
Optimal decision tree using dynamic
programming

for the algorithm selection problem

Henwei Zeng1
Supervisor(s): Emir Demirović1, Koos van der Linden1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
January 29, 2023

Name of the student: Henwei Zeng
Final project course: CSE3000 Research Project
Thesis committee: Emir Demirović, Koos van der Linden, Frans Oliehoek

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Several algorithms can often be used to solve a complex problem, such
as the SAT problem or the graph coloring problem. Those algorithms
differ in terms of speed based on the size or other features of the problem.
Some algorithms perform much faster on a small size while others perform
noticeably better on a larger instance. The optimization problem in this
case is to select the best-performing algorithm based on the problem
features, resulting in a much faster overall runtime. This is defined as
the algorithm selection problem. Many different approaches have been
used to solve this problem, such as constructing optimal decision trees.
However, there is little published data on using optimal decision trees for
algorithm selection and one study reveals a problem in finding a feasible
solution on a large number of problem instances. We provide new insights
into solving algorithm selection using a dynamic programming approach.
The motivation to use this novel approach is that recent studies suggest it
has lower scalability issues compared to the traditional optimal decision
tree algorithms, due to several efficient techniques such as caching and
frequency counting method. The investigation has shown that compared
to the integer programming method, the dynamic programming approach
is significantly faster and is able to solve large problem instances.

1 Introduction
Solving computationally challenging problems, such as optimization problems or
search problems, optimally is a major area of interest within computer science.
Many of those complex problems have different algorithms that are able to
calculate the solution. Generally, none of these algorithms can perform optimally
across various problem instances [1]. This makes it interesting to search for an
algorithm that has the best-expected performance according to the particular
instance. Rice [2] defined this as the algorithm selection problem (ASP).

The ASP tries to formulate complex problems into abstract models with
features and selects the optimal algorithm based on these features. For example,
you can take different routes to navigate to your destination, various features
can be fuel usage, maximum speed, and how the roads are connected. Several
algorithms are able to calculate to get the optimal route, but some algorithms
reach the solution faster because they take the complexity of connected roads
less into account. So for "simpler" roads, those are most optimal while other
algorithms are likely to perform better when the complexity of the problem rises.

One way to better understand the algorithmic problems is to construct
a decision tree model. The decision tree is commonly used for classification
problems, the model constructs, on a given dataset, a flow-like chart that classifies
the solution based on decision splits, see for example in Figure 1. The benefit of
the decision tree model is that it allows for a better comprehension of the given
data while maintaining a clear structure. Decision trees can be constructed in
various ways, such as using a heuristic approach [3, 4, 5] or optimal decision
tree approach [6, 7]. The optimal decision tree is the best possible tree based on

2

Figure 1: Example decision tree for the fastest route to reach your destination

the given data, but constructing an optimal decision tree has been proven to
be an NP-hard problem [8], but it allows for a better representation of the data
compared to the usual heuristic approaches.

However, there has been little quantitative analysis using different approaches
to constructing the optimal decision tree to tackle the ASP. One recent study
used Mixed Integer Programming (MIP) to generate optimal decision trees [7].
The main weakness of this approach is due to its scalability of the MIP algorithm.
The solution for the ASP is limited to a maximum of around 500 problem
instances while having significantly lower performance when the problem reaches
over 200 instances. The algorithm falls back on decision tree heuristics when it
exceeds the maximum capacity of the solution.

This research sets out to investigate the possibility of generating optimal
decision trees on the algorithm selection problem using a dynamic programming
approach. Dynamic programming (DP) is proven to be an efficient and fast way
to generate decision trees, due to breaking the tree into smaller subtrees and
adding caching (memoization) to speed up the process [6]. Furthermore, another
objective is to investigate whether DP is more scalable compared to the MIP
approach [7]. In this research, the MurTree [6] algorithm is extended to construct
optimal decision trees that map the problem instance to their best-performing
algorithms. Solving this problem will provide more insight into the relationship
between algorithmic problems, their features and their solutions.

