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Abstract 
Accurate diagnosis and treatment of patients infected with multiple strains of a pathogen is a 

challenging task. The use of whole genome sequencing techniques provide high potential to give 

proper insight into the microbial composition of human metagenomic samples. Distinguishing 

multiple strains of a certain species is difficult due to the high similarity in genetic content. Currently 

several tools aimed at the identification of different strains in metagenomic sequence data are 

available. We present an independent benchmark to compare the performance of several of these 

tools. The tools have been evaluated with a variety of synthetic metagenomic samples containing 

strain mixtures of the species Enterococcus, Escherichia coli and Mycobacterium tuberculosis.  

To facilitate this research, a benchmark framework in Python 3 was built. This framework made it 

possible to test the performance of tools aiming at unraveling the composition of sequence data. It 

is able to automatically generate batches of metagenomic readsets with custom predefined 

properties. The tools can easily do their analysis on those reads in a streamlined fashion. The output 

of the tools are put in a standardized format to make the complete comparison of tools easier. 

This framework has been built as part of our Bachelor End Project over the course of 10 weeks. In 

the first few weeks we became familiar with the domain of bioinformatics and the type of tools that 

had to be included in this research. The implementation of the framework required thorough 

understanding of the tools and took quite some time to implement. Towards the end of the project, 

the framework has been used to run the tools with a large variety of synthetic readsets. Analysis of 

these outputs resulted in an insightful overview of the tools capabilities as presented in this paper.  
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Chapter 1 Introduction 
When a patient suffers from an infection by multiple strains of a certain bacterial species, providing 

accurate treatment is a challenge. These so called mixed infections can arise due to multiple 

transmissions or evolution within the host [1]. Bacteria playing a role herein can genetically be very 

similar but can have specific mutations causing differences in disease progression, antibiotic 

susceptibility or virulence [2], [3]. When one does not take such mixed infections into account while 

making a diagnosis, the outcome of treatment targeted at one particular pathogen strain is 

uncertain and can be poor [3]. There is a risk that a highly virulent strain, with possibly a relatively 

low abundance, remains untreated, while the patient is treated solely for another strain. Ideally, a 

mixed infection should be treated by antibiotics targeted at all pathogens present in the patient. 

Classical techniques used for pathogenic bacterium identification rely on the isolation and 

enrichment of bacteria prior to analysis [4], [5]. The bacterial species is determined based on 

metabolic or morphologic characteristics. Depending on the pathogen, this process can take up to 

several days before an accurate diagnosis and is solely based on the isolated strain. However, when 

a patient is infected with multiple strains, the amount referred to as multiplicity of infection [6], 

faster and more accurate diagnosis by detecting individual strains is desired. 

A suitable alternative to classical techniques to get insight in the microbial composition of samples is 

the use of metagenomic sequencing [5], [7]. Whole genome sequencing (WGS) techniques can give 

an overview of the complete metagenomic composition of a sample of interest and therefore 

provide a platform for mixed infection detection [8]. With the rise of faster and cheaper WGS 

methods, metagenomic sequencing provides the potential to obtain insightful knowledge about the 

microbial composition, as well as individual abundance levels [2], [9]. Treatment can therefore be 

better adapted to the different bacterial strains present [10]. 

Metagenomic analysis has high potential in both medical and non-medical areas. Besides 

diagnostics, metagenomic analysis can also be applied to prevent outbreaks via pathogen 

surveillance [2], [11]. It can detect transmission of pathogens across disease cases, which would not 

be possible when relying on the analysis of single isolates. This has been demonstrated for 

Clostridium difficile in hospital data [12]. In contrary to medical applications, the ability to detect 

specific mutations within a mixed bacterial culture has potential for evolutionary strain selection. 

When the presence of a specific strain of interest is known to be present in a certain mixed culture, 

one could focus on the isolation from that mixture. This ability is highly desired in disciplines where 

one relies on natural mutation mechanisms.  

WGS can already be applied to mixed viral infections due to their high mutability as a response to 

the environment [13]. However, the high similarity between bacterial strains poses challenges for 

metagenomic analysis and requires specialized tools. Currently several metagenomic analysis tools 

claim to accurately classify and quantify distinct bacterial strains within metagenomic sequencing 

datasets and it is of interest to what extent these existing genetic tools are able to do so. The tools 

that are currently used to detect and classify bacterial strains have not been independently tested 

and benchmarked. As the diagnosis of patients with mixed infections is impacted by the 

metagenomic analysis tools used, it is of importance to know the accuracy and performance of the 

tools used for strain-level metagenomic analysis. These tools have been compared and there is a 

distinction in their approach to identify the strains in a mixed sample [14].  

Firstly, a common approach is to compare WGS reads against a reference database to detect and 

estimate the relative abundance of different strains with the usage of probabilistic models [11]. A 

reference database with strains similar to what is expected in the sample is required. In case strains 
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are present in a sample which cannot be correctly mapped against the database, strains can be 

either categorized as similar to certain strains in the database, unknown strains or, in the worst case, 

they are not detected at all [11], [15]. A common approach is to completely align the reads against 

the reference database to deduce the sample composition [2], [11], [16]. These tools tend to be 

computationally demanding. An alternative approach to complete alignment to a reference 

database is by matching the k-mer profile of the metagenomic reads to the k-mer profiles of the 

reference strains [17]. Such approaches are able to give an accurate result within a matter of a few 

minutes. 

Secondly, pattern-based methods do not use large reference databases and focus on specific 

genomic markers instead of the whole read set. Markers used are often SNPs, but also GC-content or 

specific genes could be used to reconstruct haplotypes [14], [18]. Single markers however, like the 

16S rRNA gene, do not provide the resolution needed for accurate strain identification [19]. Such 

tools are less reliant on reference databases compared to alignment-based methods and have more 

potential to detect unexpected strains in a sample. This has already been applied to assemble virus 

genomes from mixed samples. However, the reconstruction of genomes from mixed bacterial 

cultures is even harder due to the lower mutation rate [12], [20]. Furthermore, such methods tend 

to be computationally demanding [21], [22]. 

Metagenomic samples vary on several aspects that could influence the accuracy of the output of the 

tools. In a clinical setting it is uncommon that a metagenomic sample only contains bacteria of a sole 

species [23]. Samples with multiple species may make it harder for tools to correctly detect and 

classify strains as there is more variation in the data [17]. In a mixed infection, usually the patient is 

infected by one dominant strain compared to other strains with lower abundance. Low abundance 

strains are harder to classify because relatively few reads of those strains are present. This makes it 

harder to distinguish these variations in reads from sequencing errors [9]. Furthermore, highly 

similar strains are also more difficult to classify as the reads of the different strains will also be 

similar and therefore hard to distinguish. Mycobacterium tuberculosis strains, for example, have high 

similarity compared to strains other bacteria and are thus harder to distinguish [24].  

We present an independent comprehensive benchmark of the most common tools for metagenomic 

analysis of bacterial samples at the strain level. The benchmarking strategy is applied with new, 

synthetic metagenomic readsets generated from available genome assemblies. In this manuscript, 

we investigated the effect of properties like sample size and complexity on the quality of the output 

and runtime of the different tools and put these in perspective. 
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Chapter 2 Materials and Methods 
The performance of several specialized tools aiming at unraveling the microbial composition of 

metagenomic sequence data have been tested with a variety of inputs. To facilitate this, a 

framework was developed in Python 3 which enables the automatic creation and analysis of 

synthetic metagenomic sequence readsets. Synthetic readsets are desired as their properties can be 

precisely tweaked and the influence of these properties on the output of the tools can directly be 

measured. 

In this framework, bulk readsets were generated from genome assemblies (.fna) of the strains that 

should be included in the metagenomic samples. These reads are subsequently subsampled from 

the different portions of bulk reads to make metagenomic read pairs with desired properties. These 

batches of samples were varied in terms of species, amount of strains, distribution of the strains and 

coverage. Additionally, several experiments have been spiked with background noise in the form of 

reads from the Human microbiome project (HMP) [25]. Appropriate samples were made to 

investigate the influence of these parameters on the performance of the different metagenomics 

tools. 

Experimental Setup 
Mixed strain metagenomic readsets have been generated with the framework. The samples differ on 

several aspects to investigate the effect on the output of the tools. Reads based on several species 

were made to investigate whether the strain similarity within a species influence the performance of 

the tools. Additionally, the amount of strains in the sample was varied to investigate to what degree 

the tools can distinguish multiple strains. For these mixed samples the distribution was varied to see 

whether the relative abundance of the strains influenced the ability of the tools to discover them. 

Furthermore the experiments have been performed at several coverage levels and with added 

background noise from HMP readsets to see to what extend the tools are able to cope with these 

more challenging datasets. These experiments have been performed with both mutated versions 

and the original genomes as strains in the sample to investigate the natural variation expected from 

real world samples. 

Species 
Metagenomic test samples were created as either a mix of Enterococcus (faecium and faecalis), 

Escherichia coli or Mycobacterium tuberculosis strains to represent different intra-species similarity. 

M. tuberculosis strains are known to be very similar compared to E. coli [26]. Additionally two similar 

Enterococcus species have been chosen to represent samples with higher diversity between strains. 

For these species 180, 273 and 200 genome assemblies were obtained for E. coli, Enterococcus and 

M. tuberculosis respectively. These genomes have been used for readset (Table 1) and database 

(Appendix L) creation. For each of the species the taxonomic tree of the strains was extracted from 

NCBI on January 2, 2018 [27] and strains were picked uniformly from different clades spread over 

the tree representing the intra species diversity well (see appendix M for the respective trees). 
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Strain # Enterococcus E. coli M. tuberculosis 

1 
2 
3 
4 
5 
6 
7 
8 

79-3 (faecalis) 
ATCC8459 (faecium) 
7430821-4 (faecalis) 
Aus0004 (faecium) 
UAA702 (faecalis) 
T18 (faecalis) 
E1972 (faecium) 
DS5 (faecalis) 

O157-H16_Santai 
H7 
FORC_028 
O157-H7_FRIK2455 
D8 
S1 
0127-H6_E2348-69 
M10 

BTB07-283 
KT-0078 
I0001498-0 
PanR0902 
Erdman 
M0003138-6 
UT0055 
01-R1278 

Table 1 Strains picked for metagenomic sample creation. In samples with ascending distributions the strains with the 
highest number have the lowest abundance 

Distribution 
Mixes of 1, 2, 4 or 8 strains have been generated at a fixed total coverage to see whether the tools 

are able to distinguish different strains within one metagenomic sample. It was both tested how well 

the tools are able to identify the strains when they are present in even amounts in the sample and 

when they are present in an ascending distribution where the strains differ a factor two between 

each other (Table 2). This has been analyzed to reflect the case where there is a dominant strain 

present along with one or several minor strains. It is of interest to know whether this distribution 

influences the performance of the tools. 

 Even distribution  Ascending distribution 

Amount 
of 
strains 

1 2 4 8 1 2 4 8 

Strain 1 1.0 0.500 0.250 0.125 1.0 0.667 0.533 0.502 

Strain 2  0.500 0.250 0.125  0.333 0.267 0.251 

Strain 3   0.250 0.125   0.133 0.125 

Strain 4   0.250 0.125   0.067 0.063 

Strain 5    0.125    0.031 

Strain 6    0.125    0.016 

Strain 7    0.125    0.008 

Strain 8    0.125    0.004 

Total 
Fraction 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Table 2 Distribution of strains within samples as fractions. Strains corresponding to the strain numbers are indicated in 
Table 1 

Sample complexity 
When interested in the sole effect of the amount of strains present in the sample, samples have 

been made with 1, 2, 4 and 8 strains present. These strains were present at a fixed coverage level 

per strain regardless of the amount of strains in the sample (Table 3). Additionally, the ascending-

incremental distribution is used to analyze the performance of the tools in cases where the strains 

are not present in equal amounts. 
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 Even-incremental distribution  Ascending-incremental distribution 

Amount 
of strains 

1 2 4 8 1 2 4 8 

Strain 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Strain 2  1.0 1.0 1.0  0.5 0.5 0.5 

Strain 3   1.0 1.0   0.25 0.25 

Strain 4   1.0 1.0   0.125 0.125 

Strain 5    1.0    0.0625 

Strain 6    1.0    0.03125 

Strain 7    1.0    0.015625 

Strain 8    1.0    0.0078125 

Total 
Coverage 

1.0 2.0 4.0 8.0 1.0 1.5 1.875 1.9921875 

Table 3 Distribution of strains within samples for even-incremental or ascending-incremental samples starting with strain 1 
at 1x coverage. This distribution is used to analyze the effect of sample complexity. 

Total coverage 
The total coverage has been investigated to see to what extend a metagenomic sample should be 

sequenced to be able to get insightful information. Total coverages of 0.1x, 1x, 10x and 100x were 

tested to check the sensitivity of the tools when different amounts of reads are available. 

Mutation of strains 
Strains present in natural metagenomic samples can be similar, but are never exactly the same as 

strains for which the genomes are known and in a database. In order to mimic such similar strains, 

mutations have been introduced to genomes before generating readsets. For Enterococcus and E. 

coli, 300 SNPs per genome have been introduced as this represents the natural variety among 

closely related strains [28]. For the more conserved M. tuberculosis genomes, only 50 SNPs have 

been introduced [26]. The 6 fold difference in conservation is also seen in the taxonomic trees 

(appendix M). To investigate the effect of these mutations, both readsets were generated and 

analyzed with non-mutated and mutated strain mixtures and compared. 

HMP Background 
It is common in the real world that metagenomic samples contain background noise originating of 

other species. Therefore, the tools have also been evaluated on datasets spiked with background 

data from the Human Microbiome Project. We have constructed datasets with a 9-1 ratio of HMP to 

strains in order to evaluate the tools in a situation that may arise when detecting strains in a sample 

taken from a patient.  
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Metagenomic Tools 
9 metagenomic tools have been run and analyzed for their output (Table 4).  The tools differed in 

approach for identifying the amount and identity of the strains present by using either a reference or 

pattern based approach. 

Tool Name Version Type Input Database Output Reference 

     Number of 
strains 

Strain 
Identity 

Abundance  

BIB Oct 3, 
2016 

Reference Paired 
reads (.fq) 

Multifasta 
(made from 
genome files) 

Yes Yes Yes [2] 

Pathoscope 2.0 Reference Paired 
reads (.fq) 

Multifasta 
(made from 
genome files) 

Yes Yes Yes [16] 

Sigma 1.0.3 Reference Paired 
reads (.fq) 

Genome files Yes Yes Yes [11] 

StrainSeeker 10-feb-
2016 

Reference  
(k-mer) 

Unpaired 
reads (.fq) 

k-mer database 
based on 
genome files 
and genomic 
tree 

Yes Yes Yes [17] 

StrainGR Jan 2018 Reference  
(k-mer) 

Paired 
reads (.fq) 

k-mer database 
based on 
genome files 

Yes Yes Yes Unpublished 

GOTTCHA 1.0c Reference Paired 
reads (.fq) 

GOTTCHA_BACT
ERIA_c4937_k24
_u30_xHUMAN3
x.strain 

Yes Yes yes [9] 

Constrains 2016-
04-20 

SNP 
pattern 

Paired 
reads (.fq) 

Constrains 
database (1 
genome per 
species) 

Yes Yes, 
anonymous 
strains 

Yes [19] 

EstMOI 1.03 SNP 
pattern 

Alignment 
file 
(.bam),  
variant 
regions 
(.vcf) 

One 
representative 
genome (.fasta) 

Yes No No [6] 

EVORhA n/a SNP 
pattern 

Sorted 
alignment 
file (.bam) 

One 
representative 
genome (.fasta 
and .gff) 

Yes No Yes* [20] 

Table 4 Tools used for analysis, *EVORhA does not give direct abundances, but certainties that a haplotype is present 

The tools were implemented and run on readsets as indicated by the tools’ authors. The tools that 

do not natively support paired end reads were tested with both readsets of the pair as if they were 

single end read sets. 

