St+1 ⊥⊥
S<t | St , At , ∀t . One consequence of this property is the policy gradient theorem , which
forms the basis of policy gradient methods.

Theorem 1 (Policy gradient [143]). Let the expected cumulative reward V π be defined as
in 3.2. Then,

∇θV π∝ E
τ∼pπ

[|τ|−1∑
t=0

∇θ logπ(at |st )
|τ|∑

t ′=t+1

r (st ′ )

]
.

The policy gradient theorem is key to optimizing V π. Even in the case where pπ is
unknown (because pi ni t and ptr ans are unknown) one can compute an approximation
of the gradient by sampling from this probability and then using gradient decent to op-
timize over the policy space.



3.2. LEARNING TO BRANCH

3

47

Let us now consider the problem of learning a branching policy in a B&B solver. As
noted by He et al. [77] and Gasse et al. [66], branching decisions are made sequentially,
thus the problem can naturally be regarded as an MDP. In this form, the states st consist
of the entire state of the B&B process (that is, the solver) at time t , which includes the
whole tree structure, all sub-MILPs and LP solutions, and all upper and lower bounds.
The actions at are the branching decisions, and the reward is chosen so that the return
matches an objective function of interest (e.g., total solving time or the final B&B tree
size). In practice however, the MDP states are complex objects of growing size, which are
impractical to handle. For this reason, alternative representations are used (see Section
2.2) which turn the problem into a partially observable MDP.

LEARNING TO BRANCH WITH IMITATION LEARNING

The literature shows that successful branching rules can be obtained by learning fast ap-
proximations of strong branching [87, 112, 76, 66, 73, 156, 117]. This approach can be
framed as imitation learning. While this can lead to improvements over state-of-the-art
branching rules on various benchmarks, it also has several drawbacks.

First, strong branching implementations are known to trigger side effects (such as
early detection of an infeasible child) that do not map well within the branching MDP
framework [62]. This means that branching decisions collected from the strong branch-
ing expert might not line up with the environment of the learning agent, which might
result in a performance gap between the learning agent and the expert, even if the agent
manages to successfully reproduce the expert decisions.

Second, other than these side-effects, strong branching relies on dual bound changes
to make branching decisions. This can be ineffective in problems where the LP relax-
ation is not very informative or suffers from dual degeneracy, as pointed out in Gamrath
et al. [65]. As an extreme case, Dey et al. [47] provide a case where a strong-branching
based B&B tree can have exponentially more nodes than the tree obtained with a problem-
specific rule. This exemplifies that strong branching is not actually an expert. The perfor-
mance ceiling that this “expert" sets on the learning agent can therefore be problematic.

Finally, regardless of the expert quality, obtaining strong branching samples can be-
come prohibitively expensive for large instances. This means that non-trivial engineer-
ing solutions and scaling strategies are needed to allow training on larger problems, such
as heavy computational parallelization [117].

LEARNING TO BRANCH WITH REINFORCEMENT LEARNING

The reasons listed above suggest the need for an alternative approach to finding a good
branching policy; an approach that does not rely on the strong branching rule. One
could perform imitation learning on another expert, but no other plausible imitation
target is known, and the same performance ceiling issue would remain. A natural alter-
native is reinforcement learning, but despite its theoretical appeal for learning to branch,
it also comes with its own challenges.



3

48 3. EXPERT-FREE LEARNING TO BRANCH

First, common evaluation metrics in B&B, such as solving time or final tree size, are
inconvenient for RL. Both require to run episodes to completion, that is, to solve MILP
instances to optimality, which leads to very long episodes even for moderately hard in-
stances. Second, in contrast to many RL tasks studied in the literature, in B&B the worse
the policy is, the longer the episodes are. These two factors combined give rise to the
following problems:

1. Collecting training data is computationally expensive. In particular, training from
scratch from a randomly initialized policy can be prohibitive for large MILPs.

2. Due to the length of the episodes, training signals are particularly sparse. This
exacerbates the so-called credit assignment problem [114], i.e., the problem of de-
termining which actions should be given credit for a certain outcome.

Etheve et al. [55] address the credit assignment problem by showing that, when depth-
first-search (DFS) is used as the node selection strategy, minimization of the total B&B
tree size can be achieved by taking decisions that minimize subtree size at each node.
Based on this result, they propose a Q-learning-type algorithm [116] where the learned
Q-function approximates the local subtree size. They report improvements over a state-
of-the-art branching rule on collections of small, fixed-size instances. However, they
only evaluate the learned policy with DFS node selection, which matches their train-
ing setting, but is not a realistic B&B setting. In the next section we will show that the
method proposed by Etheve et al. [55] can be interpreted as a specific instantiation of
a more general tree MDP framework, which effectively simplifies the credit assignment
problem in learning to branch (point 2 above). Furthermore, we propose an alternative
condition to the one of Etheve et al. [55] to ensure a tree MDP setting, which results in
shorter episodes, hence reducing the cost of data collection (point 1 above).

3.3. THE TREE MDP FORMULATION
We now detail our tree MDP framework, and show how the branching problem can be
cast as a tree MDP control problem, under some conditions. We then explain how this
structure, when present, can be exploited for more efficient reinforcement learning. For
further distinction of the classical MDP setting and tree MDPs, we sometimes refer to the
former as temporal MDPs. Proofs are deferred to the appendix.

3.3.1. TREE MDPS
We define tree MDPs as augmented Markov Decision Processes t M = (S , A , pinit, p−

ch,
p+

ch, r, l ), with states s ∈S , actions a ∈A , initial state distribution pinit(s0), respectively

left and right child transition distributions p−
ch(sch−

i
|si , ai ) and p+

ch(sch+
i
|si , ai )1, reward

function r : S → R and leaf indicator l : S → {0,1}. The central concept behind tree
MDPs is that each non-leaf state si (i.e., each state such that l (si ) = 0), together with an
action ai , produces two new states sch−

i
(its left child) and sch+

i
(its right child). As a re-

sult, the tree MDP generative process results in episodes τ that follow a tree structure

1In the case of branching, these transitions are deterministic.



3.3. THE TREE MDP FORMULATION

3

49

S0 St St+1

S0

Sn

Sn+

Sn-

…(a)

(b)

Figure 3.1: Schematic of (a) a Markov Decision Process and (b) a tree Markov Decision Process. From the
current state (marked in red) we transition into a single state in the MDP and a set of states in the tree MDP.

(see Figure 3.1), where leaf states (i.e., such that l (si ) = 1) are the leaf nodes of the tree,
below which no action can be taken and no children state will be created. For simplicity,
just like for MDPs, we assume the tree-like trajectories have some finite size that we de-
note T = |τ|.

A tree MDP episode τ consists of a binary2 tree with nodes N = {0, . . . , |τ|} and leaf
nodes L = {i ∈N | l (si ) = 1}, which embeds a state si at every node i ∈N and an action
ai at every non-leaf node i ∈ N \ L . For convenience, in the following we will use pai ,
ch−

i and ch+
i to denote the nodes that are respectively parent, left child and right child of

a node i if any, as well as di and ndi to denote respectively the set of all descendants and
non-descendants of a node i in the tree. Together with a control mechanism π(at |st ), a
tree MDP defines a probability distribution over trajectories,

pπ(τ) = pinit(s0)
∏

i∈N \L
π(ai |si )p−

ch(sch−
i
|si , ai )p+

ch(sch+
i
|si , ai ).

As in temporal MDPs, the tree MDP control problem is to find a policy that maximizes
the expected cumulative reward, as defined by (3.2). Due to their specific generative
process, a key characteristic of tree MDPs is the tree Markov property,

Sch−
i

,Sch+
i
⊥⊥ Sndi | Si , Ai∀i ,

2The concept can easily be extended to non-binary trees.



3

50 3. EXPERT-FREE LEARNING TO BRANCH

A (temporal) MDP process: (S ,A , pinit, ptrans,r )

Probability of trajectory τ: pπ(τ) = pinit(s0)
∏|τ|−1

t=0 π(at |st ) ptrans(st+1|st , at )

Markov property: St+1 ⊥⊥ S<t | St , At ,∀t

MDP

A tree MDP process: (S ,A , pinit, p−
ch, p+

ch,r, l )

Probability of trajectory τ: pπ(τ) = pinit(s0)
∏

i∈N \L π(ai |si )·
·p−

ch(sch−
i
|si , ai )p+

ch(sch+
i
|si , ai )

Markov property: Sch−
i

,Sch+
i
⊥⊥ Sndi

| Si , Ai ,∀i

Tree MDP

Figure 3.2: A side-by-side comparison of the MDP and tMDP models.

which guarantees, similarly to the temporal Markov property, that each subtree only de-
pends upon the immediate state and action. This results in the following tree policy gra-
dient formulation.

Proposition 1. For any tree MDP tM, the policy gradient can be expressed as

∇πV π∝ E
τ∼pπ

[ ∑
i∈N \L

∇π logπ(at |st )
∑

j∈di

r (s j )

]
. (3.3)

For a side-by-side comparison of the MDP and tree MDP formulations see Figure 3.2.

3.3.2. THE BRANCHING TREE MDP
We now show how and under which conditions the vanilla B&B algorithm can be for-
mulated as a tree MDP. We consider episodes τ that follow exactly the B&B tree struc-
ture. Each node i in the tree embeds a state si = (MILPi , z̄(i )), where MILPi is the local
sub-MILP of the node, and z̄(i ) is the global upper bound at the time that node i is pro-
cessed. Each non-leaf node also embeds an action ai = ( j , xLPi

j ) , where j is the index of

the branching variable chosen by B&B, and xLPi
j is the value used to branch

x j ≤ ⌊xLPi
j ⌋∨x j ≥ ⌈xLPi

j ⌉ .

Note that such states and actions, embedded in the B&B tree, carry enough information
to unroll a vanilla B&B algorithm, as described in Section 1.3.2. We now need to make
two additional assumptions in order to formulate branching as a tree MDP.



3.3. THE TREE MDP FORMULATION

3

51

B&B TREE TRANSITIONS

First, and this is our main requirement, B&B state transitions must decompose into p−
ch

and p+
ch.

Assumption 2. For every non-leaf node i , the global upper bounds z̄(ch−
i ) and z̄(ch+

i )
(reached by B&B when the left and right child is processed, respectively) can be derived
solely from the current state and action, (si , ai ).

Proposition 2. A vanilla B&B algorithm that satisfies Assumption 2 forms a tree MDP.

Assumption 2 is not always satisfied, as the following counterexample shows.

Counterexample. Consider the root problem MILP0 = {min x s.t . x ≥ 0.6, x ∈ Z}, with
upper bound z̄(0) = ∞. The root LP solution is x̂⋆ = 0.6, and the two sub-problems
MILPch−

i
and MILPch+

i
follow from the (only) branching decision x ≤ 0∨ x ≥ 1. Now, the

two global upper bound z̄(ch−
i ) and z̄(ch+

i ) depend on whether the feasible solution x = 1
has been found in the past, which in turn depends on the node processing order. Go-
ing left first (−) will yield (z̄(ch−

i ), z̄(ch+
i )) = (∞,∞), while going right first (+) will yield

(z̄(ch−
i ), z̄(ch+

i )) = (1,∞).

We now provide two conditions under which Assumption 2 is true.

Proposition 3. In Optimal Objective Limit B&B (ObjLim B&B), that is, when the optimal
solution value of the MILP is known at the start of the algorithm (z̄(0) = z∗), Assumption 2
holds.

Proposition 4. In Depth-First-Search B&B (DFS B&B), that is, when nodes are processed
depth-first and left-first by the algorithm, Assumption 2 holds.

Propositions 3 and 4 provide two viable options for turning vanilla B&B into a tree
MDP, where p−

ch and p+
ch are deterministic functions. The first variant, ObjLim, requires

MILP instances used for training to be solved to optimality once, in order to collect their
optimal objective value. The second variant, DFS, corresponds to the setting in Etheve
et al. [55]. In this variant there is no need to pre-solve training instances to optimality,
however it is expected that the collected episodes might be longer than with a standard
node selection rule, which might result in slower training.

B&B TREE REWARD

Last, for branching to formulate as a control problem in a tree MDP, the objective must
be compatible.

Assumption 3. The branching objective can be decomposed over the nodes of the B&B
tree, with a state-based reward function r : S →R.

Interestingly, a natural objective for branching is the final B&B tree size, which ex-
presses naturally as r (si ) =−1. Thus, it is trivially compatible with Assumption 3. We will
consider this reward in our experiments. Another common objective is the total solving
time, which can also be expressed as a state-based reward r : S →R under mild assump-
tions. Indeed, it suffices to consider that solving LP relaxations and making branching
decisions at each node are the main contributing factors in the total running time, while
other algorithmic components have a negligible cost. In vanilla B&B, both these compo-
nents only depend on the local state si = (MILPi , z̄(i )) of each node.



3

52 3. EXPERT-FREE LEARNING TO BRANCH

B&B tree

a

b c

d e f g

h i

Tree MDP episode

a

b c

d e f g

h i

Temporal MDP episodes

a c g b d f h i e

a c f h i g b d e

a b c d e f g h i

Figure 3.3: B&B process as a tree MDP episode vs. three possible temporal MDP episode. Which tempo-
ral MDP rollout is actually realized depends on the node processing order. White nodes denote states, green
nodes denote actions. In the tree MDP framework, the branching decision for splitting a node f is credited two
rewards, (rh ,ri ). In the temporal MDP framework, the same branching decision is credited with additional re-
wards which depend on the temporal order in which B&B nodes are processed, (rh ,ri ,re ), (rh ,ri ,rg ,rb ,rd ,re ),
or (rg ,rh ,ri ).

3.3.3. EFFICIENCY OF TREE MDP

Tree MDPs, when applicable, provide a convenient alternative to temporal MDPs for
tackling the branching problem. First, the tree Markov property implies that branch-
ing policies in tree branching MDPs will not benefit from any information other than the
local state si = (MILPi , z̄(i )) to make optimal decisions, similarly to how control policies
in temporal MDP can ignore past states and rely only on the immediate state st . Second,
the credit assignment problem in the branching tree MDP is more efficient than in the
equivalent temporal MDP. This is showcased in Figure 3.3, and stems from the fact that
in a tree MDP all the descendants of a node i are necessarily processed after that node
temporally. As a consequence, the rewards credited to an action in the tree policy gradi-
ent (3.3),

∑
j∈di

r (s j ), are necessarily a subset of the rewards credited to the same action
in the temporal policy gradient (Theorem 1),

∑
t ′>t r (st ′ ). Thus, it can be expected in-

tuitively that learning branching policies within the tree MDP framework will be easier,
and more sample-efficient than learning within the temporal MDP framework. We will
validate this hypothesis experimentally in Section 3.4.

3.3.4. THEORETICAL LIMITATIONS

Our proposed B&B variants, ObjLim and DFS, allow for a nice formulation of the branch-
ing problem as a tree MDP, which we argue is key to unlocking a more practical and
sample-efficient learning of branching policies. However, usually the end goal is to learn
a branching policy that performs well in realistic B&B settings, and the fact that a branch-
ing policy performs well in one of those variants does not guarantee that it will perform
well in the vanilla setting also. This discrepancy between the training environment and
the evaluation environment is a recurring problem in RL, and is more generally referred
to as the transfer learning problem. While there exist solutions to mitigate this problem,
in this work we leave the question aside and simply assume that the transfer problem is
negligible. We thus directly report the performance obtained from each training setting
in the realistic evaluation setting, a default B&B solver.



3.4. EXPERIMENTAL VALIDATION

3

53

3.3.5. CONNECTIONS WITH HIERARCHICAL RL
The tree MDP formulation has connections with hierarchical RL (HRL), a paradigm that
aims at decomposing the learning task into a set of simpler tasks that can be solved re-
cursively, independently of the parent task. The most related HRL approach is perhaps
MAXQ [49], which decomposes the value function of an MDP recursively using a finite
set of smaller constituent MDPs, each with its own action set and reward function. For
example, delivering a package from a point A to a point B decomposes into: moving to A,
picking up package, moving to B, dropping package. While both tree MDP and MAXQ ex-
ploit a recursive tree decomposition in order to simplify the credit assignment problem,
the two frameworks also differ on several points. First, in MAXQ the hierarchical sub-
task structure must be known a priori for each new task, and results in a fixed, limited
tree depth, while in tree MDPs the decomposition holds by construction and can result
in virtually infinite depths. Second, in MAXQ each sub-task results in a different MDP,
while in tree MDPs all sub-tasks are the same. Lastly, in MAXQ the recursive decompo-
sition must follow a temporal abstraction, where each episode is processed according to
a depth-first traversal of the tree. In tree MDPs the decomposition is not tied to the tem-
poral processing order of the episode, except for the requirement that a parent must be
processed before its children. Thus, any tree traversal order is allowed (see Figure 3.2).

3.4. EXPERIMENTAL VALIDATION
We now compare the performance of four machine learning approaches: the imitation
learning method of Gasse et al. [66], and three different RL methods. We also compare
against the default rule of SCIP v.7.0 (see Section 3.1). Code for reproducing all experi-
ments is available online [131].

3.4.1. SETUP

BENCHMARKS

Similarly to Gasse et al. [66], we train and evaluate each method on five NP-hard prob-
lem benchmarks, which consist of synthetic combinatorial auctions, set covering, max-
imum independent set, capacitated facility location and multiple knapsack instances.
For each benchmark we generate a training set of 10,000 instances, along with a small
set of 20 validation instances for tracking the RL performance during training. For the
final evaluation, we further generate a test set of 40 instances, the same size as the train-
ing ones, and also a transfer set of 40 instances, larger and more challenging than the
training ones. More information about benchmarks and instance sizes can be found in
the appendix (3.6.3).

TRAINING

We use the Graph Neural Network (GNN) from Gasse et al. [66] (see Section 2.2 for a de-
tailed description). We compare four training methods: imitation learning from strong
branching (IL); RL using temporal policy gradients (MDP); RL using tree policy gradi-
ents with DFS as a node selection strategy (tMDP+DFS), which enforces the tree Markov

3Notice that for tree MDPs the computation of the return for each node can be computed efficiently with a
bottom-up traversal that runs in O(n).



3

54 3. EXPERT-FREE LEARNING TO BRANCH

Algorithm 2 REINFORCE training loop

1: Input: training set of MILP instances and their pre-computed optimal solution D,
maximum number of epochs K , time limit ζ, entropy bonus λ, learning rate α, sam-
ple rate β.

2: Initialize policy πθ with random parameters θ.
3: for epoch from 1 to K do
4: if elapsed time > ζ then break
5: Sample 10 MILP instances from D

6: for each sampled instance do
7: Collect one episode τ by running B&B to optimality
8: Extract randomly β×|τ| state, action, return tuples (s, a,G) from τ (with G the

local subtree size for tree MDPs, and the remaining episode size for MDPs)3

9: end for
10: n ← number of collected tuples, L ← 0
11: for each collected tuple (s, a,G) do
12: L ← L−G 1

n logπθ(a|s) # policy gradient cost

13: L ← L−λ 1
n H(πθ(·|s)) # entropy bonus

14: end for
15: θ← θ−α∇θL
16: end for
17: return πθ

property due to Proposition 4; and RL using tree policy gradients with the optimal objec-
tive value set as an objective limit (tMDP+ObjLim), which corresponds to Propositions 3.
Other than that, we use default solver parameters, except for restarts and cutting planes
after the root node which are deactivated. We use a plain REINFORCE [151] with en-
tropy bonus as our RL algorithm, for simplicity. Our training procedure is summarized
in Algorithm 2. We set a maximum of 15,000 epochs and a time limit of six days for train-
ing. Our implementation uses PyTorch [124] together with PyTorch Geometric [56], and
Ecole [128] for interfacing to the solver SCIP [64]. All experiments are run on compute
nodes equipped with a GPU.

EVALUATION

For each branching rule evaluated, we solve every validation, test or transfer instance 5
times with a different random seed. We use default solver parameters, except for restarts
and cutting planes after the root node which are deactivated (same as during training),
and a time limit of 1 hour for each solving run. For tMDP+DFS and tMDP+ObjLim, the
specific settings used during training (DFS node selection and optimal objective limit,
respectively) are not used any more, thus providing a realistic evaluation setting. We re-
port the geometric mean of the final B&B tree size as our metric of interest, as is common
practice in the MILP literature [7]. We pair this with the average per-instance standard
deviation (in percentage). We only consider solving runs that finished successfully for
all methods, as in [66]. Extended results including solving times are provided in the ap-
pendix (3.6.2).



3.4. EXPERIMENTAL VALIDATION

3

55

Table 3.1: Solving performance of the different branching rules in terms of the final B&B tree size (lower is
better). We evaluate each method on a test set with instances the same size as training, and a transfer set with
larger instances. We report the geometric mean and standard deviation over 40 instances, solved 5 times with
different random seeds, and we bold the best of the RL methods.

Model Comb. Auct. Set Cover Max.Ind.Set Facility Loc. Mult. Knap.

SCIP default 7.3±39% 10.7±24% 19.3±52% 203.6±63% 267.8±96%
IL 52.2±13% 51.8±10% 35.9±36% 247.5±39% 228.0±95%

RL (MDP) 86.7±16% 196.3±20% 91.8±56% 393.2±47% 143.4±76%
RL (tMDP+DFS) 86.1±17% 190.8±20% 89.8±51% 360.4±46% 135.8±75%
RL (tMDP+ObjLim) 87.0±18% 193.5±23% 85.4±53% 325.4±41% 142.4±78%

Test

Model Comb. Auct. Set Cover Max.Ind.Set Facility Loc. Mult. Knap.

SCIP default 733.9±26% 61.4±19% 2867.1±35% 344.3±57% 592.3±75%
IL 805.1±9% 145.0±6% 1774.8±38% 407.8±37% 1066.1±101%

RL (MDP) 1906.3±18% 853.3±27% 2768.5±76% 679.4±52% 518.4±79%
RL (tMDP+DFS) 1804.6±17% 816.8±25% 2970.0±76% 609.1±47% 495.1±81%
RL (tMDP+ObjLim) 1841.9±18% 826.4±26% 2763.6±74% 496.0±48% 425.3±64%

Transfer

3.4.2. RESULTS

Figure 3.4 showcases the convergence of our three RL paradigms MDP, tMDP+ObjLim
and tMDP+DFS during training, in terms of the final B&B tree size on the validation
set (the lower the better). In order to better highlight the sample efficiency of each
method, we report on the x-axis the cumulative number of collected training samples,
which correlates with the length of the episodes collected during training. This provides
a hardware-independent proxy for training time. As can be seen, the tree MDP paradigm
clearly improves the convergence speed on these three benchmarks, with a clear domi-
nation of tMDP+ObjLim on set covering and capacitated facility location.

