
A Survey on Accelerating Sparse CNN Inference on GPUs

by

Qilin Chen
Supervisors: Hasan Mohamed, Shih-Chii Liu, Nergis Tomen

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 19, 2022

1



Abstract

Convolutional neural networks (CNNs) are often pruned to achieve faster training and inference
speed while also requiring less memory. Nevertheless, during computation, most modern GPUs
cannot take advantage of the sparsity automatically, especially on networks with unstructured
sparsity. Therefore, many libraries that exploit sparsity, have been proposed for accelerating CNN
inference on GPUs. However, there is little research on systematically comparing them. In this
paper, some state-of-the-art libraries for accelerating sparse CNN inference on GPUs are reviewed
and benchmarked. Most of the libraries speedup the convolution and/or pooling operations by
skipping zero calculations, therefore, they are able to perform sparse matrix calculations faster.
However, many of them have hardware and software restrictions and are hard to integrate into a
new model to perform end-to-end inference.

1 Introduction
Deep learning, especially convolutional neural networks (CNNs) has a wide range of applications

such as computer vision, speech recognition and bioinformatics. However, training and inference for
CNNs can be time and memory consuming. One way to accelerate the training and inference is by
network pruning, including both structured and unstructured pruning. Together with the use of the
Rectified Linear Unit (RELU) activation function, which is frequently used in CNNs, the sparsity of
a trained network can be as high as 70%. However, most modern GPUs are not designed for sparse
operations, so how to make use of the sparsity for faster inference on them remains a challenge.

There have been a few recent reports on methods that exploit the sparsity of CNNs for acceler-
ating the inference [1] [2], but there lacks a systematic summary and comparison of those methods.
Therefore, the objective of this paper is to review and benchmark some of the state-of-the-art research
on exploiting sparsity for CNNs on GPUs in terms of the speedup they can achieve compared to some
vendor libraries from NVIDIA.

The paper is structured as follows. Section 2 provides the background information. Section 3
describes how the different methods are evaluated. Section 4 presents the experimental setup and
comparison results for the different methods. Section 5 discusses the ethical issues related to this paper.
Section 6 reflects on the experimental results, and presents the conclusion and possible directions for
future research.

2 Background
To better understand how different methods accelerate sparse CNNs inference on GPUs, some back-

ground information regarding the hardware and CNN pruning is provided. In this section, Compute
Unified Device Architecture (CUDA) is first introduced. Then, structured and unstructured pruning
(also referred to as weight pruning) are explained.

2.1 CUDA
As Graphics Processing Units (GPUs) become increasingly popular for high-performance comput-

ing, CUDA was developed by NVIDIA as a toolkit for some mainstream GPUs to better support
parallel computing and acceleration on GPUs. It provides many GPU-accelerated libraries, debugging
and optimization tools, a C/C++ compiler, and a runtime library to deploy applications [3].

GPUs are made up of an array of streaming multiprocessors (SMs). When executing a program
using CUDA on a GPU, processes are divided among threads. Each thread can access their own
private registers as well as a constant cache provided by the GPU. Threads can be divided into thread

2



groups [4], which generally are organized in the form of a warp containing 32 threads. Multiple
thread groups can be further grouped together as thread blocks. Within a thread block, there is
a scratchpad memory space called shared memory with which the thread groups can communicate.
Convolution calculations on GPUs are converted to matrix multiplications. The matrix multiplications
are performed on each thread block, and each thread corresponds to a convolution result. The thread-
based architecture provides the possibility for acceleration of calculations.

2.2 Weight Pruning
Pruning refers to the process of eliminating parameters from an existing neural network. Pruning

is often applied to neural networks to cut down the computational power required. Following Han’s
work on model compression and pruning [5], many pruning methods have been proposed. The prun-
ing methods can be categorized into two different types: structured pruning and unstructured pruning.

Structured pruning removes entire layers or channels of the neural network. Structured pruning
speed up inference directly as the dense weight matrix becomes smaller. The neural networks become
lighter due to fewer parameters after pruning therefore requiring less memory. However, structured
pruning often results in large accuracy loss [6].

