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ABSTRACT

Surface-related multiple elimination (SRME) is one of the
most commonly used methods for suppressing surface mul-
tiples. However, to obtain an accurate surface multiple esti-
mation, dense source and receiver sampling is required. The
traditional approach to this problem is performing data in-
terpolation prior to multiple estimation. Although appropri-
ate in many cases, this methodology fails when big data gaps
are present or when relevant information is not recovered,
e.g., near-offset data in shallow-water environments. We
have developed a solution in which multiple estimation
was performed simultaneously with data reconstruction,
such that data reconstruction helped obtain better multiple
estimates and in which the physical primary-multiple rela-
tionship helped constrain the data interpolation. To accom-
plish this, we proposed to extend the recently introduced
closed-loop SRME (CL-SRME) algorithm to account for
primary estimation in the case of coarsely sampled data.
We achieved this by introducing a focal-domain parameter-
ization of the primaries in a sparsity-promoting CL-SRME
method. Results proved that the method was capable of re-
liably estimating primaries data in case of shallow water and
with large undersampling factors.

INTRODUCTION

With the introduction of surface-related multiple elimination
(SRME) (Berkhout, 1982; Verschuur et al., 1992; Berkhout and
Verschuur, 1997; Weglein et al., 1997; Biersteker, 2001), a com-
plete new approach to multiple removal was developed — The
multiples could be predicted without any prior knowledge of the
subsurface. Despite its major success over the years, there are still
some limitations to the SRME approach. First, adaptive subtraction

is usually based on minimum energy, which is not always a good
assumption (Nekut and Verschuur, 1998). Second, it needs the re-
construction of missing near offsets because the data are used as
a multiple predictor operator (Dragoset and Jeričević, 1998; Drag-
oset et al., 2010). Third, it requires dense source and receiver sam-
pling, which often poses problems in the 3D or shallow-water-layer
applications (Hargreaves, 2006; Moore and Bisley, 2006).
Recently, another approach to multiple removal was developed

by van Groenestijn and Verschuur (2009a, 2009b) — estimation
of primaries by sparse inversion (EPSI). The main difference with
SRME is that the two-stage processing method, being prediction
and adaptive subtraction, is replaced by a full-waveform inversion
process. The primary reflection events are the unknowns in this al-
gorithm. Although successful in many scenarios (Savels et al.,
2011), the EPSI algorithm also brought some limitations. Due to the
parameterization of the primary responses with spikes and wavelets,
the algorithm showed difficulties in handling complexities in the
subsurface such as wave dispersion, making refinements to the
original algorithm a necessity (Baardman et al., 2010; Lin and Herr-
mann, 2011; Jumah and Herrmann, 2014). The challenges for EPSI
were even larger in 3D, in which the coarse sampling required a
method for combined multiple elimination and data interpolation.
Due to the large number of iterations necessary for convergence and
the artifacts observed when trying to extend EPSI to new parameter-
izations (due to the sparsity and causality constrains), the necessity
of a new algorithm became evident.
To overcome the above-mentioned limitations, the closed-loop

SRME method (CL-SRME) was proposed (Lopez and Verschuur,
2014). This novel method combines the robustness of SRME with
the inversion approach of EPSI, to produce an inversion-based
multiple removal method, in which the primaries are estimated
directly via full-waveform inversion such that they, together with
their multiples, explain the input data. The process can be efficiently
carried out as an unconstrained least-squares problem, without the
need of any precise subsurface information.
To use CL-SRME to accurately predict multiples in a coarsely

sampled data set (e.g., for 3D application), a new parameterization
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must be adopted to allow CL-SRME to efficiently reconstruct data
over large gaps. In our new approach, we will use the focal trans-
form (Berkhout and Verschuur, 2006; Kutscha et al., 2010; Kutscha
and Verschuur, 2012), which aims at focusing primary reflections
into localized events. The focal domain can compress the primary
energy, a property that will be useful when separating primary sig-
nals from undersampling noise in the focal domain. A sparse norm
regularization is used to remove the undersampling noise from the
estimations and to eliminate the redundancy in the parameterization.
Note that the multilevel focal transform is a redundant parameter-
ization because every focal domain is as big as the input data. This
implies that in a N-level focal transform, the number of inversion
parameters is actually N times larger than the number of measure-
ment points in the input data set. This redundancy can be removed
by applying an extra constraint.
Other parameterizations using the curvelet transform (Candes

et al., 2006; Herrmann et al., 2007, 2008; Herrmann and Verschuur,
2008) or the wavelet transform (Liu et al., 1995) are also possible
candidates for a sparse representation of the seismic data. Our
choice of focal transform is justified by the fact that, due to its fo-
cusing characteristics, the focal transform is able to compress the
energy of highly curved events into localized events, making it ideal
for shallow-water-layer applications, in which the events to recon-
struct are strongly curved in the near offsets. For the deeper data and
flatter events, other parameterizations such as curvelets or linear
Radon might become more beneficial.
In the following sections, we will provide some theoretical ex-

planations along with some practical 2D examples to explain the
CL-SRME algorithm including the focal-domain parameterization.
Special attention will be given to near-offset reconstruction in shal-
low-water environments.

