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Abstract

Today, oil recovery is often based on reactive control using water flooding. Water is injected
to push the oil towards the producing wells until water is being produced, which requires
a shutdown of the producing well. This form of production may not yield more than 35%
of the oil initially present. A better strategy exists which is based on closed-loop reser-
voir management (CLRM). CLRM uses a reservoir model which is successively updated and
optimized, resulting in a theoretical maximization of the net present value (NPV). The opti-
mization is called flooding optimization.

A flooding optimization problem is an optimal control problem based on a non-linear deter-
ministic reservoir model and solved using the sequential method. This method performs a
sequential procedure of integration of every ordinary differential equation (ODE) and opti-
mization using a discrete set of control inputs. The main issue of the sequential method is
that it cannot deal with state-constraints directly, resulting in solutions which are in practice
infeasible. Furthermore, the optimized control input may suffer from chattering1. However,
a variance minimization is difficult when using the sequential method. Besides these two
issues, the sequential method is a computationally expensive optimization as it performs 30
to 100 ODE integrations. Moreover, implementation of the sequential method may be a labo-
riously procedure because gradient information has to be pre-programmed manually in the
ODE solver.

To overcome the issues of the sequential method, a literature study has been conducted which
concluded that the simultaneous method should provide a solution. The simultaneous method
is used in the chemical industry to solve the issue of handling state-constraints. Besides, the
method can be implemented using algebraic modeling, providing automatic discretization
support and symbolic differentiation. Although the simultaneous method may provide a
solution to the issues of the sequential method, it is known to have several limitations as well.
The first limitation is the large non-linear programming (NLP) problem which is obtained due
to full discretization in both space and time of all variables and states. The second limitation
is that it may be difficult to obtain an initial guess (IG) for all discrete variables, because the
IG has to satisfy all constraints.

1Chattering refers to the optimized non-unique solution to the control input, which causes the input-profile
to behave irregularly.
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It is investigated how the simultaneous method can be applied to a flooding optimization
problem, what the limitations are of the current implementation and if the performance is
comparable to the results obtained by the sequential method.

Application of the simultaneous method to the flooding optimization problem results in a set
of difference equations due to the spatial and time discretization of every partial differential
equation (PDE). The states are integrated using implicit Euler. The simultaneous method is
implemented using General Algebraic Modeling System (GAMS). The IGs of the implementa-
tion and its verification are based on Simple Simulator (SimSim). SimSim is a matrix-oriented
forward reservoir simulator. The known limitations of the simultaneous method, which are
having a large NLP and being sensitive to IGs, are investigated. The sequential method is
compared to the simultaneous method. It is investigated to what extent the simultaneous
method handles state-constraints and whether the simultaneous method can be used for multi-
objective optimization. The optimization performance of both methods is compared as well.
Modular Reservoir Simulator (MoReS), the in-house simulator of the Dutch oil company Shell,
has been used to perform the sequential optimizations.

The GAMS model is verified and it is concluded that the simultaneous method can be applied
to a flooding optimization problem. GAMS provides automatic discretization support and
symbolic differentiation. There are two drawbacks of the current implementation of the si-
multaneous method. The first is the fact that it is sensitive to IGs, meaning that an incorrectly
selected IG will not result in an optimal NPV. This is due to the distinct modeling environ-
ments of GAMS and the IG generator, resulting in an initial error. The second drawback is that
the reservoir model cannot be scaled up to more than 16 grid blocks. The main issues of the
sequential method, which are dealing with state-constraints and having chattering control in-
puts, are avoided by using the simultaneous method. The dynamics of both models in forward
simulations appear to be similar, but distinct modeling environments result in differences in
the underlying models. The methods are therefore not directly comparable. Optimization
using both methods resulted in different optimal injection and production strategies. GAMS

did not start directly with the injection of water where MoReS did. The optimal solution of
GAMS results in a lower total production rate with a lower saturation and produces for this
reason less water. The optimized NPVs of both methods differ not more than 1%, where GAMS

obtains the highest NPV.

For future research it is recommended to discretize the ODEs or PDEs using orthogonal col-
location. This includes a function approximation of the states and enables to decrease the
number of discretization points, resulting in a smaller NLP. It is also recommended to elimi-
nate the small differences between the IG generator and the simultaneous method by using an
equation-oriented modeling environment for the IGs. These improvements will decrease the
method’s sensitivity to IGs and improve the possibilities for scaling up the model. At last, the
comparison of the simultaneous method to the sequential method can be improved to get a
better understanding of the convergence properties, computational speed and optimal result.
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Chapter 1

Introduction

1-1 Background Information

1-1-1 Oil Recovery

Hydrocarbons (oil) are contained in porous heterogeneous rock hundreds to thousands meters
below the surface in subsurface oil reservoirs. These reservoirs typically cover an area of
several squared kilometers with a height of tens of meters [Jansen et al., 2008]. When a well
is drilled, oil will most likely come out naturally due to the over-pressurized reservoir, a form
of production called primary oil recovery. The over-pressurized reservoir can only provide
oil until the reservoir pressure reaches its hydrostatic pressure, resulting in a recovery factor
of 5% to 15% [Van den Hof et al., 2009]. The recovery factor is defined as the amount of oil
produced divided by the amount of oil initially present. After the primary oil recovery stage
is finished, the reservoir still contains oil, which can possibly be acquired using secondary and
eventually tertiary techniques.

Secondary oil recovery is not only based on the production of oil, but also on injection
of water or gas using injection wells. The injected water or gas pushes the oil towards the
production wells. When the injected water or gas is being produced, the producing well
is shutdown. This is called reactive control, illustrated in Figure 1-1. Water flooding is
used for over 50% of the oil production in the u.s.a. [Van den Hof et al., 2009]. Secondary
techniques will yield a theoretical recovery factor of 20% to 70% of the total amount of oil
[Van den Hof et al., 2009].

Tertiary oil recovery techniques such as steam or polymer injection are used to recover oil
which is still trapped in pores after the secondary recovery stage. In theory, it is possible to
obtain a recovery factor of 90% when using all three techniques of oil recovery.

In practice, tertiary techniques are expensive and with the current oil price often econom-
ically infeasible compared to secondary techniques [Jansen et al., 2008]. The practical re-
covery factor of secondary recovery will not be more than 35%. This is partly due to the
economic feasibility, but mostly due to inefficient deployment of the reservoir because no
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2 Introduction

Figure 1-1: Illustration of reactive control using water flooding provided by G.M. van Essen.
Water is injected until it is being produced again, resulting in a shutdown of the production well.

knowledge is available on how to use these recovery techniques in an economically efficient
way [Van den Hof et al., 2009].

As the recovery factor is lower in practice than in theory, there is still room for improvement
of the recovery factor without the cost of any additional production or injection equipment.
With this idea flooding optimization has been introduced.

1-1-2 Flooding Optimization

The goal of flooding optimization is to maximize the total oil recovery or net present
value (NPV) of an oil reservoir model over a finite time horizon. It is an optimal control
problem because the underlying reservoir model is dynamic and described by a set of PDEs.
In flooding optimization, the controls are often combinations of injection rates, production
rates, BHPs and/or valve-settings [Zandvliet et al., 2007]. The bottem-hole pressure (BHP) is
the pressure at the opening of the well located in the reservoir.

A reservoir model describes the flow of all media within an oil reservoir using an oil phase,
a water phase and possibly a gas phase. Such a model is based on the conservation of mass
and the conservation of linear momentum. When all three phases are present, a vapor-liquid
equilibrium will exist as well [Aziz and Settari, 1979]. Next to these reservoir dynamics, a well
model is incorporated which is essential to relate the diffusive behavior of the reservoir pressure
with the BHPs and the flow rates of the well [Peaceman, 1983]. The states of the reservoir are
described by pressures and saturations, which are volume-percentages of water at a certain
point in time in the reservoir. Every well is represented by a BHP and a flow rate, which are
related by the states of the model. The physical controlled inputs are injection BHPs and total
production rates. The physical observed outputs are injection rates and production BHPs. In
a reservoir model, the physical inputs and outputs can be exchanged. Solving a flooding
optimization problem requires to discretize the reservoir model in space. This may result in
large-scale models with millions of finite volumes or grid blocks [van Essen et al., 2009c].

1-1-3 Closed-Loop Reservoir Management

Flooding optimization is part of a major research area known as ‘smart fields’ or closed-
loop reservoir management (CLRM). CLRM can be interpreted as an adaptive control
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Figure 1-2: Schematic representation of closed-loop reservoir management adapted from
[Van den Hof et al., 2009].

technique. Firstly, the reservoir model is defined as a white deterministic physics-based
model. Secondly, the model parameters are estimated using heuristic real-life data called data-
assimilation. However, when used for academic purpose, synthetic data may be used. Then,
thirdly, a flooding optimization determines an optimal control input. After the initialization
of the oil production, additional data and knowledge becomes available over time allowing
for an improvement of the model. The model will be updated periodically and a flooding
optimization will be performed successively. This successive process of CLRM is illustrated in
Figure 1-2.

1-1-4 Non-Linear Optimal Control Methods

The behavior of a reservoir is dynamic and highly non-linear; pressure behaves diffusively
and saturation diffusive-convectively [Jansen, 2009]. The control problem is therefore a non-
linear optimal control problem. Reservoirs have a typical life-time of several decades with a
time-delay of multiple years. The optimal control problem is for this reason solved using a
reservoir model. Advanced solution techniques are required to solve these types of problems.
Three methods can be considered, which are dynamic programming, indirect methods and
direct methods.

With dynamic programming, all variables and inputs are discretized in time and quantified
as a finite set of possible values. This results in a finite set of possible solutions. However, for
large optimization problems this method suffers from the Curse of Dimensionality, since many
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4 Introduction

function evaluations are needed to determine the optimal solution. Indirect methods first
rewrite the optimization problem as a set of first-order necessary conditions for optimality.
The indirect method involves intensive work on symbolic manipulation, has problems dealing
with inequality constraints and suffers from the difficulty of selecting a suitable initial guess
(IG). Direct methods transcribe the non-linear optimization problem into a finite time-
independent non-linear optimization problem or non-linear programming (NLP) problem using
parametrization. Finite refers to a limited number of decision variables, which are the
variables which may be changed by the NLP solver to obtain the optimum of an objective
function.

Direct methods can be classified into two types [Biegler and Grossmann, 2004]. The first di-
rect method is the sequential method, in which numerical integration of every differential
algebraic equation (DAE) provides state-profiles and gradient information. The integration al-
ternates with an NLP optimization. The second direct method is the simultaneous method,
in which the underlying model inputs, outputs and states of the optimization problem are
fully discretized in time. The states are related through a function approximation of the
DAEs, which are applied as supplementary equality constraints. The resulting NLP problem
is then solved in one go.

1-2 Problem Statement

The sequential method is used today in industry to solve flooding optimization problems.
This method is able to optimize large-scale flooding optimization problems resulting in a
theoretical increase in NPV [van Essen et al., 2009c], [Brouwer and Jansen, 2002]. However,
the sequential method has also several disadvantages, of which the following are encountered
in flooding optimization:

• State-constraints cannot be handled directly. The values of the states are ob-
tained by a numerical integration or forward simulation. The states are not incorpo-
rated in the finite set of decision variables and thus not included in the NLP problem
[Biegler and Grossmann, 2004]. The handling of state-constraints is therefore limited
to the control parametrization [Biegler, 2007]. As state-constraints are always present
[Sarma et al., 2006], the theoretical increase in NPV may not be feasible when used for
practical problems. The handling of state-constraints has still a large scope of further
improvement [Kraaijevanger et al., 2007].

• The optimal control inputs show chattering1 behavior, which is not accepted as
input by production engineers [Jansen et al., 2009]. A solution may be to use lexico-
graphic optimization, which bounds the obtained NPV by adding an inequality constraint
and then minimizes the variance. However, the bound on the NPV is dependent on the
states and is therefore difficult to implement [van Essen et al., 2010].

• Repeated numeric integration may become time-consuming for large-scale
problems [Kameswaran and Biegler, 2006]. In the article of [van Essen et al., 2009b],

1Chattering refers to the optimized non-unique solution to the control input, which causes the input-profile
to behave irregularly.
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1-3 Approach 5

it can be found one optimization procedure with the sequential method requires about 30
to 100 iterations and thus 30 to 100 integrations of the DAEs. This is a computationally
expensive procedure.

• Programming the gradient information for a sequential flooding optimization
is labor-intensive. The gradient information has to be preprogrammed manually
in order to use the sequential optimization method efficiently. This causes a lot of
effort as modern reservoir programs may contain up to several million lines of code
[Jansen et al., 2009].

Summarizing, the use of the sequential method enables to increase the theoretical NPV.
However, in practice, it is still difficult to implement the obtained control input as phys-
ical constraints may be violated and chattering is likely to occur. Besides, the sequential
method suffers from the expensive cost of multiple integrations of the ordinary differential
equation (ODE) and from the difficulty to set up an efficient optimization.

In real-life, flooding optimization uses reservoir models with millions of grid blocks. Such
large models cannot be solved efficiently by the earlier explained indirect method or dynamic
programming method. The mentioned issues with the sequential method may for this reason
be solved with an alternative direct method, which is the simultaneous method. This method
applies full discretization. Handling (dynamic) constraints turns out to be possible due to
the fact that the states are incorporated in the NLP problem [Biegler and Grossmann, 2004].
Therefore, it is likely a lexicographic optimization can be performed as well, which is demon-
strated for a small problem in the article of [Huesman et al., 2008]. As the model is solved at
once, the simultaneous method does not require multiple integrations of the DAEs, which may
avoid computationally expensive intermediate solutions [Biegler, 2007]. The simultaneous
method can be implemented using algebraic modeling software. Algebraic modeling allows to
use symbolic differentiation and automatic discretization and therefore avoids manual imple-
mentation of gradient information.

Although the simultaneous method sounds attractive, two significant disadvantages are known.
Firstly, the NLP is large due to the incorporation of discrete states in the NLP problem. As
a result efficient algorithms are required [Biegler, 2007]. Secondly, finding suitable values for
the IG can be difficult as all the variables and states must be approximated over the complete
time-horizon while satisfying all constraints.

Concluding, the simultaneous method may be an interesting alternative to the sequential
method, nonetheless, several issues may arise, resulting in the following problem statement:

To what extent is the simultaneous method able to solve a flooding
optimization problem?

1-3 Approach

The simultaneous method has not been applied yet to a flooding optimization problem. It
is for this reason of interest to discover how the simultaneous method can be applied to
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6 Introduction

a flooding optimization problem, what the limitations are of this implementation and how
this method compares to the sequential method. The problem statement is for this reason
separated into three parts:

1. How can the simultaneous method be applied to a flooding optimization problem?

2. What are the limitations of the used implementation?

3. How does the simultaneous method compare to the sequential method?

The scope of this thesis will be to research two-dimensional small reservoir models with just a
water and an oil phase. The dynamic equations will be integrated similarly as done in industry
to allow for verification of the model implementation. Furthermore, the simultaneous method
will be implemented using algebraic modeling to make use of the advantages of automatic
discretization support and symbolic differentiation.

To get a better understanding of the direct methods, both the sequential method and the
simultaneous method are explained in detail in Chapter 2. The question on how to apply the
simultaneous method to a flooding optimization problem is discussed in Chapter 3, where a
flooding optimization problem is described and discretized such that the simultaneous method
can be applied. Next, in Chapter 4, the implementation of the simultaneous method is verified
and tested to provide a proof of principle. The effects of the known disadvantages of the large
NLP and the sensitivity to IGs are investigated. The comparison of the simultaneous method
with the sequential method is discussed in Chapter 5. This chapter investigates whether
the problems of dealing with state-constraints and having chattering control inputs can be
solved with the simultaneous method. Both methods are compared on their optimization
performance as well. Chapter 6 concludes the research and gives further recommendations.
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Chapter 2

Description of the Sequential Method

and the Simultaneous Method

This chapter will explain how the sequential method and the simultaneous method solve a
dynamic optimization problem and will summarize the advantages and disadvantages of both
methods. The properties of dynamic non-linear optimization are explained first in Section 2-1.
The theory, advantages and disadvantages are presented next in Section 2-2 for the sequential
method and in Section 2-3 for the simultaneous method. Section 2-4 will summarize the
important properties of both methods.

2-1 Dynamic Non-Linear Optimization

Although flooding optimization is both non-linear and dynamic, it is important to distinguish
between those two different properties. The basic form of a dynamic optimization problem
will be presented first, after which non-linear programming (NLP) will be explained.

2-1-1 Dynamic Optimization

Dynamic optimization aims to optimize an objective function with respect to equality and in-
equality constraints of which one or more equality constraints are DAEs. The general dynamic
optimization problem is described by Eq. (2-1).

min
u(t)

J(u(t))

subject to f(x(t), z(t), u(t), p) =
δx(t)

δt
, x(t0) = x0,

g(x(t), z(t), u(t), p) = 0,
h(x(t), z(t), u(t), p) ≥ 0,

(2-1)
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8 Description of the Sequential Method and the Simultaneous Method

where J(u(t)) is the objective function and f(x(t), z(t), u(t), p) are the dynamic equality
constraints. The static equality and static inequality constraints are represented by function
g(x(t), z(t), u(t), p) and function h(x(t), z(t), u(t), p) respectively. The variables x(t), z(t), u(t)
are defined as the differential, algebraic and control variables. The differential variables
represent the states of the system, whereas the algebraic variables represent the time-varying
properties of the system. The parameter-vector p contains the time-independent parameters.
The time is indicated by t with t0 the initial point in time.

The sequential method and the simultaneous method can be used to solve the dynamic opti-
mization problem. They transcribe the dynamic problem into an NLP problem, which will be
explained next.

