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Chapter 1 

Introduction 

Laminar-turbulent transit ion is a physical phenomena that is not only of great scientific 
interest, but also oflarge practical importance in many industrial applications. The significant 
increase in friction drag and heat transfer in turbulent flows as compared to laminar flows , 
makes it important to know wh ere precisely the transition takes place. Although transition 
has been studied for more than a century, beginning with the pioneering work by Reynolds 
(1883) , it is still not weil understood. Due to the large range of possible disturbance sources 
and the different ways in which these disturbances can grow, the transition process becomes 
a very intricate problem to study. 

Usually one can divide the transition process into three sub topics: receptivi ty, disturbance 
growth and breakdown. If we restrict our attention to boundary layer flows, receptivity refers 
to the possible ways in which disturbances can enter into the boundary layer. Examples of 
disturbance sources can be vibrations, surface roughnesses, sound, free stream turbulence etc. 
Depending on the characteristics and the amplitudes of the disturbances, the downstream 
development can take different routes. The most weil documented transition scenario is the 
exponential growth of initially small amplitude waves, i.e. Tollmien-Schlichting waves, which 
at relatively low ampli tudes (1-2%) become affected by non-linear interactions followed by 
a rapid breakdown to turbulence. The growth of these waves can with good accuracy be 
described by linear theory, which is the basis for the presently dominating prediction method 
for transition , the so-called eN -method. The relative success obtained with this method 
at small outer disturbance levels can be ascribed to the long region with slowly growing 
wave amplitudes which dominates the transition process, compared with the rapid non-linear 
breakdown. 

However, in many applications the initial amplitude of the disturbances is fairly large, 
and the eN -method, which is based on linearized equations, wil! fail to serve as aprediction 
tooi for transition. The notation by-pass tmnsition was first introduced by Morkovin (1969) , 
when he suggested that the TS-wave route to transition could be by-passed if it could be 
replaced by another strongly amplifying mechanism. By-pass transition has later become an 
expression of ten used when traditional linear instability mechanisms, like TS-waves or cross­
flow vortices, are not recognized as being of primary importance in the transition process. 
However, the ongoing progress in the understanding of transition has led to a more strict 
definition of by-pass transition: "transition emanating from linear mechanisms other than 
exponential instabilities" (Henningson 1994) . 

One essential object of transition research is to develop prediction methods which rely 
on a sound description of the essential dynamics in the boundary layer. Although much 



knowledge about transition at higher disturbance levels has been added during the last years, 
such prediction methods can not be expected within the near future. However, there is an 
increasing demand of improved methods for predicting transition in industrial applications, 
where the dominating methods that are used today are still based on empirical correlations. 
In many internal flows, for example turbomachinery applications, the disturbance levels can 
be of the order of 10-20%. This is the case in for instance gas-turbines, where the stator 
blades generate disturbances which affect the boundary layer on the rotor blades. In order 
to efficiently design the turbine it is of great importance to know how the boundary layer 
characteristics vary along the chord of the blades. It should be emphasized that a correct 
modelling of the behaviour inside the transition region is as important as the knowledge of 
where transition starts, since a predominant part of the turbine blades can be affected by 
transit ion al flow. 

During the last years there has been some ongoing research on the possibilities to use 
turbulence models for transition prediction at high levels of free stream turbulence. Since 
1990 the efforts have been organized by Dr. A.M. Savill as a special interest group within 
ERCOFTAC (the European Research Community On Flow Turbulence And Combustion), 
and an over view of the achievements so far is reported in Savill (1995b). The majority of the 
studies have been focussed on different eddy-viscosity modeis, sometimes modified to include 
empirica! information concerning the start of the transition region. The results shown so 
far reveal large differences between different modeis, but in some cases the reported results 
exhibit reasonable agreement for a wide range of experimental test cases. The results indicate 
that the use of turbulence models as a prediction tooi might be a possibility which has to be 
further investigated. 

The use of turbulence models for transition prediction is also the topic of the present 
report , in which some modeis, mainly differential Reynolds stress modeis, have been tested. 
In chapter 2 some important experiment al observations are shown, which intend to illustrate 
the characteristics of the disturbances that are induced in the boundary layer by the FST. 
Also, some of the general shortcomings associated with the approach of using turbulence 
models are discussed . The basic equations and the turbulence models are described in chapter 
3, and some details concerning the numerical schemes are given in chapter 4. The different 
test cases are described in chapter 5, and, finally, the results from the calculations can be 
found in chapter 6. 
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Chapter 2 

Experimental results 

During the last years therc has been a considerable interest in studying the influence of free 
stream turbulence (FST) on boundary layer transition. Experiments as weil as numerical 
simulations and theoretical studies have been undertaken, leading to an increased knowledge 
about the disturbances that are induced into the laminar boundary layer and their down­
stream development. The present chapter intends to give a short summary of some of the 
characteristics of these disturbances, which can be of importance when later considering the 
application of turbulence modeis. In the following the streamwise, wall-normal and spanwise 
directions are denoted by x, y and z respectively, and the corresponding fiuctuating velocity 
components by u, v and w. 

2.1 Low-frequency fluctuations 

A general observation from a number of experiments is the large difference in spectral distri­
bution of the disturbances that are induced in the laminar boundary layer, as compared with 
the free stream turbulence (see for instance Arnal & Juillen 1978; KendalI 1985; Westin et 
al. 1994). This can easily be observed from the hot-wire traces shown in figure 2.1 , measured 
in a zero pressure gradient boundary layer at a free stream turbulence level (Tu) of 1.5%. 
While the free stream turbulence consists of a wide range of frequencies and wave numbers, 
the induced boundary layer disturbances are dominated by large amplitude, low-frequency 
fluctuations in the streamwise component. The fluctuations are also very different from those 
in a turbulent boundary layer, which can be observed in figure 2.2. The plot shows profiles 
of the energy contribution to uu filtered in narrow frequency bands, measured at positions 
upstream and downstream of the transition region. At the upstream location there is a 
significant energy growth in the lower frequencies inside the boundary layer, while the con­
tributions to higher frequencies are continuously damped towards the wal!. In contrast , the 
fully turbulent boundary layer exhibits high frequency contributions also in the near-wall 
region . 

During the downstream development , the disturbances grow in amplitude at a rate pro­
portional to the dis placement thickness (8*), and can attain values of the order of 10-15% 
of the free stream velo city (Ua) before transition occurs. It should be emphasized that, 
despite the large perturbation amplitudes, the boundary layer has still characteristics close 
to the unperturbed boundary layer. Both the shape factor and the wall shear stress are 
close to the Blasius values, although a small deviation in the mean profiles can be observed 
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Figure 2.1: Hot-wire traces measured inside and outside a laminar boundary layer subjected 
to a FST-Ievel of 1.5%. The traces are from top to bottom: u-component in the free stream, 
v-component in the free stream (note: Vplot = v + 7.5) and u inside the boundary layer. 

due to the growing disturbances. Moreover, there is no turbulent intermittency in the mea­
sured signa!. The pre-transitional region of the boundary layer is sometimes referred to as a 
"pseudo-Iaminar" boundary layer. 

Another important observation is the fairly st rong spanwise correlation that can be mea­
sured inside the boundary layer (figure 2.3). The strong negative correlation reveals the 
existence of structures which have a preferred spanwise scale. These structures appear irreg­
ularly in time and space, which means th at they can not be detected by simply measuring the 
rms-value at different spanwise positions. If a typical streamwise scale of the disturbances is 
estimated from the energy spectra measured in the boundary layer, it becomes clear that the 
structures must be very long in comparison to the spanwise scale obtained from the correla­
tion . While moving downstream the major energy content in the spectra is shifted towards 
lower frequencies, indicating that the streamwise length of the structures is increasing during 
the downstream development. The above findings have also been verified in flow visualiza­
tions (KendalI 1985; Gulyaev et al. 1989; Alfredsson & Matsubara 1996), in which long and 
narrow streaky structures have been observed. 

An interesting comparison can be made with a recent experiment by Bakchinov et al. 
(1995). The aim of the experiment was to generate a localized free stream disturbance which 
could serve as a model for a free stream vortex impinging onto the boundary layer. The 
localized disturbance resulted in a set of high-velocity and low-velocity streaks inside the 
boundary layer, and the streaks were elongated in the streamwise direction due to the mean 
shear. It seems Iikely that the low frequency fluctuations observed in laminar boundary layers 
subjected to FST originate from similar streaks generated by free stream vortices. However , in 
the case of FST this generation is random both in time and space, thus leading to a fluctuating 
signal wh en measured with a fixed hot-wire probe in the boundary layer. One can also expect 
that the continuous forcing from the free stream, as weil as interactions between adjacent 
streaks, can affect the downstream development in the case of FST. From the experimental 
results one can conclude that the perturbations observed in the pseudo-Iaminar boundary 
layer are not what we usually call turbulence. The fluctuations do not contain the wide range 
of scales normally observed in turbulence, but should rat her be considered as an irregular 
movement of large-scale structures in the boundary layer. 
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Figure 2.2: Profiles of fluctuating energy in narrow frequency bands. (a) Laminar region (R = 

1.72 (Rex )1 /2 = 1.72 (Uax l v)1 /2 = 1080); (b) turbulent region (R = 2050). Ua = 11.9 mi s; 

Tn = 1.5%. (Matsubara, 1995, unpublished) . 

:::> 
:::> 
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Figure 2.3: Spanwise correlations in the boundary layer, measured close to the maximum of 

U rms : x = 500 mm (R = 890) (0), x = 1000 mm (R = 1260) (-). Spanwise correlation in the 

free stream (x = 500 mm) (+). (From Westin et al., 1994, measured at Tu = 1.5%) 
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2.1.1 Some theoretical results 

The fact that longitudinal, streaky structures can be observed in the pseudo-laminar bound­
ary layer may be corroborated by recent studies on transient growth. In order to get tran­
sition at subcritical Reynolds numbers (i.e. when linear stability analysis predicts stabie 
eigenmodes) it was shown by Henningson & Reddy (1994) that there must be an underly­
ing linear growth mechanism. This elucidates the importance of recent studies on transient 
growth, which are based on eigenmodes to the linearized Navier-Stokes operator. Although 
individual modes are damped, the combination of non-orthogonal modes can result in sig­
nificant transient energy growth. Butler & Farrell (1992) studied transient growth in the 
Blasius boundary layer (using the parallel flow assumption), and found that the optimal ini­
tial disturbance is a streamwise vortex. Optimal disturbance means in this case the initial 
conditions that gain the most energy over a specified time period. Although the vortex itself 
is damped, it forces transiently growing high and low velocity streaks in the u-component. 

The streaks are generated by the wall-normal movement of fluid elements that conserve their 
horizontal momentum, which is an inviscid mechanism that was originally denoted as lift-up 
by Landahl (1975). 

However, although the growth mechanism is linear , a non-linear mechanism is necessary 
in order to generate the initial streamwise vortex. This can efficiently be done in shear flows 
by generating two oblique waves, which non-linearly transfer energy to the streamwise vortex. 
The same idea has been used in studies of boundary layer receptivity to free stream distur­
bances. In direct numerical simulations by Berlin & Henningson (1994), oblique waves were 
generated in the free stream above a flat plate boundary layer. Also in this case longitudinal 
streaks were fOrIlled inside the boundary layer. 

Although it is not clear yet how the low-frequency fluctuations in the boundary layer 
are generated, it is encouraging that the structures observed in the experiments are sim i­
lar to those that are predicted to be the transiently most growing disturbances. It is also 
plausible to expect that the wide range of frequencies and wave lengt hes observed in free 
stream turbulence include energy in the wave lengthes close to the optimal disturbance for 
transient growth. However, the disturbances wil! at some point start to decay, unless the 
initial amplitude exceeds a certain threshold level which results in transition. Furthermore, 
the effect of the continuous forcing from the FST along the boundary layer edge is not clearly 
understood. In experiments at moderate and high levels of FST (larger than 0.5-1%) , the 
rms-level in the pseudo-laminar layer is continuously growing during the downstream de­
velopment . Whether this growth is due to a continuous forcing of disturbances that are 
introduced into the boundary layer in the leading edge region, or due to the generation of 
new and stronger disturbances at downstream positions, is an issue that deserves further 
experiment al and numeri cal investigation. 

2.2 Sealing of fiuctuating profiles 

As previously mentioned, the measured disturbances grow in amplitude while moving down­
stream, resulting in very large fluctuation levels. The fluctuations are mainly in the u­
component, while the v-component is of the order of 5 to 10 times smaller. Further, the 
maximum amplitude appears approximately in the middle of the boundary layer, which is 
different from the turbulent boundary layer where the maximum in U rms is positioned close to 
the wal!. These features can be observed from the U rms and V rms profiles shown in figure 2.4. 
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Figure 2.4: Profiles of (a) tLrms and (b) Vrms in the pseudo-laminar boundary layer at Tl! = 
1.5% (Uo = 8 mis) . The different x-positions are 100 mm (+), 250 mm (6) , 500 mm (e) and 
800 mm (0). 

Also the wall-normal behaviour of the two components is quite different. For the streamwise 
component the fiuctuating amplitude is fairly constant throughout the free stream, but it 
increases inside the boundary layer due to the low-frequency fiuctuations. The tLv-Reynolds 
stresses have a similar behaviour, with a zero contribution in the free stream and a non-zero 
value mainly restricted to the boundary layer (not shown). This is also expected as the 
llv-correlation represents the mixing inside the shear layer. However, this behaviour is not 
relevant for the wall-normal fiuctuations. which start to decay outside the boundary layer 
edge. In figure 2.4 the y-axis is scaled with the displacement thickness (8*) , which means 
that the boundary layer thickness (899) corresponds to approximately 38*. The vrms-level 
starts to decrease at least three boundary layer thicknesses above the plate, and is continu­
ously damped towards the boundary layer edge. Inside the layer a small local maximum can 
be observed, which is caused by the low-frequency fiuctuations. The dam ping outside the 
boundary layer is caused by wall-refiections in the plate, and the size of the affected region 
is dependent on the dominating scales in the free stream turbulence. In most experiments 
grid generated turbulence is used, which is allowed to decay for a distance in order to obtain 
isotropy and homogeneity before reaching the model. This usually results in an energy dis­
tribution dominated by fairly large scales, thus giving a large reg ion which is affected by the 
wall- refiection. 

The damping of v-fiuctuations outside the boundary layer is important to take into ac­
count in calculations. The importance is substantiated by results obtained from large-eddy 
simulations by Yang & Voke (1993). They computed transition on a fiat plate subjected to 
approximately 5.5% FST, while changing the characteristics of the incoming turbulence. By 
generating one dimensional fiuctuations at the inlet, they showed that the wall-normal fiuctu­
ations had the major infiuence on the location of the transition region. While v-disturbances 
resulted in transition close to the position obtained for isotropic turbulence, w-disturbances 
gave a delayed transition and the test with fiuctuations only in the tl-component did not 
result in transition at all. Consequently, a reduced vrms-level close to the boundary layer 
edge has a delaying effect on the transition process. This is intuitively an expected result , 
sin ce a wall-normal motion wil! more easily penetrate and displace fiuid in the boundary 
layer, and thus more efficiently induce disturbances, than motions in the horizontal plane. 
The same conclusion can also be drawn from the experiments by Bakchinoy et al. (1995), in 
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which astrong negative v-perturbation in the localized free stream disturbance resulted in 
the generation of strong 1t-perturbations in the boundary layer. 

2.3 Breakdown 

So far only results for the pseudo-laminar boundary layer have been shown, i.e. upstream 
of the region wh ere turbulent spots become frequent and the boundary layer breaks down 
into turbulence. The breakdown phase of a boundary layer subjected to FST is not so 
well-understood , although there are indications that the breakdown is initiated by secondary 
instabilities of the longitudinal streaks. In a recent flow visualization of boundary layer 
transition at Tu = 6.6% by Alfredsson & Matsubara (1996), it was clearly seen that the 
longitudinal streaks began to oscillate in the spanwise direction just prior to breakdown. 

Similar secondary instabilities have been observed in Direct Numerical Simulations of 
by-pass transition. In a simulation by Berlin, Lundbladh & Henningson (1994), starting 
with oblique waves in a Blasius boundary layer, longitudinal streaks wcre generated which 
finally broke down due to secondary instabilities. Similar spanwise oscillations of the streaks 
prior to breakdown have been observed in simulations of by-pass transition in Poiseuille flow 
(Lundbladh, Henningson & Reddy 1994) and Couette flow (Kreiss, Lundbladh & Henningson 
1994) . Based on the above findings, Berlin et al. (1994) conjectured that the following stages 
are universal for oblique transition in all shear flows: nonlinear generation of streamwise 
vortices by the oblique waves which are initially introduced into the flow, followed by transient 
growth of streaks due to the streamwise vortices, and finally a breakdown of the streaks 
associated with secondary instabilities. 