CLOSED-LOOP SURFACE-RELATED MULTIPLE
ELIMINATION

Following Lopez and Verschuur (2014), let P describe the up-
going wavefield at the surface, in which each column of the matrix
contains the measurements for one (2D or 3D) shot record for a
single frequency component. In this detail-hiding notation (Berk-
hout, 1982; Kinneging et al., 1989), we can write

P ¼ P0ðIþ APÞ; (1)

where P0 represents the primary wavefield, and A ¼ S−1R∩ repre-
sents the surface operator (Verschuur et al., 1992), which is depen-
dent on the source signatures from all sources S and the reflectivity
at the surface from below R∩. In this expression, the total upgoing
wavefield is represented as a product of a downgoing wavefield
ðIþ APÞ and an upgoing wavefield P0, in which the total wavefield
is described as a sum of the primary wavefield P0 and the surface-
related multiple wavefield P0AP (Berkhout and Verschuur, 1997).
In this expression, the matrix products represent multidimensional
convolutions in the space-frequency domain. By “primaries,” we
actually mean all possible events without reflection points at the
surface. This category includes primaries, internal multiples, and
all other upgoing events that are not related to the scattering at
the surface (e.g., converted waves). Note that for practical applica-
tions, the directivity in A is often neglected and all sources are as-
sumed to carry the same wavelet (Verschuur and Berkhout, 1997).
Then, A can be written as A ¼ AðωÞI.

In traditional iterative SRME (Berkhout and Verschuur, 1997),
the primaries are estimated by defining them as

P0 ¼ P − AP0P; (2)

where A ¼ AðωÞI is estimated by minimizing the energy in the esti-
mated primaries P0 and by parameterizing the inverse source wavelet
AðωÞ as a short filter in the time domain (Verschuur and Berkhout,
1997), with known problems for the minimum energy criterion (Ne-
kut and Verschuur, 1998; Glutton and Verschuur, 2004).
CL-SRME proposes an inversion-based method to obtain the pri-

mary impulse response P0 from the measured data P in a fully data-

driven manner. The strategy is to build an objective function J ¼
JðP̂0; ÂÞ that is minimized when the parameter estimates P̂0 and Â

accurately describe the input data set P. Here, the symbols P̂0 and Â
represent the estimates of the true parameters P0 and A. A sparsity
constraint LS on the primaries can be added to the process to ensure
the minimum amount of multiple leakage in the estimates. Note that
this constraint must be applied in the time domain. Using the Fro-
benius L2 norm, we can express J as

J ¼
X
ω

kP − P̂0ðIþ ÂPÞk2 þ λLSðP̂0Þ; (3)

where each data matrix contains one frequency component. Using J
in a least-squares iterative inversion procedure, CL-SRME aims to
estimate the primary wavefield P0 by a large-scale inversion in

which the inversion parameters Â and P̂0 are estimated such that
the input data P is explained. In this way, the multiples help to es-
timate the primaries. Note that CL-SRME given by equation 3 will
describe exactly the same problem as traditional SRME under the
condition LS ¼ L2, where the L2 term represents the minimum-en-
ergy condition over the primaries. In that case, both algorithms tend
to converge to the same solution.
Note the difference in parameterization with respect to EPSI. In

CL-SRME, the input data are parameterized via the surface operator
A and the primary wavefield P0, which is consistent with the pa-
rameterization in SRME (Verschuur et al., 1992). EPSI on the other
hand describes the input data in terms of the source signature S and
the primary impulse responseX0. Mathematically, these two param-
eterizations are equivalent, but practically they involve very differ-
ent wavefields, and they require different inversion strategies. The
relationship between the inversion parameters X0 and S of EPSI and
P0 and A of CL-SRME is given by P0 ¼ X0S and A ¼ S−1R∩.

CLOSED-LOOP SURFACE-RELATED MULTIPLE
ELIMINATION INCLUDING DATA

RECONSTRUCTION

To use CL-SRME to remove multiples from data sets with severe
undersampling (which is typical for 3D geometries), we will follow
the parameterization similar to the one described by Lopez and Ver-
schuur (2013) such that data reconstruction and multiple removal
are achieved. Our goal is to use CL-SRME to remove the multiples
and to reconstruct big portions of missing data. To create a proper
reconstruction algorithm, the following conditions must be met:

1) The primary wavefield must be represented in a transform do-
main with the smallest possible number of nonzero transform
parameters, such that their information is compressed and effi-

V190 Lopez and Verschuur

D
ow

nl
oa

de
d 

10
/2

8/
15

 to
 1

31
.1

80
.1

31
.2

42
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



ciently represented. Signals arising from multiple reflections do
not need to be represented in this way because they simply fol-
low any parameterization of the primaries P0 via P0AP. Typi-
cally, the data gaps are mapped to artifacts in the transform
domain. Due to their lack of coherency, these artifacts are often
poorly compressed and are usually seen as aliasing noise in the
transform domain.