The rest of this paper has been divided into five sections. Section 2 explains
the notations and the definitions of key aspects of this paper. This is followed by
Section 3 giving a brief overview of the related work in this field that has been
done in the past. Section 4 explains the techniques that are used for this study.
Section 5 analysis the result of the experiments done based on the techniques.
The remaining part discusses the conclusion, future work and responsible research
of this study.

3

Figure 2: The algorithm selection problem[9]

2 Preliminaries
This section provides some explanation of the methods and literature used to
understand the latter part of the paper. The vital part of the algorithm selection
problem (ASP) is covered. Furthermore, this research will extend the current
MurTree [6] algorithm, it is sufficient to know the high-level implementation of
the optimal decision tree algorithm. Some parts of this algorithm are changed
to generate the optimal decision tree for the ASP more accurately.

2.1 Algorithm Selection Problem
The ASP is a problem of selecting an effective or optimal algorithm based on
performance such as runtime on a given situation, as proposed by Rice [2].
The motivation to solve the ASP using the optimal decision tree model is to
provide more insight into and comprehension of the problem space. The feature
in the decision node of the tree may provide valuable information about the
problem instance. The importance of the feature increases considerably the
closer it is to the root node. Furthermore, often a "winner-take-all" is used,
where we select the algorithm that has the best performance on average in all
cases, but it is essential to notice that there is no dominating algorithm over all
different problem instances [1]. Different algorithms perform better in different
circumstances. The most important area of the ASP is depicted in Figure 2.

The problem space P, an extensive collection of diverse sets of problem
instances. Each of those problems has a certain number of features, such as
the problem size or probing features, which is computed by briefly running an
existing algorithm on the problem [10].

The feature space F , a set of features extracted from the problems in P

4

to describe the problem. Ideally, the set of features should be of a significantly
lower amount than the problem space P, since this reduces the accuracy of the
algorithm selection.

The algorithm space A, a set consisting of algorithms that can solve
instances of problem P

The performance space p(A, x), where A is a solution algorithm and x is
an instance of the problem in problem space P. This space denotes the perfor-
mance of the algorithms, this can be speed, the number of possible solutions for
a problem instance, etc.

2.2 MurTree Algorithm
The MurTree is a dynamic programming algorithm for computing optimal
classification trees. This is done by exhaustive searching through all possible
trees. Different techniques are used to speed up this process, such as exploiting
the overlap between the trees and avoiding computing suboptimal decision trees.
The solution algorithm of constructing an optimal decision tree is based on and
extended from the MurTree algorithm [6] for the ASP. This is presented more
in-depth in section 4.2.

2.2.1 High-Level Idea

Eq. 1 provides a high-level summary of the MurTree algorithm, including its
dynamic programming formulation. The input consists of D, which is the dataset
with features F . The upper bound of the depth is defined as d and n is the
upper bound of the number of decision nodes. The MurTree algorithm takes
binary dataset as input, which means that the dataset can be split into positive
and negative instances D = D+ ∪ D−. Furthermore, D(f) is a set of instances
from D that contain the feature f . The output of this algorithm is the minimum
number of wrongly classified instances of the given dataset and the optimal
decision tree consisting of decision and classification nodes.

T (D, d, n) =


T (D, d, 2d − 1) n > 2d − 1
T (D, n, n) d > n
min{|D+|, |D−|} n = 0 ∨ d = 0

min{T (D(f), d− 1, n− i− 1) n > 0 ∧ d > 0
+T (D(f), d− 1, i) : f ∈ F , i ∈ [0, n− 1]}

(1)
The MurTree algorithm is split into four different cases. The first and second

cases in this equation limit the maximum number of decision nodes and depth
of the tree to avoid redundant calculations, i.e. depth two decision trees cannot
have more than three nodes. Case three returns the minimum of positive or
negative instances if the depth or number of nodes is zero because this minimizes

5

the misclassification while having no decision nodes. The fourth case is the core
of the MurTree algorithm. This case computes the minimum misclassification of
all feature splits and ways to distribute the left and right children of the root
node.