Another experiment al observation concerning the breakdown ph ase in transition induced 
by free stream turbulence was made by Boiko et al. (1994), who studied a boundary layer 
subjected to a FST-level of 1.5%. It was shown that the transition process was significantly 
enhanced if a small amplitude TS-wave was introduced, although it was not possible to see 
if this resulted in secondary instabilities of the streaks. However, further quantitative mea­
surements on the breakdown phase, as well as new model experiments of possible secondary 
instabilities of streaks, are necessary in order to gain more insight into which mechanisms 
are responsible for the breakdown. For the time being, it is also unknown how the streaks 
develop in the presence of pressure gradients. 

2.4 Can turhulence models he applied? 

Before proceeding to the main topic of this report, one should address the following question: 
What are the prospects to succeed in predicting transit ion at high levels of FST by using 
Reynolds Averaged Navier-Stokes equations (RANS) together with one point closures for the 
modelling of the Reynolds stresses? One of the basic assumptions in one point closures is 
the self-similarity of the spectra of the turbulent energy, which is determined by one single 
length scale. This means that if individual spectral modes are crucial for transition, this 
can not be captured by a turbulence model. Further, the picture that emerges from the 
present chapter is a pseudo-laminar boundary layer distorted mainly by large-scale, three­
dimensional (3D) structures which appear irregularly both in time and spacc. The importance 
of 3D-disturbances is a general result from most studies on subcritical transition . The present 
approach assumes a 2D state af ter time averaging. This is also in agreement with experiment al 
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findings , but the model might fail if spectral information (both in time and spanwise direction) 
is important . Consequently, there might be some doubt whether a statistical turbulence model 
can perform weil when different test cases are considered. 

However, one can expect that when the free stream turbulence level is raised, the transition 
process becomes faster and the importance of individual spectral modes may become less 
important. In that case the simplification we make when using Reynolds-averaged Navier­
Stokes equations wil! probably be more accurate. or at least t he error we introduce wil! be less 
observable. Thus we can assume that above a certain, still unknown, lower limit of Tu the 
use of turbulence models for transition prediction can be justified, at least as an engineering 
tooI. It can be difficult to estimate the lower level of Tu for which the models can be used, 
but a. level of 1 % or less is most Iikely outside the range of applicability, as t he influence from 
TS-waves usually becomes significant. 

9 



Chapter 3 

Equations and Models 

3.1 Governing equations 

The instantaneous pressure and velocity field in fluid flow is described by the well-known 
Navier-Stokes equations, which can be derived by applying Newton's second law to a fluid 
element . For an incompressible Newtonian fluid these equations read 

(3.1) 

(3 .2) 

where equation 3.1 and 3.2 describe conservation of momentum and mass (continuityequa­
tion) respectively. Although the equations are valid both for laminar and turbulent flows, 
they are in most practical problems impossible, or at least too expensive, to solve directly. It 
is of ten convenient to make a Reynolds decomposition, i.e. the velocity and pressure fields are 
divided into a mean and a fluctuating part. Generally the mean part should be an ensemble 
average of the flow, but in many cases the flow is quasi steady and a time average can be 
used instead. Thus, if Ui and P denote the mean parts and Ui and p the fluctuating parts, 
the following decompositions 

Üi = Ui + Ui and ft = P + P 

are substituted into equations 3.1 and 3.2. Af ter averaging the so-called Reynolds-averaged 
Navier-Stokes equations (or shorter Reynolds equations) are obtained: 

aUi aUi 1 oP a aUi _ - + U- = --- + -(v- - UiU ') 
a t J aXj p aXi aXj aXj J 

aUi = 0 
aXi 

(3.3) 

(3.4) 

A new term appears in the right hand si de of equation 3.3, in which the over bar denotes an 
averaged quantity and UiUj represent correlations between the fluctuating components. This 
term can be interpreted as an additional stress in the momentum equation, and describes the 
mean transfer of momentum due to the turbulent fluctuations. However, the Reynolds stress 
tensor (Ti j = -PUiUj) includes six new unknown correlations which need to be calculated or 
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modelled in order to close equation 3.3. An equation for -UiUj can be derived by subtracting 
equation 3.3 from 3.1 and multiplying the result by Uj' If the obtained equation is averaged 
and added to the same equation, but with the indices i and j interchanged, the Reynolds 
stress transport equation can be obtained af ter some manipulations: 

(3 .5) 

The different terms on the right hand side of the equation des'cribe successively turbulent 
product ion (Pij), energy redistribution between components (pressure-strain, cpij), dissipation 
( -Eij) and a transport term (dij). The last term (dij) includes transport due to turbulent 
velo city fiuctuations, pressure fiuctuations and viscous diffusion. It should be mentioned that 
the viscosity related terms and t he terms including pressure fiuctuations can be split in other 
ways, but the above equation is the form most frequently seen in the literature. 

A scalar equation for the turbulent kinetic energy (k = uiu;j2) can be obtained by 
contracting indices in equation 3.5 and divide the result by two. The k-equation reads 

(3.6) 

The different terms on the right hand si de can be denoted with P , -E and d. Note that the 
pressure strain term disappears, as it only represents a redistribution of energy among the 
components and therefore has a zero trace. In many turbulence models a separate equation 
for the (homogeneous) dissipation is solved. The exact equation for E reads: 

(3.7) 

The first two terms on the right hand si de can be interpreted as product ion terms due to 
the mean strain field , while the third term describes production caused by vortex stretching. 
The fourth term is a viscous destruction term, and final!y there is a transport term which as 
usu al includes turbulent transport, pressure transport and viscous diffusion. 

3.2 Thrbulence modelling 

The aim of turbulence modelling is to solve the closure problem that appears in the Reynolds 
equation (3.3), in which the Reynolds stress tensor must be determined. Even if new equations 
are derived in order to calculate UiUj, new unknown higher-order correlations wil! appear, 
and model!ing wil! always be necessary at some level. The simplest approach is to model the 
Reynolds stress tensor directly. This is usually done by introducing an eddy-viscosity (IJt) 
which directly relates U;Uj to the mean strain field. Zero-, one- and two-equation models 
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are based on the eddy-viscosity concept , but they use different levels of approximation to 
determine Vt. Most eddy-viscosity models use a linear relation between UiUj and the mean 
strain field , which has the disadvantage that in simple shear flows the models predict more or 
less isotropie turbulence. An improvement in this respect can be achieved by using non-linear 
eddy-viscosity modeIs, which still have a relatively low computational cost. 

The next higher level of complexity is to solve a transport equation for each independent 
component in the Reynolds stress tensor, which means that UiUj is not modelled directly, 
but instead different terms in the transport equations are modelled. This group of models 
is usually called Reynolds stress models or second-moment closures. A common notation for 
both eddy-viscosity models and Reynolds stress models is one-point closures, which means 
that they use spectral information only from one point in space. Consequently they make 
use of only one characteristic length scale of the turbulence. Although there is ongoing 
research on more sophisticated mode Is incorporating space-correlations in the modelling (so­
called two-point closures) , these models are far too complex for being arealistic alternative 
in engineering applications. In the present work a two-equation, linear eddy-viscosity model 
and two different Reynolds stress mode Is have been tested in transitional test cases. The 
essential characteristics of the models are described in the following sections. 

3.2.1 k - é models 

The most frequently used group of turbulence models is k-é modeIs, which are eddy-viscosity 
mode Is where the charact.eristic velo city and length scale are determined from transport 
equations for k and é. The linear relation between UiUj and the mean strain field as formulated 
by Boussinesq (1877) reads: 

Tij _ (OUi OUj) 2 - = -Ui'Uj = Vt - + -- - -óijk 
p OXj OXi 3 

(3.8) 

The eddy-viscosity is usually considered as a product of a typical velocity and length scale. 
In the k - E model the velocity scale is given by Jk and the length scale by k3/

2 IE , which 
leads to: 

(3.9) 

The constant c" is a model parameter and I" is a low-Reynolds-number function which is 
included to reduce Vt close to solid surfaces. The k- and é-equation are usually modelled as: 

in which 

ok ok 0 [( Vt) Ok] -+Uk- =P-é+- V+- - +D ot OX k OXk (7k OXk 

T ' OU, 
P=..!:1._' 

P OXj 

(3.10) 

(3.11) 

For the "standard" k - é model, in which the constants are determined such that the model 
performs well in regions with relatively high turbulence levels, the constants take the values 
c" = 0.09, Cd = 1.44, C<2 = 1.92, (7k = 1.0, (7, = 1.3, I" = Id = 1<2 = 1.0 and D = E = O. 
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Low-Reynolds number modifications 

In the case of wall-bounded flows the near wall region needs special treatment, as the vis­
cosity effects become more important and the turbulent Reynolds number reduces to zero 
at the walt. A possible solution is to use the standard model, but with the first grid point 
positioned at a certain distance from the wal!. The boundary conditions at the first grid point 
are determined by using the law of the wall , based on the assumption of quasi-equilibrium 
turbulence. However, in many cases it is desirabie to solve the equations down to the wall, 
which requires some modifications of the turbulence model in order to fulfil the kinematic 
constraints . The behaviour close to the wall can be estimated by a Taylor expansion in y, 
where the leading terms for the different quantities are prop ort ion al to the following powers 
of y: 

As can be observed, the dissipation has a finite and non-zero value close to the wall. If 
equation 3.11 is applied directly: the term cäläé2 I k ....... 00 as k is reduced to zero at the 
wal!. A common way to overcome this problem is to use the variabie i inst.ead of é , where i 
is defined as 

i = é - 2v ( at: r 
The use of i in equations 3.10 and 3.11 (i.e. change all é to i in the equations) implies the 
need of an extra term (D) in the k-equation: in order to get the correct dissipation . The low­
Reynolds number k-é model that has been used in the present study is the model by Launder 
& Shanna (1974). The model has shown to perform fairly weil in a number of transitional 
test cases, and is currently considered to be the best two-equation model for transitional 
flows (Savill 1995b). The Launder & Sharma model uses the following modifications to the 
standard k - é model: 

11" = expCI + ~~~~50)2) 
Id = 1.0, 1€2 = 1 - 0.3 exp( - Re;) 

D = -2V(at:r, E = 2VVt(~:~r 
k 2 

where Rel = --:: 
Vé 

Note that the turbulent Reynolds number normally is defined as Ret = k2 /(vé) , but in the 
Launder & Sharma model the use of i also results in the slightly modified definition, namely 
Ret = k2 I (vi). The model by Launder & Sharma is a modified version of the model by Jones 
& Launder (1972). This model was originally developed for prediction of relaminarization 
in flows with st rong favourable pressure gradients. The low-Reynolds nu mb er function 1<2 
was chosen to fit experimental data for the decay of isotropic grid turbulence both at high 
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and low Reynolds numbers. The SeCOIld low-Reynolds number function, 1/1., was determined 
from Couette flow experiments, in which the measured mean-velocity gradient was used 
to calculate an eddy viscosity based on a mixing leng th according to van Driest (VT = 

l;;,18U/8y l, with lm = Ky (1- e-..;;JPyAjl/), in which T is the total shear stress and K and A 
are constants). Further, the dissipation equation was adjusted to get a reasonable level of 
kinetic energy in the viscous sublayer. With these values of E and VT the shape of the low­
Reynolds number function was determined as IJl. = VTE/(k 2cJl.) , to which a suitable analytical 
function was fitted. Moreover, an additional source term (E) was introduced in the dissipation 
equation in order to increase E at y+ ~ 20. A similar term, which also contains the second 
derivative of U, can be traced in eq. 3.7. However, as the authors point out, there is no 
physical argument for the term, and it is only adopted due to empirical reasons. 

3.2.2 Differential Reynolds Stress Models 

A slightly more complex approach than two-equation models is the use of Differential Reynolds 
Stress l\1odels (DSM-models). The main advantage is that the Reynolds stress tensor (Tij) 

does not need to be modelled directly, and that it also provides a natural way to treat 
anisotropies between the different components. However, in DSM-models a transport equa­
tion is solved for each independent component in Tij, which leads to a higher computational 
cost. It also implies new question marks concerning the modelling of some terms in the trans­
port equations. In the present study two different DSM-models have been tested, which both 
include low-Reynolds-number rnodifications and make use of linear pressure strain terms. 

The HJH-model 

The DSM-model by Hanjalié, Jakirlié and Hadiié (1995, see also .lakirlié et al. 1994) in the 
following denoted as the HJH-model, is developed for fully turbulent wall-bounded flows. 
Thus, no tuning in order to improve transition prediction has been done. The model includes 
wall-reflection terms as proposed by Gibson & Launder (1978), transport terms modelled by 
sirnple gradient diffusion (Daly & Harlow 1970) , and an invariant form of the so-called Yap­
correct ion (SI-term below). The Yap-correction increases the dissipation to suppress excessive 
growth of the turbulent length scale, which can occur for example close to solid walls in 
adverse pressure gradient flows. The additional term S.4 was originally proposed by Hanjalié 
& Launder (1980) , and aims to increase the effect of normal stresses on the product ion of 
E. This term has an effect primarily in flows with streamwise pressure gradients. Further, 
the physically different effects of wall-proximity and viscosity have been modelled separately, 
using low-Reynolds nu mb er functions depending on either the turbulent Reynolds number or 
the invariants of the stress anisotropy and dissipation anisotropy tensors. 

The model is summarized as follows , where the notations of the modelled terms refer to 
equation 3.5: 
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E,j = !stij + (1 - !S )~ÓijE 
• _ E [l1.iUj + (1LiUknjnk + Uj1Lknink + UkUlnknlninJ)!d] 

fij - k "---'----"----'----'----"'-=--'I:...-+-----,1=-''!!:1=.=k~~=-n-'-p-'n:...-q-i-d-'"----'--''-=----:----''--~ 

Is = 1 - JAE2
, Id = (1 + O.IRet!-l 

a [ ( k ) éJ'ü:i'U:;] dij = .,,----- v + Cs-UkUI -a' J . 
UXk E Xl 

with Cs = 0.22 

In the a bove formulation ni denotes a unit vector normal to t he solid surface and X n is the 
wall-normal distance. The invariants of the stress anisotropy and the dissipation anisotropy 
tensors are defined as: 

T he modelled version of the dissipation equation takes t he following form: 

(3. 12) 

The term S.4 requires a comment . For 2D boundary layer flows, as considered in the present 
study: the term is replaced by (see Hanjalié & Launder 1980) 
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OU(€) C.4 (VV - UU)OX k (3.14) 

which means that the production of € due to normal stresses is augmented. However, it is 
not straightforward how this term is derived from the general formulation of S.4 (3.13). The 
derivation is as follows: If 3.13 is evaluated for 2D boundary layer flows it takes the form 

C' k(OU _ OV)2 ~ C' k(OU)2 
.4 oy OX .4 oy 

i.e. it is expressed in terms of the rotational part of the mean strain field. This can be 
rewritten in terms of uv if the eddy-viscosity concept (with cJl.fJl. = 1) is applied in combination 
with the k - € approach for the velocity and the length scale: 

(
k2 OU) oU ~ = _uvoU ~ 
€ oy ayk ayk 

This term is identical to the production of € due to shear stresses, which appears as part of 
the first term on the right hand si de of equation 3.12: 

€ ( au av OU) C.1 - - uv- - uv- + (vv - uu)-
k ay ox ax 

(3.15) 

Thus, in order to emphasize the product ion of (' due to normal stresses, 3.13 must be added 
to equation 3.12 with a negative coefficient. However, instead of reducing the production due 
to shear stresses it is suggested to increase the contribution from normal stresses by adding 
3.14 with a positive coefficient C.4 = 1.16. If the boundary layer approximation is applied to 
the equations, the production term (3.15) takes the form -Cf! (€jk)uv(aUjay). In this case, 
in order to keep the product ion of € due to normal stresses constant, the coefficient C.4 takes 
the value 2.6 (Cf! + C.4). 

Also the term SI in the dissipation equation requires a comment. Convergence problems 
due to initial transients appeared when th is term was included in the calculations, but th is 
problem was avoided if the term was initially switched off. Af ter the initial transients in the 
solution have settled down, the term is smoothly increased by a weight function and attains 
its intended value a short distance downstream of the starting position. This damping has 
to be a.pplied to all calculations, both for fully turbulent and transitional flows. 

Finally, it should also be mentioned that equation 3.12 solves the "true" dissipation (not 
Ë), while Ë only is included in the Cf2-term to assure that the term goes to zero close to the 
wal!. 