Table 3.1 reports the final performance of the branching rules obtained with each
method, on both a held-out test set (same instance difficulty as training) and a trans-
fer set (larger, more difficult instances than training). Despite a mismatch between the
training and evaluation environments, which is required to enforce the tree Markov prop-
erty, the tree MDP paradigm consistently produces equal or better branching rules than
the temporal MDP paradigm on all five benchmarks.

On one benchmark, multiple knapsack, the branching rules learned by RL outper-
form both SCIP’s default branching rule and the strong branching imitation (IL) ap-
proach. The likely reason is that the MILP formulation of multiple knapsack provides
a very poor linear relaxation, which often results in no dual bound change after branch-
ing. This means that strong branching scores are in most cases not discriminative, which
is problematic for rules that heavily rely on this criterion (see Section 3.2), such as SCIP’s
default or a policy that imitates strong branching. This situation makes a strong case for
the potential of RL-based methods, which can adapt and devise alternative branching
strategies.

On the remaining four benchmarks, however, RL methods perform worse than IL, de-



3

56 3. EXPERT-FREE LEARNING TO BRANCH

(a) Combinatorial Auctions (b) Set Covering

(c) Maximum Independent Set (d) Capacitated Facility Location

(e) Multiple Knapsack

Figure 3.4: Training curves for REINFORCE with temporal policy gradients (MDP), tree policy gradients with
objective limit (tMDP+ObjLim) and DFS node selection (tMDP+DFS). We report the final B&B tree size on
the validation set (geometric mean over 20 instances × 5 seeds, the lower the better), versus the number of
processed training samples on the x-axis. Solid lines show the moving average.

spite being based on the same GNN architecture. This illustrates the difficulty of learning
to branch via RL, even on small-scale problems, and the remaining room for improve-
ment. We would like to reiterate that SCIP’s default rule uses some iterations of strong
branching (see Section 3.1) and for this reason the tree size might appear small while the
solving time is larger than for the GNN-based methods. Additional evaluation criteria



3.5. CONCLUSIONS AND FUTURE DIRECTIONS

3

57

(solving times and number of time limits) are available in the appendix (3.6.2).

3.5. CONCLUSIONS AND FUTURE DIRECTIONS
The work discussed in this chapter adds to a growing body of literature on using ML to
assist decision-making in several key components of the B&B algorithm (see also Chap-
ter 2). We contribute to the study of RL as a tool for learning to branch in MILP solvers.
We present for the first time the tree MDP, a variant of Markov Decision Processes, and
show that under some conditions, the B&B branching process is tree-Markovian. We
show that the approach of Etheve et al. [55] can be naturally cast as Q-learning for tree
MDPs, and we propose an alternative, more computationally appealing way to enforce
the tree Markov property in B&B, using optimal objective limits. Finally, we evaluate for
the first time a variety of RL-based branching rules in a comprehensive computational
study, and we show that tree MDPs improve the convergence speed of RL for branching,
as well as the overall performance of the learnt branching rules.

These contributions bring us closer to learning efficient branching rules from scratch
using RL, which could ultimately outperform existing branching heuristics built upon
decades of expert knowledge and experiment. However, despite the convergence speed-
up that our method provides, training without expert knowledge remains very compu-
tationally heavy and in general still results in worse performance than its supervised
learning counterpart, which reveals a significant gap that must be closed. Future work
includes exploring ideas to keep improving sample efficiency, and generalization across
instance size. This is necessary for RL to scale to larger, non-homogeneous benchmarks,
such as MIPLIB [68], which at the moment remain out-of-reach for RL.

Finally, we would like to note that, although this chapter focuses on improving vari-
able selection for MILP, the tree MILP construction can be useful in other applications.
Branch-and-bound is a type of divide-and-conquer algorithm, and, in general, this frame-
work can be applied to any problem where one seeks to control such algorithms more
efficiently. Recently, Cameron et al. [33] apply the tree MDP formulation to proving un-
satisfiablity of a SAT formula. They build upon our proof of the policy gradient theorem
for tree MDP by presenting an adaptation of Monte Carlo Tree Search. Their results show
further indication that the tree MDP formulation is highly advantageous in problems
that decompose with a tree structure.



3

58 3. EXPERT-FREE LEARNING TO BRANCH

3.6. APPENDIX

3.6.1. PROOFS
Proof of Proposition 1. This proof draws closely to the proof of the temporal policy gra-
dient theorem. First, let us re-write (3.2) as

V π = Es0∼pπ

[
V π(s0)

]
,

where

V π(si ) :=r (si ) if l (si ) = 1 (leaf node), and

V π(si ) :=r (si )+Eai ,sch−
i

,sch+
i
∼pπ

[
V π(sch−

i
)+V π(sch+

i
)
]

if l (si ) = 0 (non-leaf node).

The corresponding gradients when l (si ) = 1 and l (si ) = 0 are, respectively,

∇πV π(si ) = 0, and

∇πV π(si ) = Eai ,sch−
i

,sch+
i
∼pπ

[∇ππ(ai |si )

π(ai |si )

(
V π(sch−

i
)+V π(sch+

i
)
)
∇πV π(sch−

i
)+∇πV π(sch+

i
)

]
.

Let us now write the gradient of V π,

∇πV π = Es0∼pinit

[∇πV π(s0)
]

.

Either we have l (s0) = 1 and thus ∇πV π = 0, or we can expand ∇πV π(s0) to obtain

∇πV π =Es0,a0,sch−0 ,sch+0
∼pπ

[∇ππ(a0|s0)

π(a0|s0)
(V π(sch−

0
)+V π(sch+

0
))+∇πV π(sch−

0
)+∇πV π(sch+

0
)

]
.

Then again, each of of the terms ∇πV π(sch−
0

) and ∇πV π(sch+
0

) can be replaced by 0 if the
corresponding node is a leaf node, or can be expanded further in the same way if it is a
non-leaf node. By applying this rule recursively, we finally obtain

∇πV π = Eτ∼pπ

[ ∑
i∈N \L

∇ππ(ai |si )

π(ai |si )
(V π(sch−

i
)+V π(sch+

i
))

]

= Eτ∼pπ

[ ∑
i∈N \L

∇ππ(ai |si )

π(ai |si )

∑
j∈di

r (s j )

]

= Eτ∼pπ

[ ∑
i∈N \L

∇π logπ(ai |si )
∑

j∈di

r (s j )

]
.

Lemma 4. In B&B, both children MILPs (MILPch−
i

and MILPch+
i

) can be derived from the

local MILP MILPi and branching decision ai = ( j , x⋆j ), with j the index of a variable in

MILPi , and x⋆j the value to be used for branching.

Proof. From the definition of B&B in Section 1.3, MILPch−
i

(resp. MILPch+
i

) consist of

MILPi augmented with the additional constraint x j ≤ ⌊x⋆j ⌋ ( resp. x j ≥ ⌈x⋆j ⌉).



3.6. APPENDIX

3

59

Proof of Proposition 2. We shall now prove that, under Assumption 2, the B&B process
can be formulated as a tree MDP t M = (S ,A , pinit, p−

ch, p+
ch,r, l ), with states si = (MILPi , z̄(i ))

and actions ai = ( j , x⋆j ). First, the algorithm starts at the root node with an initial MILP,

MILP0, and an initial global upper bound z̄(0) = ∞. Thus, the root state s0 follows an
arbitrary, user-defined MILP distribution pinit(s0), which is independent of the B&B al-
gorithm. Second, Lemma 4, together with Assumption 2, ensures the existence of (deter-
ministic) distributions p−

ch(sch−
i
|si , ai ) and p+

ch(sch+
i
|si , ai ), from which the B&B children

states sch−
i

and sch+
i

are generated. Third, the reward function r (si ) is not part of the B&B

algorithm, and can be arbitrarily defined to match any (compatible) B&B objective. Last,
the leaf node indicator l (si ) is exactly the vanilla B&B leaf node criterion, and is obtained
by solving the LP relaxation of MILPi constrained with upper bound z̄(i ), which results
in either an infeasible LP (leaf node), a MILP-feasible LP solution (leaf node), or a MILP-
infeasible LP solution (non-leaf node). This concludes the proof.

Proof of Proposition 3. Because z̄(0) = z∗, the initial global upper bound is equal to the
optimal solution value to the original MILP. Then, B&B will never be able to find a fea-
sible solution that tightens that bound, and we necessarily have z̄(i ) = z̄(0), ∀i . Hence
z̄(ch−

i ) = z̄(ch+
i ) = z̄(0), which means they can be directly derived from si . This concludes

the proof.

Proof of Proposition 4. First, it is trivial to show that z̄(ch−
i ) can be derived from si . Be-

cause node i is not a leaf node, it has not resulted in an integral solution, and hence
processing node i does not change the global upper bound. And since ch−

i is processed
directly after node i , we necessarily have z̄(ch−

i ) = z̄(i ). This, combined with Lemma 4,
shows that sch−

i
can be inferred from si and ai . Second, we show how z̄(ch+

i ) can be de-

rived from si and ai . Because node ch+
i is processed right after the whole subtree below

ch−
i has been processed, z̄(ch+

i ) is necessarily the minimum of z̄(i ) and the optimal so-
lution value of MILPch−

i
. Now, because sch−

i
can be inferred from si and ai , MILPch−

i
can

be recovered as well, and solved to obtain its optimal solution value. Therefore, z̄(ch+
i )

can be recovered from si and ai .

3.6.2. EXTENDED RESULTS
Here we provide extended evaluation results (Table 3.2) with the geometric mean of
the solving times in seconds (Time) and the geometric mean of the final B&B tree size
(Nodes). The results are averaged over the solving runs that finished successfully for all
methods. This is, if a solving run reached the time limit for any method, this is excluded
from the average. Table 3.3 shows the number of solving runs that timed out per method.

3.6.3. INSTANCE COLLECTIONS
This section presents the models used to generate our instance benchmarks. The pa-
rameters used to generate each benchmark are shown in Table 3.4.

COMBINATORIAL AUCTIONS

For m items, we are given n bids {B j }n
j=1. Each bid B j is a subset of the items with

an associated bidding price p j . The associated combinatorial auction problem is of the



3

60 3. EXPERT-FREE LEARNING TO BRANCH

following form:

maximize
n∑

j=1
p j x j

subject to
∑

j :i∈B j

x j ≤ 1, i = 1, ...,m

x j ∈ {0,1} j = 1, ...,n

where x j represents the action of choosing bid B j .

SET COVERING

Given the elements 1,2, ...,m, and a collection S of n sets whose union equals the set of
all elements, the set cover problem can be formulated as follows:

minimize
∑

s∈S

xs

subject to
∑

s:e∈s
xs ≥ 1, e = 1, ...,m

xs ∈ {0,1} ∀s ∈S

MAXIMUM INDEPENDENT SET

Given a graph G the maximum independent set problem consists in finding a subset of
nodes of maximum cardinality such that no two nodes in that subset are connected. We
use the clique formulation from [21]. Given a collection C ⊆ 2V of cliques whose union
covers all the edges of the graph G , the clique cover formulation is

maximize
∑

v∈V
xv

subject to
∑

v∈C
xv ≤ 1, ∀C ∈C

xv ∈ {0,1} ∀v ∈V

CAPACITATED FACILITY LOCATION WITH UNSPLITTABLE DEMAND

Given a number n of clients with demands {d j }n
j=1, and a number m of facilities with

fixed operating costs { fi }m
i=1 and capacities {si }m

i=1, let ci j /d j be the unit transportation
cost between facility i and client j , and let pi j /d j be the unit profit for facility i supplying
client j . We try to solve the following problem

minimize
m∑

i=1

n∑
j=1

ci j xi j +
m∑

i=1
fi yi

subject to
n∑

j=1
d j xi j ≤ si yi , i = 1, ...,m

m∑
i=1

xi j ≥ 1, j = 1, ...,n

xi j ∈ {0,1} ∀i , j

yi ∈ {0,1} ∀i



3.6. APPENDIX

3

61

where each variable xi j represents the decision of facility i supplying client j ’s de-
mand, and each variable yi representing the decision of opening facility i for operation.

MULTIPLE KNAPSACK

Given n items with respective prices {p j }n
j=1 and weights {w j }n

j=1, and m knapsacks with

capacities {ci }m
i=1, the multiple knapsack problem consists in placing a number of items

in each of the knapsacks such that the price of the selected items is maximized, while
the capacity of the knapsacks is not exceeded by the total weight of the items therein.
Formally:

maximize
m∑

i=1

n∑
j=1

p j xi j

subject to
n∑

j=1
w j xi j ≤ ci , i = 1, ...,m

m∑
i=1

xi j ≤ 1, j = 1, ...,n

xi j ∈ {0,1} ∀i , j

where each variable xi j represents the decision of placing item j in knapsack i .



3

62 3. EXPERT-FREE LEARNING TO BRANCH

Table 3.2: Evaluation on test instances (same size as training) and transfer instances (larger size). We report
the geometric mean and standard deviation of the final B&B tree size and the solving time (lower is better for
both).

Test Transfer

Model Nodes Time Nodes Time

SCIP default 7.3±39% 3.3±10% 733.9±26% 27.4±7%
IL 52.2±13% 2.1±6% 805.1±9% 14.6±5%
RL (MDP) 86.7±16% 2.2±6% 1906.3±18% 20.9±11%
RL (tMDP+DFS) 86.1±17% 2.2±6% 1804.6±17% 20.1±9%
RL (tMDP+ObjLim) 87.0±18% 2.2±6% 1841.9±18% 20.4±10%

Combinatorial auctions
Model Nodes Time Nodes Time

SCIP default 10.7±24% 5.8±6% 61.4±19% 12.6±5%
IL 51.8±10% 4.0±5% 145.0±6% 8.0±4%
RL (MDP) 196.3±20% 5.1±8% 853.3±27% 14.9±13%
RL (tMDP+DFS) 190.8±20% 5.1±7% 816.8±25% 14.6±12%
RL (tMDP+ObjLim) 193.5±23% 5.1±8% 826.4±26% 14.6±13%

Set covering
Model Nodes Time Nodes Time

SCIP default 19.3±52% 13.2±13% 2867.1±35% 167.4±23%
IL 35.9±36% 8.7±10% 1774.8±38% 85.7±22%
RL (MDP) 91.8±56% 9.5±16% 2768.5±76% 85.6±51%
RL (tMDP+DFS) 89.8±51% 9.5±17% 2970.0±76% 90.6±51%
RL (tMDP+ObjLim) 85.4±53% 9.4±17% 2763.6±74% 86.1±47%

Maximum independent set
Model Nodes Time Nodes Time

SCIP default 203.6±63% 16.9±34% 344.3±57% 40.3±36%
IL 247.5±39% 7.2±26% 407.8±37% 13.6±24%
RL (MDP) 393.2±47% 8.7±29% 679.4±52% 17.2±33%
RL (tMDP+DFS) 360.4±46% 8.3±30% 609.1±47% 15.9±29%
RL (tMDP+ObjLim) 325.4±41% 7.9±26% 496.0±48% 14.5±28%

Facility location
Model Nodes Time Nodes Time

SCIP default 267.8±96% 1.5±54% 592.3±75% 3.7±42%
IL 228.0±95% 1.8±66% 1066.1±101% 7.1±82%
RL (MDP) 143.4±76% 1.3±48% 518.4±79% 4.5±58%
RL (tMDP+DFS) 135.8±75% 1.3±48% 495.1±81% 4.3±59%
RL (tMDP+ObjLim) 142.4±78% 1.4±48% 425.3±64% 3.9±46%

Multiple knapsack



3.6. APPENDIX

3

63

Table 3.3: Number of solving runs (instance–seed pairs) out of 200 that hit the 1h time limit.

Model C. Auct. Set Cov. M.Ind.Set Fac. Loc. M. Knap.

SCIP default 0 0 0 1 0
IL 0 0 0 0 0
RL (MDP) 0 0 1 0 0
RL (tMDP+DFS) 0 0 1 0 0
RL (tMDP+ObjLim) 0 0 1 0 0

Test

Model C. Auct. Set Cov. M.Ind.Set Fac. Loc. M. Knap.

SCIP default 0 0 1 13 0
IL 0 0 0 0 3
RL (MDP) 0 0 20 1 2
RL (tMDP+DFS) 0 0 18 1 0
RL (tMDP+ObjLim) 0 0 16 1 0

Transfer

Table 3.4: Size of the instances used for training and evaluation, for each problem benchmark. We evaluate the
final performance on instances of the same size as training (test), and also larger instances (transfer).

Benchmark Generation method Parameters Train / Test Transfer

Combinatorial Leyton-Brown et al. [102] Items 100 200
auction with arbitrary relationships Bids 500 1000

Set covering Balas and Ho [16]
Items 400 500
Sets 750 1000

Maximum Bergman et al. [21] Nodes 500 1000
independent set on Erdős-Rény graphs Affinity 4 4

Facility Cornuéjols et al. [43] Customers 35 60
location with unsplittable demand Facilities 35 35

Multiple
Fukunaga [61]

Items 100 100
knapsack Knapsacks 6 12





4
LATTICE REFORMULATIONS FOR IP

Branching on single variable disjunctions has become an ubiquitous strategy that most
MILP solvers use by default. The more general problem of choosing a general disjunc-
tion, i.e., a hyperplane, for branching has been comparatively less studied. The reason
is that, while this approach can lead to smaller search trees, several obstacles exist when
it comes to their implementation, such as the generation and selection of such direc-
tions, or numerical considerations. Still, algorithms with theoretical guarantees, such
as the one by Lenstra Jr. [101] and the one by Lovász and Scarf [108], make crucial use of
branching on hyperplanes. Both algorithms employ lattice basis reduction. In this chap-
ter, we discuss a line of methodologies that also make use of lattice information. These
methodologies construct a reformulation of the feasible set. The reformulated variables
can be seen as hyperplanes in the original space, and consequently they can be used as
a way to construct lattice-informed branching directions.

In particular, we use this perspective to study the methodologies of Aardal et al. [3]
(AHL) and Krishnamoorthy and Pataki [94] (KP). For the purpose of this chapter, we fo-
cus on pure integer programs (IPs). The chapter is organized as follows. We start with
a brief introduction to key concepts about lattices (Section 4.1). In Section 4.2 we dis-
cuss non-standard approaches to solving IPs, with a more detailed overview of the al-
gorithms of Lenstra Jr. [101] and Lovász and Scarf [108] which will be of importance to
our study. Section 4.3 introduces a variation of the AHL reformulation and presents a
useful bound on the size of the reformulation’s relaxation. In Section 4.4 we present a
computational analysis that compares the different formulations on different metrics
and instance types, which allows us to make conclusions about the effectiveness of the
generated branching directions. We also draw connections with the algorithm of Lovász
and Scarf [108]. We conclude this chapter with a reflection on our findings and on future
avenues of research (Section 4.5). The contents of this chapter are based on our pub-
lished work [4]. The code for reproducing all experiments is available online [133].

65



4

66 4. LATTICE REFORMULATIONS FOR IP

4.1. SOME PRELIMINARIES ON LATTICES

Definition 5 (Lattice). Let {bi }K
i=1 be linearly independent vectors in Rn . The set

L =
{

x | x =
K∑

i=1
λi bi , λi ∈Z, i ∈ [K ]

}
is called a lattice. The vectors {bi }K

i=1 are a basis of L.

Definition 6 (Gram–Schmidt process). Given linearly independent vectors b1, ...,bK , the
Gram-Schmidt process generates orthogonal vectors b1∗, ...,bK∗ following the recursion

b1∗ = b1

b j∗ = b j −
j−1∑
i=1

µi j bi∗ , with µi j = 〈b j ,bi∗〉
||bi∗||2 for 2 ≤ j ≤ K .

Definition 7 (LLL-reduced basis [99]). Given is a basis b1,b2, . . . ,bK of the lattice L, and
the associated Gram-Schmidt vectors b1∗,b2∗, . . . ,bK∗. Let µi j = 〈bi ,b j∗〉/〈b j∗,b j∗〉, for
1 ≤ j < i ≤ K . The basis is reduced if

|µi j | ≤ 1

2
, for 1 ≤ j < i ≤ K (4.1)

and, for y ∈ ( 1
4 ,1) and 1 < i ≤ K ,

∥bi∗+µi , i−1b(i−1)∗∥2 ≥ y ∥b(i−1)∗∥2 . (4.2)

Notice that condition (4.2) is satisfied if (y −µ2
i ,i−1)∥b(i−1)∗∥2 ≤ ∥bi∗∥2 , or equiva-

lently if ∥b(i−1)∗∥2 ≤ c∥bi∗∥2 , where c = 1
y−1/4 . A c-reduced basis is an LLL-reduced basis

for a given value of the constant c.

The LLL algorithm by Lenstra et al. [99] can reduce any given basis in polynomial
time.

Definition 8 (Lattice determinant). Given is any basis b1,b2, . . . ,bK of the lattice L. Let B
be the matrix whose columns correspond to the basis vectors. The determinant d(L) of L is
defined as

d(L) =
√

det(B T B ) .

In the case that L is full-dimensional, this is equal to det(B ).

Notice that d(L) does not depend on the choice of basis.

Definition 9 (Polar lattice). Let L be a lattice in a Euclidean vector space E with dim E =rk L.
Then the polar lattice L∗ of L is defined as

L∗ = {x ∈ E : 〈x , y〉 ⊂Z for all y ∈ L} .



4.2. NON-STANDARD ALGORITHMS FOR IP

4

67

For a lattice L and its polar L∗ we have rk L = rk L∗, L∗∗ = L, and

d(L) = 1

d(L∗)
. (4.3)

Definition 10 (Pure sublattice). Let L be a lattice in a Euclidean vector space E, and let K
be a subgroup of L. If there exists a subspace D of E such that K = L∩D, then K is called a
pure sublattice.

