GPU Accelerated X-Ray

1S

Image Synthes

Utkarsh Verma

ABorouyoa], jo AysiaAtu yrRd

GPU Accelerated X-Ray
Image Synthesis

by

Utkarsh Verma

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on Tuesday February 24, 2026 at 11:00.

Student number: 5955424

Project duration: ~ July, 2025 - February, 2026

Thesis committee: Prof. Dr. Harm Peter Hofstee TU Delft, Supervisor
Dr. rer. nat. Klaus Jiirgen Engel Philips, Supervisor
Dr. Ir. Matthias Moller TU Delft
Dr. Ir. Zaid Al-Ars External Advisor

Cover: “CUDA cube” by NVIDIA.

An electronic version of this thesis is available at http://repository.tudelft.nl.

o]
TUDelft

http://repository.tudelft.nl

Abstract

“There is no threshold dose below which radiation can be considered completely harmless.”
— Hermann J. Muller

Although originally formulated for radiation in general, this statement applies to X-ray imaging
as well, given its ionising nature. Even low-dose diagnostic procedures can damage DNA and
carry cumulative cancer risk, which has led radiologists to minimise patient exposure whenever
possible. These safety constraints limit the acquisition of large, diverse imaging datasets needed
for developing, validating, and benchmarking modern medical imaging systems. They also restrict
the number of projections that can be acquired in modalities such as computed tomography (CT),
requiring accurate volumetric reconstruction from fewer scans and thereby increasing the technical
demands on reconstruction algorithms.

Because acquiring realistic X-ray images is limited by patient safety, modern approaches first
use sparse CT scans to reconstruct an accurate volumetric model of the object of interest. From this
model, synthetic images can be generated through novel view synthesis, enabling large-scale offline
datasets for machine learning, system testing, and model validation without additional radiation
exposure. Beyond dataset creation, these synthetic projections can be produced in real time for
interactive applications such as digital twins, used in virtual physician training and integration
testing. However, generating high-fidelity synthetic images in real time remains challenging, given
the substantial computational requirments of the algorithm.

This thesis investigates ways to accelerate X-ray simulation using graphics processing unit
(GPU) implementations. Two techniques were developed: one based on voxelised models and
another using Gaussian mixture models (GMMSs). The approaches were evaluated in terms of visual
fidelity and rendering performance, achieving ~300 frames per second for voxel-based simulation
and ~40 frames per second for GMM-based simulation. Both techniques significantly reduce
computation time compared to baseline CPU implementations, while maintaining realistic image
quality suitable for virtual testing, physician training, and AI data generation.

These results demonstrate that GPU acceleration can enable real-time synthetic X-ray simu-
lation, supporting scalable dataset creation and interactive applications while maintaining strict
adherence to radiation safety principles.

Acknowledgements

I wish to thank my supervisors, Zaid, Peter, and Klaus (in no particular order), for their excellent
supervision, their unconditional and unwavering support, and their willingness to engage deeply
with all aspects of the project. While it is common for people to have a single supervisor, I feel
fortunate to have benefited from three experienced individuals. Suffice it to say, I had all my bases
covered. I am grateful for the opportunity to carry out my thesis project at Philips while enjoying
full exploratory freedom. Thank you for your trust and making it possible, Klaus.

As with any project, there were ups and downs, and I am truly fortunate to have friends who
helped me think clearly while also reminding me to experience all that life has to offer. For that, I
would like to thank Nic, Arjun, and Junzhe (F#7).

Last, but not least, I want to express my gratitude my family for making it possible to be where I
am today. I grew up watching my parents giving their all to ensure that no compromises were made
in my upbringing. Having been firsthand witness to their efforts, I find it difficult to put into words
how fortunate I feel to have them as my parents. I would also like to thank my elder brother for his
guidance, encouragement, and steady presence throughout my academic journey.

To all these people, thank you once again. This work would not have been possible without
your support.

Utkarsh Verma
Delft, Feb 2026

contents

Abstract iii
Acknowledgements iv
List of acronyms viii
List of figures ix
1 Introduction 1
1.1 TheSiS SCOPE . . o v vt i e e e e e e e e e e 2
1.1.1 Theproblemstatementttt 2

1.2 What makes real-time X-ray simulation challenging? 3

1.3 Research qUeStionsSt e 4

1.4 Contributions e 5

1.5 Thesisoutline e 5

2 Background 6
2.1 X LAY . o e e e e e 6
2.1.1 Howtheyaregenerated 6

2.1.1.1 Bremsstrahlung 6

2.1.1.2 Characteristic X-rays« oot it i it e 7

2.1.2 Howtheyinteractwithmatter 7

2.1.2.1 Photoelectriceffect L L 8

2.1.2.2 Comptonscattering i 9

2.1.2.3 Rayleighscattering 9

2.1.2.4 X-ray attenuation and Beer-Lambertlaw 10

2.1.3 Theiruse in medical imaging 11

2.1.3.1 Projectional radiographs and fluoroscopy 11

2.1.3.2 Computed tomography 12

2.2 X-ray simulation: A computer graphics perspective, o oL 13
221 Raygeneration e 14

2.2.2 Object-local transformations i 14

2.2.3 Volumetric integration alongrays 15

2.3 X-raysimulation: The currentstate 15
2.4 Graphics processing unit (GPU)ttt 16
241 GPUarchitecture e 17

242 Coalesced acCessot 18

243 Thread divergencettt e 20

2.4.4 Quantifying graphics processing unit (GPU) acceleration limits 21

2.5 EBvaluationmetrics e 22
2.5.1 Peaksignal-to-noiseratio(PSNR) L i 23

2.5.2 Structural similarity index measure (SSIM) 24

2.53 Kernelexecutiontime e 24

2,54 Limitations e e 25

Contents 6
3 Methodology 26
3.1 Benchmarking environment 26
3.2 Simulation setup e e 27
3.3 Profiling and benchmarking L 28
3.4 Benchmarking procedure 29
4 Simulation: Voxelised models 30
41 Dataencodingttt e e e e e 31
4.2 Computing the path attenuation 32
4.2.1 Thealgorithm e 33
4.2.1.1 Entryandexitparametersttt 33

4.2.1.2 [Imitialisation 33

42.1.3 Tterativetraversal e 33

4.3 GPUimplementation e 34
431 Baseline 34
4311 MetriCs . . . 34

4.3.2 Movetilinglogicto CUDAt eee.. 35
4321 Metrics 36

4.3.3 Use single-precision floating point (FP32) numbers 36
4331 MetriCs . . oot i e 37

434 Reducebranching 38
4.3.4.1 [Initial implementation 38

43411 MetricsS o 39

4.3.4.2 Eliminating the local memory accesses 40

43421 Metrics . .. oot e 41

4.3.5 Usinglook-up tables (LUTS)t i e 41
4351 MetriCs . . . v v i e 42

4.4 Limitationso e 42
44.1 Non-uniformrendertimes 43

4.4.2 Inefficient MmemoOIy USage v o v vt it e e e 44

5 Simulation: Gaussian mixture models (GMMs) 45
5.1 Converting voxelised modelstoGMMSs 46
52 Dataencodingt e e 47
53 GPUimplementationt e 47
531 Baseline 48
5311 MetriCs . . o o oo 48

5.3.2 Removedepthsorting 49
5321 MetriCs . . o oo i 50

5.3.3 Coalesce duplicate with keys() globalaccesses 51
5331 MetriCs . . . v oo e 52

534 UseAccuTile 53
5341 MEtriCS . . o v vttt e e e e e e e e e e 54

54 Limitationso e e e 54
54.1 Sortingand binningoverhead o L. 54

Contents 7

6 Results 56
7 Conclusion 61
7.1 Addressing the research questions 61
7.1.1 What maximum performance can be achieved when porting the existing CPU-
based X-ray simulation algorithm to the graphics processing unit (GPU)? 61
7.1.2 'What are the bottlenecks this approach suffers from, and how can better
algorithms be designed to alleviate them? 62
7.1.3 'What are the trade-offs for each approach in terms of performance, memory
usage, and visual fidelity? 63
7.2 ContribUtionso 63
7.3 Conclusionandoutlook 64

Bibliography 65

List of acronyms

3DGS - 3D Gaussian splatting xi, xi, xi, 16, 47, 47, 47, 47, 48, 48, 49, 49, 51, 53, 53, 53, 53, 54, 55

Al - arithmetic intensity 21, 22

BVH - bounded volume heirarchy 44
47,63

DDA - digital differential analyser x, 32, 44

DRR - digitally reconstructed radiograph 15, 15, 15, 15, 15, 15, 46

FBP - filtered back-projection 12, 12

FLOPS - floating-point operations per second 21, 22, 22

FP32 - single-precision floating point vi, x, xi, 36, 36, 36, 37, 37, 37, 37, 37, 37, 37, 41, 41, 56, 61,
61, 61

FP64 - double-precision floating point x, xi, 36, 36, 37, 37, 40, 61, 61

FPS - frames per second 3, 4, 4, 15, 28, 28, 58
47,47,48, 49, 50, 51, 52, 53, 54, 55, 58, 58, 58, 59, 59, 63, 64

GPGPU - general-purpose computing on graphics processing units 16, 17

GPU - graphics processing unit iii, iii, v, v, v, vi, vi, vii, ix, 4, 4, 4, 5, 5, 15, 15, 16, 16, 16, 16, 16, 16,
17,17, 17, 18, 18, 18, 20, 20, 20, 20, 21, 21, 21, 21, 21, 22, 25, 26, 26, 28, 28, 28, 29, 34, 34, 34, 34,
34, 34, 35, 35, 35, 35, 36, 36, 37, 38, 38, 39,42, 43, 47, 61, 61, 63, 63, 63

LUT - look-up table vi, 41, 42, 42, 42, 42, 42, 42, 56, 56, 56, 61

MSE - mean squared error 23

PSNR - peak signal-to-noise ratio v, 22, 23, 23, 23, 23, 23, 23, 24, 25, 28, 29, 37, 37, 37, 57, 59, 60

SDD - source-to-detector distance 27

SIMT - single instruction, multiple thread ix, 16, 20, 20

SM - streaming multiprocessor ix, 17,17, 17, 17,17, 18, 18

SOD - source-to-object distance 27

SSIM - structural similarity index measure v, 22, 24, 24, 24, 24, 24, 25, 28, 29, 37, 37, 37, 57, 59, 60

TASTI - Application-TAilored SynThetic Image generation ix, 2, 2, 2

WSL2 - Windows Subsystems for Linux 2 26

Figure 1.1
Figure 1.2
Figure 1.3
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6

Figure 2.7

Figure 2.8
Figure 2.9

Figure 2.10
Figure 2.11
Figure 2.12

Figure 2.13
Figure 2.14

Figure 2.15

Figure 2.16

List of figures

A hospital simulator with a C-arm machine for training physicians. 2
The virtual testing platform part of the TASTI project. 2
A voxelised model of the top half of a scanned human skull with 181 x 178 x 216

VOXEIS. .« o o e 4

A natural colour photogram where spectral assignments and sensitivity curves have
been scaled and shifted from visible light to X-ray (12-55 pm, 22-103 keV). Courtesy:

Wikimedia Commonsl. 6
Energy spectrum produced by an X-ray tube with a tungsten target [1]. 7
Photoelectric effectinaction [2]. 8
An illustration of Compton effect, where an incident photon strikes a valence

electron, scattering the photon [2]. L 9
Rayleight scatteringinaction [2]. L L L L 9

Mass attenuation coefficient u/p of several materials as a function of energy [3].
3
From this plot, it can be determined that mass attenuation approximately %

where Z is the atomic number and Eistheenergy. 10
First medical X-ray by Rontgen of his wife Anna Bertha Ludwig’s hand. Courtesy:

Wikimedia COmmONS2.ttt e 11
Plain radiograph of the right knee. Courtesy: Wikimedia Commons3. 11

Philips Azurion 7 B20/15 biplane imaging system showing the location of the
source and the detector, adapted from [4]. 12
An illustration highlighting the difference between convention ray tracing (a) and
X-ray tracing (b). Courtesy: X-Field [5]. L 13
An illustration of the world vs model coordinate frames. Courtesy: yet another
insignificant... programmingnotes*. L L L 14
NVIDIA Blackwell streaming multiprocessor architecture [6]. 17
Memory heirarchy of an NVIDIA A100 40 GB GPU. Courtesy: Arc Compute>. . . 18
Mlustration of warp execution and control-flow divergence on SIMT architectures.
Divergence forces serialised execution of different paths, reducing effective
throughput. e 20
An example roofline plot showing two algorithms with different arithmetic
intensities (Algo 1 and Algo 2) and their corresponding theoretical peak throughput

under different bandwidths (BWland BW2). 22
Example luma PSNR values for a cjpeg compressed image at various quality level.
Courtesy: Wikipedia®. e 23

Thttps://commons.wikimedia.org/wiki/File:Color_X-ray_photogram.jpg
2https://commons.wikimedia.org/wiki/File:First_medical_X-ray_by_Wilhelm_R%C3%B6ntgen_of his_wife_
Anna_Bertha_Ludwig%27s_hand_-_18951222.jpg
3https://commons.wikimedia.org/wiki/File:Knee_plain_X-ray.jpg
4https://www3.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html
Shttps://www.arccompute.io/arc-blog/gpu-101-memory-hierarchy
6https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Quality_estimation_with_PSNR

9

https://commons.wikimedia.org/wiki/File:Color_X-ray_photogram.jpg
https://commons.wikimedia.org/wiki/File:First_medical_X-ray_by_Wilhelm_R%C3%B6ntgen_of_his_wife_Anna_Bertha_Ludwig%27s_hand_-_18951222.jpg
https://commons.wikimedia.org/wiki/File:First_medical_X-ray_by_Wilhelm_R%C3%B6ntgen_of_his_wife_Anna_Bertha_Ludwig%27s_hand_-_18951222.jpg
https://commons.wikimedia.org/wiki/File:Knee_plain_X-ray.jpg
https://www3.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html
https://www.arccompute.io/arc-blog/gpu-101-memory-hierarchy
https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Quality_estimation_with_PSNR

List of figures 10

Figure 2.17

Figure 2.18

Figure 3.1

Figure 3.2

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10

Figure 4.11

Figure 4.12

Figure 4.13

A demonstration of SSIM’s structure-only sensitive nature. The colour-skewed
image (right) still has an SSIM = 0.97, which indicates it is visually similar the

original (left) although it is not. Courtesy: TestDevLab?. 24
An architectural overview of the simulation pipeline consiting of data entities

(blue), CPU (red) and gpu routines (green).covvvnnenen... 24
Ilustrations describing the X-ray simulation simulation scene. 27

Screenshot of the NVIDIA Nsight Compute interface. It provides easy access to
performance metrics such as execution time, floating-point utilisation, and memory
accessbehaviour. L L 28
An illustration of voxelising a rabbit mesh (Figure 4.2) with increasing voxel sizes
fromlefttoright. 30
Planar slices (Figure 4.3, Figure 4.3, and Figure 4.3) and 3D representation
(Figure 4.3) of the human skull model. Linear attenuation coffecient («) values have
been color mapped such that dark regions correspond to dense materials and vice

Ilustration of voxel traversal along a ray in 2D where [; ; is the length intersected
with (i, j)th voxel and &, and oy, denote the line fraction for the entry and exit

pointsrespectively [7]. 32
Timeline view from NVIDIA Nsight Systems for the baseline implementation.
Frequent cudaMemcpy () calls (thin red strips) dominate execution time. 35
CUDA API summary from Nsight Systems indicating that ~ 50 ms is spent on host-
device memory transfers. L L 35
Timeline view from NVIDIA Nsight Systems for the CUDA tiling implementation.
Excess cudaMemcpy () calls have been eliminated. 36

CUDA API summary for Nsight Systems confirming that only two cudaMemcpy ()

Pipeline utilisation (% of elapsed cycles) before and after switching to FP32 for the
0° projection. The total elapsed cycles decreased from 57746707.5 to 5209277,
corresponding to a reduction of —90.98%. L 37
Nsight Compute source inspector where lines containing local-memory backed

variablesareselected. 39
Roofline model for the first attempt at branch reduction. The lower roofline is for
FP64and mustbeignored. 40

Distribution of linear attenuation coefficient («) values in the skull voxel model.
Only seven distinct values are present and their materials have been labelled using
NIST’s X-ray mass attenuation database [8]. 41
Kernel runtime (ms) for each projection angle. They are view-dependent and
symmetricaround 90°. e 43
Ilustration of hierarchical digital differential analyser (DDA) in OpenVDB. Note
how uniform regions are clustered into a single datapoint. Courtesy: NVIDIA
Technical Blog8. o e 44

Thttps://www.testdevlab.com/blog/full-reference-quality-metrics-vmaf-psnr-and-ssim
8https://developer.nvidia.com/blog/accelerating-openvdb-on-gpus-with-nanovdb/

https://www.testdevlab.com/blog/full-reference-quality-metrics-vmaf-psnr-and-ssim
https://developer.nvidia.com/blog/accelerating-openvdb-on-gpus-with-nanovdb/

List of figures 11

Figure 5.1

Figure 5.2

Figure 5.3
Figure 5.4

Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8

Figure 5.9

Figure 5.10

Figure 6.1

Figure 6.2

Figure 7.1

Figure 7.2

An illustration comparing GMMs to voxelised models. Courtesy: Adapted from R2-

Gaussian [O]. it e 45
An overview of the forward pass of the R2-Gaussian algorithm. Courtesy: R2-
Gaussian [O]. . . ot e e e 47

An overview of the forward pass of the 3DGS algorithm. Courtesy: FlashGS [10]. .47
An illustration of the final accumulation step. Since it is just a sum, it is

commutative, and hence, order-independent. Courtesy: R2-Gaussian [9]. 49
Runtime breakdown for each kernel before and after depth sorting removal. . . . 50
NSight Compute’s suggestion to improve the kernel’s memroy access pattern. . . 51
Runtime breakdown of different kernels before and after coalescing global memory
ACCESSES. & i e e 52
Comparison between the tile intersection strategy in 3DGS and the AccuTile
method proposed in SpeedySplat [11]. 53
Runtime (ms) breakdown across kernels before and after the AccuTile

optimisation. e 54

An overview of the 3DGS rendering pipeline. The sorting step is necessary to
convert the Gaussian—Tile mapping to Tile—Gaussian mapping. Courtesy: Sort

Free Gaussians [12]. . . . oottt e 54
Comparing our voxelised algorithm with the state of the art implementation:
TIGRE. . . . e e 57

Comparing our GMM algorithm with the state of the art implementation: R2
Gaussian. e 58
Roofline charts for initial and final iterations showing rooflines for FP32 (higher)
and FP64 (IOWeETL). . . . o oottt et e e e e e e e e e e 61
Truncated view of the warp state statistics from Nsight Compute showing the
number of cycles per instruction the state the warpwasin. 62

Introduction

“Ionising radiation has sufficient energy to damage DNA within cells, potentially leading to muta-
tions and an increased risk of malignancies” [13]. “Epidemiologic studies indicate that the radiation
dose from even two or three CT scans results in a detectable increase in the risk of cancer, espe-
cially in children” [14]. These statements highlight “the” challenge in medical imaging: obtaining
diagnostically useful X-ray scans while minimising patient exposure. As X-ray imaging remains a
cornerstone of clinical diagnosis, from detecting fractures to identifying lung diseases and guiding
interventions, there is a pressing need for high-quality imaging data to train and validate diagnostic
tools safely.

High-quality X-ray datasets are essential for the development and evaluation of artificial
intelligence-based models. Machine learning algorithms require large and diverse datasets to learn
clinically relevant patterns, validate novel imaging techniques, and benchmark decision-support
systems [15,16]. Beyond machine learning applications, such datasets are also widely used in
industrial development workflows, where they support the design, calibration, and validation of
new imaging systems. However, acquiring extensive real-world X-ray data is limited by radiation
safety, patient availability, and privacy regulations. Consequently, conventional approaches to
dataset collection are constrained, particularly when repeated scans pose potential harm or are
ethically infeasible. CT faces similar limitations, creating a need to develop accurate models from
fewer scans.