The SLY-model 

The SLY-model is a DSM-model developed by Savill, and is based on a model by Kebede, 
Launder & Younis (1985). The model has been tuned in order to work weil for transitional 
flows, and the results presented by Savill show good agreement with experiments and simu­
lations in a number of test cases at different FST-levels and pressure gradients. The model 
which is described below is sometimes denoted as "basic SLY" by the originator, as later 
versions of the model have been extended with terms intended to model pressure diffusion 
and non-local effects in the pressure strain (Savill 1995a) . Some terms are similar to the 
previously described HJH-model, and only the differences are given below: 
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C2"' = 0.3 Cl = 1.8, C2 = 0.6, Ci" = 0.5, 
k 3/ 2 

!* = --: f:nax = max!*; 
EXn ' x" 

f - { 1 : 0 < X n < (xn)max 
tv - 1*/ f :nax : X n > (xn)max 

tij = f8<j + (1 - f8)~Óijt 
• _ t [U i'U-j + UiUknjnk + UjUknink + Óij1LkUtnknL] 

tij - k -'-'-"----'---"--=-I....:.::...+----::-~-=~~u~--'----'---2---'--~~:;. 
2 k npnq 

fd = max{ ~ (2.0 - 0.725Ry ) ; I} where 
cd 65 

Ry = -/kxn 
. 1/ 

0.4 [ {(Ret )2 }] f,2 = 1 - Cä exp - min 6 ; 20 

fJl = eXPCl + ~~~~50)2), S'4 = SI = 0 

C, = 0.15, Cd = 1.275, Cä = 1.8, C,3 = 0.25 

The function fJl is taken from the k - t model by Launder & Sharma, in which it is used to 
reduce I/t close to the wal!. The SLY-model also makes use of a Reynolds number (Ry) which 
depends on the distance from the wal!. and another important difference as compared to the 
HJH-model is the coefficients Cl , C2, Cltv and C2w. In the SLY-model these are all constants, 
whiJe in the HJH-model they are dependent on the turbulence characteristics. Furthermore, 
the viscous destruction term in the dissipation equation takes the form -Cäfät2 / k, i.e. no 
€ is used. The boundary condit ion (BC) for t is not the usual Dirichlet BC, but instead 
SaviJI uses Ot/oy = 0 at the wal!. However , still the Cä-term grows towards infinity close to 
the wall, but this deficiency has been corrected in more recent versions of the model by an 
additional pressure diffusion term (private communication). 

3.3 Boundary layer simplifications 

In the present study the caJculations are restricted to 2D boundary layers, i.e. the spanwise 
mean velo city (W) as weil as all spanwise gradients are assumed to be zero. For boundary 
layer flow it is common to simplify the equations by using the boundary-layer approximations. 
This means that all terms including streamwise derivatives are neglected (except for the 
streamwise convection) , and the pressure is assumed to be constant across the boundary­
layer thickness. T he approximations can be summarized as: 

o 0 
oy» Ox' 

op = 0 
oy , 

op = -pUD dUo 
ox dx 

where Ua is the free stream velocity. The approximations are usually fairly good at high 
Reynolds numbers and weak pressure gradients. The main advantage of the boundary layer 
simplifications is that these equations are parabolic, in contrast to the Reynolds-averaged 
Navier-Stokes equations which are ellipt ic and thus require much more computer time to be 
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solved. In the sequel of this report three different levels of approximations have been used, 
which are summarized as follows: 
(i) The boundary layer simplifications are applied to all equations, which are solved with a 
parabolic code. 
(ii) The complete formulation of the production and pressure strain terms are used, including 
terms dependent on streamwise derivatives of the mean velocity field, and the additional 
normal stress -érfIUj8x is added to the moment urn equation. The equations are solved with 
a parabolic code. 
(iii) The Reynolds-averaged Navier-Stokes equations as given in eq. (3.3), thus including 
streamwise diffusion and allowance for pressure variations across the boundary layer, are 
solved with a 2D elliptic code. 

The different formulations wil! be referred to as formulation (i), (ii) and (iii) respectively. 
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Chapter 4 

Numerical methods 

4.1 Boundary-layer code 

The equations formulated with approximations (i) and (ii) respectively are solved with a 
parabolic boundary layer code, which implies that only one sweep in the streamwise direction 
is necessary. The code makes use of a rectangular grid with non-equidistant mesh si ze both 
in the streamwise (x) and wall-normal (y) direction. Moreover, a staggered grid is used 
in the y-direction (see figure 4.1a). The staggered grid points (e.g. Yj- l/2 ) are positioned 
precisely in the cent re between the neighbouring non-staggered ones (Yj- l and Yj). The 
quantities k, é and U are evaluated at the staggered grid points, while the V -velocity and the 
Reynolds stresses are evaluated at the non-staggered ones. The spatial distribution of the 
grid points can be varied by using different stretching functions (e.g. quadratic, exponential 
or logarithmic) in the streamwise and the norm al directions. 

The discretization is based on the finite volume method , which has become widely used 
due to its good conservation properties. The equations are discretized in integral form, and for 
each unknown grid point a control volume is defined . The change in time of the considered 
quantity within the volume is expressed as the sum of the incoming and outgoing fluxes 
through the boundaries plus additional source terms. Normally the unknown is positioned 
in the centre of the control volume, however, since the equations are parabolic, and are 
thus most naturally solved by a marching procedure, the unknown quantity is positioned at 
the downstream boundary of the control volume (se figure 4. 1a). The code makes use of 
a second-order upwind scheme in the x-direction, while the wall-normal discretization is a 
so-called hybrid scheme. This means that it can either be a central scheme or a first-order 
upwind scheme depending on the relative ratio between the convection term and the diffusion 
term. If the local-grid Reynolds nu mb er (Rcell = V t::.y / (IJ + IJT) , in which t::.y is the si ze 
of the grid cell and IJT is the contribution from turbulent transport) is larger t han 2, the 
discretization will switch to the upwind scheme. Since t he large truncation error in the first­
order upwind scheme acts as an artificial viscosity, the diffusion term is neglected in this case. 
However, when the central scheme is used, both convection and diffusion terms are discretized 
with second-order accuracy. The previously described discretizations apply to all transport 
equations that are used in the present calculations, which, in the case of RST-closures, imply 
equations for U, UU, VV, uv, k, é and the continuity equation. 

The convection and diffusion terms are treated implicitly, which results in a tri-diagonal 
equation system at each streamwise step, with the unknowns positioned at grid-points rep­
resenting a line norm al to the streamwise direction in the computational domain . Since the 
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Figure 4.1: Finite volume grid in (a) Boundary layer code and (b) elliptic code. The symbols 
denote grid points where the different quantities are evaluated: (a) V , 1ttL, VV , ww and uv 
(e) ; U. k and é (0); (b) tLv(À), U (0) ; P, k, é , uu, vv and ww (6) ; V (e) . 

equations include non-linear terms, an iterative solution procedure is necessary. The stream­
wise and wall-normal convection velocities are thus taken from the previous iteration level, 
and the additional tenns that appear in the transport equations are treated as source terms 
evaluated from the previous iteration as weil. In this way the equations become decoupled 
and can be solved one af ter another using a line Gauss-Seidel method. Each tri-diagonal 
equation system is solved with the Thomas algorithm, and the considered quantity is up­
dated directly af ter the equation is solved. A convergence criterion, defined as the maximum 
allowed change between two iterations for any quantity or grid point, is used before the next 
streamwise position is considered. 

Stability 

The Iinear equation system that appears at each iteration step is well-conditioned if the 
coefficient matrix is diagonal dominant. Usually this is also a requirement in order to obtain 
converging solutions with an iterative method. In the present calculations the convergence 
were improved by using two different types of relaxation. 

(1) A relaxation factor (a) was used to obtain sufficient under-relaxation. The diagonal in 
the coefficient matrix is then multiplied with I/a, and a corresponding contribution (I/a-I) 
times the solution from the previous iteration was added to the right hand side (RHS). A 
typical value for a was 0.7, but in some cases an even smaller relaxation factor was used. 

(2) An additional adjustment of the magnitude of the diagonal was obtained through the 
source terms. Negative source terms in the RHS were divided with the solution from the 
previous iteration and added to the diagonal of the coefficient matrix. In this manner the 
magnitude of the diagonal elements could be increased in comparison with the off-diagonal 
elements. 

Inclusion of streamwise derivatives 

As mentioned in chapter 3.3 different levels of approximations were used in the calculations. 
Terms including streamwise derivatives were incorporated in the parabolic code, resulting in 
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Figure 4.2: Wall-shear stress coefficient calculated with different streamwise grid spacing: 
200 x 100 grid points (-), 400 x 100 (- - -), 1000 x 100 ( ... ) and 2000 x 100 (_ . -). Streamwise 
diffusion terms are included in the transport equations and solved with a parabolic code. 

the approximation (ii) as described in section 3.3. In some calculations also the streamwise 
diffusion term were included. Since the inclusion of this term makes the equations elliptic, 
one should expect problems when trying to use a parabolic solver. Figure 4.2 shows the 
behaviour of the wall-shear stress in the transition region when the grid was systematically 
refined in the streamwise direction. Obviously numeri cal instabilities appear when the grid 
spacing becOines smalI, which is an effect that can be ascribed to the inconsistent solution 
procedure for the elliptic equations. 

4.1.1 Boundary conditions 

The boundary conditions at the inflow boundary (i.e. west side) are specified by the ini­
tial conditions, and these are further described in section 5.3. The free stream boundary 
conditions for all equations except the U-equation are specified as homogeneous Neumann 
boundary conditions, i.e. 

o<p 
- = 0 when y -+ 00 ay 

in which <P denotes any of the considered quantities. The boundary condition for U is a Dirich­
let boundary condition, which is given by the free stream velocity (Uo(x)) in the test case 
specifications. The boundary conditions at the wall are specified as homogeneous Dirichlet 
conditions, i.e. 

U = V = uu = vv = k = uv = 0 

However, the wal! boundary condition for the E-equation differs between the modeIs. The 
HJH-model uses 

(o../k) 2 

e!y=o = 2v --;:;--
vy y=o 
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which can be derived from Taylor expansions of Ui close to the wal!. In calculations with the 
model by Launder & Sharma an equation for ti is solved (see section 3.2.1 for definition), which 
implies that ti = 0 at the wal!. Final!y, in the model by Savil! (SLY-model), a homogeneous 
Neumann condition is used as wal! boundary condition for E. 

A note on the wall-boundary conditions 

As mentioned earlier the discretization based on the finite volume method considers the net­
change of the incoming and outcoming fluxes through each control volume. For instance the 
diffusion part of the wal! norm al flux of 4> through the control volume corresponding to node 
(Xi, Yj-l/2) can be written as 

4> corresponds to a quantity which is evaluated at the staggered grid points, i.e .. k , E or 
U. The flux leaving this volume ((v + vT)(84)/8y)l yJ wil! also be used asthe flux entering 
the neighbouring volume, and so on. To discretize the equations at the boundaries virtual 
grid points are introduced (see figure 4.1a). The virtual points at the wal! are defined as 
Y-l /2 = -Yl/2' and they are used in the equations for k, tand U . One advantage with the 
use of virtual grid points is that the discretization scheme used for internal volumes can also be 
used for the volumes at the boundary. To obtain 4> = 4>wall at the wal! the simplest choice for 
the value at the virtual grid point is a linear extrapolation, i.e. 0.5(4)i, j-l /2 +4>i,j+1/2) = 4>wall. 
However, this boundary condition turns out to give errors in the near-wal! behaviour of t. 
The explanation can be traced to the incorrect representation of the second-derivative of 4> 
at the first real grid point (Xi , Yl /2) ' Since the viscous diffusion term in the k-equation is 
balanced by the dissipation near the wal!, the dissipation wil! exhibit a kink at the first real 
grid point (see figure 4.3). A consistent discretization wil! be obtained if 4>i,-1/2 is determined 
as 

2h(3h-m) m-6h 8h 
!/Ji ,-1 /2 = m(m + h) !/Ji,3/2 + ~ !/Ji ,I/2 + m + h !/Jwall (4.2) 

in which h = Yl /2 = -Y-l /2' m = Y3/2 - Yl/2 and !/Jwall is the specified Dirichlet boundary 
condition at the wal!. It should be noted that the discretization 4.1 can be used without 
modifications also at the wal! if the values at the virtual grid points are specified as in 4.2 . 

4.2 Elliptic solver 

When the streamwise diffusion and the al!owance of pressure variations are included in the 
equations they become elliptic and have to be solved with an elliptic sol ver. The present 
code solves the Reynolds-Averaged Navier-Stokes equations (RANS) using a time-marching 
technique to the steady state. The discretization and the solution method is in many respects 
similar to the boundary layer code, but with some important extensions. 
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Figure 4.3: Near wal! behaviour of the dissipation for different boundary conditions. Bound­
ary condition from linear extrapolation and coarse grid (6), fine grid (0); boundary condition 
as specified in (4.2) (+). 

The grid is a non-equidistant rectangular grid which is staggered both in the x- and y­

direction (see figure 4.1b), and the equations are discretized according to the fini te volume 
method. If a control volume is specified between the non-staggered grid lines, the scalars (P, 
k and E) and the norm al stresses (uu, vv and ww) are evaluated in the cent re of the volume. 
The shear stress is found in t he north-east corner, and t he U and V velocities are evaluated 
in the cent re of the east and north si de of the volume respectively. The present distribution 
of the variables on a staggered grid has advantages when discretizing the pressure. For 
instance (OP/ OX)i,j- l /2 can be discretized with central differences using adjacent points (i.e. 
(Pi+l/2,j-l/2 - Pi- 1/2,j-l/2)/(Xi+l/2 - Xi-l/2)) , leading to second order accuracy at the grid 
point where Ui ,j-l/2 is evaluated. 

Similar to t he boundary layer code a line Gauss-Seidel method is used, but in the present 
case sweeps are made alternatingly in both spatial directions. Grid points on ver ticallines are 
updated during sweeps from west to east and vice versa, fol!owed by sweeps between south 
and north boundaries in which the unknown variables are positioned on horizontallines. The 
unsteady term in each equation is discretized wit h two time levels, i.e. the truncation error 
is of first order with respect to 6t. The spatial discretization of the equations makes use of a 
hybrid scheme in both directions, similar to the one described in section 4.1. In a sweep from 
the west to t he east boundary the unknowns are positioned on a vertical line (x = Xi), while 
the information at line Xi+ 1 is taken from the previous iteration level. Since all non-linear 
terms are evaluated at the previous level, a tri-diagonal equation system is formed at each 
line. The equations are solved sequentiallY' which implies that an equation is solved in the 
entire domain by making one sweep before the next equation is considered. 

In addition to the equations that were solved in the boundary layer code, also an equation 
for the pressure is necessary. In t he incompressible Navier-Stokes equations th~ pressure acts 
as a constraint on the velocity field in order to fulfil the continuity equation. The pressure 
is solved with a two-step pressure correction method (SIMPLE) , which is briefty explained 
in the fol!owing. The equations for U and Vare solved wit h the pressure terms evaluated at 
the previous iteration level. Note t hat a separate transport equation for V is solved in this 
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elliptic code, in contrast to the boundary layer code which uses the continuity equation to 
calculate V. Also the non-linear terms are evaluated at the previous iteration level in order 
to linearize the equations. The obtained solutions are denoted as U· and V', but they do not 
satisfy the continuity equation at the new iteration level (n + 1). To get the correct solution 
at the new iteration level a correct ion is necessary (Un+! = U' + U e and similar for V). If 
the equations for U' and V' are subtracted from the corresponding equations for un+l and 
V n+! , and neglecting all terms which include velocities evaluated at other grid points than 
the considered one, the following equations for the corrected velocities are obtained: 

U'~:_" / 2 = U,:j_l/2 + a"j-l/2(ÓPi-l/2,j-I/2 - ÓPH1/2,j-I/2) 

V:".i~2.j = V:~1 /2,j + b'-1/2,j(ÓPi-l/2,j-I/2 - ÓPi-l/2,j+l/2) (4.3) 

ÓPi,j-l/2 is the difference in pressure between the iteration levels n and n + 1 at point 
(Xi , Yj-l/2) , and ai,j-l / 2 and bi _ 1/ 2,j are grid dependent coefficients. If the previous ex­
pressions are substituted into the continuity equation, a Poisson equation for óp is obtained 
with the right hand side dependent on U· and V'. Once this equation for the pressure 
correction is solved, U n+1 and V n +1 can be determined from 4.3. 

Time steps and relaxation 

In the present calculations the number of sweeps at each time level was maximized to ten. 
The ma.rching in time was continued until the maximum change of any varia bie between two 
iterations were of the order of the machine accuracy. In the code no explicit relaxation is 
used to improve the stability of the calculations, but the stability and the convergence can 
be affected by the size of the time step. lt should be noted that we are only interested in the 
final steady solution. Therefore there is no need to make a very accurate time integration, 
or to obtain full convergence at each time level. 