2-1-2 Non-Linear Programming

Non-linear programming is the process of optimizing an objective function J(q) using a finite
set of decision variables q with respect to equality constraints g(q) and inequality constraints
h(q) of which one or more constraints and/or the objective function are non-linear. Decision
variables are the variables which may be modified by the NLP solver. The problem can be
described as in Eq. (2-2).

min
q

J(q)

subject to g(q) = 0,
h(q) ≥ 0.

(2-2)

The problem of Eq. (2-2) is then solved as illustrated by Figure 2-1. An NLP solver will
calculate an optimal q denoted as q∗ by using the gradient information of the objective
with respect to the decision variables. Such a solver is an algorithm tailored to solving NLP

problems, which is explained in detail in [Nocedal and Wright, 1999].

NLP SolverJ q*
δJ

δq
q

Figure 2-1: Schemetic representation of an NLP solver.

Both the sequential method as well as the simultaneous method will define an NLP from
a dynamic optimization problem. The methods differ in their approach, explained in the
following sections.

2-2 Sequential Method

The sequential method uses a set of decision variables based on the control inputs which are
discretized with respect to time as illustrated in Figure 2-2. A forward simulation is performed
by executing a numerical integration of the DAEs. The sensitivity may be computed as well
during this integration step. The sensitivity is the derivative of the objective function with
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2-2 Sequential Method 9
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Figure 2-2: Illustration of the discretized inputs used by the sequential method. The discretized
inputs are modified by the NLP solver to optimize an objective function. After optimization, an
integration of the dynamic states x is performed, resulting in the state-profile. This procedure is
repeated sequentially.

respect to the decision variables. Both the objective as well as the sensitivity is used by an
NLP solver to compute an optimal set q∗. The forward simulation and the NLP optimization
are executed sequentially.

2-2-1 Theory

Referring to Eq. (2-1), the control input u(t) is discretized with respect to time into N time
steps as a piecewise constant function:

un(t) = qn, t ∈ [tn, tn+1], n = {0, 1, ..., N − 1}, (2-3)

where the last control input qN does not affect the optimization and is therefore left out. The
time-independent control inputs qn, presented by Eq. (2-4), form a set of decision variables q
with length Nu · Nt presented by Eq. (2-4). Nu is equal to number of inputs. Nt refers to the
number of time-steps in which the input is parametrized.

qn = {q0, q1, ..., qN−1}. (2-4)

The DAEs can be integrated numerically using q∗, resulting in a feasible solution to the
dynamic states. The states and sensitivity computed by this integration are used to calculate
a new q∗. The sequential process of integration and optimization is repeated until a predefined
convergence criterion is met.

Three methods are commonly used to compute the sensitivity [Støren and Hertzberg, 1999].
One is numerical perturbation, which is based on performing a forward simulation for every
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10 Description of the Sequential Method and the Simultaneous Method

perturbed decision variable to obtain the gradient information. This method is computa-
tionally expensive. Two other methods use numerical integration, which are the sensitivity
method and the adjoint method, explained next.

Gradient Calculation by using Numerical Integration

The gradient of the objective function is defined by the following relation:

(
dJ

dq

)

=

(
∂J

∂q

)

+

(
∂J

∂x

)(
∂x

∂q

)

, (2-5)

where J is the objective function, x are the states and q are the decision variables. Eq. (2-5)
is also known as the sensitivity equation. Considering the objective a function of the deci-
sion variables will result in a cheap computation for the derivative of ∂J/∂q. The deriva-
tives ∂J/∂x and ∂x/∂q are more complex and require a forward integration of the sys-
tem [Petzold et al., 2006]. The latter calculation can be avoided using the adjoint equation
[Kraaijevanger et al., 2007].

The adjoint method uses the sensitivity equation in a more efficient way. The right term of
Eq. (2-5) is replaced:

(
dJ

dq

)

=

(
∂J

∂q

)

+ λ

(
∂f

∂q

)

, (2-6)

where f are the dynamic model equations. ∂f/∂q can be calculated symbolically. The adjoint
λ is defined as

λ ,

(
∂J

∂x

)(
∂f

∂x

)−1

. (2-7)

The adjoint has the advantage it does not depend on the number of inputs. λ can be computed
backwards, by starting at λN . This is further explained in Appendix A. The adjoint equation
is currently used by the Modular Reservoir Simulator (MoReS). MoReS is the in-house simulator
of Shell, a Dutch oil company.

2-2-2 Advantages and Disadvantages

The advantages (+) and disadvantages (-) of the sequential method are based on the papers
of [Binder et al., 2001], [Diehl et al., 2006] and [Biegler and Grossmann, 2004].

+ The relative small-sized NLP problem enables the use of off-the-shelf NLP solvers, which
may efficiently limit the numerical effort.

+ Only IGs concerning the initial state-values are needed as the state-values are computed
by integration of the DAEs.

+ State-of-the-art DAE solvers can be used enabling to profit from the latest research
developments.
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2-3 Simultaneous Method 11

- The constraints on the state-profiles and the end-points may be violated. Both are
handled by approximation within the limits of the control parametrization.

- Multiple integration of the DAEs can be computationally expensive for large-scale mod-
els.

- The sequential method cannot handle unstable systems. Knowledge of the state-profile
on initialization cannot be used by the NLP solver. The solution to the DAE may depend
nonlinearly on q which makes unstable systems difficult to resolve.

2-3 Simultaneous Method

The simultaneous method uses a set of decision variables based on the control inputs, states
and algebraic variables which are discretized with respect to time. This is illustrated for the
control inputs and states in Figure 2-3. The dynamic states are related over time by using
function approximations of the dynamic states, also known as collocation on finite elements
[Biegler, 2007]. After parametrization, the resulting NLP is solved without the need for inte-
grating the DAEs as their function approximations are implemented as equality constraints.

0 N

Discretized Input

t

 

 
u

0 n−1 n k0 k1 k2 k3 k4 N

Parameterized State

t

 

 
x

Figure 2-3: Illustration of the in N time-elements and K collocation points discretized inputs and
parameterized states used by the simultaneous method. The discretized inputs and parameterized
states are modified by the NLP solver to optimize an objective function. After optimization, the
state-profiles are directly solved as they are incorporated in the NLP problem.

2-3-1 Theory

The control inputs, variables and dynamic states from Eq. (2-1) are discretized into N time-
steps resulting in the finite set of decision variables q:
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12 Description of the Sequential Method and the Simultaneous Method

q = {u0, u1, ..., uN−1, z0, z1, ..., zN , x0, x1, ..., xN , p}. (2-8)

The non-dynamic control inputs un, variables zn and parameters p do not require to be
related by a function and may therefore be parametrized as piecewise constant. However, the
dynamic states have to be approximated by a function at the discrete time-intervals, known
as collocation. The most basic form will be presented first.

The dynamic equations of the optimal control problem must be written as first order DAE:

δx(t)

δt
= f(x(t), z(t), u(t), p). (2-9)

The states will be related by using an implicit Euler integration, which is a well-known
method because of its good stability for stiff problems and higher order accuracy according
to [Kameswaran and Biegler, 2006]:

∆tn = tn+1 − tn,
xn+1 = xn + ∆tnf(xn+1, zn+1, un+1, p),

(2-10)

where t is time and n the time-step. The dynamic equations are now replaced by algebraic
equations. With the parametrization of x(t) and the discretization of z(t), u(t), the dynamic
optimization problem can be written as an NLP as presented in Section 2-1-2, where all
constraints are functions of the set of decision variables q.

The function approximation which has been used is still based on the integration of the
dynamic equations. More advanced collocation methods are known as orthogonal collocation.
With orthogonal collocation, the states are approximated using orthogonal polynomials. This
is explained in the following subsection.

Orthogonal Collocation

Orthogonal collocation (also referred to as the pseudospectral method) applies function ap-
proximations using collocation points which are chosen to be the roots of orthogonal poly-
nomials [Huntington and Rao, 2008]. The method is explained by using a Lagrange basis
representation. The dynamic problem is again fully discretized, but instead of only discretiz-
ing the control inputs, states and variables in N time-elements, every time-element is also
divided in K collocation points as illustrated in Figure 2-3. This representation applies a
piecewise function approximation for every variable or state on every element n through the
collocation points k:

xn(t) =
K∑

k=0

xn,kφn,k(t),

zn(t) =
K∑

k=1

zn,kφn,k(t),

un(t) =
K∑

k=1

un,kφn,k(t),

(2-11)
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2-3 Simultaneous Method 13

where zn(t), un(t) are a K-th order polynomials and xn is a (K + 1)-th order polynomial due
to the existence of an initial condition at k = 0. This initial condition is the end-point of
the previous time-interval and therefore essential to enforce continuity of the dynamic states.
The variable φn,k(t) is the Lagrange interpolation polynomial

φn,k(t) =
K∏

p=0,p 6=k

t − tp

tk − tp
=

(t − t0)

(tk − t0)
· · · (t − tk−1)

(tk − tk−1)

(t − tk+1)

(tk − tk+1)
· · · (t − tK)

(tk − tK)
, (2-12)

where the subscript p is used as index for multiplication of all collocation points. The variables
and inputs are now approximated by piecewise continuous polynomials and the states are
approximated by continuous polynomials. The dynamic states x are not related yet to the
dynamic equations, for which a residual equation Rn is introduced. The residual should vanish
and is therefore set to zero [Cuthrell and Biegler, 1987].

Rn =
K∑

k=0

xn,kφ̇n,k(tn) − f(xn, zn, un, p) = 0. (2-13)

The continuous dynamic function f(xn, zn, un, p) can be discretized using the implicit Euler
relation of Eq. (2-10):

f(xn+1, zn+1, un+1, p) =
xn+1 − xn

tn+1 − tn
. (2-14)

Note the difference of the earlier explained basic collocation method compared with orthogonal
collocation. The time-discretization is performed using orthogonal polynomials instead of
directly starting with applying the time-discretization.

The residual equation constrains the derivative of the function approximation of the states at
the collocation points to the first-order dynamic function. The residual equation Rn is added
as an equality constraint to the final NLP problem [Kameswaran and Biegler, 2006], where it
replaces the system equations. This results in the following NLP:

min
q

J(q)

subject to g(q) = 0,
Rn(q) = 0 where n = 0, 1, ..., N,
h(q) ≥ 0.

(2-15)

Instead of performing a DAE integration, the NLP is now tailored to perform a function
approximation [Wright, 1970]. The advantage of orthogonal collocation is the fact that a
coarser time grid may be selected as the collocation points force the ’in-between’ solutions to
fit the DAE. To put it even stronger, according to [Huntington and Rao, 2008], the method
works the best in terms of precision and robustness when using a global approach where
N = 1. Global refers to using only a single time-element. This may reduce the size of the
NLP drastically.

In general, the number of decision variables for the simultaneous method adds up to (Nu +
Nx + Nz)Nt + Np, with Nu, Nx, Nz, Np the number of inputs, states, algebraic variables and
parameters respectively. Nt is equal to the number of time-steps or elements.
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14 Description of the Sequential Method and the Simultaneous Method

2-3-2 Advantages and Disadvantages

The advantages (+) and disadvantages (-) of the simultaneous method are derived from
the papers of [Binder et al., 2001], [Diehl et al., 2006], [Biegler and Grossmann, 2004] and
[Kameswaran and Biegler, 2006].

+ All constraints are satisfied after successful termination due to complete discretization.

+ Replacing the DAEs by algebraic equations eliminates the need for sequential integration.

+ The system equations are treated as nonlinear constraints which can be violated, but
in the end they have to be satisfied. Intermediate solutions which may not exist can
therefore be avoided.

+ The simultaneous method perfectly handles unstable systems, because the states can
be bounded.

- The relatively large-sized NLP problem requires advanced and tailored NLP solvers.

- initial guess (IG)s are required for all decision variables.

- The model equations are only fulfilled after successful termination of the NLP solver.

2-4 Summary and Concluding Remarks

Both the sequential method and the simultaneous method are explained and the advantages
and disadvantages are mentioned. The sequential method has the property of having a small
NLP size, but comes at the cost of having difficulties dealing with state-constraints and per-
forming multiple integrations of the DAEs. On the contrary, the simultaneous method can
deal with all constraints, but with the cost of having a large NLP size. This is summarized in
Table 2-1.

Table 2-1: Summary of the properties of the sequential method and the simultaneous method.

Property Sequential Method Simultaneous Method

Relative NLP size Small Large
Number of decision variables NuNt + Np (Nu + Nx + Nz)Nt + Np

Sparse NLP No Yes
IGs of the states Initial values at t0 Initial values at tn

with n = {0, 1, ..., N}
Deals with state constraints Difficult Yes
DAE Integration After every NLP solution Once
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Chapter 3

Application of the Simultaneous

Method to a Flooding Optimization

Problem

This chapter will demonstrate how to apply the simultaneous method to a flooding opti-
mization problem. A two-phase reservoir model is used. The choice for this model will be
motivated in Section 3-1, after which the model is presented as a set of PDEs and transformed
to continuous ODEs in Section 3-2. This set of continuous ODEs is then discretized in space
and in time in Section 3-3 to obtain a set of difference equations. The objective function and
constraints of the optimization are described in Section 3-4. Finally Section 3-5 will be used
for final remarks on the implementation.

3-1 Motivation for using a Two-Phase Two-Dimensional Model

A reservoir model based on a real-life reservoir has three dimensions and consists of an oil, a
water and a gas phase. Oil can be volatile resulting in mass-transfer between these different
phases. Every phase is described by its own PDE. In this thesis, a two-phase, two-dimensional
model will be used as a compromise between complexity and usability for academic purpose.
There are three motivations for using such a model:

• A two-phase model is less complicated compared to a three-phase model. The absence
of a compressible gas-phase leaves out an additional mass-balance and allows to neglect
the mass-transfer between phases. The non-linear properties of the model as described
in Appendix C will not change.

• A two-dimensional model is more straightforward compared to a three-dimensional
model. A three-dimensional model is more complex as gravity-effects influence the
dynamics. With a two-dimensional model, gravity-effects can be neglected.
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16 Application of the Simultaneous Method to a Flooding Optimization Problem

• An open-source forward simulator called Simple Simulator (SimSim) is available. SimSim

provides two-phase two-dimensional models which can be used for verification. A second
advantage is that SimSim can be used as initial guess (IG) generator to obtain values for
all in time and in space discretized variables.

Although the two-phase two-dimensional model is simplified due to omitting of the gas-phase
and gravitational forces, it is assumed that the fundamental properties of the optimization
problem do not change. With the fundamental properties is referred to the non-linear (Ap-
pendix C), large-scale, equality and inequality constrained, non-convex and deterministic
properties of the optimization problem.

3-2 Transformation of the Model PDEs into ODEs

This section presents the model equations as PDEs and derives two ODEs in continuous time
as basis for the discretization step.

3-2-1 PDE Representation

The model used is based on the PDEs as described in [Aziz and Settari, 1979] of which a
derivation can be found in Appendix B. The model equations, based on the conservation of
both mass and the conservation of momentum through substitution of Darcy’s Law (Section
B-1-2), are given by Eq. (3-1) and Eq. (3-2) for water and oil denoted by subscripts w and o.

∇ ·
(

αρwK
krw

µw
(∇pw − ρwg∇d)

)

+ ρwqw = α
∂(φρw)Sw

∂t
, (3-1)

∇ ·
(

αρoK
kro

µo
(∇po − ρog∇d)

)

+ ρoqo = α
∂(φρo)So

∂t
, (3-2)

where ∇ is the difference operator, α the geometry factor in m3, ρ the fluid density in kg/m3,
K the permeability matrix in m2, kr the dimensionless relative permeability, µ the fluid
viscosity in Pa · s, p the pressure in Pa, g the gravitational force in m2/s, d the depth within
the reservoir in m, q the volumetric flow rate in m3/s, φ the dimensionless porosity of the
rock, S the dimensionless fluid saturation and t the time in s. The difference operator ∇ is
used to describe the PDEs into terms of Cartesian coordinates:

∇K =
∂(kx)

∂x
+

∂(ky)

∂y
. (3-3)

The geometry factor α and the permeability matrix K are defined below as

α(x) = A∆x (1D)
α(x, y) = H∆x∆y (2D)
α(x, y, z) = ∆x∆y∆z (3D),

(3-4)

where A is the area, H the height and
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3-2 Transformation of the Model PDEs into ODEs 17

K(~x) =






kxx kxy kxz

kyx kyy kyz

kzx kzy kzz




 . (3-5)

The vector ~x represents the set with Cartesian coordinates {x, y, z}.

3-2-2 Simplifications

The PDEs will be further simplified to comply with the reservoir models used in SimSim.

Assumptions

Simplifications are based on the following assumptions:

• The influence of gravity on a two-dimensional horizontal model can be neglected, leading
to ρg∇d = 0 [Jansen, 2009].

• It is assumed water and oil are completely miscible, meaning oil and water form a single
solution. Capillary pressures are pressures between immiscible fluids and can due to
this assumption be neglected. Therefore, it is assumed po = pw = p [Jansen, 2009].

• As theoretical models are considered, it can be assumed the coordinates of the grid are
aligned with the layering of the rock. This simplifies K to a diagonal 2 × 2 matrix, with
values kxx and kyy [Peaceman, 1977].

Algebraic Simplifications

Theoretical simplifications are implemented as well:

• The oil saturation is expressed in terms of the water saturation, So = 1−Sw. The water
saturation Sw is written as s for simplicity.