Several strategies have emerged to address these challenges. Low-dose imaging combined with
Al reconstruction can improve image quality while reducing radiation exposure [15]. Synthetic X-
ray image generation enables the creation of realistic, high-fidelity images from limited datasets,
supporting model training, system validation, and physician training without additional patient
risk [16]. Data augmentation and transfer learning further enhance dataset diversity, minimising
the need for new scans [17,18]. Together, these approaches allow researchers to leverage large-scale
imaging data safely, accelerating the development of Al tools while adhering to the principle of “as
low as reasonably achievable” [19] in radiology practice.

12

Chapter 1: Introduction 13

1.1 Thesis scope

Figure 1.1: A hospital simulator with a C-arm ma-

Fi 1.2: The virtual testing platfi t of th
chine for training physicians. 1gure ¢ virtual testng platiorm part ot the

TASTI project.

This thesis is part of an internship project at Philips Medical Systems and contributes to the
European Application-TAilored SynThetic Image generation (TASTI) initiative [20], which aims to
develop a modular framework for synthetic image generation across a diverse set of applications.
For Philips, the TASTI project aims to create a virtual testing platform using synthetic image
generation, with three primary applications:

1. Physician training: A virtual environment provides hands-on experience safely, without
patient and trainee exposure, supporting risk-free and efficient training (see Figure 1.1).

2. Equipment testing: Synthetic images allow system integration tests without relying on an
actual X-ray source or an X-ray system at all, reducing safety concerns and accelerating devel-
opment.

3. Al data generation: Synthetic images enable large-scale dataset creation to train and validate
computer vision algorithms for system evaluation and medical analysis.

1.1.1 The problem statement

Developing a fully physically realistic X-ray simulator that accurately models the non-idealities
of the complete source-to-detector acquisition chain is an important and challenging research
problem. However, given the limited availability of flexible X-ray simulation frameworks® and the
practical constraints of this project, this thesis does not aim to model such physical complexities.

Instead, the focus lies on establishing a computationally efficient foundation for simulating
an ideal conic-beam X-ray source governed by the Beer-Lambert law [1]. The primary objective is
not to increase physical realism, but to investigate how such forward models can be engineered to
achieve interactive performance on modern hardware.

This requirement is driven by the intended deployment context. The simulator operates as part
of a digital twin used by Philips for testing systems in the Azurion series. The virtual detector must
reproduce the temporal behaviour of a real imaging chain: control software and downstream appli-
cations expect an image stream with timing characteristics identical to those of physical hardware.
Earlier simulation approaches were insufficiently fast to meet this constraint, resulting in timing
mismatches and integration issues. Achieving true real-time performance, defined here as sustained

9There exist only a few publicly available forward projectors for X-rays and this topic is covered in detail in
Section 2.3.

Chapter 1: Introduction 14

frame rates matching the physical detector, therefore becomes a functional requirement rather than
merely a performance target.
With this focus, and taking into account additional project constraints from Philips, the
following requirements were defined for the project:
o Render quality drops are acceptable as long as there are no visiblel0 artefacts in the output.
o The input for the renderer does not have to be limited to voxelised models, and new file formats
are permitted.
o The renderer must output an image in which each pixel represents the intensity perceived by
the detector.
o The frames must be rendered at least as fast as the real X-ray machine being simulated, i.e., >
60 frames per second (FPS).

1.2 What makes real-time X-ray simulation challenging?

Broadly speaking, simulating an X-ray image can be broken down into the following steps:

1. Scene initialisation: Positioning the source, object, and the detector, and specifying their
geometries.

2. Ray-casting: Shooting a conicall2 X-ray beam towards the detector and accumulating the atten-
uation for each pixel of the detector according to Beer-Lambert law [1].

3. Intensity calculation: The accumulated attenuation can be applied to the source intensity to
yield the perceived intensity for each pixel.

In this process, steps 2 and 3 are independent per-pixel operations and are the time-consuming

spots for all algorithms. The render times are strongly dependent on the resolution of the detector

and the level of detail encapsulated by the object being simulated.

Consider the simulation of a voxelised modell3 of W X H X T voxels on a detector of M X N
pixels. Such a simulation results in a total of M X N rays being cast from the X-ray source with
each ray accessing A = min(W,H,T) or A = l\/ W2+ H? + T2J voxels in their best (ray aligned to
shortest axis) or worst (ray aligned to the diagonal) cases respectively. This highlights the following
about the computation:

o Each render can be broken into n.,g, = M X N tasks that compute the intensity of each pixel.
o For a target frame rate F, this means npemory accesses = F X A X Ryaqrs memory accesses would be
made per second.

101t is difficult to objectively quantify the visibility of artefacts. However, Section 2.5 later introduces image fidelity
metrics that attempt to approximate perceptual quality.

HMachines from the Philips Azurion series. https://www.usa.philips.com/healthcare/brand/azurion-image-
guided-therapy-system

12X-ray beams can also be parallel, but this thesis only consideres conical beams.

13Just 3D arrays of cubes called voxels. They are treated in detail later in Chapter 2 and Section 4.1.

https://www.usa.philips.com/healthcare/brand/azurion-image-guided-therapy-system
https://www.usa.philips.com/healthcare/brand/azurion-image-guided-therapy-system

Chapter 1: Introduction 15

cm
000 0151 0.302 0.453 0,605
]

Figure 1.3: A voxelised model of the top half of a scanned human skull with 181 X 178 X 216 voxels.

To put things into context, take the example of simulating the skull model from Figure 1.3 with
W =181,H =178, T = 216 on a detector with M = N = 1024 for a target frame rate of F = 60 FPS.
This means that:

0 Nygs = 1024 X 1024 = 1048576.

O Mmemory accesses = 60 X A X 1048576. In the best case, Ayeg; = 178 which corresponds to a total of
Mmemory accessespest ~ 10 GiB/s. In the worst case, Ao = 333 which corresponds to at total of
Nmemory accesses;worst < 20 GiB/s.

Performing this simulation on the CPU without multithreading results in frame rates ~ 0.8 FPS.
To achieve the target frame rate of 60 would require a & 76-fold speedup. For CPUs, a common
optimisation would be to use multithreading and exploit the inherent parallelism of all n,q tasks.
However, for the required speedup, even in the best case of a purely parallel task, a total of 76 cores
would be needed which is impractical for the hardware used at Philips!#4. Looking at the memory
accesses, it hard to estimate the potential speedup that can be achieved by optimising them. Still, it
is known that they can’t be optimised to the extent required for interactivity.

Recognising the algorithm’s inherent parallel nature makes GPUs an obvious target for hard-
ware acceleration, as they provide massively parallel execution and thrive on workloads where a
large number of independent computations can be performed concurrently.

1.3 Research questions

Considering the criteria laid down in Section 1.1 and conducting a literature review helped identify

the following research questions for this thesis:

1. What maximum performance can be achieved when porting the existing CPU-based X-ray
simulation algorithm to the GPU?

2. What computational and memory bottlenecks arise in this GPU implementation, and how can
alternative algorithmic designs or data representations alleviate them?

3. What trade-offs do different simulation approaches exhibit in terms of performance, memory
consumption, and visual fidelity?

14Most developers only have workstations or laptops having 8-16 CPU cores

Chapter 1: Introduction 16

1.4 Contributions

To address the research questions from Section 1.3, this thesis makes the following contributions:

o A GPU-based implementation of an existing CPU X-ray forward projection pipeline, accompa-
nied by a systematic performance characterisation. At the time of writing, TIGRE (CERN) [21]
constitutes the only widely adopted open-source reference for voxel-based forward projection,
making this work one of the few openly documented and industrially validated real-time GPU
implementations in this domain.

o Anin-depth analysis of computational and memory bottlenecks limiting real-time performance,
including roofline-based evaluation and detailed profiling of global memory access behaviour.

o The development of two accelerated simulation approaches: one based on dense voxel traversal
and another based on Gaussian mixture models (GMMs), each achieving speedups of ~ 10x and
~ 3x compared to their respective state-of-the-art implementations.

o The first investigation of GMMs as a primary 3D representation for X-ray forward simulation.
While GMMs have been employed in CT reconstruction pipelines as intermediate or learned
representations, their use as a first-class data representation for forward X-ray simulation has
not been previously explored.

o A comparative evaluation of voxel-based and Gaussian-based approaches with respect to ren-
dering performance, memory usage, compression characteristics, and visual realism.

o An assessment of the suitability of both representations for real-time digital twin applications
in industrial X-ray simulation workflows.

1.5 Thesis outline

The remainder of this thesis is structured as follows. Chapter 2 provides an overview of X-ray
imaging, relevant simulation techniques, and related work. Chapter 3 describes the benchmarking
setup and profiling methodology used to evaluate performance. Chapter 4 and Chapter 5 detail the
implementation of the voxelised and GMM-based simulation approaches, respectively. Chapter 6
presents a comparative evaluation of rendering performance and visual fidelity. Finally, Chapter 7
summarises the key contributions and discusses the implications of this work.

Background

This chapter discusses the required background knowledge for the thesis. It starts by explaining X-
ray physics, the nomenclature, and imaging in Section 2.1. Then moving on to a brief introduction to
computer graphics in Section 2.2 and the current state of X-ray simulation in Section 2.3. Thereafter,
it concludes by covering the evaluation metrics in Section 2.5.

2.1 X-rays

Figure 2.1: A natural colour photogram where spectral assignments and sensitivity curves have been scaled
and shifted from visible light to X-ray (12-55 pm, 22-103 keV). Courtesy: Wikimedia Commons13.

X-rays are electromagnetic radiation and hence they transport energy through space using waves
and photons just like radio waves, visible light and microwaves. As with all forms of light, X-rays are
characterised by their frequency or wavelength. In literature, most sources define the wavelength
range of X-rays to be between 10 picometres and 10 nanometres [1,22]. This corresponds to photon
energies in the range of 100 eV up to 100 keV [1]. They were discovered in 1895 by Wilhelm Conrad
Rontgen who named it X-radiation to signify an unknown type of radiation [23].

2.1.1 How they are generated

X-rays can be generated in two fundamentally different physical ways, namely as Bremsstrahlung
and characteristic radiation.

2.1.1.1 Bremsstrahlung
Derived from the German words bremsen ‘to brake’ and Strahlung ‘radiation’, Bremsstrahlung
typically involves the interaction of high-speed electrons with the anode of an X-ray tube. Electrons

I5https://commons.wikimedia.org/wiki/File:Color_X-ray_photogram.jpg

17

https://commons.wikimedia.org/wiki/File:Color_X-ray_photogram.jpg

Chapter 2: Background 18

are accelerated by the tube’s acceleration voltage, moving them from the negative cathode to the
positive anode. When these high energy electrons collide with the anode material, they are decel-
erated and deflected by the electric fields of the atoms in the anode. The deceleration produces
X-rays with a continuous energy spectrum [1].

2.1.1.2 Characteristic X-rays

Characteristic X-rays, on the other hand, are produced when high-energy electrons eject inner-shell
electrons from atoms in the anode material, creating vacancies. To stabilise, electrons from outer
shells transition into these vacancies, releasing X-ray photons with energies equal to the difference
between the two shell levels. These energies are unique to the atomic structure of the target
material, resulting in a discrete spectrum with sharp peaks corresponding to specific transitions
[1]. When the continuous and discrete spectra are combined, the spectrum shown in Figure 2.2
is produced. An X-ray beam consisting of radiation with multiple energy levels is referred to as
polychromatic. Similarly, when only one energy level is present, it is called monochromatic.

«~ - Characteristic
, Radiation .
Bremstrahlung’, « .~ Bremstrahlung

/‘J I’MLH\\{/

— »

0 20 40 60 80 100 120 140

bt
o
w

Relative Intensity
s

o
=)
=1

Photon Energy
(keV)

Figure 2.2: Energy spectrum produced by an X-ray tube with a tungsten target [1].

2.1.2 How they interact with matter

X-rays interact with matter through several physical mechanisms whose likelihood depends on
both the photon energy and the atomic composition of the material. In the energy range relevant
for diagnostic imaging, three interaction mechanisms are of primary importance: the photoelectric
effect, Compton scattering, and Rayleigh scattering [1]. These interactions collectively determine
the attenuation of an X-ray beam as it propagates through matter.

Chapter 2: Background 19

2.1.2.1 Photoelectric effect

Binding energy (keV)
ﬂ:ev photoelectron
= - ad. — 7\4 B —

~0
100 keV ¢ /0/‘\/_/'
incident e P
photon /g/g =3 g" e I N <N Ao B
e F / 9 U
A MM R y P é“WWC
/ T Al Y\
¢ [4) | [¢ kT
“i é O b @ ,J ‘0 o &N X /‘J " ?
\ Y Ry P / [~]) N R S/ /L ® ¢
L LI e i d
W g R N e A
U\O \0\‘&7? - 3 U\Q e 9" JE Characteristic
‘\»g“ e e 5 _/0.0 X-rays:
oo © —6o—o—© A: 1 keV (N—M)

B: 4 keV (M—L)
C: 28 keV (L—K)
M <Ao< hg <y

Figure 2.3: Photoelectric effect in action [2].

The photoelectric effect was originally described by Einstein [24] following the establishment of
the quantised nature of light. It occurs when the energy of an incident X-ray photon exceeds the
binding energy of an inner shell electron of an atom in the target material. In this interaction, the
photon transfers its entire energy to the electron, which is subsequently ejected as a photoelectron.
The incident photon ceases to exist.

The removal of an inner shell electron leaves the atom in an excited state. To restore stability, an
electron from an outer shell transitions into the vacancy, releasing a photon with an energy equal to
the difference between the two shell levels. This results in the emission of characteristic radiation.
Consequently, the photoelectric effect produces a positive ion, a photoelectron, and a characteristic
X-ray photon.

For tissue-like materials, the binding energy of K-shell electrons is relatively low compared
to diagnostic X-ray energies. As a result, the photoelectron acquires nearly the full energy of
the incident photon. The probability of photoelectric absorption strongly depends on the atomic
number of the material and decreases rapidly with increasing photon energy.

Chapter 2: Background 20

2.1.2.2 Compton scattering

Compton scattering
Valence electrons

ﬁ-”"”g““\&\ —

-

é I\‘\ \\
\ \ \
\ \9\ Compton
g\ R electron (Eg.)
AN
H\
Incident oy
Pf(?gtc))n e \
? AT 8] Angle of deflection
,i 2R
AN 9
M<ho 7 “*._ Scattered
" photon (Ego)

Figure 2.4: An illustration of Compton effect, where an incident photon strikes a valence electron, scattering
the photon [2].

Compton scattering [25] is the dominant interaction mechanism for diagnostic X-ray energies in
tissue-like materials. As illustrated in Figure 2.4, it occurs when an incident photon interacts with
a weakly bound (valence) electron, transferring part of its energy to the electron and scattering the
photon through an angle 6.

The scattered photon retains a significant fraction of its original energy, particularly for small
scattering angles, while the “recoil” electron or Compton electron carries away the remaining
energy. The interaction results in a positive ion, a recoil electron, and a scattered photon. The
scattering angle can range from 0 to 180 degrees, with forward scattering being more probable at
diagnostic energies.

Compton scattering does not remove photons from the beam entirely but redistributes their
directions and energies, contributing to image degradation through scatter.

2.1.2.3 Rayleigh scattering

¢ 5 o e e M

/ / g e X \
N 5 // \\ e Scattered
A= [[(\ | |
1 é ? } ;‘K ? Ol photon

AT rooy "

Incident L & Sk
photon ‘Q\ ~Q ef
\“*-—-‘0_,-/’ /Q/M

\._\9‘17_9_/-/9/,/
7\,1 = KQ

Figure 2.5: Rayleight scattering in action [2].

Chapter 2: Background 21

Rayleigh scattering is a coherent interaction that predominates at low X-ray energies. It arises
from the interaction of an incident photon with bound electrons of an atom, typically involving
multiple outer shell electrons simultaneously. In this process, no electron is ejected and no energy
is transferred to kinetic energy.

Instead, the incident photon interacts coherently with the bound electron cloud of the atom.
The oscillating electric field of the photon induces a collective polarisation of the outer electrons,
creating a transient electric potential from which the photon is elastically scattered. The re-emitted
photon retains the same energy as the incident photon but may propagate in a different direction.
Because no ionisation or energy transfer occurs, Rayleigh scattering does not contribute to radiation
dose in the same way as inelastic interactions. In diagnostic X-ray imaging, its contribution to total
attenuation is generally small compared to photoelectric absorption and Compton scattering, and
the scattered photons are predominantly emitted in the forward direction.

2.1.2.4 X-ray attenuation and Beer-Lambert law

1000

A L-edge(s), Lead
N\

K-edge
lodine Lead

L gl

100

(wp) cm’lg
S
1l

il

Fat
0.1

nul

~
TT T T T T T T T 1717 T T T T T T 717

10 100 1000
Energy (keV)

Figure 2.6: Mass attenuation coefficient u/p of several materigls as a function of energy [3]. From this plot,
z

it can be determined that mass attenuation approximately o = where Z is the atomic number and E is the

energy.

The combined effect of the interaction mechanisms described above leads to attenuation of an X-
ray beam as it propagates through matter. This attenuation is quantified by the linear attenuation
coefficient u, which represents the cumulative probability per unit length of all relevant interaction
processes. Figure 2.6 shows how the mass attenuation can change depending on the material and
the X-ray photon energy.

For a monochromatic X-ray beam traversing a homogeneous material of thickness x, the trans-
mitted intensity I is related to the incident intensity I, by the Beer-Lambert law [1]:

I =Tpe #* (2.1)

In heterogeneous objects, the attenuation coefficient varies spatially along the ray path. In this case,
the transmitted intensity is given by the line integral of the local attenuation coefficient u(x):

—lni = f,u(x)dx (2.2)
Iy

Chapter 2: Background 22

In X-ray CT, this logarithmic relationship forms the basis for reconstruction algorithms, where a
large number of such line integrals are measured from different projection angles to recover the
spatial distribution of u.

2.1.3 Their use in medical imaging

Rontgen recognised the medical potential of X-rays almost immediately
after their discovery in 1895. Within weeks of his initial experiments, he
produced an image of his wife Anna Bertha Ludwig’s hand (Figure 2.7), |
clearly revealing the bones and her wedding ring. This image is widely E
regarded as the first medical radiograph and demonstrated, for the ‘
first time, the ability to visualise internal anatomical structures non-inva-
sively. Rontgen’s rapid dissemination of his findings led to the adoption
of X-rays in medical diagnostics within months, marking the birth of
radiology as a clinical discipline.

Since then, X-rays have become a cornerstone of medical imaging,
with applications spanning several distinct modalities, namely projec-

tional radiographs, X-ray CT, and fluoroscopy. Figure 2.7: TFirst med-
ical X-ray by Rontgen
of his wife Anna Bertha
Ludwig’s hand. Courtesy:
Wikimedia Commons1é.

2.1.3.1 Projectional radiographs and fluoroscopy
Projectional radiography is the most common use case of X-rays. It is
the practice of producing a two-dimensional image (see Figure 2.8) by
recording a single X-ray projection. This technique is routinely used for
diagnosing fractures, detecting lung pathologies in chest radiographs,
and identifying dental conditions. Differences in tissue density and
atomic composition lead to varying attenuation of the X-ray beam, creat-
ing contrast between structures such as bone, soft tissue, and air-filled
cavities.

Moving on, fluoroscopy extends projectional radiography by acquir-
ing images continuously over time, effectively forming a dynamic time

series. This enables real-time visualisation of anatomical motion and
device interaction within the patient. Fluoroscopy is particularly valuable
in interventional settings, where physicians must monitor the position of

Figure 2.8: Plain ra-
diograph of the right

knee. Courtesy: Wikime-

dia Commonsl7. instruments during a procedure or visualize vascular structures following

the injection of a contrast agent.

