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Abstract—The radar resource management problem in a
multi-target tracking scenario is considered. Partially observable
Markov decision processes (POMDPs) are used to describe each
tracking task. Model predictive control is applied to solve the
POMDPs in a non-myopic way. As a result, the computational
complexity compared to stochastic optimization methods such as
policy rollout is dramatically reduced while the resource alloca-
tion results maintain similar. This is shown through simulations
of dynamic multi-target tracking scenarios in which the cost and
computational complexity of different approaches are compared.

Index Terms—Radar Resource Management, Constrained Op-
timization, Partially Observable Markov Decision Process, Model
Predictive Control

I. INTRODUCTION

A. Introduction

In recent years, advances in the field of radar led to the
development of phased array antennas that allow the appli-
cation of so-called digital beamforming (DBF). Together with
advanced signal processing and arbitrary waveform generation,
modern multi-function radars (MFR) became increasingly
flexible. They can quickly adapt to changes of the environment
by automatically adjusting the measurement parameters during
runtime. This adaptive process is often called radar resource
management (RRM) and can be considered as a part of a
cognitive radar (CR) [1]–[5]. Possible applications for RRM
can be found in many domains, such as autonomous driving
and traffic monitoring or maritime and air surveillance. This
paper is based on the results of the master’s thesis in [6]
and builds upon the framework explained in [7], [8]. It
focuses on implementing an alternative solution method for
the assumed underlying partially observable Markov decision
process (POMDP).

B. Radar Resource Management

Countless heuristic solutions have been presented, many
of them focusing on scheduling tasks with a fixed resource
need (as mentioned in the overviews in [9] and [10]). In
an overload situation, this inevitably leads to tasks of lower
priority being dropped. If tasks have the same priority, the
decision which task needs to be dropped is taken potentially
randomly. Therefore, the full potential of RRM can only be
explored once the resource allocation fully depends on the
tasks’ impact on the mission. Some approaches try to quantify

this impact by optimizing the expected information gain as
shown, e.g., in [11] by Kreucher et al. In [12], Hintz gives
an overview of different information-based sensor resource
management strategies. Another common concept is to define
a risk or threat that a certain task poses on the mission.
Interesting approaches implementing this idea are shown, e.g.,
by Katsilieris et al. in [13] and by Martin in [14]. Additionally,
task-related measures can be optimized directly, such as, e.g.,
the estimated target track position error as shown by White
and Williams in [15]. To allow all tasks to be considered
equally, it is generally considered that the resource allocation
is adjustable and not restricted to specific predefined values.

Most of the available RRM approaches focus on single
tasks. For example, within a tracking scenario, many ap-
proaches try to keep the track quality constant [16], [17].
When multiple tasks are considered, this problem becomes
more difficult to solve. By design, an MFR system usually
operates at its resource limit. Therefore, we consider resource
allocation to be a balancing act. Consequently, increasing
the resources for one task will automatically decrease the
resources for all the other ones, which will deteriorate their
sensing performance.

C. Markov Decision Processes

Many presented methods assume a Markov decision process
(MDP) or a POMDP in their RRM solution method (e.g.
[18], [19]). POMDPs can be used to describe a dynamic
environment while assuming that its state can only be observed
using noisy measurements. With growing state and action
space, the exact solution of a POMDP becomes increasingly
intractable. Therefore, real-time approaches inevitably require
approximate POMDP solution methods to be applied. An
overview of these kinds of techniques can be found in [19],
[20]. Some recent RRM approaches apply policy rollout in
order to solve the POMDP [8], [16], [21]. Since this is often
a computationally expensive procedure, this paper focuses on
solving the POMDP using model predictive control (MPC).
This is a logical simplification step as it has been shown that
MPC is a special case of policy rollout [22].

D. Novelty

The main contribution of this paper is the introduction of
a practical RRM solution approach that solves the under-
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lying POMDP with computational efficiency in mind. The
simplifications of MPC are used to significantly decrease
the computation time compared to stochastic optimization
approaches, such as policy rollout. Additionally, it allows
to calculate continuous actions whereas the policy rollout
requires a previously discretized action space.