3 Related Work
This section gives a literature review of similar works that have been done in
the past. First about methods used to tackle the algorithm selection problem
(ASP), followed by a more in-depth review of optimal decision tree studies.

3.1 Methods Related to Solving ASP
A considerable amount of literature has been published on the ASP proposed
by Rice [2]. Each of those studies tried to tackle this problem with a different
approach.

Lagoudakis et al [11] have used ideas from reinforcement learning to solve
the ASP. This study reveals that learning algorithms are also possible methods
to construct a solution for selecting algorithms. This encouraged future works
to think of possible machine-learning solutions.

Malitsky et al [12] used a k-Nearest-Neighbor approach where they improved
the performance of building algorithm portfolios by a significant amount, followed
by Kadioglu et al [13] who extended the previous study, by improving the
technique using Distance-Based Weighting and neighborhood size clustering and
boosted the performance by another significant amount by comparing to SATzilla
and VBS algorithms.

Musliu and Schwengerer [14] tested the performance of different machine
learning classification algorithms, such as Bayesian Networks, C4.5 Decision
Trees, k-Nearest-Neighbor, etc, to select solution algorithms to tackle the Graph
Coloring problem. One weakness of machine learning is that often it only
contains one recommended algorithm per instance. This study introduced a
new performance measurement, which is the success rate. The success rate is
the ratio of the number of instances where the solver achieves the best solution
and the total number of instances. This approach yields significantly better
performance compared to any previously used heuristic. However, this study has
not dealt with the importance of the features of the algorithm, which is also a
critical aspect of the ASP.

In another recent study by Polyakovskiy et al [15] where they built a substan-
tial benchmark suite to tackle the travelling salesman problem and constructed
a decision tree to select the most optimal algorithm. The drawback of this case
is that it does not generalize the problem, meaning the performance will not be
as high on an unknown set compared to the test set. Furthermore, the decision
tree is constructed using heuristics and an optimal decision tree allows for more
accurate solutions.

6

Similarly, Vilas et al [7] constructed optimal decision trees using the MIP
approach. This allows for a more accurate selection of algorithms and surprisingly
enough the results indicate that the decision tree does not overfit test data.
However, this approach leads to sub-optimal scalability of the algorithm. Where
the algorithm cannot compute the best upper- and lower bound within a time
limit of an hour on a dataset that has over 500 problem instances. This is an
important motivation for our research because it shows that the optimal decision
tree approach is an efficient and trustworthy approach to tackle the ASP.

3.2 Optimal Decision Trees
The MIP algorithm is one of the many techniques to construct optimal decision
trees. Bertsimas and Shioda [16] were one of the first to propose using MIP
approach for optimal decision trees. This has been further improved by Bertsimas
and Dune [17], where they used a more modern mixed-integer optimization (MIO),
followed by a research of Verwer and Zhang [18]. Verwer and Zhang used an
efficient encoding of decision tree learning in integer programming (DTIP). This
research showed improved performance compared to the existing solutions of
greedy heuristics. However, the tests showed that the algorithm is limited to a
depth of 5 and a data size of 1000 instances.

In recent years, more works on optimal decision trees were followed, such as
using binary linear program formulations [19] by Verwer and Zhang, where they
increase the performance by efficiently encoding the problem into binary data.

Hu et al [20] introduced the first practical algorithm for generating optimal
decision trees with binary datasets. It shows that this method can further
increase the performance and scalability of optimal decision tree algorithms by
testing against the previous BINOCT [19] and CART [4] algorithms. However,
the experiments were only performed on small datasets, the goal of future works
is to extend to much larger datasets.

Aglin et al [21] introduced DL8.5 which increases the performance by several
orders of magnitude. The algorithm used the idea of using a cache of itemsets
combined with a branch-and-bound search.

This finally leads to the work of Demirović et al [6] where they proposed
an optimal decision tree algorithm using a dynamic programming and search
approach. This research showed that using this approach leads to a significant
increase in speed compared to the current state-of-the-art. In our research, we
make use of this algorithm and extend it to select the optimal algorithm based
on the features of the problem.