4.2.1 Boundary conditions 

The boundary conditions in the elliptic code are specified in the same manner as described 
in section 4.1.1, but with a few extensions due to the elliptic solution procedure. At the 
downstream boundary homogeneous Neumann boundary conditions are used for all quanti­
ties, i.e. ([)</J/[)x) = 0 at X = Xmax. Mathematically, there is no need to specify separate 
boundary conditions for the pressure in order to obtain a well-posed problem. However, since 
the equations are solved sequentially in the present code, boundary conditions are specified 
also for the pressure correction equation. These are homogeneous Neumann conditions at 
all boundaries, together with a predefined value of the pressure in the node positioned at 

(xmax , Ymax). 
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Chapter 5 

Test case specifications 

The transit ion al test cases that are used for model validation in the present study are mainly 
taken from the wide range of test cases specified within the ERCOFTAC Transition Special 
Interest Group , coordinated by Dr. A.M. Savill. An overview of the test cases is given by 
Savill (1995b). However, the number of test cases considered in the present study is quite 
smalt compared with what is available. One aim is to study in detail how the models perform 
in a few simple test cases, instead of making qualitative comparisons of the behaviour in 
many different cases. Some features of the considered test cases are summarized in table 5.1. 

Case Tu (%) Ua (mis) op/ox Experiment/LES 
T3A- 1 19.6 0 Rolls-Royce (RR) 
T3A 3 5.2 0 RR 
T3B 6 9.6 0 RR 
T3C1 ~7 6.3-9 .3 < 0&>0 RR, trans. in accelerating flow 
T3B-LES 5.5 9.6 0 LES by Yang & Voke (1993) 
KTH-B 1.35 11 .9 0 Royal Inst . of Technology 
KTH-E 6.6 8.0 0 Royal lnst. of Technology 
Wieghardt & Tillmann 33.0 0 Fully turbulent boundary layer 
Samuel & .loubert 26-17 >0 Fully turbulent boundary layer 
Spalart DNS 0 DNS of turbulent boundary layer 

(Reo E [225, 1410]) 

Table 5.1: Test cases 

The experimental data obtained by Rolls-Royce were taken in a boundary-Iayer wind tunnel 
with a working section of 2 m length and cross-section 0.71 x 0.26 m2 . The experiments were 
carried out on a flat plate equipped with a sharp leading edge, and the plate had a smalt 
negative angle of attack to avoid leading edge separation. The turbulence :was generated 
by grids positioned at the beginning of the test section, 610 mm upstream of the leading 
edge, which resulted in almost perfectly isotropie turbulence. The pressure gradient used 
in case T3Cl was obtained by a profiled wind-tunnel walt opposite to the working side of 
the plate. The normal and shear stresses were measured with hot-wire anen:\.ometry, using 
single and cross-wire pro bes, and the wall-shear stress was determined by different methods 
(Preston tube measurements, Clauser's method based on the law of the wall , momentum 
balance technique). More details can be found in Roach & Brierley (1992). In general, the 
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experimental observations described in chapter 2 are also valid for the experiments by Rolls­
Royce. For instanee the damping of the v-fluctuations observed outside the boundary layer 
can also be seen in the T3A and T3B test cases. 

A similar t ransition experiment has been carried out in the low-turbulence wind tunnel 
at the Royal Institute of Technology (KTH) in Stockholm (Matsubara, unpublished results). 
The tunnel has a 7mlong test section with a cross stream dimension of 1.2xO.8 m2. The same 
experimental set-up was used by Westin et al. (1994), and consisted of a flat plate with a 2 m 
long working part, and a specially designed asymmetrie leading edge. The FST was generated 
by grids positioned inside the test section, 1.5 m upstream of the leading edge. A small 
anisotropy between the streamwise and cross stream components was observed, and the ratio 
vrmslurms was 0.9 and 0.85 in the KTH-B and KTH-E case respectively. The measurements 
through the transition region include only the streamwise velocity component , which makes 
the Rolls-Royce data more suitable for detailed comparisons of different components in the 
Reynolds stress tensor. However, the KTH-data provides the possibility to compare results 
from two independent experimental set-ups at similar FST-conditions. In figure 5.1 the 
downstream development of the shape factor H is shown for the zero pressure gradient cases 
by Rolls-Royce and KTH (H = 8* IB , where 8* is the displacement thickness and B the 
momentum loss thickness) . Qualitatively the agreement between the two experiments is 
fairly good for the highest FST-level (6% and 6.6% respectively). For the lower turbulence 
level (1% and 1.35% respectively) the difference in the start of the transition region becomes 
larger. This is expected , as the relatively late transition in those cases allows influence from 
exponential instabilities, e.g. TS-waves, and it is well-known that small differences regarding 
t he experimental set-ups can highly influence the generation and development of TS-waves. 
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Figure 5.1: Downst.ream development of the shape factor (H) in different test cases: T3B 
(6), T3A (0) , T3A- (0), KTH-E (e) and KTH-B H. 

Besides the experiment al test cases there is also a transitional test case based on Large 
Eddy Simulations by Yang & Voke (1993, see also Voke & Yang 1995) . The LES were carried 
out with approximately the same parameters as for the experiment al T3B case, in order to 
provide data for a detailed comparison. A general advantage with simulations is that some 
variables which are very difficult to measure, for instance the different components in the 
dissipation anisotropy tensor and the pressure correlations, can be extracted from simulated 
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data. However, one should bear in mind that also Large Eddy Simulations contain a modelling 
part for the smallest scales in the flow. In the LES by Yang & Voke a subgrid-scale model 
similar to that of Smagorinsky was used, but modified to allow for low-Reynolds-number 
effects which usually become important near solid walls. In order to check the influence of 
the subgrid-scale model Voke and Yang also carried out simulations with the model switched 
off (which gives a low-resolution "Direct" Numerical Simulation). This calculation showed 
that the infiuence of the model is in fact restricted to regions with turbulent flow (i.e. in the 
free stream and in the turbulent boundary layer), while the pre-transitional region as weil as 
the predicted transition onset were only slightly affected. 

Finally, there are also three test cases in table 5.1 which consiçler fully turbulent boundary 
layers. The test case based on experiments by Wieghardt & Tillman (1951) is a fiat plate 
boundary layer at zero pressure gradient, while the experiment by Samuel & Joubert (1974) 
was carried out at a fairly strong adverse pressure gradient. The DNS by Spalart (1988) con­
siders a fully turbulent boundary layer at relatively low Reynolds numbers (Ree up to 1410) , 
and provides the possibility to study how the distribution among the different components 
in the Reynolds stress tensor is modelled. These test cases are considered in order to test 
that the models perform weil in fully turbulent flows, which is an essential requirement that 
should be fulfilled also after any modification or tuning of the models for transition prediction 
is made. 

5.1 Free stream boundary conditions 

In the present calculations homogeneous Neumann boundary conditions have been specified at 
the free stream boundary for all variables except U, which is given by the specified free stream 
velo city (see section 4.1.1) . Consequently, the decay rate ofthe free stream turbulence is given 
by the parameters in the turbulence model and the initial values of k and t. The kinet ic energy 
(ko) at the starting position for the calculation (xo) is given by the specified FST-level, but 
the initial dissipation (to) must be chosen to attain the best fit to the experiment al decay 
curve of the FST. However, for isotropic turbulence an analytic expression for the decay can 
easily be derived from the modelled k and t equations (equation 3.10 and 3.11) if the free 
~tream velocity (Uo) is constant and the streamwise diffusion is neglected. The expression 
reads: 

urms,O _ II [ (C<2 - l)to( ) + k1- C,, ] 2(1_'C,,) -- - - x - xo 0 
Uo Uo k~"Uo 

(5.1) 

in which the coefficient for the viscous destruction term (C<2) is usually tak€m as 1.92. It 
should be noted that in the present report urms,O denotes the streamwise fluctuation level in 
the free stream, while Tu represents the corresponding value close to the leading edge (i.e. 
Tu = (urms.O/Uo)x=o). In figure 5.2 the formula 5.1 is used to calculate the decay curve for 
the T3A case, and the results were confirmed by the corresponding k - t calculations. With 
ka = 0.042 m2/s2 at Xo = 10 mm (Tu = 3.2%), a value of to = 1.8 . 10-4 m2/s3 gives good 
agreement with experimental data. It is common to give the initial conditions in terms of ko 
and the turbulent length scale (Zw = k~/2 /to), which gives a length scale of 9.8 mm in the 
present case. It should be mentioned that a value ZtO = 30.1 mm is given in the test case 
specifications for the T3A test case (Savill1992). However, with the "standard" value of the 
model parameter (i.e. C<2 = 1.92) th is gives a too slow decay of the FST (figure 5.2). 
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Figure 5.2: Downstream development of the FST-level (Tu) in the T3A case. Experimental 
results (0) , Formula 5.1 with ltO = 9.8 mm (-) and lw = 30.1 mm (---) . 

A remark on the specification of the free stream turbulence level 

In most experiments the free stream turbulence level is given by Tu and a decay curve for 
urms,O along the test section. However, if the turbulence is not isotropic, this does not provide 
sufficient boundary conditions for the calculations. As pointed out in chapter 2, the wall­
normal component has proven to be more efficient in generating boundary layer perturbations 
than both the u- and the w-component. Consequently, a more relevant measure of the free 
stream turbulence level is vrms ,O/ Uo , or, preferably, all three fluctuating components. 

5.2 Some remarks on turbulent length scales 

The turbulent length scale in the free stream can experimentally be determined from the 
turbulence decay rate, using the relation 

L __ Urms UU 
• - Uo &u:u/ax 

(cf. test case specifications in SavillI992). L. denotes the experimentally determined length 
scale, which differs from the usual definition of the turbulent length scale (lt) through a 
sealing constant. If the FST is assumed to be isotropic and the dissipation in the free stream 
is estimated from equations 3.10 and 3.11 (neglecting diffusion), the following relation can 
be derived: 

lt = _k3_1_2 = _(o...~_U_U-,),-3_1_2..,..- = ~L. 
E -Uofx(~uu) 

The turbulent length scale (ltl is an integral length scale, representing a typical size of the 
larger eddies which contain the major part of the turbulent energy. Another, smaller scale, 
is the Taylor micro scale, which represents the smallest energetic eddies in the flow. For 
isotropic turbulence the streamwise micro-scale (Àx) can be related to the dissipation through 
E = 30vuu/À~ (cf. Hinze 1975), which leads to the following relation between Àx and lt: 
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Àx = 20Re;1/2 
lt 

in which Ret = k2 j(vc) is the turbulent Reynolds number. When the turbulent Reynolds 
number increases, the range of scales in the flow increases, which can be observed as a smaller 
ratio between Àx and lt as weil as a turbulent spectra extending over a wider frequency range. 
The Taylor micro-scales are, however, not the smal lest scales that can be found in the flow. 
Smaller scales exist (Kolmogorov scales) , but their energy is rapidly transferred into heat 
through the viscous dissipation. However, as pointed out earlier, only one length scale (ld 
appears explicitly in OlIe-point closures, although some influence from other scales can be 
modelled by empirical wall- and viscosity damping which are included in many low-Reynolds­
number modifications. 

5.3 Initial conditions 

In the present study all calculations start at a small distance downstream of the leading edge, 
which means that initial profiles of all variables have to be specified at the inflow boundary. 
The exclusion of the leading edge region implies several simplifications. For instance the use 
of parabolic calculations become more justified, as the difficult flow around the stagnation 
point is avoided. Further, the available code only allows the use of rectangular grids, which 
are not. applicable if ot her shapes than a sharp leading edge are to be considered. However, 
it is well-known from experiments that the shape of the leading edge is important for the 
receptivity and the generation of disturbances inside the boundary layer , wherefore separate 
studies of leading edge receptivity is of highest interest. 

In most of the calculations, the initial conditions (IC) that have been used are rather 
artificial and not fitted to experiment al profiles. The initial conditions specified below are 
referred to as "standard IC", which can be considered as a first choice if one has no specific 
knowledge about the initial profiles except for the free stream values ko and lw . The mean 
velocity profiles (U and V) are obtained from the Blasius solution, and the turbulent fluctua­
tions are assumed to be isotropic and continuously damped towards the wall. Furthermore, a 
dissipation equal to the product ion predicted by the eddy-viscosity concept is assumed. This 
gives 

uu = vv = ww = ~k where k = ko (~) 2 

UV = 0 

c = max{ co; 0.3 kl ~~ I} 3/2 where co = ko j lw 

Other initial profiles have been used in order to test the sensitivity to the initial conditions, 
but the different profiles are described in connection with the results in chapter 6. 

It should be noted that the notation "initial conditions" above is only valid for the 
parabolic calculations. In the case of elliptic calculations the previously described profiles are 
used as inflow boundary conditions as weil (with a minor difference in the BC for V, which 
is specified as a homogeneous Neumann condition). However, in addition, initial conditions 
have to be specified for the entire computational domain. 
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Chapter 6 

Results 

In this chapter the results obtained with the different models wil! be discussed. Unless 
otherwise stated the displayed solutions can be considered as al most grid independent. This 
was checked by increasing the number of grid points both in the streamwise and the normal 
direction until sufficiently smal! changes in the wal!-shear stress coefficient or the shape 
factor were found . Further, the computational domain in the wal!-normal direction (Ymax) 
was chosen to be at least two times larger than the boundary layer thickness (Ó99) at the 
downstream boundary. 

6.1 Launder & Sharma k - E model 

Since the ERCOFTAC Transition Special Interest Group was started in 1990, several inde­
pendent studies have been carried out for different two-equation modeis. A general conclusion 
is that the best available model for transit ion is the k - t model of Launder & Sharma, at 
least if models including empirical information in order to trigger the start of transition are 
excluded. The relative success with the Launder & Sharma model has been ascribed to the 
damping function (JJl.) for the turbulent viscosity, which shows a bet ter agreement with LES­
data than functions used in other k - t modeis. The model gives reasonably good predictions 
for the start of transition in zero-pressure gradient flows within a fairly wide range of FST­
levels, but there are problems to correctly repro duce the effects of pressure gradients. This 
is, however, a wel! known shortcoming also in ful!y turbulent flows for models which make 
use of only one length scale, and to improve the modelling of adverse pressure ,gradients it is 
common to use additional terms in the equation for t . 

Although the present study is focussed on Reynolds stress modeis, a few calculations 
have been carried out with the Launder & Sharma model in order to provide 'some data for 
later comparisons. Figure 6.1 shows predictions of the wall-shear stress coefficient (cf) for 
zero-pressure gradient cases with Tu ranging from 1% to 6%. As mentioned above the start 
of transition is in reasonable agreement with experiments, although consistently somewhat 
too early, but the length of the transit ion region is severely underpredicted. This seems to be 
a general behaviour for eddy-viscosity modeis, unless they include some additional correction 
to prolong the transition region . It should be noted that figure 6.1 is plotted on a logarithmic 
scale, which slightly conceals the deviation. For instance in the T3A - -case (Tu = 1%) the 
start of transition is more than 20% nuther upstream than in the experiments. 

Another important remark concerns the sensitivity to the specified initial profiles. In the 

30 



10-2 ,---------------------------------------, 

o 
0-, ' 0 

0'0 I 

Ob / ° 
D~ 

Figure 6.1: Wall-shear stress predicted with the Launder & Sharma model for different test 
cases. Symbols and lines show results from experiments and calculations respectively. T3B 
(6,-), T3A (0 , ---), T3A- (0 ,-.-) . 

calculations shown in figure 6.1 the "standard IC" are applied (see section 5.3) . but in figure 
6.2 calculations with different initial conditions are displayed. The "standard IC" is shown as 
solid lines, while the dashed k and E profiles are taken from the simulations by Yang & Voke. 
However, these profiles are re-scaled to fit the present test case, i.e. the y-coordinate is scaled 
with the displacement thickness and the k-profile is scaled with the free stream value of k. 
The dissipation profile is obtained from the assumption that the variations of the turbulent 
length scale across the boundary layer can be scaled with the free stream length scale (ltO), 
i.e. the re-scaled profile reads lt(Y ) = k3/

2 /1. = (lW)T3 A x (lt(y)l ltO)LEs (note that Ë is used 
instead of E in the Launder & Sharma model). In all calculations the mean velocity profile 
was taken from the Blasius solution. 

Although the initial profile of ktaken from the LES shows a rat her different shape than 
t he "standard IC", with a peak inside the boundary layer and a reduced level in the region 
outside the boundary layer edge, the effect on the transit ion location is almost negligible (if 
all ot her profiles are unchanged). However, if also the re-scaled E-profile is used, the transit ion 
is moved further upstream. The major difference is that the dissipation extracted from the 
simulation is much smaller than the product ion in the central part of the boundary layer, in 
contrast to the "standard IC" where a balance between the two terms is assumed . In the last 
calculation the dissipation profile is intentionally exaggerated (twice as large as the "standard 
IC" inside the boundary layer) , which in turn results in a significant delay of the start of the 
transition region . 