The tools BIB and Pathoscope work with a multifasta as reference database wherein all genomes 

were concatenated after each other. These tools return their output in the form of the contigs that 

could be matched. To make sure that every contig of this multifasta corresponds to a single strain, 

the contigs of every genome assembly were merged together by inserting 150 N’s between the 

contigs. 

All experiments were run with 2 CPUs and 16GB memory on a computer cluster. The CPUs used 

were Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz. 

Synthetic readset generation 
The process of making synthetic reads consisted of making reads per genome of interest and 

combining these reads to metagenomic reads in a subsample step. The synthetic readsets used by 

the tools were made with the ART program, version mountrainier 20160605 [29]. Whole genome 

assemblies were used as input to create one batch of reads per genome. The reads generated were 

150bp long paired end reads using the built in Illumina HS25 profile with a mean fragment size of 

200 and standard deviation of 10. These values were indicated by the authors of ART as a proper 

profile for simulating Illumina reads.  



14 
 

The different batches of ART reads were thereafter subsampled and combined to yield the desired 

metagenomic samples as described in the experimental setup. Some of the readsets in the 

experimental setup are spiked with background data originating from HMP reads [25]. The reads 

were then shuffled to ensure that the reads originating from different genomes were evenly 

distributed over the output. Hereby read parity was maintained, so the tools can use this parity 

information in their algorithms. The output files of this read generation step yields a pair of two files 

in fastq format. 

Evaluation 
An appropriate measure to evaluate the tools accuracy is how often the tools predict the correct 

strains (True positives, TP) and how often they make incorrect predictions (False positives, FP). 

Nonetheless it is just as important to measure the amount of strains that were in the sample but 

that were not predicted by the tool (False negatives, FN).   

These scores have been combined in the form of precision and recall, which can subsequently be 

combined to the F1 score: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2

1
𝑅𝑒𝑐𝑎𝑙𝑙

+
1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

 

The measures TP, FP, FN give a good overview of the performance of the tool on a specific dataset, 

whereas the F1-score is a summary of the overall performance. Tools which do not indicate the 

identity of the strains were analyzed by comparing the amount of detected strains with the expected 

amount of strains.  
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Chapter 3 Results 
In this section we evaluate the performance of the tools on our synthetic metagenomic readsets as 

described in Materials and Methods. These readsets differ in aspects like species, composition and 

sequence depth and the influence of these parameters on the output of the tools was investigated. 

There was a distinction made between tools that use our custom databases of reference genomes 

and tools that use their own database or a single genome per species as reference. The tools BIB, 

Pathoscope, Sigma, StrainGR and StrainSeeker allow the construction of a custom reference 

database with reference genomes while for Constrains, estMOI, EVORhA and GOTTCHA it is not 

possible to provide such a database. 

The tools that used our custom database have been compared in terms of false positives and false 

negatives plus the F1 scores which can be deduced from these values. For the tools which do not 

provide the identity of the strains, an overview was made indicating the amount of strains the tools 

predict to be present in the metagenomic sample. 

Reference-based tools 
This study researched the influence of several factors on the performance of the reference based 

tools BIB, Pathoscope, Sigma, StrainGR and StrainSeeker. Firstly, the performance of the tools using 

mixed samples of either E. coli, Enterococcus or M. tuberculosis were compared. Furthermore the 

sample complexity in terms of the number of different strains and the distribution of these strains 

have been analyzed. Lastly, also the influence of sequence depth and the presence of background 

noise was investigated. 

The analysis has been performed on both metagenomic samples consisting of strains with new 

mutations introduced and with the original strains. It was found that the results of the metagenomic 

samples with mutations are highly similar to those without mutations (data not shown), implying the 

robustness when natural variations of strains are present in a sample. 
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Species 
Figure 1 depicts the effect of different species on the performance of the tools on samples with 4 

strains present. The tools are better able to detect the correct strains in the samples containing E. 

coli and Enterococcus strains than for samples containing M. tuberculosis strains. This is as expected 

due to the higher similarity of M. tuberculosis strains in comparison to E. coli and Enterococcus. 

BIB and Pathoscope tend to provide many false positive results for metagenomic samples containing 

Enterococcus and M. tuberculosis while this is not the case for E. coli. For M. tuberculosis, BIB even 

provides the majority of the database in the output. Sigma is able to correctly predict E. coli and 

Enterococcus mixtures without false positives, while for M. tuberculosis it tends to have some false 

positives. StrainGR and Strainseeker appear to perform better on mixtures of E. coli strains while 

having a decent performance on the other two species yielding some false negatives. 

 

Figure 1 Performance of the tools for different species. Samples contained 4 evenly distributed strains and have a total 
coverage of 1x. Left: false positive and false negative scores (clipped at 20 strains). Right: F1 scores. 
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Complexity 
Figure 2 shows the influence of the complexity of the metagenomics samples in terms of the amount 

of different strains present. It is expected that the complexity would negatively influence the 

performance of the tools due to the fact that more strains need to be accurately distinguished. This 

is seen for StrainGR and StrainSeeker and to a limited extend for Sigma in the M. tuberculosis 

samples. However, the other tools are well able to identify more complex mixture of strains in the 

sample. 

 

Figure 2 Performance of the tools for different number of strains in the sample. The samples are all evenly distributed 
mixtures of strains where every strain is present at 1x coverage. Left: false positive and false negative scores (clipped at 20 
strains). Right: F1 scores. 

The BIB and Pathoscope tools have a quite consistent amount of false positive results in their output 
regardless of the amount of strains in the sample. For M. tuberculosis, BIB found less false positive 
strains in samples with higher complexity. This can also be related to the higher amount of reads 
present in samples with more strains. Sigma is well able to identify more complex mixtures of up to 
8 strains, while having only a few false negatives when considering M. tuberculosis mixtures. In the 
case of StrainGR and Strainseeker, both tools are almost able to fully identify mixed strains in 
Enterococcus samples. For M. tuberculosis however, StrainGR is not able to predict multiple strains, 
while Strainseeker is able to do so. 
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Coverage 
To investigate the effect of the performance of the tools for varying coverage levels, we looked at 

the performance of the tools on samples with a total coverage between 0.1x and 100x (Figure 3). 

The Sigma tool works remarkably well at all coverage levels tested and is often significantly better 

than the other tools at lower coverage depths. At 0.1x coverage Sigma usually predicts the correct 

strains with few false negatives or false positives. The other tools often require a higher coverage 

level either to reduce the number of false positives or to find all the correct strains in the sample.   

 

Figure 3 Performance of the tools for different total coverage depths. Samples contain 4 evenly distributed strains.  
Left: false positive and false negative scores (clipped at 20 strains total). Right: F1 scores. N/A indicates that no result could 
be obtained. 

BIB and PathoScope are good at predicting the correct strains, but tend to show quite some false 
positive results in their output. For BIB the number of false positives decreases as the coverage 
increases. At sufficient high coverages it performs similar to Sigma. PathoScope on the other hand 
tends to have fewer false positives for lower coverages but this amount increases when the 
coverage level is higher.  
Both StrainSeeker and StrainGR perform better at higher coverages than on coverages around 0.1x 
and 1x. Most of the time, StrainSeeker does not to have any results at a total coverage level of 0.1x. 
StrainGR also does not seem to benefit from very high coverages as the performance flattens out at 
coverages higher than 1x. 



19 
 

Distribution 
Metagenomic samples consisting of four different strains were made where the strains were either 

present at the same abundance (even) or in a distribution where the fraction of strains differed 

among each other with a factor of two (ascending). The effect of these distributions on the 

performance of the tools is depicted in Figure 4. 

Generally, the distribution did not notably influence the tools’ ability to predict the correct strains. 

Strainseeker did however give less accurate results for samples where the strains are distributed 

ascendingly compared to when the strains are evenly distributed for Enterococcus. The opposite is 

present for Sigma and StrainGR in the case of M. tuberculosis. 

 

Figure 4 Performance of the tools for either even or ascending distribution of the strains. Samples contain 4 strains at a 
total coverage level of 1x. Left: false positives and false negative scores (clipped at 20 strains total). Right: F1 scores 
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HMP Background 
Samples with and without HMP background reads have been run with the tools to test the 

performance when there is noise among the reads (Figure 5).  

The tools BIB and Pathoscope both show an increased amount of false positive results when HMP 

background is present for E. coli and Enterococcus. For the other tools, there was no significant 

difference between samples with and without HMP background. 

 

Figure 5 Performance of the tools either without (-) or with background HMP reads (+). Samples contain 4 strains at a total 
coverage level of 1x. In samples with HMP background, 9x coverage of HMP reads were added. Left: false positive and false 
negative scores (clipped at 20 strains total). Right: F1 scores 
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Tools without custom database 
It is not possible to run the tools Constrains, estMOI, EVORhA and GOTTCHA with our custom 

database of complete genome assemblies. Constrains and GOTTCHA were run with databases 

provided by the authors of the respective tools, while estMOI and EVORhA used a single genome to 

deduce the complexity of the metagenomic samples. The amount of strains the tools returned for 

the different datasets at a total coverage of 10x are depicted in Table 5. Additional results for all 

coverages and tools can be found in appendix I. 

The GOTTCHA tool appears to overestimate the amount of strains in the sample and is not able to 

give output for M. tuberculosis samples. For E. coli and Enterococcus samples, the amount of strains 

correlates to the amount of strains that are expected. This was also the case at lower coverages. 

Constrains, estMOI and EVORhA tools are not able to properly deduce the amount of strains in the 

samples to what is expected. For EVORhA there was a trend found in the amount of deduced strains 

for E. coli and the expected amount of strains. The tool was not able to give any output for mixed 

Enterococcus samples. This is likely due to the fact that a sole Enterococcus faecalis genome was 

used as a reference while the sample also contained Enterococcus faecium strains. Additionally the 

EVORhA and estMOI tools are not able to provide proper do both not give proper output at 

coverages below 10x. 

Tool: Constrains      
 E. coli   Enterococcus M. tuberculosis 
# Strains ascending even ascending even ascending even 

1 1 1 0 0 1 1 
2 2 2 1 1 1 1 
4 2 2 3 4 1 1 
8 2 2 3 4 1 1 

Tool: estMOI      
 E. coli   Enterococcus M. tuberculosis 
# Strains ascending even ascending even ascending even 

1 1 1 1 1 1 1 
2 1 1 1 1 1 1 
4 1 1 1 1 2 2 
8 1 2 1 1 1 2 

Tool: EVORhA      
 E. coli   Enterococcus M. tuberculosis 
# Strains ascending even ascending even ascending even 

1 3 4 0 0 4 4 
2 4 6 0 0 4 4 
4 5 7 0 0 5 5 
8 5 8 0 0 5 4 

Tool: GOTTCHA      
 E. coli   Enterococcus M. tuberculosis 
# Strains ascending even ascending even ascending even 

1 12 12 6 6 0 0 
2 22 22 6 6 0 0 
4 27 33 7 8 0 0 
8 30 45 7 11 0 1 

Table 5 Amount of strains found by the tools for the different samples. The samples are either evenly distributed mixtures of 
strains where every strain is present at 10x coverage, or ascending distributed samples where, starting at the first strain at 
10x, every subsequent strain is present at half coverage (see even-incremental and ascending-incremental distributions in 
materials and methods). 

  



22 
 

Runtime 
The runtime of the tools have been investigated for different input sizes and are plotted in Figure 6. 

The runtime of the reference based tools BIB, Pathoscope and Sigma is quite long and take up to a 

day when the input is around 80x coverage. 

The k-mer based reference tools StrainGR and Strainseeker are able to provide a result in significant 

less amount of time. It should be noted however, that both of these tools require a specially 

constructed database which need to be made before being able to run. The generation of these 

databases take up a few hours, but only need to be generated once. 

 

 
Figure 6 Duration of the tools. The tools have been run with metagenomic samples containing either 1, 2, 4 or 8 E. coli 
strains of 10x coverage each. The time is plotted on log scale on the y-axis. 
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Chapter 4 Discussion 
The goal of this research is to get insight into how well existing metagenomic tools are able to 

identify different strains in mixed metagenomic readsets. Additionally we want to know what the 

effect in terms of sample composition and sequence depth were on the performance of these tools. 

A pipeline was constructed which automatically generated and analyzed readsets which enabled us 

to investigate the effect of these properties. 

There is a clear distinction between reference based tools which use complete genomes to construct 

their database (BIB, Pathoscope, Sigma, StrainGR, StrainSeeker) and methods for which this is not 

possible (Constrains, estMOI, EVORhA, GOTTCHA). The reference based tools appear to provide 

much more reliable results compared to the other tools. The reason for this is that such tools have 

more information about what can be expected from metagenomic samples than tools without such 

a reference database.  

While analyzing reads of artificially mutated strains, tools were similarly able to identify the 

corresponding strains as when analyzing reads with the original strains. This is as expected as the 

mutations which have been introduced were at random spots in the genome thus the mutated 

strains and are very similar to the original strains. When the mutations would have been introduced 

at known SNP locations, this would result in a more natural way of generating new artificially 

mutated strains. However, this similar output for mutated and non-mutated strains indicates that 

the tools are well able to cope with natural variation when encountering new or mutants of strains. 

Mixtures of M. tuberculosis strains are harder to identify than mixtures of E. coli or Enterococcus. M. 

tuberculosis strains are more conserved among each other [26] and are thus harder to distinguish in 

a mixed metagenomic sample. The tools were often similarly able to identify strains in mixed E. coli 

and Enterococcus metagenomics samples. For PathoScope and BIB however, the outputs for 

Enterococcus and M. tuberculosis readsets contained more false positives compared to E. coli. This 

can be attributed to the fact that the used reference database is of lesser quality as quite some 

genomes consisted of a large number of contigs. 

Most tools were well able to identify a high number of strains in more complex samples. 

Interestingly, while Pathoscope gives quite some false positive results, this is not related to the 

amount of strains present in the sample. This yields higher F1 scores for Pathoscope when analyzing 

more complex samples. StrainGR is able to correctly identify pure M. tuberculosis readsets, however, 

the tool is not able to correctly identify more strains in more complex samples, likely due to the high 

similarity of M. tuberculosis strains. 

The tools can give insightful results with total coverages as low as 1x. For lower coverages the results 

are still valid when analyzed by Sigma, but less reliable for BIB and Pathoscope. We see more false 

positives at a low coverage for BIB and at a high coverage for Pathoscope. We would therefore 

recommend BIB for higher coverage depths and Pathoscope for lower coverage depths. For the k-

mer based tools, StrainGR and StrainSeeker both perform well at total coverages of 1x and up. For 

lower coverages the tools are often not able to produce results from such small readsets. 

The tools were found not to be significantly influenced by the distribution of the strains in the 

samples. Strains with a lower abundance in the sample were expected to be overshadowed by major 

strains present, but this was not the case when comparing with samples where all strains were 

present in equal amounts. Additionally, there is barely any influence when background noise is 

present in the metagenomic sample. This provides the usefulness of these tools for making 

diagnoses as classical ways of making diagnoses often miss minor strains in their analysis. 
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Reference based tools tend to take up quite some time to process the reads. When analyzing high 

coverage samples, these analyses can take up a few days. Additionally the size of the database 

influences the runtime as these tools align the reads to all entries in the database. On the other side, 

the k-mer based tools are able to process the reads in much less time. The computationally intensive 

part of these tools is constructing the database, which fortunately only has to be done once. This 

overhead can therefore be considered insignificant when used in practice. However, if the running 

time is not a concern, the alignment based tool Sigma is preferred due to its accurate output. 

There is a clear correlation between the amount of strains expected and what the GOTTCHA tool 

indicates to be present. The tool however overestimated the amount of strains that are actually in 

the sample. Among the SNP based tools (Constrains, EVORhA and estMOI), no clear relation could be 

found in the amount of strains found and the amount of strains that are actually present in the 

sample. This is likely due to the presence of a sole reference genome which makes it hard to deduce 

strains. Coverages higher than 100x could possible provide better results, but to our concern, these 

tools are not suitable for proper mixed strain identification. The tools however, could provide insight 

into the genomic profile of the sample. 
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Chapter 5 Conclusion 
The current state of the art metagenomic tools are well able to give insight in the microbial 

composition of metagenomics readsets. With these tools, it is possible to get useful information 

about readsets, even at coverages as low as 0.1x or in complex samples with up to 8 different strain 

present. However, mixed samples of the conserved species M. tuberculosis remain a challenge to 

fully unravel. 