4 Methodology
This section goes into the details of the methods used for our experiment. Firstly
we need to obtain the features from our problem for the algorithm selection
problem. As those features are key to constructing the optimal decision tree
and understanding the problem space. Furthermore, all algorithms should be

7

able to solve the problem, therefore the misclassification calculations need to be
adjusted to the performance of the algorithm given the features of the problem
instance. A single classification to a problem instance might result in a lower
accuracy as some algorithms can perform very closely to each other while others
might have a significantly low performance on a certain set of features.

4.1 Feature Selection
For the algorithm selection problem, it is important to extract the features from
the problem space P first. Since the goal is to select the optimal algorithm
based on the features of the problem instance. Instance features are calculated
and extracted from two different problems, which are Maximum Satisfiability
(MAXSAT) and the Graph Coloring Problem (GCP).

Before we can compute optimal decision trees and execute the experiments,
sufficient data and their features are gathered. A diverse set of problem instances
are collected from the MaxSAT competition [22] and graph coloring problem [23].
For each problem instance, their features are calculated and extracted.

4.1.1 Features for Maximum Satisfiability (MaxSAT)

Our first problem instance is based on the Maximum Satisfiability problem
(MAXSAT). This is an extension of the boolean satisfiability problem (SAT).
The MaxSAT is formulated into a set of clauses in CNF. The goal of the solution
algorithm is to satisfy as many of those clauses as possible. From this problem,
44 features are extracted and categorized from the SAT problem instances as
similarly done in the study of Nudelman et al and Hutter et al [24, 10]. The
features are based on the problem size, Variable and Clause graphs statistics,
balancing features and proximity to the Horn formula. Some computationally
expensive features from those papers are emitted due to time constraints of
generating the dataset. Table 1 summarizes the features of the MaxSAT problem
for our algorithm and separates the features into six different groups.

• Problem size features, this group denotes the size of the problem,
measured by the number of variables, clauses and their ratios.

• Variable-Clause Graph features, this group generates the features
based on a graph representation of the SAT instance. The graph is
generated by having a node for each variable and clause. The nodes have
an edge between the variable node and the clause node Whenever the
variable occurs in that clause.

• Variable Graph features, this group generates a variable-based graph
representation of the SAT instance. This graph has a node for each variable
and an edge between the nodes whenever the variables both occur in a
clause.

• Clause Graph features, this group generates a clause-based graph
representation of the SAT instance. This graph has a node for each clause

8

Table 1: SAT features
Number Feature Description

Problem size Features
1 Number of Clauses c
2 Number of variables v
3-5 Ratio c/v, (c/v)2, (c/v)3
6-8 Ratio Reciprocal v/c, (v/c)2, (v/c)3

Variable-Clause Graph Features
9-13 Variable nodes degree statistics mean, variation coefficient, min, max and entropy
14-18 Clause nodes degree statistics mean, variation coefficient, min, max and entropy

Variable Graph Features
19-22 Nodes degree statistics mean, variation coefficient, min, max

Clause Graph Features
23-27 Nodes degree statistics mean, variation coefficient, min, max and entropy

Balance Features
28-31 Ratio literals in each clause mean, variation coefficient, min, max
32-35 Ratio occurrence variables mean, variation coefficient, min, max
36-38 Fraction unary, binary, ternary clauses

Proximity to Horn Formula
39 Fraction of Horn Clauses
40-44 Number of occurrences in a Horn Clause mean, variation coefficient, min, max

for each variable

and an edge between the nodes whenever both clauses have the same
negated literal.

• Balance features, this group measures the balance of positive and negative
occurrences of the SAT instance. The ratios of positive and negative literals
within a clause and the ratio of positive and negative occurrences of each
variable are calculated.

• Proximity to Horn Formula, the final group measures the proximity
of the SAT instance to the Horn Formula. A clause is defined as a Horn
clause when it has at most one positive literal.

4.1.2 Features for Graph Coloring Problem

The Graph Coloring Problem is a problem where considering a graph, the goal is
to minimize the number of different colors to color all nodes in such a way that
no nodes sharing an edge have the same color. 48 features for the graph coloring
problem are identified based on the study from Musliu and Schewengerer [14].
The features can be categorized into the following five different groups depicted
in table 2.