Suppose that K is a pure sublattice of the lattice L. Then, the following holds:

d(L) = d(K ) ·d(L/K ) . (4.4)

Let L be a lattice with polar L∗, and let K be a pure sublattice of L. Then, for K ⊥ =
{x ∈ L∗ | 〈x ,K 〉 = 0}, and we can write

K ⊥ = (L/K )∗ . (4.5)

A thorough treatment of this topic can be found in Lenstra [100].

4.2. NON-STANDARD ALGORITHMS FOR IP
Most implementations of the B&B algorithm described in Section 1.3.2 involve a binary
tree, where branching happens as a result of a disjunction on a single (integer) variable
that takes a fractional value in the LP relaxation solution xLP . This is, by imposing

x j ≤ ⌊xLP
j ⌋ or x j ≥ ⌈xLP

j ⌉

for some j ∈ I . This is the standard form of the B&B algorithm for IP. More generally,
one can use a tuple (π,π0) ∈ Zn ×Z such that π0 <πT xLP < π0 +1. This is, the solution
to the LP relaxation is cut off by imposing

πT x ≤π0 or πT x ≥π0 +1.

Computing an optimal pair (π,π0) ∈ Zn ×Z that minimizes the size of the search tree is
N P -hard [109]. However, several methods for computing good disjunctions have been
proposed. While these general disjunctions often lead to smaller search trees, the per-
formance in terms of solution time commonly worsens. There are two main reasons
for this. First, the candidate pool is typically larger and more time is spent choosing
a branching direction. On top of that, other structural issues exist related to the other
solver components. For example, most implementations of domain propagation or con-
flict analysis benefit from branching on single-variable disjunctions. Most importantly,
when using general disjunctions, LP relaxations increasingly grow with tree depth1, and
simplex warm-starting is more challenging.

In spite of these difficulties, the use of general disjunctions has proven very promis-
ing in theory, but also in practice when it comes to reducing the tree size. A deeper

1Notice that single-variable branching is handled as a change in the variable’s bounds, and therefore does not
increase the number of constraints.



4

68 4. LATTICE REFORMULATIONS FOR IP

analysis of disjunction-finding methods and their practical use can allow the MILP com-
munity to evaluate their applicability and give good motivation to solve the technical
challenges concerning other solver components. The section at hand will present a short
review of disjunction-finding algorithms for branching, followed by a more in-depth de-
scription of two algorithms that will be relevant for the purpose of this chapter.

4.2.1. DISJUNCTION-FINDING ALGORITHMS

Several methodologies to find general disjunctions for branching have been proposed.
We can distinguish two main lines of research, according to the objective function of
choice used as a proxy for branching quality. These are (i) thinness of the LP relaxation
polytope and (ii) objective value degradation in children nodes.

Branching on thin directions is the key to unlocking algorithms that run in polyno-
mial time with a fixed number of variables. The algorithms of Lenstra Jr. [101], and of
Lovász and Scarf [108] follow this line. These algorithms are of great importance for IP
history and have strong connections with the reformulations treated in this chapter. For
this reason, we devote Sections 4.2.2 and 4.2.3 to discuss them in detail. Other more re-
cent examples are the work of Mehrotra and Li [113] and of Elhedhli and Naoum-Sawaya
[54]. These methods suffer from the disadvantage that finding thin directions at every
node is very computationally intensive.

In line with research on the variable selection problem, one can formulate the se-
lection of a good general disjunction in terms of the objective value degradation in the
generated children nodes (see Section 3.1). However, in the single variable setting the
number of candidates is limited (only integer variables that take a fractional value in the
relaxation need to be considered), whereas in the general setting there is an infinite pool
of branching candidates. Several approaches have been proposed to reduce the candi-
date pool to a subset of promising directions before probing the potential children nodes
in each case. For example, by using a greedy heuristic over the setπ ∈ {−1,0,1}n [121], by
considering split disjunctions coming from Gomory cuts [85], or by considering multi-
aggregated variables [63].

Other approaches include the one of Mahajan and Ralphs [110], who formulate ap-
propriate disjunction finding MILPs which need to be solved at each subproblem. They
note that this comes at a great (sometimes impractical) computational cost and suggest
methods for alleviating the difficulty of such formulation. Finally, let us mention the
work of Mahmoud and Chinnek [111], who take a different approach and test different
heuristic metrics to find branching directions that lead to feasible solutions as fast as
possible. Notably, they also study the interesting question of when (in which nodes) it
is effective to apply a general disjunction. They propose two metrics of interest, based
on the number of candidate variables and the progress in dual bound throughout the
search.

In the following, we discuss the algorithms of Lenstra and of Lovász and Scarf in more
detail, as they will be of importance to the results of this chapter.



4.2. NON-STANDARD ALGORITHMS FOR IP

4

69

4.2.2. LENSTRA’S ALGORITHM
The algorithm by Lenstra Jr. [101] provided the first proof that IP is solvable in polyno-
mial time in fixed dimension, a breakthrough in the history of the field. The algorithm
can be applied to decide whether XLP ∩Zn =;, with

XLP = {x ∈Rn : Ax ≤ b} .

If XLP ∩Zn ̸= ;, the algorithm produces a vector in XLP ∩Zn . We assume, without loss of
generality, that XLP is bounded and full-dimensional.

The first step of this algorithm consists in finding a non-sigular endomorphism τ :
Rn → Rn such that τXLP has “spherical" appearance. In more precise terms, for p ∈ Rn ,
z ∈R>0, let

B(p , z) = {x ∈Rn : ||x −p|| ≤ z}

be the closed ball with center p and radius z. Lenstra Jr. [101] first specifies a procedure
that, in polynomial time, is able to construct τ such that

B(p ,r ) ⊂ τXLP ⊂ B(p ,R) (4.6)

for some p ∈ τXLP , and with r , R satisfying

R

r
≤C 1

n

with C 1
n a constant only depending on n.

Once the endomorphism τ has been constructed, we consider the equivalent prob-
lem of determining whether τXLP ∩τZn =;. Notice that L := τZn is a lattice. Let {bi }n

i=1

denote any basis of L with vectors indexed in such a way that ||bn || = max{||bi || : i ∈
[n]}. Let L′ := ∑n−1

i=1 bi be the lattice spanned by the first n − 1 lattice vectors and let

H = span{b1, ...,bn−1}. Then

L = L′+Zbn ⊂ H +Zbn =∪k∈Z(H +kbn) .

This means that the body of interest τXLP ∩τZn is contained in the union of countably
many hyperplanes. Let t be the number of such hyperplanes that intersect τXLP . Lenstra
Jr. [101] shows that if the chosen basis for L is LLL-reduced, then this number is bounded
by

t ≤C 1
n ·C 2

n ·pn (4.7)

where C 2
n is another constant only depending on n.

The algorithm of Lenstra first derives, in polynomial time, a vector x ∈ L. If x ∈ τXLP

then the algorithm terminates. Otherwise, the result in (4.7) is used to define a branch-
ing strategy: t subproblems in dimension n −1 are created by intersecting the feasible
region with one of the hyperplanes. The procedure is applied recursively in each of the
subproblems. Notice that the number of subproblems is bounded by a constant only



4

70 4. LATTICE REFORMULATIONS FOR IP

depending on n and that the corresponding decision tree can be at most n levels deep.
This, together with the fact that each sub-routine runs in polynomial time, gives us the
desired result.

r

R

p

τXLP

R

p

τXLP

r

(a) Step 1

R

p

τXLP

r p

τXLP

bn

(b) Step 2

Figure 4.1: The two steps of Lenstra’s algorithm. The first step consists in finding an endomorphism τ that
makes the LP-relaxation appear regular. On the second step, basis reduction is applied to find a direction for
branching.

INTERPRETATION

The first step of the algorithm entails a regularization of the LP relaxation. This step en-
sures that, if the lattice vector x does not belong to τXLP , then τXLP has a small volume
and a regular shape, therefore it is not wide in any direction. On the other hand, this
transformation translates the lack of regularity from the LP polytope to the lattice, which
needs to be handled by means of finding a suitable basis of the new lattice τZn . Basis
reduction allows us to find a direction bn that defines good hyperplanes for branching.
Because of the reduced property of the basis, the hyperplanes are guaranteed to be well
spaced, in the sense that only few of them actually intersect the transformed polytope.
In turn this means that we can bound the number of branchings by a constant depend-
ing only on n. The distance between two such consecutive hyperplanes is related to the
norm of bn . It is in fact the norm of the projection of bn onto the orthogonal comple-
ment of the hyperplanes. A long basis vector bn is associated with a thin direction in the
original polytope.

4.2.3. THE LOVASZ-SCARF ALGORITHM

In 1983, Lovász and Scarf [108] introduced another algorithm for IP that runs in poly-
nomial time in fixed dimension. The driving force of this algorithm is a procedure that
they call generalized basis reduction. While the definition of LLL-reduced basis makes
use of the Euclidian distance (see Def. 7), the generalized basis reduction algorithm uses
a different norm. This norm incorporates information about the shape of the polytope
XLP .



4.2. NON-STANDARD ALGORITHMS FOR IP

4

71

In particular, let us start by considering a compact convex body C in Rn of positive
volume and symmetric about the origin, and let us define the following metric

F (x) = inf
{
λ≥ 0

∣∣∣ x

λ
∈C

}
. (4.8)

Associated with the body C is its polar body C∗ defined as

C∗ = {y ∈Rn | yTx ≤ 1, for all x ∈C } . (4.9)

We can use C∗ to reformulate the distance function

F (x) = max{xTy | y ∈C∗}. (4.10)

We are now ready to define the distance functions that are key to generalized basis
reduction.

Definition 11. The family of functions Fi (x), for i ∈ [n], associated with convex body C
and basis {b1, ...,bn} is defined as

Fi (x) = max{xT y | y ∈C∗, y ∈ span⊥{b1, ...,bi−1}}

Notice that F1(x) = F (x). This family of functions defines an alternative notion of
reduced basis.

Definition 12. (LS-reduced basis, [108]). Given a lattice L with basis b1, . . . ,bn and a
convex body C , let Fi denote the family of functions associated with C , for i ∈ [n]. Fix
0 < y < 1/2. The basis is reduced if, for i ∈ [n −1],

Fi (bi+1) ≥ (1− y)Fi (bi ),

Fi (bi+1 +µbi ) ≥ Fi (bi+1), for all µ ∈Z .

Lovász and Scarf [108] provide a procedure to find such a basis. This is known as the
generalized basis reduction algorithm, and it runs in polynomial time for fixed n. More-
over, they show that the resulting basis provides a vector b1 that is an approximation of
the shortest lattice vector with respect to the desired metric. This is,

min
x∈Zn \{0}

F (x) ≤ F (b1) ·
(

1

2
− y

)n−1

.

To understand how the Lovász-Scarf norm relates to the polytope we first consider a
well-known fact from lattice theory. Let L ⊂ E be a lattice of full rank in a Euclidean vector
space E and let L∗ be its associated polar lattice (as defined in Def. 9). For x ∈ E\{0} we
have, by definition, that x ∈ L∗ if and only if the lattice L is contained in {y ∈ E | xTy ∈Z},
which can be written as

{y ∈ E | xTy ∈Z} = span⊥{x}+k x ′ , (4.11)

where k ∈ Z, and x ′ = x/∥x∥2. So (4.11) implies that x ∈ L∗ if and only if L is contained
in the translates span⊥{x}+k x ′. If the vector x is short, the vector x ′ is long, so finding a



4

72 4. LATTICE REFORMULATIONS FOR IP

R

p

τXLP

r p

τXLP

bn XLP
wTx

wTy

Figure 4.2: A depiction of the distance funtion F (w ) (see Eq 4.12). Given vector w , F (w ) returns the width of
XLP in direction w .

short vector in the polar lattice L∗ is equivalent to finding widely spaced parallel “lattice
hyperplanes”.

To determine whether the full-dimensional polytope XLP contains an integer vec-
tor, we observe that the sets (XLP − XLP ) and (XLP − XLP )∗ are compact, convex sets
that are symmetric about the origin, and have positive volume. The algorithm finds
an approximation of the shortest vector given the distance function (4.8) for the set
C = (XLP − XLP )∗, which is then the same as finding a vector w such that the lattice is
contained in widely spaced translates of the orthogonal complement of w , or equiva-
lently, a direction w in which the width of XLP is thin. This can be seen by re-writing
F (w ) using its polar representation (4.10) as

F (w ) = max
{

wT(x − y) | x ∈ XLP , y ∈ XLP

}
. (4.12)

This is depicted in Figure 4.2.

We refer to Cook et al. [41] for a detailed description of an implementation of the
generalized basis reduction algorithm and to [132] for our own implementation.

INTERPRETATION
The algorithm of Lovász and Scarf has a strong connection with Lenstra’s algorithm. The
latter starts by doing a regularization step, translating any “issues” from the polytope
into the lattice. In a second step, an LLL-reduced basis of the transformed lattice is
computed. One can interpret the algorithm of Lovász and Scarf as the combination of
these two steps into one, where the basis reduction procedure considers the shape of
the polytope by using a special metric. The question is whether the approximation by
balls combined with polynomial basis reduction (Lenstra’s algorithm) is computation-
ally more demanding than computing the generalized reduced basis. To the best of our
knowledge, no implementation of Lenstra’s algorithm has been reported on, whereas the
Lovász-Scarf algorithm has been implemented and successfully tested by Cook et al. [41].



4.3. LATTICE-BASED REFORMULATIONS

4

73

An implementation advantage of the Lovász-Scarf algorithm is that the main engine of
the reduction algorithm in the polyhedral case is linear programming.

4.3. LATTICE-BASED REFORMULATIONS
In this section, we first introduce the relevant reformulation procedures. In particular,
we describe the procedure introduce by Aardal et al. [3] (AHL reformulation) and the one
by Krishnamoorthy and Pataki [94] (KP reformulation). Section 4.3.3 presents our main
result on the volume of the reformulation. For the purpose of this chapter, we consider
pure integer programs.

4.3.1. THE AHL REFORMULATION
Let us first, without loss of generality, re-write the feasible set (1.2) as

X = {x ∈Zn | Ax = a0, x ≥ 0} . (4.13)

We assume that A ∈Zm×n has full row rank. The linear relaxation of X is denoted by XLP .

It is well-known [148] that if the system Ax = a0 is integer feasible, then there exist
an integer vector x̄ and linearly independent integer vectors {x j }n−m

j=1 such that

{
x ∈Zn | Ax = a0

}
= x̄ +

n−m∑
j=1

λ j x j

with λ j ∈ Z for j = 1, . . . ,n −m. In particular, we can take x̄ to be any vector satisfying
Ax̄ = a0, and {x j }n−m

j=1 to be basis vectors of the lattice

kerZA := {x ∈Zn | Ax = 0} . (4.14)

Let {b j }n−m
j=1 be such a basis and let B denote the matrix B = [b j ]n−m

j=1 whose columns are

the basis vectors. Aardal et al. [3] propose to use this fact to reformulate the feasible set
in the following way.

Definition 13 (AHL reformulation [3]). Let X be defined as in (4.13). Let x̄ be any vector
satisfying Ax̄ = a0 and let B be a basis of kerZA. Then X can be re-written as

Xλ = {λ ∈Zn−m | Bλ≥−x̄} . (4.15)

Aardal et al. [3] use LLL reduction to derive the reformulation (4.15) of the set X . They
do so by considering a higher-dimensional lattice in which the vectors x̄ and {b j }n−m

j=1 are

short and such that finding an initial basis for that lattice is trivial. The LLL algorithm
then outputs such vectors or gives a certificate for integer infeasibility in polynomial
time.

In the following, we denote the linear relaxation of Xλ by Xλ
LP . Notice that the sets

Xλ and Xλ
LP are full-dimensional. It is clear that upper bounds u on the variables x can

be handled by adding the constraints Bλ≤ u − x̄ .



4

74 4. LATTICE REFORMULATIONS FOR IP

4.3.2. THE KP REFORMULATION

For convenience of notation, let us start by writing

X = {x ∈Zn | l ≤ Ax ≤ u} . (4.16)

Krishnamoorthy and Pataki [94] point out that the columns of the constraint matrix
A = [ai ]n

i=1 can be interpreted as a basis of a lattice L = ∑n
i=1Zai . Following this idea

they propose the following reformulation.

Definition 14 (KP reformulation [94]). Let X be defined as in (4.16). Let A′ be an LLL-
reduced basis of the lattice L = ∑n

i=1Zai , where [ai ]n
i=1 = A. Then X can be re-written

as

X y = {y ∈Zn | l ≤ A′y ≤ u} (4.17)

Notice that A′ = AU for some unimodular matrix U . The KP-reformulation can of
course also be applied to an equality system, but it does not result in a dimension reduc-
tion as in the AHL-reformulation.

It is worth noticing that if the original set is full-dimensional, then the resulting KP-
reformulation is equivalent to the AHL-reformulation, see the appendix. In practice
there are differences, as the AHL-reformulation involves the extended matrix (A, a0) in-
stead of only A. When using the KP reformulation for equations, we use AU y = a0.

4.3.3. THE REFORMULATED VOLUME

Here we consider the integer knapsack case, i.e., the matrix A in formulation (4.13) of
X has one row a (m = 1). Furthermore, we assume that a0, a1, . . . , an > 0, and that
gcd(a1, . . . , an) = 1.

In this section, we will study the volume of a rectangular box oriented in the coordi-
nate directions containing the linear relaxation of the problem at hand. This is relevant
because, for a given instance, it gives us an upper bound on the number of branch-and-
bound nodes we need to solve the instance when branching along the coordinate direc-
tions.

It is straightforward to determine the volume of the smallest such box containing
XLP , which is

V (XLP ) = an
0

Πn
i=1ai

. (4.18)

In this section we derive an expression for an upper bound on the volume of a box
containing Xλ

LP , denoted V (Xλ
LP ). We do this by choosing an appropriate basis B for the

lattice kerZa. The idea comes from the approximation step in Lenstra’s algorithm [101],
where an appropriate polytope transformation is derived by mapping a high-volume
simplex that is contained in the polytope to a regular simplex.



4.3. LATTICE-BASED REFORMULATIONS

4

75

For our proof we will use a linear map D of Rn that maps XLP to a regular simplex:

D =


a1 0 · · · 0
0 a2 · · · 0
...

...
. . .

...
0 0 · · · an

 . (4.19)

Applying this map to XLP = {x ∈ Rn | ∑n
i=1 ai xi = a0} yields a simplex that intersects

each of the coordinate axes at the point a0e i , i ∈ [n]:

X D
LP =

{
x ∈Rn

∣∣∣ n∑
i=1

xi = a0

}
.

Applying D to Zn yields the lattice Λ= DZn with basis D . Under this map, the lattice
kerZa becomes

DkerZa =
{

x ∈Λ |
n∑

i=1
xi = 0

}
= kerΛ1 .

Notice that if B = [bi ]n−1
i=1 is a basis for kerZa, then B̂ = DB forms a basis for kerΛ1.

Similarly, if x̄ is a vector satisfying ax̄ = a0, then the vector x̂ = D x satisfies
∑n

i=1 x̂i = a0.

Remark. Notice that working in the lattice Λ= DZn using the Euclidean norm ∥x∥2 =∑n
i=1 x2

i is equivalent to working in the latticeZn using the norm q(x) := ∥x∥2
D =∑n

i=1 a2
i x2

i .

The last ingredient we will need to prove our result is Schoof’s lemma.

Lemma 5 (Schoof, see Lemma, Section 12 of [100]). Given is a lattice L of rank n gener-
ated by the basis B = [bi ]n−1

i=1 , and a vector x ∈ Rn . Assume that B is a c-reduced basis for

L, with c ≥ 1, and let b1∗, . . . ,bn∗ be the Gram-Schmidt vectors corresponding to B . Let
λ1, ...,λn be the coefficients in the unique expression of x in terms of the basis vectors b j ,
i.e., x =∑n

j=1λ j b j . Then,

|λ j | ≤
(

3
p

c

2

)n− j

· ∥x∥
∥b j∗∥ for j ∈ [n] .

We are now ready to state our result.

Theorem 6. Given a0, a = (a1, . . . , an), a basis B̂ of kerΛ1, and a vector x̄ ∈ Zn satisfying
ax̄ = a0, assume that

• a0, a1, . . . , an > 0,

• gcd(a1, . . . , an) = 1,

• B̂ is c-reduced with c ≥ 1.

Then, Xλ
LP = {λ ∈ Zn−1 | −Bλ ≤ x̄} with B = D−1B̂ is contained in a box with volume at

most (
3
p

c

2

) (n−1)(n−2)
2

· 2
n−1

2p
n

· an−1
0∏n

i=1 ai
. (4.20)



4

76 4. LATTICE REFORMULATIONS FOR IP

Proof. Let x (1) and x (2) be two arbitrary vectors in XLP , and consider their representation
in terms of B , namely x (1) = x̄+∑n−1

j=1 λ
(1)
j b j , x (2) = x̄+∑n−1

j=1 λ
(2)
j b j . We can apply Schoof’s

lemma to the vector

D(x (1) −x (2)) =
n−1∑
j=1

(λ(1)
j −λ(2)

j )Db j =
n−1∑
j=1

(λ(1)
j −λ(2)

j )b̂
j

.

This yields, for j = 1, . . . ,n −1,

|λ(1)
j −λ(2)

j | ≤
(

3
p

c

2

)n−1− j

· ∥D(x (1) −x (2))∥
∥b̂

j∗∥
.

Here b̂
j∗

, j = 1, . . . ,n − 1, are the Gram-Schmidt vectors associated with the basis B̂ .
Notice that the vectors D x (1) and D x (2) are in the regular simplex X D

LP and therefore

||D x (1) −D x (2)|| ≤ p
2 · a0. Using this and the fact that x (1) and x (2) were chosen arbi-

trarily, we can obtain an upper bound for the volume of Xλ
LP

V (Xλ
LP ) ≤

n−1∏
j=1

(
3
p

c

2

)n−1− j

·
p

2 ·a0

∥b̂
∗
j ∥

=
(

3
p

c

2

) (n−1)(n−2)
2

·2
n−1

2 · an−1
0∏n−1

j=1 ∥b̂
∗
j ∥

.