E. Structure of the Paper

The remainder of the paper is structured as follows. While
Section II introduces the assumed RRM and optimization
problem, Section III presents our proposed solution approach.
Sections IV and V introduce the assumed simulation scenarios
and the results of the simulations. Finally, Section VI contains
the conclusions.

II. PROBLEM DEFINITION

This section introduces the general problem that is treated
in the remainder of the paper. For illustration purposes, a two-
dimensional tracking scenario assuming N targets is assumed.
The problem description closely follows the ones shown in [7],
[8].

A. Motion Model

There are N assumed targets in the scene that are moving
in a two-dimensional plane. The state of each target at time t
can be defined as

snt = [xnt ynt ẋnt ẏnt ]
T
, (1)

where xnt ,ynt and ẋnt ,ẏnt are the position and velocity in x and
y direction of a Cartesian coordinate system, respectively. The
new target state after a certain time t+ ∆t can be calculated
following a state transition function

snt+∆t = f (∆t, snt ,w
n
t ) , (2)

where snt+∆t is the state of target n at time t+∆t andwn
t ∈ R4

is its maneuverability noise at time t. Based on (2) a state
transition probability density function can be defined as

p
(
snt+∆t|snt

)
. (3)

B. Measurement Model

The assumed radar sensor takes noisy measurements of the
state snt by executing sensor actions ant that are adjustable
and influence the accuracy of the observations. At time t, the
measurement of target n can be defined by

znt = h (snt ,v
n
t ,a

n
t ) , (4)

where h(·) is the measurement transformation function, vnt is
the measurement noise and ant is the chosen action for target
n at time t. Based on (4) the measurement probability density
function can be defined as

p (znt |snt ,ant ) . (5)

C. Tracking Algorithm

Since a tracking scenario is assumed, a tracking filter
needs to be chosen. For purely linear scenarios, a Kalman
filter is the optimal solution. When a non-linear measurement
transformation function or state transition function is assumed,
an extended Kalman filter (EKF) or a particle filter are possible
solutions. Generally, the tracking algorithm aims at computing
the posterior density p(snt |znt ) of the object state.

D. Budget Optimization Problem

The radar sensor is assumed to have a limited budget
Bmax (e.g. sensing time or energy). Each action ant consumes
a certain amount of budget. It is assumed that the sensor
operates in some sort of overload situation without enough
available resource budget for the perfect execution of all tasks.
Therefore, the budget needs to be distributed over the different
tasks based on some cost function c(·). At time t, the one-
step-ahead optimization problem assuming N different tasks
is defined as

minimize
at

N∑
n=1

c(ant , s
n
t )

subject to
N∑
n=1

Bnt (ant ) ≤ Bmax,

(6)

where Bnt ∈ [0, 1] is the budget for task n at time t and
Bmax ∈ [0, 1] is the maximum available budget.

III. PROPOSED APPROACH

In this paper, the same POMDP formulation of the tracking
tasks as in [8] is assumed. In that paper, the POMDP was
solved using a policy rollout algorithm which allocates the
resources by sampling the possible future in a Monte Carlo
fashion. In order to receive accurate results, many of those
rollouts have to be performed and averaged. It has been shown
that this can lead to a huge computational complexity.

The proposed POMDP solution method in this paper is
MPC. It has been shown that MPC is a special case of the
policy rollout and replaces the random sampled future by a
modeled approach [22]. It is therefore assumed to lead to a
significant decrease in computational complexity.

MPC is a receding horizon approach, which means the
prediction horizon is shifted forward after every iteration.
The basic operating principle can be summarized as follows,
where H indicates the prediction horizon, which is here always
assumed to be equal to the control horizon:

At time-step k:

1) Minimize cost over prediction horizon:
∑k+H
t=k c(at, st)

to get the optimal action sequence of length H over the
prediction horizon.