Unstructured pruning, on the other hand, removes connections. Unstructured pruning sets the
weights of pruned parameters to zero, which is why it is also called weight pruning [7]. It is more
intuitive and can be easily implemented as most modern deep learning libraries allow easy access
to all the parameters. Because unstructured pruning focuses on pruning the smallest element of a
neural network, it is possible to prune a network without affecting the performance. Nevertheless,
most modern hardware does not natively support accelerating sparse matrix computations. Therefore,
much research has been conducted on accelerating neural networks with unstructured sparsity.

3 Methods
To accelerate CNNs with unstructured sparsity, most research focuses on speeding up the cal-

culations of the convolution and pooling layers. Many libraries have been proposed for performing
convolution and pooling operations. In this section, first related work to discuss exploiting sparsity on
CNNs is presented, then some state-of-the-art libraries are reviewed.

3.1 Related Work
Sparsity in CNNs. Han et al [5] proposed using pruning to eliminate unnecessary weights and

prune away around 90% of the network while maintaining the accuracy. "The lottery ticket hypothe-
sis" [9] explains how to consistently prune the network by finding subnetworks (winning tickets) that
have test accuracy comparable to the original network. Gale et al [8] evaluated some common tech-
niques and provides an overview of each technique.

Sparse CNNs accelerators. Accelerators for sparse CNNs have been developed to perform infer-
ence. ASpT [10] proposed an adaptive tiling strategy to perform sparse matrix-matrix multiplication
(SpMM) and uses the standard Compressed Sparse Row (CSR) representation. Escort [11] computes
the sparse convolutions directly instead of lowering them onto matrix multiplication and introduces
some optimization techniques and eventually achieves 1.43x speedup compared to cuBLAS. Some more
accelerators used for this review will be explained in more detail in the next section.

3



3.2 Libraries for Exploiting Sparsity on CNNs
The following state-of-the-art libraries are reviewed and the methods used in these libraries are sum-

marized: TensorRT [12], SparseRT [1], Sputnik [2], Conv_Pool_Algorithm [13] and MinkowskiEngine [14].
They are all developed for NVIDIA GPUs and depend on CUDA.

TensorRT: As the library provided by NVIDIA for accelerating deep learning training and infer-
ence, TensorRT is widely used and supported by multiple deep learning libraries such as PyTorch and
TensorFlow. The recent TensorRT update (v8.0) added support for accelerating sparse CNN inference
on Ampere architecture GPUs with 2:4 fine-grained, unstructured sparsity. As shown in Figure 1,
the white squares are zeros and the green ones are non-zeros, in every 4 blocks of the row, 2 of them
are zeros. TensorRT stores the sparse matrix in a compressed format with only the non-zero values
and their indices. Calculations are only applied to the non-zero values in the compressed matrix. A
small speedup is expected using TensorRT because can accelerate different types of operations during
inference, but for accelerating unstructured weight sparsity only the 50% sparsity is supported.

Figure 1: Structured sparse matrix W, and its compressed representation. [15]

SparseRT: This framework speeds up the SpMM and sparse convolution by coming up with a
new tiling strategy and load balancing strategy. An example is to calculate the matrix multiplication
A × B = C where matrix A has dimension M × K, B has dimension K × N and C has dimension
M × N . The SpMM problem is first treated as a dense matrix-matrix multiplication (GeMM) and
the calculation is distributed to thread blocks as shown in Figure 2. The grid of thread blocks has
size (8, 16), each thread block produces a part of C. Within a thread block, first a portion of B is
loaded in a thread group, then A is iterated through and the multiplication result is accumulated. In
the tiling for GeMM, each thread block gets the same-sized portion of the A matrix. However, if A is
sparse, the amount of non-zero values in each portion differs. So to extend the tiling strategy, a load
balancing among thread blocks is needed. As illustrated in Figure 3, there are two different methods.
Keep the number of M elements constant while changing K elements for different thread blocks, or the
other way around. Both the methods try to balance the non-zero values in the thread blocks. After
this, load balancing within thread groups is performed. Different thread groups are assigned different
numbers of elements so that they contain the same number of non-zeros, as demonstrated in Figure
4. When running inference, the sparse matrix is already known, so the tiling and load balancing can
be performed at compile time and used later as a part of the code. This shortens the time for matrix
calculation and the acceleration should be higher as the sparsity increases.

4



Figure 2: Tiling strategy for GeMM (M = 512, K = 3056, N = 256). a) Each block in the 2-D grid
of blocks processes a rectangular tile of the output. b) Thread group computation for one B element.
c) Tiling strategy at granularity of K and M . Each thread group processes a range of M indices for
each K index [1].