16https://commons.wikimedia.org/wiki/File:First_medical_X-ray_by_Wilhelm_R%C3%B6ntgen_of_his_wife_
Anna_Bertha Ludwig%27s_hand_-_18951222.jpg
17https://commons.wikimedia.org/wiki/File:Knee_plain_X-ray.jpg

https://commons.wikimedia.org/wiki/File:First_medical_X-ray_by_Wilhelm_R%C3%B6ntgen_of_his_wife_Anna_Bertha_Ludwig%27s_hand_-_18951222.jpg
https://commons.wikimedia.org/wiki/File:First_medical_X-ray_by_Wilhelm_R%C3%B6ntgen_of_his_wife_Anna_Bertha_Ludwig%27s_hand_-_18951222.jpg
https://commons.wikimedia.org/wiki/File:Knee_plain_X-ray.jpg

Chapter 2: Background 23

2.1.3.2 Computed tomography

Detector

Source
1670 mm 160 mm

65.8(

Figure 2.9: Philips Azurion 7 B20/15 biplane imaging system showing the location of the source and the
detector, adapted from [4].

CT scanning is a medical imaging modality where tomographic images or slices of specific areas
of the body are obtained from a large series of radiographs taken in different directions [26]. These
cross-sectional images can be combined into a three-dimensional representation of the internal
anatomy [27]. CT scans are a fast and cost-effective imaging modality used for both diagnostic and
therapeutic purposes across a wide range of clinical disciplines [27].

A CT imaging system consists of an X-ray source and a detector arranged on opposite sides
of the patient. During acquisition, the source-detector pair rotates around the patient, capturing a
large number of X-ray projections at different viewing angles. Each projection records the line inte-
grals of X-ray attenuation through the body along many ray paths. In modern systems such as the
Philips Azurion 7 shown in Figure 2.9, this geometry supports both conventional fluoroscopy and
cone-beam CT acquisition, enabling three-dimensional imaging in interventional environments.

The generation of three-dimensional images from these projection data is performed by tomo-
graphic reconstruction algorithms. One of the most widely used analytical methods is filtered back-
projection (FBP), which reconstructs an image by first filtering each projection to compensate for
frequency-domain distortions and then back-projecting the filtered data across the image domain
[26,28]. FBP is computationally efficient and remains prevalent in clinical practice, particularly in
applications where real-time or near-real-time reconstruction is required.

In addition to analytical methods, iterative reconstruction techniques are increasingly em-
ployed in modern CT systems. These methods formulate image reconstruction as an optimisation
problem, iteratively refining an image estimate to minimise the difference between measured pro-
jections and simulated projections generated from the current estimate [26]. Iterative approaches
can incorporate physical models of the imaging system, noise statistics, and prior knowledge,
enabling improved image quality and reduced noise, particularly in low-dose imaging scenarios.

Chapter 2: Background 24

More recently, model-based and data-driven reconstruction methods, including those incorpo-
rating machine learning, have been explored to further improve reconstruction quality and reduce
radiation exposure [27]. Regardless of the reconstruction approach, all CT algorithms rely funda-
mentally on accurate forward models of X-ray attenuation along rays. Consequently, efficient and
physically accurate X-ray simulation plays a critical role not only in image formation but also in
system design, algorithm validation, and the generation of synthetic projection data for research
and development.

2.2 X-ray simulation: A computer graphics perspective

Imaging Process Image
N ! 4

- ',Q:
=) Source
o
g 1
2 B

@ e :
S flectlon
~—~
) Scattering

TRt S - -
',{ \\ -~

=) ’ M \\

O ..l Vo N— s e .

1 1

X ‘\ 1: Pe"efraﬁon . -- "
— . .
C.Qz RS / b’

SCo A
Attenuation

Figure 2.10: An illustration highlighting the difference between convention ray tracing (a) and X-ray
tracing (b). Courtesy: X-Field [5].

Image synthesis in computer graphics is typically described as a simple scene abstraction: a camera
observes a three-dimensional object and produces a two-dimensional image on a screen. Rays are
cast from the camera centre through the image plane into the scene, where they interact with
surfaces and materials to contribute to pixel values.

In conventional 3D rendering, the camera is decoupled from illumination as shown in
Figure 2.10 (a). Light sources are positioned independently, and the pixel intensities are determined
by how surfaces reflect or scatter light. As a result, the transport of light is typically modelled as a
two-stage process: illumination from light sources to surfaces, followed by visibility from surfaces
to the camera.

X-ray image simulation fits naturally into this geometric framework but differs in the physical
interpretation of rays (see Figure 2.10 (b)):

o The light source is replaced by an X-ray source.

o The object encodes volumetric attenuation rather than surface reflectance.

o The image plane is replaced by a detector, typically a flat-panel detector.
This thesis considers only point X-ray sources emitting conical beams. Rays originate at the source,
traverse the object, and terminate at the detector without intermediate surface interactions. Image
formation is therefore governed by a single, unidirectional transport process, where each pixel
records cumulative attenuation along its ray path.

Chapter 2: Background 25

The fundamental distinction from conventional rendering lies in the interaction model: optical
rendering computes reflected light at surfaces, whereas X-ray simulation integrates attenuation
through volumetric material. Recursive ray tracing and surface visibility tests are unnecessary, and
effects such as reflection, refraction, or diffraction are negligible under typical diagnostic conditions
(see Subsection 2.1.2).

In this context, X-ray imaging can be understood as a forward rendering problem: rays are
cast from the source, and volumetric integration replaces surface shading. This correspondence
establishes a geometric and computational foundation that is reused throughout the remainder of
this thesis.

2.2.1 Ray generation

For each detector pixel, a ray is constructed that originates at the X-ray source and passes through
the corresponding point on the detector plane. This mirrors the pinhole camera model commonly
used in computer graphics, with the detector acting as the image plane.

Let 5, denote the source position in world coordinates and p,, the world-space position of a
detector pixel. The ray direction is given by

5 D, — S,
d=_to—ow_ (2.3)
” Pw — Sw ”
and the ray is parameterised as
H) =35, +td, t>0. (2.4)

This construction yields exactly one ray per detector pixel.

2.2.2 Object-local transformations

Model Spaces (xi,Vyi,zi)

Objects are typically created in their local spaces.
We need to bring them into the common waorld
space, via a series of affine transforms (translation,

World Space (x,y,z) rotation and scaling).

Figure 2.11: An illustration of the world vs model coordinate frames. Courtesy: yet another insignificant...
programming notes!s.

The scanned object is defined in its own local coordinate frame, allowing it to be translated or
rotated independently of the imaging system. Since the object’s data is encoded in this local frame,
rays or points defined in global coordinates must be transformed into object space using the inverse
object transformation. As an example, consider the model spaces shown in Figure 2.11. To access

18https://www3.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html

https://www3.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html

Chapter 2: Background 26

a model’s data, the model must be queried in its local coordinate frame X;. Hence, a point in the
world space must)_c'g must first be converted as:

X = Topj Xg (2.5)
where T, is the object-to-world transformation matrix. This formulation simplifies implementa-
tion and enables efficient evaluation of ray—object intersections and integrals, particularly when the
object representation is static while the imaging geometry changes.

2.2.3 Volumetric integration along rays

As a ray traverses the object, it accumulates attenuation due to interactions with matter along its
path. Under the Beer-Lambert law, the measured intensity I is related to the incident intensity I, by
1
—In+= = /,u(x) dx, (2.6)
Ip
where u(x) denotes the spatially varying linear attenuation coefficient.
The numerical evaluation of this line integral depends on how the object is represented
internally and on the chosen integration strategy. These aspects are independent of the geometric
formulation presented here and are addressed in subsequent chapters.

2.3 X-ray simulation: The current state

Early synthetic X-ray image generation techniques date back to at least the mid-1990s. The concept
of digitally reconstructed radiographs (DRRs), that is, simulated transmission images produced
by ray integration through a volumetric CT dataset, was established in the context of CT-based
virtual simulation and treatment planning as early as 1994-1995, where fast trilinear interpolation
algorithms were used to reformat CT scans into arbitrary DRR projections for clinical use [29].

Over the past two decades, DRRs have become a primary method for generating synthetic
X-ray images from volumetric datasets obtained from CT or reconstructed rotational X-ray scans.
Classical methods cast individual rays through the volume and integrate attenuation along each
ray to produce projection images; while accurate and physically grounded, these techniques are
computationally expensive and memory-bound for high resolution volumes. To address this, [30]
introduced the use of attenuation fields to accelerate DRR generation, precomputing extensive
light-field information to significantly reduce computation compared to conventional precomputed
DRR tables. Later, GPU acceleration became a natural fit for DRR pipelines: [31] reported roughly
100 FPS for 512x512 renders using algorithmic simplifications and specialized ray-casting, and [32]
further optimised DRR rendering on GPUs, achieving 190-370 images per second on commercial
devices, though these figures correspond to limiting the region of interest to 1024 pixels.

At the time of writing, only a handful of open-source X-ray simulators are available. Most of
these tools are personal or research projects that focus on polygonal or mesh-based geometries
rather than voxel models. Examples include xraySimulator [33], which operates on STL meshes
but is no longer maintained; Xray_Sim [34], a MATLAB-based personal project also relying on STL
meshes; XRaysim [35], and gVirtualXray [36], both supporting polygonal mesh models; and SYRIS
[37], which accommodates both geometric and mesh-based representations. While these simula-
tors can generate realistic X-ray projections from surface meshes, none natively support voxelised
volumetric models.

For volumetric X-ray simulation, the only widely used open routine is TIGRE [21], developed
primarily as a toolbox for CT reconstruction at CERN. TIGRE allows users to perform forward

Chapter 2: Background 27

projection on voxelised volumes, but it is not a dedicated X-ray simulator: documentation is
minimal, and users are generally expected to explore the source code and examples to understand its
functionality. Despite these limitations, TIGRE remains a common choice in research for simulating
projections from volumetric datasets.

In recent years, researchers have explored new ways to represent volumes that make X-ray
simulation and CT reconstruction faster and more flexible. Traditional forward projection uses
numerical integration over voxel grids, which can be slow and memory-intensive, especially for
large datasets or real-time applications. Inspired by neural rendering, Gaussian-based volumetric
representations have emerged as an alternative. Instead of storing values in fixed voxels, these
methods represent the volume as a set of 3D Gaussian “blobs” that can be combined and projected
efficiently.

Some key approaches include:

o Radiative Gaussian Splatting [33] - represents the volume with 3D Gaussian points and uses
a differentiable rasteriserl? to quickly generate X-ray projections. It is faster than earlier neural
approaches and works well for sparse-view CT data.

o R2-Gaussian [9] - improves the standard Gaussian splatting by adjusting the shape of the
Gaussians to reduce errors when projecting, enabling more accurate and efficient reconstruction
from limited angles.

o X-Field [5] - models material-dependent X-ray attenuation using 3D ellipsoids and efficient
path partitioning, achieving high-fidelity novel views and CT reconstruction.

Overall, these methods move away from rigid voxel grids and instead use continuous, flexible repre-
sentations. This makes forward projection faster, more memory-efficient, and naturally compatible
with differentiable reconstruction, opening the door for modern GPU-accelerated algorithms and
machine-learning-based approaches.

Parallel work on volumetrically consistent 3D Gaussian rasterisation [39] has shown that ana-
lytic integration of Gaussian primitives can yield physically accurate transmittance computations
suitable for tomography, bridging the gap between efficient rasterisation methods and volumetric
physics-based projection integration.

Together, these developments illustrate a trend toward continuous, differentiable forward
models that depart from discrete voxel grids, instead leveraging parametric or primitive-based rep-
resentations to improve computational efficiency, enable differentiable reconstruction, and better
exploit modern GPU architectures. In this thesis, forward projection is investigated for both tradi-
tional voxelised volumes and Gaussian mixture representations, highlighting the computational
trade-offs, performance implications, and opportunities for real-time synthetic X-ray simulation.

2.4 Graphics processing unit (GPU)

A GPU is a specialised processor originally developed for graphics and now widely used for
general-purpose computation. NVIDIA GPUs follow a single instruction, multiple thread (SIMT)
execution model, where groups of threads execute the same instruction across many data elements
while supporting multithreading to hide memory latency and expose parallelism [40]. This execu-
tion model is suitable for algorithms that can be massively parallelised and run on general-purpose
GPUs or general-purpose computing on graphics processing units (GPGPUs). This section will

19A rasteriser is a 3D Gaussian splatting (3DGS) term for something that takes in a set of Gaussians and renders a
2D image.

Chapter 2: Background 28

briefly describe the general architecture of NVIDIA GPUs and how to use them as GPGPUs. We
will also describe some practical techniques available through this interface.

2.4.1 GPU architecture

LO-Cache + Warp Scheduler + Dispatch (32 thread/clk) LO#-Cache + Warp Scheduler + Dispatch (32 thread/dk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

5TH

FP32 [INT32 GENERATION
TENSOR CORE

LOi-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

5TH
FP32 JINT32 GENERATION
TENSOR CORE

5TH

FP32 / INT32 GENERATION

TENSOR CORE

LOi-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

S5TH
FP32 JINT32 GENERATION

TENSOR CORE

128 KB L1 Data Cache / Shared Memory

Tex Tex

4TH GENERATION RT CORE

—= | B || 7O

Box Intersection Engine Triangle Cluster Intersection Engine Linear Swept Spheres

el | =

Opacity Micromap Engine Triangle Cluster Compression Engine

Figure 2.12: NVIDIA Blackwell streaming multiprocessor architecture [6].

At the core of GPUs lie many small, various cores (CUDA, Tensor, RT), which enable massive paral-
lelism. The different cores have different specialties, but CUDA cores are the standard processing
cores. These cores are grouped as streaming multiprocessors (SMs), with each having their own
schedulers, register files, and caches. Figure 2.12 shows the architecture of SMs in NVIDIA’s latest
Blackwell chips.

The SMs can execute multiple threads simultaneously, achieving high throughput through
parallelism. Threads running on an SM are grouped into thread blocks and into warps, which run in
lockstep. This means all threads execute the same instructions, potentially leading to inefficiencies
if there is divergence between threads in the same warp.

Chapter 2: Background 29

SM-0 SM-1 SM-(N-1)

I

L2 Cache (40 MB in A100)

I

Global Memory (DRAM, 40 GB in A100)

Figure 2.13: Memory heirarchy of an NVIDIA A100 40 GB GPU. Courtesy: Arc Compute20.

Similar to a CPU, GPUs have a hierarchical memory architecture (see Figure 2.13). The largest and
slowest type of memory is global memory. This memory is accessible to all threads and is relatively
plentiful, but it has the largest access latency and stricter requirements for optimal bandwidth
utilisation. The next layer is the L2 cache, which can reduce latency for frequently accessed memory.
Then comes the L1 cache, which functions as shared memory within a thread block. This memory
is located on the SMs themselves. It can be used to communicate between threads on the same SM
and to cache intermediate results before issuing expensive instructions to global memory. Memory
that is not required by the compute load can be used as a regular L1 cache. Finally, there is the
register file, which is used directly by the threads.

2.4.2 Coalesced access

Since GPUs employ a hierarchical memory architecture, efficient utilisation of global memory
bandwidth is critical for performance. In CUDA, threads are executed in groups of 32 known as
warps. When threads within a warp access global memory, their memory requests are combined
into as few memory transactions as possible. This process is known as memory coalescing.

Global memory is serviced in aligned memory segments (commonly referred to as sectors). On
modern NVIDIA GPUs, memory transactions operate on 32-byte sectors, which may be combined
into larger 128-byte requests depending on the access pattern. The number of memory transactions
required for a warp depends on two factors:

o The size of the data type accessed by each thread.
o The distribution and alignment of memory addresses across the warp.

20https://www.arccompute.io/arc-blog/gpu-101-memory-hierarchy

https://www.arccompute.io/arc-blog/gpu-101-memory-hierarchy

Chapter 2: Background 30

__global _ void uncoalesced access(float* input, float* output, int n) {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
if (tid < n) {
// Access with a stride of 32 (128 bytes), wrapped around to stay within

bounds

int scattered index = (tid * 32) % n;

output[tid] = input[scattered index] * 2.0f;

}
}
addresses from a warp
A
r]

AL N R S S ST S S R LR

o 32 64 96 128 160 192 224 288 256 320 352 384

Listing 1: Uncoalesced memory access pattern showing each thread (arrow) accessing data in a separate 32-
byte memory sector. Courtesy: NVIDIA Technical Blog?2!.

In the uncoalesced example shown in Listing 2.1, each thread accesses memory with a large stride.
As a result, the addresses requested by threads in a warp fall into different 32-byte sectors. Instead
of servicing the warp with a small number of aligned transactions, the hardware must issue many
separate memory transactions. For each 4-byte value requested by a thread, an entire 32-byte sector
may be fetched, with most of the transferred data unused. This leads to poor bandwidth utilisation
and increased memory latency.

By contrast, coalesced access occurs when consecutive threads access consecutive memory
locations. The kernel in Listing 2.2 demonstrates this optimal access pattern:

__global void coalesced access(float* input, float* output, int n) {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
if (tid < n) {
// Each thread accesses consecutive 4-byte words.
output[tid] = input[tid] * 2.0f;
}

1
addresses from a warp

m

N

0 32 64 96 128 160 192 224 288 256 320 352 384

Listing 2: Coalesced memory access pattern showing the threads (arrows) of a warp accessing a contiguous
128-byte memory region in four 32-byte sectors. Courtesy: NVIDIA Technical Blog22.

2lhttps://developer.nvidia.com/blog/unlock-gpu-performance-global-memory-access-in-cuda/
22https://developer.nvidia.com/blog/unlock-gpu-performance-global-memory-access-in-cuda/

https://developer.nvidia.com/blog/unlock-gpu-performance-global-memory-access-in-cuda/
https://developer.nvidia.com/blog/unlock-gpu-performance-global-memory-access-in-cuda/

Chapter 2: Background 31

In this kernel, consecutive threads in a warp access consecutive 4-byte elements of memory. A full
warp therefore accesses 32 X 4 bytes = 128 bytes of contiguous data. This access can be serviced
using four aligned 32-byte sectors, minimising the number of memory transactions. The hardware
efficiently aggregates the memory requests, resulting in near-optimal global memory bandwidth
utilisation.

For memory-bound workloads such as voxel traversal or forward projection through large
attenuation volumes, ensuring coalesced access is often the single most important optimisation.
Poor access patterns can degrade effective bandwidth by an order of magnitude, whereas properly
aligned and contiguous accesses allow the GPU to approach peak memory throughput.

2.4.3 Thread divergence

if (groupThreadID.x < 4){
A;
B;
} else {
X;
Y;

(]
on
=
(]
>
=
(=]
O
(]
=

» Time

Figure 2.14: Tllustration of warp execution and control-flow divergence on SIMT architectures. Divergence
forces serialised execution of different paths, reducing effective throughput.

As mentioned earlier, GPUs execute threads in warps and all threads within a warp execute
instructions in lockstep under the SIMT model. When all threads follow the same control flow (i.e.
no branches or identical branch outcomes), the warp can execute efficiently with all lanes active.
Control-flow divergence occurs when threads within the same warp take different branches of a
conditional. In such cases, the hardware must serialise execution of each unique path, masking out
threads that are not on the currently executing path. Only once all divergent paths are executed do
the threads reconverge. This behaviour is illustrated conceptually in Figure 2.14, where divergence
forces the warp to execute multiple sequences of instructions sequentially.
The cost of divergence arises from several sources:
o Serialised execution: Divergent paths cannot be executed in parallel; each path is issued in
turn, increasing total execution time.
o Idle lanes: Threads not on the active path remain idle while instructions for the other path are
being issued.
o Reconvergence overhead: Additional logic is required to manage reconvergence points and
track active thread masks.
In practice, divergent control flow has a pronounced effect when branch outcomes vary across
threads within a warp. For example, in ray traversal and voxel intersection kernels, per-ray decisions
(e.g. which axis to step next) can differ across neighbouring threads, leading to warp divergence.
Divergence penalises effective throughput because the GPU can only execute one active control
path at a time for the whole warp, reducing the number of useful operations issued per cycle.
Minimising divergence is therefore a critical optimisation on GPUs. Strategies include:
o Reformulating algorithms to eliminate or reduce conditional branches.
o Using branchless constructs (e.g. arithmetic masks or lookup logic) where possible.

Chapter 2: Background 32

o Ensuring that threads within a warp tend to follow the same control flow path.
These techniques improve both occupancy and utilisation of the arithmetic pipelines, leading to
higher sustained performance, especially in memory-bound, control-dependent algorithms such as
ray tracing and volume traversal.