(4.21)

It is well-known that
∏n−1

j=1 ∥b̂
∗
j ∥ is an expression for d(kerΛ1) [35], so we only need to

obtain an expression for d(kerΛ1) in terms of the input.
The lattice kerΛ1 is a pure sublattice of Λ. From known lattice formulae (see (4.3),

(4.4), and (4.5)) we obtain

d(kerΛ1) = d(Λ)

d(Λ/kerΛ1)
= d(Λ) ·d((Λ/kerΛ1)∗)

= d(Λ) ·d((kerΛ1)⊥)

(4.22)

with (kerΛ1)⊥ = {x ∈Λ∗ | 〈x ,kerΛ1〉 = 0}. The determinant of the lattice Λ is equal to

d(Λ) = det(D) =
n∏

j=1
a j .

Since gcd(a1, . . . , an) = 1, the lattice (kerΛ1)⊥ is the lattice generated by the vector of
all ones, i.e., (kerΛ1)⊥ =Z1 having determinant equal to

d((kerZ1)⊥) = 〈1,1〉1/2 =p
n .

Expression (4.22) has now become:

d(kerΛ1) = d(Λ) ·d((kerΛ1)⊥) =
n∏

j=1
a j ·

p
n .

We now substitute
∏n−1

j=1 ∥b̂
∗
j ∥ in Expression (4.21) for

∏n
j=1 a j ·

p
n and obtain the

desired result.



4.4. COMPUTATIONAL STUDY

4

77

If we compare expressions (4.18) and (4.20) we can make the following remarks. The
first two factors in the bound on V (Xλ

LP ) are due to the estimate that one gets from the
LLL-reduction (see the proof given in Lenstra [100]). In practice, the LLL-reduction esti-
mates typically turn out much better than the theoretical bounds. In the last factor of the
bound we have lost one power of the right-hand side a0. It is not so clear how this gain
compares with the first two factors. We investigate this in the computational study pre-
sented in Section 4.4, where we also study the question of how the basis used in the proof
of Theorem 6 compares computationally to the regular AHL and KP reformulations.

4.4. COMPUTATIONAL STUDY

4.4.1. INSTANCES AND SETUP
We perform the comparison using seven sets of synthetic instances from the literature.
A summary of their properties and a description of the models can be found in the ap-
pendix of this chapter. These instances were chosen to represent a range of sizes, as
well as a range of variable and constraint types. Four of the collections are composed
of single-row feasibility problems and three are multi-row binary problems. The single-
row instances struct_s and struct_b have been generated such that the lattice kerZa has
an (n −2)-dimensional sublattice with small determinant d , whereas d(kerZa) is large.
This implies that LLL-reduction will yield a basis with n −2 relatively short vectors and
one long vector. In contrast, nostruct_s and nostruct_b are composed of instances with
coefficients of the same order of magnitude as struct_s and struct_b, yielding a lattice
determinant of the same order of magnitude, but with no special encoded structure. For
all single-row instances, the right-hand side coefficient is the Frobenius number2 [11],
which makes them infeasible. Market split (MS) instances have been shown to benefit
from the AHL reformulation in past work, see Aardal et al. [3]. Generalized assignment
problems (GAP) and combinatorial auctions (CA) have not been tested in this context
before. Apart from these seven synthetic benchmarks, we expand our computational
study to the MIPLIB collection [68] (see Section 4.4.6). This collection is comprised of
instances from a wide range of applications and with diverse sizes and constraint types.

In our computations, LLL-reductions were performed using the NTL library [140] us-
ing a reduction coefficient y = 0.99 (see Definition 7) in all cases except AHLlow where we
used y = 0.3. Each instance is solved 5 times with different randomization seeds. We use
the solver SCIP v.8.0.1 [27] with default parameters. This means that we do not provide
the solver with information about which variable to branch on in the reformulations,
even though we have reason to believe that the last coordinate directions should be pre-
ferred. We set a time limit of one hour. Timeouts are indicated with the symbol ‘>’. We
refer to the appendix for extended results. Code for reproducing all experiments is avail-
able at [133].

4.4.2. EXPERIMENTS WITH SINGLE-ROW INSTANCES
We compare the original formulation with four reformulations:

2Given positive integers {a1, ..., an }, the Frobenius number F is the largest integer for which there is no x ∈Zn
≥0

such that a1x1 +a2x2 + ...+an xn = F .



4

78 4. LATTICE REFORMULATIONS FOR IP

Table 4.1: Geometric mean of the number of nodes over 30 instances and 5 randomization seeds (lower is
better). We compare the original formulation with the four proposed reformulations. The same results are
shown in Figure 4.3.

Instance Original AHL AHLD AHLlow KP

struct_s > 107 12.70 10.81 12.63 19.19
struct_b > 107 1.28 1.27 1.31 1.21
nostruct_s 121,456 97.10 68.64 90.43 128.98
nostruct_b 59,901 701.15 572.03 1779.06 566.99
MS 398,742 685.03 - 4111.48 1545.95
GAP 893.37 52.15 - 72.52 122.92
CA 11.26 21.03 - 95.08 16.14

Table 4.2: Geometric mean of the solving time (in seconds) over 30 instances and 5 randomization seeds (lower
is better). Reduction time is not included, but we report it in Table 4.4.

Instance Original AHL AHLD AHLlow KP

struct_s > 3600 0.04 0.03 0.04 0.04
struct_b > 3600 0.06 0.05 0.06 0.07
nostruct_s 21.74 0.12 0.10 0.11 0.10
nostruct_b 6.62 0.61 0.45 1.02 0.53
MS 37.98 0.81 - 2.40 1.64
GAP 3.77 1.05 - 1.11 1.39
CA 3.41 4.68 - 28.23 3.99

• (AHL): the AHL reformulation with B a reduced basis of kerZa.

• (AHLlow): AHL-reformulation with low quality reduction coefficient y = 0.3.

• (AHLD ): AHL reformulation with B = D−1B̂ and B̂ a reduced basis of kerΛ1.

• (KP): the KP reformulation.

We reiterate that the reduction coefficient is set to y = 0.99 unless otherwise stated. We
report the averaged number of branch-and-bound nodes and solving time in the first
four rows of Table 4.1 and Table 4.2, respectively. For convenience, the data in Table 4.1
can also be visualized in Figure 4.3. The results per instance can be found in Tables 4.12–
4.15 in this chapter’s appendix.

Our computational results show that each of the reformulations yields a remarkably
easier problem. This is particularly apparent for struct_s and struct_b, which go from
being unsolvable within the time limit to being remarkably easy. Notice that with higher
dimension, the Frobenius number decreases quite substantially which can result in rel-
atively easier instances. For this reason, we observe that the large structured instances
become trivial for all reformulations, with most of them being solved without branching,
see Table 4.14. For all structured instances, AHLD gives the best results, both in terms of



4.4. COMPUTATIONAL STUDY

4

79

Table 4.3: Average logarithm of the volume of the smallest box, oriented in the coordinate directions, that
contains the LP-relaxation of the respective reformulation. We calculate this by maximizing and minimizing
the value of each variable over the LP relaxation. The last column shows the logarithm of the bound in (4.20),
split into two terms: (i) the logarithm of the first factor and (ii) the logarithm of the remaining factors.

Instance Original AHL AHLD AHLlow KP Thm. 6

struct_s 62.35 50.84 46.37 50.21 53.57 20.0+50.0
struct_b 412.91 449.40 401.72 447.19 449.79 2697.2+464.0
nostruct_s 25.39 17.57 14.48 17.17 18.51 20.0+16.8
nostruct_b 56.25 85.65 77.05 76.35 86.39 2697.2+110.9

nodes and time. All reductions, however, work well, even AHLlow, so it does not pay off
significantly to spend time on a high-quality reduction.

For the non-structured instances the results change depending on the instance size.
For the smaller instances, AHLD yields the smallest trees, followed by AHLlow and AHL.
For the larger instances the results indicate that KP gives the lowest average number of
nodes, but AHLD is faster. We also observe that, in particular for the smaller instances,
AHLlow yields sparser matrices than AHL, due to a smaller number of column operations
on the basis matrix. Yet, they are both able to find the overall best direction (see Section
4.4.4). The computational results indicate that the solver is not always able to make use
of the higher-quality basis provided by AHL and in fact a sparser constraint matrix can
be beneficial.

Tables 4.1 and 4.2 suggest that the effect of the dimensionality reduction provided
by all AHL variants is more pronounced for lower-dimensional problems, whereas in
higher dimension the shape transformation is the main driver of improvements. This is
also supported by the volume results reported in Table 4.3 (see also Figure 4.4). Here we
show the average logarithm of the volume of the smallest box, oriented in the coordinate
directions, that contains the LP-relaxation of the respective reformulation. AHLD yields
the smallest volume for all but the larger non-structured instances. For these instances
it is in fact the original formulation that has the smallest relaxation volume. This means
that the improvements in Table 4.1 can only be a consequence of the transformed shape.
Table 4.3 also shows that the bound in Theorem 6 is far from being tight, due to the con-
stant arising from the worst-case performance of LLL.

4.4.3. MULTI-ROW INSTANCES

We test the same formulations as in the previous section, except for AHLD , which is only
valid for single-row problems. Results are shown in Tables 4.1 and 4.2, last three rows.
For results per instance, see Tables 4.16–4.18 and Figure 4.6 in this chapter’s appendix.

The market split instances are non full-dimensional instances with a dense con-
straint matrix with integer entries between 0 and 100. All reformulations perform sig-



4

80 4. LATTICE REFORMULATIONS FOR IP

Original AHL AHLD AHLlow KP
0

20

40

60

80

100

120

140
Nu

m
be

r o
f n

od
es

Structure
No structure

(a) Small instances (n = 10)

Original AHL AHLD AHLlow KP
0

500

1000

1500

2000

2500

3000

Nu
m

be
r o

f n
od

es

Structure
No structure

(b) Big instances (n = 100)

Figure 4.3: Geometric mean of the number of nodes over 30 instances and 5 randomization seeds (lower is
better). We compare the original formulation with the four proposed reformulations. The same results are
presented in Table 4.1.

Table 4.4: Average reduction times (in seconds) of the multi-row instances. The reduction time of single-row
instances is negligible.

Instance AHL AHLlow KP

Market split 2 ·10−3 3 ·10−3 2 ·10−3

Generalized assignment problem 21.4 21.2 2.5
Combinatorial auctions 172.6 168.6 3.0

nificantly better than the original formulation, with AHL being the best. This can be an
indication that dimension-reduction plays a role. We can also conclude that for these
instances the quality of the reduction matters.

The GAP instances, in contrast, are binary, full-dimensional, and part of the con-
straint matrix contains numbers that are different from 0 and 1. This may result in an
LP-relaxation having a “non-regular” shape. Again we see that all reformulations per-
form better than the original formulation. This supports the idea that constraint branch-
ing can be beneficial even for (some types of) binary instances. It is surprising that both
AHL-reformulations perform much better than KP, since one would expect that AHL and
KP would perform more or less equally well. The only difference between the two in
practice is that AHL reduces (A, a0), whereas KP reduces only A (see Section 4.3 and the
appendix).

The CA instances are full-dimensional and have 0-1 entries in the constraint matrix.
Here we observe that the original formulation performs the best, even though both KP
and AHL perform reasonably well in comparison. So, with no dimension reduction and
a combinatorial problem structure there seems to be no gain in reformulating.



4.4. COMPUTATIONAL STUDY

4

81

Original AHL AHLD AHLlow KP Th1
0

10

20

30

40

50

60

70

lo
g 

vo
lu

m
e

Structure
No structure

(a) Small instances (n = 10)

Original AHL AHLD AHLlow KP Th1
0

100

200

300

400

500

600

Nu
m

be
r o

f n
od

es

Structure
No structure

(b) Big instances (n = 100)

Figure 4.4: Average logarithm of the volume of the smallest box, oriented in the coordinate directions, that
contains the LP-relaxation of the respective reformulation. We calculate this by maximizing and minimizing
the value of each variable over the LP relaxation. ’Th1’ shows the logarithm of the bound in (4.20). We further
show the contribution of the last two terms with dashed lines. This is, the result of ignoring the term coming
from Schoof’s lemma.

Table 4.5: Average norm of the projection of b1 onto span{e2, ...,en } (lower is better). If the norm is zero, the
(originally) last coordinate direction is a thin branching direction in the sense of the Lovàsz-Scarf algorithm.

Instance AHL AHLD AHLlow KP

struct_s 0.0 0.0 0.0 15.10
struct_b 0.0 0.0 0.0 6.63

nostruct_s 0.51 0.0 0.38 3.80
nostruct_b 0.0 0.0 0.0 5.40

MS 2.83 - 0.0 3.91
GAP 0.0 - 0.0 0.0

CA 0.0 - 0.0 0.0

4.4.4. COMPARISON WITH LOVÁSZ-SCARF
The generalized basis reduction algorithm of Lovász and Scarf gives us an approximation
of a direction in which the LP relaxation is thin (see Section 4.2.3). The reformulations
we study can be regarded as a heuristic way of obtaining thin directions. In particular, by
construction, the last coordinate direction should indicate such a direction. We run the
generalized basis reduction algorithm on the polytope X λ, where the polytope is gen-

erated by the reformulations AHL, AHLD , AHLlow and KP, to investigate if indeed this
last coordinate direction coincides with the direction given by the Lovász-Scarf (LS) al-
gorithm.

For this, we reverse the order of the variables such that the last one becomes the
first. We run our own implementation of the generalized basis reduction and retrieve
the first basis vector b1. If b1 = e1 we can conclude that the (originally) last coordinate is
an approximation a direction in which the LP relaxation is thin. We report the norm of
the projection of b1 onto span{e2, ...,en} (the orthogonal complement of e1). This is, we



4

82 4. LATTICE REFORMULATIONS FOR IP

Table 4.6: Vanilla SCIP. We report the geometric mean of the number of nodes over 30 instances and 5 ran-
domization seeds when deactivating presolve, cutting, conflict analysis and primal heuristics. We compare
the original formulation with the four proposed reformulations.

Instance Original AHL AHLD AHLlow KP

struct_s > 107 37.70 22.83 32.67 82.96
struct_b > 107 2.67 2.10 2.84 43.18
nostruct_s 141,377 197.3 129.9 193.5 293.1
nostruct_b 76,081 1,400 915.2 1,238 1,517
MS 1,041,742 989.5 - 6,493 2,101
GAP > 378,502 308.0 - 354.6 > 3,541
CA 21.08 26.39 - 100.2 27.19

report
√∑2

i=2 b1
i . The average over all instances is shown in Table 4.5.

These results show that AHL, in all its variants, is successful in finding such direction
in many cases, and when it does not, it finds a close direction. In contrast, KP is in most
cases unable to find a Lovász-Scarf direction, especially when the problem at hand is not
full dimensional.

4.4.5. COMPUTATIONAL EXPERIMENTS WITH VANILLA SCIP
We repeat the experiment presented in Table 4.1 with a vanilla version of SCIP v.8.0.1:
presolve, cutting, conflict analysis and primal heuristics are deactivated. This allows us
to isolate the effect of branching. These additional results, shown in Table 4.6, confirm
the findings discussed in in the previous sections. Additionally, we see that the benefits
of AHLD and the dimensionality reduction in single-row instances are even more appar-
ent under these settings. Here, of all the reformulations, KP is the most affected by the
lack of additional solver components.

4.4.6. COMPUTATIONAL EXPERIMENTS ON MIPLIB
We extend our computational study to instances in MIPLIB [68]. This instance collec-
tion is a standard test set comprised of real-world instances with varied structures. We
consider a subset of these instances based on the following criteria:

• Instances with no more than 1000 variables or constraints. For larger instances the
reduction process could be excessively long.

• Pure integer programs. Even though one can devise a procedure to take care of
continuous variables, we focus our study on instances with only integer variables.

• Instances with integer coefficients. Again, one can conceive a procedure to trans-
form all instances into integer form but for the purpose of this study we focus on
instances that are already in this form.

After applying these criteria, we are left with 20 instances. Instance queens-30.mps
had to also be eliminated from considereation because the reduction process failed to
finish within the time limit of one hour, even when the reduction quality coefficient was



4.4. COMPUTATIONAL STUDY

4

83

Table 4.7: Subset of MIPLIB instances used for the experiments.

Instance Variables Constraints

ej 3 1
enlight11 242 121

enlight4 32 16
enlight8 128 64
enlight9 162 81

enlight_hard 200 100
f2gap40400 400 40

fhnw-sq2 650 91
gt2 188 29

neos859080 160 164
p0201 201 133

p2m2p1m1p0n100 100 1
pb-market-split8-70-4 71 17

ponderthis0517-inf 975 78
stein15inf 15 37
stein45inf 45 332

stein9inf 9 14
supportcase14 304 234
supportcase16 319 130

decreased. The remaining 19 instances are shown in Table 4.7.

We reformulate each of the instances using the AHL (y = 0.99) and the KP reformu-
lations. We solve the original instance and the two reformulations using default SCIP
settings using 5 different random seeds and with a time limit of one hour. We report the
results in Table 4.8. It is important to note that the presolve settings can have an influ-
ence on the results reported in this section.

We observe that for fhnw-sq2 and pb-market-split8-70-4 no formulation resulted in
a solved problem within the time limit. The latter is in fact an instance for which no
solution is known. Optimality gaps can also not be reported, given that fhnw-sq2 is a
feasibility problem and that for pb-market-split8-70-4 no feasible solution was found
throughout the whole search. We also note that the AHL reformulation process detected
the infeasibility of instances enlight4, enlight9 and enlight11, so no call to the solver
needed to be made.

When comparing AHL to the original formulation we can distinguish two groups of
instances. For instances gt2, p0201, stein15inf and stein45inf the reformulation pro-
duced larger trees (we consider differences of less that 1 node not statistically signifi-
cant). On the other hand, for instances ej, neos859080, p2m2p1m1p0n100 and ponderthis0517-
inf the reformulation was trivial to solve, while the original problem was difficult or im-



4

84 4. LATTICE REFORMULATIONS FOR IP

Table 4.8: Results on a selection of MIPLIB instances. We report the geometric mean of the number of nodes
over 5 random runs for the original formulation (Original), the AHL reformulation (AHL) and the KP reformu-
lation (KP). The symbol > indicates that the solver failed to finish within the time limit (1h).

Instance Original AHL KP

ej 124876.57 0.00 0.00
enlight11 1.0 0.00 >

enlight4 1.0 0.00 1.0
enlight8 1.00 0.00 6529.06
enlight9 1.0 0.00 65636.91

enlight_hard 1.00 0.00 18731.40
f2gap40400 1.00 1.74 1.00

fhnw-sq2 > > >
gt2 1.00 2703.86 104.65

neos859080 1562.77 0.0 >
p0201 7.46 123.80 74.27

p2m2p1m1p0n100 > 1.0 1.0
pb-market-split8-70-4 > > >

ponderthis0517-inf > 0.0 >
stein15inf 21.71 46.50 21.77
stein45inf 698.03 724.68 708.69

stein9inf 1.00 1.00 1.00
supportcase14 1.00 1.89 1.32
supportcase16 1.15 2.00 1.15

Table 4.9: Comparison of AHL and KP to the original formulation. Green indicates better performance, orange
indicates worse, and white is a tie.

Instance AHL KP
ej

p2m2p1m1p0n100
ponderthis0517-inf

neos859080
gt2

p0201
stein15inf
stein45inf
enlight11

enlight8
enlight9

enlight_hard



4.4. COMPUTATIONAL STUDY

4

85

possible to solve within the time limit.
At the same time, KP produces larger trees for gt2, p0201, and stein45inf, compared

to the original. Yet, the deterioration in performance is not as acute as with AHL. How-
ever, there is another group of instances where KP does worse, namely neos859080, en-
light11, enlight8 and enlight9, where the performance is considerably worse. Note that
all enlight instances have equality constraints. KP beats the original formulation only on
two instances: ej and p2m2p1m1p0n100.

Table 4.9 compares the two reformulations to the original on instances where at least
one does not tie. Compared to KP, AHL does better than the original on more instances
and does worse than the original on fewer instances. There is no one instance where
KP is better than the other two formulations. However, as we noted before, on those
instances where both AHL and KP perform worse than the original, KP’s performance is
better than AHL.

4.4.7. MEASURING POTENTIAL
Observing the results presented in the previous sections it is natural to ask if it is possible
to find some common characteristics of the instances that benefit from reformulations.
Finding such characteristics could allow us to detect the potential of reformulating be-
fore the solve. For the AHL reformulation, the presence of equality constraints is a natu-
ral candidate. We further test three metrics as potential proxies. These metrics are based
on the constraint matrix A ∈ Zm×n and the matrix B ∈ Zn×l resulting from the AHL re-
formulation defined as in Def 13. In particular, let αmax = max{Ai j | i ∈ [m], j ∈ [n]} and
αmi n = min{Ai j | i ∈ [m], j ∈ [n]}. We define the following metrics:

m1 := ||bl ||
||b1|| (4.23)

m2 :=
∑n

i=1

∑l
j=11Bi j ̸=0

n · l
(4.24)

m3 := f (αmax )− f (αmi n) (4.25)

with

f (x) =


− log10(|x|) if x < 0
0 if x = 0
log10(x) if x > 0.

We note that metrics m1 and m2 can only be computed after the reformulation pro-
cess has been completed, whereas m3 can be quickly computed without prior steps. The
interpretation of these metrics is the following. Metric m1 measures the relative length
of the last basis vector with respect to the first one, m2 measures the density of B , and
m3 measures the range (in orders of magnitude) of the coefficients in A.

Figure 4.5 shows the three metrics for all benchmarks (averaged over all instances,
or per instance in the case of MIPLIB). On Table 4.10 we further show the percentage of
equality constraints after presolve of the MIPLIB instances. We only show results for MI-
PLIB instances for which the original formulation and AHL performed differently. While



4

86 4. LATTICE REFORMULATIONS FOR IP

Table 4.10: Percentage of equality constraints of a selection of instances. The value is calculated after presolve.

Instance

ej 100%
p2m2p1m1p0n100 0%
ponderthis0517-inf 33%

neos859080 32%
gt2 0%

p0201 19%
stein15inf 0%
stein45inf 0%

m2 seemed initially like a plausible indicator of potential, we observed that its value is
somewhat correlated with the instance size: smaller instances produce denser bases.
This could be a consequence of the effect pointed out by Aardal and von Heymann [2].
As expected, large m1 value seems like a reliable indicator of potential. However, a small
value does not rule out good performance of AHL. The metric m3 produces some mixed
results. For example, using m3, the instances gt2 and p0201 could become false posi-
tives. Notice that, for instance ponderthis0517-inf, none of the metrics take a high value.
It is in fact a binary instance with 0-1 constraints. Yet, about a third of the constraints
are equality constraints, which on its own can be a strong indication. Altogether, these
results confirm our previous observations that instances with equality constraints and
non-binary constraint matrices have high potential of benefiting from the reformula-
tion.