2) A parameter selection method in the transform domain must be
implemented to separate the parameters representing the pri-
mary signals from the parameters accounting for the aliasing
noise. Depending on the geometry of the transform domain,
these methods might vary, in which typical examples might
be picking, thresholding, regularization, etc.

To fulfill the first condition, we propose the use of the focal trans-
form (Berkhout and Verschuur, 2006; Kutscha et al., 2010; Kutscha
and Verschuur, 2012; Lopez and Verschuur, 2013) applied to the
primary data. In this description, we will make use of some rough
normal moveout (NMO)-velocity information to create propagation
operators W that will allow us to back-propagate the wavefields. If
we select these operators to take the reflected energy back to where
it came from (i.e., a strongly reflective layer), then the scattered en-
ergy will be focused in one small event in time. Focusing brings
strong compression and coherency in the data, in such a way that
it will easily allow reconstruction over large data gaps. The reason-
ing behind this idea is schematically depicted in Figure 1. As we can
see from the figure, focusing generates compression of the events in
the transform domain. The focal transformation can also be seen as
a redatuming operation to a selected layer. As observed in Figure 1,
the focal transform will concentrate the energy that originates from
the level of interest. However, further away from
this level, the compression decreases. Therefore,
in Kutscha et al (2012), a simultaneous, multi-
level focal transform is proposed in which many
strategic levels are chosen for the focusing.
For the multilevel focal transform, we consider

the M strongest reflectors in the data and extract
their approximate root-mean-square (rms) veloc-
ities. Then, we construct a set of propagation op-
erators from the surface to the selected reflectors.
These operators have no need to be exact because
they are expected to provide only an approxima-
tion of the traveltime information in our data.
The set of operators for the whole seismic experi-
ment is written as fWmgm∈½1;M� and is expected
to extrapolate the data from the surface to a set of
depth levels fzmgm∈½1;M�. These Wm will be later
used to parameterize the primary estimates P̂0

into a set of focal domains X̂m such that

P̂0 ¼
XM
m¼1

WT
mX̂mWm: (4)

Note that each focal domain X̂m represents a full
data volume (sources and receivers) for one fre-
quency component. Thus, the focal transform is

redundant. The relationship between the X̂m term

of equation 4 and the X̂0 in EPSI is given by

X̂0S ¼PM
m¼1 W

T
mX̂mWm. Hence, actually, X̂0

can be interpreted as a special case of equation 4 in which
M ¼ 1, the source wavelet is a Dirac delta function and the propa-
gation operators are chosen to be matrix identities (target propaga-
tion level at the surface).
Despite their similar notation, the X̂m term of equation 4 is in

principle not directly related with the X̂0 in EPSI (which represents
the primary impulse response).
To fulfill the second condition above, we require a method to

eliminate the aliasing noise from the transform domains X̂m. In ad-
dition, with such a condition, the redundancy in the transform
would be removed (e.g., nonsparse representations of events will
be removed/attenuated to favor the sparser, and typically more
unique, representations). We will use a sparsity-promoting regulari-

zation norm k · kS applied to the focal domains X̂m to do this. With
this extra constraint, we drive the algorithm toward a sparse repre-
sentation of the focal domains. This condition will remove the en-

ergy from the aliasing artifacts to concentrate it in the main X̂m

primary events, thus obtaining a fully sampled representation of

P̂0 via equation 4.
Using equations 3 and 4, the current algorithm can be described

by minimizing the following objective function:

J ¼
X
ω

JðLSÞω þ
X
t

JðregÞt

¼
X
ω

kP −
XM
m¼1

WT
mX̂mWmQk

2

þ λ
X
t

X
m

kx̂mkS; (5)

with

Figure 1. (a) The data acquired at the surface are focal transformed via the application of
the propagation operators related to the first layer. (b) In the transformed data set, the
primary event related with the first layer appears concentrated at t ¼ 0. The focal trans-
form has mapped the information of the first reflection into a compressed event in the
transformed domain. (c) Application of the focal transform related to one particular layer
is equivalent to redatuming the data set to that layer.