In a study by Dick & Vancoillie (1988) the k-E equations were reformulated into a stability 
problem. Starting from the k - E model of Launder & Sharma, the following simplifications 
were applied: the parallel flow assumption was used , the turbulence Reynolds number set to 
zero (i.e. the low-Reynolds number functions become constants), the turbulent viscosity was 
neglected in the diffusion terms, the additional near-wall terms (D and E) were neglected, 
and, finally, k and E were assumed to behave as exponential perturbations. It should be noted 
that the exponential disturbances do not contain a frequency or wave length , only a spatial 
amplification factor, and the disturbances can be considered to consist of a ll frequencies and 
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wave lengthes. 
Dick & Vancoillie (1988) showed that unstable solutions exist, and that their critical 

Reynolds-number is strongly dependent on the coefficient governing the destruction term 
in the dissipation equation (c,2!d. The large sensitivity to this coefficient is illustrated in 
figure 6.2d, in which C<2 is changed from the specified value of 1.92 to 1.8. As mentioned in 
section 3.2.1 this coefficient is determined to fit experiment al data of the turbulence intensity 
in decaying homogeneous turbulence. However, modification of the value of C<2 has a rather 
smal! influence on the decay curves for Tu , but it has a dramatic effect on t he predicted start 
of the transition region. 
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Figure 6.2: Initial profiles at x = 10 mm for (a) the kinetic energy and (b) the dissipation. 
Labels: " standard IC" (- ), rescaled LES (--- ) and an additional (large) dissipation (_.-). 
(c) Calculated wal!-shear stress coefficient with different initial profiles: "standard IC" (-), 
k-profile from the LES (otherwise as "standard IC") ( . .. ), k and E from the LES (---), k 
from the LES but E from the additional E-profile (-.-) . (d) Wal!-shear stress calculated with 
C<2 = 1.92 (-) and CE2 = 1.8 (- - ) (using "standard IC" in both cases) . 
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6.2 The HJH-model 

6.2.1 Fully turbulent flows 

To begin with, it is of interest to see how the model behaves in fully turbulent boundary 
layers. The boundary layer approximations are applied to the calculations in the present 
section, i.e. formulation (i) (section 3.3) is used. For the zero-pressure gradient case by 
Wieghardt & Tillmann, the model gives a friction coefficient (cf) that is about 4% higher 
than the experimental results at Rex = 1.1 x 107 (Ree = 15700) , while the Launder & 
Sharma model shows an even smaller deviation. Figures 6.3a and 6.3b show the wall-shear 
stress and the maximum uv-Reynolds stress inside the boundary layer for the test case by 
Samuel & Joubert. The boundary layer is subjected to a relatively st rong adverse pressure 
gradient, which is intensified for x > 2.5 m. The HJH-model clearly gives an improved 
prediction compared with the Launder & Sharma model when the pressure gradient becomes 
stronger. This is most obvious in the plot of the Reynolds stresses, where the Launder & 
Sharma model shows a large overprediction. Although quantitative comparisons of uv might 
be dangerous as the experimental difficulties associated with these measurements are large, 
there is qualitatively a good agreement between the HJH-model and the experiments. The 
improvement in the prediction of uv can to a large extent be ascribed to the additional 
production term 5.4 , which enhances the effect of normal stresses. If this term is set to zero, 
also the HJH-model gives an overprediction of uv. 
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Figure 6.3: Adverse pressure gradient boundary layer measured by Samuel & Joubert. (a) 
Wall-shear stress coefficient Cf = 2v(8U / 8Y)w /(Uref)2 with Ure! = 26.15 m/s; (b) Maximum 
turbulent shear stress. (Ue equal to the local free stream velocity) . Labels: experiments 
(0 , ., +) , HJH-model (-), HJH-model with C.4 = 0 (- --), Launder & Sharma k - E (_. - ). 

The final test case with fully turbulent boundary layers is the Spalart DNS case. The 
calculations are started at a position corresponding to Ree = 300, using initial profiles from 
the DNS. Figure 6.4 shows that the predicted wall shear stress is considerably underpredicted 
both in calculations with the Launder & Sharma model and the HJH-model. However, Spalart 
points out that there are some doubts about the accuracy of the cf-value extracted from the 
DNS, since the DNS-data is about 5% higher than available experiment al data. 
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In figure 6.5 profiles of the different components in the Reynolds-stress tensor are plotted 
at Ree = 1410. There is a consistent underprediction of all components in comparison to the 
DNS-data, although the shape of the profiles are well-predicted with the HJH-model. 

6.2.2 Transitional flows 

Turning the attention to the transitional test cases, figures 6.6a and 6.6b show the downstream 
development of the wall-shear stress and the shape factor for the test cases T3A (Tu = 3%) 
and T3B (Tu = 6%). In both calculations formulation (ii) (section 3.3) is used , and the 
"standard" initial conditions described in section 5.3 are applied. The free stream values of 
ka and LtO at xa = 10 mm are chosen such that they give the best fit to the experimental decay 
of the FST, resulting in ka = 0.042 m2 /s2, Lw = 9.8 mm for the T3A case and ka = 0.48 m2 /s2, 
LtO = 24 111111 for the T3B case. IE only the location of the transition region is considered, 
the model gives a good prediction for the T3B-case. Also the rate with which cf and H 
vary through the transit ion region is in fairly good agreement, and ciearly much better than 
usually obtained with two-equation models. However, the behaviour in the pseudo-laminar 
region shows a significant deviation, since the calculated boundary layer profiles have a more 
turbulent-like shape than observed in the measurements. 

When the turbulence level is reduced, the model predictions become successively worse. 
In the T3A-case, which is still a case with a relatively high FST-level (3%) , the start of 
transition is at approximately 100% too large Rex compared with the experiments, and the 
transit ion from a laminar to a turbulent boundary layer is extremely slow. It should also be 
mentioned that the calculations become sensitive to the grid resolution and the specified free 
stream boundary conditions. In the T3B-case 200 x 100 grid points are enough for almost grid 
independent solutions, while 2000 x 200 no des are still not enough for the T3A-case. Tests 
with other Lw in the T3A-case showed that the start of transition and the behaviour inside 
the transit ion region depend significantlyon the choice of free stream boundary conditions. 
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Figure 6.6: Transition prediction with the HJH-model for the T3A and T3B test cases. 
(a) Wall-shear stress coefficient; (b) Shape factor. Symbols and lines show results from 
experiments and calculations respectively: T3B (f'::, , -); T3A (0 , - - -). 

Although the transit ion location is weil predicted in the T3B-case, figure 6.6 gives only 
limited information about the behaviour inside the boundary layer. In figures 6.7a and b 
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the downstream development of the maximum Reynolds stresses are plotted for the two test 
cases (actually the square root of the norm al stresses is plotted, i.e. U rms = ffu etc.). The 
plots do not give any information about the y-location where the maxima appear, but they 
give a qualitative picture of whether the general behaviour is correct or not. In the beginning 
of the pseudo-laminar layer the maxima appear outside the boundary layer, especially for 
the vv- and ww-stresses. If no local maximum can be extracted within the boundary layer, 
the value plotted in figure 6.7 is taken at y = 1.3 Ó* , which is approximately in the middle of 
the boundary layer. This is the location where the experiments show a growing maximum. 
However, if the growing maximum predicted by the model appears at an erroneous position 
inside the boundary layer, this wil! result in a kink in the curve when the maximum exceeds 
the FST-level. This can clearly be observed in figure 6.7b. 

In figure 6.7a the uu-Reynolds stress grows inside the pseudo-laminar layer at a rate in 
good agreement with experiments, although the maximum value is slightly too low for all 
R ex. Also from plots of individual uu-profiles (not shown) the position where the maximum 
appears is in good agreement throughout the transit ion process. The corresponding plot for 
the T3A case shows that the model completely fails to predict the growth of the u-fiuctuations 
in the pseudo-laminar layer, while a growth can only be observed just prior to transition. The 
relatively good agreement obtained in the T3B-case is encouraging, since it indicates that 
the model gives a good prediction of the transition location when the initial growth of uu 
is captured. However, the vv- and ww-stresses are not so well-predicted in the pseudo­
laminar layer, where the computed profiles differ in both amplitude and shape compared 
with the measured ones. In the fully turbulent region the results are qualitatively good, 
although the relative magnitude of the different components is not in perfect agreement with 
the experiments, showing a too large redistribution from the streamwise to the transversal 
components. Finally, the shear stress (uv) is overpredicted in the turbulent region. This is, 
however, partly due to an error in the measurements, which has been addressed by Rolls­
Royce. In the experiment an incorrect hot-wire probe was used, and some later measurements 
resulted in approximately 30% higher values of 1tV than shown in figure 6.7. More details 
about the model behaviour wil! be given in sections 6.2.4 - 6.2.8. 
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Figure 6.7: Downstream development of the maximum level of urmslUo (0, -), vrmslUo 
( 0 , - - -) , wrmslUo ( + , - -) and -10 uv IUJ ( x , - . -) inside the boundary layer. Dotted line 
represent the FST-level (urms ,oIUo). (a) T3B-case, (b) T3A-case 
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Artifacts observed in the free stream 

The additional wall-reflection terms in the pressure strain turn out to give an unexpected 
influence on the free stream turbulence. The wall-function Uw) , which is supposed to give 
a non-zero contribution only close to the wall, does not go to zero in the free stream if the 
FST-Ievel is large enough. Although fw is inversely proportional to the wall-distance, the 
high level of k in t he free stream and the relatively small dissipation results in a non-zero 
value . Consequently, the wall-terms are active also in the free stream, resulting in a small 
redistribution from vv to the horizontal components. This artifact becomes more obvious in 
cases with large Tu. For instanee in the T3B-case the anisotropy of vv (a22) is approximately 
-0.11 at x = 1.5 m. 

A second artifact with the present model is associated with the SI-term , whichis supposed 
to increase the dissipation if the turbulent length scale shows an excessive rise. The term 
contributes primarily in non-equilibrium flows (i.e. when the product ion and t he dissipation 
have rather different magnitudes) . This is the case in for instanee impinging flows and pressure 
gradient flows, but the term should vanish in equilibrium regions and far away from walls. 
However, this term appears to be non-zero also in the region just outside t he boundary layer 
edge (figure 6.8c) at the upstream positions. The non-zero value of this term can be ascribed 
to the variations of the kinetic energy close to the boundary layer edge (figure 6.8a) , which 
is caused by the dam ping of vv outside the boundary layer. The variation of k influences the 
derivative of the turbulent length scale (figure 6.8b) , and thus also the Sz-ter·m. Note that 
SI = 0 if 81t/8y < 2.5 due to a delimiter. This implies that SI is non-zero only for y < {jo in 
t he fully turbulent boundary layer at x = 495 mmo 
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Figure 6.8: Profiles calculated with the HJH-model for t he T3B-case. (a) Kinetic energy 
(k) , (b) 8lt/8y , (c) Sz-term ("Yap-correction"). Labels: x =70 mm (R=4.4 x 104

) (---) , 

x =195 mm (R=1.2 x 105 ) (-) and x=495 mm (R=3.1 x 105 ) (_. _ ). 

6.2.3 EllipticjParabolic calculations and inftuence of formulation 

The influence of different terms was tested for the T3B-case. The different formulations were 
described in section 3.3, but are briefly recapitulated in the following. Formulation (i) makes 
use of the boundary layer approximation , i.e. the pressure is assumed to be constant across 
the boundary layer, and the terms including streamwise derivat ives are neglected (except 
the streamwise convection). In formulation (ii ) the complete formulations of the product ion 
and pressure strain terms are used , and the term -éffI:ü/ 8x is added to the momentum 
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equation. Final!y, formulation (iii) solves the complete Reynolds-averaged Navier-Stokes 
equations using the el!iptic sol ver. 

In the present calculations a slightly different choice of ltO is used as compared with the 
calculations in section 6.2.2 (ltO = 42 mm and 24 mm respectively). A thorough comparison 
of figures 6.6a and 6.9 wil! therefore reveal a minor difference in the curves obtained with 
formulation (ii) . However , from the results shown in figure 6.9 one can conclude that the 
streamwise derivatives of the mean velocity field have a non-negligible effect on the position of 
the transit ion region. Starting from the boundary layer approximation (formulation (i)), an 
upstream movement of the predicted transition region can be observed when the additional 
x-dependent terms are included in the production. A further upstream movement is observed 
if also the complete formulation of the pressure-strain terms is used. 
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Figure 6.9: Comparison of calculations with different formulations (T3B-case): (a) Formula­
tion (i) (_. -) , formulation (i) but complete formulation of product ion terms (- - -), formulation 
(ii) (-); (b) formulation (ii) (-) , formulation (iii) (el!iptic) (- x - ) 

When the study is extended to elliptic calculations, al most identical results are obtained 
with formulation (iii) as with formulation (ii) (see figure 6.9b). Apparently the al!owance of 
pressure variations inside the boundary layer and the additional streamwise diffusion has a 
negligible effect on the present calculations. The smal! difference between the elliptic and 
parabolic calculations may not be a general result , but might be due to the exclusion of 
the leading edge region. In calculations with the Launder & Sharma model carried out 
at UMIST, in which the elliptic calculations were started upstream of the leading edge, 
transit ion occurred further upstream than in the corresponding parabolic calculations. It 
was suggested that this effect could be ascribed to pressure variations inside the boundary 
layer. In the present el!iptic calculations the wal!-pressure increases in the transition region 
with approximately 0.5-1% of the dynamic pressure in the free stream (figure 6.lOa). For 
comparison with the corresponding calculations by the group at UMIST, also the parameter 
rp /(p'uo)(op/ox) Iw is shown in figure 6.10b. The results are qualitatively in agreement with 
the UMIST-results (cf. Savill 1995c), although the present curve shows a slightly stronger 
gradient in the transit ion region. It should be mentioned that the significant decay in wal! 
pressure at the downstream boundary is an influence from the boundary condition, since 
the flowfield is forced to fulfil homogeneous Neumann conditions at x = X max . However, 
by extending the computational domain in the streamwise direction, it was shown that the 
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upstream influence of the downstream boundary condition did not affect the transition region. 
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Figure 6.10: Calculated wall-pressure (a) and pressure gradient parameter (b) for test case 
T3B. Labels: HJH-model (-) , Launder & Sharma k - ('-model (---). 

A similar comparison between the boundary layer approximation and the elliptic calcula.­
tions (formulation (i) and (iii) respectively) was also undertaken for the Launder & Sharma 
model. In contrast to the results obtained with the HJH-model, the additio~al production 
associated with streamwise mean-velocity gradients did not give any observable change in the 
solution. Thus, in this zero-pressure gradient test case, the boundary layer approximation 
gave al most identical results as the elliptic calculations. 

6.2.4 Inftuence of initial conditions 

In calculations starting downstream of the leading edge some additional arbitrariness is caused 
by the necessity to specify initial profiles for the different variables. So far all calculations 
have been carried out with the "standard IC" described in section 5.3, which obviously is 
rather different from the experimental observations described in chapter 2. In the present 
section different initial profiles are tested in order to study the influence on the calculated 
solutions. In figure 6.11 some of the initial profiles are displayed, and the calculated results 
are shown in figure 6.12. The "standard IC" assumes isotropic normal stresses which are 
continuously damped towards the wall, there is no contribution from shear stresses, and 
furthermore the dissipation is assumed to be balanced by the production (based on the eddy­
viscosity concept). This choice of initial conditions gives a smooth increase of the different 
Reynolds stresses without large initial transients (see also figure 6.7a). 

The initial conditions that are denoted as rescaled LES-profiles are taken from a simulation 
by Yang & Voke. This scaling was carried out iu the same mauner as is described in section 
6.1. The rescaling results in an overestimated peak level of uu inside the boundary layer, 
but despite this it gives a dampiug of the v-fluctuations outside the boundary layer which 
is closer to experimeutal observatiol1s. Further, the rescaled dissipation profile shows a peak 
closer to the wall, while in the middle of the boundary layer the dissipation is much smaller 
thau the production. As cau be observed from figure 6.12 these initial conditions give an 
initial transient in urms , but after a short distance the solution approaches the one obtained 
with the "standard IC", and the predicted transitiou region is ahnost unaffected. It should 
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Figure 6.11: Initial profiles at x = 10 mmo (a) Kinetic energy with "standard IC" (-), 
rescaled LES-profiles (---), "standard IC" but vv damped for y < 10 mm (- ·-) .(b) Dissipa­
tion. Labels as in fig a . (c) Normal stresses with "standard IC" (- ) . Normal stresses with 
the rescaled LES: uu (- - ), vv (---) and ww (- ._). 

be noted that the choice of initial é-profile is very important for the initial development. If 
the same rescaled profiles are used for the normal stresses, but with é assumed io be balanced 
by the production, the growth curve of U rms makes a rapid initial decay before it starts to 
growat a lower amplitude than obtained with the "standard IC" (not shown). However, also 
in this case the effect on the transition region is smal!. 
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Figure 6.12: (a) Wall-shear stress calculated with different initial conditions for the T3B-case. 
(b) Downstream development of urms j Uo and -lOuvjUJ. "Standard IC" (-) , rescaled LES­
profiles (---) , "standard IC" but vv damped for y < 10 mm (_. _) . 