4.5. DISCUSSION
In this chapter, we have treated the topic of lattice-based reformulations for Integer Pro-
gramming. We studied the applicability of several such reformulations from different
points of view: from a bound on the volume of the reformulated relaxation to a com-
putational study that shed light on the performance of the reformulations for different
types of instances. Our results demonstrate that the reformulations can be valuable tools
to solve IPs. We show that they are of particular interest for instances that are non full-
dimensional, even in the case of binary programs. We also provide positive results for
instances where the constraint matrix is not combinatorial.

From a broader perspective, the studied problem reformulations can be seen as a
heuristic way to obtain good branching disjunctions. After all, the reformulated vari-
ables can be interpreted as hyperplanes in the original space. The results presented in
this chapter present a new avenue of research for branching on general disjunctions.
This is an important viewpoint because, while the theoretical results of Lenstra [101]
and Lovász and Scarf [108] tell us to branch on general disjunctions, most IP solvers only
implement single-variable branching schemes. Some reasons are that (i) theoretically
strong disjunctions are computationally costly to find and difficult to implement into
standard branch-and-bound schemes, and (ii) not all instance types benefit from using



4.5. DISCUSSION

4

87

101 103 105

m1

struct_s
struct_b

nostruct_s
nostruct_b

MS
GAP

ej
neos859080

ponderthis0517-inf
p2m2p1m1p0n100

CA
gt2

stein15inf
stein45inf

p0201

0.0 0.5 1.0
m2

0 2 4 6 8
m3

Figure 4.5: Value of m1, m2 and m3 (see Eqs. 4.23, 4.24, 4.25) for all benchmarks. The results are averaged for
all benchmarks, except for MIPLIB instances, for which we report the values per-instance. Instances displayed
in green are those for which the AHL reformulation showed better performance. Instances displayed in red are
those for which the opposite is true.

them. In this chapter, we have shown that the branching directions provided by the re-
formulations often coincide with the Lovász and Scarf direction. We have also pointed
out some characteristics that can help us identify instances that would benefit from this
scheme. The applicability of the lattice reformulations goes beyond what was originally
expected, with encouraging results for binary instances, where single-variable disjunc-
tions already provide theoretically “thin directions”.

In our study, we solve the reformulated instances by standard variable branching,
which, as we pointed out, is mathematically equivalent to branching on general disjunc-
tions in the original space. However, in practice, other solver components have an im-
pact on the performance. As an additional experiment to isolate the effect of branching
we turned off presolve, cutting, heuristics and conflict analysis. These experiments sup-
port once again our findings that the reformulated variables provide good branching
directions.

Overall, our results point to the great potential of the AHL and KP reformulations for
tackling problems where single-variable branching fails. Still, the underlying LLL proce-
dure (though cheaper than other schemes such as that of Lovász and Scarf [108]) can be
computationally expensive as the number of variables grows (see Table 4.4 and the se-
lection criteria for Section 4.4.6). Future directions of research can be to identify a subset
of constraints to reformulate, to then add the reformulated variables as branching direc-



4

88 4. LATTICE REFORMULATIONS FOR IP

tions. Because of the overhead that the reformulation can cause, it is unlikely that such a
procedure will become the standard for solving IPs. However, the reformulation fits per-
fectly into the broader perspective of dynamic solvers, which can switch to alternative
strategies mid-solve after standard approaches have been tested and shown to fail.



4.6. APPENDIX

4

89

Table 4.11: Instance collections used in our computations.

Name Number n m Ref

struct_s 30 10 1 [1]
nostruct_s 30 10 1 [1]

struct_b 30 100 1 [1]
nostruct_b 30 100 1 [1]

MS 30 30 4 [44]
GAP 30 600 606 [61]

CA 30 500 100 [102]

4.6. APPENDIX

4.6.1. EQUIVALENCE BETWEEN AHL AND KP IN THE FULL-DIMENSIONAL

CASE
We demonstrate this equivalence on a set with only upper bounds, but adding lower
bounds follows easily. Consider the system Ax ≤ a0. We add slack variables and obtain
Ax + I s = a0. The AHL-reformulation now needs, as a starting point, a vector (x̄ , s̄)T

satisfying Ax̄ + I s̄ = a0 and a basis for the lattice kerZ(A I ). We may choose (x̄ , s̄)T =
(0, a0) and the lattice basis (

I
−A

)
. (4.26)

Reducing the basis (4.26) yields the AHL-reformulation, which is also precisely what Kr-
ishnamoorthy and Pataki do.

4.6.2. INSTANCE MODELS

SINGLE-ROW INSTANCES

For a given number of variables n, find a vector x ∈ Zn
≥0 that satisfies ax = a0. The

number a0 is chosen to be the Frobenius number corresponding to a. This number
is computed following the procedure described in [1]. For the structured instances, a
is generated as a = M p +N r , with M ∈ [10000,20000], N ∈ [1000,2000], p ∈ [1,10]n and
r ∈ [−10,10]n sampled uniformly. In the case of instances with no structure, the vector a
is sampled uniformly in [10000,15000]n .

MARKET SPLIT (MS)
For a given number m of constraints and n = 10·(m−1) variables, we solve the feasibility
problem of finding a vector in {x ∈ {0,1}n |Ax = a0}. We generate the coefficients of A
uniformly at random in the range [0,99]∩Z and we set (a0)i = 1

2

∑n
j=1 Ai j .

GENERALIZED ASSIGNMENT PROBLEM (GAP)
Given n items with respective prices {p j }n

j=1 and weights {w j }n
j=1, and m knapsacks with

capacities {ci }m
i=1, the generalized assignment problem consists in placing a number of

items in each of the knapsacks such that the price of the selected items is maximized,



4

90 4. LATTICE REFORMULATIONS FOR IP

while the capacity of the knapsacks is not exceeded by the total weight of the items
therein. Formally:

maximize
m∑

i=1

n∑
j=1

p j xi j

subject to
n∑

j=1
w j xi j ≤ ci , i = 1, ...,m

m∑
i=1

xi j ≤ 1, j = 1, ...,n

xi j ∈ {0,1} ∀i , j

where each variable xi j represents the decision of placing item j in knapsack i .

COMBINATORIAL AUCTIONS (CA)
For m items, we are given n bids {B j }n

j=1. Each bid B j is a subset of the items with

an associated bidding price p j . The associated combinatorial auction problem is of the
following form:

maximize
n∑

j=1
p j x j

subject to
∑

j :i∈B j

x j ≤ 1, i = 1, ...,m

x j ∈ {0,1} j = 1, ...,n

where x j represents the action of choosing bid B j .

4.6.3. EXTENDED RESULTS



4.6. APPENDIX

4

91

Instance

102

103

104

105

106

Nu
m

be
r o

f n
od

es

Market split

Original
AHL
AHL_low
KP

Instance
100

101

102

103

104

Nu
m

be
r o

f n
od

es

Generalized Assignment
Original
AHL
AHL_low
KP

Instance

101

102

103

Nu
m

be
r o

f n
od

es

Combinatorial auctions
Original
AHL
AHL_low
KP

Figure 4.6: Number of explored nodes per instance for each of the formulations (lower is better). Values are
averaged over 5 runs with different randomization seeds. Instances are of the type market split (top left), gen-
eralized assignment (top right) and combinatorial auctions (bottom).



4

92 4. LATTICE REFORMULATIONS FOR IP

Table 4.12: Extended results on small structured single-row instances. We compare the original formulation
with the four proposed reformulations. We report the geometric mean of number of nodes over 5 randomiza-
tion seeds.

Instance Original AHL AHLD AHLlow KP

struct_s_1 > 107 10.57 1.00 14.58 9.15
struct_s_2 > 107 32.56 9.30 23.17 18.88
struct_s_3 > 107 7.66 20.26 8.28 26.80
struct_s_4 > 107 22.75 11.59 12.31 19.54
struct_s_5 > 107 1.55 1.00 1.00 1.55
struct_s_6 > 107 17.66 21.62 20.75 44.38
struct_s_7 > 107 13.31 14.94 13.18 93.08
struct_s_8 > 107 21.49 16.36 23.79 17.86
struct_s_9 > 107 19.12 25.71 30.93 38.62
struct_s_10 > 107 12.63 12.25 16.35 12.38
struct_s_11 > 107 23.39 17.53 19.85 23.93
struct_s_12 > 107 21.98 27.87 26.75 19.60
struct_s_13 > 107 17.84 9.98 17.59 12.47
struct_s_14 > 107 20.65 22.13 25.36 126.17
struct_s_15 > 107 1.00 1.00 1.00 1.00
struct_s_16 > 107 22.23 19.21 17.85 43.81
struct_s_17 > 107 19.25 12.45 13.60 18.82
struct_s_18 > 107 21.22 23.97 21.99 19.57
struct_s_19 > 107 15.89 18.94 18.60 19.42
struct_s_20 > 107 1.00 12.33 1.00 1.58
struct_s_21 > 107 23.70 24.15 12.94 18.22
struct_s_22 > 107 24.15 23.93 19.91 75.50
struct_s_23 > 107 20.81 13.66 19.18 45.75
struct_s_24 > 107 1.00 1.00 1.25 6.56
struct_s_25 > 107 22.99 22.09 25.22 26.37
struct_s_26 > 107 20.81 1.70 17.45 9.28
struct_s_27 > 107 16.87 24.18 28.46 53.66
struct_s_28 > 107 9.30 10.10 13.60 36.25
struct_s_29 > 107 24.69 16.86 19.13 37.92
struct_s_30 > 107 18.91 16.05 20.58 23.07
Geo. mean > 107 12.70 10.81 12.63 19.19
Wins 0/30 10/30 14/30 4/30 2/30



4.6. APPENDIX

4

93

Table 4.13: Extended results on small random single-row instances. We compare the original formulation with
the four proposed reformulations. We report the geometric mean of number of nodes over 5 randomization
seeds.

Instance Original AHL AHLD AHLlow KP

nostruct_s_31 117147.30 150.50 97.44 101.47 140.26
nostruct_s_32 35360.52 98.03 69.74 96.33 134.02
nostruct_s_33 77679.87 127.97 71.08 71.06 132.71
nostruct_s_34 59664.91 74.72 55.96 80.64 81.72
nostruct_s_35 470429.56 82.44 77.44 75.05 147.11
nostruct_s_36 162687.07 80.45 75.76 81.61 143.13
nostruct_s_37 79044.08 80.66 43.49 128.70 154.84
nostruct_s_38 126413.70 82.99 90.62 97.81 140.42
nostruct_s_39 271882.42 93.34 72.66 111.67 117.81
nostruct_s_40 57072.58 103.84 63.85 81.94 101.39
nostruct_s_41 166165.68 88.74 113.49 119.22 101.67
nostruct_s_42 225989.09 98.70 94.66 92.23 95.26
nostruct_s_43 199181.06 91.84 106.79 123.21 112.26
nostruct_s_44 122235.34 87.11 57.07 111.29 123.50
nostruct_s_45 102328.43 87.85 64.62 94.48 146.62
nostruct_s_46 99868.61 107.94 54.96 122.39 130.74
nostruct_s_47 102369.62 82.54 53.36 81.48 109.72
nostruct_s_48 79939.18 76.35 44.38 120.71 141.42
nostruct_s_49 285937.90 88.31 81.59 66.65 113.82
nostruct_s_50 116897.40 72.33 73.92 63.07 104.74
nostruct_s_51 108565.32 109.67 63.67 70.96 147.21
nostruct_s_52 159551.60 97.12 76.30 79.99 239.27
nostruct_s_53 251743.11 72.03 57.34 65.10 110.13
nostruct_s_54 187536.86 95.47 60.53 81.71 124.45
nostruct_s_55 58046.96 154.81 60.35 61.42 132.67
nostruct_s_56 152474.97 100.48 61.88 77.97 75.94
nostruct_s_57 147567.40 136.44 76.11 101.30 209.92
nostruct_s_58 51806.16 139.00 85.97 129.19 120.62
nostruct_s_59 150024.31 128.82 84.94 108.48 165.21
nostruct_s_60 70512.55 91.43 37.22 83.78 191.71
Geo. mean 121,456 97.10 68.64 90.43 128.98
Wins 0/30 3/30 22/30 5/30 0/30



4

94 4. LATTICE REFORMULATIONS FOR IP

Table 4.14: Extended results on big structured single-row instances. We compare the original formulation with
the four proposed reformulations. We report the geometric mean of number of nodes over 5 randomization
seeds.

Instance Original AHL AHLD AHLlow KP

struct_b_1 > 107 1.00 1.00 1.00 1.00
struct_b_2 > 107 1.00 1.00 1.00 1.00
struct_b_3 > 107 1.00 1.00 1.00 1.00
struct_b_4 > 107 1.00 1.00 1.00 1.00
struct_b_5 > 107 1.00 1.00 1.00 1.00
struct_b_6 > 107 1.00 1.00 1.00 1.00
struct_b_7 > 107 1.00 1.00 1.00 1.00
struct_b_8 > 107 1.00 1.00 1.00 1.00
struct_b_9 > 107 1.00 1.00 1.00 1.00
struct_b_10 > 107 1.00 1.00 1.00 1.00
struct_b_11 > 107 1.00 1.00 1.00 1.00
struct_b_12 > 107 1.15 1.00 1.38 1.00
struct_b_13 > 107 1.00 1.00 1.00 1.00
struct_b_14 > 107 1.00 1.00 1.00 1.00
struct_b_15 > 107 1.00 1.00 1.00 1.00
struct_b_16 > 107 1.00 1.00 1.00 1.00
struct_b_17 > 107 1.00 1.00 1.00 1.25
struct_b_18 > 107 1.00 1.00 1.00 1.00
struct_b_19 > 107 7.09 10.92 11.13 2.23
struct_b_20 > 107 1.00 1.00 1.00 1.00
struct_b_21 > 107 1.00 1.00 1.15 1.00
struct_b_22 > 107 12.88 12.45 13.02 7.55
struct_b_23 > 107 1.00 1.00 1.00 1.00
struct_b_24 > 107 1.00 1.00 1.00 1.00
struct_b_25 > 107 1.00 1.00 1.00 1.00
struct_b_26 > 107 14.55 10.30 15.64 14.94
struct_b_27 > 107 1.15 1.00 1.00 1.00
struct_b_28 > 107 1.00 1.00 1.00 1.00
struct_b_29 > 107 1.00 1.00 1.00 1.00
struct_b_30 > 107 1.00 1.00 1.00 1.00
Geo. mean > 107 1.28 1.27 1.31 1.21
Wins 0/30 0/30 1/30 0/30 2/30



4.6. APPENDIX

4

95

Table 4.15: Extended results on big random single-row instances. We compare the original formulation with
the four proposed reformulations. We report the geometric mean of number of nodes over 5 randomization
seeds.

Instance Original AHL AHLD AHLlow KP

nostruct_b_31 40066.06 499.89 225.39 390.18 335.75
nostruct_b_32 58912.41 768.76 451.06 918.01 496.08
nostruct_b_33 69796.78 1321.29 1258.45 4338.72 712.30
nostruct_b_34 61246.15 568.32 585.86 2186.62 449.92
nostruct_b_35 47761.72 648.27 901.42 1099.37 723.79
nostruct_b_36 75469.91 595.61 784.11 2221.29 532.13
nostruct_b_37 58415.69 696.93 681.78 1672.96 965.29
nostruct_b_38 69676.77 1144.81 450.73 1304.41 580.92
nostruct_b_39 65902.10 1169.01 1043.94 3588.43 792.13
nostruct_b_40 60974.73 667.06 442.64 1742.68 562.90
nostruct_b_41 55427.79 732.07 564.78 1342.24 457.19
nostruct_b_42 105708.90 741.30 629.10 2686.09 891.34
nostruct_b_43 53388.13 345.38 249.22 590.61 143.52
nostruct_b_44 53313.65 660.75 458.89 1067.95 136.93
nostruct_b_45 56414.52 550.83 661.25 851.72 486.87
nostruct_b_46 50542.79 494.18 354.76 2725.77 625.31
nostruct_b_47 32448.48 1341.72 601.52 1094.96 787.56
nostruct_b_48 60434.83 577.56 484.34 5392.68 1084.96
nostruct_b_49 62315.48 537.31 469.06 2535.80 487.58
nostruct_b_50 47790.45 684.91 606.55 1135.02 144.58
nostruct_b_51 42576.21 761.53 626.06 2248.45 785.46
nostruct_b_52 45216.55 443.64 415.52 3989.46 474.94
nostruct_b_53 52921.38 498.10 444.15 1174.28 542.21
nostruct_b_54 54014.03 605.54 603.97 1023.27 539.56
nostruct_b_55 52049.79 465.36 445.15 5930.21 865.73
nostruct_b_56 69288.17 774.16 673.18 1914.84 751.58
nostruct_b_57 85747.18 538.98 475.09 703.69 582.79
nostruct_b_58 87641.90 1316.64 1177.69 3758.66 1058.79
nostruct_b_59 59819.40 617.21 526.40 1988.41 597.01
nostruct_b_60 142758.31 2208.95 1442.30 4899.36 2050.46
Geo. mean 59,901 701.15 572.03 1779.06 566.99
Wins 0/30 1/30 18/30 0/30 11/30



4

96 4. LATTICE REFORMULATIONS FOR IP

Table 4.16: Extended results on market split instances. We compare the original formulation with the three
proposed reformulations. We report the geometric mean of number of nodes over 5 randomization seeds.

Instance Original AHL AHLD AHLlow KP

MS_1 682632.80 772.81 4278.43 2842.57
MS_2 580468.05 808.12 4701.41 1864.10
MS_3 478755.61 701.96 4857.28 1738.94
MS_4 529921.84 639.50 6368.87 2965.49
MS_5 559298.39 706.37 3904.89 969.19
MS_6 509460.40 635.77 7049.53 1093.95
MS_7 90924.66 777.72 6602.53 1353.35
MS_8 329578.61 543.42 6484.97 1942.68
MS_9 492957.09 605.89 4730.02 1001.01
MS_10 261514.02 1141.54 5185.66 1990.06
MS_11 164414.90 341.25 3492.53 563.33
MS_12 527807.00 549.54 4749.78 2100.33
MS_13 370893.73 485.87 3398.73 217.41
MS_14 981426.39 602.94 2929.34 1334.05
MS_15 685585.93 749.86 5829.67 1617.54
MS_16 569928.81 787.34 9494.30 2564.49
MS_17 308195.50 785.04 5943.94 1266.77
MS_18 356061.58 618.53 3284.40 1035.91
MS_19 399377.88 744.05 4300.51 1981.01
MS_20 464122.62 1051.48 1990.04 1945.08
MS_21 468660.87 675.46 2433.52 1571.35
MS_22 383869.78 436.71 2885.50 1542.10
MS_23 502538.33 966.24 2744.84 1393.33
MS_24 334804.99 705.90 4050.86 1887.22
MS_25 208598.85 943.70 3703.26 3742.81
MS_26 390655.79 524.95 4631.38 1676.14
MS_27 279747.81 526.48 2422.81 2544.03
MS_28 284524.68 893.36 2093.21 1325.25
MS_29 300324.92 721.64 3900.22 1252.29
MS_30 640326.92 768.06 3613.77 2572.34
Geo. mean 398,742 685.03 4111.48 1545.95
Wins 0/30 29/30 0/30 1/30



4.6. APPENDIX

4

97

Table 4.17: Extended results on generalized assignment problem. We compare the original formulation with
the three proposed reformulations. We report the geometric mean of number of nodes over 5 randomization
seeds.

Instance Original AHL AHLD AHLlow KP

GAP_1 622.36 92.85 92.60 219.08
GAP_2 762.92 54.95 100.66 33.89
GAP_3 589.38 145.32 75.83 124.92
GAP_4 1425.92 54.49 42.84 324.64
GAP_5 918.39 2.91 45.31 228.08
GAP_6 9761.63 194.82 229.32 291.90
GAP_7 1017.21 71.43 66.32 392.18
GAP_8 4286.72 27.75 77.55 118.83
GAP_9 138.85 43.92 48.94 26.26
GAP_10 7342.77 187.21 68.74 242.12
GAP_11 1167.24 66.77 251.20 303.76
GAP_12 316.07 60.96 75.00 127.00
GAP_13 209.89 82.45 44.96 120.48
GAP_14 182.15 81.18 315.16 49.51
GAP_15 283.40 43.72 39.34 38.01
GAP_16 673.14 61.96 34.80 44.55
GAP_17 2417.82 75.90 125.44 203.97
GAP_18 1191.56 139.33 91.05 107.82
GAP_19 435.70 33.10 33.37 148.83
GAP_20 869.20 84.40 111.56 141.65
GAP_21 774.89 6.02 45.70 131.38
GAP_22 10823.20 52.38 86.75 223.37
GAP_23 911.96 28.98 190.24 43.02
GAP_24 275.78 13.30 24.09 118.71
GAP_25 522.26 22.18 20.52 189.12
GAP_26 356.28 34.20 48.35 46.80
GAP_27 110.47 141.51 56.04 253.84
GAP_28 1261.65 126.92 71.87 95.56
GAP_29 1770.86 26.29 63.91 88.98
GAP_30 7508.54 93.21 165.66 158.85
Geo. mean 893.37 52.15 72.52 122.92
Wins 0/30 15/30 11/30 4/30



4

98 4. LATTICE REFORMULATIONS FOR IP

Table 4.18: Extended results on combinatorial auction instances. We compare the original formulation with
the three proposed reformulations. We report the geometric mean of number of nodes over 5 randomization
seeds.