CL-SRME with data reconstruction V191
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Q ¼ Iþ ÂP; (6)

where x̂m is the inverse Fourier transform of the data cube of X̂m, t
representing a time slice, and λ is a user-defined regularization con-
stant (typically λ ≈ 10−2). The norm k · kS represents any sparsity-
promoting norm of preference (e.g., L1), which applies to every
time slice in x̂m. Note that the regularization norm is applied in
the time domain, so sparsity is enforced in that domain.
Missing data reconstruction is implicitly present in equation 6 by

setting

P ¼ P 0 þ P 0 0; (7)

where P are the total data (fully sampled), P 0 are the input data
(undersampled), and P 0 0 are the data to reconstruct. Equations 5–
7 represent the forward model for the unknown parameters

ðX̂m; ÂÞ, such that J ¼ JðX̂m; ÂÞ. Using gradient-based inversion,

we can find a set of model parameters ðX̂m; ÂÞ that minimizes
our objective function J.
The inversion updates for the focal domains X̂m are given by

ΔX̂ðLSÞ
m ¼ −∇X̂m

JðLSÞω and Δx̂ðregÞm ¼ −∇x̂mJ
ðregÞ
t , which leads to

(outline of the proof in Appendix A)

ΔXm ¼ ΔXðLSÞ
m þ ΔXðregÞ

m (8)

and

ΔXðLSÞ
m ¼ 2W�

mðP − P̂0QÞQHWH
m and

ΔxðregÞm ¼ −λ∇x̂mkx̂mkS; (9)

where ΔXm is the total m-focal-domain update, ΔXðLSÞ
m is the por-

tion of ΔXm associated with the least-squares part of J, and ΔXðregÞ
m

(the Fourier transform of the data cube of Δx̂ðregÞm ) is the portion of
ΔXm associated with the regularization part of J. The superscripts �
and H refer to a complex conjugation and an adjoint operation, re-

spectively. Note that in equations 8 and 9, ΔXðLSÞ
m and ΔXðregÞ

m are
related to ΔXm via an overall scaling factor λ, which controls the
strength of the sparsity regularization.
The updates ΔXm are used to renew the estimate of Xm in every

iteration i via the recursion formula:

X̂ðiþ1Þ
m ¼ X̂ðiÞ

m þ αΔXðiÞ
m ; (10)

where the scaling parameter α is chosen by a line search such that

JðX̂ðiþ1Þ
m Þ ¼ JðX̂ðiÞ

m þ αΔXðiÞ
m Þ is minimized. The remaining param-

eters P and Â are strongly dependent on the estimate of P̂0, so they

can be calculated in every iteration directly from the P̂0 estimate by

Â¼
�
Â s:t:kP− P̂0ÂPk2 →min in the early iterations

Â s:t:kP− P̂0 − P̂0ÂPk2 →min in the rest of the iterations

(11)

and

P 0 0 ¼
�XM

m¼1

WT
mX̂mWmQ

� 0 0
; (12)

where the double prime on the right side means selecting only the
data points corresponding to P 0 0.
Equation 11 uses the minimum primary energy constraint (Ver-

schuur and Berkhout, 1997) in the early iterations to estimate A

(assuming Â ¼ ÂI). This is necessary to avoid the trivial solution

given by Â ¼ 0 and P0 ¼ P. It is also necessary to maintain the
minimum energy constraint until the sparsity starts playing a rel-
evant role in the updates. Typically, the constraint can be dropped
after

ffiffiffi
J

p
has decayed to the 20% of its value at the initial guess. The

matching of Â is done in practice via a least-squares adaptive filter.
The filter, which is restricted to be short in time, is found such that

the amplitudes of P (or P − P0) and P̂0ÂP are matched, driving their
difference to a minimum (Verschuur and Berkhout, 1997).
Equation 12 uses the prediction equation 1 together with equa-

tion 7 to produce estimates of the missing data P 0 0, given the knowl-
edge of the fully sampled primary wavefield P̂0. Note that the
relationship between P and P0 (equation 1) implies that the knowl-
edge of P0 and A fully determines P. This means that if we are able

to reconstruct the missing data in P̂0 (which we do via a sparsity
constraint on the focal domain), then we can automatically recon-
struct P via equation 12. In fact, it can be shown that P can be writ-
ten fully in terms of P0 and A via a scattering series (Verschuur
et al., 1992). Note that equation 12 refers only to the missing data
positions in the input data set, such that the original data P 0 is kept
intact.

Our initial guess for P̂ð0Þ
0 , Âð0Þ, and P 0 0ð0Þ, together with equa-

tions 8–12, constitutes the essence of the proposed joint multiple
prediction and interpolation method.
To obtain a first interferometric estimate of missing data (spe-

cially in the near offsets), it is important to start the inversion with

an initial Â value such that the first P0 estimate contains dominant
back-projections of the multiples into the primaries. In the near-off-
set regions, the back-projection mechanism of equation 9 is the

main mechanism driving the solutions. We will assume P̂ð0Þ
0 ¼ 0,

Âð0Þ ¼ Ainitial, and P ð0Þ ¼ 0 at the beginning of the algorithm. The

Ainitial term is calculated using equation 11 and P̂0 ¼ P.

RESULTS

We have designed two experiments to test the undersampling and
the near-offset interpolation capabilities of the present algorithm in
the 2D case.