Figure 3: Thread block level load balancing strategies for SpMM (M = 512, K = 3056, N = 256). Dif-
ferent colors denote assignment to different thread blocks a) Different thread blocks can have different
portions of the reduction axis. b) Different thread blocks can have different portions of the external
axis [1].

Figure 4: Thread group level load balancing strategies for SpMM (M = 512,K = 3056,N = 256).
Orange cells denote example nonzero locations. a) The computation that needs to be performed
across the different thread groups. b) How the computation is assigned to each thread group [1].

Sputnik: Similar to SparseRT, Sputnik achieves acceleration through tiling and load balancing,
but most of the methods proposed by Sputnik aim to solve the shared memory load bottleneck. Figure
6(a) shows the 1-dimensional tiling scheme, which split the computation across different elements of
the GPU architecture. Take the same example of matrix multiplication A × B = C, A is stored in
CSR format, marked in green. B is dense, marked in blue. The output matrix C is dense, marked
in orange. From left to right the structure for calculation becomes smaller. The first level shows the
entire matrix calculation. Then, the second level shows in thread block tile, one block stores all the
values of A, while for B the thread block only loads a contiguous vector. For thread groups (warps),
the calculation is similar. At the last level of thread, one vector from B is stored and calculated with

5



the entire thread block containing A, and eventually the results are accumulated. Rows in a sparse
matrix can have arbitrary lengths, so using vector memory instructions as shown in 1-dimensional
tiling would result in an increased number of values loaded simultaneously by a thread block and no
alignment guarantees. Instead of loading one row of the matrix in a warp, subwarp tiling, shown in
Figure ??(a), allows mapping of subsets of a warp. The warp accesses are split across multiple rows
and therefore reducing the amount of wasted work. Reverse offset memory alignment, shown in Figure
6(b), pads each row with zeros so the values in each row are multiples of four. The address of each row
is decremented to the nearest aligned address. Values from the previous row are masked in the first
loop iteration to maintain correctness. Another method, row swizzle load balancing, is proposed to
balance the workload across the processing elements. This method remaps where work is scheduled so
each processing element has roughly the same amount of work. Row swizzle load balancing is applied
to two levels of processing elements, warps and thread blocks, as presented in Figure 7. For threads
within a warp, the rows of similar lengths are grouped into bundles. For SMs, row bundles are pro-
cessed in decreasing order of size. Combining all the methods, SpMM can be accelerated. But as the
library goes through many steps for rearranging the storage of the matrices in memory, it may not be
optimal for low sparsity models.

Figure 5: Hierarchical decomposition of SpMM with 1-dimensional tiling [2].

(a) Subwarp tiling maps subsets of a warp to
independent 1-dimensional tiles of the output.

(b) Reverse offset memory alignment backs up the
address of each row to the nearest aligned address

Figure 6: Subwarp tiling and reverse offset memory alignment [2].

Conv_Pool_Algorithm: The framework considers the sparsity of the feature map and proposes
using two novel storage formats: Extended Compressed Rows (ECR) and Pooling-pack Extended Com-
pressed Rows (PECR). ECR calculates the convolution by skipping zero values and complete extension,
compression and sparse matrix calculation by only accessing the global memory once. As shown in
Figure 8(a), B1 is a thread block containing 3 threads T1, T2 and T3. The kernel size for convolution
is 3×3. Only the non-zero values in the feature map B1 are stored in F_data and their corresponding
kernel values are stored in K_data. Ptr indicates the number of non-zero calculation that needs to

6



Figure 7: Row swizzle approach for load balancing sparse matrix computation [2].

(a) ECR storage format (b) PECR storage format

Figure 8: The two storage formats proposed in [13].

be performed. In Figure 8(b), the PECR is shown, the pooling operation has a sliding window of size
2× 2. Similar to ECR, the non-zero values are stored in Data with their corresponding indices stored
in Index. Count indicates the non-zero operations that need to be performed. Figure 9 shows how a
complete calculation with convolution and pooling is completed. Combining the convolution operation
and pooling operation, the framework is able to reduce the calculation time and traffic between CPU
and GPU, therefore achieving a relatively high speedup for sparse CNNs. Using the two storage format
proposed, both the runtime and memory usage can be improved.