The last curve in figure 6.12 is calculated with the "standard IC" , but with the only 
difference that the vv-stresses are continuously damped towards the wall starting from a 
position 10 mm above the surface (yj8* ~ 45 in figure 6.11). The reduced level of vv close 
to the boundary layer edge results in a delayed transition, and an improved prediction of 
thewall-shear stress can be observed in the pseudo-laminar region . Also the shape factor 
(not shown) and individual mean profiles are in good agreement with experimental data in 
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the region upstream of transition. However, the reduced v-ftuctuations also result in a less 
satisfactory increase of the uu-stresses (figure 6.12). As the dominating terms in the uu­
equation are the product ion and dissipation terms, a major cause for the underestimated 
growth of uv. should be found in these two terms. This will be further discussed in section 
6.2.8. It should be noted that the wall-normal distances for which vv are initially damped 
(about 5 mm in the rescaled LES-profiles and 10 mm in the last set of initial conditions) are 
both smaller than the region which was affected in the experiments. 

Figure 6.13 shows calculations of the T3A-case with different initial profiles for the dis­
sipation. The profiles for the norm al stresses are the same in all three calculations and are 
specified as in the "standard IC". The E-profiles are: 1) as specified in the "standard IC" , 
2) a profile with exaggerated dissipation (the dissipation inside the boundary layer is twice 
as large as the production) and 3) a constant value of E across the boundary layer (same 
dissipation as in the free stream). Obviously the large differences in the initial dissipation 
profiles do not change the predicted onset of transition, which is too late as compared to the 
experiments. 

o 
00, 

o 
00 

Figure 6.13: Wall-shear stress calculated with different initial E-profiles for the T3A-case 
(HJH-model). "Standard IC" (E=max{Eo ;O.3kI8U j 8yl}) (- ), E=max{Eo;O.6kI8Uj8yl} 
(- . -), E=constant=EO (- - -), experiments T3A ( 0 ). EO is defined as k~/2 j Lw with Lw=9.8 mmo 

Profiles in the pseudo-Iaminar layer 

In the previous section calculations of the T3B-case with a reduced level of vv close to the 
boundary layer edge resulted in an underestimated growth of uu in the pseudo-laminar region, 
while the prediction of the shape factor and the wall shear stress was in good agreement with 
experiments. In figure 6.14 different profiles are compared at x = 95 mm (Rex = 5.9 x 104

) , 

which is a position at the end of the pseudo-laminar region, just prior to the rapid increase in 
the wall-shear stress. It can be observed that the mean profile obtained with the "standard 
IC" has a more turbulent-like shape than the measured profile, while the calculation with 
a reduced level of vv gives better agreement with experiments. The differences between the 
profiles become more evident when the deviations from an unperturbed laminar profile are 
plotted in figure 6.14b. 

In the Reynolds-Averaged Navier-Stokes equation for the streamwise velocity the main 
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Figure 6.14: Profiles extracted at x = 95 mm (Rex = 5.9 x 104 ) for the T3B-case. (a) 
Mean velocity profiles; (b) mean velocity deviation from an unperturbed laminar profile; (c) 
urms / UO; (d) uv/u'6 . Labels: Experiment (0), uv-stresses increased with 30% (.), calculations 
with "standard IC" (-) , "standard IC" but vv damped for y < 10 mm (- . - ) and unperturbed 
boundary layer (- .. ). 

contribution to the distortion of the mean profile is the term -a(uv)/ay. If the calculated 
uv-profiles are compared with experimental data (figure 6.14d) , the peak value obtained with 
the last set of initial conditions (reduced vvl is about 20% larger than the experiments, while 
the comparison with the "standard IC" gives a value which is about 70% larger. As mentioned 
earlier, the uv-profiles measured by Rolls-Royce should be increased with about 30%. The 
experiment al profile that is obtained af ter this correct ion is also shown in figure 6.14d. 

One advantage with Reynolds Stress Models is that no modelling of the production term is 
needed, which means that the production of uu is directly dependent on the modelling of uv. 
However, in figure 6.14c it can be observed that both calculated urms-profiles underpredict the 
fiuctuation level, for example the case in which the initial conditions are a damped vv-profile 
gives approximately 25% too low urms. It seems that a correct level of uv, corroborated by 
the good agreement in the mean profiles, results in an underprediction of uu with the present 
model. 
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6.2.5 Comparison with an empirical correlation 

In engineering design calculations the start of transition as weil as the transition length are 
usually determined based on empirical correlations. One frequently used correlation is the 
one by Abu-Ghannam & Shaw (1980), which relates the start and end of transit ion to the 
local Reynolds number based on the momentum loss thickness. Analytical expressions for the 
Reynolds numbers (Rees and ReeE) are given as functions of the free stream turbulence level 
and a pressure gradient parameter. The characteristic length scale of the turbulence does 
not appear explicitly in the correlation, although a small effect of the decay rate of the free 
stream turbulence is taken into account through the definition of the free stream turbulence 
level. This is taken as the FST-level midway between the leading edge and the considered 
x-position (here denoted as (urms,oIUo)x/2)' 

In figure 6.15 the Abu-Ghannam & Shaw correlation for a zero-pressure gradient boundary 
layer is plotted together with experimental results as weil as the present calculations. In the 
calculations the free stream velocity and the turbulent length scale at the starting position 
were fixed to 5 mis and 30 mm respectively, while the initial kinetic energy was systematically 
changed. The start and end of the transition region were in most cases determined from the 
local maximum and minimum in the wall shear stress curve. However, for the highest levels 
of FST the transition onset could not be determined unambiguously, and in some cases the 
start of the transit ion region is omitted in figure 6.15. 

It can be observed that the start of transition extracted from the experiments agrees 
fairly weil with the empirical correlation. Also the Launder & Sharma model shows a good 
prediction of the start of the transition region for a wide range of turbulence levels , but, as 
was mentioned before, the extent of the transit ion region is much underpredicted. However, 
when considering the predictions by the HJH-model neither the start nor the end of the 
transition region is weil predicted. There is a consistent trend that the transition region in 
terms of the local parameter () is shifted from being too early at high FST-levels , to a delayed 
transition onset and a prolonged transition region for lower Tu. 
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Figure 6.15: The start and end of the transition region (lower and upper curves respectively) 
in terms of Ree as compared with the empirical correlation of Abu-Ghannam & Shaw (1980) 
for a zero-pressure gradient boundary layer: experiments (KTH) (+) , experiments (Rolls­
Royce) (x , *), calculated start and end of the transition region (0 , .). (a) Calculations with 
the HJH-model; (h) calculations with the model by Launder & Sharma. (Note that only the 
start of the transit ion region (*) is available for the T3A - case by Rolls-Royce.) 
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6.2.6 Comparison with predictions based on the eN-method 

The dominating method for transit ion prediction in external aeronautical applications (i.e. 
the level of free stream turbulence and noise is relatively low) is the eN -method. The method 
was developed independently by Smith & Gamberoni (1956) and van Ingen (1956), and relates 
the start of the transition reg ion to an empirical value of the maximum amplification rate 1 

of Tollmien-Schlichting waves. Thus, in order to predict transition, stability calculations are 
carried out for the considered geometry, and the start of the transition region is determined 
as the position where the amplification rate reaches a critical value (typically between 9 and 
11). 

However, since the method is merely a measure of the amplification rate, and does not 
take the initial amplitude of the disturbances into account, the use is restricted to smallouter 
disturbance levels. Some attempts to adjust the critical value of the N-factor to the FST-Ievel 
have been carried out, for instance van Ingen (1977) suggested the following relations for the 
start (Nstard and the end (Nend) of the transition region 

and Mack (1977) proposed 

Nstart 

Nend 

Nstart 

-10.23 - 2.68In(Tu) 

-7.36 - 2.68In(Tu) 

-8.43 - 2.4ln(Tu) 

The described relations are used to calculate the curves displayed in figure 6.16 for a flat 
plate boundary layer. The amplification rates are calculated using linear parallel theory, 
and the corresponding critical Reynolds numbers are taken from the Blasius solution. Note 
that the FST-Ievel for the different experiments are taken at the leading edge of the plate, 
and not midway between the leading edge and the considered x-position as was the case 
in the Abu-Ghannam & Shaw correlation. Since the stability calculation assumes that the 
amplitude of the wave is only dependent on the initial amplitude and the complex part of 
the wave number , the FST-Ievel at the leading edge seems to be the relevant measure for an 
adjustment of the critical N-factor. 

The predictions of the transit ion onset for the T3A-case (Tu = 3%) and the KTH-B 
case (Tu = 1.35%) is rather good, while for higher FST-Ievels transition starts at a position 
upstream of the critical Reynolds number for TS-waves (Ree ~ 200). The measured end of the 
transit ion region differs significantly between different experiments, and also the predictions 
show large deviations compared with the experimental data. It should be noted that the 
results differ whether Rex or Ree is considered, since the rapid increase in momentum loss 
thickness in the transition region is not accounted for in the stability calculations, which 
assume a Blasius boundary layer throughout the computation domain. 

Z 

lThe amplification rate (or N-factor) is defined as N = ln(A(x)/A(xo)) = - J cti d.x, in which A and cti 

Zo 

are the amplitude and the complex part of the wave number of the TS-wave respectively. 
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Figure 6.16: Prediction of the start and end of the transition region in terms of (a) Ree and 
(b) Rex using the eN -method and the relations suggested by van logen (1977) (-) and Mack 
(1977) (- --). Experiments: KTH (+); Rolls-Royce (x,*). 

6,2,7 Non-zero pressure gradients 

The only available test case with non-zero pressure gradient that is meaningful to calculate 
with the HJH-model is the T3C1-case, which has a FST-Ievel of about 7% at the leading 
edge. There are a number of cases with Tu R; 3%, but since the model does not perform weil 
in this range of FST-Ievels they are not considered here. In the T3Cl experiment transition 
takes place in the accelerating region of the flow , and the predictions with the HJH-model 
and the Launder & Sharma model are shown in figure 6.17. Both models predict too early 
transition, although the deviation from the experimental data is slightly smaller with the 
HJH-model. At the rear part of the flat plate the turbulent boundary layer is exposed to 
an adverse pressure gradient, and, as expected, the performance of the HJH-model is clearly 
better in this region than the k - E model. 
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Figure 6.17: (a) Wall-shear stress coefficient and (b) shape factor for a non-zero pressure 
gradient case (T3C1) at Tu R; 7%. Experiments (0); calculations with the HJH-model (-), 
Launder & Sharma k - E model (---) and laminar solution (- ._). 
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6.2.8 Comparison with LES 

The only test case in which the different terms in the transport equations are available 
is the T3B-LES case. In the present section a detailed comparison between LES-data and 
calculations with the HJH-model is carried out . The intention is to gain further understanding 
on how the model behaves through the transition region, and to elucidate the terms that are 
not satisfactorily modelled. In figure 6.18a the wall-shear stress coefficient extracted from the 
LES-data is compared with calculations starting from two different initial conditions. The 
"standard IC" gives a slightly delayed transition, and from figure 6.18b it can be observed 
that the growth of U rms is underpredicted. The second calculation, starting at x = 25 mm 
with initial conditions from the LES, gives better predictions of both the location of the 
transition region and the growth of urms , although the amplitude of the u-perturbations 
saturates earlier than in the LES. From the second calculation different profiles as weil as 
different terms in the Reynolds stress equations are extracted and compared with the LES 
data at x = 45 mm (Rex = 3 x 104 ), X = 95 mm (Rex = 6.3 x 104 ) and x = 195 mm 
(Rex = 1.3 x 105). 

The profiles shown in figure 6.19a-f are not scaled in the y-direction, which enables a 
comparison of how the growth of the boundary layer is predicted. Both the shapes of the 
mean-velocity profiles and the Urms profiles are in relatively good agreement with the LES, 
and the y-Iocations where the maxima in U rms appear are also well-predicted for all stations. 
However, the amplitude of the streamwise fiuctuations is considerably underpredicted for the 
higher Reynolds numbers. The shapes of the calculated vrms- and wrms-profiles reveallarger 
deviations from the LES-data, and a large overprediction of W rms can be observed at the 
last station. This is consistent with the experimental T3B-case, in which the calculations 
overpredict the ww-stresses in the turbulent region. The profiles of uv show a relatively good 
agreement regarding the shapes, although the amplitude maxima in the pre-transitional pro­
files are located slightly below the maxima extracted from the LES. The amplitude develop­
ment is somewhat difficult to interpret, as it is partly overpredicted, partly underpredicted. 
This makes it difficult to conclude whether uv is exaggerated or not in the regions where 
the amplitude of uu is well-predicted (cf. discussion in section 6.2.4) . At the first station 
(x = 45 mm) the amplitude of uu is in almost perfect agreement with the LES, while the 
calculated uv-profile is overpredicted with almost 20%. However, at the consecutive stations 
both uu and uv are below the amplitudes extracted from the LES. 

The last plot in figure 6.19 shows the dissipation profiles. It is clear that the dissipation 
is severely overpredicted in the middle of the pre-transitional boundary layer, which wil! thus 
counter act the production of UU. As the boundary layer develops towards the turbulent state, 
the dissipation profiles become in better agreement with the LES-data. This indicates that 
the present model is not well-suited to describe the behaviour in the pseudo-laminar layer, 
despite the fact that the location of the transit ion region is well-predicted in the present test 
case. A second discrepancy which is observable in all dissipation profiles is the large near 
wall peak in the LES-data, which is absent in the modelled profiles. This peak in the LES, 
however, is to a large extent balanced by the pressure diffusion which in the uu-equation 
is significant close to the wal!. In the present turbulence model there is no separate term 
which aims to model the pressure diffusion, and a good agreement close to the wall can not 
be expected. 
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Figure 6.18: (a) Predicted walJ-shear stress in the T3B-LES case. LES-data (0) , HJH-model 
with initial conditions from LES (- ), HJH-model with "standard IC" ( .. ') j (b) Maximum 
level of urms / Uo (0 , -), vrms / Uo (0, - --), wrms/Uo ( + , - -) and -10 uv/U;; ( x , - . -) inside 
the boundary layer. Symbols and lines show results from LES and calculations with the HJH­
model (initial conditions from LES) respectively. urms / UO calculated with the HJH-model 
starting from the "standard IC" ( . .. ). 

Reynolds stress balanees 

In figures 6.20 to 6.23 the different terms in the Reynolds stress equations are plotted and 
eompared with the corresponding budgets extracted from the LES. In the present turbulence 
model the influence from pressure diffusion is not modelJed separately, but can be considered 
as included in the pressure strain terms. Thus, in order to simplify the comparisons, t he 
contribution from pressure diffusion is added to the pressure strain term also in the balances 
extracted from the LES. In agreement with observations in the previous section the uu­
balance at x = 45 mm shows an overestimation of both the production and the dissipation, 
resulting in a well-predicted amplitude of uu. At x = 95 mm the dissipation in the middle of 
the boundary layer is in relatively good agreement with thc LES, but instead the production 
is underestimated and the level of uu is too low (figure 6.19b). It can also be observed for 
the downstream x-stations that both the turbulent transport and the viscous diffusion are 
smaller with the HJH-model compared with the LES-data. This can partly be explained by 
the underpredicted level of uu together with the gradient-diffusion hypothesis , which result in 
smaller transport terms. It should finally be noted that the pressure terms are overpredicted 
at the last station, which means that too much energy is redistributed from the streamwise 
component to the transversal components in the turbulent boundary layer. A corresponding 
overestimation (with positive sign) can consequently be observed in the balances for vv and 
ww. 

The budgets for vv are dominated by the pressure terms and the dissipation, and both 
terms are overestimated in the modelJed equation. A large increase of the pressure strain 
ean be observed in the transition region, which is one of the key-events in the process from 
laminar to turbulent flow. In figure 6.24 the different pressure-strain terms are plotted for 
the uv- and vv-equation. When transition starts between x = 95 mm and 195 mm there is 
a significant inerease in both the rapid and slow pressure strain terms, where especially the 

47 



latter (cPij,l) is enhanced when the transition region is entered. 
The ww-balances resembIe in many respects the vv-balances, with the production being 

identical to zero and with a main contribution from the pressure strain terms. It is interesting 
to note that although the pressure diffusion is zero in the LES-data (no spanwise gradients), 
the dissipation has a maximum at the wal! in the last profile. This is not reproduced by the 
HJH-model, which has the maximum at a distance from the wal!. This near-wall behaviour 
for f is a general shortcoming for many second-order near-wall closures (cf. So et al. 1991). 