2) Take only the action corresponding to next time-step.
3) Repeat 1 and 2 at next time-step k + 1.
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A. Optimization Setup

At every budget update an optimization problem must be
solved. For the considered case where N objects are being
tracked by an MFR, at time-step k and with prediction and
control horizon H , this optimization problem can be defined
as follows:

min
τ

k+H−1∑
t=k

( N∑
n=1

c(τnt , T
n
t , s

n
t )
)

s.t.
N∑
n=1

τnt
Tnt
≤ Bmax for t = 1 . . . H − 1

(7)

Solving this problem comes down to minimizing the cost
of the N objects summed over the time horizon of N. The
optimization variables that result from this are:

τ =


τ1
1 τ1

2 . . . τ1
H

τ2
1 τ2

2 . . . τ2
H

...
...

. . .
...

τN1 τN2 . . . τNH

 and T =


T 1

1 T 1
2 . . . T 1

H

T 2
1 T 2

2 . . . T 2
H

...
...

. . .
...

TN1 TN2 . . . TNH


(8)

where τ ij and T ij correspond to the dwell time and the revisit
time of the i-th object and the (k+j)-th time-step respectively.
As we are only using the actions corresponding to the next
time-step as inputs to our system, we use only the first columns
of both τ and T . At the next budget update, the optimization
will be carried out again with the horizon window shifted and
the dwell times and revisit times of the remaining columns can
now be improved using the measurements taken in the time
that passed since the previous budget update. The optimization
problem is constrained such that at every time-step the sum
of the budgets does not exceed the total available budget of
the radar, which is indicated by Bmax. The difference with
regards to the optimized actions compared to policy rollout is
that every time-step within the optimization horizon can have a
distinct budget distribution, while in the case of policy rollout
a base policy is assumed where at every time-step within the
optimization horizon the same budget distribution is applied.
For the remainder of this paper T is assumed to be fixed at 1
s and τ will be the action that is optimized.

B. Lagrangian Relaxation

Using Lagrangian Relaxation the constraints of the opti-
mization problem can be brought into the objective function.
The optimization function now becomes:

max
λ

(
min
τ

k+H∑
t=k

( N∑
n=1

c(τnt , s
n
t ) + λτnt

)
︸ ︷︷ ︸

sum of independent minimization problems

− λBmax

)
(9)

In this optimization problem it can be seen that the minimiza-
tion problem consists of the sum of N minimization problems,
which are now, for a fixed iteration of λ, independent of
each other as they are no longer linked to each other by

the constraint. As a result, the problem can be rewritten into
N sub-problems for the N different objects that need to be
tracked:

min
τ,T

k+H∑
t=k

c(τt, st) + λτt (10)

These sub-problems are independent of each other and can
be solved using parallel processing to reduce execution time.
Finally, the Lagrange multiplier λ is updated iteratively at
every time-step using golden section search.

C. Golden Section Search

The goal is to find the Lagrange multiplier λ such that:

|
N∑
n=1

τn −Bmax| ≤ ε (11)

where ε is some small number indicating the tolerance of the
constraint. In this paper golden section search is employed
to efficiently find this λ such that (11) is met. The standard
golden section search method, as described in for example
[23], is extended due to the fact that initially the lower and
upper bounds of λ are unknown. To find these bounds, λ is
increased after every time-step k. As it is known that the
value of λ must ensure that (11) is met, our initial values
for the upper and lower bounds are those values of λk and
λk+1 for which there is a change in sign when going from
f(λk) to f(λk+1). Here a function evaluation f(λ) refers
to the value of

∑N
n=1 τn − Bmax resulting from the τ that

follows from solving the MPC problem using λ. These lower
and upper bounds will be referred to as xL and xU . Once
these bounds are found, the next step to find λ is to perform
function evaluations of values of λ between xU and xL. An
efficient way of choosing these intermediate points is using
the golden ratio conjugate (r =