Instance Original AHL AHLD AHLlow KP

CA_1 3.44 4.74 7.90 4.28
CA_2 4.18 5.14 9.90 6.25
CA_3 10.76 30.28 121.90 19.35
CA_4 7.19 12.93 85.17 9.32
CA_5 298.70 485.35 1079.77 350.94
CA_6 34.02 51.74 339.22 38.92
CA_7 10.02 18.06 62.91 16.49
CA_8 18.14 35.72 205.20 19.63
CA_9 10.43 17.26 163.22 17.58
CA_10 134.85 195.28 933.42 199.42
CA_11 3.95 7.97 14.92 4.54
CA_12 2.30 4.54 11.42 3.10
CA_13 37.30 42.72 497.02 41.21
CA_14 2.93 4.18 44.24 4.28
CA_15 330.87 651.44 4057.72 530.10
CA_16 16.91 49.07 761.60 32.81
CA_17 24.01 31.66 315.86 29.18
CA_18 4.47 4.51 7.71 5.75
CA_19 9.36 25.02 153.73 12.91
CA_20 4.00 13.89 79.94 6.00
CA_21 4.28 11.77 34.16 6.45
CA_22 12.59 64.43 82.01 14.01
CA_23 11.93 16.27 58.03 15.82
CA_24 31.14 143.04 811.13 60.27
CA_25 15.00 29.02 86.09 24.40
CA_26 11.51 20.30 143.17 13.04
CA_27 5.72 6.88 54.93 6.04
CA_28 14.76 21.74 634.44 26.11
CA_29 4.37 4.18 17.23 4.32
CA_30 4.70 7.69 194.67 8.91
Geo. mean 11.26 21.03 95.08 16.14
Wins 29/30 1/30 0/30 0/30



5
LEARNING OPTIMAL OBJECTIVE

VALUES FOR MILP

In recent years, there has been a surge in interest in harnessing the power of machine
learning tools to aid the solution process of MILPs. From solution prediction (e.g. [51,
117, 142]) to interventions on the heuristic rules used by the solvers (e.g. [66, 37, 126])
several approaches have been studied in the literature (see Chapter 2 for a more in-depth
discussion of this topic). The overarching trend is to build dynamic MILP solvers that can
make active use of the large amounts of data produced during the solving process.

Many of the decisions that must be made during the B&B process could be better
informed were the optimal solution known from the start. In fact, even knowing the
optimal objective value can positively influence the solver behavior. For example, once a
solution is found that matches this value, any effort to find new solutions can be avoided.
With perfect information of the optimal objective value, a solver can further do more
aggressive pruning of nodes. In general, having this knowledge can allow the solver to
adapt its configuration, putting more emphasis on different components. Even in ab-
sence of perfect information, a good prediction of the optimal objective value can still
be used to change the solver settings or to devise smarter rules, such as node selection
policies that account for this predicted value. Inspired by these observations we ask the
two following (closely related) questions.

(Q1) How well can we predict the optimal objective value?

(Q2) With what accuracy can we predict, during the solution process, whether or not a
given solution is optimal?

This chapter presents our proposed methodology to give an answer to the above
questions. We start by defining some key concepts and notation in Section 5.1, followed
by a discussion of the work most closely related to ours (Section 5.2). Section 5.3 de-
scribes our methodology in detail. The results to our computational study are presented

99



5

100 5. LEARNING OPTIMAL OBJECTIVE VALUES FOR MILP

in Section 5.4. Finally, we conclude with some final remarks and future work in Section
5.5. The code to reproduce all experiments is available online [134].

5.1. BACKGROUND
Mixed Integer Linear Programming For ease of reading, we repeat once more the def-
inition of an MILP. We are given a matrix A ∈ Qm×n , vectors c ∈ Qn and b ∈ Qm , and
a partition (I ,C ) of the variable index set [n]. A Mixed Integer Linear Program is the
problem of finding

z∗ = min c
T

x

subject to Ax ≥ b,

x j ∈Z≥0 ∀ j ∈I ,

x j ≥ 0 ∀ j ∈C .

(5.1)

Solving Mixed Integer Linear Programs The standard approach to solving MILPs is
to use the LP-based branch-and-bound (B&B) algorithm. This algorithm sequentially
partitions the feasible region, while using LP relaxations to obtain lower bounds on the
quality of the solutions of each sub-region. This search can be represented as a binary1

tree. At a given time t of the solution process we use Tt to denote the search tree, i.e.
the set of nodes, constructed so far by the B&B algorithm. We denote by x∗ the opti-
mal solution to Problem (5.1) and z∗ its corresponding optimal objective value. For a
given node i of the search tree, let zLP

i be the optimal objective value of the node’s LP

relaxation. We use the notation zLP for the root node, i.e., the solution to the original
problem’s LP relaxation. At any point of the search, an integer feasible solution provides
an upper bound on the optimal objective value. Let x̄(t ) be the best known solution at

time t and let z̄(t ) = c
T

x̄(t ) denote its objective value (also called the incumbent). Then
we can prune any node i such that zLP

i ≥ z̄(t ).

The nodes of Tt can be classified into three types:

• It is the set of inner nodes of the tree. This is, nodes that have been processed (its
LP relaxation solved) and resulted in branching.

• Lt is the set of leaves of the tree. This is, the set of nodes that have been processed
and resulted in pruning or in an integer feasible solution.

• Ot is the set of open nodes, i.e., nodes which have not been processed yet.

As mentioned before, the incumbent z̄(t ) provides an upper bound on z∗. We can
also obtain a global lower bound. Let z(t ) := mini∈Ot {zLP

i }. Then notice that necessarily
z(t ) ≤ z∗.

In practice, MILP solvers implement a plethora of other techniques to accelerate the
solution process (see Section 1.3.3). Among them, cutting planes and primal heuristics
are essential parts of today’s mathematical optimization software.

1Standard implementations of the B&B algorithm use single-variable disjunctions that partition the feasible
set into two. Other approaches exist but are, to the best of our knowledge, not implemented in standard
optimization software.



5.2. RELATED WORK

5

101

MILP solving phases The B&B algorithm can solve MILPs to optimality. This means
that, if the algorithm terminates, it does so after having obtained a feasible solution and
a proof of its optimality (or, on the contrary, proof of infeasibility). Several solver com-
ponents work together for this goal, each with more or less focus on the feasibility and
the optimality parts. Berthold et al. [25] point out that, typically, the optimal solution is
found well before the solver can prove optimality. Following this, they propose partition-
ing the search process into phases, according to three target goals. These phases are the
following.

1. Feasibility. This phase encompasses the time spanned from the beginning of the
search until the first feasible solution is found.

2. Improvement. From the moment the first feasible solution is found until an opti-
mal solution is found.

3. Proving. Spans the time elapsed from the moment the optimal solution is found
until the solver terminates with a proof of optimality.

Notice that if the instance is infeasible the solver terminates while in the first phase.
For the purpose of this chapter we assume that the instances are feasible.

5.2. RELATED WORK
MILP solution prediction In recent years, the topic of solution prediction for MILPs
has gained momentum. The goal is to produce a (partial) assignment of the integer vari-
ables via a predictive machine learning model. This prediction can then be used to guide
the search in different ways. Ding et al. [51] impose a constraint that forces search to re-
main in a neighborhood of the predicted optimal solution. In this way, by restricting the
size of the feasible region, the authors aim to accelerate the solution process. In con-
trast, the approaches of Nair et al. [117] and Khalil et al. [89] consist in fixing a subset of
variables to their predicted optimal value, letting the solver optimize over the remaining
ones. Khalil et al. [89] further propose a solver mode that uses the predicted solution to
guide the node processing order. In the present work, we take a different path by aim-
ing to predict the optimal objective value, as opposed to the solution, i.e., the values that
each variable takes. This task is easier from a learning perspective, yet still offers several
ways in which one can exploit this information.

Phase transition predictions Berthold et al. [25] defined the three phases of MILP solv-
ing that were introduced in Section 5.1. Their goal is to adapt the solver’s strategy de-
pending on the phase. For this purpose, they propose two criteria that can be used to
predict the transition between phase 2 (improvement) and phase 3 (proving) without
knowledge of the optimal solution. These criteria are based on node estimates: for every
node i ∈ Tt , the solver SCIP keeps an estimate ĉ(i ) of the objective value of the best so-
lution attainable at that node (see [25] for a formal definition of how this is computed).
At time t of the solving process, let ĉmin(t ) := min{ĉ(i ) | i ∈Ot } be the minimum estimate
among the open nodes. We further define d(i ) to be the depth2 of node i . The first tran-

2We define the depth of a node as its distance to the root node. Therefore, by definition, the depth of the root
node is zero.



5

102 5. LEARNING OPTIMAL OBJECTIVE VALUES FOR MILP

sition criterion, the best-estimate criterion, indicates that the transition moment is the
first time the incumbent becomes smaller than ĉmin(t ). Formally, let us define a binary
classifier C est that indicates if the transition has occurred using the criterion

C est =
{

1 if mins∈[0,t ]{z̄(s)− ĉmin(s)} < 0

0 otherwise.
(5.2)

The second criterion is called rank-1 and is based on the set of open nodes with
better estimate than the processed nodes at the same depth. Formally, let

R1(t ) :=
{

i ∈Ot | ĉ(i ) ≤ inf{ĉ( j ) : j ∈ It ∪Lt ,d( j ) = d(i )}
}

This set can be used to define a classifier C rank-1 that indicates that the transition has
occurred once the set becomes empty for the first time. This is,

C rank-1 =
{

1 if mins∈[0,t ] |R1(s)| = 0

0 otherwise.
(5.3)

The authors use these criteria to switch between different pre-determined solver set-
tings depending on the phase of solving. Their experiments show improved solving time,
especially when using the rank-1 criterion. However, it is also clear that both criteria tend
to be satisfied before the phase transition actually occurs, and there is some room for im-
provement in the accuracy of the classifiers, as we shall see from our own computational
study.

B&B resolution predictions Closely related to the present work is that of Hendel et al.
[80], who use a number of solver metrics to predict the final B&B tree size. They use a
combination of metrics from the literature, together with their own, as input to a ma-
chine learning model that estimates the final tree size dynamically as the tree is being
constructed. Their method was incorporated into version 7.0 of the solver SCIP as a
progress metric for the user. In a similar fashion, Fischetti et al. [60] use a number of
solver metrics to, during the solving process, predict whether or not the run will end
within the given time limit. This prediction can be used to adapt the solver behavior in
the case that the answer is negative.

5.3. METHODOLOGY
This section details the methodology used to answer questions Q1 (Section 5.3.1) and
Q2 (Section 5.3.2). We assume we are given a space X of instances of interest. For some
tasks, we will use the bipartite graph representation of MILPs introduced by Gasse et al.
[66]. This is, given an MILP instance X ∈ X defined as in Eq. 5.1, we build a graph rep-
resentation as follows: each constraint and each variable have a corresponding repre-
sentative node. A constraint node is connected to a variable node if the corresponding
variable has a non-zero coefficient in the corresponding constraint. Each node has an
associated vector of features that describes it. We utilize the same features as Gasse et
al., except that we do not include any incumbent information. In short, instead of the



5.3. METHODOLOGY

5

103

Read problem Presolving
Root node 
processing

B&B processMILP

GNN z̃*

z*

Figure 5.1: Optimal objective value prediction task. The MILP representation is computed after the root node
has been processed. This serves as an input to a GNN that outputs a prediction z̃∗ of the optimal objective
value.

raw data in X ∈ X we use the graph representation, which we denote XG ∈ XG , and is
composed of a tuple XG = (C ,V , A), where C ∈ Rm×dc and V ∈ Rn×dv represent the con-
straint and variable features, respectively, and A ∈Rm×n is the adjacency matrix.

5.3.1. OPTIMAL VALUE PREDICTION
The first task we tackle is the one of predicting the optimal objective value (Q1). Thas is,
given an MILP instance X ∈ X , we want to predict the optimal objective value z∗. This
prediction is computed once and for all at the root node, once the LP solution is avail-
able. We frame this as a regression task. This process is depicted in Figure 5.1.

For this regression task, we utilise the bipartite graph representation of Gasse et al.
[66] defined above, which is processed using a Graph Neural Network (GNN) that per-
forms two half-convolutions. In particular, one first pass updates the constraint descrip-
tors using the variable descriptors, while the second pass updates the variable descrip-
tors using the (new) constraint descriptors. The variable descriptors then go through a
feedforward network with ReLU activation. Finally, average pooling is applied to obtain
one single output value.

Our goal is to learn a mapping f (Xg ) : XG 7→ R which outputs an approximation z̃∗
of the optimal objective value z∗. At the moment of this prediction, the solution to the
root LP relaxation is known and can be used for further context. In order to exploit that
knowledge, we test three potential targets for the machine learning model, namely

Θ1 = z∗

Θ2 = z∗

zLP

Θ3 = z∗− zLP .



5

104 5. LEARNING OPTIMAL OBJECTIVE VALUES FOR MILP

This gives rise to three models f1(Xg ), f2(Xg ) and f3(Xg ), which we later transform into
the desired output by setting either f (Xg ) = f1(Xg ), f (Xg ) = f2(Xg ) · zLP , or f (Xg ) =
f3(Xg )+ zLP .

5.3.2. PREDICTION OF PHASE TRANSITION
The second task (Q2) is predicting the transition between phases 2 (improvement) and 3
(proving). Thas is, at any point during the solution process we want to predict whether
the incumbent is in fact optimal. We cast this problem as a classification task.

We test the performance of two classifiers. The first one is based on the output of the
GNN model discussed in Section 5.3.1. Given an instance X ∈ X (in fact its associated
graph representation XG ) and the current incumbent z̄, we obtain a binary prediction
CGN N
ϵ : XG ×R 7→ {0,1} in the following way

CGN N
ϵ (XG , z̄) =

{
1 if z̄ < f (XG )+ϵ · | f (XG )|
0 otherwise

(5.4)

for some ϵ ∈ [−1,1]. The ϵ parameter allows us to control the confidence in the predic-
tion.

The CGN N
ϵ classifier is static, in the sense that it does not make use of any information

coming from the B&B process. On the contrary, the second predictor we propose, which
we call C D , is based on a set of dynamic metrics that are collected during the solving
process. The metrics are the following.

Gap Following SCIP, we define the gap as

g (t ) :=
{

1 if no solution has been found yet or z̄(t ) · z(t ) < 0,
|z̄(t )−z(t )|

max{|z̄(t )|,|z(t )|,ϵ} otherwise.
(5.5)

Tree weight For a given node v ∈ Tt , let d(v) denote the node’s depth. Then, the tree
weight at time t is defined as

ω(t ) := ∑
v∈Lt

2−d(v) . (5.6)

This metric was first defined by Kilby et al. [91].

Median gap Let m(t ) = median{zLP
i | i ∈ Ot } and let z̄0 be the first incumbent found.

We define the median gap as

µ(t ) = |z̄(t )−m(t )|
|z̄0 − zLP | (5.7)

Trend of open nodes For a certain window size h, we store the values of |Ok | for k ∈
{t −h, t −h + 1, ..., t }. We then fit a linear function using least squares to compute the
trend of this sequence. We denote this trend at time t as τ(t ).



5.4. COMPUTATIONAL RESULTS

5

105

Ratio to GNN prediction We make use of the prediction f (XG ) coming from the GNN
model and include the ratio with respect to the current incumbent as a metric. In par-
ticular we use

ρ(t ) = f (XG )

z̄(t )
(5.8)

Notice that, while the gap and the tree weight are metrics from the literature, the
other three are our own.

The input to the classifier is therefore a tuple XD = (g (t ),ω(t ),µ(t ),τ(t ),ρ(t )). We
train a classifier C D (XD ) that makes use of these dynamic features to make a binary pre-
diction on whether we are in phase 2 or 3. We use a simple logistic regression, which
will allow us to more easily interpret the resulting model, in contrast to more complex
machine learning models.

5.4. COMPUTATIONAL RESULTS
This section describes our computational setup and results. All experiments were per-
formed with the solver SCIP v.8.0 [27]. Code for reproducing all experiments in this sec-
tion is available online [134].

5.4.1. SETUP
Benchmarks We use three NP-hard problem benchmarks from the literature: set cov-
ering, combinatorial auctions and generalized independent set problem (GISP). We cre-
ate a fourth benchmark (mixed) that is comprised of instances of the three types, in equal
proportion. The method and configuration used for generation of the instances is sum-
marized in Table 5.1. For each instance type, we generate 10,000 instances for training,
2000 instances for validation and another 2000 for testing.

Phase analysis As a first approach to the instances, we run an experiment to analyze
the breakdown into solving phases. We solve 100 of the training instances, each with 3
different randomization seeds, which gives us a total of 300 data points per benchmark.
During the solution process we record the time when branching starts, the time when the
first solution is found, the time when a solution within 5% of the optimal is found, and

Table 5.1: Method and configuration settings used to generate the instances of problem benchmark.

Benchmark Generation method Configuration

Set covering Balas and Ho [16]
Items: 750
Sets: 1000

Combinatorial Leyton-Brown et al. [102] Items: 200
auctions with arbitrary relationships Bids: 1000

GISP

Nodes: 80
Colombi et al. [39] p = 0.6

with Erdos-Renyi graphs α= 0.75
SET2, A



5

106 5. LEARNING OPTIMAL OBJECTIVE VALUES FOR MILP

the time when the optimal solution is found. This allows us to compute the percentage
of time spent on each phase, and the percentage of time spent branching versus before
branching (i.e., pre-processing the instance and processing the root node). We average
these numbers over the 300 samples to obtain a view of the typical behavior of the solver
on each benchmark. We further divide phase 2 (improvement) into two sub-phases: (2a)
from the first feasible solution to the first feasible solution with objective value within 5%
of the optimal, and (2b) which encompasses the rest of phase 2. The results are shown in
Figure 5.2. We observe the following. For all benchmarks, obtaining a feasible solution
is trivial. For set covering instances, the optimal solution is often known by the time that
branching starts. In the case of combinatorial auctions, the optimal solution is typically
not known at the start of B&B, but a good solution is. For GISP, finding optimal, or even
good, solutions is not as easy, making the proving phase relatively shorter. We conclude
that these benchmarks allow us to test our methodology on three very different settings
that may arise in a real-life situation.

Data collection procedure For each instance, we collect information at the root node:
the bipartite graph representation XG = (C ,V , A) and the optimal root LP value zLP . We
then proceed to solve the instance. For the first 100 processed nodes and as long as no
incumbent exists, no samples are collected. This allows us to initialize statistics as the
trend of open nodes τ(t ), and to ignore instances that are solved within 100 nodes which
are therefore too easy. After 100 nodes have been processed and an incumbent exists,
we collect samples with a probability of 0.02. At sampling time, we record the value
of the dynamic features (see Section 5.3.2), as well as the incumbent value z̄(t ). Once
the instance is solved, the collected samples are completed by appending the root node
information (XG , zLP ) as well as the optimal objective value z∗, which will be used as a
target.

Optimal objective value prediction (Q1) We test the prediction accuracy of our GNN
model on the four benchmarks. We train a model for each of the targets described in
Section 5.3. We measure the error as

e = 100× 1

N

N∑
i=1

|z∗
i − z̃∗

i |
|z∗

i |
(5.9)

where N is the number of samples, z∗
i is the optimal objective value of sample i and z̃∗

i
is the predicted optimal objective value of sample i . Notice that, independently of the
learning target, we measure the error in the space of the original prediction we want to
make.

Prediction of phase transition (Q2) We make a prediction on whether we have tran-
sitioned to phase 3 (optimal solution has been found). We compare the performance of
four predictors. The first two predictors are the ones proposed by Berthold et al. [25],
namely C est (best-estimate, see Eq. 5.2) and C rank-1 (rank-1, see Eq. 5.3). The third pre-
dictor CGN N

ϵ is based on the GNN regression model, as described in Eq. 5.4. We report
the performance of this classifier with ϵ = 0 and with a tuned value ϵ∗ which was ob-
tained by optimizing the accuracy with a small grid search over the range [−0.02,0.02]



5.4. COMPUTATIONAL RESULTS

5

107

Phase 1: 0.0%

Phase 2a: 19.2%

Phase 2b: 25.7%

Phase 3: 55.1%

First branching occurs setcover

(a) Set covering

Phase 1: 0.0%
Phase 2a: 11.9%

Phase 2b: 54.8%

Phase 3: 33.3%
First branching occurs

cauctions

(b) Combinatorial auctions

Phase 1: 0.0%

Phase 2a: 30.9%

Phase 2b: 43.9%

Phase 3: 25.3%
First branching occurs

GISP

(c) GISP

Figure 5.2: Phase analysis of three instance types. We divide the solution process into (1) Feasibility, in dark
yellow, (2a) Improvement up to 5% to optimality, in light yellow, (2b) Improvement from 5% to optimal, in light
purple, and (3) Proving, in dark purple. We also indicate when the first branching occurs. The data is averaged
over 100 instances with 3 randomization seeds (i.e., 300 samples).

on the validation set. The fourth predictor C D is based on the dynamic features, as de-
scribed in Section 5.3.2.

5.4.2. RESULTS

Tables 5.2 and 5.3 show the results of the optimal objective value prediction task. The
GNN models tested in Table 5.2 were trained and tested on instances of the same type.
On the contrary, the results of Table 5.3 correspond to one unique model that was trained
in the mixed dataset, and then tested on different benchmarks. First, we observe that
using targets that include LP information (Θ2 and Θ3) is beneficial to performance, as
opposed to directly trying to predict the optimal objective value (Θ1). There is no clear
winner among targets Θ2 and Θ3. Second, we observe that the generalist model, the one
trained on the mixed dataset, performs comparably to the specialized models, even out-
performing them in some cases.

We now select one GNN model per benchmark to be used in the next prediction task:
the phase transition prediction. We select the model in the following way: we use the
specialized model that achieves the best result on the validation set. Figure 5.3 (a-c)
shows the results for all classifiers on the pure benchmarks (see Table 5.4 for the same re-
sults in table form). Further, we include a column that shows the classification accuracy
of a dummy model that always predicts the majority class. We observe that the classifiers
of [25] (best-estimate and rank-1) tend to predict the phase transition too early. This is,



5

108 5. LEARNING OPTIMAL OBJECTIVE VALUES FOR MILP

Table 5.2: Average relative error (as defined in Eq. 5.9) of the GNN model. One model was trained per bench-
mark. The train and test instances in each case are of the same type.

Instances Θ1 Θ2 Θ3

Set covering 1.48 0.80 0.54
Combinatorial auctions 3.20 0.55 0.62

GISP 3.32 2.35 2.39

Table 5.3: Average relative error (as defined in Eq. 5.9) of the GNN mixed model. Only one model was trained
on a dataset comprised of intances of all types. The test sets are comprised of instances of one type only, except
for the mixed test set (last row).