Of the tested alignment based tools (Pathoscope, BIB and Sigma), Sigma consistently outperforms 

the other two while having a similar runtime. StrainSeeker and StrainGR, the two k-mer based tools 

investigated in this research, were found to perform similarly to each other. These tools additionally 

provide the advantage of a low runtime, desired for making quick diagnoses. However, the 

performance of these k-mer based tools do not provide as accurate results as Sigma. Lastly, while 

giving insight into the genomic composition of the samples, the tested SNP based tools are found to 

be unable to accurately identify the amount or identity of the strains present in a mixed sample. 
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Chapter 6 Recommendations 
Our research has given insight into the performance of several metagenomic tools and the effect of 

various parameters of the input readsets on the outcome of the tools. It is of interest however how 

the tools perform when these parameters are extended to yet unexplored values.  

We would like to know how many strains the tools are able to identify for metagenomic samples 

with more strains than already done in this research. Additionally, one could look how much the 

abundances between several strains can differ until a minor strain is not detected anymore. Lastly, it 

is not yet known how much background noise could be present in a sample before strains are not 

detected anymore. 

This research covered the performance of the tools in terms of discovery rate. Perhaps more insight 

into the tools can be obtained when taking the abundances into account which the tools estimate. 

Furthermore, we solely focused on the performance of the tools on synthetic readsets. Future work 

should also take readsets of real world data into account to see how accurate the tools perform on 

such data. Additionally other tools, not taken into consideration should be evaluated too. This is for 

example the recently published tool StrainEst [30]. 

In the papers provided with the tools, none of the tools evaluated their own performance on strains 

of a highly conservative species like M. tuberculosis. Yet, it is the species where we see the largest 

differences in performance between the tools. It is clear that it is the hardest species to predict 

strains from compared to the other two investigated species. Therefore, it would stand to reason to 

compare new tools on more highly conservative strains. 

For the BIB and Pathoscope tool, quite some false positives which were indicated by the tools as 

having low abundance in the sample were found. Analysis could be done to see how these tools 

perform when not taking such low abundance strains into account. 

The GOTTCHA tools provided a clear correlation with the amount of strains present and the amount 

of strains given in its output. Further development of this tool with a custom database could provide 

a higher performance of this tool on our dataset. 

The authors of EVORhA and estMOI do not indicate how the input bam and vcf files should be 

generated. To our consent we did this in a proper way, however other ways to make these files 

might improve the performance of these methods on our dataset. Furthermore, these pattern based 

tools could perform better at higher coverages than tested within this research.  
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Appendix A Project Description 
The project description stated on BepSys is shown below; 

Classification of diverse bacterial populations 
Doctors make definitive diagnosis of what's infecting a patient using the output of a long stream of 

laboratory tests. For diseases like Tuberculosis, conducting and retrieving all the relevant laboratory 

test results can take months! A different approach to diagnosis can be found in analyzing sequencing 

data of patient samples. Sequencing makes it possible to rapidly identify which bacteria is infecting a 

patient by presence of the bacterial DNA. However, in the case where there is more than one 

subspecies of a bacteria infecting a patient, current technologies are severely limited. Such scenarios 

typically lead to inaccurate diagnosis, poor treatment and unwanted development of antibiotic 

resistance. 

The majority of current methods to classify distinct subspecies in data are targeted towards viral 

genomes. The few methods claiming to be compatible with bacterial populations have yet to be 

comprehensively evaluated. This bachelor's project therefore focuses on the implementation and 

benchmarking of various tools & algorithms developed to classify & quantify the presence of distinct 

subspecies in a sequencing dataset. Tools to be evaluated include: Evorha, Shorah, Pathoscope, 

Gottcha, Constrains, TGS-TB, and others. These tools will be evaluated on both synthetic & real 

datasets used here. 
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Appendix B Project Plan 
In this appendix we present the Project Plan which describes our planning for this project. We start 

by analyzing the problems that our final product and our benchmark should solve. Afterwards, we 

discuss why we chose Python as our programming language and why we chose to use Docker to 

setup our development environment. Lastly you can find a MoSCoW analysis of the final product and 

the original planning. 

Problem definition and analysis 
As metagenomic analysis becomes more widely spread, more and more tools are created in order to 

perform this analysis. These tools are often hard to install because they have many dependencies 

and the documentation that their authors provide often omits necessary information. Not only is it 

hard to use the tools, it is also hard to determine which tool one should use. Up to this point no one 

has done an independent benchmark to evaluate the performance of these tools. Our product 

should solve the first problem by making it easy to install and run all the commonly used tools for 

metagenomic analysis. Our research should solve the latter problem by providing the (potential) 

users of metagenomic analysis tools with an independent benchmark on the performance of these 

tools. 

Final product 
In order to use all these tools, one needs to spend weeks installing and studying the requirements of 

the tools. They often require advanced knowledge of computer science and biology in order to use 

them. However, most potential users of these tools do not have that knowledge. Our framework 

should make it possible for all potential users to do metagenomic analysis on their read sets 

independent of the knowledge that person may or may not have. 

The user should not have to be an expert in computer science. He may not have the required 

knowledge of programming languages or the knowledge required to build the different tools from 

source and/or the advanced Linux knowledge that is required to install all the required 

dependencies. Without this knowledge, it is currently unlikely that someone would be able to use 

any of the currently available tools. Our product should solve this problem by making it easy to 

install and run all of the commonly used tools for metagenomic analysis. 

The user also should not need to have specific bioinformatics knowledge in order to use the tools. 

For example, StrainSeeker requires a guide tree in order to build its database. However, creating a 

guide tree of a large number of whole genomes is not something that can be done easily. A single 

framework should be able to do all the preprocessing required for all the tools. The user should only 

be required to supply the reference genomes and the metagenomic samples they want to analyze. 

Benchmark 
Up to this point no one has done an independent comprehensive benchmark of the most common 

tools for metagenomic analysis of bacterial samples at the strain level. This means that users have to 

rely on the papers of the individual tools to determine which tool to use. These papers do not 

necessarily compare their tool against all other available tools and the experimental setups that they 

use are often not very comprehensive and not consistent with the experimental setups of the other 

tools. This makes it impossible to compare the results presented in these papers. We will test all the 

tools on the same inputs and thus provide an accurate representation of their performance. 
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Programming Language 
We decided to use Python as our programming language as Python is widely available on personal 

computers and on computing clusters. Python is also dynamically typed and very flexible, which will 

likely reduce the development time and will make it easy to iterate on different versions of our 

product. Python also has a very intuitive and extensively documented subprocess library that can be 

used to run tools that use different languages than Python itself. Python is also used by many of the 

tools that we want to add to our pipeline like, for example, BIB, Pathoscope and ConStrains. This 

may make it easier for us to add these tools to our pipeline. 

Docker 
In order to ensure that our system can be run on any system, we will create a Docker image. We will 

ensure that we install the dependencies for the tools in the Dockerfile, such that we can guarantee 

that our development environment will be the same as our production environment. This should 

make testing our code a lot easier. 

MoSCoW analysis 
We present an analysis of what we believe to be the requirements for the pipeline. The Must haves 

are critical for the project to be a success. The Could haves on the other hand are not necessary for 

the product, but they would be important features of the product.  

Must haves: 

- The user can create synthetic read sets of genomes using a sequencing read simulator of a 
whole genome. 

- The user can create synthetic metagenomic samples of a set of whole genomes. 
- The outputs of the tools are parsed to standardized format, such that it is easily readable by 

both humans and computers. 
- The user can run the most commonly used tools for metagenomic analysis on his own read 

sets. 
 

Could haves 

- The results that the tools output are visualized in graphs and charts. 
- The user can determine the settings in a configuration which should be used by the pipeline 

to determine the input arguments for these tools. 
- The user can easily run a benchmark of all the tools for certain experiment parameters that 

he can determine 
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Planning 
This is the original planning that we presented to our supervisor and our coach. We have iterated on 

this planning many times during our project, but it gives a good overview of how we envisioned our 

project would be structured. You can find the original list of deadlines we set in order to structure 

our focus on delivering an excellent product in Table 7. 

Week               Tasks 

13 November – 19 November - Write draft version of the introduction 
- Finish research for introduction 
- Investigate tools for benchmark 
- Investigate potential features of the pipeline 

20 November – 26 November - Investigate tools for benchmark 
- Investigate potential features of the pipeline 
- Generate input data for benchmark 

27 November – 03 December - Generate input data for benchmark 
- Create the skeleton for the pipeline 
- Add PathoScope2 to the pipeline 

04 December – 10 December - Add more tools to the pipeline 
11 December – 17 December - Finish the minimum requirements of the pipeline 

- Add tools to the pipeline 
- Run experiments for the benchmark 
- Start writing final report 

18 December – 24 December - Add tools to the pipeline 
- Run experiments for the benchmark 
- Analyze the results of finished experiments 
- Work on the final report 

25 December – 01 January - Add visualization to the pipeline 
02 January – 07 January - Slack time 
08 January – 12 January - Run experiments for the benchmark 

- Analyze the results of finished experiments 
- Work on the final report 

15 January – 19 January - Work on the final report 
- Compare the results of the tools 

22 January – 26 January - Prepare presentation 
- Create info sheet 
- Make final improvements to report 

Table 6 Original planning from the Project Plan 

Date Deadline 

13 November Planning project and outline introduction 
17 November Draft introduction 
27 November Final version introduction 
06 January First draft final report 
08 January All features added to the pipeline 
15 January All tools added to the pipeline 
15 January Docker image with all dependencies 
22 January Final paper 

Table 7 List of deadlines for the project 
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Appendix C Progress 
In this appendix we discuss our process and the progress we made during the project. We first 

discuss the most important parts of our process and how we tested our system. Afterwards we 

discuss our progress per week, the problems that we encountered and how we solved them. This 

journal is followed by a discussion on the tools that we discarded from the benchmark. We also 

discuss the feedback that we received from SIG and how we took advantage of this. Lastly we reflect 

on how we experienced the project and what we have learned from it. 

Process 
In this section we discuss the most important parts of our process. We discuss why we worked in an 

agile fashion and why we opted to not use SCRUM. Lastly we discuss the important role that code 

review played in our process. 

Agile 
During our study we have learned that the requirements of software projects often change and that 

it is important that a team works in an agile fashion in order to anticipate these changes and to 

effectively react to the changed requirements. We knew we would be the first users of our product 

when we would use it to run the experiments required for the benchmark. We also knew that we 

were likely not able to completely finish the product before we needed to start running 

experiments. We thus worked in an agile fashion and had rolling releases. This made it possible to 

add tools to our experimental setup while we were already in the process of benchmarking other 

tools.  

We used a SCRUM board, but this board was meant to get a high-level overview of what work still 

had to be done and thus it contained the high-level requirements of our project instead of small 

units of work as is more common in the SCRUM methodology. Because we worked together in a 

small group, we wanted to avoid the overhead that comes with using a strict framework to manage 

the development process. We had the advantage that we could work together in person every day, 

so our process relied on face-to-face communication. At the start of every day we both discussed 

our plans for the day and we made design decisions together. This ensured that we were constantly 

aware of what the other person was working on and that we could anticipate problems and resolve 

them fast if they did occur.  

 

Figure 7 The SCRUM board that was used during our development process. 
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Code reviews 
We had code reviews for all pull request to protect the quality of our code base. The author of the 

code explained how it worked and more importantly what the rationale behind the changes is. This 

made it easy for us to ask each other questions about the code and we could give feedback 

immediately. It also resulted in that bugs were found fast and that they could be fixed immediately. 

Another important benefit was that this helped with ensuring that different units of our code base 

were consistent with each other. 

Testing 
During our study, we have become well acquainted with the importance of software testing in 

computer science. While working on this project, we have taken this into account and implemented 

several automated tests with the Pytest framework. Several components of our framework could be 

tested in this way. However, we found out that large parts of our code are not easily testable as the 

code heavily relies on working with external tools. Additionally, the behavior of these external tools 

is not as predictable and running metagenomic tools can take quite some time, making it less 

attractive to make automatic tests. Furthermore, large parts of our methods are focused on 

manipulation of files and do not provide direct return values. We have discussed this issue with our 

coach and he agreed that for the majority of our code it is hard to write meaningful tests. He agreed 

that we should not put our focus a lot on automatic testing and that the reason for it lies in the 

nature of the project. Instead, we should make sure we ran the different tools lots of times 

throughout the development and be critical on the output that is returned.  

Taking this advice, we have focused more on manual testing compared to automatic testing towards 

the end of the project. Due to the low automatic testability of our code, we ensured that we ran our 

code extensively. A critical view towards the output of the tools helped us with fixing several bugs. 

While implementing new tools in the framework, it helped a lot to just run the tool lots of times. By 

doing this, we were able to get a proper understanding of the tool which helped with the proper 

implementation of it in our framework. 

Journal 
In this section we discuss the progress we made each week and the difficulties that we faced during 

our project. 

Research phase 
In the first two weeks we focused on writing a project plan and an introduction for our benchmark 

paper. During the first week we mainly read the papers of the tools that we wanted to benchmark. 

In the second week we focused more on writing the introduction itself, while continuing to research 

the field as necessary to write the introduction and to find papers to support the claims made in our 

introduction. 

Main development phase 
From week three to the Christmas holidays we primarily focused on developing the pipeline that we 

would use for our benchmark. This meant that we primarily focused on adding tools to the pipeline 

and developing features to make our pipeline easy to use. 

The next week we researched different sequencing read simulators and selected three simulators 

that we could potentially use: FastQSim, ART, and MetaSim. We discarded MetaSim because it is not 

able to generate paired end reads. We chose to use FastQSim because, unlike ART, it is able to 
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generate metagenomic samples from the reference genomes. While we were implementing a 

wrapper for FastQSim, we also added our first tool to the pipeline: PathoScope2. While 

implementing the wrapper, we noticed that a module of PathoScope did not work with our 

genomes. PathoScope tried to download extra metadata for the genome that no longer existed from 

NCBI. We fixed this by using a script, which was posted in an issue on their GitHub page, to 

preprocess our genomes for PathoScope.  

The fourth week we met with our coach and he informed us that our original plan to run our pipeline 

inside a Docker container was not possible on the INSY cluster. This meant that we had to ensure 

that our system would be portable, which required us to refactor parts of our code. During the same 

meeting our coach recommended that we do not use FastQSim for our benchmark as it is not widely 

used in the field. On his recommendation we replaced it with ART. We also added two more tools to 

the pipeline: ConStrains and Sigma. The implementation of a wrapper for Sigma was relatively 

straight forward. ConStrains on the other hand was a lot more problematic. It required older 

versions of dependencies, but this information cannot be found in the documentation. 

In week five we refactored our code to use configuration files. We updated the tools that were 

already implemented to accept these configuration files. Simultaneously, we also added the 

subsampling and shuffling of the reads generated by ART to the pipeline. Lastly, we finished the 

implementation of the Evorha wrapper, but we ran into the problem that the reported abundances 

did not sum to one. We had to contact the author in order to understand the output. 

In week six we added more tools to the pipeline. We added Shorah, BIB, GOTTCHA and EstMOI. We 

started working on the GOTTCHA tool, but ran into difficulties getting it directly to work and making 

a custom database for it.  

During the Christmas holidays we worked on creating taxonomic trees and using them to pick the 

strains for our benchmark, creating a wrapper for StrainSeeker, and we started working on updating 

our implementation of the tools to make them portable to the cluster. We had quite a bit of trouble 

with implementing StrainSeeker properly as it did not accept the trees that we created for it. After 

contacting the authors of StrainSeeker, we were informed that StrainSeeker requires a bifurcating 

tree. As this was not possible with the tools that we used to create trees at the time, we 

implemented a different way to create trees using MASH and MEGA.  

Benchmark phase 
Once our pipeline was almost completely operational we started running experiments and analyzing 

the results. The remainder of the project was focused on writing this our scientific report. 