Figure 9: Convolution and pooling with PECR [13]

MinkowskiEngine: MinkowskiEngine is an auto-differentiation library for sparse tensors and gen-

7



eralized sparse convolution. The most important functions it provides are sparse tensor quantization,
generalized sparse convolution, max pooling, and global/average/sum pooling. The MinkowskiEngine
first generates a sparse tensor given a sparse CNN and converts input into unique coordinates, asso-
ciated features and optional labels. Then the output coordinates are generated based on the input
coordinates. Combing the input and output coordinates a kernel map is generated and stored as pairs
of list of input and output indices. The convolution can be computed by iterating through the list
of input and output indices. For pooling, first the number of inputs per output coordinate and their
indices are found, then depending on the type of pooling the corresponding CUDA library function is
called.

4 Results
Experiments are carried out on the different libraries to gather information about their performance

and potential shortcomings. In this section, first the experiment setup is introduced. Then the
performance of the different libraries is presented. The main metrics used to measure their performance
are time and speedup compared to either not using the libraries or using vendor libraries from NVIDIA.

4.1 Experiment Setup
To compare all the libraries, a desktop GPU, GeForce RTX 3080 was chosen. The GPU has 10GB

of memory and 272 Tensor Cores. It was selected as it is a common GPU used in modern personal
computers. Furthermore, it has the Ampere architecture, on which TensorRT supports accelerating
sparse CNN inference. The operating system is Ubuntu 18.04, CUDA toolkit v11.4, cuDNN v8.2 and
Python 3.6.9 are installed on the GPU.

This paper focuses on the speedup of the reviewed libraries on CNN inference, thus the only metric
used is time, the accuracy of the libraries can also be found in the original papers. As not all libraries
can be easily integrated, and the most important operations when performing inference are convolution
and pooling, some libraries are benchmarked without the entire CNN model but only the feature map
and filter from one convolution layer.

Due to the incompatibility of different libraries, the libraries are divided into groups and bench-
marked using different setups.

• TensorRT is benchmarked using a model developed based on ResNet-18 [16]. The inference
speed under three settings is measured: before pruning and without TensorRT, before pruning
and with TensorRT, and after pruning with TensorRT.

• Sputnik and SparseRT are similar as they try to accelerate inference by skipping the zero cal-
culations. Their implementation focus on the convolution operations and other linear algebra
calculations. Thus they are benchmarked on SpMM given different matrix dimensions and differ-
ent sparsity. The matrices are randomly generated, it has already been proven that the sparsity
pattern does not have a significant impact on both the libraries [1] [2].

• Conv_Pool_Algorithm calculates the operations for an entire convolutional layer or combined
convolution layer and pooling layer, therefore it is benchmarked individually against a vendor
library cuDNN using VGG-19 from [13] and the dataset from ImageNet [19].

MinkowskiEngine is tested but not used for benchmarking because it requires implementing and
pruning the CNN from scratch and cannot be used with pretrained models, which makes it difficult
to compare the performance under the same conditions. Theoretically, it should be able to accelerate
inference because it generates the kernel map after scanning through the matrix and stores the coor-
dinates for the non-zero values and skips the zero calculations, similar to the Conv_Pool_Algorithm.

8



4.2 Evaluation
The evaluation is divided into three parts as mentioned above. For TensorRT, the most important

performance metrics are the speedup and accuracy as it can be used to perform inference. The effect
of sparsity on inference speed is not analyzed in TensorRT as it only supports 2:4 fine-grained sparsity,
which is 50%. For the other libraries, the performance for linear algebra calculations is measured. The
metrics used is time and speedup compared to vendor libraries and the influences of matrix size and
sparsity are analyzed.

4.2.1 TensorRT

Table 1 shows the result for running TensorRT on the model TrafficCamNet [17] based on ResNet18.
As shown in the table, the model is pruned to only 1

8 of its original size, while retaining the accuracy
of the original unpruned model. When TensorRT is used on the unpruned model, the inference is
1.15 times faster than without it. The speedup is mostly due to the smaller model size and fewer
connections in the model. On the pruned model, the speedup is higher, achieving 1.21 times faster. To
get more insight into how TensorRT is able to accelerate the inference, the runtime for each operation
in the CNN was analyzed. It can be noticed that convolutions are performed in different thread blocks,
and only some of the thread blocks are able to achieve around 2 times speedup using TensorRT. This
is because TensorRT uses a 2:4 fine-grained structured sparsity, which means in each contiguous block
of four values, two values must be zero. For blocks that satisfy the 2:4 fine-grained structured sparsity,
TensorRT stores only the non-zero values and compresses the matrix to be 1