The last transport equation, the uv-equation, suffers from the general deficiency in the 
model, i.e. a severe overprediction of the dissipation . In the pseudo-laminar region the 
production of uv is overestimated by the turbulence model due to a larger value of vv close to 
the wal! (the production of uv is dominated by -vv au / ay). The large production is partly 
balanced by the overestimated dissipation, although the largest counteracting contribution 
is associated with the pressure strain terms. It should be mentioned that if the pressure 
term in the LES is split into pressure strain and pressure diffusion, there is areasonabIe 
agreement between the modelled pressure strain and the pressure strain of the LES (except 
close to the wal!). Since the pressure diffusion is counteracting the pressure strain in the 
middle of the boundary layer, the level of the pressure term in the displayed LES-balance 
is smaller than the modelled term. Finally, at the last station, the production term is even 
more overpredicted in the turbulence model. This results in an increased contribution from 
the rapid pressure strain term, which is model!ed in terms of the production. 
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Figure 6.19: Different profiles extracted from LES-data (symbols) and calculations with the 
HJH-model starting from LES-IC (lines). The x-positions are 45 mm (Rex = 3 x 104) (0) , 
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Figure 6.20: Terms in the balance of UU. Left column: LES, Right column: HJH-model 
starting from LES-IC. The figures from top to bottom corresponds to x = 45, 95 and 195 mm 
respectively. Labels: product ion (-), convection (- .. ), turbulent transport (_. _), pressure 
terms (total) (---), viscous diffusion (-+-) , dissipation (- -). 
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A transit ion scenario 

Although there are several discrepancies between the results from the modelled equations 
and the LES-data, the general behaviour is in many respects similar. Yang & Voke (1993) 
have proposed a transition scenario based on the statistical data extracted from the LES, 
which is schematically summarized by Savil! (1996) and shown in figure 6.25. The results 
elucidate the different roles that the u- and v-fluctuations have in the different stages of the 
transit ion process. In the initial stage there is a production of uv inside theboundary layer, 
caused by the overlap between the wall-normal fluctuations in the free stream and the mean 
shear in the laminar boundary layer. At th is stage there is no product ion or redistribution 
of energy to the vv-stresses, and the v-fluctuations observed inside the boundary layer is 
only dependent on the turbulent free stream. Since the vv-stresses are continuously decaying 
towards the wall due to kinematic wall-damping, the magnitude of the product ion term in 
the uv-equation wil! be dependent both on the level and on the dominating scales in the free 
stream. If the turbulent scales are large, the dam ping will start far outside the boundary layer 
edge, and the remaining level of vv inside the boundary layer wil! be smal!. The produced uv 
determines the production of uu which results in the growth of U rms in the pseudo-laminar 
boundary layer. 

The second stage of the transition process is more rapid , and, as pointed out by Yang & 
Voke, less clear. Af ter the initial region with growth of uu the redistribution of energy to 
vv and ww through the pressure strain terms suddenly becomes active. The increase in vv 
wil! in turn increase the production of uv and a feedback loop appears in the scheme shown 
in figure 6.25. Once the redistribution of energy has started the transition process becomes 
very rapid. 

Free stream turbulence 

t 
u' v' w' 

t 
V'2 dU/dy 

t 
u'v' (Iocal) .- V'2 dU/dy (Iocal) 

"+w t 
U'2 (Iocal) ----+ V'2 (Iocal) 

. t . 
dlsslpatlon 

Figure 6.25: Schematic picture over a transition scenario (from Savill 1996) . 

6.2.9 Attempts to improve the model 

During the course of the study different attempts to modify the model have been undertaken, 
with the intention to improve the prediction for the T3A-case. However, all modifications 
that have been tested have also affected the behaviour in the T3B-case. A modification that 
gives an upstream movement of the transition region in the T3A-case, inevitably results in 
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Figure 6.26: The function 6.1 plotted at different streamwise stations in calculations with the 
HJH-model for the T3B-case. Labels: x = 45 mm (- ), 70 mm (---) , 95 mm (- -),195 mm 
(_. _) and 1495 mm ( .. . ). 

too early transit ion for the T3B-case. This is illustrated with some examples in the sequel of 
this section. 

From the Reynolds-stress balances it was concluded that a major event in the transition 
process predicted by the HJH-model was an increased redistribution from uu to vv stresses, 
due to an increase in both the slowand the rapid pressure strain terms. Both terms are rather 
small in the pseudo-laminar region (cf. figure 6.24) , despite the fact that the fluctuations are 
very anisotropic in this region, and the production term (which governs the modelled rapid 
pressure strain) is also large. However, th is is mainly because both Cl and C2 are functions 
of the anisotropy measure A, which is one for isotropic turbulence and zero in the two­
component limit. Since the fluctuations in the pseudo-laminar region are rather anisotropic 
also in the central part of the boundary layer, Cl and C2 are small in this region and the 
redistribution does not become as rapid as can be expected in a model where Cl and C2 are 
constants. 

One of the initial ideas to modify the model was to stimulate the redistribution of uu into 
vv in the central part of the boundary layer, with the intention to increase the product ion of 
uv in the pre-transitional region, and to speed up the feedback (cf. figure 6.25) that appears 
at the transition onset. In figure 6.26 the wall-normal profiles of the function 

. {Ret A3 } 1 + m111 10(); 1 (6 .1 ) 

are plotted at different stations in a calculation of the T3B-case. The function is used to 
enhance either the slow or the rapid pressure strain by multiplication with the original Cl or 
C2 term. Consequently, the main effect is an increased redistribution in the pre-transitional 
region, while the effect on the fully turbulent boundary layer is relatively smal!. It should be 
emphasized that 6.1 is not based on any physical arguments, but is formulated in order to 
obtain a function which has a maximum in the central part of the pseudo-laminar layer. 

Figures 6.27 and 6.28 show the results when 6.1 is multiplied with the slowand the rapid 
pressure strain term respectively. It can be observed that the transit ion becomes much more 
rapid in the T3A-case, and also the start of the transition region is moved slightly upstream 

57 



,.,' • " 

when the rapid pressure strain is enhanced. However, from the plots of the downstream 
development of the maximum in uu it is clear that the modifications do not improve the 
prediction of the fluctuations in the pseudo-laminar region. Further, the predictions for the 
T3B-case become much too early. 

10·2r---------------------------~ 
(a) 0.15 (b) 

0.10 

Figure 6.27: (a) Wall-shear stress coefficient and (b) development of maximum urms/UO 
calculated with the original HJH-model and with the slow pressure strain term (Cl-term) 
multiplied with the function 6.1. Experiments: T3A (0), T3B (6) ; Original HJH-model: 
T3A (---) , T3B (-) ; Modified HJH-model : T3A (_ . _), T3B (- -); FST-level ( ... ). 
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Figure 6.28: (a) Wall-shear stress coefficient and (b) development of maximum urms/UO calcu­
lated with original HJH-model and with the rapid pressure strain term (C2-term) multiplied 
with the function 6.1. Labels as in previous figure. 

Comparison with LES-data in section 6.2.8 revealed discrepancies in the modelled dis­
sipation profiles, especially in the pre-transitional region. In figure 6.29 a minor change to 
reduce the dissipation has been applied, namely the additional product ion term (with coeffi­
cient C<3) is switched ofr. The modification only intends to give a qualitative impression of 
the effects. The growth of the u-fluctuations is significantly improved in the T3A-case and 
the start of the transition is moved upstream, although the development inside the transition 
region is still very slow. However, as can be expected, the reduced dissipation results in an 
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overpredicted growth of uu and an upstream movement of the transition region also in the 
T3B-case. 
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Figure 6.29: (a) Wall-shear stress coefficient and (b) development of maximum urmslUo 
calculated with the original HJH-model and with a modification in the dissipation equation 
(C<3 = 0). Labels as in previous figure. 

6.2.10 Discussion 

When considering the transition scenario of Yang & Voke and the data from the LES it seems 
that the modelling of the growth of U rms in the pseudo-Iaminar layer is important. In the 
cases where the HJH-model gives a good prediction of the location of the t ransition region, 
this pre-transitional growth has at least partly been captured. This is somewhat encouraging, 
although a more detailed investigation reveals that this is attained des pi te discrepancies in 
the l110delled equations. A general shortcoming which affects all Reynolds Stress equations 
is the poor prediction of the dissipation in the pre-transitional region of the boundary layer. 
One can expect that the dissipation in the middle of the boundary layer is very smalI, since 
the perturbations are dominated by large scale structures. This is also corroborated by the 
LES, in which the magnitude of the dissipation profiles is small everywhere except very close 
to the wall. 

The model of the dissipation equation that are used in the present calculations as wel! as 
in most one-point closures relies on the high-Reynolds-number hypothesis. This means that 
the smal! scales where the dissipation takes place are passive, and that their size is determined 
from the energy that is transferred from the larger scales. In other words, the dissipation 
is determined by the larger, energetic vortices, and not by the small viscous scales. This 
is a basic assumption in the currently used equation for E, which rather serves as a model 
for the energy transfer from larger to smaller scales, than a model for E itself. However, in 
the pseudo-Iaminar boundary layer the energy spectra shows a significant contribution in the 
larger scales, while the smal! scale structures are almost absent. Consequently, the assumption 
that the product ion of E is directly related to the product ion of Reynolds stresses may not 
be a good approximation in the pseudo-laminar layer, and an overpredicted dissipation can 
be expected. 

The modifications in the model that were tested in the previous section confirmed that 
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the initial growth of uu is largely dependent on the dissipation, although some more general 
modifications than just tuning the constants are necessary. One possibility which has recently 
been tested in a two-equation model is to introduce a time-lag in the growth of the dissipation 
by using a separate relaxation equation (Franzmann 1996) . The usualmodel of the dissipation 
equation is solved also in this case, but the result, which is considered as the energy transfer 
from the larger to the smaller scales in the spectra, is not directly introduced into the k­
equation. Instead the dissipation of energy is determined from the additional relaxation 
equation. This extension could be interesting to implement with a second-moment closure as 
weil. 

In section 6.2.9 it was also confirmed that the pressure strain plays an important role for 
the development inside the transition region in calculations with a DSM-model. At present 
time it is unclear what causes the sudden redistribution of uu into vv, which can be observed 
in the LES, while it is absent during the initial phase of growing u-fluctuations. It is likely 
that the understanding of this mechanism is the key to the understanding of transit ion at 
high levels of FST. One should, however, emphasize that the transition scenario proposed 
above is based on statistical averages extracted from the LES. Even if the simulation may 
give a correct description of the dynamics inside the boundary layer, the averaging process 
can remove many of the important details. In chapter 2 some experiments and simulations 
were mentioned in which unstationary, longitudinal streaks were observed in the pseudo­
laminar boundary layer. There have also been indications both from flow visualizations and 
simulations that the streaks are subjected to secondary instabilities just prior to breakdown. 
This is usually observed as spanwise oscillations. A plausible assumption is that the sudden 
redistribution of energy through the pressure strain terms that can be observed in the vv­
and ww-balances is caused by those secondary instabilities. Consequently, in order to come 
up with a model of the pressure strain terms which can correctly describe this mechanism, 
further understanding of the nature of the secondary instabilities is required. 

6.3 The SLY-model 

The SLY-model is a Differential Reynolds Stress Model which is tuned in order to perform 
weil for transit ion al flows . In this study the so-called "basic SLY-model" is used, which does 
not include terms intending to model pressure diffusion and non-Iocal effe cts of the pressure 
strain. These extensions were added in later versions of the m'odel, however, Savill (1995a) 
reported that also the "basic SLY-model" has shown good results for transition prediction. 

In figure 6.30 the calculated wall-shear stress coefficient and shape factor are shown for 
the T3A and T3B cases. The "standard" initial conditions are used , and the turbulent length 
scales, which give a decay of the FST in good agreement with experiments, are 9.8 mm and 
24 mm for the T3A and T3B-case respectively. For both test cases the predicted location of 
the transit ion region is considerably late. The start of transition, estimated from the local 
minimum in the wall-shear stress curve, is about 50% too late in the T3B-case. Also the 
length of the transition region is erroneous, with an overestimated length of roughly 70-80%. 
This is, however, concealed by the logarithmic scale in figure 6.30. In the T3A-case the 
calculation fails completely, and the transit ion region starts at a Reynolds number (Rex) 
which is almost 600% larger than observed in the experiments. A calculation with an initial 
turbulent length scale of 30.1 mm is also plotted, which gives a too slow decay of the FST 
as compared to the experiments (cf. figure 5.2). The slower decay rate turns out to have a 
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dramatic effect on the predicted transition location, which moves upstream. However, the 
predicted start of the transit ion is stil! approximately 100% too late. Apparently, the model 
is extremely sensitive to the free stream boundary conditions, at least for relatively low levels 
of FST. Further, calculations of the T3A - -case (Tu = 1%) did not result in t ransit ion within 
the considered computational domain (Rex::; 6.4 x 106 ). 
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Figure 6.30: Transition prediction with the SLY-model for the T3A and T3B test cases. (a) 
Wall-shear stress coefficient; (b) Shape factor. Experiments: T3A (0), T3B (6). Calcula­
tions: T3B with Zw = 24 mm (-), T3A with Zw = 9.8 mm (- -- ) and T3A with Zw = 30.1 mm 
(_._). 
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Figure 6.31: Downstream development of the maximum level of urms/UO (0 ,-),vrms/UO 
( 0 , - - - ),wrms/UO ( + , - -) and -10 uv/UJ ( x , -. -) inside the boundary layer for test case 
T3B. 

The downstream development of the maximum level of the Reynolds stresses in the bound­
ary layer are plotted in figure 6.31. The normal stresses show an almost constant level in 
t he pseudo-Iaminar region, and an increase is only observable close to transition. Thus, the 
growth of the disturbance energy is very smal! in the laminar region, and plots of individual 
profiles of the kinetic energy show a continuous dam ping of the free stream turbulence to-
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wards the wal!. This result is in contrast to the predictions with the HJH-model, for which 
especially the uu-Reynolds stresses grow significantly in the pre-transitional boundary layer. 

The calculated wall-shear stress in the turbulent region is in figure 6.30 much larger 
than in the experiments. Comparisons with the experiment by Wieghardt & Tillmann in 
a fully turbulent boundary layer gave an overprediction of cf with approximately 30% at 
Ree;:::: 15000. This discrepancy can be associated with the non-consistent near-wall behaviour 
ofthe é-equation in the present formulation ofthe SLY-mode!. As pointed out in section 3.2.2 
the term Cäfäé2/ k grows towards infinity close to the wall, which must be balanced by the 
viscous diffusion term. However, in more recent versions of the model this deficiency has 
been corrected by an additional pressure diffusion term (Savill, private communication) 

The present calculations with the SLY-model show very large discrepancies compared 
with the results reported by Savill (1995a), in which the transition predictions were in almost 
perfect agreement with experiments for test cases with Tu ranging from 1 %-10%. In contrast, 
the present calculations predict transit ion far downstream of the experimentally determined 
transit ion locations, especially for lower FST-Ievels. Reasons for these discrepancies wil! be 
discussed in the following sections. 

6.3.1 Influence of initial conditions 

The influence of the initial conditions was examined in the same manner as in section 6.2.4, 
using three different sets of initial conditions ("standard IC", rescaled DNS-profiles and 
"standard IC" with vv damped for y < 10 mm) . For the T3B-case the profiles are identical 
to the ones shown in figure 6.11 , while for the T3A-case the initial profiles differ slightly due 
to the necessary re-scaling. The calculated wall-shear stress curves in figure 6.32 corroborate 
earlier observations by Savill, i.e. that the model is relatively insensitive to variations in the 
initial profiles. This conclusion is valid for both test cases shown in figure 6.32, although 
there is a delay of the start of transition in the T3A-case when the v-fluctuations are damped 
outside the boundary layer edge. However, considering the large sensitivity to the decay rate 
of the FST which could be observed in figure 6.30, this delay is relatively small. 

00 

105 

Rex 

Figure 6.32: Wall-shear stress calculated with different initial conditions for the T3A and 
T3B-case. "Standard IC" (-) , rescaled DNS-profiles (---) , "standard IC" but vv damped 
for y < 10 mm (_._) . Experiments: T3A (0) , T3B (6) . 
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A comparison of figures 6.12 and 6.32 indicates that the HJH-model is more sensitive to 
the initial conditions than the SLY-model, at least for the T3B-case. This may be explained 
by the different behaviour that the two models exhibit in the pseudo-laminar layer. With the 
HJH-model the level of vv in the vicinity of the boundary layer edge determines to a large 
extent the production of uv, which consequently infiuences the growth of uu. Thus, a high 
level of vv close to the boundary layer edge enhances the production of uu which results in 
early transition. With the SLY-model, however, the free stream turbulence does not produce 
a growing maximum of uu inside the pseudo-laminar boundary layer (just a slow movement 
of kinetic energy towards the wall). Although the initial development is affected by changing 
the initial conditions, these differences are quickly equalized, and af ter a short distance of 
adjustments the Reynolds stresses follow the rather constant levels shown in figure 6.31. 