2.4.4 Quantifying graphics processing unit (GPU) acceleration limits

The main strength of a GPU is in its massive parallel processing power. When a task can be executed
in a parallel fashion, it conceptually makes sense that its overall performance is enhanced. However,
there are limitations to what a GPU can achieve. There are two classes of constraints: fundamental
limitations of the algorithm to be accelerated, and hardware limitations of the GPU.

The first limitation is described by Amdahl’s law [41], which states that the overall performance
improvement of accelerating an algorithm depends on how much of the algorithm can be paral-
lelised. It states that

1

(1-P)++

Speedup =
where P is the part of the program that can be accelerated and N is the number of processors.

Following Amdahl’s law, the most crucial limitation for GPU acceleration is that the overall
acceleration potential is limited by the portion of the algorithm that can be accelerated.

While Amdahl’s law dictates the theoretical limit, it is too simplistic to estimate the perfor-
mance limit accurately. It is more important to consider the two main limitations of GPUs: (peak)
memory bandwidth and (peak) computational performance. Memory bandwidth is measured as the
number of bytes that can be transferred per second, and the computational performance is tradi-
tionally measured as the number of floating-point operations per second (FLOPS). Additionally,
any kernel can be characterised by using arithmetic intensity (AI), which is defined by the number
of floating-point operations per memory operation. The arithmetic intensity can then be used to
determine if a kernel is memory-bound or compute-bound, by comparing the compute bandwidth
to the effective memory bandwidth (AI x BW).

Chapter 2: Background 33

A

Accelerator | S S
peak FLOPs /s)| K

:

1

A : :

1 1

] 1

I 1

BW, . 1

1 I

FLOPs/s l :
(realized, : :
log-scale) : ;
1 1

1 1

. 1 Bandwidth 1

Bandwidth | o0 \qatewr, | COMPUte |

Boundat ! B dat !

BWi&2 | Compute oundat

! BoundatBW2 | BW1&2 |

1 1 | -
Critical hard int it =
Algo 1 or oW (arawere Algo 2

FLOPs/s / BW,)
Arithmetic intensity
(log-scale)

Figure 2.15: An example roofline plot showing two algorithms with different arithmetic intensities (Algo
1 and Algo 2) and their corresponding theoretical peak throughput under different bandwidths (BW1 and
BW2).

The roofline model [42] can be used to compare these. Figure 2.15 illustrates two algorithm where
in the red area, an algorithm is bandwidth bound at both bandwidths and is wasting some fraction
of the hardware’s peak FLOPS. The yellow area is bandwidth-bound only at the lower bandwidth
(BW1). The green area is compute-bound at all bandwidths. Here, the algorithms use the peak
FLOPS of the hardware and increasing bandwidth or improving intensity yield no benefit. Compu-
tational limits and memory limits define the two main bounds. The Al determines if the theoretical
maximum performance is limited by memory bandwidth or overall compute. This model can be
used to determine how to further improve a kernel within the limits of the underlying hardware,
by modifying the Al

2.5 Evaluation metrics

To assess the quality and performance of the proposed X-ray simulation methods, both image fidelity
and computational efficiency are evaluated. Image fidelity is quantified using PSNR and SSIM, while
performance is measured using kernel execution time on the GPU. Together, these metrics capture
complementary aspects of simulation accuracy and practical usability.

Chapter 2: Background 34

2.5.1 Peak signal-to-noise ratio (PSNR)

I

(a) Original uncom- (b) Q =90, PSNR = (c) Q =30, PSNR = (d) Q=10, PSNR =
pressed image 45.53dB 36.81 dB 31.45dB

Figure 2.16: Example luma PSNR values for a cjpeg compressed image at various quality level. Courtesy:
Wikipedia23.

PSNR is a widely used metric that quantifies the difference between two images on a per-pixel basis.
It is derived from the mean squared error (MSE) between a reference image I, and a test image Iy
of size W X H:

| WoiH-
MSE = —— > > (Let(is j) — Liest(is J))? (2.8)
WH i=0 j=0
PSNR is then defined as:
_ Lo

where I,,,, denotes the maximum possible pixel value (e.g. 255 for 8-bit images).
PSNR values are expressed in decibels (dB) and typically lie in the range [0, o0). In practice:

o Values above 40 dB indicate excellent agreement with almost imperceptible differences.

o Values between 30-40 dB suggest good quality with minor visible errors.

o Values below 30 dB generally correspond to noticeable image degradation.
Higher PSNR values correspond to closer agreement with the reference image. However, since
PSNR treats all pixel differences equally, it does not account for perceptual or structural distortions.
Small misalignments or localized artefacts can produce a disproportionately large PSNR penalty,
even if the image looks acceptable visually.

23https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Quality_estimation_with_PSNR

https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Quality_estimation_with_PSNR

Chapter 2: Background 35

2.5.2 Structural similarity index measure (SSIM)

SSIM was introduced to better align image quality assessment
with human visual perception by explicitly modelling structural
information in images [43].

SSIM compares a reference image I,.; and a test image I,
based on three components: luminance I(x,y), contrast c(x, y),
and structure s(x, y). The combined SSIM index is defined as:

SSIM(x, y) = I(x, y)*c(x, y)ﬁ s(x,y), (2.10)
where «, 8, and y are weighting parameters, typically set to 1.

SSIM values lie in the range [—1, 1], with a value of 1 indicat- Figure 2.17: A demonstration

ing perfect structural similarity. Unlike PSNR, SSIM is sensitive O0f SSIM’s structure-only sensitive
nature. The colour-skewed image
(right) still has an SSIM = 0.97,
which indicates it is visually similar
the original (left) although it is not.
Courtesy: TestDevLab?4.

to local structural distortions (Figure 2.17) and is therefore better
suited to assessing perceptually relevant differences in medical
images.

2.5.3 Kernel execution time

[Object Model

Initialisation] Image
[Scene Config
Render

Figure 2.18: An architectural overview of the simulation pipeline consiting of data entities (blue), CPU
(red) and gpu routines (green).

The computational performance of the proposed X-ray simulation methods is evaluated using the
execution time of the rendering kernel. This kernel performs the core computation of the simulation
by tracing rays through the object representation and computing the resulting pixel intensities for
the entire image.
To isolate the computational efficiency of the rendering algorithm itself, kernel execution time
is measured under the following assumptions:
o The object’s three-dimensional representation is already resident in device memory.
o The rendered image remains in device memory after kernel execution.
Under these conditions, the measured time reflects only the cost of ray traversal, numerical
integration, and associated memory accesses performed by the kernel. Host-side overheads such
as memory allocation, host-device data transfer, and kernel launch latency are explicitly excluded
from the measurement. In terms of simulation pipeline shown in Figure 2.18, this means measuring
the runtime of the Render routine alone.
This choice places emphasis on algorithmic optimisations, including memory access coalescing,
arithmetic intensity, and instruction-level parallelism, rather than on system-level integration
strategies such as streaming or asynchronous execution. While both aspects are important in a

24nhttps://www.testdevlab.com/blog/full-reference-quality-metrics-vmaf-psnr-and-ssim

https://www.testdevlab.com/blog/full-reference-quality-metrics-vmaf-psnr-and-ssim

Chapter 2: Background 36

complete GPU-accelerated application, this thesis focuses on improving the efficiency of the core
rendering algorithm.

Kernel execution time therefore provides a consistent and hardware-focused basis for compar-
ing different object representations and integration strategies under identical conditions. This
metric is particularly relevant for interactive and real-time X-ray simulation, where performance is
commonly limited by memory bandwidth and floating-point throughput rather than by control or
I/0 overhead.

2.5.4 Limitations

While PSNR, SSIM, and kernel execution time provide a quantitative basis for comparison, they do
not capture all aspects of image quality or system performance. In particular, these metrics do not
assess clinical relevance, diagnostic confidence, or user-perceived latency.

Nevertheless, they offer reproducible and widely accepted measures that are sufficient for
evaluating the numerical accuracy and computational characteristics of the proposed methods.

Methodology

This chapter describes the methodology used to evaluate the proposed X-ray simulation techniques.
It details the benchmarking environment in Section 3.1, the simulation setup in Section 3.2, and
the benchmarking approach used to assess both image fidelity and computational performance in
Section 3.3.

3.1 Benchmarking environment

All benchmarks were taken on a Lenovo ThinkPad P16 Gen 2 laptop with the following specifi-
cations:
o CPU: Intel Core i7-13850HX
o GPU: NVIDIA RTX A1000 Laptop GPU (CUDA Compute 8.6), 6 GB
o RAM: 32 GB DDR5
o Operating system: Arch Linux under Windows Subsystems for Linux 2 (WSL2) on Windows 11
Pro, with CUDA Toolkit 13.1 and Python environment managed by the uv package manager2>.

25https://docs.astral.sh/uv/

37

https://docs.astral.sh/uv/

Chapter 3: Methodology 38

3.2 Simulation setup

@ Detector
a
a
@
[0
o
=4
S
8
Primary e . % ¥o)
radiation -ray ube g
2 —
a
&l o
o 23 z
]
gl ¢ y
3| 2 Model
n 2
3 40)
Detector g
Fe)
o
2
[0
<
3
Generator 3

O

Source

(b) Schematic overview of the X-ray simulation
(a) A typical X-ray setup with the source, object, scene The world coordinate frame and the model
and the detector. Courtesy: Radiology Key2°. are centred on the isocentre.

Figure 3.1: Illustrations describing the X-ray simulation simulation scene.

For the simulation, the virtual scene is constructed as illustrated in Figure 3.1 (a). This scene models
a cone-beam X-ray radiograph acquisition setup and is parameterised to closely resemble the Philips
Azurion 7 configuration. These parameters have been defined as:

o Source-to-object distance (SOD): 80 cm

o Source-to-detector distance (SDD): 120.5 cm

o Detector size: 40 cm X 40 cm

o Detector resolution: 1024 X 1024 pixels
The rotation of the C-arm during image acquisition is modelled implicitly by rotating the object
volume while keeping the source and detector fixed in space. This approach is mathematically
equivalent to rotating the source-detector pair around a stationary object, but avoids repeated
reconfiguration of the imaging geometry.

In the simulator, the object is rotated about a single principal axis corresponding to the C-arm
sweep angle 6. The rotation is applied by updating the object-to-world transformation matrix used
in the camera model described in Section 2.2. This formulation naturally supports the generation
of multiple projection views by varying 6 while preserving a consistent imaging geometry.

Optional out-of-plane tilts can be incorporated by extending the transformation with additional
rotations; however, unless stated otherwise, all experiments in this work assume a single-axis
rotational trajectory.

Image formation in the simulator follows the forward-projection process described in Sec-
tion 2.1. For each detector pixel, a ray is cast from the source through the scene, intersecting the
object volume. The total attenuation along each ray path is accumulated according to the material
properties, yielding the detected intensity at the corresponding pixel.

26https://radiologykey.com/projection-x-ray-imaging/

https://radiologykey.com/projection-x-ray-imaging/

Chapter 3: Methodology 39

3.3 Profiling and benchmarking

[NVIDIA Nsight Compute = (=) X
File Connection Debug Profle Tools Window Help
@) Start Activity X s LIS S Baselines ¥ < > Metric Details Launch Details Function Stats
Documents o B X
Result Size Time Cycles GPU SM Frequency Process Attributes
[current 571-trace_rays kemel ~ ||V |~| (64,64,1)x(16,16,1) 2.44ms 3021,966 0-NVIDIARTX A1000 6GB Laptop GPU 1.24 Ghz (56378] python3.11
Summary Details Source Context Comments Raw Session £J Compare | | RTools .| @View .| Brkxport | | =

3 @ This table shows all results in the report. Use the column headers to sort the results in this report. Double-click a result to see detailed metrics. Double-click on demangled names to rename it.
Duration [Runtime Improvement [ms]
(29.54 ms) (10.91 ms)

0 IEOS ace roys kemel trace_rays_kemel. [N« [o.oc IS0 EEETEE EE I EEERE Keme: SMT
1 INEONE] tracerays kemel trace rays kernel. [NENGY NN TS I o I RGN DG Kemel: SIMT
> IGONG| roce_reys_kemel tace.reys_kernel. |NENEE] I e : I 7> EE NGOG RGN ere: SMT
- [conmeaeesewmay—) —————3 8 —— By | — | — ey
4 10.2u trace_rays_kemel trace_rays_kemel. [R5 NN 0.20 IS DI s TG I Kemel: SIMT
5 IEONG| roce_reys.kemel tace.roys_kenel. |G G G I - Es IO GG ere: SMT
o IR ‘race_oye_ kel trace_rays_keroel. | NENEE] 2 INGTE S > NS I R cnc ST
7 NG, trace_rays kemel tiace_reys_kernel. | NEHGH NN I N IS RN DG el SIMT
© IO voce_roys kemel uace rays kerel. [s N o.oc IS0 NS RS I ESEI Kenc: SMT

D~ Estimated Speedup %] Function Name Demangled Name Compute Throughput Memory Throughput [# Registers [register/t Grid Size Block Size [block] Result Type

The following performance optimization opportunities were discovered for this result. Follow the rule links to see more context on the Details page.
Note: Speedup estimates provide upper bounds for imizatic ial of & kemel. ing ts overall algorithmic structure is kept unchanged.

Uncoalesced Global Accesses This workload has uncoalesced global accesses resulting in a total of 9736824 excessive sectors (40% of the total 24563046 sectors). Check the L2 Theoretical Sectors Global Excessive table for the primary source locations. The @ CUDA
Est. Speedup: 39.36% ing Guide has additional i ion on reducing device memory accesses.

» Key Performance Indicators.

LITEX Global Load Access Pattem The memory access pattern for global loads from L1TEX might not be optimal. On average, only 5.8 of the 32 bytes transmitted per sector are utilized by each thread. This could possibly be caused by a stride between threads. Check the »
Est. Speedup: 10.92% Source Counters section for uncoalesced global loads. 3

Baselines - B x
& Difference Bars | Copper/Violet ~
Name Launch Report Time Cycles Registers GPU SM Frequency cc Process

= =]
Figure 3.2: Screenshot of the NVIDIA Nsight Compute interface. It provides easy access to performance
metrics such as execution time, floating-point utilisation, and memory access behaviour.

To accurately assess the computational performance and resource utilisation of the proposed algo-
rithms, NVIDIA Nsight Compute2’ was used as the primary profiling tool. Nsight Compute provides
fine-grained, kernel-level insight into GPU execution, exposing metrics such as kernel runtime,
instruction mix, memory access patterns, cache hit and miss rates across the memory hierarchy,
and overall hardware utilisation.

As the focus of this thesis is on accelerating the X-ray forward-projection computation itself,
performance measurements were restricted to the execution time of the core GPU kernels. Data
transfers between host (CPU) and device (GPU) memory were explicitly excluded from the mea-
surements. This approach isolates the computational cost of the projection algorithms and allows
for a fair comparison between different implementations.

To obtain stable and representative timing results, each kernel was executed multiple times
under identical conditions, and the average runtime per frame was recorded. The effective frame
rate (FPS) was then computed as the reciprocal of the average kernel execution time. For interactive
applications such as virtual system testing and physician training, real-time performance is consid-
ered achievable at a target rate of 60 FPS.

In addition to performance, image fidelity was evaluated using established quantitative metrics,
as described in Section 2.5:

o PSNR: It measures the pixel-wise difference between simulated and reference images in deci-
bels. Higher PSNR values indicate closer numerical agreement.

o SSIM: It assesses perceptual similarity by comparing luminance, contrast, and structural infor-
mation. SSIM values range from O to 1, with higher values indicating greater similarity.

27https://developer.nvidia.com/nsight-compute

https://developer.nvidia.com/nsight-compute

Chapter 3: Methodology 40

3.4 Benchmarking procedure

To benchmark the proposed algorithms, a dedicated C++ driver program was written. This program
performs the following steps:

Load the object representation into memory.

Initialise the X-ray source, detector, and scene parameters.

Launch the forward-projection GPU kernel for all rays corresponding to the detector pixels.
Transfer the rendered image from device to host memory and save it to disk.

Repeat steps 2-4 for multiple projection angles.

Kernel-level performance metrics were collected by executing this benchmarking program under

kv e

the NVIDIA Nsight Compute command-line interface (ncu). The profiler was configured to capture

a comprehensive set of metrics for the forward-projection kernel:
$ ncu --kernel-name=<name of render kernel> --set full \
--export <name of report> ./bench

The resulting profiling reports were analysed using the Nsight Compute graphical interface to
extract execution time, instruction mix, memory behaviour, and hardware utilisation metrics.
Image quality metrics, including PSNR and SSIM, were computed separately using a Python-
based evaluation script. The rendered images produced by the benchmarking program were
compared against reference projections to quantify numerical and perceptual fidelity.
For the sake of reproducibility and transparency, all benchmarking scripts, profiling reports,
and evaluation outputs are provided in the code repository2s .

28https://github.com/UtkarshVerma/gpu-accel-xray-sim

https://github.com/UtkarshVerma/gpu-accel-xray-sim

Simulation: Voxelised models

t¢¢6

(a) Surface mesh. (b) Voxel size = 0.03. (c) Voxel size = 0.05. (d) Voxel size = 0.08.

Figure 4.1: An illustration of voxelising a rabbit mesh (Figure 4.2) with increasing voxel sizes from left
to right.

Voxelised models represent three-dimensional anatomy as a discrete volumetric field defined over
a regular Cartesian grid. In practice, this field is stored as a dense 3D array of values, where each
voxel corresponds to a sample of a spatially varying physical quantity at fixed spatial intervals.
Instead of explicitly modelling object boundaries, the interior of the object is described through
these regularly spaced samples. In the context of X-ray simulation, the stored quantity corresponds
to either the mass attenuation density (u/p) or the linear attenuation coeffecient (u) distribution
within the object.

As illustrated in Figure 4.1, voxelisation converts a continuous surface representation into a
piecewise-constant volumetric approximation. Increasing the voxel size reduces geometric fidelity,
particularly near object boundaries, while decreasing the voxel size improves spatial accuracy at
the cost of increased memory usage and computational workload.

Since voxelised models directly encode volumetric attenuation properties, the overall simula-
tion pipeline remains unchanged from the formulation described in Section 2.2 and Section 3.2.
Rays are traced from the X-ray source to the detector, and attenuation is accumulated along each ray
path. The distinction lies solely in how the volumetric properties are queried and integrated during
ray traversal. To make this distinction precise, the data encoding of voxel models is described next.

41

Chapter 4: Simulation: Voxelised models 42

4.1 Dataencoding

(a) YZ slice at x = 90 mm. W (1/cm)
0.00 0.151 0.302 0.453 0.605

(b) 3D volume.

(c) XY slice at z = 108 mm. (d) XZ slice aty = 89 mm.

Figure 4.2: Planar slices (Figure 4.3, Figure 4.3, and Figure 4.3) and 3D representation (Figure 4.3) of the
human skull model. Linear attenuation coffecient (u) values have been color mapped such that dark regions
correspond to dense materials and vice versa.

As previously stated, a voxelised model is stored as a dense three-dimensional array of cubic cells
on a regular grid. Each voxel stores the linear attenuation coefficient (1), assumed constant within
its finite spatial extent.

Voxelisation can be interpreted as a discretisation of a continuous scalar field defined over
three-dimensional space. Let u(x, y, z) denote the continuous linear attenuation coefficient distri-
bution of an object. As is the case with most techniques, there exist multiple ways to voxelise a
continuous scalar field [44]. One of these approaches is to sample the field at discrete spatial
locations determined by the voxel size A,,. Hence, a voxel grid can be expressed as:

Mijr = M(Xi Y2 Z)s (4.1)
where

Chapter 4: Simulation: Voxelised models 43

Xi = Xg tildy, Yj=yo+ jAy, 2z =2zo+ kA, (4.2)
and (x,, o, 2) denotes the origin of the voxel grid in world coordinates.

Because each voxel represents a finite volume rather than an infinitesimal point, the stored
value uyg ;) approximates the average u over that voxel. This discretisation introduces an approxi-
mation error that depends on both the voxel size and the local geometric complexity of the object,
as seen in Figure 4.1. For example, the skull voxel model used throughout this thesis uses a voxel
size (A,) of 1 mm.

During simulation, rays traverse the voxel grid and attenuation is accumulated by integrating
these piecewise-constant voxel values along the ray path. As a result, voxel resolution directly
influences both numerical accuracy and computational cost, making voxel size a central parameter
in the evaluation of voxelised models.