We started week seven by designing our benchmark. Once we received the green light from our 

client to continue with the benchmark, we started running the experiments. While the experiments 

were running, we focused on improving the quality of our code. We reduced the amount of 

duplicate code and improved the documentation of our pipeline. 

In week eight we started analyzing the results from the experiments and writing the materials and 

methods, and the results section of our paper. We also made it possible for the user to spike 

metagenomic samples with reads from the Human Microbiome Project.  

In week nine our coach determined that we should expand our experimental setup with more 

experiments. So, we created more experiments and continued with analyzing the results. We also 

started working more extensively on writing the appendices of the final report. This work continued 

into the final week when we finished the project. 
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Discarded tools 
We were not able to add all the tools that we initially considered for the benchmark to the pipeline. 

Some tools were not suitable for the benchmark and others were difficult to implement for different 

reasons and were therefore considered as low priority tools. We were not able to implement all of 

the low priority tools. In this section we discuss the specific reasons why each of the following tools 

was not added to benchmark. 

GSM-er 
We did not add GSMer to the benchmark as it outputs “Genome Specific Markers”. Although these 

genome specific markers can be used to calculate according to their paper, there is no 

documentation on how to do this. We decided that other tools were more important to research 

first, and we did not have enough time to add GSMer to the pipeline. 

MIDAS 
We investigated the applicability of the tool MIDAS (Metagenomic Intra-species Diversity Analysis 

System) for our benchmark. Judging on the paper where the tool is described, the tool seemed very 

promising. It aims at giving insight in the microbial composition of sequence reads on strain level. 

After looking into the github page of MIDAS and doing some test runs with the code, we found out 

that the output of this tool consists of SNP- and gene profiles. The output generate by this tool is not 

comparable with the other tools and we therefore discarded the tool for use within this project. 

WG-fast 
WG-fast was also considered for implementation during the project. However, similarly to the 

MIDAS output, the WG-fast output was hard to put in line with the other tools. The output consisted 

of a genomic tree and SNP matrices. No strain identification data could be obtained. 

Metasort 
Metasort was considered as interesting tool as this tool claims to identify strains from metagenomic 

data. This tool however relies on their developed way of sequencing sorted bacterial cells. The input 

reads generated in our framework was not what the algorithm required to run and we considered 

the tool as not applicable for this research.   

Shorah 
The Shorah tool was an interesting tool for us as it had similar behavior and output as the EVORhA 

tool included in our research. Originally this tool was developed for viral genomes, but the potential 

for bacterial DNA had yet to be investigated. When trying to implement this tool and running it on 

our synthetic data, we found out that we were not able to run properly and get output from the 

tool. Upon contacting the author of the tool he confirmed that this tool is likely not applicable for 

our goal and we discarded the tool. 

Eyre et al. 
We looked in the tool developed by Eyre et al. for the identification of metagenomic samples. These 

researchers describe that their method can be applied to detect mixed infections. While analyzing 

the implementation we found out that their algorithm require input information about which 

haplotypes to expect in the sample. It was not clear how we could extract this info from our 

database to get the method to work. We contacted the author but he was not able to provide any 

help in time. 
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PanPhlan 
PanPhlan was discarded because it can only identify the dominant strain. Although this is useful in 

many situations, it would not perform well in our benchmark which is focused on finding the tools 

that can detect as many strains as possible. 

StrainEST 
StrainEST was released while we were working on this project (December 2017). StrainEST would 

have been interesting to compare to the other tools, but we were not able to add it to our pipeline 

before the deadline.  

SIG Feedback 
In this section we present the feedback we have received from the Software Improvement Group 

(SIG) on the code quality of the product. As the feedback is in Dutch, we have summarized the 

feedback in English. 

First feedback moment 

De code van het systeem scoort 3 sterren op ons onderhoudbaarheidsmodel, wat betekent dat de 

code gemiddeld onderhoudbaar is. De hoogste score is niet behaald door lagere scores voor Unit 

Size en Unit Complexity. 

 

Voor Unit Size wordt er gekeken naar het percentage code dat bovengemiddeld lang is. Het 

opsplitsen van dit soort methodes in kleinere stukken zorgt ervoor dat elk onderdeel makkelijker te 

begrijpen, te testen en daardoor eenvoudiger te onderhouden wordt. Binnen de langere methodes 

in dit systeem, zoals bijvoorbeeld run() in SubSample.py, zijn aparte stukken functionaliteit te vinden 

welke ge-refactored kunnen worden naar aparte methodes. Commentaarregels zoals bijvoorbeeld 

'change single quotes to double quotes so that it is valid json'  zijn een goede indicatie dat er een 

autonoom stuk functionaliteit te ontdekken is. Het is aan te raden kritisch te kijken naar de langere 

methodes binnen dit systeem en deze waar mogelijk op te splitsen. 

 

Daarnast zijn jullie een beetje wisselend in hoe groot methodes binnen een class moeten zijn. In 

sommige bestanden is dat vrij goed uitgesplitst, maar in bijvoorbeeld de constructor van 

ExperimentalSetup wordt een groot aantal verschillende acties uitgevoerd binnen één methode. Ook 

bij constructors is het voor de toekomstige onderhoudbaarheid de moeite waard om aparte stappen 

in het proces naar aparte methodes uit te splitsen. 

 

Voor Unit Complexity wordt er gekeken naar het percentage code dat bovengemiddeld complex is. 

Ook hier geldt dat het opsplitsen van dit soort methodes in kleinere stukken ervoor zorgt dat elk 

onderdeel makkelijker te begrijpen, makkelijker te testen en daardoor eenvoudiger te onderhouden 

wordt. In dit geval komen de meest complexe methoden ook naar voren als de langste methoden, 

waardoor het oplossen van het eerste probleem ook dit probleem zal verhelpen. 

 

De aanwezigheid van test-code is in ieder geval veelbelovend, hopelijk zal het volume van de test-

code ook groeien op het moment dat er nieuwe functionaliteit toegevoegd wordt. Op dit moment 

blijft de hoeveelheid tests nog wat achter bij de hoeveelheid productiecode. 
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Over het algemeen scoort de code dus gemiddeld, hopelijk lukt het om dit niveau te behouden 

tijdens de rest van de ontwikkelfase.  

Key points: 

- A score of three stars on SIGs maintainability model. 
- Some of the units of code were longer than average and could be refactored in multiple 

smaller units. 
- These units are also often more complicated than average. 
- The number of tests is lower than expected given the size of the production code. 

 

Our response: 
We addressed the problems that SIG informed us about and significantly reduced the complexity of 

our code in these areas. We updated the parts of our code that could be considered as complex and 

by doing that also reduced the size of our longer methods. 

We also added more tests for the system. It is however hard to test a system that relies on running 

code that is outside one’s control. We have opted to test our code that does not execute tools but 

that preprocess the data. We have done extensive manual tests to verify the correctness of the code 

that does execute the tools. We have discussed our testing approach more extensively in the testing 

section of appendix C. 

We are glad that our efforts have been validated with a higher maintainability score for our second 

feedback. 
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Second feedback moment 

In de tweede upload zien we dat de hoeveelheid code is toegenomen. De score voor 

onderhoudbaarheid is gestegen, jullie scoren nu ongeveer 3,5 ster. De stijging wordt met name 

veroorzaakt door een sterke verbetering op het gebied van Unit Complexity. Jullie hebben daar de 

door ons genoemde voorbeelden aangepast, en er daarnaast voor gezorgd dat deze problemen in de 

nieuwe code niet meer voorkomen. Ook op het gebied van Unit Size zien we een duidelijke 

verbetering. 

 

Jullie hebben naast nieuwe productiecode ook nieuwe tests geschreven. Jullie hadden, zoals eerder 

aangegeven, een vrij grote achterstand qua hoeveelheid testcode, en het is niet gelukt om deze 

achterstand in te lopen. Dat was ook moeilijk geweest in zo'n korte tijd, maar probeer hier bij 

toekomstige projecten op te letten. Als je grote systemen gaat aanpassen zorgen tests voor een 

vangnet om zeker te zijn dat de aanpassingen geen fouten in andere delen van de code veroorzaken. 

 

We kunnen hier uit concluderen dat de aanbevelingen van vorige keer tijdens de ontwikkeling zijn 

meegenomen. 

Key points: 

- A score of 3.5 stars on SIGs maintainability model. 
- SIG observed a large improvement in Unit Complexity and Unit Size. 

- SIGs recommendations have been implemented and the new code that was added did not 

result in a lower score for these measures. 

- Even though more tests were added the ratio of test code to production code is still lower 

than expected. 

- SIG concludes that their recommendations have been addressed in the final part of the 

development process. 

Personal reflection 
This project presented us with many challenges that we did not have to face in the other parts of our 

Bachelor curriculum. This project made it perfectly clear that we were spoiled during our Bachelor 

courses with extensively documented code and tools that just work. In this section we discuss how 

we experienced the project and the many things that we learned from it. 

DevOps 
We were often shielded from Linux during our bachelor courses. When we had to use Linux, we 

would often get a virtual machine where all the required dependencies were already installed. So, 

this was the first time that we got to experience Linux in all its glory and at times its wrath. We have 

become familiar with building programs from source and how to manage the many dependencies 

and prerequisites that programs may have. We have also become familiar with creating production 

and development environments and installing all the dependencies that are required to run a 

complex system like ours. Luckily, we have also learned how to automate this using Docker, which 

probably prevented us from a lot of headaches. 

Creating the pipeline 
We also experienced that in real projects you often do not have a clear pathway on how to proceed 

and that you may not be able to adhere to the planning that you have set out beforehand. We 
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thought that we would be finished with building the pipeline in a few weeks and that we could then 

completely focus on our benchmark. We quickly realized that this would not be the case and that 

some tools required more time than we planned for. Getting the tools to work on our system turned 

out to be very difficult at times and we needed lots of coffee and take-away food to get us through 

the many late nights that we spend debugging the tools. As the tools were often outdated or lacked 

the documentation required in order to get it to work as advertised, we often had to find creative 

solutions.  Thankfully, in the cases when we were not able to find a solution, the authors of the tools 

were very responsive to our inquiries on how to use their tools. 

High-performance cluster 
This project also gave us the opportunity to play with a high-performance cluster. This was the first 

time we worked on hundreds of processors simultaneously. We created an experimental setup 

manager that automatically creates jobs, which can be executed by the cluster, in order to run tens 

of experiments in parallel. This did not always go as planned. For example, we had to fix bugs that 

would only occur when a tool was run multiple times in parallel.  

Meetings 
Our weekly meetings with our helpful supervisor were very useful to keep us on track to do to 

benchmark in time. It also provided an opportunity for us to explain our plans and discuss our 

intermediary results with her. We had to update our experimental setup many times before we 

could convince both her and our coach that our experimental setup would be both interesting and a 

fair comparison of the tools.  

Domain knowledge 
This project did not just test our knowledge about computer science as we also had to study 

elements of biology in order to even understand what we were supposed to do. It was common to 

encounter unfamiliar terms or ideas in the papers that we had to research for our introduction. So, 

this often resulted in reading even more papers and searching for more information. Thankfully, we 

were able to start the project with a lecture on metagenomics in order to kick start us in our 

research. Thanks to this lecture we had an idea of what metagenomics was and how the different 

tools worked and how they could be used in practice. 
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Appendix D Design choices 
One of the main challenges we faced during the design process was how we could ensure that the 

user did not have to install any tools and dependencies used by the tools. This affected our overall 

design and development process. It also affected the programming language that we used, and it is 

one of the reasons why we created a Docker image for development that has become part of the 

end product. In this appendix we highlight the key design choices made during implementation. 

Portability 
Our system needs to be usable on every Linux system and installing it should be as easy as unpacking 

a zip file. In order to achieve this, our system expects all tools to be located in a single resources 

directory and all dependencies that are used by more than one tool in a single dependencies 

directory. The dependencies in these directories may need to be added to the system path 

depending on the tools but we ship the product with a file that contains all the paths that the user 

needs to set in its Bash profile. Once this file is sourced he can execute all the tools using our system. 

Our product is delivered as a single tar file that once it is unzipped works on a Linux system.  

Configuration files 
Our system requires configuration files as input in order to run the tools with the correct input 

arguments. These configuration files can be automatically generated with the default values for each 

tool, such that the user does not have to change any settings. Below you can find an example of a 

configuration file for StrainSeeker. 

[GENERAL] 

threads = 8 

resources_directory = /path/to/resources 

dependencies_directory = /path/to/dependencies 

temporary_directory = /path/to/temporary_storage_directory 

 

[STRAINSEEKER] 

name = exp_x 

outputfolder = /path/to/output_folder 

fastadirectory = /path/to/reference_genomes 

analysereads = True 

builddb = False 

builddistancematrix = False 

newicktree = /path/to/tree.nwk 

database = /path/to/database 

inputread_1 = /path/to/read1.fq 

inputread_2 = /path/to/read2.fq 

Read set metadata 
Our system creates a metafile for readsets containing the information that our system needs to 

create a metagenomic sample. It is common to store readsets in the FastQ format, but this format 

lacks the required information to create artificial metagenomic samples. The biggest problem is that 

it does not have any information on the coverage depth of the sequenced genome. We create a 

meta file every time ART sequences a genome, which contains the coverage depth of the read set, 

the sequencer platform and the size of the reads. From this file our system can calculate the number 

of reads that are required to subsample enough reads from the read set to simulate any coverage 

level. 
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Standardized output 
In order to make it easy to interpret the results of the metagenomic tools, the pipeline parses the 

results that the tools output to a standardized format. The user does not have to find the results that 

you want in the large web of data that the individual tools output, but he can use our simple format 

that only contains the essential information. This simple format only informs the user of which 

strains have been found and what the estimated abundances are of the strains. This standard format 

makes it easy to compare the results of different tools. We have chosen to use tab spaced values 

format as this is a format that is easily readable by both humans and machines. The user can analyze 

the data by hand, but the data can also be imported into, for example, Excel or R. You can find an 

example of this format for the output from Sigma below. 

Tool:   sigma 

Experiment:     enterococcus-soi8-even_incremental-tc1-hmp0 

 

strain  abundance 

DS5     0.13619307612505777 

Aus0004 0.13511942204868566 

79-3    0.13415152471617883 

UAA702  0.13179119476312043 

E1972   0.12053854958795196 

T18     0.11715474315791295 

7430821-4       0.11501375513362465 

ATCC8459        0.10829683973144205 

 

Standard setup 
Our system can be used by first letting our system generate a standard configuration file containing 

the default settings for all the tools that one wants to run. When the user gives this configuration as 

input to the pipeline, it will run the tool with the arguments that the user provided in the file and it 

will move the output of the tool to the folder that the user prescribed. It is not required to create 

different configuration files for different tools. When a single configuration file with multiple tools is 

given as input the system will run all the tools sequentially. 

Experimental setup 
Our system also has an experimental setup manager, which makes it easy to run many experiments 

on many tools in parallel using the SLURM workload manager that is present on most computing 

clusters. It automatically creates a configuration file for each experiment for each tool and it creates 

a SLURM bash script that can be used to run that experiment. Once they system has created all the 

SLURM bash scripts the user can confirm that they are correct before running all the scripts. This 

makes it easy to run hundreds of experiments in parallel with only two commands.  
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Appendix E Framework manual 
Version 08-02-2018 

Repository location: https://gitlab.noshit.be/AbeelLab/bep_mixedbugs 

Here, we present a benchmarking framework built in Python 3 which enables benchmarking the 

performance of tools aiming at unraveling the composition of metagenomic readsets. This 

framework is able to automatically generate batches of metagenomic readsets with custom defined 

properties. The tools can easily do their analysis on those reads in a streamlined fashion. The output 

of the tools are put in a standardized format to make the comparison of tools easier. The general 

workflow is depicted in Figure 8 

Additionally it is possible to define an experimental setup which enables bulk creation of 

metagenomic reads with desired properties and the automatic running of the tools with these 

readsets. 

Tools implemented in this framework are shown in Table 8. 