6.3.2 Influence of computational domain 

In order to detect the discrepancies between the present calculations and the ones by Savill, a 
thorough comparison between the two computer codes was undertaken. Dr Savill generously 
provided his computer code, which has an expanding grid in contrast to the fixed domain 
that is used in the present calculations. Another difference compared with the present code 
is the free stream boundary conditions. Instead of using homogeneous Neumann boundary 
conditions, the downstream decay of the free stream turbulence as weil as the increase of the 
turbulent length scale are specified by Dirichlet boundary conditions. These are based on 
experimentally determined expressions for Tu and lt. The grid expansion is dependent on the 
wall-normal growth of the uv-profiles, i.e. the magnitude of uv at a position close to the outer 
edge of the grid is used to determine the expansion rate for the next streamwise step. Since 
the magnitude of uv usually drops to zero within a short y-distance outside the boundary 
layer, the grid expansion is proportional to the growth of the boundary layer thickness. It 
should a lso be mentioned that the initial conditions are taken from the input file which was 
enclosed with the code, i.e. Xo = 45 mm and Uo = 5.05 mis for the T3A-case, which slightly 
differs from the values used in the previous calculations. The initial turbulent length scale 
(ltO) is 30.1 mm, which has been shown to be too large, and the initial profiles are the same 
as specified in the so-called "standard IC". 

In figure 6.33 the wall-shear stress curves are calculated using the code by Savill, but with 
different sizes of the y-domain. The grid is extended in the y-direction by adding grid points 
outside the previous domain, which means that the same grid resolution is maintained within 
the boundary layer. In the first calculation the outer boundary of the computational domain 
is positioned at Ymax ~ 1.158995 , where 8995 denotes the boundary layer thickness defined 
as the y-position where U reaches 99.5% of Uo. This computational domain is identical to 
the one specified in the input file by Savill, and results in a location of the transition region 
in fair agreement with the experiments. However, if the outer edge of the computational 
domain is extended to Ymax ~ 1.98995 , the start of transition is delayed with approximately 
30%. Further increase of the y-domain leads to slightly further' delay, and for Ymax > 48995 
the solution does not change significantly. 

To verify that similar results could be obtained with both computer codes, a calculation 
was carried out with Savill's code using a non-expanding grid. The grid spacing was specified 
in order to get almost identical grids in the two codes, and the y-domain was chosen to be 
Ymax = 147.5 mmo This corresponds to approximately 48995 at the outftow boundary. As 
can be observed from figure 6.33, the two calculations show good agreement , although there 

63 



are smal! differences observable. However, there are still differences between the two codes, 
for instance the free stream boundary conditions are specified as Dirichlet and Neumann 
conditions respectively. With this in mind the agreement can be considered as sufficiently 
good, and confirms that there are no major numeri cal differences or discrepancies in the 
implementation of the turbulence model that affect the transition prediction. 
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Figure 6.33: Wal!-shear stress calculated for the T3A-case, using different size of the com­
putational domain. Expanding grid with Ymax ~ 1.156995 (- -) , expanding grid with 
Ymax ~ 1.96995 (---), non-expanding grid with Ymax = 147.5 mm (-) , calculation with 
the computer code normal!y used in the present study (- + -) . 

The significant infiuence that the computational domain has on the predicted transition 
position can be understood by comparing individual profiles of the fiuctuating components. 
Figures 6.34a and b show U rms and Vrms-profiles at three x-positions, calculated with the three 
different y-domains. The major reason for the early transition seems to be a combi nat ion of 
a too smal! computational domain and the use of Dirichlet boundary conditions. In the vrms-

profiles, the fluctuation level is continuously damped from the free stream boundary towards 
the wal!. Since the Dirichlet boundary con dit ion implies a predefined turbulence level at the 
outer edge, a too smal! y-domain results in an increased vrms-Ievel at the boundary layer 
edge. In ot her words, the dam ping of the v-fluctuations due to the modelled wall-reflection is 
restricted by the boundary. This gives different results compared with a calculation in which 
the wal!-reflections are al!owed to infiuence on a region solely determined by the model itself. 

The last plot in figure 6.34 shows the profiles obtained with the non-expanding grid, using 
Dirichlet boundary conditions. When the boundary is moved sufficiently far away from the 
plate, the turbulence level in the free stream is not determined by the boundary condition, 
but instead determined by the parameters in the turbulence model and the initial!y specified 
ko and lw . In the present calculation, using lw = 30.1 mm, the decay rate in the free stream 
is slower than specified by the boundary conditions, resulting in a kink in the profiles close to 
the upper boundary. This clearly shows that the length scale (30.1 mm) is incorrect. Another 
observation is that the redistribution from the v-component to the transversal components 
is non-zero in the turbulent free stream. This artifact was also observed in the calculations 
with the HJH-mode!. 
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Figure 6.34: Profiles extracted from calculations with the SLY-model using different size 
of the computational domain , (a) urms/UO , (b) vrms/UO. Labels: expanding grid with 
Ymax ~ 1.15 8995 (- -) , expanding grid with Ymax ~ 1.98995 (---), non-expanding grid with 
Ymax = 147 mm (-). (c) urms / UO (-) and vrms/UO (---) obtained from calculations with 
a non-expanding grid with Ymax = 147 mmo The x-positions are from left to right 95 mm 
(Rex = 3.2 x 104), 295 mm (Rex = 9.8 x 104

) and 495 mm (Rex = 1.64 x 105
). 

65 



6.3.3 Discussion 

The general conclusion from the calculations with the basic SLY-model is somewhat disap­
pointing, since the model fails to predict the location of the transition region in the simple 
test cases that are tested in the present study. Also the general behaviour of the model is 
questionable, as there is almost no energy growth observed in the pseudo-laminar boundary 
layer. In this respect the behaviour resembles what can be observed in calculations with the 
Launder & Sharma k-€ model, for which the kinetic energy is fairly constant until it suddenly 
starts to grow just prior to transition . It seems t hat the transition process is to a large extent 
dependent on the coefficients and empiricallow-Reynolds number functions in the €-equation. 
This is not desirabie, as the €-equation is the weakest part in turbulence modelling, and, as 
pointed out in section 6.2.10, is showing severe shortcomings in the pseudo-laminar layer. 

Aremark should also be made concerning the use of expanding grids. In chapter 2 it was 
pointed out that the damping of the wall-normal fluctuations usually starts far outside t he 
boundary layer edge, while the uv-profiles have a non-zero contribution mainly restricted to 
the boundary layer. The different scaling of the profiles implies that the use of the uv-profile 
in order to determine an expansion rate for the grid is not a good choice. 
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Chapter 7 

Final remarks and conclusions 

7.1 Two-equation models 

From an engineering point of view, two-equation models are attractive due to their simplicity 
and their relatively low computational cost. In the present study only a few calculations 
have been performed with a two-equation model, but a rather extensive testing has been 
performed within the ERCOFTAC Transition SIG. Independent results show that the k - f 

model by Launder & Sharma can at least qualitatively give a prediction of the start of the 
transition region in zero-pressure gradient cases with FST levels from 1% to 6%. However, 
when the model is applied to different pressure gradients the transit ion predictions deviate 
considerably from the experiments. The model by Launder & Sharma also exhibits a general 
shortcoming for most two-equation modeis, namely that the length of the transition region 
is severely underpredicted. Different attempts to correct this has been suggested , for in­
stance the " Production Term Modification" by Schmidt & Patankar (1991) , which limits the 
production term within the transition region . 

A sightly more complex approach to improve the modelling of the transition region is to 
intro duce a separate transport equation for the intermittency (cf. Steelant & Dick 1996). The 
intermit.tency parameter can be used to weight the contributions from laminar and turbulent 
flow, in order to pro long the transition region. 

A common approach to improve the models with respect to transition prediction is to 
include empirical information. For instance, the Abu-Ghannam & Shaw (1980) correlation 
is of ten used in order to trigger the start of transition, sometimes together with additional 
modifications to limit the growth of the eddy-viscosity through the transition region. Not 
surprisingly, models which include a large extent of empirical information usually show the 
best transition predictions. Impressive results for a wide range of flat plate test cases with 
and without pressure gradients were obtained by Sieger et al. (1995) , using a two-layer model. 
The model combines a k - f model with a one-equation model close to the wall , and includes 
various empirical information. However, although the use of empirical information to trigger 
the start of transition improves the results in relatively simple test cases, it is difficult to 
judge how these models perform in new and more complicated flow situations. 

A common practise to present and compare results from different models within the ER­
COFTAC Transition SIG is to plot the wall-shear stress coefficient and the shape factor. 
This gives a good picture of the location of the transition, but otherwise very limited in­
formation about the model behaviour. A thorough comparison of the variations of different 
terms through the transition region might give some further insight into the mechanisms that 
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makes the predictive capability of some two-equation models relatively good. At least to the 
author 's knowledge there exist no study which can give a physical explanation, or at least a 
plausible argument, why it should be possible to predict transition with linear eddy-viscosity 
modeis. 

One major shortcoming with two-equation models is the assumption of isotropic fluctua­
tions inside the boundary layer, whereas both experiments and simulations show very large 
anisotropies. Especially from the simulations (Yang & Voke 1993) it can be concluded that 
the 1L- and v-fluctuations have very different roles in the different stages of the transition 
process. In other words it seems unlikely that it should be possible to achieve a general 
applicability with a k - E model, as the prospects of giving arealistic description of the 
dynamics in the boundary layer is small. The po or description of the physical mechanisms 
in a transitional boundary layer implies a restrictive use for applications which are different 
from the tested ones. Consequently, the models require a thorough testing and a detailed 
description of their limitations, before they can be used for any type of design purposes. 

7.2 DSM-models 

From a physical point of view DSM-models should have better prospects to describe the 
behaviour in a boundary layer than a two-equation model. The present study has been 
focussed on the use of Differential Reynolds Stress Models for transit ion prediction, and 
some of the more important findings can be summarized as follows: 

(i) The HJH-model shows good predictions for zero-pressure gradient test cases at Tu ~ 5-6% 
(T3B and T3B-LES). Also the growth of u'u-stresses in the pseudo-laminar boundary layer 
is partly captured by the model. 
(ii) Despite the good predictions at large Tu SOl11e severe shortcomings in the modelled 
terms are detected. A major problem seems to be an overestimation of the dissipation in 
the pre-transitional boundary layer. It is proposed that this deficiency is associated with the 
different characteristics of the fiuctuations in the pseudo-laminar boundary layer as compared 
to turbulence at high Reynolds numbers. 
(iii) As the level of Tu is reduced, the HJH-model predicts transition much further down­
stream compared with experiments. Still at a relatively high level of FST (Tu = 3%) the 
predictions deviate considerably from the experiments. Comparisons with the empirical cor­
rel at ion by Abu-Ghannam & Shaw (1980) show that this is a continuous trend, i.e. the 
HJH-l11odel predicts too early transition for Tu > 6% and too late for FST-levels below 
5-6%. 
(iv) Calculations with the SLY-model show that also this model predicts transit ion far too 
late as compared with experiments when the free-stream turbulence level is not very large. 
Our results are in conflict with existing other results, but in the present study it is shown 
that inappropriate free stream boundary conditions and the use of too small computational 
domains have affected those other studies. 

The main outcome of the present work is sOl11ewhat discouraging, since both tested DSM­
models can not correctly predict the transition location for a wide range of FST-levels. In 
fact, the results are worse than obtained with the Launder & Sharma k - E model, at least 
as far as the location of the transition region is concerned. Earlier publications using the 
SLY-model (e.g. Savill 1995a), have shown very impressive results for a wide range of FST­
levels (1-10%) , and also good predictive capability at various pressure gradients. However, 
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the present study clearly shows that those results are too optimistic, as the model turns 
out to be extremely sensitive to the level of FST at the outer edge of the boundary layer, 
and only smal! changes in the decay rate of the turbulence can vary the start of transition 
dramatical!y. This can not be considered as a desirabie characteristic, and it is difficult to 
see how the model can serve as a useful design tooi for engineering applications, in which the 
flow conditions usually are less well-known. 

Another DSM-model, which has to a smaller extent been tested in transitional test cases, 
is the model currently under development by Launder and co-workers. It has interesting 
properties, as it makes use of cubic pressure strain terms which do neither include the wal!­
distance, nor any wal!-normal vectors. This is desirabie for any turbulence model , since the 
implementation in unstructured grids, and thus the application to more complex geometries, 
becOines simplified if the model does not include explicit information of the position of the 
wall. The model is described in Launder & Li (1994) , but is still continuously under devel­
opment. A slightly different version of the model was applied to the T3A and the T3B-case 
(see Cho et al. 1995) , which resulted in good predictions as far as the t ransition location is 
considered, but some problems with a large overshoot in cf were observable at the end of the 
transit ion region. 

7.3 Prospects for the fut ure 

In section 2.4 it was questioned whether the use of turbulence models for transition pre­
diction has any prospects to become successful. Many experiment al results show that the 
disturbances in the pseudo-laminar boundary layer are very different from turbulence, and 
some of the assumptions which are the basis for the currently used turbulence models are 
invalid in the pre-transitional region . The modelling of the dissipation equation is in many 
respects primitive, and the most frequently used version of the equation can be considered 
as a model of the energy transfer from the larger to the smaller scales in the turbulence. 
Consequently, it is assumed that the turbulence consists of a spectrum similar to the ones 
measured in experiments at high Re/, and that the dissipation, which mainly takes place 
in the smaller scales, is determined by the larger energetic scales. This assumption is cer­
tainly not valid in the pseudo-laminar boundary-Iayer, which is dominated by large-scale, 
low-frequency motions. An improvement in the modelling might be possible by the use of 
multi-scale modeis, in which the introduction of additional length scales can give a better 
description of the disturbance spectra in the pseudo-laminar boundary layer. 

However, it is likely that other deficiencies in the present approach wil! become visible 
if the modelling of the dissipation is improved. For instance, just prior to the start of the 
transition region, the LES-data shows a sudden increase in the pressure strain terms which 
redistribute energy from the streamwise to the lateral and vertical components. Most likely 
this redistribution is caused by some instability mechanism, and further understanding of the 
physics behind the breakdown of a boundary layer subjected to high levels of FST is probably 
necessary in order to improve the modelling. Since the breakdown stage is an intricate task 
to study experimental!y, additional simulations (LES and DNS) is of highest importance. 

Although some time-averaged effects of the growth of time-dependent disturbances can be 
included in a turbulence model , there are limitations associated with the Reynolds-averaged 
equations. A link between stability calculations and turbulence modelling may be t he only ap­
proach which can give a sufficiently good description of the physics in a transitional boundary 
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layer . 
Another approach, which might be of interest if a shorter time perspective is considered, is 

to develop alternative empirical data. At least to the author's knowiedge, the presently used 
empirical correlations directly relate the transition loc at ion to parameters like free stream 
turbulence and pressure gradient coefficients. Maybe it could be fruitful to compare the 
development of the induced "U-ftuctuations and the ftuctuation level just prior to the transition 
onset in a large number of experiments. If there exist some threshold values which can be 
related to different pressure gradients and FST-levels (this can not be expected to be the 
case at rat her smal! Tu, but maybe at higher FST-levels) , this could be used as a transition 
criteria. That would simplify the modelling work, which then could be focussed on the 
prediction of the ftuctuations in the pre-transitional boundary layer. 
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Boundary layer transition induced by high levels of free stream 
turbulence (FSl) , so called bypass transition, can not be predicted 
with conventional stability calculations (e.g. the en-method). The 
use of turbulence models for transition prediction has shown some 
success for this type of flows, and the present study is a further 
investigation on the use of low-Reynolds number, single-point 
closures for transition prediction. The work is focused on two 
Oifferential Reynolds Stress Models (OSM), which are compared 
with the in previous studies more elaborately tested two-equation 
model by Launder Sharma. The results obtained with the OSM are 
relatively promising in some test cases, with a qualitatively correct 
description of the different normal stresses throughout the 
computational domain. However, the applicability of the models is 
very limited if a wider range of test cases are considered. Although 
the Differential Reynolds Stress Models have better prospects to 
describe the very anisotropic fluctuations that are observed in 
transitional boundary layers, the overall predictions of the location of 
the transition region are worse than obtained with the two-equation 
model. Oetailed comparisons with results from Large Eddy 
Simulations have revealed significant shortcomings in the modelling 
of the dissipation. The DSM suffer from a large overprediction of the 
dissipation in the pre-transitional boundary layer, which also affects 
the modelling of the pressure strain terms. The present study also 
shows that some of the results reported in the literature may be too 
optimistic, since they seem to be affected by the implementation of 
the free stream boundary conditions. The predictions are sensitive to 
the FST-Ievel in the vicinity of the boundary layer edge, and large 
variations in the predicted transition location can be obtained 
depending on how the free stream boundary is treated. The 
outcome of the present study indicates that, if single-point closures 
are going to be considered as arealistic transition prediction tooi for 
industrial applications, some major improvements in the modelling 
are necessary. 
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