√
5−1
2 ≈ 0.618). Initially,

the two intermediate points x1 = xL + r(xU − xL) and
x2 = xU − r(xU − xL) are evaluated. Then, based on the
values f(x1) and f(x2) at those points a new intermediate
point is chosen and xL or xU is shifted to x1 or x2 respectively,
after which the function is evaluated at the newly chosen point.
This procedure is repeated until a point is found that meets the
criterion set in (11). The whole search method is summarized
in Algorithm 1.
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Algorithm 1: Finding the Lagrange multiplier using
golden section search
Step 1 Starting from λ = 0, increase λ and compute

f(λ) until f(λ) becomes negative;
Step 2 This λ becomes xU while the previous λ

becomes xL;
x1 = xU − r(xU − xL);
x2 = xL + r(xU − xL);
Compute f(x1) and f(x2);
Step 3;
while f(x1) ≤ ε ∩ f(x2) ≤ ε do

if f(x1) ≤ f(x2) then
xU = x2;
x2 = x1;
x1 = xU − r(xU − xL);
Compute f(x1);

else
xL = x1;
x1 = x2;
x2 = xL + r(xU − xL);
Compute f(x2);

end
end

IV. ASSUMED SIMULATION SCENARIOS

In this paper the two-dimensional tracking of N moving
objects using a single radar is considered. At every mea-
surement interval the radar takes measurements in range and
angle. It is assumed that there is a limited amount of budget
available to track the objects and the algorithms that are
compared are tasked with optimizing the dwell times τ at
every budget update interval. The revisit time T is assumed
to be constant for all tasks in this paper, which means that
the measurements are always taken in the same regular time
intervals k. To compare the results of this novel approach to the
previously applied policy rollout method, the implementation
of the MPC has been done as follows. The resource allocations
are recalculated in regular budget update intervals. During
these intervals, the algorithm assumes that the same action is
executed. The algorithm calculates the corresponding actions
for a certain horizon. The first action of this horizon will then
be executed by the sensor.

A. Tracking

For the Extended Kalman Filter, the following motion model
is assumed:

snk+1 = Fsnk +wn
k (12)

with

F =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 (13)

and wnk being the maneuverability noise at time k. The
process noise covariance matrix for target n is defined as:

Qn =


T 4

4 0 T 3

2 0

0 T 4

4 0 T 3

2
T 3

2 0 T 2 0

0 T 3

2 0 T 2

σ2
w,n, (14)

where σ2
w,n is the maneuverability noise variance. The

observation matrix H is the Jacobian of a certain measurement
transformation function h(sn):

Hn
k =

∂h

∂s

∣∣∣∣
sn
k

(15)

B. Cost Function

The assumed cost function is comprises the sum of the first
two diagonal terms of the predicted error covariance matrix:

c(τnk , s
n
k ) = trace (EPk|k−1E

T ) (16)

where
E =

[
1 0 0 0
0 1 0 0

]
(17)

These terms correspond to the predicted variance in x and y
position of the objects.

C. Measurement Model

In the examples in this paper sensor measurements in range
(r) and azimuth (θ) are assumed. The following measurement
model is introduced to convert the state from Carthesian
coordinates into polar coordinates

znk = h(snk ) + vnk (18)

where

h(snk ) =
[√

(xnk )2 + (ynk )2 atan2(
ynk
xn
k

)
]T

(19)

and vnk is the measurement noise with variance σ2
n =

[σ2
r,n, σ

2
θ,n]T at time-step k.

Based on the range of an object, the signal-to-noise ratio
(SNR) of a measurement is determined in the same way as
was described in [8], following equations by Koch [24]. It is
calculated using the values of a reference measurement which
is summarized in Table I. Using these values, the measurement
noise variance of the system can be calculated as

σ2
r,n =

σ2
r,0

SNRn,k
(20)

and

σ2
θ,n =

σ2
θ,0

SNRn,k
. (21)

V. SIMULATION RESULTS AND EVALUATION

In this section the resulting budget distribution of the track-
ing scenario of Fig. 1 is discussed. Furthermore, the proposed
algorithm is compared with the policy rollout algorithm based
their respective execution times and realized costs. For all
mentioned simulations, the revisit time T is assumed to be
fixed at 1 s.

Authorized licensed use limited to: TU Delft Library. Downloaded on December 06,2021 at 08:15:27 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
REFERENCE MEASUREMENT VALUES.

Reference parameter Value
Measurement variance in range (σ2

r,0) 25 m2

Measurement variance in angle (σ2
θ,0) 2e-3 rad2

Reference SNR (SNR0) 1
Reference RCS (RCS0) 10 m2

Reference dwell time (τ0) 1 s
Reference range (r0) 50 km

Fig. 1. Trajectories of the 5 objects to be tracked for a scenario of 100
seconds.