• Graph size features, this group denotes the size of the graph, measured
by the total number of nodes and edges.

• Node degree, this group measures the degree of the nodes. Minimum,
maximum, mean, median, quartiles, variation coefficient and entropy are
calculated.

9

Table 2: Graph coloring features
Number Feature Description

Graph size Features
1 Number of nodes n
2 Number of edges m
3-4 Ratio n/m, m/n
5 Density (2*m)/(n*(n-1))

Node degree
6-13 Node degree statistics min, max, mean, median, Q0.25, Q0.75, vc, entropy

Maximal clique
14-20 Maximal clique statistics min, max, median, Q0.25, Q0.75, vc, entropy
21 Computation time
22 Maximum cardinality

Clustering Coefficient
23-29 Local clustering coefficient min, max, median, Q0.25, Q0.75, vc, entropy
30-36 Weighted local clustering coefficient min, max, median, Q0.25, Q0.75, vc, entropy
37 Computation time

DSATUR greedy coloring
38 Number of colors needed
39 Computation time
40-47 DSATUR statistics min, max, mean, median, Q0.25, Q0.75, vc, entropy

Computation time
48 Computation time

• Maximal clique, this group used a simple greedy algorithm to calculate
the maximal clique of each node.

• Clustering Coefficient, this group measures the clustering coefficient.
Both their classical definition [25] and their weighted values, where the
node coefficient is multiplied by their degree.

• DSATUR greedy coloring, this group calculates its statistics by using
the DSATUR algorithm [26].

• Computation time, the final feature is measured by the average time it
takes to generate the above features.

4.1.3 Binarization of the Features

Considering the Murtree algorithm, currently, the method only accepts binary
datasets and the features of the problems are in continuous values. We use
the sklearn library2 in Python to binarize our dataset. The library uses a k-
means algorithm to generate threshold values for the features and separates the
continuous values into two bins (1 or 0) based on the threshold value. This does
result in a loss of information from our dataset, which likely results in an optimal
decision tree with lower accuracy.

2https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.KBinsDiscretizer.html

10

4.2 Cost Function
The current MurTree algorithm calculates the misclassification score based on the
leaf misclassification of the subtree. Each problem instance has one label, which
is the optimal solution for that problem instance. For our solution algorithm,
the misclassification calculation is slightly adjusted to consider all available
algorithms on each problem instance. We prioritize the algorithms based on
their performance on the current problem instance. In this case, the runtime of
the algorithm on that particular problem instance. The reason for this strategy
is that some algorithm can perform close to each other, which mean they will be
penalized less if we calculate the cost based on the performance. In instances
where they are slow or unable to find a solution compared to other algorithms,
they will be penalized much more compared to the one instance, one algorithm
strategy.

Let C(D, ai) denote the total cost of the dataset D and the algorithm ai.
The total cost of algorithm ai can be calculated with C(D, ai) =

∑
c∈D p(c, ai)

where p(c, ai) is the performance score of the algorithm. Higher cost results in a
more sub-optimal algorithm. With this cost function, the goal is to minimize
the cost of each classification node.

5 Experimental Setup and Results
The goal of this section is to evaluate the performance of the optimal decision
tree construction algorithm and to compare it against the current state-of-the-art.
The performance is analysed based on 3 different datasets, each with a different
number of problem instances, features and solutions algorithms.

5.1 Dataset and Computational Environment
Datasets are collected from two different studies and one publicly available
benchmark dataset. The features of the datasets are calculated and binarized
based on the method in Section 4.1.

Graph Coloring dataset is collected from the variable ordering study [23].
432 graphs are generated from Culberson’s random instance graph generator
and another set of 137 graphs is collected from Dimacs Challenge [27]. After
calculating the features and removing instances where no algorithm can solve,
only 105 instances, with 4 solution algorithms remained.

For the MAXSAT dataset, we took the unweighted instances of the 2020
MaxSAT competition1. After generating the features, the number of problem
instances that are collected is 290 instances with 15 different solution algorithms.