Instances Θ1 Θ2 Θ3

Set covering 1.35 0.73 0.82
Combinatorial auctions 3.15 1.17 0.53

GISP 3.17 2.32 2.43
Mixed test set 1.70 0.97 0.75

they mostly output a positive prediction, which means they believe the incumbent to
be optimal. This results in the misclassified samples being almost exclusively false pos-
itives. On the contrary, the GNN model CGN N

0 tends to be too pessimistic, which can
be fixed with the right tuning of the ϵ parameter. For all benchmarks, CGN N

ϵ∗ performs
better than the classifiers of Berthold et al. [25]. At the same time, the inclusion of the
dynamic features (C D ) further improves the performance, except for set covering where
CGN N
ϵ∗ and C D are close to a tie.

It is important to notice that, depending on the application, false positives and false
negatives could have very different consequences. As an example, if the phase transi-
tion prediction is used to change the behavior of the primal heuristics (e.g. switch them
off once the optimal is found) a false positive could excessively delay finding the opti-
mal solution and therefore has a much bigger potential of harming performance than a
false negative. The parameter ϵ provides an easy way to navigate this tradeoff, where one
could sacrifice some accuracy to keep the rate of false positives to a minimum.

Figure 5.3d shows the same experiment but on a mixed dataset. This is, the models
were trained and tested on a benchmark comprised of instances of all three types (in
equal proportion). We observe a similar behavior compared to the specialized bench-
marks. The GNN model CGN N

0 tends to be too pessimistic, while CGN N
ϵ∗ achieves better

accuracy and better false positive rate than the classifiers of Berthold et al. [25]. Using
dynamic features further improves the accuracy of the model.

Finally, we analyze the importance of the dynamic features assigned by the C D clas-
sifier (Figure 5.4). We see that the four learned models are in fact very different, with the
GISP model mostly making decisions based on the gap and the other three considering
all features more uniformly. This speaks in favour of learning on sets of instances of the



5.4. COMPUTATIONAL RESULTS

5

109

majority Cest Crank 1 CGNN
0 CGNN

* CD
0.0

0.2

0.4

0.6

0.8

1.0

correct
fp
fn

(a) Set covering

majority Cest Crank 1 CGNN
0 CGNN

* CD
0.0

0.2

0.4

0.6

0.8

1.0
correct
fp
fn

(b) Combinatorial auctions

majority Cest Crank 1 CGNN
0 CGNN

* CD
0.0

0.2

0.4

0.6

0.8

1.0
correct
fp
fn

(c) GISP

majority Cest Crank 1 CGNN
0 CGNN

* CD
0.0

0.2

0.4

0.6

0.8

1.0
correct
fp
fn

(d) Mixed

Figure 5.3: Prediction accuracy of the different classifier models. We show the fraction of correctly classified
samples (correct, in purple), the fraction of false positives (fp, dark yellow) and the fraction of false negatives
(fn, light yellow).



5

110 5. LEARNING OPTIMAL OBJECTIVE VALUES FOR MILP

0.0 0.5 1.0
S. cover

g(t)

(t)

(t)

(t)

(t)

0.0 0.5 1.0
C. auctions

0.0 0.5 1.0
GISP

0.0 0.5 1.0
Mixed

Figure 5.4: Feature importance of the dynamic models trained to predict phase transition for each of the
benchmarks.

same type.

5.5. CONCLUSIONS
In this chapter, we presented our methodology for predicting the optimal objective value
of MILPs. Compared to the literature on predicting optimal solutions, our learning task
is easier, yet still offers a variety of possibilities for its application within MILP solvers.
Our methods can be used to both predict the optimal objective value and classify a fea-
sible solution into optimal or sub-optimal. Our computational study shows that our
proposed approach outperforms the existing ones in the literature. Further, they provide
more flexibility to tune the model into the desired behavior. We show that there are ben-
efits to learning a model that specializes to an instance type, yet our model is still able to
generalize well and have superior performance to other methods on mixed instance sets.

These results open the door for many possible applications. In general terms, this
prediction can be used to adapt the behavior of the different solver components and
rules depending on the solving phase. These applications, however, require further study
and will be the subject of future work.



5.5. CONCLUSIONS

5

111

Table 5.4: Prediction accuracy of the different classifier models. We show the fraction of correctly classified
samples, the fraction of false positives and the fraction of false negatives.

Correct False positives False negatives

Majority 0.89 0.11 0.00
C est 0.91 0.09 0.00
C rank-1 0.92 0.08 0.00
C GNN

0 0.52 0.05 0.43
C GNN
ϵ∗ 0.93 0.04 0.03

C D 0.90 0.05 0.05

Set covering

Correct False positives False negatives

Majority 0.64 0.36 0.00
C est 0.67 0.33 0.00
C rank-1 0.68 0.32 0.00
C GNN

0 0.57 0.06 0.37
C GNN
ϵ∗ 0.72 0.27 0.01

C D 0.84 0.07 0.09

Combinatorial auctions

Correct False positives False negatives

Majority 0.59 0.00 0.41
C est 0.39 0.61 0.00
C rank-1 0.43 0.57 0.00
C GNN

0 0.68 0.10 0.22
C GNN
ϵ∗ 0.69 0.12 0.19

C D 0.77 0.11 0.12

GISP
Correct False positives False negatives

Majority 0.64 0.36 0.00
C est 0.65 0.35 0.00
C rank-1 0.67 0.33 0.00
C GNN

0 0.59 0.08 0.34
C GNN
ϵ∗ 0.73 0.14 0.13

C D 0.77 0.14 0.09

Mixed





6
CONCLUSIONS

Commercial MILP solvers are typically used as a magical black box that can handle an
extremely wide range of applications. The algorithmic progress that has taken us to this
point is truly remarkable. Still, recent advances, such as the ones in the field of machine
learning, offer a myriad of new possibilities for further improvement. In this thesis, we
have explored several such perspectives. We have recognized the value of non-standard
approaches. From lattice reformulations that help us solve a subset of difficult problems
to learning rules that specialize to a problem type, it is clear that there is no one-fits-all
strategy and that having a toolbox of different strategies is crucial. Identifying patterns
and structures that allow us to pick the right strategy at the right time is equally impor-
tant to make the best use of the resources. In general, the work presented in this thesis
constitutes a step forward towards the goal of MILP solvers that are adaptive, dynamic
and data-driven at their core.

Throughout this thesis we have also pointed out several directions of future work.
For example, our methodology presented in Chapter 3 greatly improves the convergence
speed of the reinforcement learning algorithm, yet it is still considerably slower than
the imitation learning approach. More work is necessary to further improve the sample
complexity. Similarly, the computational requirements of the LLL algorithm can hinder
the applicability of the methods discussed in Chapter 4. Better techniques for identifying
the potential of the reformulation, or promising sub-structures to reformulate, can allow
us to overcome that challenge. For an in-depth treatment of the areas of future work, we
refer to the discussions in each individual chapter.

113





BIBLIOGRAPHY

[1] K. Aardal and A. Lenstra. Hard equality constrained integer knapsacks. Math. Oper.
Res., 29(3):724–738, 2004. Erratum: Math. Oper. Res. 31(4):846, 2006.

[2] K. Aardal and F. von Heymann. On the structure of reduced kernel lattice bases.
Mathematics of Operations Research, 39(3):823–840, 2014.

[3] K. Aardal, C. Hurkens, and A. Lenstra. Solving a system of linear diophantine equa-
tions with lower and upper bounds on the variables. Math. Oper. Res., 25(3):427–
442, 2000.

[4] K. Aardal, L. Scavuzzo, and L. A. Wolsey. A study of lattice reformulations for inte-
ger programming. Operations Research Letters, 51(4):401–407, 2023.

[5] T. Achterberg. Constraint integer programming. PhD thesis, TU Berlin, 2007.

[6] T. Achterberg and T. Berthold. Hybrid branching. In International Conference on
Integration of Constraint Programming, Artificial Intelligence, and Operations Re-
search, pages 309–311. Springer, 2009.

[7] T. Achterberg and R. Wunderling. Mixed integer programming: Analyzing 12 years
of progress. In Facets of combinatorial optimization, pages 449–481. Springer,
2013.

[8] T. Achterberg, T. Koch, and A. Martin. Branching rules revisited. Oper. Res. Lett., 33
(1):42–54, 2005.

[9] T. Achterberg, T. Berthold, S. Heinz, T. Koch, and K. Wolter. Constraint integer pro-
gramming: Techniques and applications. ZIB-Report 08-43, Zuse Institute Berlin,
2008.

[10] T. Achterberg, R. E. Bixby, Z. Gu, E. Rothberg, and D. Weninger. Presolve reductions
in mixed integer programming. INFORMS Journal on Computing, 32(2):473–506,
2020.

[11] J. R. Alfonsín. The diophantine Frobenius problem. OUP Oxford, 2005.

[12] A. M. Alvarez, Q. Louveaux, and L. Wehenkel. A machine learning-based approx-
imation of strong branching. INFORMS Journal on Computing, 29(1):185–195,
2017.

[13] D. Anderson, G. Hendel, P. Le Bodic, and M. Viernickel. Clairvoyant restarts in
branch-and-bound search using online tree-size estimation. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33, pages 1427–1434, 2019.

115



6

116 BIBLIOGRAPHY

[14] G. Andreello, A. Caprara, and M. Fischetti. Embedding cuts in a branch and cut
framework: a computational study with {0, 1

2 }-cuts. INFORMS Journal on Com-
puting, 19:229–238, 2007.

[15] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. Finding cuts in the TSP (a pre-
liminary report). Technical Report 95-05, DIMACS, 1995. URL https://api.
semanticscholar.org/CorpusID:972108.

[16] E. Balas and A. Ho. Set covering algorithms using cutting planes, heuristics, and
subgradient optimization: a computational study. In Combinatorial Optimiza-
tion, pages 37–60. Springer, 1980.

[17] E. Balas, S. Ceria, G. Cornuéjols, and N. Natraj. Gomory cuts revisited. Operations
Research Letters, 19(1):1–9, 1996.

[18] M.-F. Balcan, T. Dick, T. Sandholm, and E. Vitercik. Learning to branch. In Inter-
national Conference on Machine Learning, pages 344–353. PMLR, 2018.

[19] M.-F. F. Balcan, S. Prasad, T. Sandholm, and E. Vitercik. Sample complexity of tree
search configuration: Cutting planes and beyond. Advances in Neural Information
Processing Systems, 34:4015–4027, 2021.

[20] Y. Bengio, A. Lodi, and A. Prouvost. Machine learning for combinatorial optimiza-
tion: a methodological tour d’horizon. European Journal of Operational Research,
290(2):405–421, 2021.

[21] D. Bergman, A. A. Cire, W.-J. Van Hoeve, and J. Hooker. Decision diagrams for op-
timization, volume 1. Springer, 2016.

[22] T. Berthold. Measuring the impact of primal heuristics. Operations Research Let-
ters, 41(6):611–614, 2013.

[23] T. Berthold and Z. Csizmadia. The confined primal integral: a measure to bench-
mark heuristic MINLP solvers against global MINLP solvers. Mathematical Pro-
gramming, 188(2):523–537, 2021.

[24] T. Berthold and G. Hendel. Learning to scale mixed-integer programs. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 35, pages 3661–3668,
2021.

[25] T. Berthold, G. Hendel, and T. Koch. From feasibility to improvement to proof:
three phases of solving mixed-integer programs. Optimization Methods and Soft-
ware, 33(3):499–517, 2018.

[26] T. Berthold, M. Francobaldi, and G. Hendel. Learning to use local cuts. arXiv
preprint arXiv:2206.11618, 2022.

https://api.semanticscholar.org/CorpusID:972108
https://api.semanticscholar.org/CorpusID:972108


BIBLIOGRAPHY

6

117

[27] K. Bestuzheva, M. Besançon, W.-K. Chen, A. Chmiela, T. Donkiewicz, J. van Doorn-
malen, L. Eifler, O. Gaul, G. Gamrath, A. Gleixner, L. Gottwald, C. Graczyk, K. Hal-
big, A. Hoen, C. Hojny, R. van der Hulst, T. Koch, M. Lübbecke, S. J. Maher, F. Mat-
ter, E. Mühmer, B. Müller, M. E. Pfetsch, D. Rehfeldt, S. Schlein, F. Schlösser, F. Ser-
rano, Y. Shinano, B. Sofranac, M. Turner, S. Vigerske, F. Wegscheider, P. Wellner,
D. Weninger, and J. Witzig. The SCIP Optimization Suite 8.0. Technical report, Op-
timization Online, December 2021. URL http://www.optimization-online.
org/DB_HTML/2021/12/8728.html.

[28] K. Bestuzheva, M. Besançon, W.-K. Chen, A. Chmiela, T. Donkiewicz, J. van Doorn-
malen, L. Eifler, O. Gaul, G. Gamrath, A. Gleixner, L. Gottwald, C. Graczyk, K. Hal-
big, A. Hoen, C. Hojny, R. van der Hulst, T. Koch, M. Lübbecke, S. J. Maher, F. Mat-
ter, E. Mühmer, B. Müller, M. E. Pfetsch, D. Rehfeldt, S. Schlein, F. Schlösser,
F. Serrano, Y. Shinano, B. Sofranac, M. Turner, S. Vigerske, F. Wegscheider, P. Well-
ner, D. Weninger, and J. Witzig. Enabling research through the SCIP Optimiza-
tion Suite 8.0. ACM Trans. Math. Softw., 49(2), jun 2023. ISSN 0098-3500. doi:
10.1145/3585516. URL https://doi.org/10.1145/3585516.

[29] S. Bolusani, M. Besançon, A. Gleixner, T. Berthold, C. d’Ambrosio, G. Muñoz,
J. Paat, and D. Thomopulos. The MIP Workshop 2023 Computational Competi-
tion on Reoptimization. arXiv preprint arXiv:2311.14834, 2023.

[30] P. Bonami, A. Lodi, and G. Zarpellon. Learning a classification of mixed-integer
quadratic programming problems. In Integration of Constraint Programming, Ar-
tificial Intelligence, and Operations Research (CPAIOR), volume 15, pages 595–604.
Springer, 2018.

[31] P. Bonami, A. Lodi, and G. Zarpellon. A classifier to decide on the linearization
of mixed-integer quadratic problems in CPLEX. Operations Research, 70(6):3303–
3320, 2022.

[32] S. Bubeck, N. Cesa-Bianchi, et al. Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. Foundations and Trends® in Machine Learning, 5
(1):1–122, 2012.

[33] C. Cameron, J. Hartford, T. Lundy, T. Truong, A. Milligan, R. Chen, and K. Leyton-
Brown. UNSAT solver synthesis via monte carlo forest search. In Integra-
tion of Constraint Programming, Artificial Intelligence, and Operations Research
(CPAIOR), pages 170–189, Cham, 2024. Springer Nature Switzerland.

[34] Q. Cappart, D. Chételat, E. B. Khalil, A. Lodi, C. Morris, and P. Velic̆ković. Combina-
torial optimization and reasoning with graph neural networks. Journal of Machine
Learning Research, 24(130):1–61, 2023.

[35] J. W. S. Cassels. An introduction to the geometry of numbers. Springer Science &
Business Media, 2012.

[36] Z. Chen, J. Liu, X. Wang, and W. Yin. On representing linear programs by graph
neural networks. In Proceedings of the International Conference on Learning Rep-
resentations, volume 11, 2023.

http://www.optimization-online.org/DB_HTML/2021/12/8728.html
http://www.optimization-online.org/DB_HTML/2021/12/8728.html
https://doi.org/10.1145/3585516


6

118 BIBLIOGRAPHY

[37] A. Chmiela, E. Khalil, A. Gleixner, A. Lodi, and S. Pokutta. Learning to schedule
heuristics in branch and bound. Advances in Neural Information Processing Sys-
tems, 34:24235–24246, 2021.

[38] A. Chmiela, A. Gleixner, P. Lichocki, and S. Pokutta. Online learning for schedul-
ing MIP heuristics. In Proceedings of the International Conference on Integra-
tion of Constraint Programming, Artificial Intelligence, and Operations Research
(CPAIOR), pages 114–123. Springer, 2023.

[39] M. Colombi, R. Mansini, and M. Savelsbergh. The generalized independent set
problem: Polyhedral analysis and solution approaches. European Journal of Op-
erational Research, 260(1):41–55, 2017.

[40] M. Conforti, G. Cornuéjols, G. Zambelli, M. Conforti, G. Cornuéjols, and G. Zam-
belli. Integer programming models. Springer, 2014.

[41] W. Cook, T. Rutherford, H. Scarf, and D. Shallcross. An implementation of the
generalized basis reduction algorithm for integer programming. ORSA J. Comput.,
5(2):206–212, 1993.

[42] G. Cornuéjols. Revival of the Gomory cuts in the 1990’s. Annals of Operations
Research, 149(1):63–66, 2007.

[43] G. Cornuéjols, R. Sridharan, and J.-M. Thizy. A comparison of heuristics and re-
laxations for the capacitated plant location problem. European Journal of Opera-
tional Research, 50(3):280–297, 1991.

[44] G. Cornuéjols and M. Dawande. A class of hard small 0-1 programs. INFORMS J.
Comput., 11(2):205–210, 1999.

[45] R. J. Dakin. A tree-search algorithm for mixed integer programming problems. The
computer journal, 8(3):250–255, 1965.

[46] S. S. Dey and M. Molinaro. Theoretical challenges towards cutting-plane selection.
Mathematical Programming, 170:237–266, 2018.

[47] S. S. Dey, Y. Dubey, M. Molinaro, and P. Shah. A theoretical and computational
analysis of full strong-branching. arXiv preprint arXiv:2110.10754, 2021.

[48] A. Deza and E. B. Khalil. Machine learning for cutting planes in integer program-
ming: A survey. In International Joint Conference on Artificial Intelligence, vol-
ume 32, pages 6592–6600. ijcai.org, 2023.

[49] T. G. Dietterich. Hierarchical reinforcement learning with the MAXQ value func-
tion decomposition. Journal of Artificial Intelligence Research, 13:227–303, 2000.

[50] B. Dilkina, C. P. Gomes, Y. Malitsky, A. Sabharwal, and M. Sellmann. Backdoors
to combinatorial optimization: Feasibility and optimality. In Integration of Con-
straint Programming, Artificial Intelligence, and Operations Research (CPAIOR),
volume 5547, pages 56–70. Springer, 2009.



BIBLIOGRAPHY

6

119

[51] J.-Y. Ding, C. Zhang, L. Shen, S. Li, B. Wang, Y. Xu, and L. Song. Accelerating pri-
mal solution findings for mixed integer programs based on solution prediction.
In Proceedings of the AAAI conference on artificial intelligence, volume 34, pages
1452–1459, 2020.

[52] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learn-
ing and stochastic optimization. Journal of Machine Learning Research, 12(7),
2011.

[53] G. Dulac-Arnold, N. Levine, D. J. Mankowitz, J. Li, C. Paduraru, S. Gowal, and
T. Hester. Challenges of real-world reinforcement learning: definitions, bench-
marks and analysis. Machine Learning, 110(9):2419–2468, 2021.

[54] S. Elhedhli and J. Naoum-Sawaya. Improved branching disjunctions for branch-
and-bound: An analytic center approach. European Journal of Operational Re-
search, 247(1):37–45, 2015.

[55] M. Etheve, Z. Alès, C. Bissuel, O. Juan, and S. Kedad-Sidhoum. Reinforcement
learning for variable selection in a branch and bound algorithm. In International
Conference on Integration of Constraint Programming, Artificial Intelligence, and
Operations Research (CPAIOR), pages 176–185. Springer, 2020.

[56] M. Fey and J. E. Lenssen. Fast graph representation learning with PyTorch Geo-
metric. In ICLR Workshop on Representation Learning on Graphs and Manifolds,
2019.

[57] FICO. FICO Xpress Optimizer, 2023. URL https://www.fico.com/en/
products/fico-xpress-optimization.

[58] M. Fischetti and A. Lodi. Local branching. Mathematical programming, 98:23–47,
2003.

[59] M. Fischetti and A. Lodi. Heuristics in mixed integer programming. Wiley Ency-
clopedia of Operations Research and Management Science, 2010.

[60] M. Fischetti, A. Lodi, and G. Zarpellon. Learning MILP resolution outcomes be-
fore reaching time-limit. In Integration of Constraint Programming, Artificial In-
telligence, and Operations Research (CPAIOR), volume 16, pages 275–291. Springer,
2019.

[61] A. Fukunaga. A branch-and-bound algorithm for hard multiple knapsack prob-
lems. Ann. Oper. Res., 184(1):97–119, 2011.

[62] G. Gamrath and C. Schubert. Measuring the impact of branching rules for mixed-
integer programming. In Operations Research Proceedings 2017: Selected Papers
of the Annual International Conference of the German Operations Research Soci-
ety (GOR), Freie Universiät Berlin, Germany, September 6-8, 2017, pages 165–170.
Springer, 2018.

https://www.fico.com/en/products/fico-xpress-optimization
https://www.fico.com/en/products/fico-xpress-optimization


6

120 BIBLIOGRAPHY

[63] G. Gamrath, A. Melchiori, T. Berthold, A. M. Gleixner, and D. Salvagnin. Branching
on multi-aggregated variables. In International Conference on Integration of Con-
straint Programming, Artificial Intelligence, and Operations Research (CPAIOR),
pages 141–156. Springer, 2015.

[64] G. Gamrath, D. Anderson, K. Bestuzheva, W.-K. Chen, L. Eifler, M. Gasse, P. Ge-
mander, A. Gleixner, L. Gottwald, K. Halbig, et al. The SCIP optimization suite 7.0.
2020.

[65] G. Gamrath, T. Berthold, and D. Salvagnin. An exploratory computational analysis
of dual degeneracy in mixed-integer programming. EURO Journal on Computa-
tional Optimization, 8(3-4):241–261, 2020.

[66] M. Gasse, D. Chételat, N. Ferroni, L. Charlin, and A. Lodi. Exact combinatorial
optimization with graph convolutional neural networks. NeurIPS, 32, 2019.