Tool Name Version Type Database Reference 

BIB Oct 3, 
2016 

Reference Genome files [2] 

Pathoscope 2.0 Reference Genome files [16] 
Sigma 1.0.3 Reference Genome files [11] 
StrainSeeker 10-feb-

2016 
Reference  
(k-mer) 

k-mer database based on genome files and tree [17] 

StrainGR Jan 2018 Reference  
(k-mer) 

k-mer database based on genome files Unpublished 

GOTTCHA 1.0c Reference GOTTCHA database [9] 
Constrains 2016-04-

20 
SNP pattern Constrains database (1 genome per species) [19] 

EstMOI 1.03 SNP pattern One representative genome (.fna) [6] 
EVORhA n/a SNP pattern One representative genome (.fna and .gff) [20] 

Table 8 Overview of the tools implemented in the framework 
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The main workflow of the framework consists of the following steps; 

- Bulk read generation with the ART program [29] 

- Metagenomic readset generation with multisample_fastq.py from the ART bulk reads 

- Analyzing the metagenomic readsets created with one of the tools 

- Combining the outputs of different tools for comparison 

 

 

Figure 8 Workflow of the framework 
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Installation 
The basic installation of the framework including importing the tools and their dependencies can be 

done in a Docker image. Additionally it is possible to export the installed files externally to a 

computer cluster like the INSY cluster (http://helix.ewi.tudelft.nl/servers/). 

Docker Image 
In the repository a Dockerfile is provided which automatically installs a CentOS image with the tools 

and dependencies needed. The Docker image can be installed by navigating to the location of the 

DockerFile in the repository folder and running the following command; 

docker build -t bepimage . 

Docker starts building the image and downloads the necessary files to run the tools. Once the docker 

image has successfully been built, you can start the image with; 

docker run -v /path/to/bep_mixedbugs:/code -v /path/to/scratch:/scratch -it bepimage bash 

In this example command two local folders are mounted; 

- /path/to/bep_mixedbugs is the repository folder containing the framework python code 

- /path/to/scratch is the folder where all input and output files used to run the framework are 

placed 

INSY Cluster 
The installation of the INSY cluster consists of moving the necessary folders to the cluster and adding 

the dependencies to the Linux profile. Additionally, when one wants to run the StrainGR tool, one 

should install miniconda3 as described below. 

Folders 

The installation in the Docker image can be exported to the INSY cluster. To be able to run the 

framework on the INSY cluster, one should both copy the following folders to the cluster; 

- resources (includes the tools that are run from the framework) 

- dependencies (external programs that are needed by the tools to be able to run) 

To make things easier, the framework installed in the Docker image can automatically generate the 

packages resources.tar and dependencies.tar file with the following command; 

python3.6 /code/main/scripts/make_tarfiles.py --outputFolder /scratch/tars 

Subsequently, on the INSY cluster one can extract these files to the desired output location with the 

following command; 

python3 /path/to/bep_mixedbugs/main/scripts/extract_tarfiles.py --outputFolder /path/to/output_folder --

dependenciesTar /path/to/dependencies.tar --resourcesTar /path/to/resources.tar 

Dependencies 

For the tools to be able to properly use the dependencies, the environmental variables should be 

added to the environment in the profile on the INSY cluster. This can be done by either using the 

.bash_profile file located in the repository or by adding the following lines to your existing 

.bash_profile ; 

export DEPENDENCIES_FOLDER="/path/to/dependencies" 
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export RESOURCES_FOLDER="/path/to/resources" 

#BOWTIE 

export PATH="$DEPENDENCIES_FOLDER/bowtie2-2.3.3.1-linux-x86_64:$PATH" 

#SAMTOOLS 

export PATH="$DEPENDENCIES_FOLDER/samtools-1.6:$PATH" 

#MASH 

export PATH="$DEPENDENCIES_FOLDER/mash-Linux64-v2.0:$PATH" 

#BITSEQ 

export PATH="$DEPENDENCIES_FOLDER/BitSeq-0.7.5:$PATH" 

#BWA 

export PATH="$DEPENDENCIES_FOLDER/bwa-0.7.17:$PATH" 

#BCFTOOLS 

export PATH="$DEPENDENCIES_FOLDER/bcftools-1.6:$PATH" 

StrainGR 

Lastly, to be able to run the tool StrainGR on the cluster, a miniconda3 environment needs to be 

installed in your home directory. 

Navigate to your home folder ($HOME) and download the miniconda installer with the following 

command; 

wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh 

This script is not directly executable after downloading, run the following command to enable this; 

chmod +x ./Miniconda3-latest-Linux-x86_64.sh 

Hereafter miniconda3 can be installed with; 

./Miniconda3-latest-Linux-x86_64.sh -b 

To install the StrainGR environment run; 

./miniconda3/bin/conda env create -f /path/to/resources/StrainGR/environment.yml 

Next, activate the environment; 

source ./miniconda3/bin/activate strainge 

Navigate to the StrainGR folder in resources; 

cd /path/to/resources/StrainGR/ 

And install the following dependency; 

pip install pybind11 

Hereafter, run the following setup file located in the StrainGR tool; 

python setup.py install 

The StrainGR environment is now properly installed, you can exit the conda environment with; 

source deactivate  
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Running single config files 
The following instructions are for working with the bep_mixedbugs framework on the INSY cluster. 

When working in the Docker image, the process is similar. The main difference is that python needs 

to be called with python3.6 instead of python3 and SLURM sbatch jobs are not available in the 

Docker image. 

When using the framework, config files are used for instructions on what to run. The framework can 

either be used to run single config files or by running complete batches of config files. 

Within the framework it is possible to generate example config files. These files can be edited to the 

users taste before being run. 

Making an example config 
To make an example config file for art and subsample, the following command can be run with the 

framework; 

python3 /path/to/bep_mixedbugs/main/config.py --tool art --tool subsample --outputFilename 

/path/to/example.cfg 

One or multiple tools can be provided as argument for making the example config with the --tool 

flag, in the example above both art and subsample entries are made in the example.cfg file. This 

contents of this example config is shown below; 

[GENERAL] 

threads = 2 

resources_directory = /resources 

dependencies_directory = /dependencies 

scratch_directory = /scratchfolder 

 

[ART] 

inputfiles = /data/ARTinputfiles/ 

paired = True 

coverage = 10 

outputalignmentfiles = False 

readlength = 150 

outputdirectory = /data/ARTreadsets 

standarddeviationfragmentsize = 10 

sequencer = HS25 

fragmentmeansize = 200 

outputsam = False 

platform = illumina 

 

[SUBSAMPLE] 

sources = [{'coverage': '1', 'metaFile': '/data/ARTreadsets/read_S_boydii_Sb227-fna.meta'}, 

{'coverage': '2', 'metaFile': '/data/ARTreadsets/read_GCA_001692795-1_ASM169279v1-fna.meta'}, 

{'coverage': '2', 'metaFile': '/data/ARTreadsets/read_S_boydii_CDC_3083-94-fna.meta'}] 

hmp_read1 = /path/to/read_1 

name = exp_x 

outputfileprefix = metaread 

outputdirectory = /data/MetagenomicSamples 
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hmp_read2 = /path/to/read_2 

hmp = 0 

The [GENERAL] section contains basic info needed for the tools to run like the amount of threads 

that should be used (if available in the tool) and the location of the resources and dependencies 

directories. The scratch_directory indicates the location where the tools are allowed to store their 

temporary data. The sections other than [GENERAL] are specific for certain tools. 

Running a single config file 
To run the framework with a config file, the following command can be run; 

python3 /path/to/bep_mixedbugs/main/main.py --configFile /path/to/example.cfg 

When multiple tools are indicated in this config file, the framework will run these sequentially. After 

the config has been run, the file example.cfg.log is created containing the start and endtime of 

running the config. 

To be able to run StrainGR one should first activate the corresponding miniconda environment. This 

can be done with the following command taking into account that miniconda3 is installed in the 

$HOME directory during the installation; 

source $HOME/miniconda3/bin/activate strainge 
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Config parameters 
With the framework it is possible to generate an example config for every available tool with the --

tool parameter; 

Sample generation: art, subsample 

Metagenomic tools: constrains, pathoscope, evorha, sigma, bib, strainseeker, gottcha, estmoi, 

straingr 

General 
At the start of the config file general parameters are defined. These consists of the general location 

of folders and the amount of threads that should be used in case the tool allows multithreading. 

[GENERAL] 

dependencies_directory = /dependencies Location of the dependencies folder 

resources_directory = /resources  Location of the resources folder 

scratch_directory = /scratchfolder  Location of the temporary folder 

threads = 2     Amount of threads that should be used if possible 

ART Read generation 
For making bulk readsets the ART program can be configured with the config below. The default 

setting is to use the HS25 Illumina profile with a readlength of 150, a fragment size of 200 and 

standard deviation of 10. Additionally, the amount of reads that need to be generated in terms of 

total coverage can be set (default 10). 

The ART program makes readsets for every genome file (file with .fa or .fna extension) in the 

inputfiles folder. The location of the reads, along with a metafile with information about of the reads 

is put in the outputdirectory. 

Lastly, it can be set whether the user wants .sam or .aln files of the reads (default False). 

 [ART] 

inputfiles = /data/ARTinputfiles/ 

outputdirectory = /data/ARTreadsets 

sequencer = HS25 

readlength = 150 

outputsam = False 

outputalignmentfiles = False 

paired = True 

fragmentmeansize = 200 

standarddeviationfragmentsize = 10 

coverage = 10 

platform = illumina 

 

Subsample 
By running the subsample config, you combine the reads generated by the ART program together to 

make metagenomic reads. The metafiles of the reads to be used should be defined in the sources 

parameter, along with the desired coverage of that strain in the metagenomic sample. 

Additionally, this tool is able to add background data from HMP reads. The amount used for hmp is 

the portion of background reads used in addition to reads defined in source. 
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The name of this metagenomic sample can be put in the name parameter. This value is used as the 

directory name in the output directory. After running subsample, the reads are all combined and 

shuffled (remaining parity) into two files in the outputdirectory. 

[SUBSAMPLE] 

outputfileprefix = metaread 

name = exp_x 

sources = [{'coverage': '1', 'metaFile': '/data/ARTreadsets/read_S_boydii_Sb227-fna.meta'}, 

{'coverage': '2', 'metaFile': '/data/ARTreadsets/read_GCA_001692795-1_ASM169279v1-fna.meta'}, 

{'coverage': '2', 'metaFile': '/data/ARTreadsets/read_S_boydii_CDC_3083-94-fna.meta'}] 

hmp = 0 

hmp_read1 = /path/to/read_1 

hmp_read2 = /path/to/read_2 

outputdirectory = /data/MetagenomicSamples 

Metagenomic tools 
The metagenomic tools all have a similar way their config file is set up. In the parameter name the 

experiment name can be defined. This name is used as folder name for the output of the tool. 

Additionally, the two reads of a read pair to be analyzed can be defined with inputread_1 and 

inputread_2. When paired is set to False, the path to a single read file should be defined under the 

term “inputread”. However, this is not supported for all tools. Lastly the output directory should be 

defined where the results can be put once finished analyzing. For BIB also it is possible to provide 

custom values for the resultsprefix, indexname, multifastaname when desired. 

Some tools have additional parameters needed for defining or creating specific databases. The 

creation of these databases is covered in next section. 

[PATHOSCOPE] 

name = exp_x 

inputread_1 = /data/MetagenomicSamples/metaread1.fq 

inputread_2 = /data/MetagenomicSamples/metaread2.fq 

outputdirectory = /data/output/pathoscope 

referencefiles = /data/references 

 

[SIGMA] 

name = exp_x 

inputread_1 = /data/MetagenomicSamples/metaread1.fq 

inputread_2 = /data/MetagenomicSamples/metaread2.fq 

outputdirectory = /data/output/sigma 

referencefiles = /data/sigma-input/references 

paired = True 

 

[BIB] 

name = exp_x 

inputread_1 = /data/MetagenomicSamples/metaread1.fq 

inputread_2 = /data/MetagenomicSamples/metaread2.fq 

outputdirectory = /data/output/bib 

referencefiles = /data/ARTinputfiles 

resultsprefix = results 

indexname = index 

multifastaname = references 

extractcoregenomes = False 

mauvenumberofgenomes = 10 

 

[STRAINGR] 

name = exp_x 

inputread_1 = /data/ecoli-soi1-even-tc1-hmp0/metaread1.fq 

inputread_2 = /data/ecoli-soi1-even-tc1-hmp0/metaread2.fq 
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outputdirectory = /data/straingr/output 

referencefiles = /data/references 

create_database = True 

database = /data/DB/straingr/ecoli/pan-genome-db.hdf5 

 

[STRAINSEEKER] 

name = exp_x 

inputread_1 = /data/MetagenomicSamples/metaread1.fq 

inputread_2 = /data/MetagenomicSamples/metaread2.fq 

outputdirectory = /data/output/strainseeker 

database = /data/ecoli_db_strainseeker 

builddistancematrix = False 

builddb = False 

analysereads = True 

newicktree = /data/tree/tree.nwk 

fastadirectory = /data/references 

 

[CONSTRAINS] 

name = exp_x 

inputread_1 = /data/MetagenomicSamples/metaread1.fq 

inputread_2 = /data/MetagenomicSamples/metaread2.fq 

outputdirectory = /data/output/constrains 

paired = True 

 

 

[GOTTCHA] 

name = exp_x 

inputread_1 = /data/MetagenomicSamples/metaread1.fq 

inputread_2 = /data/MetagenomicSamples/metaread2.fq 

outputdirectory = /data/output/gottcha 

paired = True 

gottchadatabase = /data/bep_mixedbugs/gottchaDB/database/GOTTCHA_BACTERIA_c4937_k24_u30_xHUMAN3x.strain 

 

[EVORHA] 

name = exp_x 

inputread_1 = /data/MetagenomicSamples/final/metaread_fixed1.fq 

inputread_2 = /data/MetagenomicSamples/final/metaread_fixed2.fq 

outputdirectory = /data/output/evorha 

paired = True 

evorha_reference_fasta = /data/evorha-input/reference/EcoliK12MG1655_truncated.fasta 

evorha_reference_gff = /data/evorha-input/reference/EcoliK12MG1655_truncated.fasta.gff 

 

[ESTMOI] 

name = exp_x 

inputread_1 = /data/estmoi-input/testdata-fq/read1.fq 

inputread_2 = /data/estmoi-input/testdata-fq/read2.fq 

outputdirectory = /data/output/estmoi 

paired = True 

estmoi_reference_fasta = /data/estmoi-input/testdata-fq/c1.fasta 
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Tool databases 
For the tools Pathoscope, Sigma and BIB the folder where the tools can find the reference genome 

files should be defined. These reference files can be in the form of .fa or .fna files. The framework is 

able to automatically construct databases from these genome files. 

BIB 
Optionally, it is possible for BIB to create the database with progressivemauve by setting 

“extractcoregenomes” to True. The “numberofcoregenomes” defines the group size on which the 

core genomes are determined.  

It is however advised not to do this step of extracting the core genomes as this can take up to a few 

days. When the “numberofcoregenomes” is set at a low value like 5, the creation of a database can 

be done within a day however. It was observed that BIB is well able to run its algorithm without the 

extraction step of core genomes. 

StrainGR 
For StrainGR it is possible to either create a new database from the genome files or to use an 

existing one by setting the create_database variable.  

Strainseeker 
For Strainseeker a special database needs to be created before being able to analyze metagenomic 

reads. When running Strainseeker one can choose to either to make a database or analyze the reads 

with an existing database. The database creation of Strainseeker consists of several steps.  

Firstly, one should make a distance matrix of the genomes used for the database. This is done when 

“builddistancematrix” is set to True. This option uses the genome files in “fastadirectory” as 

reference files. 

Secondly, the distance matrix should be converted to a newick tree. This conversion is not possible 

to be automated in the pipeline. This distance matrix should be imported into the MEGA software 

and converted to a newick tree. The “construct UPGMA tree” option should be chosen within the 

program. The obtained newick tree can subsequently be used by to make a database for 

strainseeker, the “builddb” flag must be set to True to start this process.  

Once a database has been created, strainseeker can be run with this database and the metagenomic 

reads. Therefore the flag “analysereads” should be set to True. 