Finally, the last dataset consisting of 1004 problem instances, 37 features and
532 different configurations of solution algorithms is collected from the study of
Vilas et al [7].

1https://maxsat-evaluations.github.io/2020/benchmarks.html

11

The experiments were run on a Java implementation of the algorithm and
on an AMD Ryzen 7 5800H CPU with 16 GB of RAM on a single processor and
a single algorithm at a time. The experiments were also run on a time limit of
five minutes. Furthermore, the performance of the algorithm is measured as the
runtime in ms.

5.2 Experiments to evaluate the Performance
and Scalability

In the following texts, some experiments are done on the performance of the
number of algorithms and a comparison in performance is made on the MIP
algorithm of Vilas et al [7] and this algorithm.

5.2.1 Experiments on the Algorithm Space A

One of the main differences between this algorithm and the MurTree algorithm [6]
is that for each instance, we take all available solution algorithms into account
whereas the MurTree algorithm only selects the optimal one. For this experiment,
we use the dataset of Vilas et al [7]. Where we use 200 problem instances and
test on different algorithm sizes with a maximum tree depth of four.

0 100 200 300 400 500
200
500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

5,500

Number of solution algorithms A

P
er

fo
rm

an
ce

Figure 3: Performance based on number of algorithms

Based on these results, we can conclude that the increase in runtime is
linear. The small difference that happens between 250 and 300 is due that the
optimal tree construction algorithm found a slightly larger optimal decision tree
compared to the results below 250 solution algorithms. But the overall difference
is not significant.

12

5.2.2 Comparison against MIP Implementation [7]

The aim of this research is to evaluate whether the Dynamic Programming
approach has better performance and scalability compared to the current MIP
implementation. The MIP approaches compute with a maximum tree depth of
three and a base of 50 solution algorithms. It is tested on a dataset size ranging
from 50 to 500 problem instances.

Unfortunately, there were no data on the computation speed of the MIP
approach. However, it is reported to have performance issues where the dataset
is over 200 problem instances and no feasible solution is found when the size is
over 500 instances within a time limit of one hour.

0 100 200 300 400 500
100

150

200

250

300

350

400

450

500

Number of problem instances

P
er

fo
rm

an
ce

Figure 4: Performance on MIP dataset

Based on the results, we can indicate that the algorithm is still able to
construct a tree within a second compared to the MIP implementation, even in
large instances. The results also show that the runtime increases linearly based
on the number of instances. As mentioned in the study of Demirović et al [6]
the most significant decrease in performance is due to the depth of the tree. The
dynamic formulation computes the tree on depth three or lower within seconds
but increases exponentially on larger trees.

Furthermore compared to the MIP implementation, the dataset is already
preprocessed with binarization. Which removes the calculations of selecting the
optimal split value for the feature. This is a trade-off where the algorithm will
be sped up by a significant amount but reduces the accuracy of the optimal
decision tree.

13

5.2.3 Performance on Different Datasets

For this experiment, the datasets of all 3 different problems are considered. The
performance of the algorithm is calculated based on the size of the datasets and
compared to each other. For the MIP dataset, we only take 50 algorithms into
account instead of the full 532 solution algorithms size since this impacts the
performance dramatically. Furthermore, for this experiment, the maximum tree
depth is set to four.

50 150 250 350 450 550 650 750

0.3

0.6

0.9

1.2

1.5
·104

Number of problem instances

P
er

fo
rm

an
ce

Figure 5: Performance on different datasets

MIP
SAT
GCP

The results indicate that the MIP dataset is still the fastest to compute while
having a larger algorithm size A compared to the other datasets. The other
difference between the datasets is the feature size. GCP has a feature size of
48, SAT has 44 and MIP has 37. This indicates that the feature size is more
impactful to the performance compared to the algorithm size. This makes sense
since for each split, all features are considered and for each of those features,
the total cost needs to be computed. However, a limitation of this experiment
is that the two datasets are relatively small, especially the GCP dataset which
only consists of 105 instances.