[67] M. Gasse, S. Bowly, Q. Cappart, J. Charfreitag, L. Charlin, D. Chételat, A. Chmiela,
J. Dumouchelle, A. Gleixner, A. M. Kazachkov, et al. The machine learning for
combinatorial optimization competition (ml4co): Results and insights. In NeurIPS
2021 Competitions and Demonstrations Track, pages 220–231. PMLR, 2022.

[68] A. Gleixner, G. Hendel, G. Gamrath, T. Achterberg, M. Bastubbe, T. Berthold,
P. Christophel, K. Jarck, T. Koch, J. Linderoth, et al. MIPLIB 2017: data-driven
compilation of the 6th mixed-integer programming library. Mathematical Pro-
gramming Computation, 13(3):443–490, 2021.

[69] R. E. Gomory. Outline of an algorithm for integer solutions to linear programs.
Bulletin of the American Mathematical Society, 64(5):275–278, 1958.

[70] J. Gondzio. Interior point methods 25 years later. European Journal of Operational
Research, 218(3):587–601, 2012.

[71] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

[72] M. Greenacre, P. J. Groenen, T. Hastie, A. I. d’Enza, A. Markos, and E. Tuzhilina.
Principal component analysis. Nature Reviews Methods Primers, 2(1):100, 2022.

[73] P. Gupta, M. Gasse, E. Khalil, P. Mudigonda, A. Lodi, and Y. Bengio. Hybrid mod-
els for learning to branch. Advances in neural information processing systems, 33:
18087–18097, 2020.

[74] P. Gupta, E. B. Khalil, D. Chetélat, M. Gasse, Y. Bengio, A. Lodi, and M. P. Kumar.
Lookback for learning to branch. arXiv preprint arXiv:2206.14987, 2022.

[75] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL
https://www.gurobi.com.

[76] C. Hansknecht, I. Joormann, and S. Stiller. Cuts, primal heuristics, and learning
to branch for the time-dependent traveling salesman problem. arXiv preprint
arXiv:1805.01415, 2018.

https://www.gurobi.com


BIBLIOGRAPHY

6

121

[77] H. He, H. Daume III, and J. M. Eisner. Learning to search in branch and bound
algorithms. Advances in Neural Information Processing Systems, 27, 2014.

[78] G. Hendel. Adaptive large neighborhood search for mixed integer programming.
Mathematical Programming Computation, 14(2):185–221, 2022.

[79] G. Hendel, M. Miltenberger, and J. Witzig. Adaptive algorithmic behavior for solv-
ing mixed integer programs using bandit algorithms. In Operations Research Pro-
ceedings 2018, pages 513–519. Springer, 2019.

[80] G. Hendel, D. Anderson, P. Le Bodic, and M. E. Pfetsch. Estimating the size of
branch-and-bound trees. INFORMS Journal on Computing, 34(2):934–952, 2022.

[81] M. Hewitt, G. L. Nemhauser, and M. W. Savelsbergh. Combining exact and heuris-
tic approaches for the capacitated fixed-charge network flow problem. INFORMS
Journal on Computing, 22(2):314–325, 2010.

[82] T. Huang, A. M. Ferber, Y. Tian, B. Dilkina, and B. Steiner. Searching large neigh-
borhoods for integer linear programs with contrastive learning. In International
Conference on Machine Learning, pages 13869–13890. PMLR, 2023.

[83] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle. Paramils: an automatic
algorithm configuration framework. Journal of artificial intelligence research, 36:
267–306, 2009.

[84] IBM. IBM ILOG CPLEX Optimizer, 2023. URL https://www.ibm.com/
products/ilog-cplex-optimization-studio/cplex-optimizer.

[85] M. Karamanov and G. Cornuéjols. Branching on general disjunctions. Mathemat-
ical Programming, 128(1):403–436, 2011.

[86] E. Khalil. Towards tighter integration of machine learning and discrete optimiza-
tion. PhD thesis, Georgia Institute of Technology, 2019.

[87] E. Khalil, P. Le Bodic, L. Song, G. Nemhauser, and B. Dilkina. Learning to branch
in mixed integer programming. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 30, 2016.

[88] E. B. Khalil, B. Dilkina, G. L. Nemhauser, S. Ahmed, and Y. Shao. Learning to run
heuristics in tree search. In International Joint Conference on Artificial Intelligence,
pages 659–666, 2017.

[89] E. B. Khalil, C. Morris, and A. Lodi. MIP-GNN: A data-driven framework for guiding
combinatorial solvers. AAAI, 2022.

[90] E. B. Khalil, P. Vaezipoor, and B. Dilkina. Finding backdoors to integer programs:
A monte carlo tree search framework. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pages 3786–3795, 2022.

[91] P. Kilby, J. Slaney, S. Thiébaux, T. Walsh, et al. Estimating search tree size. In Proc.
of the 21st National Conf. of Artificial Intelligence, AAAI, Menlo Park, 2006.

https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer


6

122 BIBLIOGRAPHY

[92] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[93] R. Kirk, A. Zhang, E. Grefenstette, and T. Rocktäschel. A survey of zero-shot gener-
alisation in deep reinforcement learning. Journal of Artificial Intelligence Research,
76:201–264, 2023.

[94] B. Krishnamoorthy and G. Pataki. Column basis reduction and decomposable
knapsack problems. Discrete Optim., 6(3):242–270, 2009.

[95] M. Kruber, M. E. Lübbecke, and A. Parmentier. Learning when to use a decompo-
sition. In International conference on AI and OR techniques in constraint program-
ming for combinatorial optimization problems, pages 202–210. Springer, 2017.

[96] A. G. Labassi, D. Chételat, and A. Lodi. Learning to compare nodes in branch and
bound with graph neural networks. Advances in Neural Information Processing
Systems, 2022.

[97] A. Land and A. Doig. An automatic method of solving discrete programming prob-
lems. Econometrica, 28(3):497–520, 1960.

[98] P. Le Bodic and G. Nemhauser. An abstract model for branching and its application
to mixed integer programming. Mathematical Programming, 166(1-2):369–405,
2017.

[99] A. Lenstra, H. Lenstra Jr., and L. Lovász. Factoring polynomials with rational co-
efficients. Math. Ann., 261(4):515–534, 1982. ISSN 0025-5831. doi: 10.1007/
BF01457454. URL http://dx.doi.org/10.1007/BF01457454.

[100] H. Lenstra, Jr. Lattices. In Algorithmic number theory: lattices, number fields,
curves and cryptography, volume 44 of Math. Sci. Res. Inst. Publ., pages 127–181.
Cambridge Univ. Press, Cambridge, 2008.

[101] H. Lenstra Jr. Integer programming with a fixed number of variables. Math. Oper.
Res., 8(4):538–548, 1983.

[102] K. Leyton-Brown, M. Pearson, and Y. Shoham. Towards a universal test suite for
combinatorial auction algorithms. In Proceedings of the 2nd ACM conference on
Electronic commerce, pages 66–76, 2000.

[103] S. Li, W. Ouyang, M. Paulus, and C. Wu. Learning to configure separators in
branch-and-cut. Advances in Neural Information Processing Systems, 36, 2024.

[104] J. Lin, J. Zhu, H. Wang, and T. Zhang. Learning to branch with tree-aware branch-
ing transformers. Knowledge-Based Systems, 252:109455, 2022.

[105] J. T. Linderoth and M. W. P. Savelsbergh. A computational study of search strategies
for mixed integer programming. INFORMS Journal on Computing, 11:173–187,
1999.

http://dx.doi.org/10.1007/BF01457454


BIBLIOGRAPHY

6

123

[106] D. Liu, M. Fischetti, and A. Lodi. Learning to search in local branching. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 36, pages 3796–3803,
2022.

[107] A. Lodi and A. Tramontani. Performance variability in mixed-integer program-
ming. In Theory driven by influential applications, pages 1–12. INFORMS, 2013.

[108] L. Lovász and H. Scarf. The generalized basis reduction algorithm. Mathematics
of Operations Research, 17(3):751–764, 1992.

[109] A. Mahajan and T. Ralphs. On the complexity of selecting disjunctions in integer
programming. SIAM Journal on Optimization, 20(5):2181–2198, 2010.

[110] A. Mahajan and T. K. Ralphs. Experiments with branching using general disjunc-
tions. In Operations Research and Cyber-Infrastructure, pages 101–118. Springer,
2009.

[111] H. Mahmoud and J. W. Chinneck. Achieving MILP feasibility quickly using general
disjunctions. Computers & operations research, 40(8):2094–2102, 2013.

[112] A. Marcos Alvarez, L. Wehenkel, and Q. Louveaux. Online learning for strong
branching approximation in branch-and-bound. 2016.

[113] S. Mehrotra and Z. Li. On generalized branching methods for mixed integer pro-
gramming. Techical Report 2004, 15, 2004.

[114] M. Minsky. Steps toward artificial intelligence. Proceedings of the IRE, 49(1):8–30,
1961.

[115] T. M. Mitchell. Machine Learning. McGraw Hill, 2017.

[116] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through
deep reinforcement learning. nature, 518(7540):529–533, 2015.

[117] V. Nair, S. Bartunov, F. Gimeno, I. von Glehn, P. Lichocki, I. Lobov, B. O’Donoghue,
N. Sonnerat, C. Tjandraatmadja, P. Wang, et al. Solving mixed integer programs
using neural networks. arXiv preprint arXiv:2012.13349, 2020.

[118] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. Wiley
Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons,
1999.

[119] J. Nocedal and S. J. Wright. Linear programming: Interior-point methods. In Nu-
merical Optimization, chapter 14. Springer, 2006.

[120] OpenAI. Introducing ChatGPT. https://openai.com/blog/chatgpt, 2022.
[Online; accessed 04-April-2023].

https://openai.com/blog/chatgpt


6

124 BIBLIOGRAPHY

[121] J. H. Owen and S. Mehrotra. Experimental results on using general disjunctions
in branch-and-bound for general-integer linear programs. Computational opti-
mization and applications, 20(2):159–170, 2001.

[122] M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution of large-
scale symmetric traveling salesman problems. SIAM Review, 33(1):60–100, 1991.

[123] V. T. Paschos. Applications of combinatorial optimization, volume 3. John Wiley &
Sons, 2014.

[124] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An
imperative style, high-performance deep learning library. In Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

[125] K. K. Patel. Progressively strengthening and tuning MIP solvers for reoptimization.
arXiv preprint arXiv:2308.08986, 2023.

[126] M. B. Paulus, G. Zarpellon, A. Krause, L. Charlin, and C. Maddison. Learning to cut
by looking ahead: Cutting plane selection via imitation learning. In International
Conference on Machine Learning, pages 17584–17600. PMLR, 2022.

[127] D. A. Pomerleau. Efficient training of artificial neural networks for autonomous
navigation. Neural Computation, 3(1):88–97, 1991.

[128] A. Prouvost, J. Dumouchelle, L. Scavuzzo, M. Gasse, D. Chételat, and A. Lodi. Ecole:
A gym-like library for machine learning in combinatorial optimization solvers.
arXiv preprint arXiv:2011.06069, 2020.

[129] C. Qian, D. Chételat, and C. Morris. Exploring the power of graph neural networks
in solving linear optimization problems. In International Conference on Artificial
Intelligence and Statistics, pages 1432–1440. PMLR, 2024.

[130] A. Santos Xavier, F. Qiu, X. Gu, B. Becu, and S. S. Dey. MIPLearn: An extensible
framework for learning-enhanced optimization, June 2023.

[131] L. Scavuzzo. Code for the paper “Learning to branch with Tree MDPs", 2022.
https://github.com/lascavana/rl2branch.

[132] L. Scavuzzo. Implementation of the generalized basis reduction algorithm, 2023.
https://github.com/lascavana/GeneralizedBasisReduction.

[133] L. Scavuzzo. Code for the paper “A study of lattice reformulations for
integer programming", 2023. https://github.com/lascavana/lattice_
reformulation.

[134] L. Scavuzzo. Code for chapter 5, 2024. https://github.com/lascavana/
ObjValPrediction.

https://github.com/lascavana/rl2branch
https://github.com/lascavana/GeneralizedBasisReduction
https://github.com/lascavana/lattice_reformulation
https://github.com/lascavana/lattice_reformulation
https://github.com/lascavana/ObjValPrediction
https://github.com/lascavana/ObjValPrediction


BIBLIOGRAPHY

6

125

[135] L. Scavuzzo, F. Y. Chen, D. Chételat, M. Gasse, A. Lodi, N. Yorke-Smith, and
K. Aardal. Learning to branch with tree MDPs. Advances in Neural Information
Processing Systems, 2022.

[136] L. Scavuzzo, K. Aardal, A. Lodi, and N. Yorke-Smith. Machine learning augmented
branch and bound for mixed integer linear programming. Mathematical Program-
ming, pages 1–44, 2024.

[137] M. Sewak. Deep Reinforcement Learning. Springer, 2019.

[138] M. Seyfi, A. Banitalebi-Dehkordi, Z. Zhou, and Y. Zhang. Exact combinatorial op-
timization with temporo-attentional graph neural networks. In Proceedings of
the Joint European Conference on Machine Learning and Knowledge Discovery in
Databases (ECML PKDD), pages 268–283. Springer, 2023.

[139] P. Shaw. Using constraint programming and local search methods to solve vehicle
routing problems. In International conference on principles and practice of con-
straint programming, pages 417–431. Springer, 1998.

[140] V. Shoup. NTL – A library for doing number theory. https://libntl.org/.

[141] J. Song, Y. Yue, B. Dilkina, et al. A general large neighborhood search framework
for solving integer linear programs. Advances in Neural Information Processing
Systems, 33:20012–20023, 2020.

[142] N. Sonnerat, P. Wang, I. Ktena, S. Bartunov, and V. Nair. Learning a large
neighborhood search algorithm for mixed integer programs. arXiv preprint
arXiv:2107.10201, 2021.

[143] R. S. Sutton, D. A. McAllester, S. P. Singh, Y. Mansour, et al. Policy gradient methods
for reinforcement learning with function approximation. In Advances in Neural
Information Processing Systems, volume 99, pages 1057–1063. Citeseer, 1999.

[144] Y. Tang, S. Agrawal, and Y. Faenza. Reinforcement learning for integer program-
ming: Learning to cut. In International Conference on Machine Learning, pages
9367–9376. PMLR, 2020.

[145] M. Turner, T. Koch, F. Serrano, and M. Winkler. Adaptive Cut Selection in Mixed-
Integer Linear Programming. Open Journal of Mathematical Optimization, 4:5,
2023.

[146] R. J. Vanderbei. Linear programming: foundations and extensions. Journal of the
Operational Research Society, 49(1):94–94, 1998.

[147] O. Vinyals, I. Babuschkin, J. Chung, M. Mathieu, M. Jaderberg, W. Czarnecki,
A. Dudzik, A. Huang, P. Georgiev, R. Powell, T. Ewalds, D. Horgan, M. Kroiss,
I. Danihelka, J. Agapiou, J. Oh, V. Dalibard, D. Choi, L. Sifre, Y. Sulsky, S. Vezh-
nevets, J. Molloy, T. Cai, D. Budden, T. Paine, C. Gulcehre, Z. Wang, T. Pfaff,



6

126 BIBLIOGRAPHY

T. Pohlen, D. Yogatama, J. Cohen, K. McKinney, O. Smith, T. Schaul, T. Lilli-
crap, C. Apps, K. Kavukcuoglu, D. Hassabis, and D. Silver. AlphaStar: Master-
ing the Real-Time Strategy Game StarCraft II. https://deepmind.com/blog/
alphastar-mastering-real-time-strategy-game-starcraft-ii/, 2019.

[148] A. Votyakov and M. Frumkin. An algorithm for finding the general integer solution
of a system of linear equations. Studies in discrete optimization (Russian), pages
128–140, 1976.

[149] Z. Wang, X. Li, J. Wang, Y. Kuang, M. Yuan, J. Zeng, Y. Zhang, and F. Wu. Learn-
ing cut selection for mixed-integer linear programming via hierarchical sequence
model. In International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=Zob4P9bRNcK.

[150] F. Wesselmann and U. Stuhl. Implementing cutting plane management and selec-
tion techniques. In Technical Report. University of Paderborn, 2012.

[151] R. J. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8(3):229–256, 1992.

[152] L. A. Wolsey. Integer Programming. John Wiley & Sons, 2020.

[153] S. J. Wright. Primal-dual interior-point methods. SIAM, 1997.

[154] Y. Wu, W. Song, Z. Cao, and J. Zhang. Learning large neighborhood search policy
for integer programming. Advances in Neural Information Processing Systems, 34:
30075–30087, 2021.

[155] K. Yilmaz and N. Yorke-Smith. A study of learning search approximation in mixed
integer branch and bound: Node selection in SCIP. AI, 2(2):150–178, 2021.

[156] G. Zarpellon, J. Jo, A. Lodi, and Y. Bengio. Parameterizing branch-and-bound
search trees to learn branching policies. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pages 3931–3939, 2021.

https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://openreview.net/forum?id=Zob4P9bRNcK


ACKNOWLEDGEMENTS

It was the 1st of May of the year 2020 when, while locked in my childhood home due to
the Covid-19 pandemic, I started working on this thesis. One of the main lessons that the
pandemic thought me was just how important human connection and support is. I am
unbelievably lucky for the people who were by my side during the development of this
thesis. This acknowledgements section is therefore an understatement and constitutes
only a brief account of them. I shall express my gratitude more properly in person.

Firstly, I am deeply indebted to my supervisors, Professor Karen Aardal and Dr. Neil
Yorke-Smith for their infinite support, understanding and flexibility, especially in the
more difficult times. It is rare to find such a thing and I count myself incredibly lucky
to have had the pleasure of working with you. I also had the pleasure to work with out-
standing collaborators, such as Professor Andrea Lodi, Professor Wolsey, Dr. Maxime
Gasse and Dr. Didier Chételat, who have inspired me and marked my academic journey.

After the confusing period of the pandemic and the following unfortunate period
during which we had no office, I was extremely excited to come together with my col-
leagues. In our new offices, I found all the warmth and support I was lacking in the lonely
days of working from home. I am extremely grateful for my colleagues in the Discrete
Mathematics and Optimization group for making my PhD experience infinitely better,
for everything I learned through all of you, and of course, for your friendship, which will
live on beyond this PhD programme. Outside the office, I was also lucky to count on
many friends who have supported me, inspired me and warmed my heart, some even
from the distance. Finally, I would like to thank my loving parents who have given every-
thing to set me on the path to success. This is all thanks to you.

127





CURRICULUM VITÆ

Lara Victoria SCAVUZZO MONTAÑA

11-08-1995 Born in Buenos Aires, Argentina.

EDUCATION
2013–2016 BSc Engineering Physics

Universitat Politècnica de Catalunya, Spain

2017–2020 MSc Applied Mathematics
Technische Universiteit Delft, The Netherlands

2020–2024 PhD. Applied Mathematics
Technische Universiteit Delft, The Netherlands
Thesis: –
Promotor: Prof. dr. ir. K.I. Aardal

AWARDS
2023 OR Letters best paper award.

129





LIST OF PUBLICATIONS

1. A. Prouvost, J.Dumouchelle, L. Scavuzzo, M.Gasse,D. Chételat, and A. Lodi. Ecole: A gym-
like library for machine learning in combinatorial optimization solvers. arXiv preprint arXiv:
2011.06069, 2020.

2. M. Gasse et al. The machine learning for combinatorial optimization competition (ML4CO):
Results and insights. In NeurIPS 2021 Competitions and Demonstrations Track, pages 220–231.
PMLR, 2022.

3. L. Scavuzzo, F. Y. Chen, D. Chételat, M. Gasse, A. Lodi, N. Yorke-Smith, and K. Aardal. Learn-
ing to branch with tree MDPs. Advances in Neural Information Processing Systems, 2022.

4. A. Iñesta, G. Vardoyan, L Scavuzzo, S. Wehner. Optimal entanglement distribution policies
in homogeneous repeater chains with cutoffs. In NPJ Quantum Information 9(1)46, 2023.

5. K. Aardal, L. Scavuzzo, and L. A.Wolsey. A study of lattice reformulations for integer pro-
gramming. Operations Research Letters, 51(4):401–407, 2023.

6. L. Scavuzzo, K. Aardal, A. Lodi, and N. Yorke-Smith. Machine learning augmented branch-

and-bound for mixed integer linear programming. Mathematical Programming, 2024.

131

arXiv:2011.06069
arXiv:2011.06069

	Summary
	Samenvatting
	Notation
	Introduction
	Goals of this thesis
	Structure of this thesis
	Introduction to MILP
	Mixed Integer Linear Programming
	The Branch-and-Bound algorithm
	MILP solving
	Evaluation metrics for MILP

	A brief introduction to Machine Learning
	Mapping features to predictions
	Elements of the learning process 


	Machine Learning assisted B&B
	Learning tasks
	Primal heuristics
	Branching
	Cutting planes
	Node selection
	Configuration decisions

	Problem representation
	The Bipartite Graph Representation
	Representing Variables Individually
	Representing Constraints Individually
	Representing a (sub-)MILP
	Outlook

	Datasets and software
	Datasets
	Software

	Conclusions, Perspective and Challenges

	Expert-free learning to branch
	Classical branching rules
	Learning to branch
	The tree MDP formulation
	Tree MDPs
	The branching tree MDP
	Efficiency of tree MDP
	Theoretical limitations
	Connections with hierarchical RL

	Experimental validation
	Setup
	Results

	Conclusions and future directions
	Appendix
	Proofs
	Extended results
	Instance collections


	Lattice reformulations for IP
	Some preliminaries on lattices
	Non-standard algorithms for IP
	Disjunction-finding algorithms
	Lenstra's algorithm
	The Lovasz-Scarf algorithm

	Lattice-based reformulations
	The AHL reformulation
	The KP reformulation
	The reformulated volume

	Computational study
	Instances and setup
	Experiments with single-row instances
	Multi-row instances
	Comparison with Lovász-Scarf
	Computational experiments with vanilla SCIP
	Computational experiments on MIPLIB
	Measuring potential

	Discussion
	Appendix
	Equivalence between AHL and KP in the full-dimensional case
	Instance models
	Extended results


	Learning optimal objective values for MILP
	Background
	Related work
	Methodology
	Optimal value prediction
	Prediction of phase transition

	Computational results
	Setup
	Results

	Conclusions

	Conclusions
	Bibliography
	Acknowledgements
	Curriculum Vitæ
	List of Publications