GOTTCHA 
To run GOTTCHA you should download one of the databases provided by the authors of the tool. 

These databases can be found at; ftp://ftp.lanl.gov/public/genome/gottcha/ 

EVORhA and estMOI 
The tools EVORhA and estMOI do both not use a database of genomes as reference, but just a single 

genome. The estMOI tool only needs a .fasta/.fna genome assembly file as reference while EVORhA 

also needs a .gff file with gene information. These files are obtainable from the NCBI website. 

  

ftp://ftp.lanl.gov/public/genome/gottcha/
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Experimental setup 
Instead of manually creating single config files and running these with the help of the framework, it 

is possible to define a complete experimental setup and running this in an automated fashion. This 

can be done by either running lists of config files sequentially (advised for use in the Docker image) 

or by starting batches of SLURM jobs in parallel (advised when using the INSY cluster). 

To do this the experimental_setup.py should be called. For the calls the parameter --workDirectory is 

required and needs to contain the bep_mixedbugs repository. This path is implemented in the files 

and used to call the framework from the sbatch files used for the running SLURM jobs. 

Making a Setup file 
An example setup file for such a run can be generated with the command; 

python3 /path/to/bep_mixedbugs/main/experimental_setup.py --workDirectory 

/path/to/workDirectory --make_setup_file /path/to/experimental_setup.cfg 

You can edit this file to your personal needs. The example file generated with the command above 

looks as follows; 

[EXPERIMENTAL_SETUP] 

resourcedirectory = /scratch/bep_mixedbugs/resources 

dependencydirectory = /scratch/bep_mixedbugs/dependencies 

strainsofinterestdirectory = /scratch/bep_mixedbugs/soi 

referencedirectory = /scratch/bep_mixedbugs/references 

artreadsdirectory = /scratch/bep_mixedbugs/art_readsets 

metagenomicdirectory = /scratch/bep_mixedbugs/metagenomic_samples 

outputdirectory = /scratch/bep_mixedbugs/outputs 

bulkdirectory = /scratch/bep_mixedbugs/bulk 

 

strainseekerdatabases = /scratch/bep_mixedbugs/DB/strainseeker 

straingrdatabases = /scratch/bep_mixedbugs/DB/straingr 

gottchadatabase = /path/to/GOTTCHA_BACTERIA_c4937_k24_u30_xHUMAN3x.strain 

estmoi_reference_database = /scratch/bep_mixedbugs/DB/estmoi/database 

evorha_reference_database = /scratch/bep_mixedbugs/DB/evorha/database 

 

qos = long 

time = 24 

threads = 2 

memory = 16 

 

species = enterococcus, ecoli, tuberculosis 

strainsofinterest = [1, 2, 4, 8] 

distribution = even, ascending 

totalcoverages = [0.1, 1, 10, 100] 

hmpbackground = [0] 

 

hmp_read1 = /scratch/bep_mixedbugs/hmp_reads/SRS014613.fa_read_1.fq 

hmp_read2 = /scratch/bep_mixedbugs/hmp_reads/SRS014613.fa_read_2.fq 

 



54 
 

These parameters should be adapted to what you want to run. In the table below an overview is 

given what the parameters indicate; 

Parameter Description 

Folders  
resourcedirectory Path to the resource directory, containing the tools being called 

by the framework 
dependencydirectory Path to the dependencies directory, containing software needed 

by the tools to be able to run 
strainsofinterestdirectory Path to the folder with genome assemblies that should be 

included when making metagenomic reads, for every species in 
the experimental setup a folder should exist with the name of the 
species containing the genome files 

referencedirectory Path to the folder with genome assemblies that should be used 
for making reference databases by the tools that use. For every 
species in the experimental setup a folder should exist with the 
name of the species (containing the genome files) 

artreadsdirectory Path where ART can store the generated bulk readsets 
metagenomicdirectory Path where metagenomic samples should be stored 
outputdirectory Path where the tools’ output is placed after running 
bulkdirectory Path where the tools can put their temporary data while running 
Tool-specific databases  
strainseekerdatabases Path to the Strainseeker databases, for every species in the 

experimental setup a folder should exist with the same name 
(containing the db_binary database file) 

straingrdatabases Path to the StrainGR databases, for every species in the 
experimental setup a folder should exist with the same name 
(containing the pan-genome-db.hdf5 database file) 

gottchadatabase Path to the GOTTCHA database used, including the prefix of the 
database (for example 
GOTTCHA_BACTERIA_c4937_k24_u30_xHUMAN3x.strain) 

estmoi_reference_database Path to the estMOI reference genomes, for every species in the 
experimental setup a folder should exist with the same name. 
This folder should contain the genome as <species_name>.fna 

evorha_reference_database Path to the EVORhA reference genomes, for every species in the 
experimental setup a folder should exist with the same name. 
This folder should contain the genome as the files 
<species_name>.fna and <species_name>.gff 

SLURM  
qos QOS used for running sbatch files, (can be short, long or bigmem) 
time Time (hours) used for running sbatch files 
threads Threads used/ CPUs used for running sbatch files 
memory Memory (GB) used for running sbatch files 
Metagenomic properties  
species Different species used in experimental setup  
strainsofinterest Amount of strains that should be included per metagenomic 

sample 
distribution Distributions used in experimental setup (can be even, ascending, 

even_incremental, ascending_incremental) 
totalcoverages Coverages used in experimental setup 
hmpbackground Amount of HMP background used in experimental setup 



55 
 

hmp_read1 Path of HMP read 1 of the paired read used for making HMP 
background 

hmp_read2 Path of HMP read 2 of the paired read used for making HMP 
background 

Folders 

For the experimental setup the absolute paths of the folders should be defined so the framework is 

able to point the tools to the right directories. For the output, the folders do not need to exist yet, 

these will be made automatically in the framework. 

Tool-specific databases 

The databases of BIB, Pathoscope and Sigma are automatically generated form the genome 

assemblies present in the reference directory. For the other tools these must be provided 

separately. For StrainGR and Strainseeker these can be generated as described in the previous 

section. For the GOTTCHA tool, one of the databases can be downloaded from the author’s website. 

Both estMOI and EVORhA use a single genome as reference which can be obtained from NCBI. 

SLURM 

On the INSY cluster it is possible to submit several SLURM jobs in parallel. These jobs should be 

packed in .sbatch files to define properties like the quality of service (QOS), amount of CPUs, amount 

of memory needed and the time limit. 

Metagenomic properties 

The experimental setup defines the combination of properties that is tested for the different tools. 

Per parameter a list of values can be given and for every combination the corresponding config files 

and sbatch files will be made. 

Species 

A list of species is defined for which the experimental setup should be run. In the 

“strainsofinterestdirectory”, a folder for every species should exist containing genome files to make 

the metagenomic samples from. Additionally, such folders should exist in the reference folder with 

reference genomes (BIB, Sigma, Pathoscope). The genome assembly files should have an .fna or .fa 

extension for the framework to be able to detect these. Lastly, folders per species also should be put 

in the database folders of straingr, strainseeker, estmoi and evorha, containing their respective 

databases (in case these tools are tested).  

Strains of interest 

The samples can contain several numbers of strains in the metagenomic sample. The framework 

takes the genomes present in the “strainsofinterest” folder in alphabetic order. So, in the case of 4 

strains of interest, the first 4 files with an extension .fna or .fa are taken for the metagenomic 

sample. It is therefore advised to prepend a number before the genome names (like 

“01_ecoli_Santai.fna”) to make sure the right genomes are picked for your sample 

Distribution and total coverage 

The distribution of the strains in the metagenomic samples can be done in four profiles; even, 

ascending, even_incremental and ascending_incremental.  

In the even distribution the strains are present in equal amounts. For the ascending distribution the 

abundance of every subsequent strain is half as big as the previous strain. For these distributions the 

“totalcoverage” defines the coverage of all strains present added up together. 
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For the even_incremental and ascending_incremental distributions, the ratios of the different strains 

are the same as the non-incremental variants described above. However, here the “totalcoverage” is 

used as the coverage of the first strain (Strain-1). The coverages of the other strains are deduced 

from this initial amount. This results in that the sum of the coverages for even_incremental and 

ascending_incremental with a certain set total_coverage is different when there are more strains 

included. In case of the even and ascending distributions, this total coverage is equal to the sum of 

the individual coverages of the strains. In these cases the “totalcoverage” is not equal to the sum of 

the individual coverages of the strains. The term total coverage is however used due to legacy 

reasons. 

An example of the distributions with a totalcoverage parameter of 2.0 can be found in the table 

below; 

Strain # even ascending even_incremental ascending_incremental 

Strain-1 0.5 1.067 2.0 2.0 

Strain-2 0.5 0.533 2.0 1.0 

Strain-3 0.5 0.267 2.0 0.5 

Strain-4 0.5 0.133 2.0 0.25 

     

Sum of 
coverages 

2.0 2.0 8.0 3.75 

Table 9 Example of the distribution of 4 strains with a total coverage set at 2.0 (bold) 

HMP background 

Within the experimental setup is it possible to spike the metagenomic samples with background 

reads. These can be paired end reads from the Human Microbiome Project (HMP). When used, the 

additional HMP reads will be added proportional to the amount of reads used for making the 

metagenomic strain samples. The amount of reads that will be added is proportional to the HMP 

factor; For example, when you use an HMP value of 5 and there are 10.000 read pairs made from 

the strains, 50.000 readpairs of the HMP samples will be added in addition. This results in a total of 

60.000 read pairs. 
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Making config and sbatch files 
Once you have defined your experimental setup, the appropriate config files and sbatch can be 

created with the experimental_setup.py script. These config files can be run in a regular way as 

described in the running single configs-section. The .sbatch files contain information of making 

SLURM jobs from these config files and can be run on the INSY cluster. 

With the --tool parameter you should define one or multiple tools for which you want to run this 

experimental setup. These sbatch and config files are generated with the command (taking the tool 

sigma and straingr as example); 

python3 /path/to/bep_mixedbugs/main/experimental_setup.py --workDirectory 

/path/to/workDirectory --make_sbatch_files /path/to/experimental_setup.cfg --tool sigma --tool 

straingr 

The config files and sbatch files for making batch ART reads and the subsample configs for making 

the specific metagenomic samples will automatically be generated. When you do not wish to do so, 

it is possible to skip these steps with either the --no_art and/or --no_subsample flags (this could be 

the case if you already made these files). 

The config files are created in the output directory specified in the experimental setup, in a separate 

folder per tool used. Additionally a folder named sbatch_configs is made in the workdirectory. In this 

folder you can find the sbatch files needed to create SLURM jobs on the cluster. Additionally, there is 

a file sbatch_file_list per tool which lists all the sbatch files. Such list is also present for all config files 

in the folder all_config_lists. Both of these list-files can be used to run the experimental setup per 

tool as described in the next section. 
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Running config and sbatch lists 
You can choose to run the config files either sequentially in the command line or run as SLURM jobs 

on the INSY cluster.  

To run a config list in the command line, the following command can be used; 

python3 /path/to/bep_mixedbugs/main/experimental_setup.py --workDirectory 

/path/to/workDirectory --run_config_files /path/to/all_config_lists/tool_config_list.cfg 

This command runs all configs in the list file sequentially. This is useful when working in the Docker 

image. When working on the INSY cluster it is more efficient to run these jobs in parallel as SLURM 

jobs. 

To start a list of sbatch files as SLURM jobs, the following command can be used; 

python3 /path/to/bep_mixedbugs/main/experimental_setup.py --workDirectory 

/path/to/workDirectory --run_sbatch_files 

/path/to/sbatch_configs/tool_sbatch_files/sbatch_file_list 

When starting jobs it should be taken into account that not all steps of the experimental setup can 

be started at the same time. First, all ART jobs should be finished before one can use the output of 

the ART jobs for the subsample step. The same holds when one wants to run the metagenomic tools 

on the readsets. 

The output of the SLURM jobs are put into the same folder as the location of the .sbatch files. The 

job-id is put into the filename. Once a config is finished running, the start and endtime of the run is 

saved in a .cfg.log file at the same location as the .cfg file used. This file can be used to get insight 

into the runtime of the tools. 
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Additional scripts 
In addition to the general framework for making synthetic reads and running these on the tools, 

additional scripts have been made for the creation of the desired input or for output analysis. 

Extract results and timing 
The extract_results.py script is used to make a summary of the outputs per tool. The --result_folder 

parameter should contain separate subfolders per experiment (which each contain a 

standardized_output.txt file). This scripts analyses the output of the individual experiments and 

compares it with the files in expected results. The output file contains a list of the experiments found 

in the results folder including information about true/false positives and f1 scores. 

python3 /path/to/main/scripts/extract_results.py --result_folder /path/to/outdirectory/tool --

expected_folder /path/to/expected_strains --output_folder /path/to/summaryfolder 

The expected strains folder should contain an <species>.txt file per species. Herein the expected 

strains in a tab delimited format are stated. An example is given below for ecoli.txt; 

01 O157-H16_Santai 

02 H7 

03 FORC_028 

04 O157-H7_FRIK2455 

05 D8 

06 S1 

07 0127-H6_E2348-69 

08 M10 

 

Similarly the extract_timing.py script was used to analyze the runtime of the tools. The total runtime 

is saved in a .cfg.log file at the same place the .cfg file is located when running with the config file. 

The start and endtimes per tool can be extracted with this script and put in a list similar to the 

extract_results.py script. 

Mutate 
In our research we made mutated variants of out genomes to see whether this influenced the 

performance of the tools. This was done using the mutate.py script. This script takes a directory with 

genomes we want to mutate and makes a user defined amount of mutations in the genome. The 

new mutated genomes are saved under a new filename indicating the amount of mutations added. 

Split HMP 
The original HMP reads we used as background data were paired end fasta reads in one single file. 

To be able to use these reads for the framework we needed to split these reads over two files (one 

for every part of a pair) and add quality information. The split_hmp.py script can convert this file to 

the paired end read files needed. 

Shear NCBI tree 
For choosing strains uniformly from different clades of a certain species we extracted taxonomic 

trees in newick format of each species of interest from the NCBI website. However, these trees 

contain a lot more strains than we have in our database. With this script we can exclude the strains 

from the downloaded tree that are not of interest. The resulting tree only contained strains also 

present in our database. 
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Appendix F Ethical discussion of the project 
The most important part of a benchmark is that each tool is compared fairly and that the results are 

an accurate representation of the relative performance of the different tools. We ran the tools with 

their default settings unless the tool was not able to analyze the data with these default settings. In 

cases we had doubts on how to run the programs we contacted the authors of the tools for advice. 

We discussed the situations that we were not able to run the tools with their optimal settings in the 

discussion of the results. 

The Delft Bioinformatics Lab, our client, is a partner in the development of StrainGR. As this could 

potentially affect our ability to do an independent benchmark we ensured that certain safeguards 

were in place to guarantee the independence of our research.  

Firstly, we were responsible for determining the settings with which every tool was run. At times we 

received feedback on how to prepare the data for the individual tools, but we would always run the 

tools in all ways that we discussed and that we thought could be potentially be appropriate for the 

tool.  For the actual benchmark we used the procedures that resulted in the best results for each 

tool.  

Secondly, we decided which experiments would be run on the tools. Our client and coach only 

provided us with feedback on how we could improve our experimental setup and how we could add 

control groups to our experiments.  
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Appendix G Info Sheet 
Title: Classification of diverse bacterial populations 

Name of the client organization: Delft Bioinformatics Lab, TU Delft 

Data of the final presentation: February 16, 2017 

Description: 

When a patient suffers from an infection by multiple strains of a certain bacterial species, providing 

accurate treatment is a challenge. Metagenomic analysis techniques can provide a platform for 

mixed infection detection. We present an independent benchmark to compare the performance of 

the most common tools for metagenomic analysis at the strain level. We investigated the effect of 

properties like sample size and the coverage depth on the quality of the output. In order to do this 

benchmark, we developed a pipeline that can easily run the common tools for metagenomic 

analysis. 