4.2 Computing the path attenuation
The physics of X-ray attenuation along a ray path is governed by Eq. (2.6):

1
—In— = f,u(x) dx (4.3)
Ip
where u(x) denotes the spatially varying linear attenuation coefficient.

When the object is represented as a voxelised volume, the continuous integral can be approxi-

mated by a discrete summation over the voxels intersected by the ray:
I

Here, [; denotes the length of the ray segment inside the i voxel, y; is the linear attenuation
coefficient associated with that voxel, and N is the total number of voxels intersected by the ray.

P1(Pa1,Py1)

N, —1

Qe

: = L j T«
Omazx ° / b R yu

P2(Pa2s Py2)

X

Figure 4.3: Tllustration of voxel traversal along a ray in 2D where [; ; is the length intersected with (i, jth
voxel and &, and a;, denote the line fraction for the entry and exit points respectively [7].

The quantities {I;} and {u;} are obtained by incrementally traversing the voxel grid along the ray
direction. This traversal is commonly performed using digital differential analyser (DDA)-based
algorithms in three dimensions or closely related variants, such as the fast voxel traversal algorithm
by Amanatides and Woo [45], Siddon’s algorithm [46], Jacob’s algorithm [47], as well as later

Chapter 4: Simulation: Voxelised models 44

refinements [48,49]. The principle of voxel traversal is illustrated in Figure 4.3 which uses Jacob’s
algorithm.

4.2.1 The algorithm

Expressing Eq. (4.4) using the notation of Figure 4.3 yields
duv = Z luv,{i,j}:u{i,j}’ (4-5)
i<Nx,j<N,,
where d,, denotes the accumulated attenuation of ray uv, L, (; j; is the intersection length inside
voxel {i, j}, and Ny, N, are the number of voxels along each axis. For clarity the derivation is
presented in 2D; the 3D extension is direct.

Let the ray start at p; = (5"1) and end at p, = (Z"z). Its parametric representation is
y y
p(a) = p; + 0‘(52 - 51), a € [0,1]. (4.6)

4.2.1.1 Entry and exit parameters
The parameter values at which the ray intersects vertical and horizontal voxel planes are

. iAU — DPx1
a, (i) = —, 4.7
X() DPx2 — Px1 ()
.]AU — Py
a,(j) = ———, (4.8)
Y / py2 - pyl

fori € [0,N,] and j € [0, N,] and where A, is the voxel size.
The entry and exit parameters are obtained by restricting the ray to the intersection of the x-
and y-slabs:

Aentry = Max(min(e, (0), oty (Ny)), min(ay,(0), ay(Ny))), (4.9
Qexie = Min(max(a,(0), oty (Ny)), max(ery,(0), ay,(Ny,))). (4.10)
If dteyit < Aenury» the ray does not intersect the grid.
4.2.1.2 Initialisation
The total ray length [, = ”ﬁz — 51” , voxel step direction A = sign(p, — py), and parameter incre-
2

ments per voxel crossing are
1 1

S o=l T = pu] (10
Initial voxel index at the entry point:
i+= | Pe(@enuy) s J = | Py(@enty)] (412)
Initialize the traversal state:
O¢ = Oentrys Cray =0 (4.13)

The next intersection parameters «, and a,, are initialized to the first grid crossings beyond ctepry-

4.2.1.3 Iterative traversal
At each step, the next crossed plane is determined by comparing «, and .
If oty <oty

Chapter 4: Simulation: Voxelised models 45

dray += (0 — a)lioetg, jy (4.14)

i+=A, (4.15)

Qe = oty (4.16)

Oy += Ay (4.17)

Otherwise:

dpay += (0, — e)iolI (G,) (4.18)

J+=Jjhy (4.19)

o = ay, (4.20)

ay += oty (4.21)

The procedure continues until a, > a.;.. Simultaneous crossings naturally produce zero-length
updates and require no special handling.

Extension to 3D follows directly by introducing the z-direction and selecting the minimum
among a,, a,,, and a, at each iteration.

4.3 GPU implementation

The renderer was developed over a span of several iterations through profile guided optimisation
principles using Nsight Compute. These iterations are detailed below.

4.3.1 Baseline

The baseline rendering pipeline proceeds as follows:

1. Allocate a tile buffer of fixed size (16 X 16 pixels) on the GPU.

2. Project the model’s bounding box onto the image plane to identify the tiles that intersect the
volume, marking these tiles as active.

3. Process each active tile sequentially29:
1. Dispatch the tile buffer, along with the relevant volume and geometry data, to the GPU kernel.
2. Compute the contributions for each pixel in the tile on the GPU.
3. Copy the completed tile back to the CPU, insert it into the corresponding location in the final

image, and launch the kernel for the next tile.
Attenuation along each ray is computed using the algorithm described in Section 4.2.

4.3.1.1 Metrics

Table 1: Frame render times (ms) for the baseline implementation3°.

Projection 0° 30° 45° 60° 920° 120° 135° 150° 180° Average
Time 931.88 | 1132.57 | 1148.59 | 1102.2 | 796.03 | 1098.41 | 1147.19 | 1112.56 | 777.27 | 1027.41 = 151.33

Running the baseline implementation yields the execution times listed in Table 4.1. The measured
performance is only marginally better than the single-core CPU implementation, which renders a
frame in approximately 1.3 ms. This indicates that the GPU is not being effectively utilised.

291In Philips’ codebase, tiling was handled on the CPU to reduce memory footprint and enable multithreading.
Early design decisions made it difficult to implement a GPU pipeline without tiling, so this approach was used even
if it was less efficient for GPU execution.

30These times are not measured using Nsight Compute since the baseline implementation spawns too many
kernels.

Chapter 4: Simulation: Voxelised models 46

0l-baseline nsys-rep
= Timeline View ~ || @ options... |2 a Ix O 1error 3 wamings, 17 messages
1s» +60ms +80ms +100ms +120ms +140ms +160ms +180
100%
» CPU (28) o
— - L] | 1 LI
» GUDA HW (0000:01:00.0- N Memory
~ Threads (10)
~ [y [210030] render-nrrd » a1h il 12 Iy
o T
0S runtime libraries
———————— T T =
D G TN TR p— AR R LA AR CLEAED -
~ (cu.]
Profiler overhead .
V/[210050] rendernrrd » 010 100%
8threads hidden... — 4 0t0100%

Figure 4.4: Timeline view from NVIDIA Nsight Systems for the baseline implementation. Frequent
cudaMemcpy () calls (thin red strips) dominate execution time.

Time ~ Total Time Num Calls Avg Med Min Max StdDev Name

43.1% 245.338 ms 1 245.338 ms 245.338 ms 245.338 ms 245.338 ms 0ns culibraryLoadData

42.3% 240.792 ms 80.264 ms 398.671 ps 12.842 ps 240.380 ms 138.665 ms cudaMalloc
4.9% 27.981 ms 9.327 ms 624.125 ps 506.358 ps 26.850 ms 15.176 ms cudaFree
0.7% 3.806 ms 1 3.806 ms 3.806 ms 3.806 ms 3.806 ms 0ns cudaDeviceSynchronize
0.3% 1.611 ms 196 8217 ps 4.814 ps 2478 ps 520.248 ps 37.004 ps cudaLaunchKemnel
0.1% 435.964 ps 1 435.964 ps 435.964 ps 435.964 ps 435.964 ps 0ns cudaMemset
0.0% 20.410 ps 196 104 ns 74 ns 62 ns 540 ns 71ns cuKemelGetName
0.0% 9.036 ps 1 9.036 ps 9.036 ps 9.036 ps 9.036 ps Ons cuModuleGetlLoadingMode
0.0% 764 ns 1 764 ns 764 ns 764 ns 764 ns Ons culibraryGetKernel

Figure 4.5: CUDA API summary from Nsight Systems indicating that &~ 50 ms is spent on host-device
memory transfers.

Profiling with NVIDIA Nsight Systems reveals that the majority of execution time is spent in
repeated cudaMemcpy () calls, as shown in Figure 4.4 and summarised in Figure 4.5. Approximately
50 ms of runtime is attributed to host-device memory transfers, dwarfing the actual kernel execu-
tion time.

This behaviour is expected: in the baseline design, tiling and orchestration logic remain on
the CPU. As a result, intermediate data must be repeatedly transferred between host and device
memory, incurring significant PCIe latency and bandwidth overhead. Because these transfers are
synchronous and frequent, they effectively serialise execution and prevent the GPU from operating
at high throughput.

The primary bottleneck is therefore not arithmetic performance, but data movement across
the CPU-GPU boundary. The most direct optimisation is to eliminate unnecessary memory copies
by migrating tiling and control logic to the GPU. By keeping intermediate data resident in device
memory and allowing CUDA kernels to handle tile scheduling directly, host-device transfers can
be minimised, enabling substantially higher effective performance.

4.3.2 Move tiling logic to CUDA

To eliminate slow CPU < GPU transfers over the PCle bus, the library was restructured to support
algorithms without tiling. In the CUDA implementation, the following changes were applied:
o Tiling was removed entirely. A single kernel now renders the entire image.
o Projection logic was removed to simplify the initial implementation; it can be reintroduced later
if needed.
CPU«GPU traffic is reduced to just two transfers: the volume data (CPU — GPU) and the final
image (GPU — CPU), significantly improving throughput.

Chapter 4: Simulation: Voxelised models 47

4.3.2.1 Metrics

01-baseline.nsys-rep X [WASTERIIHEENEN

= Timeline View ~ || ® options... | | 2 Q I (@ 1 error, 3 warnings, 17 messag
0s » ms [91.5ms | +200ms +300ms +400ms +500ms +600ms +700ms +800m

100%

» CPU (28) o

Kernel

» CUDA HW (0000:01:00.0- N Memory 1

~ Threads (10)

oworoo] NS I, . AR L)) o HRE
~ [[11765] render-nrrd = H i i
H .
0S runtime libraries fr.. e e
CUDA profiling initializati
Profiler overhead (0 poTe 0
~ VI[1786l rendernrd » 010100% . |

-—
08 runtime libraries poll poll poll ... poll

Profiler overhead
8 threads hidden... — -+ 0t0100%

Figure 4.6: Timeline view from NVIDIA Nsight Systems for the CUDA tiling implementation. Excess
cudaMemcpy () calls have been eliminated.

Time ~ Total Time Num Calls Avg Med Min Max StdDev Name

64.5% 207.068 ms 2 103.534 ms 103.534 ms 338.933 ps 206.729 ms 145.940 ms cudaMalloc

15.8% 50.776 ms 1 50.776 ms 50.776 ms 50.776 ms 50.776 ms Ons culibraryLoadData

10.2% 32.633 ms 1 32.633 ms 32.633 ms 32.633 ms 32.633 ms Ons cudaDeviceSynchronize
6.9% 22.145ms 1 22.145 ms 22145 ms 22.145ms 22145 ms Ons cudaMemset
0.4% 1.415ms 2 707.547 ps 707.547 ps 482.887 ps 932.207 ps 317.717 ps cudaFree
0.3% 1.017 ms 1 1.017 ms 1.017 ms 1.017 ms 1.017 ms Ons cudalaunchKernel
0.0% 3479 ps 1 3479 ps 3479 ps 3.479 ps 3.479 ps Ons cuModuleGetLoadingMode
0.0% 647 ns 1 647 ns 647 ns 647 ns 647 ns Ons culibraryGetKernel
0.0% 422 ns 1 422 ns 422 ns 422 ns 422 ns Ons cuKernelGetName

Figure 4.7: CUDA API summary for Nsight Systems confirming that only two cudaMemcpy () calls happen
Now.

Running the profiler (see Figure 4.6 and Figure 4.7) revealts that only two cudaMemcpy () transfers
take place now instead of 3138 calls from before. This is well reflected in the kernel runtime
resulting in a 16.74x speedup.

Table 2: Kernel runtime (ms) before and after moving tiling logic to CUDA.

Projection 0° 30° 45° 60° 90° 120° 135° 150° 180° Average
Before 931.88 | 1132.57 | 1148.59 | 1102.2 | 796.03 | 1098.41 | 1147.19 | 1112.56 | 777.27 | 1027.41 = 151.33
After 46.66 68.99 71.79 68 46.52 67.99 71.79 68.98 46.66 61.93 + 11.57

Speedup 19.97 16.42 16 16.21 17.11 16.15 15.98 16.13 16.66 16.74 = 1.27

4.3.3 Use single-precision floating point (FP32) numbers

On the NVIDIA RTX A1000 GPU (Ampere architecture), the peak throughput for single-precision
floating point (FP32) arithmetic is 64 times higher than that of double-precision floating point
(FP64) arithmetic [50]. This disparity reflects a broader architectural trend across NVIDIA GPUs,
where significantly more execution resources are allocated to single-precision arithmetic than to
double-precision arithmetic. Given this, it was natural to evaluate how rendering performance
changes when switching from FP64 to FP32.
To perform this optimisation, the kernel was modified as follows:
o All double variables were replaced with float.
o Floating-point literals such as 1.0 were replaced with 1. 0f, since the C and C++ standards treat
unsuffixed floating-point constants as double by default [51].

Chapter 4: Simulation: Voxelised models 48

4.3.3.1 Metrics

Table 3: kernel runtime (ms) before and after switching to FP32 arithmetic.
Projection | 0° 30° | 45° | 60° [90° | 120° | 135° | 150° | 180° Average
Before 46.66 | 68.99 [71.79 | 68 |46.52]67.99 | 71.79 | 68.98 | 46.66 | 61.93 £ 11.57
After 421 | 565 | 585 | 559 | 416 | 558 | 585 | 5.64 | 421 | 5.19x0.76
Speedup | 11.08 | 12.21 | 12.26 | 12.18 | 11.19 | 12.18 | 12.27 | 12.23 [11.08 | 11.85+ 0.55

Switching to FP32 resulted in a substantial reduction in kernel runtime. Averaged across all projec-
tion angles, the kernel achieved an approximate speedup of ~ 12x, as shown in Table 4.3.
Several factors explain this performance improvement:

o The number of registers per thread (launch registers per thread) decreased from 66 to 48,
significantly reducing register pressure.

o Reduced register usage enabled higher occupancy, with achieved occupancy
(sm__warps_active.avg.pct_of peak sustained_active) increasing from 47.82% to 81.22%.

o The elimination of FP64 arithmetic, confirmed by the pipeline utilisation data in Figure 4.8,
shifted execution toward FP32 units. On Turing GPUs, each SM provides 64 FP32 units but
only 2 FP64 units, leading to significantly higher instruction throughput for single-precision
arithmetic [52].

Table 4: SSIM and PSNR metrics compar-

ing FP32 renders against the baseline.] Before
Angle (°) [SSIM | PSNR (dB) Ay = /Ixfter
0 1.0000 87.84
30 |1.0000| 75.16 FMA]:|
45 1.0000 73.77 FP64
60 1.0000 73.87

90 1.0000 83.99
120 1.0000 74.68

0 10 20 30 40 50 60 70 80 90 100
Figure 4.8: Pipeline utilisation (% of elapsed cycles) before and

135 1.0000 74.68 after switching to FP32 for the 0° projection. The total elapsed
150 1.0000 74.02 cycles decreased from 57746707.5 to 5209277, corresponding to
180 1.0000 87.84 a reduction of —90.98%.

Finally, image quality metrics indicate that the use of FP32 precision does not introduce any
measurable degradation in visual fidelity. As shown in Table 4.4, the PSNR exceeds 70 dB for all
projection angles, which is substantially higher than the 40 dB threshold for excellent image quality
defined in Subsection 2.5.1. This margin suggests that numerical differences between precisions are
negligible in practical terms.

Similarly, the SSIM values remain consistently close to 1, indicating near-perfect structural
similarity between the reference and reduced-precision projections. Together, these results confirm
that single-precision computation provides sufficient numerical accuracy for forward projection in
this setting, while offering the associated performance benefits.

Chapter 4: Simulation: Voxelised models 49

4.3.4 Reduce branching

As discussed in Subsection 2.4.3, GPU performance strongly depends on uniform and predictable
control flow. On NVIDIA GPUs, threads within a warp execute in lockstep, and any control-flow
divergence forces the warp to serialise execution paths. This directly reduces effective throughput.

This effect is visible in the warp execution efficiency metrics, that Iis,
smsp__thread inst executed per_ inst executed = 24.9 instead of the ideal value of 32. Such
values indicate frequent divergence within warps, primarily caused by axis-dependent branching
in the ray traversal and intersection logic.

4.3.4.1 Initial implementation

// Get the index of the minimum element in a 3D vector.

template <typename T, glm::qualifier Q>

__host device uint8 t arg min(const glm::vec<3, T, Q> v) {
const uint8 t xy
const uint8 t xz
const uint8 t yz = v.z < v.y;

V.y < V.X;

V.Z < V.X;

return (xy & ~yz) + ((xz & yz) << 1);

// Get the index of the maximum element in a 3D vector.

template <typename T, glm::qualifier Q>

__host device uint8 t arg max(const glm::vec<3, T, Q> v) {
const uint8 t xy
const uint8 t xz
const uint8 t yz = v.z > v.y;

V.y > V.X;

V.Z > V.X}

return (xy & ~yz) + ((xz & yz) << 1);
}
Listing 1: Branchless helper functions arg min() and arg max() that return the axis containing the
minimum or maximum component of a 3D vector.

// Before // Before
if (a.x >= a.y & a.x >= a.z) { if (a.x > 0.0f) {
// X-axis handling b.x = -c.x / a.x;
} else if (a.y >= a.z) { } else if (a.x < 0.0f) {
// Y-axis handling b.x = c.x / a.x;
} else { } else {
// Z-axis handling b.x = FLT_MAX;
} }
// Repeated for other axes
// After // After
const uint8 t hit axis = arg max(a); b = -glm::sign(a) * ¢ / a;

do something for axis(hit axis);
Listing 2: Replacing axis-dependent branching with Listing 3: Eliminating conditional assignments us-
branchless axis selection. ing arithmetic identities.

Chapter 4: Simulation: Voxelised models 50

To mitigate this, the kernel was refactored to eliminate most conditional branches. Since the kernel
is not compute-bound, additional arithmetic operations were preferred over divergent control flow.
The refactoring applied the following transformations:
o Axis selection logic was rewritten using branchless arg min() and arg max() functions (see
Listing 4.1).
o All axis-dependent operations were rewritten to use indexed vector access, e.g.
next beam fractions[hit axis], instead of explicit if-else chains (see Listing 4.2).
o Conditional assignments were made branchless using arithmetic identities (see Listing 4.3).

4.3.4.1.1 Metrics

Table 5: Kernel runtime (ms) before and after reducing branching (v1).
Projection | 0° | 30° | 45° | 60° [90° | 120° | 135° | 150° | 180° | Average
Before 421 565 | 585 1559|416 558 [5.85 | 5.64 | 421 | 519 £0.76
After 7.45110.35]10.61 [9.99 | 7.43 | 9.97 | 10.57 | 10.32 | 7.44 | 9.35 £ 1.45
Speedup | 0.57 | 0.55 | 0.55 | 0.56 |0.56 | 0.56 | 0.55 | 0.55 | 0.57 | 0.56 £ 0.01

Examining the runtimes in Table 4.5 reveals an unexpected result: the branch-reduced kernel
actually shows a slowdown of approximately 1.8x.

Profiling reports clarify the cause. On NVIDIA GPUs, registers are extremely fast but not
dynamically addressable[53]. When a variable must be indexed dynamically, the compiler cannot
place it in registers and instead allocates it in thread-private local memory. Despite its name, local
memory is backed by global memory, making it roughly 500x slower than registers [54].