6 Conclusion and Future Work
This research showed that a dynamic programming formulation of constructing
optimal decision trees for algorithm selection problem is a fast approach compared
to the other state-of-the-art algorithm. This approach showed a significant speed-
up over different datasets, where, besides the depth of the tree, the number of

14

features has the biggest impact on the performance. Even on large datasets, the
algorithm is able to construct the optimal decision tree within seconds.

However, due to time constraints, possible research in the future is to test the
accuracy of the optimal decision tree, compared to the generalisations of the other
related works on optimal decision trees. Furthermore, one of those limitations
is also due to the small dataset of GCP and SAT problem instances. Another
option to be looked into is to consider a dynamic programming algorithm where
continuous feature values can be taken into the calculations since the majority
of the features are in continuous values.

7 Responsible Research
This research is done according to the FAIR principles [28]. It is vital to make
the used dataset and methods publicly available if possible as well to combat
the current reproducibility crisis [29]. The Murtree algorithm [6] has an MIT
license and allows for redistributing and modifying the code. Furthermore, the
source code is openly available from the repository3.

For the first principle "Findable", the datasets that are used are collected
from the annual MaxSAT competition [22] and the graph coloring problem [23].
Furthermore, the methods that are used to modify the dataset can be found in
the repository and in the Methodology section (4) of this paper.

"Accessible" principle: The data are written in a txt document, no authen-
tication or authorisation is needed to access the data.

"Interoperable" principle: The data and the infrastructure (code) are
interoperable. Other datasets can also be used, however, it needs to be converted
to the correct notation first. The algorithms used to convert it into the correct
notation can also be found in the repository.

"Reusable" principle: The data and the source code can be reused and are
provided with descriptions for better understanding and allow for replication or
modification.

8 Acknowledgements
We would like to acknowledge and thank our supervisor and responsible professor
for their valuable feedback and guiding this project: Koos van der Linden and
Emir Demirović. Furthermore, the course and teaching staff for setting up
this project and providing us the opportunity to learn important concepts and
academic skills. And finally, our group members for their peer feedback and
insights on this research topic: Sven Butzelaar and Valentijn Götz.

3https://github.com/Henweiz/cse3000

15

References
[1] David H Wolpert and William G Macready. “No free lunch theorems

for optimization”. In: IEEE transactions on evolutionary computation 1.1
(1997), pp. 67–82.

[2] John R Rice. “The algorithm selection problem”. In: Advances in computers.
Vol. 15. Elsevier, 1976, pp. 65–118.

[3] Sreerama K Murthy and Steven Salzberg. “Decision Tree Induction: How
Effective Is the Greedy Heuristic?” In: KDD. 1995, pp. 222–227.

[4] L Breiman et al. “Cart”. In: Classification and Regression Trees (1984).

[5] Steven L Salzberg. C4. 5: Programs for machine learning by j. ross quinlan.
morgan kaufmann publishers, inc., 1993. 1994.

[6] Emir Demirović et al. “MurTree: Optimal Decision Trees via Dynamic
Programming and Search”. In: Journal of Machine Learning Research 23.26
(2022), pp. 1–47.

[7] Matheus Guedes Vilas Boas et al. “Optimal decision trees for the algorithm
selection problem: integer programming based approaches”. In: Interna-
tional Transactions in Operational Research 28.5 (2021), pp. 2759–2781.

[8] Hyafil Laurent and Ronald L Rivest. “Constructing optimal binary decision
trees is NP-complete”. In: Information processing letters 5.1 (1976), pp. 15–
17.

[9] Litan Ilany and Ya’akov Gal. “Algorithm selection in bilateral negotiation”.
In: Autonomous Agents and Multi-Agent Systems 30 (July 2015). doi:
10.1007/s10458-015-9302-8.

[10] Frank Hutter et al. “Algorithm runtime prediction: Methods evaluation”.
In: Artificial Intelligence 206 (2014), pp. 79–111. issn: 0004-3702.

[11] Michail G Lagoudakis, Michael L Littman, et al. “Algorithm Selection
using Reinforcement Learning.” In: ICML. 2000, pp. 511–518.