• The iso-thermal compressibilities cl(p) and cr(p) in 1/Pa of respectively liquid (either
water or oil) and rock represent the relation between density ρ and pressure p (Eq. (3-6)).

cl(p) ,
1

ρl

∂ρl

∂p

∣
∣
∣
∣
TR

,

cr(p) ,
1

φ

∂φ

∂p

∣
∣
∣
∣
TR

,
(3-6)

where TR is the reservoir or reference temperature.
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18 Application of the Simultaneous Method to a Flooding Optimization Problem

3-2-3 Simplified PDE Representation

Applying the simplifications results in the following model:

∇ ·
(

αρwK
krw

µw
(∇p)

)

+ ρwqw = αφρw

(

s(cw + cr)
∂p

∂t
+

∂s

∂t

)

, (3-7)

and

∇ ·
(

αρoK
kro

µo
(∇p)

)

+ ρoqo = αφρo

(

(1 − s)(co + cr)
∂p

∂t
− ∂s

∂t

)

. (3-8)

3-2-4 ODE Representation

The first-order PDEs of Eq. (3-7) and Eq. (3-8) are written as explicit first-order ODE rep-
resentation by solving the PDEs for both the terms ∂p/∂t and ∂s/∂t. Below are the two
resulting ODEs.

∂p

∂t
=

(∇ ·
(

αK
krw

µw
(∇p)

)

+ qw) + (∇ ·
(

αK
kro

µo
(∇p)

)

+ qo)

(αφ)(s(cw − co) + cr + co)
,

(3-9)

and

∂s

∂t
=

(∇ ·
(

αK
krw

µw
(∇p)

)

+ qw)((1 − s)(co + cr))

((αφ)(s(cw − co) + cr + co)

−
(∇ ·

(

αK
kro

µo
(∇p)

)

+ qo)(s(cw + cr))

(αφ)(s(cw − co) + cr + co)
.

(3-10)

3-3 Discretization of the ODEs

The continuous ODEs are discretized in space and in time in the following subsections enabling
numerical integration. The methods are selected such that they comply with the methods
used in SimSim.

3-3-1 Spatial Discretization

Spatial discretization is performed using finite differences, a common used discretization
method [Jansen, 2009], explained next.
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3-3 Discretization of the ODEs 19

Finite Difference Discretization

The discretization is explained using the mass-balance for the water-phase equations, but the
method applies to the oil-phase equations as well. Firstly, the part of the continuous ODEs
containing the difference operator ∇ is elaborated. As earlier stated, K is a 2 × 2 diagonal
matrix with the values kxx, kyy.

∇ ·
(

K
krw

µw
(∇p)

)

=
∂

∂x

(

kxx
krw

µw

(
∂p

∂x

))

+
∂

∂y

(

kyy
krw

µw

(
∂p

∂y

))

. (3-11)

Secondly, the continuous space is approximated in discrete space as:

∂

∂x

(

kxx
krw

µw

(
∂p

∂x

))

+
∂

∂y

(

kyy
krw

µw

(
∂p

∂y

))

≈

∆

∆x

(

kxx
krw

µw

(
∆p

∆x

))

+
∆

∆y

(

kyy
krw

µw

(
∆p

∆y

))

.

(3-12)

Finally, the discretization is done using equally spaced grid-blocks in both the x-direction and
the y-direction, using the central difference approximation. The central difference approxi-
mation is a method to numerically calculate a discrete derivative:

∆f(x)

∆x
=

(

f(x + 1
2∆x) − f(x)

)

−
(

f(x) − f(x − 1
2∆x)

)

∆x
, (3-13)

where f(x) and x are an arbitrary function and an arbitrary variable used for demonstration.
Applying the central difference approximation to Eq. (3-12) yields:

([

kxx
krw

µw

]

i+ 1

2
,j,n

([p]i+1,j,n − [p]i,j,n) −
[

kxx
krw

µw

]

i− 1

2
,j,n

([p]i,j,n − [p]i−1,j,n)

)

(∆x)2
+

([

kyy
krw

µw

]

i,j+ 1

2
,n

([p]i,j+1,n − [p]i,j,n) −
[

kyy
krw

µw

]

i,j− 1

2
,n

([p]i,j,n − [p]i,j−1,n)

)

(∆y)2
.

(3-14)

The subscripts i, j, n refer to the discrete space (i, j) (Figure 3-1) at time-step n.

Implementation of the Discrete Permeabilities

The central difference approximation requires to calculate the permeabilities at the border
of two grid blocks. The calculation for both the rock and the relative permeabilities will be
explained.

Rock permeabilities are approximated using the harmonic average:

Master of Science Thesis L.M.C.F. Alblas



20 Application of the Simultaneous Method to a Flooding Optimization Problem
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Figure 3-1: Representation of a two dimensional reservoir model with i rows and j columns.

[kxx]i+ 1

2
,j = 2

[kxx]i+1,j [kxx]i,j
[kxx]i+1,j + [kxx]i,j

,

[kyy]i,j+ 1

2

= 2
[kyy]i,j+1[kyy]i,j

[kyy]i,j + [kyy]i,j+1
.

(3-15)

Relative permeabilities cannot be computed using the harmonic average. The relative perme-
abilities depend on the saturation which is described by a non-linear hyperbolic PDE, which
corresponds to a moving water front through the reservoir (Section C-2-2). The saturation
for a certain grid block may change very rapidly in time as the water front moves along this
grid block. Using a harmonic average as in Eq. (3-15) for the relative permeabilities is for
this reason not correct and will give an incorrect result [Aziz and Settari, 1979, p.153]. The
relative permeabilities in a certain grid block will be based on the saturation of the flow into
the grid block. This can be implemented by using upstream weighting:

[krw]i+ 1

2
,j,n =

{

[krw]i,j,n if [p]i,j,n ≥ [p]i+1,j,n

[krw]i+1,j,n if [p]i,j,n < [p]i+1,j,n.
(3-16)

The relative permeabilities are based on a basic Corey model [Corey, 1954], which is presented
in Eq. (3-17) and describes the relative permeability as exponential function of the normalized
water saturation [Swn]i,j,n.

[krw]i,j,n = k0
rw[Sn]nw

i,j,n,

[kro]i,j,n = k0
ro(1 − [Sn]i,j,n)no ,

(3-17)

where k0
rw, k0

ro are the endpoint permeabilities and nw, no are called the Corey exponents.
The normalized water saturation Swn is defined as function of the water saturation s.

[Swn]i,j,n ,
[s]i,j,n − Swc

1 − Sor − Swc
, with 0 ≥ Sn ≥ 1. (3-18)
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3-3 Discretization of the ODEs 21

With Swn ∈ [0, 1], this implies s ∈ [Swc, 1 − Sor]. Swc is the connate water saturation and
Sor is the residual oil saturation. The connate water saturation and residual oil saturation
determine the minimum and maximum value of the actual water saturation s.

Eq. (3-16) causes the model to be discontinuous. Discontinuous models cannot be optimized
using the simultaneous method. The relative permeabilities will be fixed to maintain contin-
uous model equations. The fixation will be based on the pressure-values of the IG to comply
with the models as obtained from SimSim.

Combination of the Discrete Equations

The transition from the continuous ODEs into difference equations will be described. The
discretization steps are explained using Eq. (3-12) ,Eq. (3-13) and Eq. (3-14). The perme-
abilities used in the ODEs are described in discrete space by Eq. (3-15), Eq. (3-16), Eq. (3-17)
and Eq. (3-18).

Using these equations, the term with the difference operators will be recovered in two stages,
using the transmissibility term T and the volumetric flow rate U .

∇ ·
(

αK
krw

µw

)

(∇p) + qw =

Tw
︷ ︸︸ ︷

∇ ·
(

αK
krw

µw

)(
1

∆x
+

1

∆y

)

∆p + qw

︸ ︷︷ ︸

Uw

(3-19)

First the transmissibility parameters will be explained by defining [Tw,1]i,j,n, [Tw,2]i,j,n, [Tw,3]i,j,n,
[Tw,4]i,j,n. The parameter α is replaced according to Eq. (3-4) with h∆x∆y.

[Tw,1]i,j,n = [Tw]i+ 1

2
,j =

2h

µw

∆y

∆x

[kxx]i+1,j [kxx]i,j
[kxx]i+1,j + [kxx]i,j

[krw]i+1/2,j,n

[Tw,2]i,j,n = [Tw]i− 1

2
,j =

2h

µw

∆y

∆x

[kxx]i−1,j [kxx]i,j
[kxx]i−1,j + [kxx]i,j

[krw]i−1/2,j,n

[Tw,3]i,j,n = [Tw]i,j+ 1

2

=
2h

µw

∆x

∆y

[kyy]i,j+1[kyy]i,j
[kyy]i,j+1 + [kyy]i,j

[krw]i,j+1/2,n

[Tw,4]i,j,n = [Tw]i,j− 1

2

=
2h

µw

∆x

∆y

[kyy]i,j−1[kyy]i,j
[kyy]i,j−1 + [kyy]i,j

[krw]i,j−1/2,n

(3-20)

The transmissibility terms are multiplied by the pressure differences. This recovers the with
the geometry factor multiplied Darcy velocities, which creates the volumetric flow rate U . If
a well is enclosed in a grid block, the volumetric flow rate q will be added to the equation of
the total volumetric flow rate U .

[Uw]i,j,n = [Tw,1]i,j,n([p]i+1,j,n − [p]i,j,n) + [Tw,2]i,j,n([p]i−1,j,n − [p]i,j,n)

+ [Tw,3]i,j,n([p]i,j+1,n − [p]i,j,n) + [Tw,4]i,j,n([p]i,j−1,n − [p]i,j,n) + [qw]i,j,n.
(3-21)

Note from Eq. (3-21) the fact that a flow into a grid block has a positive sign, where flow out
of a grid block will have a negative sign. Production flow rates are therefore negative.
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22 Application of the Simultaneous Method to a Flooding Optimization Problem

3-3-2 Difference Equation Representation

With above steps it is possible to write the set of continuous ODEs presented by Eq. (3-9)
and Eq. (3-10) as set of difference equations:

[
∆p

∆t

]

i,j,n
=

([Uw]i,j,n) + ([Uo]i,j,n)

(h∆x∆y)[φ]i,j([s]i,j,n(cw − co) + cr + co)
(3-22)

[
∆s

∆t

]

i,j,n
=

([Uw]i,j,n)((1 − [s]i,j,n)(co + cr)) − ([Uo]i,j,n)([s]i,j,n(cw + cr))

(h∆x∆y)[φ]i,j([s]i,j,n(cw − co) + cr + co)
(3-23)

3-3-3 Time Discretization and Integration

The difference equations represented by Eq. (3-22) and Eq. (3-23) are used to obtain the state-
profiles of p and s using the by Eq. (3-24) backward or implicit Euler integration method.
This is explained in Section 2-3 and complies to the SimSim models.

[t]n = [t]n−1 + ∆t,

[p]i,j,n = [p]i,j,n−1 + ∆t

[
∆p

∆t

]

i,j,n
,

[s]i,j,n = [s]i,j,n−1 + ∆t

[
∆s

∆t

]

i,j,n
.

(3-24)

3-4 Optimization

This section will describe the objective function which needs to be maximized and the physical
constraints and the boundary conditions to enforce a feasible solution.

3-4-1 Objective Function

Maximizing the yield of the reservoir is done by setting a profit for produced oil and a loss
for injected and produced water, which is used to calculate the net present value (NPV).
The objective function ϕ presented by Eq. (3-25) is based on the function described in
[Jansen et al., 2009] and expressed in US dollars (usd).

ϕ([qw,inj ]i,j,n, [qw,prod]i,j,n, [qo,prod]i,j,n) =

Nt∑

t=1











Ni∑

i=1

Nj∑

j=1

(

[qw,inj ]i,j,n · rw,inj + [qw,prod]i,j,n · rw,prod + [qo,prod]i,j,n · ro,prod

)

(1 + b)tt/τ
∆tt











,
(3-25)
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3-4 Optimization 23

where Ni, Nj , Nt are the number of rows, columns and time-steps, b is the discount rate, τ
is the reference time in seconds, r is the cost or profit of the injected or produced volume in
usd/m3 and qw,inj , qw,prod, qo,prod are the flow rates of the injected water, produced water and
produced oil in m3/s. As the objective function now represents the profit, it is important to
set rw,inj and ro,prod negative due to the signs of the flow rates.

3-4-2 Physical Constraints

Additional constraints describe the physics within and around the wells. These constraints
apply on the grid blocks enclosing a well. The first constraint is a well model which describes
the diffusive pressure distribution. The second constraint defines the fractional flow which is
applied to every production well to relate the water and oil rate to the total production rate.

Well Model

The well model relates the bottem-hole pressure (BHP) [pwell]i,j,n, the grid-block pressure
(GBP) [p]i,j,n and the total flow rate [qt]i,j,n for every well. BHPs are pressures at the opening
of a well in the reservoir. The relation of a BHP to a grid block pressure is diffusive. The
model is based on the assumption of isotropic permeability [k]i,j and rectangular grid blocks
[Peaceman, 1983].

([p]i,j,n − [pwell]i,j,n)
2[k]i,jhπ

ln

(

0.14
√

∆x2 + ∆y2

rwell

) = − 1

[krw]i,j,n

µw
+

[kro]i,j,n

µo

[qt]i,j,n, (3-26)

where rwell is the radius of the well in meter and

[qt]i,j,n = [qw]i,j,n + [qo]i,j,n. (3-27)

In this thesis, [qt]i,j,n will be either defined as the total injection rate qinj (qo,inj = 0) or as
the total production rate qprod.

Fractional Flow

The total production flow can now be calculated, but the fraction of water and oil are still
unknown. This fraction is determined by the fractional flow rate of water [fw]i,j,n presented
in Eq. (3-28).

[fw]i,j,n =
[krw]i,j,n

[krw]i,j,n + [kro]i,j,n

(
µw

µo

) . (3-28)

The water flow rate is related to the total flow rate as:

[qw]i,j,n = [fw]i,j,n[qt]i,j,n. (3-29)
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24 Application of the Simultaneous Method to a Flooding Optimization Problem

3-4-3 Boundaries

A minimum number of variables needs to be bounded in order to satisfy the physical con-
straints of the reservoir. This avoids the optimization algorithm to terminate in a non-physical
optimum.

Saturations

The normalized water saturation Swn is bounded to Swn ∈ [0, 1]. Neglecting this bound would
generate negative water saturations, leading to an infeasible and infinitely high oil production.

Well Pressures

The BHP of the well described by the pressure pwell is limited to avoid an infinite pressure
difference between the GBP p and the BHP pwell, what would result in an infinite flow rate as
well.

Flow Rates

To distinguish between an injection or a production well, the flow rates will be limited to be
either positive or negative respectively to avoid production wells turning into injection wells
and vice versa.

Flow at the Reservoir Boundaries

The reservoir is assumed to be a finite volume with no mass interaction with the surround-
ings. This closed reservoir is obtained by influencing the transmissibilities at the reservoir
boundaries where they are forced to be zero.

3-5 Concluding Remarks

It has been demonstrated how the simultaneous method can be applied to a flooding op-
timization problem for a simplified reservoir model. Future work might include the use of
three-dimensional models and include multiple phases. The steps of obtaining explicit first-
order ODEs and applying a time-discretization would still hold for a three-phase model. An
additional phase would result in an additional mass-balance and an additional state.

For compliance with SimSim as IG generator, the simulator which will be used for verification
and generation of the IGs, two implementation options have been adopted which might not be
the best choice in terms of optimization performance. The first is the problem of discontinuous
behavior of the relative permeabilities. The directions are now based on the pressure states
of the IG, which might result in a bad convergence behavior when the IG is selected less
optimal. The second adoption is the use of the implicit Euler method for integration, where
orthogonal collocation could be used instead. This would results in a function approximation
of the state-profiles, eliminating the need for direct integration as discussed in Section 2-3-1.
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Chapter 4

Implementation of a Flooding

Optimization Problem in GAMS

The implementation of a flooding optimization problem using the simultaneous method is
verified and tested to analyze its limitations. The limitations are explored by scaling up the
model and by selecting different values for the initial guess (IG). A flooding optimization
problem is implemented in General Algebraic Modeling System (GAMS). GAMS is a software
package based on algebraic modeling and is designed for solving optimization problems. It
has the advantages of providing automatic discretization support and symbolic differentiation.
State-of-the-art solvers can be selected for solving an optimization problem without the need
for adjusting the code. Compared to other software packages, solvers are better integrated in
GAMS and GAMS can communicate with Matrix Laboratory (MatLab).

This chapter will first compare the GAMS implementation with a Simple Simulator (SimSim)
model in order to verify the GAMS implementation in Section 4-1. Next, the optimization
performance of four solvers will be described in Section 4-2, because they might give very
different results [Wächter and Biegler, 2006], [Poku and Biegler, 2004]. As the simultaneous
method is known to be sensitive to IGs and given the fact that the size of the NLP may grow
rapidly [Biegler, 2007], both the feasibility of upscaling and the sensitivity to IGs are tested
in Section 4-3 and Section 4-4 respectively. The chapter will be concluded in Section 4-5.

4-1 Model Verification

The GAMS model is verified using SimSim. SimSim is being developed by J.D. Jansen since
2004 and used and improved since then. SimSim is based on the simplified PDEs presented
in Section 3-2 and is a matrix-oriented forward simulator using implicit Euler integration.
It has also been compared to Modular Reservoir Simulator (MoReS), the in-house simulator
of Shell. Therefore, it is assumed SimSim provides representative and valid reservoir models
which can be used for model verification. The reservoir model used for verification is given
in Figure 4-1. The GAMS code is presented in Appendix D.
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Figure 4-1: Illustration of the reservoir model used for verification. The model consists of high
permeability fields (1e−12 m2), medium permeability fields (1e−13 m2) and a low permeability
field (1e−14 m2). One injection well is placed in grid block ((i, j) = (1, 1)) and one production
well is placed in grid block ((i, j) = (2, 3)).

The verification is performed in two directions. Firstly, GAMS starts optimizing using flow
rates, pressures and saturations obtained from a forward simulation in SimSim. GAMS starts
with an initial error, which is a summation of the numerical errors and model differences.
Secondly, after termination of the GAMS optimization, the resulting flow rates are used to
perform a forward simulation in SimSim. The SimSim simulation is then compared with the
values from GAMS for verification.