2 of its original size. When
using TensorRT on the unpruned model, there is a small speedup because TensorRT can not only
accelerate the convolution but also provides other functionality such as layer and tensor fusion. The
final speed up is only around 1.21x compared to the unpruned model without using TensorRT, this
is because even though the convolution can be computed around 2x faster, it is not the only type of
operation used when performing inference. Other operations such as pooling and data transfer are
also included in the execution time.

Condition Unpruned w/o
TensorRT

Unpruned w/
TensorRT

Pruned w/
TensorRT

Model size 44.32MB 44.32MB 5.2MB
Speedup 1x 1.15x 1.21x
Accuracy 84% 84% 84%

Table 1: Performance of TrafficCamNet running inference on object detection on KITTI [20] in different
settings.

4.2.2 SparseRT and Sputnik

Figure 10 shows the speed of calculating SpMM using SparseRT and Sputnik on matrices of dif-
ferent shapes, the filter matrices all have 90% sparsity. The 90% sparsity was chosen because many
frequently used CNNs such as MobileNet [18] and ResNet can be pruned to 90% sparse without loss in
accuracy. For a multiplication A×B = C, where matrix A (the filter matrix) has dimension M ×K,
B has dimensions K × N and C has dimensions M × N , the matrix shape is defined as (M , K, N)
and shown in the x-axis. The computation time is in nanoseconds and obtained through running
the SpMM for different matrices with the same size repeatedly and averaging the results. To show
the speedup of the libraries, a vendor library cuBLAS is also used to perform the same computation.
Both the libraries are able to accelerate SpMM regardless of the dimensions of the matrices. On aver-
age SparseRT can achieve 1.86x speedup and Sputnik can achieve 1.78x speedup compared to cuBLAS.

9



The graph shows that SparseRT and Sputnik have comparable performance for all the calculations.
For smaller filter matrices SparseRT has better performance while for larger ones its performance de-
grades. This is because SparseRT uses an aggressive unrolling strategy to store the sparse matrix
information in the source code to minimize cache contention while Sputnik stores the matrices in
shared memory. For SparseRT, when a thread computes a matrix multiplication, one matrix is fetched
from the shared instruction and the constant cache, and the other matrix is fetched from the on-chip
data cache. Therefore, the performance of SparseRT is limited by the instruction fetch latency. For
large matrices, the constant cache will be used up and some compile time constants cannot be stored
but instead are compiled to immediate constants in the instructions.

Figure 10: The time to calculate SpMM for different size matrices with 90% sparsity using SparseRT,
Sputnik and cuBLAS.

To understand how sparsity affects the performance of SpMM, both libraries are benchmarked using
matrix dimension of (128, 128, 3136) with sparsity levels of 50%, 75%, 80%, 85%, 90% and 95% for the
filter matrix. The runtime for different matrices is presented in Figure 11. The runtime for cuBLAS
is used as the baseline, it is constant because SpMM is treated the same as GeMM using cuBLAS.
Both the libraries perform better when the sparsity is higher, and as the sparsity becomes higher,
the speed increase also becomes larger. For SparseRT, all the SpMM with above 50% sparsity can be
accelerated with around 2x speedup, while Sputnik can only accelerate matrices with above around
60% sparsity level. The result for Sputnik is in line with the original paper, but it was not explained in
the paper why it would only work with higher sparsity matrices. Potential reasons could be that the
subwarp tiling and reverse offset memory alignment proposed by the paper cannot reduce the workload
when the sparsity is low but instead adds to it during padding, or the row swizzle load balancing does
not lead to a significant improvement in the runtime because the rows do not differ in length too much.

10



Figure 11: The time to calculate SpMM for matrices of dimension (128, 128, 3136) with different
sparsity using SparseRT, Sputnik and cuBLAS.