We used an agile approach to implement the pipeline in order to effectively respond to changing 

requirements and problems that we could potentially encounter in implementing the individual 

tools into our pipeline. The final product that we developed is a pipeline that is able to run the 

common tools for metagenomic analysis. The user does not have to install any dependencies 

himself. The system has been manually tested by running hundreds of experiments and validating 

the results. 

 

Members of the project team 

 

Name: Yorick de Vries 

Interests: Biotechnology, Big Data 

Contributions and role: Pipeline design/implementation, Tool analysis/implementation, Experimental 

setup, Data analysis 

 

Name: Jasper Uljee 

Interests: Machine learning, Natural Language processing 

Contributions and role: Pipeline design/implementation, Tool 

analysis/implementation, Experimental setup, Data analysis 

 

Coach: 

Name: Dr. Thomas Abeel 

Affiliation: Delft Bioinformatics Lab, TU Delft 

 

Client 

Name: Christine Anyansi 

Affiliation: Delft Bioinformatics Lab, TU Delft 

 

Contacts: 

Yorick de Vries: yorickdevries@live.com 

Jasper Uljee: uljee.jasper@gmail.com 

  



62 
 

Appendix H Terminology 
Term Meaning 

16S rRNA Commonly used genetic marker for species identification 
base Basic building block of DNA, occurring in pairs, can be G, A, T or C 
chromosome DNA molecule with genetic material of an organism 
clade A group of closely related strains 
contig Continuous string of DNA 
coverage Degree to which a genome is on average covered by reads 
fasta De facto standard way of encoding genetic data 
GC content Fraction of G/C pairs in DNA 
genome Whole genetic information of a strain 
genome assembly All genetic information of an organism combined in one or several contigs 
haplotype A group of genes or SNPs which can be used to identify strains 
HMP Human microbiome project, contains large readsets from the human gut 
Illumina State of the art sequencing technique 
k-mer Fraction of DNA of “k” basepairs long 
metagenomic 
analysis 

Direct genetic analysis of genomes contained with an environmental 
sample 

mutation Change of the genetic content of a genome 
paired end reads Small DNA fragments read by sequencing technology. As DNA occurs in 2 

strands, these can be made in pairs. 
pathogen Any biological entity that can cause a disease 
readset Batch of DNA fragments put out by a sequencing machine, generally in 

fasta format 
sequencing Extraction of DNA code from samples 
SNP Single nucleotide polymorphism, a single mutation of a base to another 
species Category under which a group of organisms can be classified 
strain Genetic variant of a bacterium 
taxonomic tree Tree which depicts the similarity between strains 
whole genome 
sequencing 

Process of obtaining the complete DNA content of a sample 
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Appendix I Additional results: Mutated strains 
In this appendix you can find the additional results of the tools BIB, Pathoscope, Sigma, StrainGR and 

Strainseeker run with mutated variants of the strains. The species used are either E. coli, 

Enterococcus or M . tuberculosis. The samples were both evenly distributed or in an ascending way 

as indicated in the materials and methods section. The total coverages were fixed per experiment at 

either 0.1x, 1x, 10x or 100x total coverage. 

E. coli - ascending 
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E. coli - even 
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Enterococcus - ascending 

 

  



66 
 

Enterococcus - even 
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M. tuberculosis - ascending 
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M. tuberculosis - even 
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Appendix J Additional results: Total strains found per tool 
In this appendix you can find the results of all the run with mutated variants of the strains. The 

species used are either E. coli, Enterococcus or M. tuberculosis. The samples were both incrementally 

evenly distributed or in an ascending way as indicated in the materials and methods. The base 

coverage used for the first strain is indicated in the tables. 

BIB 

Tool: bib Coverage:  0.1    

 E. coli   Enterococcus M. tuberculosis 

SOI ascending even ascending even ascending even 

1 180 180 273 273 200 200 

2 70 38 273 247 200 200 

4 79 9 255 59 200 200 

8 76 11 267 33 200 200 
 

Tool: bib Coverage:  1    

 E. coli   Enterococcus M. tuberculosis 

SOI ascending even ascending even ascending even 

1 1 1 6 4 191 192 

2 2 2 6 4 185 172 

4 4 4 17 10 193 129 

8 8 8 22 10 185 125 
 

Tool: bib Coverage:  10    

 E. coli   Enterococcus M. tuberculosis 

SOI ascending even ascending even ascending even 

1 1 1 1 1 18 20 

2 2 2 2 2 55 53 

4 4 4 5 4 99 91 

8 8 8 9 8 94 102 
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Constrains 

Tool: constrains Coverage:  0.1    

 E. coli   Enterococcus M. tuberculosis 

SOI ascending even ascending even ascending even 

1 0 1 1 1 1 2 

2 1 1 1 2 2 2 

4 1 1 2 2 1 1 

8 1 1 2 2 2 1 
 

Tool: constrains Coverage:  1    

 E. coli   Enterococcus M. tuberculosis 

SOI ascending even ascending even ascending even 

1 1 1 1 1 1 1 

2 1 1 2 2 1 1 

4 1 1 2 2 1 1 

8 1 1 2 2 1 1 
 

Tool: constrains Coverage:  10    

 E. coli   Enterococcus M. tuberculosis 

SOI ascending even ascending even ascending even 

1 1 1 0 0 1 1 

2 2 2 1 1 1 1 

4 2 2 3 4 1 1 

8 2 2 3 4 1 1 
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EstMOI 

Tool: estmoi Coverage:  0.1    

 E. coli   Enterococcus M. tuberculosis 

SOI ascending even ascending even ascending even 

1 0 0 0 0 0 0 

2 0 0 0 0 0 0 

4 0 0 0 0 0 0 

8 0 0 0 0 0 0 
 

Tool: estmoi Coverage:  1    

 E. coli   Enterococcus M. tuberculosis 

SOI ascending even ascending even ascending even 

1 0 0 0 0 0 0 

2 0 0 0 0 0 0 

4 0 1 0 0 0 0 

8 0 1 0 1 0 0 
 

Tool: estmoi Coverage:  10    

 E. coli   Enterococcus M. tuberculosis 

SOI ascending even ascending even ascending even 

1 1 1 1 1 1 1 

2 1 1 1 1 1 1 

4 1 1 1 1 2 2 

8 1 2 1 1 1 2 
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EVORhA 

Tool: evorha Coverage:  0.1    

 E. coli   Enterococcus M. tuberculosis 

SOI ascending even ascending even ascending even 

1 2 0 0 0 0 0 

2 2 0 0 0 0 2 

4 2 3 0 0 0 2 

8 2 2 0 0 0 2 
 

Tool: evorha Coverage:  1    

 E. coli   Enterococcus M. tuberculosis 

SOI ascending even ascending even ascending even 

1 2 2 0 0 0 0 

2 2 3 0 0 3 2 

4 3 5 0 0 2 4 

8 4 4 0 0 2 5 
 

Tool: evorha Coverage:  10    

 E. coli   Enterococcus M. tuberculosis 

SOI ascending even ascending even ascending even 

1 3 4 0 0 4 4 

2 4 6 0 0 4 4 

4 5 7 0 0 5 5 

8 5 8 0 0 5 4 
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GOTTCHA 

Tool: gottcha Coverage:  0.1    

 E. coli   Enterococcus M. tuberculosis 

SOI ascending even ascending even ascending even 

1 1 0 3 3 0 0 

2 1 1 3 4 0 0 

4 4 3 4 4 0 0 

8 4 6 4 6 0 0 
 

Tool: gottcha Coverage:  1    

 E. coli   Enterococcus M. tuberculosis 

SOI ascending even ascending even ascending even 

1 5 5 6 5 0 0 

2 8 11 5 5 0 0 

4 11 20 8 7 0 0 

8 13 26 6 8 0 0 
 

Tool: gottcha Coverage:  10    

 E. coli   Enterococcus M. tuberculosis 

SOI ascending even ascending even ascending even 

1 12 12 6 6 0 0 

2 22 22 6 6 0 0 

4 27 33 7 8 0 0 

8 30 45 7 11 0 1 
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Pathoscope 

Tool: pathoscope Coverage:  0.1    

 E. coli   Enterococcus M. tuberculosis 

SOI ascending even ascending even ascending even 

1 6 5 5 6 9 9 

2 6 5 6 7 8 11 

4 6 6 7 11 11 12 

8 8 9 10 12 10 11 
 

Tool: pathoscope Coverage:  1    

 E. coli   Enterococcus M. tuberculosis 

SOI ascending even ascending even ascending even 

1 8 8 7 9 13 11 

2 8 8 11 9 14 14 

4 10 10 11 16 16 13 

8 11 12 15 18 13 16 
 

Tool: pathoscope Coverage:  10    

 E. coli   Enterococcus M. tuberculosis 

SOI ascending even ascending even ascending even 

1 11 10 11 12 17 16 

2 13 12 16 17 15 17 

4 15 15 17 18 16 18 

8 14 20 18 21 18 20 
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Sigma 

Tool: sigma Coverage:  0.1    

 E. coli   Enterococcus M. tuberculosis 

SOI ascending even ascending even ascending even 

1 1 1 1 1 1 1 

2 2 3 2 2 2 2 

4 4 4 4 4 9 7 

8 8 8 10 9 7 10 
 

Tool: sigma Coverage:  1    

 E. coli   Enterococcus M. tuberculosis 

SOI ascending even ascending even ascending even 

1 1 1 1 1 1 1 

2 2 2 2 2 2 2 

4 4 4 4 4 7 6 

8 8 8 9 8 9 12 
 

Tool: sigma Coverage:  10    

 E. coli   Enterococcus M. tuberculosis 

SOI ascending even ascending even ascending even 

1 1 1 1 1 1 1 

2 2 2 2 2 2 2 

4 4 4 4 4 7 6 

8 8 8 8 8 10 11 
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StrainGR 

Tool: straingr Coverage:  0.1    

 E. coli   Enterococcus M. tuberculosis 

SOI ascending even ascending even ascending even 

1 1 1 1 1 1 1 

2 2 2 2 2 2 2 

4 3 4 2 4 2 2 

8 2 9 2 8 2 2 
 

Tool: straingr Coverage:  1    

 E. coli   Enterococcus M. tuberculosis 

SOI ascending even ascending even ascending even 

1 1 1 1 1 1 1 

2 2 2 2 2 2 3 

4 4 4 4 4 2 2 

8 5 9 5 8 2 2 
 

Tool: straingr Coverage:  10    

 E. coli   Enterococcus M. tuberculosis 

SOI ascending even ascending even ascending even 

1 1 1 1 1 1 1 

2 2 2 2 2 2 2 

4 4 4 4 4 2 2 

8 7 8 7 8 2 2 
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Strainseeker 

Tool: strainseeker Coverage:  0.1    

 E. coli   Enterococcus M. tuberculosis 

SOI ascending even ascending even ascending even 

1 1 1 0 1 1 1 

2 1 2 1 0 1 2 

4 0 4 0 0 1 4 

8 2 0 0 7 0 7 
 

Tool: strainseeker Coverage:  1    

 E. coli   Enterococcus M. tuberculosis 

SOI ascending even ascending even ascending even 

1 1 1 1 1 1 1 

2 2 2 2 2 2 2 

4 4 4 3 4 4 4 

8 5 8 3 9 4 7 
 

Tool: strainseeker Coverage:  10    

 E. coli   Enterococcus M. tuberculosis 

SOI ascending even ascending even ascending even 

1 1 1 1 1 1 1 

2 2 2 2 2 2 2 

4 4 4 4 4 4 4 

8 6 8 5 8 5 8 
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Appendix K Implementation 
In this appendix you can find additional information on how the tools were implemented in our 

pipeline.  

Dependencies 
The tools use several dependencies to work properly. The specific versions used in this research 

were; 

- samtools 1.6 (samtools 1.2 for Constrains) 

- bowtie2-2.3.3.1 (bowtie2-2.3.2-legacy for Pathoscope) 

- bwa-0.7.17 

- bcftools-1.6 

- MetaPhlAn version 2.7.0 (07 November 2017) 

Bam files 
The tools estMOI and Evorha require aligned bam files as input for their algorithm. These files were 

made using BWA, Samtools and BCFTools as follows; 

- The reference genomes were indexed with BWA with: bwa index -a bwtsw 

- A .sam file was made with: bwa mem 

- This .sam file was converted to a .bam file by running: samtools view -b –T 

- For Evorha the .bam file was sorted with: samtools sort 

A .vcf file required for estMOI to run was created by running “bcftools mpileup -Ob" and 

subsequentely “bcftools call –vmO z” as described in (http://www.htslib.org/workflow/) 

StrainSeeker 
In order to create a database for StrainSeeker we first create a guide tree by generating a distance 

matrix for all genomes using Mash. Mash is a tool that can estimate the distance between two 

genomes. We do this using the dist function of mash, which returns the estimated distance between 

the two genomes that are given as arguments. We call dist on every genome pair, as such: `mash 

dist genome1.fa genome2.fa`. These distances are then combined in a lower triangular matrix. This 

matrix is then used as input for Mega, which creates taxonomic tree based on this matrix using an 

agglomerative (bottom-up) hierarchical clustering method (UPGMA). This tree is then given to 

StrainSeeker, which creates a k-mer database from all the reference genomes and this tree. This 

process only has to be done once. After a database has been created, one can compare a 

metagenomic read set to the database and determine whether the sample contains strains that are 

also in the database.   

PathoScope 
PathoScope consists of multiple individual modules that can be run individually. You first have to 

prepare a library using the LIB module. This module searches on NCBI for the taxonomic index based 

on the GI number of the genome. This module is, however, outdated as NCBI no longer uses GI 

numbers. This LIB module has been replaced by a script that was posted by one of the authors of the 

tool on their GitHub repository to find the taxonomic indexes. The end result of this module is a 

multifasta containing all the reference genomes with all the required metadata. Once a library has 

been prepared, the MAP module is used to the map the read set to the library. This module uses 

bowtie2 to align the reads to the genomes in the library and outputs a Sequence Alignment Map 

(SAM) file. This SAM contains the information of which parts of the read set can be aligned to one or 

more of the reference genomes. This SAM file is then given as input to the ID module, which ids 
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strains from this alignment file. Lastly, one can call the REP module in order to generate a report of 

the strains that were identified. 