4-1-1 The Initial Error in GAMS due to the Initial Guess

The cause of the initial error is explained first, after which the origin of the error is discussed.

Cause of the Initial Error in GAMS

Every equation in GAMS is programmed once using spatial and time indexes (e.g. fi,j,n), after
which GAMS performs an automatic discretization in space and in time. The optimization
horizon is 10 years, with a maximum time-step of 30 days, resulting in 123 time-steps. So
every equation with spatial indexes i, j and time index n results in i · j · n = 2 · 3 · 123 = 738
equations after automatic discretization. In total, the model consists of 13, 394 equations after
automatic discretization. The equations are evaluated using the IG from SimSim. However,
due to numerical or model errors the left-hand side may not be equal to the right-hand side
of these equations. The errors are added up for all 13, 394 equations, resulting in the initial
error.

Origin of the Initial Error in GAMS

GAMS initiates with an initial error in the order of 1e−1 due to errors in the implicit Euler
equations and the Peaceman well-model. The IG influences the initial error. For this reason,
an IG has been selected which does not violate any constraints and which has only a small
difference between the injection and production rates. The IG is for this reason based on a
constant injection rate of 0.0059 m3/s and a constant production rate of −0.0061 m3/s.
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It has been investigated which relative errors are the largest. The relative errors are calculated
using the absolute error of the equation divided by the order of magnitude of the equation.
The highest relative error is selected. This is summarized in Table 4-1.

Equation Order of Relative Error

Peaceman Well Model 1e+02%
Implicit Euler Saturation 1e−03%
Implicit Euler Pressure 1e−08%

Table 4-1: A presentation of the maximum relative initial errors in GAMS. The maximum relative
errors are calculated using the maximum absolute error of the equation divided by the order of
magnitude of the equation. The absolute errors are based on the summation of the errors due to
differences in the left-hand side and right-hand side of the in GAMS discretized equations. The
highest relative error is presented. A relative error in the order of 1e+02% for the Peaceman
equation implies that one side of the equation may be a multiple of the other side.

A relative error in the order of 1e+02% implies that one side of the equation may be a
multiple of the other side. Evaluation of the error for every single Peaceman equation reveals
the error to be present from time-step n > 95. This appears to be the point where water
breaks through. The Peaceman well model has been compared to SimSim and both models
are identical. All three major errors are reproducible and therefore not due to the limit of
computational precision. Increasing the time horizon does not increase the maximum relative
error.

4-1-2 Comparison of GAMS with the Forward Simulator SimSim

The results of GAMS are compared to the results of SimSim. The results of SimSim are based
on the flow rates of a GAMS optimization. Selecting flow rates as input will result in the BHPs
as output. The BHPs have therefore the largest error. The time profiles of the well variables,
pressures and saturations are presented in Figure 4-2 , Figure 4-3 and Figure 4-4.

Both models are using an equal time-step discretization of maximum 30 days, which is de-
termined by SimSim. In total, 123 time-steps are used to simulate the forward model for a
optimization horizon of 10 years. The fluctuations of BHP are limited to [+50e5, 0] Pa and
[0, −100e5] Pa. Although a fluctuation in BHP of −50e5 Pa may be more realistic, a bound of
−100e5 Pa is selected to allow for an IG based on a production rate of −0.0061 m3/s without
violation of any boundaries. The boundaries in GAMS are not implemented in SimSim, though
they are still satisfied.

Both models behave similar. The error in terms of percentage has been calculated for time-
steps n = 2, 3, ..., N . The first time-step is left out because the first time-step is not correctly
calculated by SimSim. For example, BHPs at time-step n = 1 are zero where they should
be equal to the reservoir pressure. All the values for the error in terms of percentage are
presented in Table 4-2. Although the models behave similar, small differences are present.
It is clear well rates are used as simulation input. The highest error is not more than 0.5%.
Using a time-horizon of 40 years does not change the maximum error in terms of percentage.
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Figure 4-2: Comparison of the well variables of GAMS and SimSim. The flow rates are used as
model input where the BHPs are the model output. The plots overlap.
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Figure 4-3: Comparison of the pressures of GAMS and SimSim. All six grid blocks of the 2 × 3
model are plotted. The plots are overlap.
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Figure 4-4: Comparison of the saturations of GAMS and SimSim. All six grid blocks of the 2 × 3
model are plotted. The plots are overlap.

L.M.C.F. Alblas Master of Science Thesis



4-2 Selection of the Best Performing Solver 29

Variable Error (%) Variable Error (%)

[p]1,1,n 1.4e−02 [s]1,1,n 2.1e−08
[p]1,2,n 5.7e−03 [s]1,2,n 4.2e−04
[p]1,3,n 5.5e−04 [s]1,3,n 1.8e−03
[p]2,1,n 4.5e−07 [s]2,1,n 5.0e−01
[p]2,2,n 4.5e−07 [s]2,2,n 6.9e−02
[p]2,3,n 5.1e−08 [s]2,3,n 1.4e−02

[qw]1,1,n 0.0e+00 [qw]2,3,n 6.2e−02
[qo]1,1,n 0.0e+00 [qo]2,3,n 2.0e−07
[pwell]1,1,n 1.4e−02 [pwell]2,3,n 7.0e−07

Table 4-2: The maximum error in terms of percentage calculated for all states, inputs and
outputs of GAMS and SimSim. The well rates of GAMS are used by SimSim to perform a forward
simulation. The highest error is not more than 0.5%.

4-2 Selection of the Best Performing Solver

Solvers may perform very different depending on the optimization problem, as can be found
in for example [Wächter and Biegler, 2006] and [Poku and Biegler, 2004]. It is therefore in-
vestigated which solvers perform the best when applied to a flooding optimization problem.
Multiple solvers have been applied to flooding optimization problems, of which the four most
promising solvers are selected. The selected solvers will be described first after which the
results will be compared on the obtained NPV, optimization time and behavior.

4-2-1 Description of Different Solvers

Four selected solvers are described. They all exploit the sparsity of the NLP and approxi-
mate the second-order derivative information based on the algebraically calculated first-order
gradient.

CONOPT 3.0

CONOPT is introduced by [Drud, 1985] and uses a generalized reduced gradient (GRG) al-
gorithm. A GRG algorithm basically takes an iteration-step along its vertices, where the
vertices are the boundaries of the search-space, for example equality constraints or active in-
equality constraints, better known as active sets. Unbounded variables, also called super-basic
variables, are then used to minimize the optimization problem. According to the article of
[Biegler and Grossmann, 2004], GRG methods are the most poplar among all gradient based
NLP solvers.

CONOPT can handle up to 4000 equations [Drud, 1994]. More recent publications are not
available, but according to [Mittelmann, 2010] the solver will still be able to handle 1e5
decision variables.

IPOPT 3.8
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IPOPT is initiated by [Wächter, 2002] and uses an interior point (IP) algorithm. An IP algo-
rithm basically adds constraints to the objective function using barrier functions. A barrier
function is zero when the constraint is satisfied, but will go to infinity along a smooth path
when a constraint is violated. According to [Biegler and Grossmann, 2004], IPOPT can solve
problems up to 1e6 variables on a high-end personal computer.

KNITRO 6.0

KNITRO is initially introduced as an IP solver. In a later stage it has been extended with a
second IP solver and with an sequential linear programming (SLP) algorithm using active sets.
This SLP algorithm can be interpreted as a GRG algorithm on a linearized problem. This is
used to improve the robustness in convergence, where the SLP algorithm is also used effectively
to determine active constraints [Byrd et al., 2006]. KNITRO shows to be very effective with
many active constraints [Gould et al., 2005].

From [Mittelmann, 2010], and according to [F. Cadoux] of the company Artelys and the
KNITRO website1, it shows that KNITRO should be capable of problems in the order of 1e6
variables and constraints on a high-end personal computer.

SNOPT 6.0

SNOPT uses a sparse sequential quadratic programming (SQP) algorithm [Gill et al., 2002]
with an approximated Hessian. An SQP algorithm adds the constraints to the objective
function and uses a second-order Taylor polynomial as minimization function. SNOPT is
relatively efficient if the number of degrees of freedom (DOF) is small. Compared to other
solvers, SNOPT requires few function evaluations due to the quadratic approximation of the
Lagrange function.

According to the articles of [Gill et al., 2002] and [Mittelmann, 2010] SNOPT can handle up
to 1e5 variables.

4-2-2 Comparison of Different Solvers

CONOPT, IPOPT and SNOPT might be able to obtain a local optimum when applied to a
flooding optimization problem. KNITRO and all other NLP solvers which come with GAMS

were not able to solve a flooding optimization problem, resulting in an infeasible termination.
The solvers are compared using the reservoir model presented in Figure 4-1. The IG is based
on a constant injection rate of 0.0059 m3/s and a constant production rate of −0.0061 m3/s.
These settings give typical results which are also obtained using smaller models or different
IGs.

The results are presented in Table 4-3, where the solvers are compared on the obtained NPV

and the optimization time. SNOPT will only obtain a feasible solution, but does not optimize
the problem. IPOPT is almost two times faster than CONOPT, but the NPV found by CONOPT

is significantly higher compared to other solvers. KNITRO terminates infeasible. Solvers come
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Solver NPV Optimization Time
(usd) (s)

Initial Guess 3.84e8 not applicable

CONOPT 8.16e8 50.5
IPOPT 5.57e8 27.8
KNITRO infeasible > 1800
SNOPT 3.84e8 2.9

Table 4-3: Presentation of four GAMS solvers compared to the IG. The performance is compared
on the obtained NPV and the required optimization time. Using CONOPT results in the highest
NPV. SNOPT is the fastest, but does not optimize the problem. IPOPT is faster than CONOPT but
does not obtain the highest NPV. KNITRO terminates infeasible.

with option files which can be tweaked to improve the performance. This has been done for
CONOPT described in Section D-3.

The resulting profiles of the well variables are presented in Figure 4-5. Although CONOPT

provides the highest NPV, the output is the most chattering as well. It has been tried to use
two solvers successively, which did neither improve the NPV nor the required optimization
time nor the output behavior.
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Figure 4-5: Presentation of four GAMS solvers compared to the initial guess. The performance
is compared on resulting behavior of the optimal solution. CONOPT gives the most chattering
behavior.

1http://www.ziena.com/papers/case_performance.pdf
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32 Implementation of a Flooding Optimization Problem in GAMS

4-3 Scaling

Compared to the sequential method, the simultaneous method generates a very large non-
linear programming (NLP) problem due to the spatial and time discretization for all variables
and states. This section will be used to demonstrate the size of the NLP problem as well as
to discover whether the current implementation can be used for larger models.

A 2 × 2 model with a homogeneous rock permeability of 1e−13 m2 and square grid blocks
is used initially. The decision for such a model is based on the fact that SimSim cannot deal
with smaller models and cannot deal with non-square grid blocks. The model has an injector
in the top-left corner and a producer in the bottom-right corner. The rock permeability is
the logarithmic average of the model used for verification. The optimizations are initiated
with an IG based on a constant injection rate of 0.006 m3/s and a constant production rate
of −0.0065 m3/s. The upscaling will be done by adding an additional column of two vertical
grid blocks in between the wells as illustrated in Figure 4-6.

i

j

1

2

1 2

j

31 2

Injection Well

Production Well

Figure 4-6: Illustration of a first step in upscaling; Grid blocks will be added as a column in
between the columns containing the wells. The injection well will be placed in the top-left corner
and the production well will be placed in the bottom-right corner.

The upscaling will change the model properties due to the displacement of the wells and the
size of the model in terms of cubic meters. Therefore the net present value (NPV) of the
different models is not compared. A better approach would be to refine the grid blocks by
dividing every grid block in nine smaller grid blocks. This would keep the model properties
identical. However, the current implementation of the simultaneous method is not yet able
to solve these larger models. For this reason, the upscaling of the model is limited to small
problems.

The optimizations are executed on a standard desktop computer with a 2.8 ghz processor
and 4 gb of memory running at a 64-bit Windows operating system. 30 test cases have been
optimized for different IGs, of which 6 are presented in Table 4-4 to demonstrate the increase
in the number of variables and optimization time when scaling up the model. Models of
2 × 5 grid blocks could only be solved incidentally depending on the time-horizon. Models of
2 × 6 grid blocks and larger have been tried to optimize as well, but conopt was not able to
produce feasible solutions.

Comparing cases 3 and 4 of Table 4-4, the optimization horizon quadruples, while the op-
timization time increases with more than a factor 18. This behavior is similar for cases (1
and 2) and (5 and 6). The optimization horizons are different, because models may become
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Case Ni Nj Nt Horizon No. Variables Optimization Time Initial Error
(-) (-) (-) (years) (-) (s) (-)

1 2 2 123 10 9,516 3.9 0.30
2 2 2 243 20 18, 984 25.9 2.29
3 2 3 123 10 13,777 10.3 0.73
4 2 3 487 40 54, 545 189.1 6.12
5 2 4 123 10 17,959 53.1 9.88
6 2 4 609 50 88, 915 2746.5 17.51

Table 4-4: Comparison of six optimizations which differ in model size (Ni ·Nj) and in the number
of time steps (Nt), resulting in a different optimization horizon due to a constant time-step. The
models are compared on the number of variables, the required optimization time and the initial
error. For every model size, two time-horizons were selected. The horizons differ because some
optimizations terminated infeasible. The bold optimizations have identical optimization horizons
and can therefore be compared on the effect of upscaling the model in terms of the number of
grid blocks. The optimizations are initiated with an IG based on a constant injection rate of
0.006 m3/s and a constant production rate of −0.0065 m3/s.

infeasible for specific horizons. Besides an increase in the number of time steps, an increase
in the number of model grid blocks is of significant influence on the optimization time as well.
Comparing cases 1 and 5, the number of grid blocks doubles while the optimization time
increases with a factor 13.6. It can be computed that the number of variables is almost linear
to the number of grid blocks multiplied by the number of time steps. On the 30 test-cases,
the average number of decision variables is close to 18 variables per grid block per time-step.

It must be noted that the number of decision variables is not a hard number, as auxiliary
variables are counted as well. However, the number is a measure of the size of the NLP

problem. Note the difference in NLP size compared to the sequential method, where the NLP

of cases 1, 3 and 5 would consist of 2 wells · 123 time-steps or 246 variables, independent of
the number of grid blocks.

Tests have also been performed to investigate the influence of the selected rock permeability.
A model with 2 × 8 grid blocks and 246 time-steps with a rock permeability of 1e−12 m2 has
been solved in 702.5 s. Decreasing the permeability to values of 1e−14 m2 has the opposite
effect resulting in less feasible solutions. Again, the number of variables and the number
of grid blocks are not a hard indication and dependent on the model parameters, but they
demonstrate the problems of upscaling due to use of the simultaneous method.

4-4 Sensitivity to Initial Guesses

An IG provides initial values for all decision variables of an NLP problem. The IG may
influence the optimization performance and optimal objective value as it can be difficult to
find suitable values for all states for the complete time-horizon ([Cuthrell and Biegler, 1987],
[Poku and Biegler, 2004]), as they must satisfy all constraints.

For this reason it is investigated what the impact of different IGs is on the NPV and the
optimization time. The model presented in Figure 4-1 is used. The IGs are generated by
SimSim and based on continuous injection and production rates. The time horizon is 10 years
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divided in 123 time-steps of 30 days. The optimization has injection and production bottem-
hole pressure (BHP) constraints of +50e5 Pa and −100e5 Pa. Injection rates are positive and
production rates are negative.

4-4-1 Sensitivity Measure to Different Initial Guesses

58 different IGs are tested which are based on flow rates of which the absolute production
rate is higher than the injection rate. Or, qinj + qprod < 0. The IGs are based on flow rates
between 1e−1 m3/s and 1e−5 m3/s. For reference, an optimized flow rate will be in the order
of 1e−2 m3/s. The IGs are compared on NPV, optimization time and other observations as
the initial error in GAMS and the initial violation of constraints.

Net Present Value

From the 58 optimizations, 43 terminated locally optimal and 15 terminated infeasible. 22
of the 43 local optimal solutions terminated with an NPV which do not differ more than 1%
from the highest obtained NPV. The 20 highest NPVs do not differ more than 0.08%. It has
been investigated what the initial NPV has been for the best performing optimizations, and
for every optimization the initial NPV was less than the optimized NPV. The smallest initial
errors did not give the best optimization performance neither in terms of NPV nor in terms
of time. The IGs from 8 of the 22 optimizations with the highest NPV did violate the BHP

constraints.

The absolute differences between the injection and production flow rates from the 22 best
performing optimizations in terms of NPV where less then 0.005 m3/s. The production rate
was never more than twice the injection rate. However, the injection and production rates
did vary between values from 1e−2 m3/s to 1e−5 m3/s.

Optimization Time

The optimization times varied between several seconds to minutes. From the 10 fastest opti-
mizations which terminated locally optimal, only 3 were also one of the ten highest obtained
NPVs. The 10 best performing optimizations in terms of time all violated the BHP constraints,
where some BHPs were even zero over a period of multiple time-steps.