A. Simulation Scenario A

Simulations scenario A consists of 5 objects that can be seen
in Fig. 1. In this example, some events took place during the
simulation time so that their effect on the budget distribution
could be evaluated:
• t = 20 s: A new object (task 5) needs to be tracked
• t = 60 s: Total available budget decreases from 1.0 to 0.9
• t = 90 s: Maneuverability of task 1 increases

For the simulation the parameters listed in Table II were used.

TABLE II
SIMULATION PARAMETERS SCENARIO A.

Reference parameter Value
Maneuverability noise variance (σ2

w) 2.5 (m
s2

)2

Radar cross section (RCS) 10 m2

Prediction horizon length (H) 15
Number of rollouts 10
Simulation update interval 5 s
Budget precision (ε) 0.002

Fig. 2 and 3 show the budget distributions for the example
scenario from Fig. 1 using the MPC and the policy rollout
algorithm, respectively. It can be seen that objects located
further away from the radar are allocated a larger amount
of the budget than those closer to the radar. This is due to
the way the cost function is constructed. Measurements of

Fig. 2. Budget allocation of the 5 objects over the simulation time obtained
using MPC.

Fig. 3. Budget allocation of the 5 objects over the simulation time obtained
using Policy Rollout.

objects further away will have a smaller signal-to-noise ratio
and this is compensated for by increasing the budget available
for tracking these objects. This behaviour is specific to the
cost function choice and might not always be desired, so
given the demands of the user a different cost function can
be constructed. Furthermore, the figure reflects the changes
to the system at the set time-steps. At t = 20 s, a new object
needs to be tracked and some budget is made available for
this task. At t = 60 s, the total available budget decreases
and the budgets of all the tasks decrease. At t = 90 s, the
maneuverability noise variance of the first task increases,
resulting in the need to take better measurements of this
object and therefore increasing the budget of task 1. When
comparing the budget distributions from the policy rollout
and MPC, it can be seen that the budgets are mostly the same.
The main difference is seen at the change in maneuverability
at t = 90 s. It can be seen that the effect of this change shows
only after 90 s in the case of MPC, while in the policy rollout
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Fig. 4. Comparison between execution times of policy rollout and MPC
algorithms. Note the logarithmic scale of the y-axis.

the effect of this change shows already at 80 s. This is due
to the fact that in the policy rollout optimization the same
action is chosen for the whole horizon, while for MPC this is
not necessarily the case as was described in Section III. As a
horizon of 15 s is used, at the budget update that takes place
at 80 s this change in maneuverability already needs to be
taken into account, and thus the actions are already slightly
influenced by this change.

1) Execution Time Comparison: A goal of employing
MPC was to lower the computational complexity compared to
the policy rollout algorithm. This is evaluated by comparing
the execution time of an average budget update of both
algorithms. Here scenarios with linearly moving targets
similar to scenario A are used with varying numbers of
moving objects. In Fig. 4 the results from running each
simulation 3 times and averaging the execution times are
shown. It can be seen that the execution times when using
MPC are significantly lower than when policy rollout is used.

2) Realized Cost Comparison: It is important that the per-
formance of the resulting budget distribution is not degraded
compared to the policy rollout case. To investigate this their
realized costs were compared using the same scenarios as for
the execution time comparison. The realized cost is defined
as the sum of the evaluated cost function at every time-step
during the simulation. In Fig. 5 the results from running
each simulation 3 times and averaging the realised costs are
shown. For comparison, the realised cost of using an equal
distribution, i.e. allocating the same budget to all targets at
every time-step, is also included. From the Fig. it can be seen
that MPC and Policy Rollout have similar performances when
looking at the realized costs.

B. Simulation Scenario B

Simulation scenario B consists of a static and a moving
target. The moving target is first moving straight before

Fig. 5. Comparison between realized costs of equal distribution, policy rollout
and MPC.

Fig. 6. Trajectories of the objects of scenario B.

making a turn towards the radar sensor and then continuing
a linear trajectory. This trajectory is shown in Fig. 6. For the
simulation the parameters listed in Table III were used.

TABLE III
SIMULATION PARAMETERS SCENARIO B.