4.2.3 Conv_Pool_Algorithm

Conv_Pool_Algorithm is benchmarked using VGG-19, the performance using this library is com-
pared with using the vendor library cuDNN. Figure 12(a) shows the time (ms) to perform the cal-
culation of each convolution layer and the speedup using ECR compared to cuDNN, Figure 12(b)
shows the time (ms) to perform the calculation of each convolution layer together withing pooling
and the speedup using PECR compared to cuDNN. The first convolution layer is disregarded as at
the beginning of the calculation cuDNN uses an exhaustive search to find a suitable algorithm for the
calculations. It is clearly shown that both the ECR and PECR proposed can achieve a high speedup
compared to cuDNN, with an average speedup of 16.63x and 17.61x respectively.

(a) The time to calculate one convolution layer using
ECR compared to cuDNN.

(b) The time to calculate one convolution layer
together with pooling using PECR compared to

cuDNN.

Figure 12: The computation time using ECR and PECR compared to cuDNN.

11



Figure 13 shows the network architecture of VGG-19, conv1_1 corresponds to conv_1, conv1_2
corresponds to conv_2, conv2_1 corresponds to conv_3 and so on. Figure 13(b) shows the sparsity of
the feature map of each convolution layer in VGG-19. As the convolution layer goes deeper, the size
of the feature map becomes smaller and the sparsity becomes higher. Combining with Figure 12, it is
clear that the computation speed is greatly affected by the size of the feature map, the larger feature
maps can achieve higher speedups. Therefore, to get a better understanding of how sparsity affects
the computation speed, the convolution layers with the same sizes are grouped together. As illustrated
in Figure 14, each group is separated by a red line, the blue line indicates the sparsity of the layer,
the grey line indicates the speedup of PECR in this layer and the orange line indicates the speedup
of ECR in this layer. The speed up for each group is relatively stable no matter how the sparsity
changes. One possible explanation could be that the time difference is due to how the matrix is stored
and accessed in GPU. When using cuDNN to perform the convolution, it reads in the feature map
and allocates space to store the entire matrix. Later, it iterates through the entire matrix again for
the computation. But when using ECR or PECR, the feature map is only iterated through once and
only the non-zero values are stored. In later computations, only the non-zero values are computed.
Another reason could be that the sparsity difference is not enough to result in a noticeable change in
the computation time.

(a) The network architecture of VGG-19 [21]. (b) The sparsity of the feature map in each
convolution layer in VGG-19 [13].

Figure 13: The architecture and sparsity of feature map for each convolution layer of VGG-19.

It can also be found that for larger feature maps, PECR can achieve a higher speedup than just
using ECR, this is because PECR stores the result of convolution in GPU and computes the pooling
and convolution together, which reduces the data transfer time between GPU and CPU. While for
smaller feature maps, the data transfer time is short enough and PECR does not have an advantage.
As the algorithm tries to load the entire matrix and stores the intermediate result on GPU for further
computation rather than constantly transferring partial data between GPU and CPU, one problem
that appeared during the experiment is that this library has a memory constraint and cannot be used
for calculating large matrices on the GPU used. This can be solved by reducing the model size or using
a GPU with more memory, however, the memory issue still means that this library is not suitable for
large models or industrial-level usage.

12



Figure 14: Sparsity (in %) and speedup using ECR and PECR for each convolution layer in VGG-19.

5 Responsible Research
In this section, some ethical issues related to the paper are discussed. An analysis of the repro-

ducibility of the work described in this paper is performed.

5.1 Ethical Implications
This paper focuses on accelerating CNN inference on existing models using existing datasets. The

only relevant result is the inference speed, therefore, the work in this paper does not involve any
potential ethical issues. However, deep learning and convolutional neural networks have a wide range
of applications, the most popular ones being computer vision and natural language processing. Ethical
implications arise from data collection, to the use of predicted outcomes and the bias in Artificial
Intelligence (AI). There are many examples, such as the AI developed by Facebook putting the label
"Primates" on a video of black men in 2021, or a self-driving car such as Tesla fails to predict the
potential danger on the road and causes a car accident. Possible solutions towards these problems
include removing the bias in the training data and setting up strict regulations about how data should
be used to protect data privacy and ensure data security. Nevertheless, many issues remain unresolved
and the predictions never be 100% trusted. Humans should always have the ultimate control over the
actions of AI systems.