Observations

Several IGs are presented in a plot to observe whether the best IGs resulting in the highest
NPVs do have similar dynamics compared to the optimized well variables. In terms of the
resulting NPV of the optimization, the best 7 (optimal), the worst 5 (feasible) and 4 infeasible
IGs are plotted in Figure 4-7 and Figure 4-8. This is done for the grid block with the injection
well, because this grid block is the first to show changes in the states. The pressures of the IGs
resulting in the highest NPV all show an initial increase to a value above 300e5Pa, however,
it is not a guarantee for an optimal solution as also infeasible IGs may have such a profile.
For the saturations the profile of the optimal IGs do not follow a clear path.
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Figure 4-7: In terms of the resulting NPV after optimization, the best 7 (optimal), the worst
5 (feasible) and 4 infeasible IGs are plotted. The left graph shows the pressure for the full
optimization horizon, where the right graph is zoomed in on the first 500 days, indicated in the
left graph with a box. There is no clear distinction between the optimal, feasible and infeasible
IGs.
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Figure 4-8: In terms of the resulting NPV after optimization, the best 7 (optimal), the worst
5 (feasible) and 4 infeasible IGs are plotted. The left graph shows the saturation for the full
optimization horizon, where the right graph is zoomed in on the first 500 days, indicated in the
left graph with a box. There is no clear distinction between the optimal, feasible and infeasible
IGs.
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36 Implementation of a Flooding Optimization Problem in GAMS

4-4-2 Sensitivity to Ill-Conditoned Initial Guesses

Other IGs have also been tried, based on the following criteria:

1. Contra-intuitive flow rates; qinj + qprod > 0, creating a lower production rate than
injection rate.

2. No activity; qinj = qprod = 0.

3. Elimination of flow rates in the pressure ordinary differential equation (ODE) (Eq. (3-9))
is known to cause singularities; choosing qw + qo = 0 can be achieved by choosing
qinj + qprod = 0 as the production of water is initially very small relative to the oil
production.

4. No IG; so all variables are set to zero initially.

Selecting IGs based on contra-intuitive flow rates or zero flow rates resulted in an infeasible
termination of the optimization. No IG lead to an infeasible solution as well. However,
choosing the IGs such that the flow rates cancel out did provide comparable results as where
the IGs were based on higher production rates than injection rates.

As indicated in Section 3-5, the relative permeabilities are fixed to enable continuous modeling.
The influence of optimal solutions has been investigated and the changed flow directions are
less than 2%. The change in the transmissibility term may be significant, as this terms is
directly dependent on the relative permeability, which can change from grid block to grid
block up to a factor 25.

4-5 Concluding Remarks

The GAMS model has been verified with SimSim and four solvers have been compared. Analysis
showed that the implementation of the current simultaneous method terminates infeasible
when scaled up and that it is sensitive to IGs.

GAMS supports automatic discretization and calculates gradient information symbolically. A
relative large initial error is caused by the equations of the Peaceman well model. Nonetheless
the well models used in both equations are similar. Comparing the GAMS results in SimSim

shows the error to be maximum 0.5%. Every optimization run produces an identical error.
This indicates that the error is not due to computational limitations, but due to implementa-
tion differences. The differences are caused by distinct modeling environments, where SimSim

is matrix-oriented and GAMS is equation-oriented.

The behavior of the optimal state-profiles can be physically interpreted. As much as possible
oil is pushed out of the reservoir, after which the injection rate is relaxed in order to let water
flow into the less permeable grid blocks. In the end, more water is injected to enable to push
out the last oil. The hyperbolic behavior of the saturations is encountered as explained in
Section C-2-2.

conopt gives the best performance in terms of NPV. Although conopt is not the fastest
solver, the NPV is significantly higher compared to ipopt and snopt. Other solvers terminate
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infeasible, this points to either an ill-conditioned optimization problem or indicates that the
other solvers cannot be applied to this type of optimization problem. An ill-conditioned
problem is a problem which does not have a unique optimal solution or which is discontinuous.
In this case a non-unique or weak solution exists.

Upscaling of the model is limited to 16 grid blocks or 88,915 decision variables. Increasing the
number of variables will enhance the chance of the optimization to terminate infeasible. The
computer is not running out of memory, indicating the infeasibilities are likely to be due to
the fact the optimization problem is ill-conditioned, the IG generator is not good enough or
that conopt cannot deal with larger models. As described in Section 4-2, the simultaneous
method has been applied to problems in the order of 1e6 variables. This indicates there
should still be room for improvement.

IGs based on constant injection and production rates showed to have significant influence
on the outcome of the simultaneous method. Only 22 of the 58 optimizations obtained its
maximum within a bound of 1% of the highest NPV. The high sensitivity can be either caused
by large model differences or it can be due to a weak solution, because the 20 highest NPVs
differ less than 0.08%

To emphasize the relevance of the next chapter, it is observed that a chattering injection
flow rate influences the pressure of the injection grid block. However, the chattering signal
vanishes over space and completely disappears in the producing grid block. The pressure
distribution is diffusive as described in Section C-2-1. Together with the fact none of the
NPVs are identical, this indicates the existence of a weak solution.
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Chapter 5

Comparison of the Simultaneous

Method and the Sequential Method

This chapter will compare the simultaneous method with the sequential method with respect
to dealing with state-constraints in Section 5-1 and multi-objective optimization in Section 5-2.
Section 5-3 compares both optimizations of the sequential method and the simultaneous
method on the obtained optimal well-variable profiles. The sequential optimization will be
performed using Modular Reservoir Simulator (MoReS), the in-house reservoir simulator of
Shell. Finally, Section 5-4 will end the chapter with concluding remarks.

5-1 Applying State-Constraints

One of the main issues of the currently used sequential method is the limited ability to deal
with state-constraints [Kraaijevanger et al., 2007]. The simultaneous method should provide
an advantage, which will be tested. The reservoir model has two types of states, pressures
and saturations. The pressure constraints are always present in practice [Sarma et al., 2006].
Saturations are already bounded as explained in Section 3-4-3 for implementation reasons.
For this reason, only pressure constraints are applied. The constraints are applied on a single
grid block and on the whole reservoir.

5-1-1 Single Pressure Constraint

A single pressure constraint is applied on grid block (i, j) = (1, 2). As can be seen in Fig-
ure 4-4, most of the water flows through this grid block due to the high permeability. The
pressure constraint is set to [p]1,2,n ∈ [299e5, 301e5]. The initial guess (IG) is based on a
constant injection rate of 0.0059 m3/s and a constant production rate of −0.0061 m3/s.

The simultaneous method is able to deal with the state-constraint. The net present value
(NPV) changes from 8.155e8 usd to 8.134e8 usd, which is a change of less than −0.27%. It
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Figure 5-1: Pressure in grid block (i, j) = (1, 2) for a constrained ([p]1,2,n ∈ [299e5, 301e5])
and unconstrained optimization.

has also been investigated and confirmed that the simultaneous method is able to deal with
state-constraints at single points in time.

5-1-2 Reservoir Pressure Constraint

The reservoir pressure is constrained to [p]i,j,n ∈ [295e5, 305e5] as presented in Figure 5-2.
The IG have been adjusted and multiplied by 1e−1 to avoid having an infeasible IG violating
the pressure constraints. The IG is for this reason based on a constant injection rate of
0.00059 m3/s and a constant production rate of −0.00061 m3/s.

From Figure 5-2 it can be observed all the constraints are satisfied. The optimum however is
affected and equal to 2.132e8 usd. The chattering disappears.

5-2 Multi-Objective Optimization

A multi-objective optimization is difficult to implement in the sequential method as it re-
quires a combination of input, output and state constraints. This has been encountered
by [van Essen et al., 2010], in which a multi-objective optimization shows to be computa-
tionally expensive. The chattering behavior of the solution demonstrated in Figure 4-2
and Figure 4-3 is also mentioned in [Jansen et al., 2009]. Both [van Essen et al., 2010] and
[Jansen et al., 2009] recognize the existence of a weak solution. An indication for a weak so-
lutions is described in Section 4-4, where different values for the NPV are found. However, the
highest 20 NPVs do not differ more than 0.08%. The existence of a weak solution indicates
an under-constrained problem. The remaining degrees of freedom (DOF) can for example
be used to minimize the variance of the solution. This can be done in two ways. The first
method is to optimize the problem by adding the variance as cost to the objective function,
called regularization. The second method is called lexicographic optimization and bounds the
optimal NPV after which a variance minimization is performed. The variance of the inputs
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Figure 5-2: The reservoir model pressures for a constrained ([p]i,j,n ∈ [295e5, 305e5]) and
unconstrained optimization.

is described using a quadratic convex function often used in model predictive control (MPC)
[Qin and Badgwell, 2003]. This is done using the Euclidean norm with a finite time-horizon,
presented by Eq. (5-1).

Jvar = −
Nt−1∑

n=1

[

[ww]n
(

[qw]i,j,n − [qw]i,j,n+1

)2
+ [wo]n

(

[qo]i,j,n − [qo]i,j,n+1

)2
]

, (5-1)

where Jvar is the additional objective representing the variance of the weighted flow rates
with the weightings [ww]n, [wo]n. The term above is a sum of convex functions and therefore
convex as well. The term has to be negative since a maximization is performed instead of a
minimization.

5-2-1 Regularization

The regularized optimization is executed by adding the term of Eq. (5-1) to the NPV presented
by Eq. (3-25). Eleven regularized optimizations are compared to a standard or non-regularized
optimization.

For the 11 best performing IGs in terms of NPV obtained in Section 4-4, the final NPV showed to
be affected less than 0.06%. For the weighting values are selected such that the smoothening
is in the order 1e−2 of the NPV, putting the weighting on optimization of the NPV. This
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Figure 5-3: Regularized optimization compared to a non-regularized optimization. The well
variables of the regularized optimization are smooth with a loss in NPV of less than 0.06%.

resulted in [ww]n = [wo]n = 1e10. Tuning the weighting may be a difficult procedure as the
weighting influences the value of the variance. The difference in optimization time has also
been compared and is summarized in Table 5-1. The optimization time of the regularized
optimization compared to non-regularized optimization may be significant. Chattering is
eliminated as shown in Figure 5-3. The optimal solution becomes non-singular and therefore
unique or non-weak. This is also described in the paper of [Jacobson et al., 1970].

Change in Optimization Time

Median +19%
Mean +23%
Minimum −45%
Maximum +125%

Table 5-1: Time performance of a regularized optimization compared to a non-regularized op-
timization based on 11 optimizations. A regularized optimization can improve the optimization
time, but may take on average 23% more time.

It has also been tried to increase the weighting of the smoothening function drastically, after
which the influence would slowly diminish. However, this resulted in an NPV of < 50% of the
non-regularized NPV. The values of the NPV for the regularized optimizations were 8 out of 11
times identical where they were all different for non-regularized optimizations. The variance
decreases with a factor in the order of 1e2.

5-2-2 Lexicographic Optimization

The lexicographic optimization method first optimizes the NPV, after which the NPV is
bounded and a variance minimization is performed. This method is a more convenient way to
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minimize variance, as the influence of the variance minimization can be controlled very well
by bounding the NPV.

Different lower-bounds have been implemented on the NPV. The bounds on the NPV were
always satisfied during the 11 test-cases. The results of lexicographic optimization are very
similar to regularized optimization as presented in Figure 5-3.

To compare the lexicographic method with the regularized method, the lower bound is set to
ϕmin = ϕ−5e5 usd. This results in a change in the value of the objective function of < 0.06%
which has also been encountered in the regularized optimization. The results in optimization
time are presented in Table 5-2.

Change in Optimization Time

Median +52%
Mean +66%
Minimum +32%
Maximum +152%

Table 5-2: Time performance of a lexicographic optimization compared to a basic optimization
based on 11 optimizations. A lexicographic optimization may take on average 66% more time.

The optimization takes on average 66% more time which is significant and more compared to
a regularized optimization, where the average additional time is 23%.

5-3 Comparison with the Sequential Optimization Method

This section will compare the simultaneous method with the sequential method. MoReS, the
in-house simulator of Shell, is used for the sequential optimizations. Two optimizations will
be performed, of which Case 1 has only maximum injection and production constraints on
the bottem-hole pressure (BHP), where the optimization of Case 2 also has constraints on the
flow rates, presented in Table 5-3.

Case 1 Case 2

qinj,IG 0.0059 m3/s 0.01 m3/s
qprod,IG −0.0061 m3/s −0.012 m3/s

qinj,max n.a. 0.01 m3/s
qprod,min n.a. −0.012 m3/s
pinj,max 350e5 Pa 350e5 Pa
pprod,min 200e5 Pa 200e5 Pa

Table 5-3: IGs and constraints for two test-cases which will be used to compare the simultaneous
method with the sequential method.

In the first subsection, a comparison will be made between the models of MoReS and Sim-
ple Simulator (SimSim) by comparing the IGs used for optimizations in MoReS and General
Algebraic Modeling System (GAMS). The results of these optimizations are presented in the
second subsection.
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Figure 5-4: IG of Case 1 for the comparison of MoReS with SimSim. Except for an initial error
both plots overlap.

5-3-1 Model Verification using a Forward Simulation

For both test-cases, the IGs are plotted in Figure 5-4 and Figure 5-5. The time-steps and
integration methods are identical. For case 1, the models behave comparable, however, for
case 2 errors develop from the moment the constraints become boundaries of the variables.
As the SimSim model behaves identical to GAMS, the comparison of GAMS and MoReS may for
this reason not be valid. However, as the dynamics of both models are comparable, it is still
interesting to see what the different results will be of both optimization methods.

5-3-2 Comparison of the Optimization Performance

The optimal injection and production strategies of both MoReS and GAMS are presented in
Figure 5-6 for Case 1. GAMS generates a chattering injection flow rate. For this reason,
the injection is smoothened using regularization to allow for a clearer distinction between
both optimization methods. Although the models differ, it is clear the injection strategy of
GAMS does not directly fully inject water while MoReS does. Comparing the NPVs, GAMS

wins slightly with less than 1% due to the fact it delays the water-front by waiting with the
injection of water. This results in a lower saturation in the producing grid block. However,
the increase in NPV may not be due to the use of the simultaneous method as the model
dynamics are not completely similar.

Studying Case 2 in Figure 5-7 shows comparable results as in Case 1. The water injection in
GAMS is delayed as well, which is compensated with a lower production. The producing grid
block of the GAMS model has a delayed increase in the value of the saturation compared to the
MoReS optimization. The delay observed in the saturation at the producer grid block is similar
to the delay found in the IG in Figure 5-5. The better performance of GAMS can therefore
not be presumed to be due to the different optimization methods. The solution of GAMS to
the injection flow rate is a bang-bang solution, which is a result of the rate constraints. The
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Figure 5-5: IG of Case 2 for the comparison of MoReS with SimSim. Activation of the constraints
results in different profiles of the well variables for MoReS and SimSim. The dynamics of both
models are comparable.
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Figure 5-6: Optimal solutions of Case 1 obtained by both MoReS and GAMS. The solver CONOPT

generates a chattering profile, which has been smoothened using regularization for comparison
purposes. Both MoReS and GAMS obtain similar optima, but with different dynamics.
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Figure 5-7: Optimal solutions of Case 2 obtained by both MoReS and GAMS. Both MoReS and
GAMS obtain similar optima, but with different dynamics.

pressure constraint in GAMS for the injection BHP is not triggered, where the constraint of the
sequential method is. Using the optimal variables from GAMS as IG for MoReS and vice versa
does not result in an optimal solution directly, emphasizing the differences in the models.

An interesting remark on the computational time; MoReS takes about 3 minutes for an opti-
mization with 30 integrations on a special server where GAMS needs less then 1 minute on a
desktop computer. The speed of GAMS is remarkable. However, as observed in Section 4-3,
the optimization time of GAMS quickly increases when used for larger models.

It has been tried to eliminate the differences in both optimizations by choosing different IGs
for the GAMS optimization, including the optimal result of MoReS. This gave worse or identical
results as which have been presented.

5-4 Concluding Remarks

The issues of dealing with state-constraints and performing a variance minimization when
using the sequential method are solved by using the simultaneous method. A comparison
of the simultaneous method with the sequential method has been made, but the underlying
models are different.

A pressure constraint has been implemented which could not be controlled directly by the
injector or producer. Such a constraint is almost impossible to satisfy using the sequential
method. Although the constraint became active, it has not been violated. Also, pressure
constraints were applied to the whole reservoir, which were all satisfied as well.

Multi-objective optimization with both regularization and lexicographic optimization is pos-
sible and results in smooth variable profiles. Regularization may be faster than lexicographic
optimization. Regularized optimization has resulted 8 out of 11 times in identical optima and
eliminates the weak optimum. Regularization has a disadvantage compared to lexicographic
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optimization, because tuning of the weighting of the variance is required. The weighting in-
fluences the value of the variance and is therefore difficult to control. This is not a problem
when using lexicographic optimization, in which the influence of the minimization can be
controlled perfectly as the NPV can be bounded. This is a computationally very expensive
optimization when performed with the sequential method.

The simultaneous method is compared to the sequential method as used by MoReS, the in-
house simulator of Shell. Although the dynamics are comparable, the models are not com-
pletely identical. The resulting NPVs of both models differ less than 1%. The difference can
be either due to model differences or due to the fact that the simultaneous method keeps
the saturations in the production well low for a longer period, resulting in less water produc-
tion. Physically this may also be logical, as waiting with injection of water will give time to
the lower permeable grid blocks to release their oil. Well constraints were satisfied in both
optimizations, which may be due to the fact the reservoir model used for comparison is not
complex enough and the states are relatively easy to be controlled indirectly. Using the op-
timal data of one method as IG to the other method did not result in an instant optimality,
emphasizing the differences in the models. GAMS requires less than 1 minute to solve a model
with 2×3 grid blocks and 123 time-steps where MoReS requires about 3 minutes to execute the
optimization, this is due to multiple integrations of the ordinary differential equation (ODE)s
in the sequential optimization method.

The simultaneous method and the sequential method are compared, but due to differences in
the underlying reservoir models, not completely comparable. Although the dynamics showed
to be similar, it cannot be concluded which method is better in terms of NPV. The simul-
taneous method is able to deal with state-constraints and allows for using multi-objective
optimization. The method is for this reason more practical for real-life situations.
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Chapter 6

Conclusions and Recommendations

6-1 Conclusions

In this research, it has been investigated to what extent the simultaneous method is able
to solve a flooding optimization problem. The problem is divided into three parts. Firstly,
it has been demonstrated how the simultaneous method can be applied to a flooding opti-
mization problem. Secondly, the current implementation has been verified and it has been
researched what its limitations are. Thirdly, the simultaneous method has been compared to
the sequential method. The main conclusions are given below.