Source:| D4-reduce-branching.cu - G| Navigate By: | Instructions Executed - Redo Resolve

Source Address Access Access he*
Space Operation Size
73
7 const glm::vec3 entry_point = source + entry_ray_fraction * ray;
75
76 glm: :ivec3 voxel = glm::ivec3((entry_point - wolume_origin) / world_size);
77 voxel[first_hit_axis] = static_cast<int=((voxel_steps[first_hit_axis] <= @) * (world_count[first_hit_axis] - 1)); Local Store 32
78
79 // Ray fracticns of the next intersection point (hit) aleng each axis.
89 glm: :vee3 next_hit_ray fractions = first_hit_ray fractions; Local(2) Store(2) 32, 64
Bl const uintB_t other_axes[] = fnext_axis(first_hit_axis, 1), next_axis(first_hit_axis, 2)%;
82 next_hit_ray_fractions[first_hit_axis] += delta_ray _fractiens[first_hit_axis]; Local(2) Load, Store 32(2)
83 For (uint8_t axis_index = @; axis_index < array size(other_axes); ++axis_index) {
84 const uintB_t axis = other_axes[axis_index];
85
86 const float next_hit_coordinate =
87 voxel[axis] + (voxel_steps[axis] = ©) * volume.voxel_size[axis] + volume_origin[axis]; Local(2) Load(2) 32(2)
88 next_hit_ray_fractions[axis] = Local(2) Store(2) 32(2)
89 (next_hit_coordinate - source[axis]) / ray[axis]; // TODO: Handle rayl[axis] = @.
99 ¥
91
4 o Tt o . ' ! ' . ' : o o ' » 4 »

Figure 4.9: Nsight Compute source inspector where lines containing local-memory backed variables are
selected.

This behaviour is also reflected in the metrics. Local memory loads
(l1tex__t_requests_pipe_lsu_mem_local op_ld.sum) increased from 0 to 30657588 following the
branchless transformation. These additional local memory accesses explain why the kernel ran
slower despite reducing branching.

Chapter 4: Simulation: Voxelised models 51

4.3.4.2 Eliminating the local memory accesses

Floating Point Operations Roofline

100 - |
10 ~

= [T
&
FEE
g &
E n ~
£ 01 =
&
=
=

0.01

1
0.1 1 10 100 1,000 10,000

HW Arithmetic Intensity [FLOP/byte]
Figure 4.10: Roofline model for the first attempt at branch reduction. The lower roofline is for FP64 and

must be ignored.

Knowing the cause of the slowdown also points to the remedy, that is, avoid dynamically indexing

variables that must reside in registers.
In the original kernel, dynamic indexing was used to reduce the number of computations along

certain axes. However, since the kernel is not compute-bound (see Figure 4.10), it is preferable to
trade a few extra arithmetic operations again for register-friendly code. This will avoid slow local

memory accesses.

// Before // Before
const uint8 t axis = arg min(a); bool axis_in_bounds =
alaxis] = b[axis]; voxel[axis] >= 0 &&

voxel[axis] < bounds[axis]

// After // After

const uint8 t axis = arg min(a); const auto axis mask = glm::bvec3(

const auto axis mask = glm::bvec3(axis == 0,
axis == 0, axis == 1,
axis == 1, axis == 2);
axis == 2); const glm::bvec3 in_bounds =

a = axis mask * b + (1 - axis_mask) * a; glm::greaterThanEqual (voxel,

glm::ivec3(0)) *
glm::lessThan(voxel,
glm::ivec3(bounds));
bool axis _in bounds =

(in_bounds.x * axis mask.x +
in bounds.y * axis mask.y +
in bounds.z * axis mask.z);

Listing 4: Arithmetic transforms using vector interpolation and masking to avoid dynamic indexing of

variables.

To implement this, assignments and bounds checks were rewritten using vector interpolation and
masking, as shown in Listing 4.4. These transformations preserve the original logic while elimi-
nating dynamic indexing, allowing the compiler to keep variables in registers and thereby improve

throughput.

Chapter 4: Simulation: Voxelised models 52

4.3.4.2.1 Metrics

Table 6: Kernel runtime (ms) before (using FP32) and after reducing branching (v2).

Projection | 0° | 30° | 45° | 60° | 90° | 120° | 135° | 150° [180° [Average
Before 4.21 5.65|5.85|5.59[4.16| 558 | 585] 5.64 | 421 | 519+ 0.76
After 2.66 331 3.9 [3.27]|264] 327 | 3.4 | 331|419 | 3.33+0.5

Speedup |1.58(1.71| 1.5 (1.71|1.57 | 1.71 | 1.72 | 1.7 | 1.01 | 1.58 +£0.23

As shown in Table 4.6, the results are now much more promising. The kernel achieves a speedup
of 1.58x compared to the baseline using FP32.

Furthermore, local memory accesses have returned to 0, confirming that the branch reduction
and vector masking optimisations successfully eliminated the local memory accesses.

4.3.5 Using look-up tables (LUTs)

Cortical Bone
(4 = 0.605cm™?)

Mixed Brain

(M =0.221 cm™?)
5.2%

Air
(4 =0.000cm™?) 18.1%

37.9%

22.7%

2.1%
5.3%
8.7% White Matter
(4 =0.216 cm™?)

Soft Tissue
(4 =0.180 cm~?)

CSF/Water
(n=0.206 cm~1)
Gray Matter
(4 =0.213 cm™?)

Figure 4.11: Distribution of linear attenuation coefficient () values in the skull voxel model. Only seven
distinct values are present and their materials have been labelled using NIST’s X-ray mass attenuation
database [8].

Voxelised models that represent biological anatomy often exhibit a highly sparse distribution of
linear attenuation coefficients (u). This sparsity arises because biological volumes are composed of
a finite and typically small set of constituent materials (e.g. air, soft tissue, bone). As a result, large
spatial regions share identical attenuation properties.

This behaviour is clearly visible in the skull model used throughout this thesis. As shown in
Figure 4.11, the entire volume contains only seven distinct u values.

Chapter 4: Simulation: Voxelised models 53

This observation motivated the use of a small look-up table (LUT) to compress the voxel repre-
sentation. Instead of storing a full-precision floating-point attenuation coefficient per voxel, each
voxel stores an index into a LUT containing the corresponding material coefficient. A LUT of 256
entries was used, enabling the voxel data to be stored as uint8_t values. This reduces the memory
footprint by a factor of four compared to the original float representation (1 byte versus 4 bytes
per voxel).

The LUT itself was placed in constant memory to exploit caching and broadcast behaviour,
since many neighbouring voxels reference the same material entry.

It is important to note that this optimisation primarily targets memory capacity rather than
execution speed. The dominant performance bottleneck of the voxel ray casting kernel, that is,
uncoalesced global memory accesses, remains unchanged. Consequently, no substantial runtime
improvement is expected from this approach. The principal benefit is the reduced memory foot-
print, which enables significantly larger volumes to fit within the available GPU memory.

4.3.5.1 Metrics

Table 7: Kernel runtime (ms) before and after using look-up tables (LUTs).
Projection | 0° | 30° | 45° | 60° | 90° [120° | 135° | 150° | 180° [Average
Before 2.66 331 3.9 (3.27]|264]| 327 | 3.4 | 331|419 | 3.33+£0.5
After 2.77 1347 13.57 342274 | 343 | 3.57 | 347 | 2.77 | 3.24 £ 0.37
Speedup | 0.96 (0.96 | 1.09 (0.95]0.97 [0.95 [0.95] 0.95 | 1.51 | 1.03 £ 0.18

Asexpected, the use of a LUT does not yield a statistically significant speedup. However, the reduced
memory footprint allows rendering of voxel models up to four times larger than before, which is a
practical and meaningful improvement when working with high-resolution anatomical data.

4.4 Limitations

Even after implementing the final iteration, this approach suffers from the following limitations
inherent to the data format.

Chapter 4: Simulation: Voxelised models

54

4.4.1 Non-uniform render times

3.2

2.8
2.4

1.6
1.2
0.8

Kernel runtime (ms)

0.4

60° 90° 120° 135° 150° 180°

Projection angle (°)

00

Figure 4.12: Kernel runtime (ms) for each projection angle. They are view-dependent and symmetric around
90°.

As discussed in Subsection 2.4.2, GPU performance strongly benefits from coalesced memory
accesses, where consecutive threads access consecutive memory locations. In the voxel-based ren-
dering kernel, however, this condition is not always satisfied. The sequence of voxels intersected by
aray depends on the viewing direction and the orientation of the object, which can lead to irregular
and strided memory access patterns.

This view-dependent access skew is reflected in the kernel execution times reported in Table 6.1
and Figure 4.12. Performance is highest for projection angles close to 0 degree, where memory
accesses are largely coalesced and fewer voxels are intersected. In contrast performance degrades as
the rays hit the model diagonally (45 °), where voxel-ray intersections increase and memory access
patterns become increasingly irregular.

Chapter 4: Simulation: Voxelised models 55

4.4.2 Inefficient memory usage

Figure 4.13: Illustration of hierarchical digital differential analyser (DDA) in OpenVDB. Note how uniform
regions are clustered into a single datapoint. Courtesy: NVIDIA Technical Blog3L.

Using voxelised models directly for X-ray simulation consumes significantly more memory than
necessary. In a dense voxel grid, every voxel occupies storage regardless of whether the region
contains meaningful variation. Large homogeneous regions, such as a chunk of soft tissue or bone,
are redundantly replicated across many voxels. This lack of compression leads to wasteful memory
usage and can make large anatomical models, like a full human body, extremely costly to store.

Furthermore, raw voxel grids do not support level of detail. To faithfully capture fine anatomical
features, every voxel must be as small as the finest detail in the model. As a result, the memory
requirement grows cubically with the desired resolution, quickly becoming infeasible for high-
resolution simulations.

More advanced data structures such as octrees or bounded volume heirarchies (BVHS) can
mitigate these issues by encoding empty or homogeneous regions efficiently and enabling multi-
resolution traversal. Libraries like OpenVDB [55] or NanoVDB [56] implement these strategies,
compressing sparse voxel data and providing fast access for ray-based simulation. As shown in
Figure 4.13, leveraging such sparse representations is a natural avenue for improving both memory
usage and computational performance.

3lhttps://developer.nvidia.com/blog/accelerating-openvdb-on-gpus-with-nanovdb/

https://developer.nvidia.com/blog/accelerating-openvdb-on-gpus-with-nanovdb/

Simulation: Gaussian mixture models
(GMMs)

Each Gaussian has: Each voxel contains:
* Position: (x, Y, z) e Linear attenuation coefficient: p
* Scales: (k;, k, k)

* Rotation: (w, X, Y, z) ¢ : g -

* Opacity: a . =

Gaussian Mixture Voxelised Model
Model

Figure 5.1: An illustration comparing GMMs to voxelised models. Courtesy: Adapted from R2-Gaussian [9].

Asdiscussed in Subsection 4.4.2, voxelised models, particularly the raw voxel grids used throughout
this thesis and still prevalent in industrial pipelines, encode volumetric data very inefficiently. Large
regions of uniform or slowly varying material properties are represented using dense, regularly
sampled grids, leading to excessive memory usage and bandwidth pressure during rendering.

An intuitive analogy can be drawn from image storage formats. Using a raw voxel grid to repre-
sent a volume is akin to storing images as uncompressed bitmaps, even when lossless formats such
as PNG or TIFF can represent the same visual information far more compactly. While voxel grids
are simple and convenient, they fail to exploit the underlying structure and redundancy present in
real-world data.

Since the performance of the baseline renderer is largely limited by memory access rather
than arithmetic throughput, adopting a more compact data representation is a natural direction for
optimisation. A representation that encodes the same volumetric information using fewer memory
accesses can directly translate into higher rendering performance.

This observation motivates the use of Gaussian primitives, and more generally, GMM, as an
alternative volume representation. Gaussian functions offer several properties that make them well
suited for this task:

56

Chapter 5: Simulation: GMMs 57

o They naturally support level-of-detail control, as individual Gaussians can vary in scale and
spatial extent.

o They provide a continuous representation of matter, in contrast to the discrete sampling imposed
by voxel grids, making them better aligned with the underlying physical interpretation of volu-
metric attenuation32.

o They allow large homogeneous or smoothly varying regions to be represented compactly using
a small number of primitives.

The remainder of this chapter explores how Gaussian mixture models can be used to encode volu-
metric data efficiently, and how such representations can be integrated into the rendering pipeline
to reduce memory traffic while preserving image quality.

5.1 Converting voxelised models to GMMs

GMMs are a relatively recent development in computer graphics [57] and are even more novel in
medical imaging and CT applications [38]. To date, no published work proposes their use as a first-
class storage representation for CT reconstruction models or for DRR generation. Instead, existing
approaches employ GMMs as an intermediate representation within reconstruction pipelines
[5,9,38].

In these pipelines, a limited number of projections are first generated from a voxelised model.
A GMM is subsequently fitted to the projection data through an optimisation or training procedure.
Once trained, the GMM becomes the primary representation for subsequent rendering or recon-
struction tasks. The resulting models are typically exported as point clouds33 consisting of Gaussian
primitives each parameterised by position, density, scale, and rotation.

Training such models constitutes a substantial research topic in its own right and lies beyond
the scope of this thesis. Consequently, this work assumes that a Gaussian point cloud?3? has been
trained using methods available in the literature (e.g., R2-Gaussian). The trained model is then
converted into a custom binary format tailored to the rendering pipeline developed in this thesis
using the provided conversion scripts.

The binary layout of the resulting .gmm file is defined as follows:

/// The file must be stored in little-endian byte order.
struct GaussianMixtureModel {
size t count = 0; ///< Number of Gaussians.

glm::vec3* positions; ///< Gaussian positions (means) in world space.
float* densities; ///< Pre-activated scalar density for each Gaussian.
glm::vec3* scales; ///< Pre-activated per-axis scales for each Gaussian.
glm::quat* rotations; ///< Normalized rotation quaternions (w, x, vy, z).
T
Listing 1: C struct defining the data layout of the GMM file format (.gmm) used for rendering.

32Gaussians impose smooth basis functions, which makes modelling sharp attenuation discontinuities (e.g., organ
or bone interfaces) inherently challenging compared to piecewise-constant voxel grids. However, they may capture
fine-scale structure more compactly and offer stronger perceptual compression, so whether they constitute a superior
anatomical representation remains an open question.

33The term “point cloud” is used because the models are commonly stored in .ply format, even though each
element represents an anisotropic Gaussian primitive rather than a geometric point.

Chapter 5: Simulation: GMMs 58

5.2 Dataencoding

pz@ﬂiz‘/lii‘)lm = pi

0T 4

ﬂ”#«f
dry =
: 959254 ’
Projection Composition ’
2990505
WA —

World Space Ray Space 2D Gaussians
Figure 5.2: An overview of the forward pass of the R2-Gaussian algorithm. Courtesy: R2-Gaussian [9].

Unlike voxelised models, where the Beer-Lambert law Eq. (2.2) manifests as a discrete summation
of voxel contributions along a ray, GMMs do not require explicit numerical evaluation of a line
integral through a sampled grid.

Given a set of Gaussian primitives, each Gaussian is first splatted onto the projection plane,
analogous to the procedure in 3DGS. The contribution of each projected Gaussian, modulated by
its density or opacity, is accumulated in image space to determine the final pixel intensity. Rather
than stepping along a ray and sampling attenuation values at discrete voxel locations, rendering
with Gaussian primitives evaluates the analytic projection of continuous volumetric functions.

This constitutes a fundamental difference in the rendering process. Voxel-based methods
approximate the volume integral through discrete sampling, whereas Gaussian-based approaches
exploit the continuous nature of the primitives and their closed-form projection behaviour.
Figure 5.2 illustrates this rendering pipeline in detail.

5.3 GPU implementation

P
Features
y[] i s
g Tile ID Depth_Gaussian 1D
s,R computeCov3D : 2. #1__ 4 #12
| P | E Pushl] T9p 41 #12 ||
Gaussian ID #1 3 #19 ~
i’ 1 RN P Fetch
=
y[n - Key [Value] : s a
= Key [Value]] : A4
Project) LEp w Key [Value]) Renderer
[sHs Key Value
T Rect radii Key [Value
‘ e _— 713 [719 il
' 4R — Rect || Depth | 74 | #12
P Gaussians N et €pi ¢ ' 3 1 .
Color ' Tile 1{Depth # 4 #12
S { Tile 2|Depth ;
compute Tile 3[Depth : : Image
y ColorFromSH [Tile 4|Depth
preprocessCUDA duplicateWithKeys RadixSort renderCUDA
Camera
d hod hd |
- I.Preprocessing PR I1.Sorting PN lILRendering *
J

Figure 5.3: An overview of the forward pass of the 3DGS algorithm. Courtesy: FlashGS [10].

The rendering pipeline used in this work is based on the R2-Gaussian algorithm [9], which itself
builds upon X-Gaussian [38]. X-Gaussian was the first work to adapt the 3DGS framework [57] for

X-ray computed tomography.
As in 3DGS, the forward pass of the pipeline (see Figure 5.3) can be decomposed into three

high-level stages:

Chapter 5: Simulation: GMMs 59

o Preprocessing

o Sorting

o Rendering

However, while 3DGS is designed for conventional optical rendering, where light reflects off
surfaces and radiance is view-dependent, R2-Gaussian models X-ray transmission, where radiation
penetrates the volume and is attenuated along the ray path. This fundamental difference in imaging
physics leads to several important deviations from the original 3DGS pipeline, beyond the structural
overview shown in Figure 5.3:

o View-dependent appearance modeling via spherical harmonics is omitted, as X-ray attenuation
is isotropic and independent of viewing direction [38].

o Gaussian primitives represent radiative attenuation rather than surface radiance, and therefore
contribute additively along the ray according to a transmission model instead of alpha composit-
ing.

o The rendering stage integrates contributions from all intersected Gaussians along each ray,
rather than terminating at the first visible surface.

o Camera and ray geometry are defined by known CT scanner parameters, eliminating the need
for learned camera poses or structure-from-motion initialisation.

o The rasterisation step is adapted to compute line integrals of attenuation, aligning the forward
pass with the physics of X-ray image formation.

These differences give rise to the algorithm illustrated in Figure 5.2.

5.3.1 Baseline

For the baseline implementation, the existing code from R2-Gaussian algorithm was extracted out
from the project and ran as it is with the trained skull model.

5.3.1.1 Metrics

Table 1: Kernel runtime (ms) for each projection angle in the baseline implementation.
0° 30° | 45° | 60° | 90° [120° | 135° | 150° | 180° | Average
70.99 | 71.67 | 73.54 | 73.68 | 73.67 | 74.76 | 75.22 | 76.61 | 76.33 | 74.05 £ 1.91

Chapter 5: Simulation: GMMs 60

5.3.2 Remove depth sorting

-
v

) Composition

V]
L V1

2D Gaussians

Figure 5.4: An illustration of the final accumulation step. Since it is just a sum, it is commutative, and

Rendered

hence, order-independent. Courtesy: R2-Gaussian [9].

Unlike 3DGS, tile contributions in R2-Gaussian do not require depth sorting prior to accumulation
(see Figure 5.4). Since the formulation models purely transmissive radiative transport rather than
alpha compositing of semi-transparent surfaces, the ordering of primitives along the ray does not
affect the final result. Although the original authors were aware of this property, as indicated by
a TODO comment in the implementation, they retained the depth-sorting step to remain closely
aligned with the 3DGS pipeline.

For the performance-critical use case considered in this thesis, this additional ordering step
introduces unnecessary overhead. Consequently, depth sorting was removed (see Listing 5.2), sim-
plifying the pipeline and reducing per-tile computation without affecting numerical correctness.

Chapter 5: Simulation: GMMs 61

// Before
// For each tile that the bounding rect overlaps, emit a key/value pair
// Key is | tile ID | depth |

// Sorting yields Gaussians sorted by tile, then by depth
for (int y = rect min.y; y < rect max.y; y++) {
for (int x = rect _min.x; x < rect_max.x; x++) {

uint64 t key =y * grid.x + x;
key <<= 32;
key |= *((uint32 t*)&depths[idx]);
gaussian_keys unsorted[off] = key;
gaussian_values unsorted[off] = idx;
off++;

// After
// For each tile that the bounding rect overlaps, emit a key/value pair

// Key contains only tile ID — no depth sorting within tiles
for (int y = rect min.y; y < rect max.y; y++) {
for (int x = rect_min.x; x < rect_max.x; x++) {

uint64 t key =y * grid.x + x;
key <<= 32;
// No depth in key — Gaussians within tile are unsorted
gaussian_keys unsorted[off] = key;
gaussian values unsorted[off] = idx;
off++;

Listing 2: Changes made to duplicate_with_keys for depth sorting removal.