Near-offset interpolation

To account for the near-offset reconstruction capabilities of the
present algorithm, a synthetic 2D model with a shallow seafloor of
50 m (Figure 2) is used for the generation of the synthetic data via a
finite-differences algorithm. In this example, we entirely remove the
information of the shallow reflector, eliminating the information in
all offsets. In practice, this is equivalent to not measuring the first
reflector primary at all. Traditional methods based on NMO or Ra-
don reconstruction are impossible to apply in these circumstances.
The CL-SRME algorithm is used for primary estimation and near-
offset reconstruction of this data set, and the results are shown in
Figure 3.
Figure 3a depicts the input data set, and Figure 3b and 3c depicts

the reconstructed data set and the estimated primaries. As we can
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see, the shallow event has been reconstructed almost completely,
and its associated multiples are largely removed from the estima-
tions. Some multiple leakages are still observed in the estimates,
but these effects are small if we consider the magnitude of the in-
terpolation. Note, in particular, that the multiples in the deeper re-
gions of the data are largely removed. Only one focal domain was
used here for inversion (centered in the first reflector and based
uniquely on NMO parameters). The ability of mapping the multi-
ples into the primaries inherent in CL-SRME, together with the
sparsity-promoting regularization in a compressed domain, is the
keys for large-gap near-offset reconstruction in this example.
To better account for the differences in primary estimation of

SRME (with initial interpolation) and CL-SRME, a new experiment
is done for many models with several seafloor depths and near-
offset gaps. However, this time, we will keep part of the input-offset
range and we will interpolate only up to 0.32 s, such that we focus

our interpolation efforts in the shallow part of the data. In each ex-
periment, the difference between the true primaries and the esti-
mated primaries is computed and the relative energy error E is
calculated via

E ¼
P ðPðtrueÞ

0 − PðestimatedÞ
0 Þ2P ðPðtrueÞ

0 Þ2
× 100%: (13)

The results are shown in Figure 4. As expected, errors in both
algorithms tend to become larger when the water bottom becomes
shallower. The CL-SRME tends to produce always better primary
estimations, with fewer residuals in all depth ranges. The difference
between the primary estimates of the CL-SRME algorithm and the
traditional SRME is larger for shallower models (where more inter-
polation power is needed) and becomes less important for deeper
models (where the initial interpolation is more accurate). Overall,
the CL-SRME algorithm seems to better handle shallow data. Small
differences in parameter settings (of both algorithms) generate some
of the variations observed in the shallower depths in Figure 4.

Coarsely sampled data

In this section, we will show an example of the CL-SRME algo-
rithm applied to a North Sea data set (courtesy of PGS). The data are
taken from a 2D line from which a subset is selected with 201
receivers and 25 sources, with a 25-m receiver spacing. By applying
reciprocity, a split-spread data set is obtained. Note that the same
data set has also been used by Baardman et al. (2010). In this data
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Figure 2. Velocity model used for the synthetic data generation in
synthetic example. It has a shallow-water layer of 50-m depth.
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Figure 3. The CL-SRME in a shallow-water environment (50-m water depth) with complete near-offset reconstruction. (The entire offset
range is reconstructed.) (a) Input data set with the first primary completely muted (muting done above the dashed line), (b) reconstructed data
set, and (c) estimated primaries. Full near-offset reconstruction is achieved in the shallow region, with the multiples in the deep regions largely
removed. Thirty iterations are needed for this example.
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set, we have chosen sources to have a 1:5 irregular undersampling
ratio in the sources. Then, a coarse NMO-based shot interpolation is
applied to the data as a preprocessing step to reduce the aliasing
artifacts in the focal domain. The initial interpolation does not have
to be accurate because the interpolation errors will be mapped to the
aliasing artifacts in the focal domain, which will be removed later
on by the sparsity constraint. In this example, we will use three focal
operators that are chosen to focus the energy of the three most
prominent reflectors in the data. The operators are calculated using
the stacking velocities of the reflectors of interest in the data, and we
assume a homogeneous propagation medium for each operator. The
NMO times and velocities used here are tNMO ¼ 0.16, 0.52, 0.96 s
and vNMO ¼ 1500, 1600, 1800 m∕s. Besides the stacking velocities
and the apex times of the events of interest, no other model infor-
mation is used to generate the operators.
Figure 5 shows the results of applying the CL-SRME algorithm

to this data set. Because the interpolation is done along the source
coordinate, results are presented in the common-receiver gather do-
main. The input data are shown in Figure 5a. The shot-interpolated

data, primaries, and multiples (at the first iteration) are shown in
Figure 5b–5d. The shot-interpolated data, primaries, and multiples
(at the 30th iteration) are shown in Figure 5e–5g.
As we can see from Figure 5, full data reconstruction has been