Reference parameter Value
Maneuverability noise variance object 1(σ2

w1) 2.5 (m
s2

)2

Maneuverability noise variance object 2(σ2
w2) 0.1 (m

s2
)2

Radar cross section (RCS) 10 m2

Prediction horizon length (H) 5
Number of rollouts 10
Simulation update interval 5 s
Budget precision (ε) 0.002

Fig. 7 and 8 show the resulting budget distributions of this
scenario for MPC and policy rollout respectively. In this case
the budget distribution again are very similar. Furthermore,
the resulting realised costs over the simulation time are again
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Fig. 7. Budget allocation of the 2 objects described in scenario B using MPC.

Fig. 8. Budget allocation of the 2 objects described in scenario B using policy
rollout.

very close to each other, with the MPC approach having a
0.1% lower realised cost averaged over 10 runs.

C. Simulation Scenario C

Simulation scenario C consists again of two targets. The first
target makes an unexpected maneuver at t = 15 s which can
be seen in Fig. 9. In the scenario there is an area: 15000 ≤
x ≤ 20000, 15000 ≤ y ≤ 20000, in which the quality of
the measurements are negatively affected due to e.g. weather
conditions. If an object enters this area, at least 80% of the
budget is needed or else the radar loses track of the target. The
second target makes the same maneuver but in the negative x
and y quadrant, where there is no such grey area. For the
simulation the parameters listed in Table IV were used. The
resulting budget distributions for MPC and policy rollout can
be seen in Fig. 10 and 11. From these figures it can be seen
that policy rollout adapts earlier to the unexpected maneuver,
as in some of the rollouts the object maneuvers into the grey
area between t = 15 s and t = 20 s, while the MPC approach

Fig. 9. Trajectory of object 1 of scenario C.

at that point still assumes that the target continues moving
in the same direction, avoiding the grey area. As a result, in
the MPC case the track would be lost in this scenario. This
downside of MPC only assuming a perfect system model can
be negated by using a more robust MPC scheme, similar to
[25], where different disturbances in the state are considered.
However, this leads to a more computationally intense control
law.

TABLE IV
SIMULATION PARAMETERS SCENARIO C.

Reference parameter Value
Maneuverability noise variance object 1 (σ2

w1) 2.5 (m
s2

)2

Maneuverability noise variance object 2 (σ2
w2) 2.5 (m

s2
)2

Radar cross section (RCS) 10 m2

Prediction horizon length (H) 5
Number of rollouts 10
Simulation update interval 5 s
Budget precision (ε) 0.002

VI. CONCLUSION

This paper introduces a novel solution approach for the
RRM problem in multi-target tracking, which applies MPC
on an underlying POMDP. The proposed algorithm solves the
initial problem approximately optimally and has proven to be
much more computationally efficient than previously applied
stochastic optimization methods such as policy rollout.

The applicability of the MPC method has been shown in a
simple dynamic tracking scenario with linearly moving targets,
as well as in a scenario with a maneuvering target. The
budget allocations and cost results of both the policy rollout
implementation and the MPC implementation are very similar
which highlights that both solutions are valid in the chosen
simulation scenarios.

For the same type of scenario, it has been shown that
the new MPC approach clearly outperforms the previously
considered policy rollout method w.r.t. the computation time.
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Fig. 10. Budget allocation of the 2 objects described in scenario C using
MPC.

Fig. 11. Budget allocation of the 2 objects described in scenario C using
policy rollout.

Nevertheless, it has also been shown that certain scenarios
exist where the policy rollout leads to better tracking results
than the MPC. This emphasizes that MPC is an approximation
of a policy rollout that uses enough samples.

Due to this approximation, the usage of MPC might lead
to a reduction in tracking accuracy. However, this was not
investigated in this paper.

In future work, the limitations of assuming a single model
in the tracking filter and the RRM algorithm need to be inves-
tigated. Furthermore, a combination of the current algorithm
and an interacting multiple model approach will be explored,
which allows the algorithm to switch between different motion
models automatically. Finally, it is worthwhile investigating
and comparing the tracking accuracy of both the policy rollout
and the MPC approach.
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