5.3.2.1 Metrics

[1Before
[After

preprocess

duplicate with keys |
Sorting E

render]

0 4 8 12 16 20 24 28 32 36 40
Figure 5.5: Runtime breakdown for each kernel before and after depth sorting removal.

As shown in Figure 5.5, the duplicate with_keys now runs faster while the other kernels remain
unaffected. This is expected because the only the depth bookkeeping was removed from this
duplicate with_keys. Table 5.2 shows that this optimisation helps speed up the application by

1.04x.

Chapter 5: Simulation: GMMs 62

Table 2: Kernel runtime (ms) before and after removing depth sorting.
Projection | 0° 30° | 45° [60° | 90° | 120° | 135° | 150° | 180° | Awverage
Before 70.99 | 71.67 | 73.54 | 73.68 | 73.67 | 74.76 | 75.22 | 76.61 | 76.33 | 74.05 + 1.91
After 67.82 | 68.02 | 69.34 | 69.59 | 73.74 | 74.88 | 72.13 | 73.3 | 72.73 | 71.28 + 2.63
Speedup | 1.05 | 1.05 | 1.06 | 1.06 1 1 1.04 | 1.05 | 1.05 | 1.04 £0.02

5.3.3 Coalesce duplicate_with_keys() global accesses

Uncoalesced Global Accesst es This workload has uncoalesced global ac
Est. Speedup: 57.15% Programming Guide has additional inform

ulting in a total of 972925
£ o

ctors (61% of the total 1597238 sectors). Check the L2 Theoretical Sectors Global Excessive table for the primary source locations. The & CUDA
ducing uncoalesced device mer ses.

w Key Performance Indicators

Metric Name Value Guidance
derived_memory_I2_theoretical_sectors_global_excessive 972925 Reduce the number of excessive wavefronts in L2

Figure 5.6: NSight Compute’s suggestion to improve the kernel’s memroy access pattern.

Looking at the profile for the previous iteration revealed theat the duplicate with keys() kernel,
was performing a huge amount of uncoalesced memory accesses (see Figure 5.6). The original
3DGSduplicate with_keys() kernel assigns one thread per Gaussian. Each thread emits N, output
entries, where N, is the number of tiles overlapped by that Gaussian. Because different Gaussians
overlap different numbers of tiles, the number of writes per thread varies significantly. As a result,
adjacent threads within a warp write to non-contiguous memory locations. For example, thread
0 may write to indices 0-5, while thread 1 writes to 6-20. Across a full warp, this leads to highly
scattered global memory writes and poor coalescing.

This issue can be resolved by inverting the parallelisation strategy. Instead of launching one
thread per Gaussian that produces many output entries, we launch one thread per output entry.
Thread i writes exclusively to output[i], ensuring that adjacent threads in a warp write to consec-
utive memory addresses. This guarantees fully coalesced global memory stores.

To determine which Gaussian owns a given output entry, each thread performs a binary search
over the prefix-sum offsets of per-Gaussian tile counts. This requires O(log G) reads, where G is the
number of Gaussians, followed by simple arithmetic to compute the tile index within the Gaussian’s
bounding region. Although this introduces additional reads, they are highly cache-friendly: neigh-
bouring threads typically search similar regions of the prefix-sum array, leading to strong spatial
locality.

This transformation effectively trades scattered global writes for coalesced writes combined
with cached read operations. On modern GPUs, where global memory bandwidth is often the
dominant bottleneck, this exchange is advantageous. The result is improved memory efficiency,
higher effective throughput, and better overall kernel performance.

Chapter 5: Simulation: GMMs 63

5.3.3.1 Metrics

[_1Before
[After

preprocess

duplicate with_ keys []

Sorting]

render]

0 4 8 12 16 20 24 28 32 36
Figure 5.7: Runtime breakdown of different kernels before and after coalescing global memory accesses.

Figure 5.7 shows a significant speedup of 8.87x for duplicate with_keys, while the remaining
kernels are unaffected, as expected. As summarised in Table 5.3, this optimisation yields an average
speedup of approximately 1.27x compared to the previous iteration.

The performance improvement is directly attributable to the revised memory access pattern. By
replacing scattered global writes with fully coalesced stores, global memory latency is reduced and
effective bandwidth utilisation increases. Consequently, kernel execution time decreases substan-
tially without introducing additional computational overhead.

Table 3: Kernel runtime (ms) before and after coalescing duplicate_with_keys () lookups.

Projection | 0° 30° | 45° | 60° | 90° [120° | 135° | 150° | 180° | Average
Before 67.82 1 68.02 | 69.34 | 69.59 | 73.74 | 74.88 | 72.13 | 73.3 | 72.73 | 71.28 + 2.63
After 54.1 | 54.32 | 55.17 | 55.27 | 56.11 | 57.03 | 57.38 | 58.73 | 58.28 | 56.26 £ 1.68

Speedup 1.25 1 1.25 | 1.26 | 1.26 | 1.31 | 1.31 | 1.26 | 1.25 | 1.25 | 1.27 £0.03

Chapter 5: Simulation: GMMs 64

5.3.4 Use AccuTile

/ s cl

/xmaa:

o

%
N\
a

/ xmm{/ P

N | LV

e
(a) Tile-Gaussian intersection test used in (b) AccuTile intersection test from SpeedySplat
3DGS. [11].

Figure 5.8: Comparison between the tile intersection strategy in 3DGS and the AccuTile method proposed
in SpeedySplat [11].

During rendering, a tile-to-Gaussian mapping is constructed to determine which Gaussians con-
tribute to which screen-space tiles. This mapping phase is critical, as it determines the workload of
all subsequent rasterisation stages.

Inspection of the 3DGS implementation revealed that tile intersection is determined by
approximating each projected Gaussian as a circle in screen space (see Figure 5.9). While simple
and computationally inexpensive, this approach is conservative: the circular bound overestimates
the true footprint of an anisotropic 2D Gaussian. Consequently, many tiles are marked as active
even though their actual contribution is negligible. This overestimation increases the number of
tile-Gaussian pairs, inflates memory traffic, and negatively impacts rendering performance.

To address this inefficiency, existing optimisation work on 3DGS was considered. A more
accurate alternative is provided by the AccuTile algorithm introduced in SpeedySplat [11] (see
Figure 5.9). Instead of relying on a coarse circular approximation, AccuTile performs a tighter
intersection test based on the elliptical support of the projected Gaussian. This reduces the number
of falsely activated tiles, leading to a smaller working set and improved computational efficiency.

Chapter 5: Simulation: GMMs 65

5.3.4.1 Metrics

[_1Before
[After

preprocess
duplicate with keys E‘l

Sorting [——

render]

0 4 8 12 16 20 24 28 32 36
Figure 5.9: Runtime (ms) breakdown across kernels before and after the AccuTile optimisation.

As shown in Figure 5.9, the AccuTile optimisation substantially reduces the overall rendering
workload, decreasing the time spent in render from 39.49 ms to 15.92 ms. This reduction is primarily
due to the aggressive pruning of tile-Gaussian pairs, which lowers the number of primitives
processed in subsequent rasterisation stages, i.e. sorting and render.

The additional pruning logic introduces a modest overhead of approximately 1 ms in
duplicate with keys. However, this cost is negligible compared to the downstream savings
achieved by reducing the working set size.

Table 5.4 corroborates this observation, showing that the optimisation yields an average
speedup of 2.19x relative to the previous iteration.

Table 4: Kernel runtime (ms) before and after applying AccuTile for tile-Gaussian intersection.
Projection | 0° 30° | 45° | 60° | 90° [120° | 135° | 150° | 180° | Average
Before 54.1 | 54.32]| 55.17 | 55.27 | 56.11 | 57.03 | 57.38 | 58.73 | 58.28 | 56.26 = 1.68
After 24.73 | 23.85124.95| 25.09 | 27.03 [26.09 | 26.3 | 26.8 | 26.62 | 25.72 £ 1.1
Speedup | 2.19 | 2.28 | 221 | 2.2 | 2.08 | 2.19 | 2.18 | 2.19 | 2.19 | 2.19+0.05

5.4 Limitations

Even after implementing the final iteratinon of the algorithm, some limitations still remain.

5.4.1 Sorting and binning overhead

Gau1 Dep1 Gau1 Dep1 /
Gaul Dep1 A .
) Gau3 Dep3 aq,Cq .
g/ Gaul Dep1 i (Y;%, €3
i T< —_— — [Gownems]— €= %G “‘
Gau3 Dep3 +(1 —\ay) v
Gau2) Gau3 Dep3 Gau3 Dep3 +(1 =) — @)ascs
Gau3 Dep3
Gau3 Dep3 Gau3 Dep3 ‘
Image Gaussians Tiling Replication Sorting Rendering
Splatting 3DGS with sort

Figure 5.10: An overview of the 3DGS rendering pipeline. The sorting step is necessary to convert the
Gaussian— Tile mapping to Tile— Gaussian mapping. Courtesy: Sort Free Gaussians [12].

Chapter 5: Simulation: GMMs 66

Although the proposed implementation removes explicit depth sorting, the method still inherits
a strctural sorting step from 3DGS as shown in Figure 5.10. In tile-based rasterisation, Gaussians
are first assigned to screen-space tiles. This typically requires sorting or reordering primitives and
computing prefix sums to determine tile ranges before rasterisation.

While this operation is parallelisable on the GPU, it introduces non-negligible overhead and
additional memory traffic, particularly for large numbers of Gaussians or high-resolution projec-
tions. Thus, even without depth ordering, a global reorganisation of primitives per view remains
necessary.

Recent work such as Sort-free Gaussian Splatting via Weighted Sum Rendering [12] suggests
alternative accumulation strategies that reduce or remove sorting-based dependencies. Adapting
similar ideas to this work may further improve scalability.

Results

Table 6.1 shows the kernel runtimes for each iteration of the voxel-based renderer, along with the
average runtime and speedup compared to the baseline. The results indicate that each optimisation
step contributed to a significant reduction in rendering time, culminating in a final speedup of
approximately 316x compared to the original baseline implementation. As shown in Figure 6.1, the
presented algorithm also outperforms the state-of-the-art TIGRE implementations, with a 10.07x
speedup when compared to its Siddon implementation and a 7.75x speedup when compared to
its interpolated algorithm with an accuracy of 0.5 voxels per sample34. Moreover, the presented
algorithm allows rendering of volumes 4 times larger than what TIGRE does by using a LUT.

Table 1: A summary of kernel runtimes (ms) of various projection angles and speedup for each iteration.

Iteration 0° 30° 45° 60° 90° 120° 135° 150° 180° Average Speedup
TIGRE 22.65 36.63 41.54 36.16 23.15 36.25 38.38 36.6 22.65 32.67 £7.57 N/A
(Siddon)

TIGRE 24.97 25.05 25.08 25.1 25.05 25.09 26.1 25.05 24.97 25.16 £ 0.36 N/A
(Interpolated)

Baseline 931.88 | 1132.57 | 1148.59 | 1102.2 | 796.03 | 1098.41 | 1147.19 | 1112.56 | 777.27 | 1027.41 + 151.33 N/A
Move tiling 46.66 68.99 71.79 68 46.52 67.99 71.79 68.98 46.66 61.93 £ 11.57 16.74 + 1.27
logic to CUDA

Use FP32 4.21 5.65 5.85 5.59 4.16 5.58 5.85 5.64 4.21 5.19 +0.76 11.85 + 0.55
numbers

Reduce 2.66 3.31 3.9 3.27 2.64 3.27 34 3.31 4.19 3.33+£0.5 1.58 +0.23
branching

Use LUTs 2.77 3.47 3.57 3.42 2.74 343 3.57 3.47 2.77 3.24 +0.37 1.03 £ 0.18

34Subsequent discussions only consider the Siddon algorithm from TIGRE since it algorithmically similar to the
voxel rendering algorithm in this thesis. Additionally, the interpolated variant is not a fair comparison since it does
not work with LUTs and also trades off image quality for render times through the accuracy parameter.

67

Chapter 6: Results 68

50 ...
[TIGRE (Siddon)
45 ... : TIGRE (Interpolated)
_ [Ours
40 ... —
iéi/ £33 CCLECTTETTTRERPE N FEPPPER I FECPPEY [EEPPRRPRRRPPRPYER] [N SYPERPE BN FEPPRRN B FETRPPRPPRTPPPRRPRRRY
[« e ¥ T T I P I e e e I I B T B T e T
g%
§ 25 __ b— | e —__ ... TN B S __
E 20 P I I
g
M 15 P I I
10 P I I
5 T
0 DA AAEITAAA]E

0° 30° 45° 60° 90° 120° 135° 150° 180°
Projection angle (°)

Figure 6.1: Comparing our voxelised algorithm with the state of the art implementation: TIGRE.

Table 2: Image fidelity metrics compared to the baseline and TIGRE.

Projection 0° 45° 90 ° 135° 180 °
)
TIGRE (Sid-
don)

Our algo-

rithm
SSIM 1.00 1.00 1.00 1.00 1.00
PSNR 86.78 dB 75.69 dB 85.62 dB 76.29 dB 86.01 dB

Table 6.2 shows that the proposed voxel rendering algorithm achieves image quality equivalent to
TIGRE, the state of the art, as indicated by an SSIM of 1 (structurally identical images) and PSNR
values well above 45 dB, which corresponds to excellent visual fidelity.

Chapter 6: Results 69

L0 freeesese e
Y —— P
80 [
70l T e T o T T e T e L] e

60 ...
50 ...
40 ...

Kernel runtime (ms)

30 ...
20 oo . . oo . 4 Il.-.....
10 oo . . oo . 4 Il.-.....

0
0° 30° 45° 60° 90° 120° 135° 150° 180°
Projection angle (°)

Figure 6.2: Comparing our GMM algorithm with the state of the art implementation: R2 Gaussian.

On the Gaussian side of things, the results are also promising. As shown in Figure 6.2, our
implementation of the R2-Gaussian algorithm achieves real-time performance on the trained skull
model, with frame rates in the 40 FPS regime, which is a 2.88x improvement over the reference
implementation, as shown in Table 6.3. The use of Gaussian primitives allows for a more compact
representation of the volume, reducing memory bandwidth requirements and enabling faster

rendering.

Table 3: A summary of kernel runtimes (ms) for different stages of the GMM rendering pipeline for each

optimisation.
Iteration Preprocess | DuplicateWithKeys | Sorting | Render | Total
R2 Gaussian (Baseline) 0.1 18.02 12.26 40.01 | 70.99
Remove depth sorting 0.09 15.42 12.2 39.49 | 67.82
Coalesce DuplicateWith- 0.09 1.74 12.17 39.49 54.1
Keys
Use AccuTile 0.12 2.35 6.09 1592 | 24.73

As shown in Figure 6.2, GMMs eliminate the pronounced view-dependent runtime skew observed
in the voxel-based implementation. The voxel renderer exhibits significant angle-dependent varia-
tion, with projections near 90° taking considerably longer due to increased voxel-ray intersections
and reduced memory coherence. In contrast, the Gaussian representation yields nearly uniform
rendering times across projection angles, as the workload depends on a fixed set of primitives rather
than direction-dependent grid traversal.

This is achieved while providing an approximately 26x compression ratio compared to the
original dense voxel grid, substantially reducing memory bandwidth requirements and contributing
to the overall performance gains.

The optimisation techniques introduced in this work, that is, coalescing duplicate with_keys,
removal of depth sorting, and tighter tile-primitive intersection testing, are not limited to a single

Chapter 6: Results 70

implementation. They directly apply to related Gaussian-based frameworks such as X-Field [5] and
Radiative Gaussian Splatting [38], which share similar rendering pipelines.

Table 4: Image fidelity metrics comparing TIGRE with our GMM algorithm.

Projection 0° 45° 90 ° 135° 180 °
©)
TIGRE (Sid-

don) e '
A

Our algo-
rithm
SSIM 0.87 0.84 0.86 0.86 0.84
PSNR 24.07 dB 24.04 dB 22.28 dB 22.81dB 22.66 dB

Table 5: Image fidelity metrics comparing the final GMM algorithm with R? Gaussian.

Projection 45° 920 ° 135° 180 °
(®)

R2 Gaus-
sians

Our algo-
rithm
SSIM 1.00 1.00 1.00 1.00 1.00
PSNR 71.00 dB 71.67 dB 71.79 dB 72.02 dB 71.67 dB

Table 6.4 compares renders produced by the proposed Gaussian-based renderer with those gener-
ated by TIGRE. The quantitative metrics indicate a reduction in fidelity in this direct comparison,
confirming the presence of a quality gap relative to the voxel-based reference.

To assess whether this loss originates from the rendering implementation itself, the proposed
renderer is additionally compared against the baseline R2-Gaussian implementation (see Table 6.5).
In this case, no measurable difference is observed: SSIM = 1 and PSNR values well above 45 dB
indicate structurally identical images and excellent numerical agreement. This demonstrates that
the proposed renderer introduces no additional fidelity loss beyond that inherent to the trained

Gaussian model.

Chapter 6: Results 71

The R2-Gaussian paper [9] reports SSIM values of approximately 0.959 and PSNR values of
38.88 dB for models trained on synthetic datasets with 75 views, indicating that reconstruction
quality depends strongly on training configuration. The observed fidelity gap relative to TIGRE can
therefore be attributed to the limitations of the trained Gaussian model and may be reduced through
improved training strategies, increased view coverage, or enhanced optimisation procedures.

Conclusion

7.1 Addressing the research questions

The research questions posed in Section 1.3 aimed to evaluate both the feasibility and broader
impact of GPU-accelerated X-ray simulation. Based on the results presented in this thesis, they can

now be addressed as follows.

7.1.1 What maximum performance can be achieved when porting the
existing CPU-based X-ray simulation algorithm to the graphics processing
unit (GPU)?

Floating Point Operations Roofline

1,000 _— [}

100

HW Performance [FLOP/s]
(1 = 1,00,00,00,00,000)

0.1 1 10 100 1,000 10,000
HW Arithmetic Intensity [FLOP/byte]

(a) CUDA Tiling; FP32 (green) operations are memory bound but FP64 (yellow) operations are
compute bound.

Floating Point Operations Roofline

HW Performance [FLOP/s]
(1=1E+12)

0.1 1 10 100 1,000 10,000 1,00,000
HW Arithmetic Intensity [FLOP/byte]

(b) Use LUTSs The kernel is only having FP32 operations and is compute bound.

Figure 7.1: Roofline charts for initial and final iterations showing rooflines for FP32 (higher) and FP64

(lower).

72

Chapter 7: Conclusion 73

Porting the voxel-based ray traversal algorithm from CPU to CUDA resulted in an acceleration of
approximately 317x over the single-core baseline. At typical projection resolutions, the implemen-
tation achieves more than the requirement for real-time performance, even outpacing the state of
the art forward projection algorith TIGRE by ~ 10x.

Importantly, this acceleration was achieved without modifying the physical image formation
model. The discrete voxel traversal and Beer-Lambert attenuation formulation were preserved,
yielding numerically equivalent results up to floating-point precision differences. The observed
performance gain therefore reflects architectural acceleration rather than approximation.

As shown in Figure 7.1, Nsight Compute profiling indicates that kernel execution lies in the
compute-bound region of the roofline model. However, achieved memory throughput reaches only
a small fraction of the device peak. This discrepancy arises from irregular, view-dependent voxel
access during ray traversal, which prevents effective memory coalescing. As a result, performance
is limited by inefficient global memory transactions and memory access latency. Consequently,
further low-level tuning yields diminishing returns without altering the underlying data access
pattern.

7.1.2 What are the bottlenecks this approach suffers from, and how can
better algorithms be designed to alleviate them?

Warp State (All Cycles)
oo 20 40

Stall Not Selected
Stall Math Pipe Throttie
Stall Wait

Selected

Stall Long Scorepoard

Stall Dispatch Stall -

Stall Branch Resolving -

Figure 7.2: Truncated view of the warp state statistics from Nsight Compute showing the number of cycles
per instruction the state the warp was in.

Performance analysis indicates that the dominant limitation arises from irregular global memory
accesses caused by ray-dependent voxel traversal. These accesses introduce latency due to reduced
coalescing. Since this behaviour is intrinsic to ray-based traversal, it cannot be fundamentally
eliminated within the current representation.