achieved. By comparing the input (Figure 5a) and the output (Fig-
ure 5e) data sets, we can see the effect of the interpolation in filling
up the missing data. By comparing the first and last iterations in the
data, primaries, and multiples, we can see how the amplitude errors
get healed, together with some phase errors. By comparing Figure 5c
and 5f, we can also see the multiple energy eliminated from the
primary recordings. Note that we have achieved a reasonably accu-
rate primary-multiple separation, even in the case of a very coarsely
sampled input data set. By comparing the input data set (Figure 5a)
with the output primaries (Figure 5f), we can note the appearance of
two weak primaries in the deep part of the recordings (between 1.4
and 1.8 s), which are hardly visible in the input data. However, due
to the huge interpolation effort in this example, some minor alias-
ing/phase artifacts are still visible in the output data, especially in
the top part.
Figure 6 shows the associated primary focal domains, used for

obtaining the results in Figure 5. In this example, three operators
are chosen to focus the main reflectors, thus compressing the larg-
est amount of energy possible. The associated energy of these
events maps at zero time, whereas the other events map to either
negative or positive times. The following remarks can be deduced
from Figure 6: (1) The initial redundancy in the focal domains has
largely reduced. This is important for the uniqueness of the param-
eterization because initially one single focal domain contains the
information of the entire data set. The former can be seen by events
disappearing from one focal domain because they are more effec-
tively represented in another focal domain. (2) The aliasing arti-
facts produced by the undersampling have been largely removed.
The interpolation errors (due to unphysical data) in the initial pri-
maries (Figure 5c) might be difficult to separate from the data in
the original domain. However, they become easy to separate in
the focal domain (e.g., Figure 6b) because they appear as aliasing
artifacts.
The kx-ω domain plots of the input and reconstructed data are

presented in Figure 7. As we can see, the undersampling in the
x-t domain is mapped to blending noise in the kx-ω domain. After
inversion, the full reconstruction of the kx-ω response is obtained
with no visible presence of any remaining aliasing artifacts.

DISCUSSION

To allow efficient reconstruction, the chosen parameterization
must represent the wavefields with the smallest amount of nonzero
parameters possible. Reconstruction is typically achieved after a
thresholding/regularization process in which the undersampling
artifacts are taken out of the estimates, leaving only the meaning-
ful parameters to describe the data. As a result, the data then be-
come fully sampled after the inverse transformation. Note that this
type of reconstruction can be used in deep and shallow data
reconstruction. The focal transform is especially suited for shallow
reflectors because typically these events are strongly curved and
can be efficiently represented in the focal domain. Other param-
eterizations such as curvelets (Lin and Herrmann, 2009) and
Fourier (Zwartjes and Gisolf, 2006) or Radon (Hampson, 1986)
transforms are also possible, but they provide poorer data com-
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Figure 4. Relative energy error of SRME with interpolation (red)
and CL-SRME (black) for different seafloor depths. With (a) a 64-m
near-offset gap, (b) an 80-m near-offset gap, and (c) a 96-m near-
offset gap.
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pression when applied to highly curved events (e.g., in situations
with shallow-water data).
As discussed above, the focal operators do not need to be very

accurate to provide a good description of the data. Figure 8 illus-

trates this by showing the reconstruction error in a typical example
as a function of the velocity associated with the focal operator.
In terms of computation cost, the CL-SRME algorithm can be

described as relatively fast, typically with 20 iterations needed

a)

Offset (m)

T
im

e 
(s

)

−1000 −500 0 500 1000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

b)

Offset (m)

T
im

e 
(s

)

−1000 −500 0 500 1000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

c)

Offset (m)

T
im

e 
(s

)

−1000 −500 0 500 1000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

d)

Offset (m)

T
im

e 
(s

)

−1000 −500 0 500 1000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

e)

Offset (m)

T
im

e 
(s

)

−1000 −500 0 500 1000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f)

Offset (m)

T
im

e 
(s

)

−1000 −500 0 500 1000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

g)

Offset (m)

T
im

e 
(s

)

−1000 −500 0 500 1000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 5. CL-SRME interpolation in a North Sea data set with a 1:5 shot undersampling ratio. A common receiver gather is shown. Here, we
showed the (a) original undersampled data, together with the first iteration (b) reconstructed data, (c) primaries, and (d) multiples, and the 30th
iteration, (e) reconstructed data, (f) primaries, and (g) multiples. The focal domains in the upper panel (Figure 5a–5c) contain the first estimates
of the focal domains, still with aliasing artifacts and multiples, and with the events not sparsely represented over the focal domains. The focal
domains in the lower panel (Figure 5d–5e) contain the final estimates of the focal domains, now with no aliasing artifacts, no multiples, and
with events sparsely represented over the focal domains.