1. The simultaneous method can be applied to a flooding optimization problem by ap-
plying a discretization in both space and time. All PDEs are transcribed to first-order
difference equations. Integration of the difference equations is based on in industry used
implicit Euler integration. he difference equations are implemented in General Algebraic
Modeling System (GAMS). GAMS supports automatic discretization and symbolic dif-
ferentiation which improves the time needed for model implementation as well as the
computational time.

2. The GAMS model has been verified to Simple Simulator (SimSim), which is a forward
reservoir simulator. The difference between both models is not more than 0.5%. This is
due to distinct modeling environments. GAMS is equation-oriented and SimSim matrix-
oriented.

The current implementation of a flooding optimization problem in GAMS has solved
problems based on reservoir models of up to 16 grid blocks and 88,915 decision variables.
This number gives an indication of the current possibilities. However, it is not a hard
measure as it depends on the model parameters. The current implementation of the
simultaneous method is very sensitive to IGs. From 58 reasonable IGs, only 22 converged
to an NPV which did not differ more than 1% from the highest obtained NPV. 15
optimizations terminated infeasible.

Master of Science Thesis L.M.C.F. Alblas



50 Conclusions and Recommendations

3. Compared to the sequential method, the simultaneous method is able to deal with
state-constraints and allows for using multi-objective optimization to eliminate chatter-
ing. The simultaneous method is for this reason more practical for real-life situations
compared to the sequential method. Multi-objective optimization can be achieved rel-
atively easy by using regularization or lexicographic optimization. The regularization
method may be difficult to tune, but has the advantage that it results in a non-singular
optimization problem. Regularization increases optimization time with 23% on aver-
age compared to a non-regularized optimization, where lexicographic optimization takes
66% longer on average. The lexicographic optimization allows to control the influence
of the variance minimization on the NPV perfectly.

The simultaneous method has been compared to the sequential method in terms of
optimization performance as well. The underlying models of both methods are not
completely identical. During an optimization executed via the simultaneous method,
GAMS initially holds off any water injection, which results in lower saturation values.
The simultaneous method produces therefore less water compared to the sequential
method, resulting in a slightly higher net present value (NPV). The NPVs obtained by
both methods differ less than 1%, but this may not be due the different optimization
methods as the models are not completely identical. MoReS has been used to perform
the sequential optimizations. For a model with 6 grid blocks and 123 time-steps, MoReS

takes about 3 minutes for an optimization with 30 integrations on a special server where
GAMS needs less then 1 minute on a desktop computer.

On the one hand it is demonstrated that drawbacks of the sequential method can be avoided
by using the simultaneous method. On the other hand, solving a flooding optimization prob-
lem with the current implementation of the simultaneous method may introduce new issues.
Recommendations are given in the next section which are likely to improve the performance
of the current implementation.

6-2 Recommendations

The current implementation of the simultaneous method is still limited to small reservoir
models and sensitive to IGs. This may be improved by subsequent research, which should
include the following recommendations.

• The application of the simultaneous method to a flooding optimization problem can be
improved on two points. The first is the use of orthogonal collocation. This method
applies a function approximation on the model ODEs or even on the model PDEs. The
approximated functions are fitted to the ODEs or PDEs at discrete points in space and/or
in time. This drastically reduces the NLP size and generally improves the precision of
the solution and the required optimization time. The improvement can be used for
upscaling to larger reservoir models. The second point of improvement is the fact
that the relative permeabilities are based on the IG and not on the GAMS model. The
static relative permeabilities can be made time-varying, which will give a more realistic
outcome and may improve the optimization performance as well.
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• The implementation of a flooding optimization problem in GAMS can be improved by
using a better initial guess (IG). Firstly, GAMS starts with an initial error and therefore
as an infeasibility problem, instead of an optimization problem. This is caused by dis-
tinct modeling environments. GAMS is equation-oriented, where the sequential method
and the IG generator are implemented in a matrix-oriented environment. Using an IG

from an equation-oriented environment would eliminate the initial error and allow GAMS

to start as an optimization problem instead of an infeasibility problem. Secondly, the
IGs are based on constant flow-rates, but the optimal flow-rates are time-varying. It
may for this reason be better to obtain IGs which are based on more realistic varying
flow-rates. Both improvements will reduce the sensitivity to IGs.

• The comparison of the sequential method with the simultaneous method can be im-
proved. Both optimization methods are not compared in depth due to the distinct
modeling environments. An improved comparison will give a better understanding of
convergence properties, computational speed and optimal result of both methods.

The simultaneous method is an improvement to the currently used sequential method in terms
of dealing with state-constraints and performing multi-objective optimizations. However,
real-life problems cannot be solved yet due to the fact real-life reservoir models are based on
millions of grid blocks.

For this reason, the current implementation of the simultaneous method must be improved
before it is possible to compare both optimization methods. The first step is to eliminate
the initial error by using an equation-oriented IG generator. The second step is to implement
orthogonal collocation which enables to reduce the number of decision variables. At last, it is
important to have identical reservoir models to compare the performance of both optimization
methods.

With these improvements, reservoir models which are currently used in industry may not
be solved yet. In literature, problems have been solved with millions of decision variables.
This allows to have 1 decision variable per grid block, where the current implementation has
around 18 decision variables per grid block per time-step. This indicates a big gap between
the possibilities of the current implementation and the requirements for real-life flooding
optimization problems.

Although real-life reservoir models may not be solved today, it is likely that ongoing develop-
ments may result in a future possibility of using the simultaneous method to solve flooding
optimization problems. The first development is that it is being investigated to reduce the
resolution of reservoir models. High resolution models do not add value due to high uncertain-
ties in the model data. The second ongoing development is research to more efficient solver
algorithms. Better solvers allow for better convergence properties. The third development is
that computers are improving, enabling to solve larger models.

Summarizing, the current implementation is not able to deal with real-life reservoir models.
However, in the future the method is likely to be able to be applied to these models. It
is therefore of interest to continue this research because the simultaneous method is able
to obtain feasible practical solutions, which is difficult with the currently used sequential
method.
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Appendix A

Adjoint Method

The adjoint or backward sensitivity method is the most efficient method for calculating the
sensitivity equations and currently used in flooding optimization. The method is independent
of the number of decision variables and about as expensive as the forward simulation of the
model [Sarma et al., 2005]. The adjoint equations are obtained analytically, which is a labor-
intensive process for large models due to the large number of equations and symbolic work
involved to obtain Equation (A-5). The method is explained according to [Sarma et al., 2005],
[van Essen et al., 2009a] and [Brouwer and Jansen, 2004].

The adjoint method makes use of the augmented objective function ϕ̂A, which is the accumu-
lation of the objective function with the system equations multiplied by a Lagrange multiplier.
The system equations are adjoined to the objective function as follows:

ϕ̂A(x, q, λ) =
N−1∑

i=0

[Li(xi+1, xi, qi, λi+1)] , (A-1)

where x represents both the differential and algebraic states for simplicity, q the decision
variables, λ a Lagrange multiplier and Li the auxiliary function:

Li(xi+1, xi, qi, λi+1) = ϕi(qi) + λT
i+1fi(xi+1, xi, qi). (A-2)

In order to achieve optimality, the derivative of the augmented objective function with respect
to the states x, the decision variables q and the Lagrange multiplier λ must be equal to zero
for all separate four terms of Equation (A-3).
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δϕ̂A = 0 =
N−1∑

i=1

[(
∂Li−1

∂xi
+

∂Li

∂xi

)

δxi

]

+

(
∂LN−1

∂xN

)

δxN

+
N−1∑

i=0

[(
∂Li

∂qi

)

δqi

]

+
N−1∑

i=0

[(
∂Li

∂λi+1

)

δλi+1

]

.

(A-3)

The latter term is equal to zero by definition, because ∂Li/∂λi+1 = fi = 0. The first and
second terms are:

(
∂Li−1

∂xi
+

∂Li

∂xi

)

δxi = λT
i

∂f(i − 1)

∂xi
+

∂ϕ̂i

∂xi
+ λT

i+1

∂fi

∂xi
= 0,

(
∂LN−1

∂xN

)

δxN = λT
N

∂fN−1

∂xN
+

∂ϕ̂N

∂xN
= 0.

(A-4)

The equations can be solved for λi. The next equation is known as the adjoint model:

λT
i = −

[
∂ϕ̂i

∂xi
+ λT

i+1

∂fi

∂xi

](
∂fi−1

∂xi

)−1

,

λT
N = −

[
∂ϕ̂N

∂xN

](
∂fN−1

∂xN

)−1

.

(A-5)

The Lagrange multipliers are solved backward, starting with the latter term λN . The multi-
pliers are calculated by using the stored states of a previous forward simulation of the reservoir
model by the DAE solver. Notice the independence of the decision variables q. The above
steps reduce Equation (A-3) to:

δϕ̂A =
N−1∑

i=0

[(
∂Li

∂qi

)

δqi

]

,

=
N−1∑

i=0

[(
∂ϕ̂i

∂qi
+ λT

i+1

∂fi

∂qi

)

δqi

]

.

(A-6)
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Appendix B

Reservoir Modeling based on the

Principles of Flow through Porous

Media

A reservoir model describes the flow of all media within an oil reservoir. This appendix will
describe the derivation of a white-box model. The model is based on the conservation of
mass, conservation of linear momentum using Darcy’s Law and possibly also a vapor-liquid
equilibrium. Firstly, the basic equations for a single-phase flow are derived. Next, a basic
multi-phase multi-dimensional model is described.

B-1 Single-Phase Flow

Models describing single-phase flow are relatively easy to obtain. This section will briefly
explain the model by describing one-dimensional flow, after which a model for two-dimensional
and three-dimensional flow will be presented. All the media described are assumed to be
compressible and the processes are assumed to be iso-thermal.

B-1-1 Single-Phase One-Dimensional Flow

A fluid is considered to flow horizontal in a one-dimensional direction (Figure B-1).

The equations are obtained from [Peaceman, 1977], [Aziz and Settari, 1979] and [Jansen, 2009]:

(Aρvx)x
︸ ︷︷ ︸

In

− (Aρvx)x+∆x
︸ ︷︷ ︸

Out

+ qA∆x
︸ ︷︷ ︸

Source

= A
∂(φρ)

∂t
∆x

︸ ︷︷ ︸

Accumulation

, (B-1)

where A(x) is the cross-sectional area and constant in time, ρ(t, x) is the fluid density, vx(t, x)
is the Darcy Velocity in the x-direction (Section B-1-2), q(t, x) is the flow rate of unit volume
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dx

vx(x) vx(x + dx)

Ax(x) Ax(x + dx)

Figure B-1: Single-Phase One-dimensional Flow

per unit time, φ(t, x) is the porosity of the medium and t is the time. The flow rate q(t, x)
will be negative for a production well.

By firstly dividing Eq. (B-1) by ∆x and secondly taking the limit ∆x → 0, Eq. (B-1) can be
simplified:

− ∂(Aρvx)

∂x
+ Aq = A

∂(φρ)

∂t
. (B-2)

B-1-2 Single-Phase Two-Dimensional and Three-Dimensional Flow

We can write Eq. (B-1) for two or three-dimensional flow as:

− ∇ · (αρ~v) + αq = α
∂(φρ)

∂t
, (B-3)

where ∇ is the difference operator, where vz is only present in the three-dimensional case;

∇ · (~v) =
∂(vx)

∂x
+

∂(vy)

∂y
+

∂(vz)

∂z
, (B-4)

and with α as the geometry-factor defined in [Peaceman, 1977] to allow for downscaling of
the dimensions;

1D : α(x) = A(x)
2D : α(x, y) = H(x, y)
3D : α(x, y, z) ≡ 1.

(B-5)

Darcy’s Law

Darcy’s Law describes the flow through a porous medium as a function of permeability,
viscosity and pressure difference. From this law, the Darcy velocity vector ~v is introduced as:

~vi = −
~Kkri

µi
(∇pi − ρig∇d). (B-6)

where µ is the fluid viscosity, ~K(~x) is the rock permeability tensor, g is the gravitational
acceleration, d(~x) is the depth and subscript i refers to the water, oil or gas phase. The
vector ~x represents (x), (x, y) or (x, y, z) all depending on the flow dimensions.
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~K(~x) =






kxx kxy kxz

kyx kyy kyz

kzx kzy kzz




 . (B-7)

The tensor ~K(~x) is diagonal if the coordinates can be aligned with the geological layering. If
kxx = kyy = kzz the medium is called isotropic.

A combination of Eq. (B-3) and Eq. (B-6) gives:

∇ ·
(

αρiK
kri

µi
(∇pi − ρig∇d)

)

+ ρiqi = α
∂(φρi)Si

∂t
, (B-8)
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Appendix C

Non-Linear Properties of the used

Reservoir Model

Studying the non-linearities of the reservoir may provide useful information to increase the
optimization performance. In general, three types of PDEs exist, discussed in Section C-1.
The non-linearities of the differential equations for pressure and saturation will be evaluated
in Section C-2.

C-1 Types of Non-Linearities

Three types of non-linearities are known [Farlow, 1993]. The types are explained using

a general second-order continuously differentiable PDE (L(u,
∂u

∂x
,
∂u

∂t
)) with variable u(x, t)

[Courant et al., 1962]:

L(u,
∂u

∂x
,
∂u

∂t
) = A

∂2u

∂x2
+ B

∂2u

∂x∂t
+ C

∂2u

∂t2
(C-1)

The non-linearities are in this case caused by the second-order differentials. Eq. (C-1) is an
analogy with the following quadratic equation [Peaceman, 1977]:

L(x, t) = Ax2 + Bxt + Ct2 = 0, (C-2)

or

A(x/t)2 + B(x/t) + C = 0. (C-3)

The root to this equation is obtained by:
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(x/t) =
B ±

√
B2 − 4AC

2A
. (C-4)

The three types of behavior depend on the value of the discriminant B2 − 4AC.

C-1-1 Elliptic Equation

Elliptic equations occur when B2 − 4AC < 0, which means there will be no real solution to
Eq. (C-4). An example is the Laplace equation, where B is zero;

∂2u

∂x2
+

∂2u

∂y2
= 0. (C-5)

C-1-2 Parabolic Equation

When B2 −4AC = 0, there is only one real solution to Eq. (C-4). Considering the case where
B and C are zero, this will result in a diffusive behavior in space as time propagates. An
example is the Fourier equation of diffusion;

∂2u

∂x2
=

∂u

∂t
. (C-6)

C-1-3 Hyperbolic Equation

A hyperbolic equation occurs when B2 − 4AC > 0 and Eq. (C-4) has two real solutions. An
example is the wave equation:

∂2u

∂x2
− ∂2u

∂t2
= 0. (C-7)

However, it may be noticed more simplistic hyperbolic PDEs do exist as well. Such as the
single-wave equation, which is comparable to the equation above with the second-order terms
replaced with first-order terms.

C-2 Sources of Non-Linearities in the Pressure and Saturation Dif-

ferential Equations

The reservoir model equations are non-linear. To get a better understanding on the type of
non-linearities in the reservoir model, the simplified differential equations as given in Eq. (3-7)
and Eq. (3-8) are further examined.
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C-2-1 Pressure Differential Equation

Eq. (3-9) can be written as:

∇ ·
(

α

(

~K
krw

µw
+ ~K

kro

µo

)

(∇p)

)

+ qw + qo = αφ

(

(s(cw − co) + co + cr)
∂p

∂t

)

. (C-8)

When evaluating the differential equation for the pressure as given in Eq. (C-8), the equation
can be further simplified assuming all variables except for the pressure as constant:

∇ · (κ1 (∇p)) = κ2
∂p

∂t
. (C-9)

Eq. (C-9) is a parabolic PDE as the discriminant is zero. However, currently, the capillary
pressures are neglected. When they are present, though most of the time very small, the
pressure differential equation will be elliptic [Peaceman, 1977]. This elliptic behavior is then
caused by the second-order derivatives of the pressure with respect to time. The diffusive or
near-elliptic behavior is plausible as the pressure is known to behave diffusively.

C-2-2 Saturation Differential Equation

The differential equation for the saturation is computed differently. Again assume one of the
mass-balances;

∇ ·
(

α ~K
krw

µw
(∇p)

)

+ qw = αφ

(

s(cw + cr)
∂p

∂t
+

∂s

∂t

)

, (C-10)

The Darcy velocity is used to eliminate the pressure on the left-hand side while the compress-
ibilities for rock and liquid as given in Eq. (3-6) are used to eliminate the pressure differential
on the right-hand side, resulting in:

∇ · (α~vw) + qw = αφ

(

s

(
1

ρw

∂ρw

∂p
+

1

φ

∂φ

∂p

)
∂p

∂t
+

∂s

∂t

)

= αφ

(

s

(
1

ρw

∂ρw

∂t
+

1

φ

∂φ

∂t

)

+
∂s

∂t

)

.
(C-11)

In order to evaluate the differential equation only for the change in saturation, the porosity
φ and fluid density ρw are assumed to be constant. Next, as the water velocity is unknown,
it will be replaced by the total velocity ~vt multiplied by the fractional flow of water fw. The
saturation differential equation is then:

∇ · (αfw~vt) + qw = αφ

(
∂s

∂t

)

(C-12)

As the fractional flow is a function of the saturation, we can write [Peaceman, 1977]:

∇fw =
δfw

δs
∇s. (C-13)
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When looking explicitly at the flow within the reservoir it is possible to neglect the well flow
rates. Next, implementation of Eq. (C-13) results in:

δfw

δs

δs

δx
∇ (α~vt) = αφ

(
∂s

∂t

)

− fwqt. (C-14)

Above equation shows the nature of the saturation differential equation to be first-order hy-
perbolic when neglecting other influences as capillary pressures and assuming incompressible
flow [Aziz and Settari, 1979]. When including the capillary pressures, the behavior may turn
to be elliptic when they dominate, which is mostly not the case [Peaceman, 1977]. The hyper-
bolic nature of the equation results in a convective behavior of the saturation, describing the
movement of the water front through the reservoir. The behavior of the saturation equation
is highly non-linear [Aziz and Settari, 1979] compared to the pressure equation.
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Appendix D

GAMS code and Matlab code for the

2x3 Reservoir Model

The model used for verification is based on a 2×3 finite difference model. The model consists
of one injector and one producer and has a heterogeneous permeability field as shown in
Figure 4-1.