StrainGR 
StrainGR uses a k-mer database to analyze readsets. This database is generated by first kmerizing all 

the reference genome. In order to reduce the size of the database highly similar k-mers are clustered 

together. Once the reference k-mers are clustered together the database can be build. Once the 

user has a database, he can kmerize the read set using strainge kmerize again. The kmerized read set 

and the database are then used as input to the analysis tool strainGST. 
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Appendix L Strain databases 
The strain genomes used to make the databases for the reference based tools are shown in the table 

below. The amount of contigs every strain consisted of is shown between brackets 

Enterococcus E. coli M. tuberculosis 
12030 (4) 
12107 (9) 
1448E03 (6) 
14EA1 (4) 
16EA1 (22) 
173EA1 (19) 
177EA1 (4) 
182970 (14) 
182EA1 (14) 
19116 (5) 
1_141_733 (25) 
1_230_933 (85) 
1_231_408 (79) 
1_231_410 (69) 
1_231_501 (25) 
1_231_502 (61) 
205EA1 (9) 
209EA1 (8) 
210AEA1 (13) 
213EA1 (4) 
234EA1 (20) 
236EA1 (4) 
248EA1 (6) 
250AEA1 (5) 
257EA1 (16) 
261EA1 (8) 
262EA1 (8) 
2630V05 (17) 
263EA1 (13) 
26EA1 (20) 
270AEA1 (44) 
277EA1 (3) 
2924 (11) 
294EA1 (9) 
297EA1 (4) 
29EA1 (2) 
2EA1 (9) 
300AEA1 (2) 
300BEA1 (18) 
302EA1 (7) 
304EA1 (14) 
311EA1 (9) 
312EA1 (7) 
315EA1 (7) 
316EA1 (17) 
34EA1 (14) 
35EA1 (19) 
39-5 (25) 
39EA1 (1) 
46EA1 (7) 
52EA1 (2) 
54EA1 (10) 
55EA1 (8) 
5952 (13) 
599951 (8) 
60BEA1 (11) 
61EA1 (9) 
67EA1 (7) 
68EA1 (8) 
72EA1 (9) 
7330082-2 (10) 
7330112-3 (19) 
7330245-2 (14) 
7330257-1 (4) 
7330259-5 (8) 
7330948-5 (7) 
7430275-3 (6) 
7430315-3 (4) 
7430416-3 (6) 
7430821-4 (7) 
76EA1 (7) 
79-3 (17) 
87EA1 (14) 
8EA1 (5) 
91EA1 (4) 
A-2-1 (5) 
A-3-1 (8) 
AR01_DG (13) 
ATCC4200 (14) 
ATCC8459 (10) 
ATCC_10100 (6) 
ATCC_19433 (3) 
ATCC_27275 (8) 
ATCC_27959 (2) 
ATCC_29200 (15) 

E1321 (22) 
E1392 (39) 
E1552 (6) 
E1573 (9) 
E1574 (18) 
E1575 (19) 
E1576 (36) 
E1578 (3) 
E1590 (14) 
E1604 (5) 
E1613 (11) 
E1620 (5) 
E1622 (6) 
E1623 (22) 
E1626 (43) 
E1627 (22) 
E1630 (21) 
E1634 (6) 
E1636 (223) 
E1644 (21) 
E1679 (340) 
E1731 (23) 
E1861 (8) 
E1904 (34) 
E1972 (7) 
E1Sol (14) 
E2039 (11) 
E2071 (14) 
E2134 (6) 
E2297 (19) 
E2369 (21) 
E2560 (27) 
E2620 (4) 
E2883 (7) 
E3083 (6) 
E3346 (16) 
E3548 (5) 
E4215 (19) 
E4389 (16) 
E4452 (268) 
E4453 (374) 
E6012 (55) 
E6045 (33) 
E980 (131) 
E99 (14) 
EnGen0253 (38) 
F1 (11) 
FA2-2 (4) 
Fly1 (12) 
Fly2 (8) 
HEF39 (10) 
HH22 (36) 
HIP11704 (38) 
JH1 (24) 
JH2-2 (2) 
LCT-EF90 (9) 
Merz151 (20) 
Merz192 (17) 
Merz204 (8) 
Merz89 (27) 
Merz96 (21) 
MMH594 (25) 
Ned10 (18) 
OG1RF (1) 
Pan7 (4) 
RC73 (21) 
RM3817 (12) 
RM4679 (11) 
RMC1 (22) 
RMC5 (17) 
RMC65 (7) 
SF100 (16) 
SF105 (35) 
SF1592 (20) 
SF19 (21) 
SF21520 (32) 
SF21521 (53) 
SF24396 (3) 
SF24397 (29) 
SF24413 (27) 
SF26630 (13) 
SF28073 (45) 
SF339 (13) 
SF350 (28) 
SF370 (19) 

0127-H6_E2348-69 (1) 
042 (1) 
06-00048 (1) 
08-00022 (1) 
09-00049 (1) 
1303 (1) 
1409160003 (4) 
2009C-3133 (1) 
2011C-3198 (4) 
2011C-3911 (1) 
2012C-4227 (1) 
2013C-4465 (1) 
2014C-3250 (3) 
2016C-3936C1 (1) 
210205630 (1) 
210221272 (1) 
536 (1) 
5363_plasmid_p53638_226 
(4) 
55989 (1) 
6409 (1) 
789 (1) 
94-3024 (1) 
AA86_plasmid_pAA86L_53_5 
(5) 
ABU_83972 (1) 
ACN001 (1) 
ACN002 (1) 
APEC_IMT5155 (1) 
APEC_O1 (1) 
APEC_O78 (1) 
ATCC_25922 (1) 
ATCC_8739 (1) 
B7A (5) 
BIDMC_59 (2) 
BL21-DE3- (1) 
C1 (1) 
C10 (1) 
C2 (1) 
C3 (1) 
C4 (1) 
C5 (1) 
C8 (1) 
C9 (1) 
CFSAN004177 (1) 
CFSAN029787 (1) 
CFT073 (1) 
CI5 (1) 
clone_D_i2 (1) 
Co6114 (9) 
D1 (1) 
D10 (1) 
D2 (1) 
D3 (1) 
D5 (1) 
D6 (1) 
D7 (1) 
D8 (1) 
D9 (1) 
E24377A (1) 
EC590 (1) 
ECC-1470 (1) 
Eco889 (1) 
Ecol_743 (1) 
ECONIH1 (1) 
ECONIH2 (1) 
ED1a (1) 
FAP1 (5) 
FMU073332 (1) 
FORC_028 (1) 
FORC_031 (1) 
FORC_041 (1) 
G749 (1) 
GB089 (1) 
H1 (1) 
H10 (1) 
H15 (1) 
H1827-12 (1) 
H2 (1) 
H3 (1) 
H6 (1) 
H7 (1) 
H8 (1) 
HS (1) 
HUSEC2011 (1) 

JJ1887 (1) 
K-12_substr_MDS42 (1) 
K-12_substr_MG1655 (1) 
K-15KW01 (1) 
KO11 (1) 
KTE135 (2) 
KTE147 (3) 
KTE154 (3) 
KTE161 (3) 
KTE165 (3) 
KTE17 (3) 
KTE196 (4) 
KTE233 (3) 
KTE29 (3) 
KTE45 (3) 
KTE79 (2) 
KTE84 (3) 
KTE9 (4) 
M1 (1) 
M10 (1) 
M18 (1) 
M19 (1) 
M8 (1) 
MGH108 (2) 
MRE600 (1) 
MRSN346355 (1) 
MRSN346647 (1) 
MS6198 (1) 
NGF1 (1) 
Nissle_1917 (1) 
O103-H2_12009 (1) 
O111-H-_11128 (1) 
O145-H28_RM12581 (1) 
O145-H28_RM13516 (1) 
O157-H16_Santai (1) 
O157-H7_FRIK2455 (1) 
O177-H21 (1) 
O26-H11_11368 (1) 
O55-H7_CB9615 (1) 
O55-H7_RM12579 (1) 
O7-K1_CE10 (1) 
O83-H1_NRG_857C (1) 
P12b (1) 
PCN033 (1) 
PCN061 (1) 
RM9387 (1) 
S1 (1) 
S10 (1) 
S21 (1) 
S3 (1) 
S30 (1) 
S40 (1) 
S42 (1) 
S43 (1) 
S50 (1) 
S51 (1) 
S56 (1) 
Sanji (1) 
SE11 (1) 
SE15 (1) 
SEC470 (1) 
SF-088 (1) 
SF-166 (1) 
SF-173 (1) 
SF-468 (1) 
SLK172 (1) 
SMS-3-5 (1) 
ST2747 (1) 
ST540 (1) 
ST648 (1) 
S_boydii_CDC_3083-94 
(1) 
S_boydii_Sb227 (1) 
S_dysenteriae_Sd197 (1) 
S_flexneri_2a_981 (1) 
S_flexneri_5_8401 (1) 
S_flexneri_FDAARGOS_74 
(2) 
S_sonnei_53G (1) 
S_sonnei_FORC_011 (1) 
UCD_JA65_pb (3) 
UMEA_3144-1 (3) 
UMEA_3682-1 (2) 
UMN026 (1) 
UMNF18 (6) 

00-10219 (3) 
00-R0434 (8) 
00-R1097 (2) 
00-R1211 (15) 
01-R0165 (7) 
01-R0186 (13) 
01-R0446 (9) 
01-R0712 (5) 
01-R0774 (10) 
01-R0908 (9) 
01-R0919 (16) 
01-R0956 (11) 
01-R1141 (2) 
01-R1275 (10) 
01-R1278 (14) 
01-R1302 (4) 
01-R1309 (3) 
01-R1379 (10) 
01-R1554 (11) 
01-R1568 (14) 
01-R1591 (9) 
02-R0027 (5) 
02-R0113 (17) 
02-R0220 (10) 
02-R0244 (10) 
02-R0358 (9) 
02-R0459 (5) 
02-R0755 (13) 
02-R0924 (6) 
02-R0951 (15) 
02-R0987 (3) 
02-R0990 (1) 
02-R1017 (8) 
02-R1063 (5) 
02-R1131 (6) 
02-R1154 (2) 
02-R1534 (13) 
02-R1625 (12) 
02-R1669 (3) 
02-R1705 (15) 
02-R1752 (7) 
03-R0023 (10) 
03-R0290 (4) 
03-R0839 (13) 
04-R0766 (12) 
06-05801 (6) 
06-14433 (16) 
06-R0222 (13) 
0FXR-23 (3) 
22103 (1) 
96075 (1) 
99-02018 (11) 
99-27860 (6) 
99-R1224 (2) 
99-R537 (19) 
BTB05-552 (1) 
BTB07-283 (5) 
BTB07-325 (2) 
BTB09-230 (10) 
BTB10-253 (6) 
BTB11-343 (4) 
C (4) 
C0000604-0 (10) 
C0000689-1 (15) 
C0006290-2 (13) 
CAS-NITR204 (1) 
CCDC5079 (1) 
CTRI-2 (1) 
EAI5-NITR206 (1) 
EAI5 (1) 
Erdman (1) 
H37Rv (1) 
I0000038-5 (18) 
I0000071-6 (7) 
I0000187-0 (12) 
I0000205-0 (10) 
I0000236-5 (13) 
I0000517-8 (11) 
I0000673-9 (9) 
I0000808-1 (7) 
I0000841-2 (17) 
I0001262-0 (2) 
I0001324-8 (9) 
I0001355-2 (15) 
I0001406-3 (2) 

I0003229-7 (1) 
I0003246-1 (3) 
I0003398-0 (15) 
I0003461-6 (7) 
I0003518-3 (18) 
I0003525-8 (10) 
I0003529-0 (5) 
I0003707-2 (15) 
I0003813-8 (9) 
I0003888-0 (15) 
I0003889-8 (17) 
I0004105-8 (18) 
I0004188-4 (8) 
I0004216-3 (14) 
I0004240-3 (12) 
I0004445-8 (12) 
I0004509-1 (8) 
I0004564-6 (17) 
I0004625-5 (3) 
I0004744-4 (7) 
I0005268-3 (9) 
I0005322-8 (16) 
I0005324-4 (16) 
I0005430-9 (3) 
I0005546-2 (7) 
I0005710-4 (17) 
I0005726-0 (4) 
INS_SEN (18) 
KT-0017 (13) 
KT-0063 (15) 
KT-0078 (3) 
KZN_R506 (1) 
KZN_V2475 (1) 
M0000639-6 (6) 
M0000956-4 (1) 
M0003138-6 (10) 
M0005676-3 (1) 
M0008635-6 (6) 
M0009182-8 (1) 
M0010396-1 (2) 
M0012491-8 (3) 
M0013032-9 (1) 
M0013793-6 (3) 
M0013935-3 (12) 
M0014480-9 (3) 
M0014577-2 (13) 
M0015869-2 (6) 
M0018310-4 (5) 
M0020319-1 (3) 
M0020865-3 (4) 
M0021672-2 (1) 
M0022470-0 (1) 
M0022539-2 (10) 
MAL010109 (8) 
MAL010133 (14) 
MAL020192 (4) 
MAL020200 (3) 
PanR0202 (1) 
PanR0203 (1) 
PanR0208 (1) 
PanR0301 (1) 
PanR0304 (1) 
PanR0305 (1) 
PanR0308 (1) 
PanR0316 (1) 
PanR0317 (1) 
PanR0412 (1) 
PanR0503 (1) 
PanR0601 (1) 
PanR0604 (1) 
PanR0611 (1) 
PanR0708 (1) 
PanR0805 (1) 
PanR0902 (1) 
PanR0906 (1) 
PanR1007 (1) 
PanR1101 (1) 
PR08 (1) 
R1207 (1) 
TB_RSA130 (3) 
TB_RSA96 (6) 
TKK-01-0005 (5) 
TKK-01-0016 (7) 
TKK-01-0024 (9) 
TKK-01-0091 (3) 
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ATCC_35038 (10) 
ATCC_6055 (31) 
Aus0004 (4) 
B-4-111 (7) 
B15725 (33) 
B16457 (3) 
B56765 (33) 
B653 (5) 
B69486 (14) 
B84847 (4) 
BM4539 (5) 
BM4654 (23) 
C68 (64) 
CH116 (6) 
CH136 (20) 
CH188 (27) 
CH19 (10) 
CH570 (16) 
Com12 (19) 
Com15 (20) 
Com_1 (8) 
Com_2 (6) 
Com_6 (3) 
Com_7 (7) 
C_19315_led_1A_WT (10) 
C_19315_led_1b_pp_SCV 
(11) 
D1 (5) 
D173 (4) 
D3 (15) 
D344SRF (215) 
D6 (11) 
DIV0555 (38) 
DS16 (10) 
DS5 (43) 
E0045 (13) 
E0120 (20) 
E0164 (14) 
E0269 (13) 
E0333 (27) 
E0679 (8) 
E0680 (18) 
E0688 (7) 
E1 (16) 
E1007 (6) 
E1039 (124) 
E1050 (9) 
E1071 (96) 
E1133 (25) 
E1162 (139) 
E1185 (11) 
E1258 (8) 

SF5039 (18) 
SF6375 (28) 
SS-6 (6) 
SS-7 (9) 
T1 (16) 
T10 (4) 
T11 (13) 
T12 (15) 
T13 (3) 
T14 (8) 
T15 (3) 
T16 (11) 
T17 (5) 
T18 (5) 
T19 (9) 
T2 (22) 
T20 (4) 
T21 (4) 
T3 (10) 
T4 (5) 
T5 (3) 
T6 (13) 
T7 (13) 
T8 (24) 
T9 (3) 
TC6 (125) 
TR161 (31) 
TR197 (12) 
U0317 (227) 
UAA1014 (24) 
UAA1180 (19) 
UAA1489 (33) 
UAA409pIP819 (11) 
UAA702 (10) 
UAA769 (10) 
UAA823 (26) 
UAA902 (9) 
UAA903 (9) 
UAA904 (8) 
UAA905 (9) 
UAA906 (8) 
UAA907 (21) 
UAA943 (10) 
UAA948 (40) 
V583_GB1 (4) 
V583_V2 (9) 
V587 (25) 
WH245 (26) 
WH257 (34) 
WH571 (30) 
X98 (13) 
YI6-1 (5) 

HVH_147_-4-5893887- (3) 
HVH_195_-3-7155360- (2) 
HVH_24_-4-5985145 (4) 
IAI1 (1) 
IAI39 (1) 
IHE3034 (1) 
isolate_NCTC86EC (1) 

UMNK88 (1) 
UPEC_26-1 (1) 
VR50 (1) 
WCHEC1613 (1) 
Y5 (1) 
YD786 (1) 
ZH063 (1) 

I0001498-0 (11) 
I0001560-7 (8) 
I0001711-6 (15) 
I0001905-4 (7) 
I0002066-4 (10) 
I0002107-6 (13) 
I0002353-6 (1) 
I0002458-3 (8) 
I0002531-7 (3) 
I0002615-8 (9) 
I0002793-3 (11) 
I0002935-0 (7) 
I0003020-0 (4) 
I0003165-3 (9) 
I0003179-4 (16) 

TKK_02_0037 (5) 
TKK_03_0044 (4) 
TKK_04_0023 (6) 
TKK_04_0034 (2) 
TKK_04_0125 (9) 
UT0055 (8) 
UT0070 (9) 
UT0088 (16) 
UT0094 (6) 
UT0100 (15) 
XTB13-086 (5) 
XTB13-089 (8) 
XTB13-115 (9) 
XTB13-240 (10) 
XTB13-247 (12) 

Table 10 Strains for which the genomes are used in this study, the amount of contigs for every genome are depicted 
between brackets 
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Appendix M Taxonomic trees 
The taxonomic trees used for strain selection for use in synthetic metagenomic samples are shown 

below. The strains used for the experiments are marked with a red circle. These trees were extracted 

from the NCBI database and trimmed to so it solely contains strains present in our database. 

Enterococcus 

Enterococcus faecalis 
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Enterococcus faecium 
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Escherichia coli 
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Mycobacterium tuberculosis 

 

 