CL-SRME with data reconstruction V195

D
ow

nl
oa

de
d 

10
/2

8/
15

 to
 1

31
.1

80
.1

31
.2

42
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



for convergence. The speed is, in principle, directly affected by the
number of focal domains used, but this is relaxed by the fact that
typically we do not require many focal domains to achieve a good
result (one to three focal domains are enough in most cases). When

a single focal domain is used, the current algorithm seems to be
approximately two times slower than the SRME. This is due to
a larger number of matrix products. With the same settings, the al-
gorithm seems to be approximately 10 times faster than the EPSI.
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Figure 6. Focal domains of the primaries associated with the results in Figure 5 Panels (a-c) represent the first iteration primary focal domains.
Panels (d-f) represent the 30th iteration primary focal domains. A common-receiver gather is shown. Some important differences can be
appreciated between the upper panel (a-c) and the lower panel (d-f): (1) the elimination of the aliasing artifacts (e.g., diffractionlike events
around t ¼ 0), (2) the elimination of the multiples (events completely missing in the lower panel), and (3) the sparse representation of the
primaries (events present in both panels but sparsely represented in the lower one).
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This is due to the fact that the EPSI requires a top-down approach in
which the strongest primaries are explained first. This process typ-
ically involves many more iterations (∼100).
Though important in 2D, we expect the former method to have a

stronger impact in 3D because data interpolation there is typically
more challenging. However, practical problems must be faced when
handling 3D data sets, the most important of them being the large
data volumes present and the fact that in CL-SRME, we are required
to store in memory several data sets with dense samplings (i.e.,
missing traces replaced by traces filled with zeros). A practical strat-
egy to circumvent this issue would be to use a hybrid approach,
such that the near offsets in the primaries are estimated by the ac-
curate (but more expensive) CL-SRME, and the far offsets are esti-
mated by a less accurate (but lighter) differential NMO interpolation
method. This idea is left for future research beyond the scope of
this paper.
Note that the CL-SRME algorithm is built to work in undersam-

pling scenarios in which algorithms such as EPSI would not be
applicable (due to the large amounts of missing data). Rather than

competing with EPSI, we propose the CL-SRME
algorithm as a method complementary to EPSI,
to be used whenever EPSI fails to be properly
applied.

CONCLUSIONS

We have introduced a new method to extend
the current CL-SRME methodology such that
it allows primary estimation on heavily under-
sampled data. This can be useful for 2D data,
but it becomes mandatory for 3D data, where
the data gaps tend to be much larger. To achieve
an accurate reconstruction, we take the primary
wavefield P0 to a transform domain in which the
data gaps and/or interpolation errors are mapped
to aliasing artifacts. The ultimate goal of the
transform domain is to represent the primary en-

ergy with the smallest possible number of parameters (i.e., achiev-
ing a high information compression). We choose the focal domain,
which is based on wavefield extrapolation operators, as it provides a
high level of data compression. Being the product of a physics-
based transform rather than a mathematical one, the focal domain
also introduces additional physical constraints on the estimations,
namely, wavefield continuity and wave-equation consistency.
Sparseness regularization is chosen as a method to guide the esti-
mates of the focal-domain inversion toward the elimination of the
aliasing artifacts in these domains. Once all the artifacts have been
cleared, the primary estimate becomes fully sampled.
Being a simultaneous reconstruction/multiple estimation algo-

rithm, we expect the proposed method to perform better than other
methods based on interpolation prior to the primary estimation.
By allowing the missing data and the primary information to be
simultaneously estimated, we allow their estimations to be simul-
taneously adjusted to optimally fit each other. Here, data recon-
struction helps in obtaining better multiple estimates and the
physical primary-multiple relationship (equation 1) helps in con-
straining the data interpolation.
Given an undersampled data set, the CL-SRME algorithm can

perform simultaneous data reconstruction and primary-multiple
separation. The required focal operators can be obtained via simple
estimation of the rms velocities of the target reflectors.
The shown examples depict the capabilities of the current ap-

proach for 2D field data, in which heavy undersampling is over-
come with data reconstruction. An important result is obtained
for near-offset reconstruction in shallow-water environments, in
which reconstruction over large gaps is achieved, reconstructing
completely the missing shallow events. With a fast and efficient
convergence, these results open the possibilities for accurate shal-
low-water demultiple in 2D and 3D geometries.
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Figure 7. The kx-ω domains of (a) the input undersampled data and (b) the output re-
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APPENDIX A

CALCULATING GRADIENTS FOR
NONANALYTICAL COMPLEX-VALUED

MATRIX FUNCTIONALS

GENERAL THEORY

Let

JðZÞ ¼ TrðVðZÞVðZÞHÞ ¼ kVðZÞk2Fr (A-1)

be a matrix functional such that J ∈ MnðCÞ → C where MnðCÞ is
the space of n × n matrices over the complex field C. We choose
V∶MnðCÞ → MnðCÞ to be a differentiable function of Z and k · k2Fr
to be the Frobenius norm. Typically, V would correspond to the
inversion residual in a descent algorithm. We are interested in cal-
culating the gradient ∇ZJðZÞ such that we can use it in an inversion
algorithm. However, due to the appearance of Z and ZH in the def-
inition of JðZÞ, the functional defined in equation A-1 is nonana-
lytical, thus nondifferentiable. This implies that we need to redefine
the concept of gradient for this type of functional. We can resolve
this problem by defining our gradient to be