Firstly, the files of the IG generator SimSim which needed to be edited will be given. These are
edited to enable import data from GAMS and export data to GAMS. will be given as which
are used to import and run GAMS data. Next, the two files used for data transfer between
SimSim and GAMS and vice versa will be presented. As last, the GAMS code as used for model
verification is given.

D-1 Edited Files from SimSim

Several m-files have been edited in order to simulate the GAMS data in SimSim, based on the
flow-rates.

simsim_inp_six_blocks.m

77 % % Well locations and constraints :

78 W_p = [];

79 W_q = [1, 0.0059 , inf; % injector with prescribed rate

80 6, -0.0061 , 0 ]; % producer with prescribed rate

81 r_w = 4.5 * 0.0254; % well bore radius , m

132 if intyp == 4

133
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134 load ../ RM_06_Output.mat

135

136 kk = 1;

137

138 injection = q_w (1,1,kk);

139 production = q_w (2,3,kk) + q_o (2,3,kk);

140

141 p_well_inj = p_well (1,1,kk);

142 p_well_prod = p_well (2,3,kk);

143

144 % Rate Contrained

145 W_p = [];

146 W_q = [1, injection , inf; % injector with prescribed rate and

no pressure constraint

147 6, production , 0 ]; % producer with prescribed rate and

no pressure constraint

148

149

150 end

simsim_forward.m

29 if intyp == 4

30

31 load ../ RM_06_Output.mat

32 kk = 1;

33 Delta_t = dt(kk);

34

35 end

50 case 4 % implicit Euler with Newton iteration ( variable time step)

51

52 [E,M,stats ,t_x ,t_y ,X,Y] = simsim_Eul_Newton_GAMS (comp ,

con ,C,Delta_t ,geo ,intpar ,...

53 intyp ,I_q ,j_con ,k,L_uq ,mu ,phi ,rel ,solpar ,t_c ,well ,x_0);

simsim_Eul_Newton_GAMS.m

In the file simsim_forward.m is referred to simsim_Eul_Newton_GAMS.m, this file is the
edited version of simsim_Eul_Newton.m file with replacing the code at the given line-
numbers.

60 load ../ RM_06_Output.mat

61

62 while kk < length (q_w (1 ,1 ,:))
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63 % Determine time step:

64 if kk > 1

65 % Determine time step:

66 Delta_t = dt(kk); % computes new time step

67 if t_kk + Delta_t > t_end

68 Delta_t = t_end - t_kk;

69 end

70 end

71

72 % write info to screen every kk_info steps

73 kk_info = 5;

74 if round (kk/ kk_info ) == kk/ kk_info

75 kk

76 t_d = t_kk /(3600*24)

77 Delta_t_d = Delta_t /(3600*24)

78 end

79

80 injection = q_w (1,1,kk +1);

81 production = q_w (2,3,kk +1) + q_o (2,3,kk +1);

82

83 % Rate Contrained

84 well.W_p = [];

85 well.W_q = [1, injection , inf; % injector with prescribed rate

86 6, production , 0 ]; % producer with prescribed rate

87

88 Delta_x = 500; % grid block length , m

89 Delta_y = 500; % grid block width , m

90 n_x = 3; % number of grid blocks in x-direction , -

91 well.W_xy = simsim_aux_well (Delta_x ,Delta_y ,n_x ,well.W_p , well.W_q );

D-2 Matlab Code for Communication between SimSim and GAMS

Data is transferred from SimSim to GAMS for initiating the initial guesses after running
RM_06_ObtainInitialGuesses.m. Then, after running GAMS, data is transferred back to
MatLab by RM_06_ReadGAMSOutput.m.

RM_06_ObtainInitialGuesses.m

1 %% PARAMETERS

2

3 i = model.geo.n_y ;

4 j = model.geo.n_x ;

5 t = length ( results.t_y );

6

7 label_i = cell (1,i);

8 label_j = cell (1,j);

9 label_t = cell (1,t);

10
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11 for ii = 1:i

12 label_i (ii) = { strcat ('I' , num2str (ii)) };

13 end

14 for jj = 1:j

15 label_j (jj) = { strcat ('J' , num2str (jj)) };

16 end

17 for tt = 1:t

18 label_t (tt) = { strcat ('T' , num2str (tt)) };

19 end

20

21 dt = diff( results.t_y )

22 dt(t) = dt(t-1);

23

24 %% PRODUCTION & INJECTION VARIABLES

25

26 q_w = zeros(i,j,t);

27 q_w (1 ,1 ,1: end) = results.Y (5 ,:); q_w (2 ,3 ,1: end) = results.Y (6 ,:);

28 q_o = zeros(i,j,t);

29 q_o (1 ,1 ,1: end) = results.Y (3 ,:); q_o (2 ,3 ,1: end) = results.Y (4 ,:);

30

31 p_well = zeros (i,j,t);

32 p_well (1 ,1 ,1: end) = results.Y (1 ,:);

33 p_well (2 ,3 ,1: end) = results.Y (2 ,:);

34

35 %% STATE VARIABLES

36 p = zeros (i,j,t);

37 s = zeros (i,j,t);

38

39 for ii = 1:i

40 for jj = 1:j

41 p(ii ,jj ,:) = results.X ( j*( ii-1) + jj ,:);

42 s(ii ,jj ,:) = results.X ( j*i+ j*( ii-1) + jj ,:);

43

44 end

45 end

46

47 % %%%%%%%%% FOR CHECK

48 dpdt = zeros(i,j,t-1);

49 dsdt = zeros(i,j,t-1);

50

51 for ii = 1:i

52 for jj = 1:j

53 dpdt(ii ,jj ,:) = diff(p(ii ,jj ,:));

54 dsdt(ii ,jj ,:) = diff(s(ii ,jj ,:));

55

56 end

57 end

58

59 for tt = 1:t-1

60 dpdt (:,:,tt) = dpdt (:,:,tt) / dt(tt);

61 dsdt (:,:,tt) = dsdt (:,:,tt) / dt(tt);

62 end

63
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64 %% COUNTER VARIABLE

65 time = results.t_x ;

66

67 %% WELL VARIABLES

68

69 L_q_w.name = 'set_q_w ';

70 L_q_w.val = q_w;

71 L_q_w.labels = { label_i label_j label_t };

72

73 L_q_o.name = 'set_q_o ';

74 L_q_o.val = q_o;

75 L_q_o.labels = { label_i label_j label_t };

76

77 L_p_well.name = 'set_p_well ';

78 L_p_well.val = p_well ;

79 L_p_well.labels = { label_i label_j label_t };

80

81 %% STATE VARIABLES

82 L_p.name = 'set_p ';

83 L_p.val = p;

84 L_p.labels = { label_i label_j label_t };

85

86 L_s.name = 'set_s ';

87 L_s.val = s;

88 L_s.labels = { label_i label_j label_t };

89

90 %% TIMER VARIABLE

91 L_dt.name = 'set_dt ';

92 L_dt.val = dt;

93 L_dt.labels = { label_t };

94

95 L_time.name = 'set_time ';

96 L_time.val = time;

97 L_time.labels = { label_t };

98

99 gams('', L_q_w ,L_q_o ,L_p ,L_s ,L_p_well ,L_time ,L_dt);

RM_06_ReadGAMSOutput.m

1 %% read output

2 [q_w ,q_o ,p_well ,p,s,time ,dt] = gams ();

3

4 q_w = q_w.val ;

5 q_o = q_o.val ;

6 p_well = p_well.val ;

7 p = p.val ;

8 s = s.val ;

9 time = time.val ;

10 dt = dt.val ;

11
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12 file_name_out = 'Output.mat ';

13 save( file_name_out ,'q_w ','q_o ','p_well ','p','s','time ','dt ');

D-3 GAMS Code

The GAMS model is given below. The relative permeabilities are calculated by using the
input-date from SimSim. The if-signs used in GAMS are dollar signs, however, due to problems
with LaTeX changed to double dollar signs.

GAMS.gms

1 *** GAMS code of the Reservoir Model by Lodewijk Alblas

2

3 SETS

4 *** *************************************************

5 *** SETS is used to define the spce and time grid

6

7 i row index of model cells / I1 * I2 /

8 j column index of model cells / J1 * J3 /

9 t time index / T1 * T123 /

10

11 ;

12

13 SCALARS

14 *** *************************************************

15

16 dx grid size x (m) /500/

17 dy grid size y (m) /500/

18 h grid size height (m) / 20/

19 co compressibility (1: Pa) - oil / 1.000E-8/

20 cw compressibility (1: Pa) - water / 1.000E-8/

21 cr compressibility (1: Pa) - rock / 1.000E-8/

22

23 no Corey exponent (-) - oil / 2/

24 nw Corey exponent (-) - water / 2/

25

26 Sor Residual Oil Saturation (-) / 0.2/

27 Swc Connate Water Saturation (-) / 0.2/

28

29 muo viscosity (Pa s) - oil / 0.500E-3/

30 muw viscosity (Pa s) - water / 1.000E-3/

31 rhoo density (kg : m^3) - oil /850/

32 rhow density (kg : m^3) - water /1000/

33

34 kro0 end point relative permeability (-) - oil /0.9/

35 krw0 end point relative permeability (-) - water /0.6/

36

37 rwell well bore radius for all wells (m) /0.1143/
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38 pi pi /3.141592653589793/

39

40

41 rwinj cost of injecting water ( dollar per m^3) / 10 /

42 rwprod cost of producing water ( dollar per m^3) / 30 /

43 roprod profit of producing oil ( dollar per m^3) / 300 /

44 b discount rate of money (0 - 1) (-) / 0.10 /

45 tau reference time for discount rate 1 yr (s) / 31536000 /

46

47 setvarphi

48 ;

49

50 PARAMETER WellType (i,j);

51 *** *************************************************

52 *** (1 = injection | 0 = no well | -1 = production )

53

54 WellType (i,j) = 0;

55 WellType ('I1 ','J1 ') = 1;

56 WellType ('I2 ','J3 ') = -1;

57

58 PARAMETERS

59 k_xx(i,j) grid permeabilities x- direction (m^2)

60 k_yy(i,j) grid permeabilities y- direction (m^2)

61 phi(i,j) porosity vector (-)

62 J_con(i,j) Well-term constants

63 dt(t) time-step

64

65 set_q_w (i,j,t) Set initial guess water flow using Matlab

66 set_q_o (i,j,t) Set initial guess oil flow using Matlab

67 set_p_well (i,j,t) Set initial guess well pressure using Matlab

68 set_p(i,j,t) Set initial guess pressures using Matlab

69 set_s(i,j,t) Set initial guess saturations using Matlab

70 set_time (t) Set time using Matlab

71 set_dt (t) Set timesteps using Matlab

72

73 ;

74

75 TABLE k(i,j) grid permeabilities (m^2)

76

77 J1 J2 J3

78 I1 1e-12 1e-12 1e-14

79 I2 1e-13 1e-12 1e-13

80 ;

81

82 kxx(i,j) = k(i,j);

83 kyy(i,j) = k(i,j);

84 phi(i,j) = 0.3;

85

86

87 Jcon(i,j)$$( WellType (i,j) ne 0) =

88 (2* pi*k(i,j)*h) / (log (0.14* sqrt(dx*dx + dy*dy) / rwell ) );

89 dt(t) = 1;

90
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91 VARIABLES

92 *** *************************************************

93

94 *** WELL VARIABLES

95 qt(i,j,t)

96 qw(i,j,t)

97 qo(i,j,t)

98 pwell(i,j,t) Well pressure

99

100 *** STATE VARIABLES

101 p(i,j,t) Pressure (Pa)

102 s(i,j,t) Saturation (-)

103

104 dpdt(i,j,t) Pressure Differential Equation (Pa : s)

105 dsdt(i,j,t) Saturation Differential Equation (- : s)

106

107 *** RELATIVE PERMEABILITIES

108 Swn(i,j,t) Normalized Water Saturation

109 krw(i,j,t) Relative Permeability Water

110 kro(i,j,t) Relative Permeability Oil

111 fw(i,j,t) Fractional Flow Water

112

113 *** TRANSMISSIBILITY VARIABLES

114 Tw1(i,j,t) Transmissibility of water to grid- block i+1

115 Tw2(i,j,t) Transmissibility of water to grid- block i-1

116 Tw3(i,j,t) Transmissibility of water to grid- block j+1

117 Tw4(i,j,t) Transmissibility of water to grid- block j-1

118 To1(i,j,t) Transmissibility of oil to grid- block i+1

119 To2(i,j,t) Transmissibility of oil to grid- block i-1

120 To3(i,j,t) Transmissibility of oil to grid- block j+1

121 To4(i,j,t) Transmissibility of oil to grid- block j-1

122

123 *** TOTAL FLOW RATES

124 Uw(i,j,t) Total water flow rate into a grid- block

125 Uo(i,j,t) Total oil flow rate into a grid-block

126

127 *** OBJECTIVE VARIABLE (S)

128 varphi Optimization Variable

129

130 *** TIME VARIABLE

131 time(t) Cumulative time

132

133 ;

134

135 *** *************************************************

136 *** BOUNDARIES

137 *** *************************************************

138 qw.up(i,j,t)$$( WellType (i,j) eq -1) = 0;

139 qw.lo(i,j,t)$$( WellType (i,j) eq 1) = 0;

140 qo.up(i,j,t)$$( WellType (i,j) eq -1) = 0;

141 qo.fx(i,j,t)$$( WellType (i,j) ne -1) = 0;

142

143
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144 pwell.lo(i,j,t)$$( WellType (i,j) eq -1) = 200 e5;

145 pwell.up(i,j,t)$$( WellType (i,j) eq -1) = 300 e5;

146

147 pwell.lo(i,j,t)$$( WellType (i,j) eq 1) = 300 e5;

148 pwell.up(i,j,t)$$( WellType (i,j) eq 1) = 350 e5;

149

150 Swn.lo(i,j,t) = 0;

151 Swn.up(i,j,t) = 1;

152

153

154 *** INITIAL VALUES

155 p.fx(i,j,'T1 ') = 300 e5;

156 s.fx(i,j,'T1 ') = 0.2;

157 time.fx('T1') = 0;

158

159 *** *************************************************

160 *** INITUAL GUESSES FROM MATLAB

161 *** *************************************************

162 $$if exist matdata .gms $$include matdata .gms

163

164 p.l(i,j,t) = setp(i,j,t);

165 s.l(i,j,t) = sets(i,j,t);

166

167 qw.l(i,j,t) = setqw (i,j,t);

168 qo.l(i,j,t) = setqo (i,j,t);

169

170 pwell.l(i,j,t) = setpwell (i,j,t);

171

172 time.l(t) = settime (t);

173 dt(t) = setdt(t);

174

175

176 DISPLAY setqw ,qw.l,setqo ,qo.l,setp ,p.l,sets ,s.l,setpwell ,pwell.l;

177 DISPLAY settime ,time.l,setdt ,dt ,Jcon;

178

179 *** Bound saturations to avoid undefined initial guesses

180 s.l(i,j,t)$$(s.l(i,j,t) < 0.2) = 0.2;

181 s.l(i,j,t)$$(s.l(i,j,t) > 0.8) = 0.8;

182

183 Swn.l(i,j,t) = (s.l(i,j,t)-Swc)/(1-Sor-Swc);

184 Swn.l(i,j,t)$$(Swn.l(i,j,t) < 0) = 0;

185 Swn.l(i,j,t)$$(Swn.l(i,j,t) > 1) = 1;

186

187 krw.l(i,j,t) = krw0 * ( Swn.l(i,j,t))** nw;

188 kro.l(i,j,t) = kro0 * (1-Swn.l(i,j,t))** no;

189

190

191 qt.l(i,j,t) = qw.l(i,j,t) + qo.l(i,j,t);

192 fw.l(i,j,t)$$( WellType (i,j) eq -1) = krw.l(i,j,t) / (krw.l(i,j,t) +

kro.l(i,j,t) * (muw/muo));

193

194

195 *** Transmissibilities including upstream weighting of the pressures
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196 Tw1.l(i,j,t) = ( (2*h/muw) * (dy/dx) * (kxx(i+1,j)*kxx(i,j))

197 / (kxx(i+1,j)+kxx(i,j))

198 * ( krw.l(i,j,t)$$(setp(i,j,t) ge setp(i+1,j,t))

199 + krw.l(i+1,j,t)$$(setp(i,j,t) < setp(i+1,j,t)) )

200 )$$(ord(i) ne card(i));

201

202 Tw2.l(i,j,t) = ( (2*h/muw) * (dy/dx) * (kxx(i-1,j)*kxx(i,j))

203 / (kxx(i-1,j)+kxx(i,j))

204 * ( krw.l(i,j,t)$$(setp(i,j,t) ge setp(i-1,j,t))

205 + krw.l(i-1,j,t)$$(setp(i,j,t) < setp(i-1,j,t)) )

206 )$$(ord(i) ne 1 );

207

208 Tw3.l(i,j,t) = ( (2*h/muw) * (dx/dy) * (kyy(i,j+1)*kyy(i,j))

209 / (kyy(i,j+1)+kyy(i,j))

210 * ( krw.l(i,j,t)$$(setp(i,j,t) ge setp(i,j+1,t))