Alternative plane-wise attenuation accumulation schemes were attempted to improve memory
coherence. However, these approaches required usage of shared memory which hurt the occupancy,
and resulted in approximately 20x slower execution.

Although the kernel exhibits high ALU pipeline utilisation, the warp state statistics in
Figure 7.2 show that warps are not stalled by pipeline back-pressure. The kernel therefore remains
compute-bound, with latency largely hidden by available parallelism.

Given these structural characteristics, further performance gains are unlikely to result from
incremental kernel refinements alone. Instead, representational changes that improve traversal
coherence or reduce per-ray work appear more promising.

Two algorithmic directions emerge:

o Hierarchical sparse voxel representations (e.g., NanoVDB [56] with HVDB path traversal) to
enable empty-space skipping and reduce unnecessary traversal.

Chapter 7: Conclusion 74

o Continuous Gaussian mixture representations to replace discrete voxel stepping with analytic
primitive evaluation.

7.1.3 What are the trade-offs for each approach in terms of performance,
memory usage, and visual fidelity?

The voxel-based representation offers:

o Exact correspondence to discretised CT data

o Direct physical interpretability

o No preprocessing or training requirement
However, it requires dense memory storage, high bandwidth, and exhibits projection-angle-depen-
dent runtime skew.

The Gaussian mixture representation achieves approximately 26x compression on the skull
dataset while maintaining high visual fidelity. Rendering times become more consistent across
projection angles, and optimisations such as coalesced output writes and AccuTile pruning substan-
tially reduce kernel runtime.

The trade-offs include:

o Additional preprocessing or training cost

o Approximation error dependent on mixture complexity

o Increased implementation complexity
Overall, the voxel method remains preferable when exact discretised fidelity is mandatory. The
Gaussian representation is advantageous when scalability, memory efficiency, and architectural
alignment with modern GPU hardware are primary concerns.

These results demonstrate that substantial performance gains arise not only from accelerating
existing kernels, but from selecting representations that reduce memory pressure and increase
arithmetic intensity.

7.2 Contributions

The main contributions of this thesis can be summarised as follows:

o A GPU-accelerated voxel-based X-ray rendering pipeline achieving approximately 316x speedup
over the single-core CPU baseline while preserving numerical fidelity.

o A detailed performance analysis demonstrating that voxel-based simulation is fundamentally
memory-bound, with global memory bandwidth and irregular access patterns constituting the
primary bottlenecks.

o The introduction of a Gaussian mixture representation for X-ray simulation, reducing the limi-
tations of dense voxel storage and achieving at least ~ 26x compression on the skull dataset with
a minimal loss in image quality.

o A GPU-accelerated rendering pipeline for GMMs that outperforms prior state-of-the-art imple-
mentations by 2.88x.

o A complete C++ implementation with Python bindings?®, released as open source and inte-
grated into industrial workflows at Philips.

With these considerations, the proposed approach may also accelerate iterative CT reconstruction,
where forward projection accounts for a substantial fraction of runtime. Any improvement in
forward model efficiency therefore directly reduces overall reconstruction time.

Chapter 7: Conclusion 75

7.3 Conclusion and outlook

This thesis demonstrates that substantial performance gains in X-ray simulation can be achieved
through both architectural acceleration and representational redesign. The voxel-based CUDA
implementation establishes a strong real-time baseline, but profiling shows that it is fundamentally
memory-bound, limiting further gains from low-level kernel optimisation alone.

For voxel rendering, the most immediate improvement lies in adopting sparse hierarchical
structures such as NanoVDB [56] with HVDB traversal. Since memory bandwidth and unnecessary
voxel accesses were identified as the primary bottlenecks, enabling empty-space skipping via hier-
archical traversal represents a clear low-hanging optimisation that could yield significant additional
speedups with moderate implementation effort.

The Gaussian mixture representation explored in this work highlights a complementary
direction: improving performance through more efficient scene representations. By replacing dense
grid traversal with analytic primitives, rendering becomes more coherent and less view-dependent.
Within this paradigm, integrating physically grounded formulations such as X-Field [5] represents
the most direct next step toward more realistic rendering while retaining the performance advan-
tages of primitive-based approaches.

Future work should also target the training process itself. Current Gaussian models are often
over-parameterised; improved optimisation, pruning, or regularisation could produce leaner mod-
els with lower memory and runtime costs. Additionally, GMMs demonstrated an approximately
26x compression ratio for the skull dataset with acceptable image quality. While not yet a practical
replacement for large-scale clinical storage, this suggests potential for compact dataset representa-
tion in simulation and research contexts.

Overall, the results indicate that meaningful advances in GPU-accelerated X-ray simulation
arise not only from faster kernels, but from choosing representations that reduce memory pressure,
exploit sparsity, and better align with modern hardware.

Bibliography

M. Berger, Q. Yang, and A. Maier, X-Ray Imaging, in Medical Imaging Systems: An Introductory
Guide, edited by A. Maier, S. Steidl, V. Christlein, and J. Hornegger (Springer International
Publishing, Cham, 2018), pp. 119-145.

J.-B. Letang, Physics, X-Ray Imaging: Physics, Instrumentation and Applications (n.d.).

J. A. Seibert and J. M. Boone, X-Ray Imaging Physics for Nuclear Medicine Technologists.
Part 2: X-Ray Interactions and Image Formation, Journal of Nuclear Medicine Technology 33,
3 (2005).

Philips Healthcare, Philips Azurion Bi-Plane System: Specifications (7 B20/15), technical
report, 2015.

F. Wang, J. Tao, J. Wu, H. Wang, B. Duan, K. Wang, Z. Yang, and Y. Yan, X-Field: A Physically
Grounded Representation for 3d X-Ray Reconstruction, https://arxiv.org/abs/2503.08596.
NVIDIA Corporation, NVIDIA RTX Blackwell GPU Architecture, https://images.nvidia.com/
aem-dam/Solutions/geforce/blackwell/nvidia-rtx-blackwell-gpu-architecture.pdf.

A. Biguri, Iterative Reconstruction and Motion Compensation in Computed Tomography on
Gpus, Doctoral dissertation, 2017.

J. Hubbell and S. Seltzer, Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-
Absorption Coefficients (Version 1.4), http://physics.nist.gov/xaamdi.

R.Zha, T.J. Lin, Y. Cai, J. Cao, Y. Zhang, and H. Li, R2-Gaussian: Rectifying Radiative Gaussian
Splatting for Tomographic Reconstruction, in Proceedings of the 38th International Conference
on Neural Information Processing Systems (Curran Associates Inc., Vancouver, BC, Canada,
2024).

G. Feng, S. Chen, R. Fu, Z. Liao, Y. Wang, T. Liu, Z. Pei, H. Li, X. Zhang, and B. Dai, Flashgs:
Efficient 3d Gaussian Splatting for Large-Scale and High-Resolution Rendering, https://arxiv.
org/abs/2408.07967.

A. Hanson, A. Tu, G. Lin, V. Singla, M. Zwicker, and T. Goldstein, Speedy-Splat: Fast 3d
Gaussian Splatting with Sparse Pixels and Sparse Primitives, https://arxiv.org/abs/2412.00578.
Q. Hou, R. Rauwendaal, Z. Li, H. Le, F. Farhadzadeh, F. Porikli, A. Bourd, and A. Said, Sort-
Free Gaussian Splatting via Weighted Sum Rendering, https://arxiv.org/abs/2410.18931.

A. Clement David-Olawade, D. B. Olawade, L. Vanderbloemen, O. B. Rotifa, S. C. Fidelis, E.
Egbon, A. O. Akpan, S. Adeleke, A. Ghose, and S. Boussios, AI-Driven Advances in Low-Dose
Imaging and Enhancement—A Review, Diagnostics 15, (2025).

D. J. Brenner and E. J. Hall, Computed tomography—an increasing source of radiation
exposure, New England Journal of Medicine 357, 2277 (2007).

S. Zhang, Z. Zhu, Z. Yu, H. Sun, Y. Sun, H. Huang, L. Xu, and J. Wan, Effectiveness of Al
for Enhancing Computed Tomography Image Quality and Radiation Protection in Radiology:
Systematic Review and Meta-Analysis, J Med Internet Res 27, 66622 (2025).

L. R. Koetzier et al., Generating Synthetic Data for Medical Imaging, Radiology 312, 232471
(2024).

F. Garcea, A. Serra, F. Lamberti, and L. Morra, Data augmentation for medical imaging: A
systematic literature review, Computers in Biology and Medicine 152, 106391 (2023).

G. Ayana, K. Dese, A. M. Abagaro, K. C. Jeong, S.-D. Yoon, and S.-w. Choe, Multistage transfer
learning for medical images, Artificial Intelligence Review 57, 232 (2024).

76

https://arxiv.org/abs/2503.08596
https://images.nvidia.com/aem-dam/Solutions/geforce/blackwell/nvidia-rtx-blackwell-gpu-architecture.pdf
https://images.nvidia.com/aem-dam/Solutions/geforce/blackwell/nvidia-rtx-blackwell-gpu-architecture.pdf
http://physics.nist.gov/xaamdi
https://arxiv.org/abs/2408.07967
https://arxiv.org/abs/2408.07967
https://arxiv.org/abs/2412.00578
https://arxiv.org/abs/2410.18931

Bibliography 77

[19]

[20]
[21]

A. Yeung, The'As Low as Reasonably Achievable'(ALARA) principle: a brief historical
overview and a bibliometric analysis of the most cited publications, Radioprotection (2019).
TASTI - Application-Tailored Synthetic Image Generation Project, https://tasti-project.eu/.

A. Biguri et al., TIGRE V3: Efficient and Easy to Use Iterative Computed Tomographic Recon-
struction Toolbox for Real Datasets, https://arxiv.org/abs/2412.10129.

] D. Tafti and C. V. Maani, X-ray Production, Statpearls (2025).
] R.Novelline, Squire’s Fundamentals of Radiology, 5th edn (Harvard University Press, 1997).
| A. Einstein, Uber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristis-

chen Gesichtspunkt, Annalen Der Physik 17, 132 (1905).

T. Hoang and A. Goel, Compton Effect, https://doi.org/10.53347/rid-30308.

G. T. Herman, Fundamentals of Computerized Tomography: Image Reconstruction from Projec-
tions, 2nd edn (Springer, 2009).

S. Hermena and M. Young, CT-scan Image Production Procedures, Statpearls (2025).

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (Society for Indus-
trial, Applied Mathematics, Philadelphia, PA, 2001).

J. M. Galvin, C. Sims, G. Dominiak, and J. S. Cooper, The use of digitally reconstructed radi-
ographs for three-dimensional treatment planning and CT-simulation, International Journal
of Radiation Oncology, Biology, Physics 31, 935 (1995).

D. B. Russakoff, J. M. Fitzpatrick, C. R. Maurer, R. J. Maciunas, and B. M. Dawant, Fast
generation of digitally reconstructed radiographs using attenuation fields with application to
2D-3D image registration, IEEE Transactions on Medical Imaging 24, 1441 (2005).

J. Spoerk, A. Khamene, W. Birkfellner, D. Georg, and H. Bergmann, High-performance
GPU-based rendering for real-time, rigid 2D/3D-image registration and motion prediction in
radiation oncology, Zeitschrift Fiir Medizinische Physik 22, 13 (2012).

G. J. Tornai, G. Cserey, and I. Pappas, Fast DRR generation for 2D to 3D registration on GPUs,
Medical Physics 39, 4795 (2012).

jstnmchl, Xraysimulator, https://github.com/jstnmchl/xraySimulator.

] M. Behr, Xray_sim, https://github.com/MichaelBehr/Xray/_Sim.
] Koushik Viswanathan, Xraysim: Open-source X-ray Imaging Simulator, https://xraysim.

sourceforge.net/.

F. P.Vidal, M. Garnier, N. Freud, J. M. Létang, and N. W. John, Simulation of X-Ray Attenuation
on the GPU, in Proceedings of Theory and Practice of Computer Graphics 2009 (Eurographics
Association, Cardiff, UK, 2009), pp. 25-32.

ufo-kit, SYRIS: GPU Accelerated X-ray and Projection Simulation Tools, https://github.com/
ufo%E2%80%91Kkit/syris.

Y. Cai, Y. Liang, J. Wang, A. Wang, Y. Zhang, X. Yang, Z. Zhou, and A. Yuille, Radiative
Gaussian Splatting for Efficient X-Ray Novel View Synthesis, https://arxiv.org/abs/2403.04116.
C. Talegaonkar, Y. Belhe, R. Ramamoorthi, and N. Antipa, Volumetrically Consistent 3D
Gaussian Rasterization, Arxiv Preprint (2024).

NVIDIA Corporation, CUDA C++ Programming Guide, Version 12.4.0, https://docs.nvidia.
com/cuda/archive/12.4.0/cuda-c-programming-guide/index.html.

J. D. Bakos, Chapter 2 — Multicore and data-level optimization: OpenMP and SIMD, Embedded
Systems 49 (2016).

https://tasti-project.eu/
https://arxiv.org/abs/2412.10129
https://doi.org/10.53347/rid-30308
https://github.com/jstnmchl/xraySimulator
https://github.com/MichaelBehr/Xray/_Sim
https://xraysim.sourceforge.net/
https://xraysim.sourceforge.net/
https://github.com/ufo%E2%80%91kit/syris
https://github.com/ufo%E2%80%91kit/syris
https://arxiv.org/abs/2403.04116
https://docs.nvidia.com/cuda/archive/12.4.0/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/archive/12.4.0/cuda-c-programming-guide/index.html

Bibliography 78

[42]

S. W. Williams, A. Waterman, and D. A. Patterson, Roofline: An Insightful Visual Performance
Model for Floating-Point Programs and Multicore Architectures, technical report No. UCB/
EECS-2008-134, 2008.

Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, Image quality assessment: from error
visibility to structural similarity, IEEE Transactions on Image Processing 13, 600 (2004).

M. Aleksandrov, S. Zlatanova, and D. J. Heslop, Voxelisation Algorithms and Data Structures:
A Review, Sensors 21, 8241 (2021).

J. Amanatides and A. Woo, A Fast Voxel Traversal Algorithm for Ray Tracing, in Eurographics
1987 Technical Papers (Eurographics Association, 1987).

R. L. Siddon, Fast calculation of the exact radiological path for a three-dimensional CT array,
Medical Physics 12, 252 (1985).

G. Han, Z. Liang, and J. You, A Fast Ray-Tracing Technique for TCT and ECT Studies, in 1999
IEEE Nuclear Science Symposium. Conference Record. 1999 Nuclear Science Symposium and
Medical Imaging Conference (Cat. No.99ch37019), Vol. 3 (1999), pp. 1515-1518vol.3.

A. S. Glassner, Principles of Digital Image Synthesis (Morgan Kaufmann, 1989).

J. Graetz, High performance volume ray casting: A branchless generalized Joseph projector,
(2016).

NVIDIA Corporation, CUDA Programming Guide — Appendix C: Compute Capabilities
(Table 30), https://docs.nvidia.com/cuda/cuda-programming-guide/05-appendices/compute-
capabilities.html.

W3cubDocs, Floating Constant — C Language Reference, https://docs.w3cub.com/c/language/
floating_constant.html.

NVIDIA Corporation, Turing Tuning Guide: Tuning CUDA Applications for Turing, https://
docs.nvidia.com/cuda/turing-tuning-guide/index.html.

M. Milakov, GPU Pro Tip: Fast Dynamic Indexing of Private Arrays in CUDA, https://developer.
nvidia.com/blog/fast-dynamic-indexing-private-arrays-cuda/.

H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos, Demystifying GPU
Microarchitecture Through Microbenchmarking, in 2010 IEEE International Symposium on
Performance Analysis of Systems & Software (ISPASS) (2010), pp. 235-246.

K. Museth, VDB: High-Resolution Sparse Volumes with Dynamic Topology, ACM Transac-
tions on Graphics 32, 1 (2013).

K. Museth, Nanovdb: A GPU-Friendly and Portable VDB Data Structure for Real-Time Render-
ing and Simulation, in ACM SIGGRAPH 2021 Talks (2021).

B. Kerbl, G. Kopanas, T. Leimkiihler, and G. Drettakis, 3D Gaussian Splatting for Real-Time
Radiance Field Rendering, ACM Transactions on Graphics 42, (2023).

https://docs.nvidia.com/cuda/cuda-programming-guide/05-appendices/compute-capabilities.html
https://docs.nvidia.com/cuda/cuda-programming-guide/05-appendices/compute-capabilities.html
https://docs.w3cub.com/c/language/floating_constant.html
https://docs.w3cub.com/c/language/floating_constant.html
https://docs.nvidia.com/cuda/turing-tuning-guide/index.html
https://docs.nvidia.com/cuda/turing-tuning-guide/index.html
https://developer.nvidia.com/blog/fast-dynamic-indexing-private-arrays-cuda/
https://developer.nvidia.com/blog/fast-dynamic-indexing-private-arrays-cuda/

	Abstract
	Acknowledgements
	List of acronyms
	List of figures
	1 Introduction
	1.1 Thesis scope
	1.1.1 The problem statement

	1.2 What makes real-time X-ray simulation challenging?
	1.3 Research questions
	1.4 Contributions
	1.5 Thesis outline

	2 Background
	2.1 X-rays
	2.1.1 How they are generated
	2.1.1.1 Bremsstrahlung
	2.1.1.2 Characteristic X-rays

	2.1.2 How they interact with matter
	2.1.2.1 Photoelectric effect
	2.1.2.2 Compton scattering
	2.1.2.3 Rayleigh scattering
	2.1.2.4 X-ray attenuation and Beer–Lambert law

	2.1.3 Their use in medical imaging
	2.1.3.1 Projectional radiographs and fluoroscopy
	2.1.3.2 Computed tomography

	2.2 X-ray simulation: A computer graphics perspective
	2.2.1 Ray generation
	2.2.2 Object-local transformations
	2.2.3 Volumetric integration along rays

	2.3 X-ray simulation: The current state
	2.4
	2.4.1 architecture
	2.4.2 Coalesced access
	2.4.3 Thread divergence
	2.4.4 Quantifying acceleration limits

	2.5 Evaluation metrics
	2.5.1
	2.5.2
	2.5.3 Kernel execution time
	2.5.4 Limitations

	3 Methodology
	3.1 Benchmarking environment
	3.2 Simulation setup
	3.3 Profiling and benchmarking
	3.4 Benchmarking procedure

	4 Simulation: Voxelised models
	4.1 Data encoding
	4.2 Computing the path attenuation
	4.2.1 The algorithm
	4.2.1.1 Entry and exit parameters
	4.2.1.2 Initialisation
	4.2.1.3 Iterative traversal

	4.3 implementation
	4.3.1 Baseline
	4.3.1.1 Metrics

	4.3.2 Move tiling logic to CUDA
	4.3.2.1 Metrics

	4.3.3 Use numbers
	4.3.3.1 Metrics

	4.3.4 Reduce branching
	4.3.4.1 Initial implementation
	4.3.4.1.1 Metrics

	4.3.4.2 Eliminating the local memory accesses
	4.3.4.2.1 Metrics

	4.3.5 Using
	4.3.5.1 Metrics

	4.4 Limitations
	4.4.1 Non-uniform render times
	4.4.2 Inefficient memory usage

	5 Simulation:
	5.1 Converting voxelised models to
	5.2 Data encoding
	5.3 implementation
	5.3.1 Baseline
	5.3.1.1 Metrics

	5.3.2 Remove depth sorting
	5.3.2.1 Metrics

	5.3.3 Coalesce duplicate_with_keys() global accesses
	5.3.3.1 Metrics

	5.3.4 Use AccuTile
	5.3.4.1 Metrics

	5.4 Limitations
	5.4.1 Sorting and binning overhead

	6 Results
	7 Conclusion
	7.1 Addressing the research questions
	7.1.1 What maximum performance can be achieved when porting the existing CPU-based X-ray simulation algorithm to the ?
	7.1.2 What are the bottlenecks this approach suffers from, and how can better algorithms be designed to alleviate them?
	7.1.3 What are the trade-offs for each approach in terms of performance, memory usage, and visual fidelity?

	7.2 Contributions
	7.3 Conclusion and outlook

	Bibliography