∇ZJðZÞ ≔ 2
dJðZÞ
dZ� ¼ ∂J

∂RZ
þ i

∂J
∂IZ

; (A-2)

where RZ and IZ represent the real and imaginary parts of Z, re-
spectively. Equation A-2 is equal to zero when JðZÞ is an analytic
function of Z and nonzero otherwise.
The gradient in equation A-2 applied to equation A-1 can be cal-

culated using the following algorithm:

1) Take the exterior derivative of J: J → dJ.
2) Use the linearity and the Leibniz rule to write dJ in dZ� terms.

Note that the gradient definition uses only dZ�, so any dZ varia-
tion is zero:

dJ ¼ dTrðVHVÞ ¼ TrðdVHVþ VHdVÞ. (A-3)

3) Take dJ into a dJ ¼ TrðfðZÞdZ�Þ form (with f a function
of Z).

4) Use the following property:

dJ ¼ TrðfðZÞdZ�Þ → dJðZÞ
dZ� ¼ fðZÞ;

to calculate the required derivative.
5) Scale the result by two to obtain ∇ZJðZÞ.
Note that descent algorithms require the negative of the gradient

−∇ZJðZÞ as descent direction. Also note that if Z ¼ ZT , Z� can be
replaced by ZH in all the steps above.

PROOF OF EQUATION 9

In this section, we will calculate the least-squares gradient of a

functional J (in equation 9) with respect to the variable X̂iðω 0Þ. Start
by introducing the variable jðLSÞ ¼ kP −

P
mW

T
mX̂mWmQkFr, then

JðLSÞ can be written as

J ¼
X
ω

���P −
X

m
WT

mX̂mWmQ
���
Fr

¼
X
ω

jðLSÞðX̂i; X̂
H
i ;ωÞ:

(A-5)

Taking the gradient ∇X̂iðω 0Þ on this expression, we get

∇X̂iðω 0ÞJ
ðLSÞ ¼ 2dJðLSÞ

dX̂iðω 0ÞH

¼
X
ω

2djðLSÞðX̂i; X̂
H
i ;ωÞ

dX̂iðω 0ÞH

¼ 2djðLSÞðX̂i; X̂
H
i ;ω

0Þ
dX̂iðω 0ÞH

¼ ∇X̂iðω 0Þj
ðLSÞðX̂i; X̂

H
i ;ω

0Þ: (A-6)

The elimination of
P

ω in the above expression is due to the fact
that all the ω frequencies are mutually independent, and then, the
only nonzero contribution to the derivative comes when ω ¼ ω 0.
The calculation of the derivative of jðLSÞ will now follow the steps
outlined above. (For simplicity, we will now drop the explicit
dependence of ω 0.) Start rewriting jðLSÞ as

jðLSÞðX̂i; X̂
H
i Þ ¼ Tr

" 
P −

X
m

WT
mX̂mWmQ

!
H

×

 
P −

X
m

WT
mX̂mWmQ

!#
¼ Tr½VHV�;

(A-7)

where V ≔ P −
P

mW
T
mX̂mWmQ is the data residual. Now taking

the exterior derivative in jðLSÞ, we get

djðLSÞðX̂i; X̂
H
i Þ ¼ dTr½VHV� ¼ Tr½dVHVþ VHdV�;

(A-8)

where the last step corresponds to the Leibniz product rule. Here,

the variables X̂H
i and X̂i can be taken as independent. Then, because

we are considering variations over the X̂H
i variable only (dX̂H

m ¼ 0 if

m ≠ i), we can see that dVðX̂iÞ ¼ VðdX̂iÞ ¼ 0. Therefore, we can
write

djðLSÞðX̂i; X̂
H
i Þ ¼ Tr½dVHV�

¼ Tr

�
d

�
P −

X
m
WT

mX̂mWmQ
�

H
V
�

¼ Tr½−ðWT
i dX̂iWiQÞHV� ¼ Tr½−QHWH

i dX̂
H
i W�

iV�
¼ Tr½−W�

iVQ
HWH

i dX̂
H
i �

¼ Tr

�
−W�

i

�
P −

X
m

WT
mX̂mWmQ

�
QHWH

i dX̂
H
i

�
;

(A-9)
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so

djðLSÞðX̂i; X̂
H
i Þ

dX̂H
i

¼ dJðLSÞðX̂i; X̂
H
i Þ

dX̂H
i

¼ −W�
i

�
P −

X
m

WT
mX̂mWmQ

�
QHWH

i ;

(A-10)

which leads to

∇X̂i
JðLSÞ ¼ −2W�

i

�
P −

X
m

WT
mX̂mWmQ

�
QHWH

i ;

(A-11)

which is the desired gradient.
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