[12] Yuri Malitsky et al. “Non-model-based algorithm portfolios for SAT”. In: In-
ternational Conference on Theory and Applications of Satisfiability Testing.
Springer. 2011, pp. 369–370.

[13] Serdar Kadioglu et al. “Algorithm selection and scheduling”. In: Interna-
tional conference on principles and practice of constraint programming.
Springer. 2011, pp. 454–469.

[14] Nysret Musliu and Martin Schwengerer. “Algorithm selection for the graph
coloring problem”. In: International conference on learning and intelligent
optimization. Springer. 2013, pp. 389–403.

[15] Sergey Polyakovskiy et al. “A comprehensive benchmark set and heuris-
tics for the traveling thief problem”. In: Proceedings of the 2014 Annual
Conference on Genetic and Evolutionary Computation. 2014, pp. 477–484.

16

https://doi.org/10.1007/s10458-015-9302-8

[16] Dimitris Bertsimas and Romy Shioda. “Classification and regression via
integer optimization”. In: Operations research 55.2 (2007), pp. 252–271.

[17] Dimitris Bertsimas and Jack Dunn. “Optimal classification trees”. In:
Machine Learning 106.7 (2017), pp. 1039–1082.

[18] Sicco Verwer and Yingqian Zhang. “Learning decision trees with flexible
constraints and objectives using integer optimization”. In: International
Conference on AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems. Springer. 2017, pp. 94–103.

[19] Sicco Verwer and Yingqian Zhang. “Learning optimal classification trees
using a binary linear program formulation”. In: Proceedings of the AAAI
conference on artificial intelligence. Vol. 33. 01. 2019, pp. 1625–1632.

[20] Xiyang Hu, Cynthia Rudin, and Margo Seltzer. “Optimal sparse decision
trees”. In: Advances in Neural Information Processing Systems 32 (2019).

[21] Gaël Aglin, Siegfried Nijssen, and Pierre Schaus. “Learning optimal decision
trees using caching branch-and-bound search”. In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 34. 04. 2020, pp. 3146–3153.

[22] Fahiem Bacchus et al. “MaxSAT Evaluation 2020: Solver and Benchmark
Descriptions”. In: (2020).

[23] Anthony Karahalios and Willem-Jan van Hoeve. “Variable ordering for
decision diagrams: A portfolio approach”. In: Constraints 27.1 (2022),
pp. 116–133.

[24] Eugene Nudelman et al. “Understanding random SAT: Beyond the clauses-
to-variables ratio”. In: International Conference on Principles and Practice
of Constraint Programming. Springer, pp. 438–452.

[25] Duncan J Watts and Steven H Strogatz. “Collective dynamics of ‘small-
world’networks”. In: nature 393.6684 (1998), pp. 440–442.

[26] Daniel Brélaz. “New methods to color the vertices of a graph”. In: Commu-
nications of the ACM 22.4 (1979), pp. 251–256.

[27] David S Johnson and Michael A Trick. Cliques, coloring, and satisfiability:
second DIMACS implementation challenge, October 11-13, 1993. Vol. 26.
American Mathematical Soc., 1996.

[28] Mark D Wilkinson et al. “The FAIR Guiding Principles for scientific data
management and stewardship”. In: Scientific data 3.1 (2016), pp. 1–9.

[29] Monya Baker. “Reproducibility crisis”. In: Nature 533.26 (2016), pp. 353–
66.

17

	Introduction
	Preliminaries
	Algorithm Selection Problem
	MurTree Algorithm
	High-Level Idea

	Related Work
	Methods Related to Solving ASP
	Optimal Decision Trees

	Methodology
	Feature Selection
	Features for Maximum Satisfiability (MaxSAT)
	Features for Graph Coloring Problem
	Binarization of the Features

	Cost Function

	Experimental Setup and Results
	Dataset and Computational Environment
	Experiments to evaluate the Performance and Scalability
	Experiments on the Algorithm Space A
	Comparison against MIP Implementation vilas2021optimal
	Performance on Different Datasets

	Conclusion and Future Work
	Responsible Research
	Acknowledgements