211 + krw.l(i,j+1,t)$$(setp(i,j,t) < setp(i,j+1,t)) )

212 )$$(ord(j) ne card(j));

213

214 Tw4.l(i,j,t) = ( (2*h/muw) * (dx/dy) * (kyy(i,j-1)*kyy(i,j))

215 / (kyy(i,j-1)+kyy(i,j))

216 * ( krw.l(i,j,t)$$(setp(i,j,t) ge setp(i,j-1,t))

217 + krw.l(i,j-1,t)$$(setp(i,j,t) < setp(i,j-1,t)) )

218 )$$(ord(j) ne 1 );

219

220 To1.l(i,j,t) = ( (2*h/muo) * (dy/dx) * (kxx(i+1,j)*kxx(i,j))

221 / (kxx(i+1,j)+kxx(i,j))

222 * ( kro.l(i,j,t)$$(setp(i,j,t) ge setp(i+1,j,t))

223 + kro.l(i+1,j,t)$$(setp(i,j,t) < setp(i+1,j,t)) )

224 )$$(ord(i) ne card(i));

225

226 To2.l(i,j,t) = ( (2*h/muo) * (dy/dx) * (kxx(i-1,j)*kxx(i,j))

227 / (kxx(i-1,j)+kxx(i,j))

228 * ( kro.l(i,j,t)$$(setp(i,j,t) ge setp(i-1,j,t))

229 + kro.l(i-1,j,t)$$(setp(i,j,t) < setp(i-1,j,t)) )

230 )$$(ord(i) ne 1 );

231

232 To3.l(i,j,t) = ( (2*h/muo) * (dx/dy) * (kyy(i,j+1)*kyy(i,j))

233 / (kyy(i,j+1)+kyy(i,j))

234 * ( kro.l(i,j,t)$$(setp(i,j,t) ge setp(i,j+1,t))

235 + kro.l(i,j+1,t)$$(setp(i,j,t) < setp(i,j+1,t)) )

236 )$$(ord(j) ne card(j));

237 To4.l(i,j,t) = ( (2*h/muo) * (dx/dy) * (kyy(i,j-1)*kyy(i,j))

238 / (kyy(i,j-1)+kyy(i,j))

239 * ( kro.l(i,j,t)$$(setp(i,j,t) ge setp(i,j-1,t))

240 + kro.l(i,j-1,t)$$(setp(i,j,t) < setp(i,j-1,t)) )

241 )$$(ord(j) ne 1 );

242

243

244 *** Total water and oil flows

245 Uw.l(i,j,t) =

246 ( Tw1.l(i,j,t) * (p.l(i+1,j,t)-p.l(i,j,t)))$$(ord(i) ne card(i) )

247 + ( Tw2.l(i,j,t) * (p.l(i-1,j,t)-p.l(i,j,t)))$$(ord(i) ne 1 )

248 + ( Tw3.l(i,j,t) * (p.l(i,j+1,t)-p.l(i,j,t)))$$(ord(j) ne card(j) )
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249 + ( Tw4.l(i,j,t) * (p.l(i,j-1,t)-p.l(i,j,t)))$$(ord(j) ne 1 )

250 + ( qw.l(i,j,t) )$$( WellType (i,j) ne 0);

251

252 Uo.l(i,j,t) =

253 ( To1.l(i,j,t) * (p.l(i+1,j,t)-p.l(i,j,t)))$$(ord(i) ne card(i) )

254 + ( To2.l(i,j,t) * (p.l(i-1,j,t)-p.l(i,j,t)))$$(ord(i) ne 1 )

255 + ( To3.l(i,j,t) * (p.l(i,j+1,t)-p.l(i,j,t)))$$(ord(j) ne card(j) )

256 + ( To4.l(i,j,t) * (p.l(i,j-1,t)-p.l(i,j,t)))$$(ord(j) ne 1 )

257 + ( qo.l(i,j,t) )$$( WellType (i,j) eq -1);

258

259 *** Initialize ODE

260 dpdt.l(i,j,t) =

261 (Uw.l(i,j,t) + Uo.l(i,j,t) )

262 / (h*dx*dy * phi(i,j) * (s.l(i,j,t)*(cw-co) + cr + co));

263 dsdt.l(i,j,t) =

264 (Uw.l(i,j,t)*(1-s.l(i,j,t))*( co+cr)-Uo.l(i,j,t)*s.l(i,j,t)*( cw+cr))

265 / (h*dx*dy * phi(i,j) * (s.l(i,j,t)*(cw-co) + cr + co));

266

267

268 varphi .l = - sum( (i,j,t)$$( WellType (i,j) eq 1) ,

269 qw.l(i,j,t)*rwinj *dt(t)/(1+b)**( time.l(t)/tau))

270 + sum( (i,j,t)$$( WellType (i,j) eq -1) ,

271 qw.l(i,j,t)* rwprod *dt(t)/(1+b)**( time.l(t)/tau))

272 - sum( (i,j,t)$$( WellType (i,j) eq -1) ,

273 qo.l(i,j,t)* roprod *dt(t)/(1+b)**( time.l(t)/tau));

274

275 EQUATIONS

276 *** *************************************************

277

278 *** Well Reate

279 TotalWellRate (i,j,t)

280 FractionalFlowWater (i,j,t)

281 RelationWaterTotalRate (i,j,t)

282

283 *** RELATIVE PERMEABILITIES

284 SNormalized (i,j,t)

285 RelPermw (i,j,t)

286 RelPermo (i,j,t)

287

288 *** TRANSMISSIBILITY FUNCTIONS

289 TotalRateWater (i,j,t)

290 TotalRateOil (i,j,t)

291 EQTw1(i,j,t)

292 EQTw2(i,j,t)

293 EQTw3(i,j,t)

294 EQTw4(i,j,t)

295 EQTo1(i,j,t)

296 EQTo2(i,j,t)

297 EQTo3(i,j,t)

298 EQTo4(i,j,t)

299

300 *** STATE EQUATIONS

301 ODEp(i,j,t)
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302 ODEs(i,j,t)

303

304 ImplicitEulerp (i,j,t)

305 ImplicitEulers (i,j,t)

306

307 *** WELL MODELS

308 Peaceman (i,j,t)

309

310 *** TIME COUNTER

311 Counter (t)

312

313 *** OBJECTIVE FUNCTION (S)

314 ObjectiveFunction

315

316 ;

317 SNormalized (i,j,t).. Swn(i,j,t) =e= (s(i,j,t)-Swc)/(1-Sor-Swc);

318 RelPermw (i,j,t).. krw(i,j,t) =e= krw0 * ( Swn(i,j,t))**nw;

319 RelPermo (i,j,t).. kro(i,j,t) =e= kro0 * (1-Swn(i,j,t))**no;

320

321 TotalWellRate (i,j,t)$$( WellType (i,j) ne 0) ..

322 qt(i,j,t) =e= qw(i,j,t) + qo(i,j,t);

323 FractionalFlowWater (i,j,t)$$( WellType (i,j) eq -1) ..

324 fw(i,j,t) =e= krw(i,j,t) / (krw(i,j,t) + kro(i,j,t) * (muw/muo));

325 RelationWaterTotalRate (i,j,t)$$( WellType (i,j) eq -1) ..

326 qw(i,j,t) =e= fw(i,j,t) * qt(i,j,t);

327

328

329 EQTw1(i,j,t)..

330 Tw1(i,j,t)=e= ( (2*h/muw)*( dy/dx)*( kxx(i+1,j)*kxx(i,j))

331 / (kxx(i+1,j)+kxx(i,j))

332 * ( krw(i,j,t)$$(setp(i,j,t) ge setp(i+1,j,t))

333 + krw(i+1,j,t)$$(setp(i,j,t) < setp(i+1,j,t)) )

334 )$$(ord(i) ne card(i));

335

336 EQTw2(i,j,t)..

337 Tw2(i,j,t) =e= ( (2*h/muw) * (dy/dx) * (kxx(i-1,j)*kxx(i,j))

338 / (kxx(i-1,j)+kxx(i,j))

339 * ( krw(i,j,t)$$(setp(i,j,t) ge setp(i-1,j,t))

340 + krw(i-1,j,t)$$(setp(i,j,t) < setp(i-1,j,t)) )

341 )$$(ord(i) ne 1 );

342 EQTw3(i,j,t)..

343 Tw3(i,j,t) =e= ( (2*h/muw) * (dx/dy) * (kyy(i,j+1)*kyy(i,j))

344 / (kyy(i,j+1)+kyy(i,j))

345 * ( krw(i,j,t)$$(setp(i,j,t) ge setp(i,j+1,t))

346 + krw(i,j+1,t)$$(setp(i,j,t) < setp(i,j+1,t)) )

347 )$$(ord(j) ne card(j));

348 EQTw4(i,j,t)..

349 Tw4(i,j,t) =e= ( (2*h/muw) * (dx/dy) * (kyy(i,j-1)*kyy(i,j))

350 / (kyy(i,j-1)+kyy(i,j))

351 * ( krw(i,j,t)$$(setp(i,j,t) ge setp(i,j-1,t))

352 + krw(i,j-1,t)$$(setp(i,j,t) < setp(i,j-1,t)) )

353 )$$(ord(j) ne 1 );

354 EQTo1(i,j,t)..
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355 To1(i,j,t) =e= ( (2*h/muo) * (dy/dx) * (kxx(i+1,j)*kxx(i,j))

356 / (kxx(i+1,j)+kxx(i,j))

357 * ( kro(i,j,t)$$(setp(i,j,t) ge setp(i+1,j,t))

358 + kro(i+1,j,t)$$(setp(i,j,t) < setp(i+1,j,t)) )

359 )$$(ord(i) ne card(i));

360 EQTo2(i,j,t)..

361 To2(i,j,t) =e= ( (2*h/muo) * (dy/dx) * (kxx(i-1,j)*kxx(i,j))

362 / (kxx(i-1,j)+kxx(i,j))

363 * ( kro(i,j,t)$$(setp(i,j,t) ge setp(i-1,j,t))

364 + kro(i-1,j,t)$$(setp(i,j,t) < setp(i-1,j,t)) )

365 )$$(ord(i) ne 1 );

366 EQTo3(i,j,t)..

367 To3(i,j,t) =e= ( (2*h/muo) * (dx/dy) * (kyy(i,j+1)*kyy(i,j))

368 / (kyy(i,j+1)+kyy(i,j))

369 * ( kro(i,j,t)$$(setp(i,j,t) ge setp(i,j+1,t))

370 + kro(i,j+1,t)$$(setp(i,j,t) < setp(i,j+1,t)) )

371 )$$(ord(j) ne card(j));

372 EQTo4(i,j,t)..

373 To4(i,j,t) =e= ( (2*h/muo) * (dx/dy) * (kyy(i,j-1)*kyy(i,j))

374 / (kyy(i,j-1)+kyy(i,j))

375 * ( kro(i,j,t)$$(setp(i,j,t) ge setp(i,j-1,t))

376 + kro(i,j-1,t)$$(setp(i,j,t) < setp(i,j-1,t)) )

377 )$$(ord(j) ne 1 );

378

379

380 TotalRateWater (i,j,t)..

381 Uw(i,j,t) =e= (Tw1(i,j,t)*(p(i+1,j,t)-p(i,j,t)))$$(ord(i) ne card(i))

382 + (Tw2(i,j,t)*(p(i-1,j,t)-p(i,j,t)))$$(ord(i) ne 1 )

383 + (Tw3(i,j,t)*(p(i,j+1,t)-p(i,j,t)))$$(ord(j) ne card(j))

384 + (Tw4(i,j,t)*(p(i,j-1,t)-p(i,j,t)))$$(ord(j) ne 1 )

385 + (qw(i,j,t))$$( WellType (i,j) ne 0 );

386

387 TotalRateOil (i,j,t)..

388 Uo(i,j,t) =e= (To1(i,j,t)*(p(i+1,j,t)-p(i,j,t)))$$(ord(i) ne card(i))

389 + (To2(i,j,t)*(p(i-1,j,t)-p(i,j,t)))$$(ord(i) ne 1 )

390 + (To3(i,j,t)*(p(i,j+1,t)-p(i,j,t)))$$(ord(j) ne card(j))

391 + (To4(i,j,t)*(p(i,j-1,t)-p(i,j,t)))$$(ord(j) ne 1 )

392 + (qo(i,j,t))$$( WellType (i,j) eq -1);

393

394

395 ODEp(i,j,t).. dpdt(i,j,t) =e=

396 (Uw(i,j,t) +Uo(i,j,t) )

397 / ( h*dx*dy * phi(i,j) * (s(i,j,t)*( cw-co) + cr + co) );

398 ODEs(i,j,t).. dsdt(i,j,t) =e=

399 (Uw(i,j,t)*(1-s(i,j,t))*( co+cr)-Uo(i,j,t)*s(i,j,t)*( cw+cr))

400 / ( h*dx*dy * phi(i,j) * (s(i,j,t)*( cw-co) + cr + co) );

401

402

403

404 ImplicitEulerp (i,j,t)$$(ord(t) ne card(t))..

405 p(i,j,t+1) =e= p(i,j,t) + dt(t) * dpdt(i,j,t+1);

406 ImplicitEulers (i,j,t)$$(ord(t) ne card(t))..

407 s(i,j,t+1) =e= s(i,j,t) + dt(t) * dsdt(i,j,t+1);

Master of Science Thesis L.M.C.F. Alblas



76 GAMS code and Matlab code for the 2x3 Reservoir Model

408

409

410 Peaceman (i,j,t)$$( WellType (i,j) ne 0) ..

411 (p(i,j,t) - pwell(i,j,t)) * Jcon(i,j) =e=

412 -(1/ (kro(i,j,t)/muo + krw(i,j,t)/muw)) * qt(i,j,t);

413

414

415 Counter (t)$$(ord(t) ne 1).. time(t) =e= time(t-1) + dt(t-1);

416

417 ObjectiveFunction ..

418 varphi =e= - sum( (i,j,t)$$( WellType (i,j) eq 1) ,

419 qw(i,j,t)* rwinj*dt(t) / (1+b)**( time(t)/tau) )

420 + sum( (i,j,t)$$( WelType (i,j) eq -1) ,

421 qw(i,j,t)* rwprod *dt(t) / (1+b)**( time(t)/tau) )

422 - sum( (i,j,t)$$( WellType (i,j) eq -1) ,

423 qo(i,j,t)* roprod *dt(t) / (1+b)**( time(t)/tau) );

424

425

426

427 *** *************************************************

428 *** SOLVE THE MODEL

429 *** *************************************************

430

431 MODEL reservoirmodel /all /;

432 reservoirmodel . scaleopt = 1;

433 reservoirmodel . optfile = 1;

434 *** Limit number of written out equations .

435 Option limrow = 1000;

436 reservoirmodel . reslim = 10000 ;

437

438

439 Option NLP = CONOPT ;

440 SOLVE reservoirmodel using nlp maximizing varphi ;

441

442 DISPLAY varphi .l ;

443

444 *** *************************************************

445 *** OUTPUT TO MATLAB

446 *** *************************************************

447

448

449 $$libinclude matout qw.l i j t

450 $$libinclude matout qo.l i j t

451 $$libinclude matout pwell.l i j t

452 $$libinclude matout p.l i j t

453 $$libinclude matout s.l i j t

454 $$libinclude matout time.l t

455 $$libinclude matout dt t
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CONOPT.opt

The option file for CONOPT used to enable scaling down of the model equations with a factor
of maximum 1e−7. Upscaling is standard incorporated in the algorithm with a maximum of
1e7.

1 RTMINS =1E-7
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List of Acronyms

BHP bottem-hole pressure

CLRM closed-loop reservoir management

CONOPT constrained optimization

DAE differential algebraic equation

DCSC Delft Center for Systems and Control

DOF degrees of freedom

GAMS General Algebraic Modeling System

GBP grid-block pressure

GRG generalized reduced gradient

IG initial guess

IP interior point

IPOPT Interior Point Optimizer

KNITRO Nonlinear Interior-point Trust-Region Optimizer (the K is silent)

MatLab Matrix Laboratory

MoReS Modular Reservoir Simulator

MPC model predictive control

NLP non-linear programming

NPV net present value

ODE ordinary differential equation

PDE partial differential equation

SimSim Simple Simulator

SLP sequential linear programming

SNOPT sparse nonlinear optimizer

SQP sequential quadratic programming
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84 Glossary

List of Symbols

Dynamic Optimization

J Objective Function

f Dynamic Equality Constraint

g Static Equality Constraint

h Static Inequality Constraint

x Differential Variable

z Algebraic Variable

u Control Variable

p Time-independent Parameter

q Finite set with Decision Variables

λ Adjoint Equation

t Time

φ Lagrange Interpolation Polynomial

R Residual Equation

Nu, Nx, Nz Number of Inputs, States, Algebraic Variables

Np, Nt Number of Parameters and Time-Steps

Reservoir Modeling and Flooding Optimization

α Geometry Factor

A Area

b Discount Value

co, cw, cr Oil, Water, Rock Compressibility

d Depth

ϕ Objective Function representing the Net Present Value

φ Porosity

f Fractional Flow Rate

g Gravitational Velocity

H Height

Jvar Objective Function for Minimization of the Variance

k Permeability

kr Relative Permeability
~K Rock Permeability Tensor

µ Fluid Viscosity

Ni, Nj Number of Rows and Columns

Nt Number Time-Steps

p Pressure
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q Flow Rate

r Cost

ρ Fluid Density

s Water Saturation

S Saturation

Sor Residual Oil Saturation

Swc Connate Water Saturation

Swn Normalized Water Saturation

t Time

τ Reference Time

T Transmissibility

TR Reference Temperature

U Total Volumetric Flow Rate

w Weight of the Variance

Subscripts

i, j, n Index referring to Grid Block (i, j) and Time-Step n

o, w Oil or Water Phase

prod, inj Production or Injection Well
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