5.2 Reproducibility of Results
The experiments conducted can be reproduced easily as the hardware and software requirements

are listed in Section 4.1. The libraries used are all open source and can be found on GitHub with
installation guides. The models and datasets used for the experiment are all cited and can be easily
downloaded. Additionally, a GitHub repository has been set up with instructions on installation and
solutions to potential problems: https://github.com/Darcy-Chen/rp2022. To change the parameters
or input used for testing, follow the instructions in the README on GitHub. To reproduce the ex-
periment, basic knowledge of CUDA and Python is required.

13



6 Conclusion and Discussion
In this paper, a survey on the state-of-the-art libraries for accelerating sparse CNNs on GPUs has

been performed. The libraries are summarized and evaluated under different settings. TensorRT,
Conv_Pool_Algorhithm and MinkowskiEngine all proposed a way to compress the matrices and only
stores non-zero values. TensorRT only supports the 2:4 fine-grained sparsity structure (50% sparsity)
and accelerates unstructured weight sparsity while Conv_Pool_Algorithm and MinkowskiEngine con-
sider the sparsity in the input matrix. SparseRT and Sputnik both aims to accelerate weight sparsity
by using tiling and load balancing. SparseRT tries to balance the non-zero values across thread groups
at compile time and use them as a part of the code, while Sputnik explores different ways to improve
vector memory access.

Most of the libraries show a relatively high speedup. TensorRT achieved 1.21x speedup for infer-
ence using a pruned model with no loss in accuracy. SparseRT and Sputnik achieved 1.86x and 1.78x
speed compared to cuBLAS respectively when computing SpMM. For both libraries, the speedup is
higher when the sparsity is higher. Conv_Pool_Algorithm achieved around 17x speedup for convolu-
tion and pooling operations compared to cuDNN, and the speedup is mostly affected by the size of
the matrix.

The work presented has some limitations. For Sputnik, the result shows that it only achieves a
high speedup when the matrix is highly sparse. To uncover the reason behind this, more experiments
are needed to analyze which step of the SpMM calculation is slowing down the performance. For
Conv_Pool_Algorithm, sparsity shows no effect on the speedup. Conducting more experiments using
matrices of the same dimension but different sparsity could provide more information on this observa-
tion. However, due to the low compatibility of the libraries, it is very difficult to adapt them to support
input of different formats. Another challenge of using these libraries is that some of them are designed
to perform linear algebra operations for the sparse matrices such as matrix multiplication and pooling.
This adds difficulties to using the libraries on end-to-end models as the supported input format is not
standard PyTorch or Tensorflow models. To further utilize the libraries and benchmark them using
the same model, a program to convert the models and their input to the format each library supports
needs to be developed.

As shown in the result, some accelerators perform better when the sparsity of the model is higher,
the work by Pietron et al [22] studies when CNN models with unstructured sparsity can be accelerated.
Aside from using GPUs for CNN inference, there is also much research done on accelerating CNN
inference on FPGAs and CPUs [23] [24]. As GPUs are more commonly used in desktop computers and
data centers, these research might provide further insight into the deployment of CNNs on embedded
systems and edge devices.

Acknowledgement
The author thanks Pijus Krisiukenas for providing the RTX 3080 for the experiment and Zuowen

Wang for help with hardware setup and suggestions. This research is supported by UZH/ETH Institute
of Neuroinformatics.

14



References
[1] Z. Wang, "SparseRT: Accelerating Unstructured Sparsity on GPUs for Deep Learning Inference",

arXiv:2008.11849, 2020.

[2] T. Gale, M. Zaharia, C. Young, E. Elsen, "Sparse GPU Kernels for Deep Learning", arXiv preprint
arXiv:1902.10901, 2020.

[3] "CUDA Toolkit", NVIDIA Developer. [Online] Available: https://developer.NVIDIA.com/cuda-
toolkit

[4] M. Harris, K. Perelygin, "Cooperative groups: Flexible CUDA thread programming", 2017.

[5] S. Han, H. Mao, W. Dally, "Deep compression: Compressing deep neural networks with pruning,
trained quantization and huffman coding", arXiv preprint arXiv:1510.00149, 2015.

[6] E. Crowley, J. Turner, A. Storkey, O. Michael, "A closer look at structured pruning for neural
network compression", arXiv preprint arXiv:1810.04622v3, 2019.

[7] T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, en A. Peste, "Sparsity in Deep Learning: Pruning
and growth for efficient inference and training in neural networks", arXiv:2102.00554, 2021.

[8] T. Gale, E. Elsen, S. Hooker, "The State of Sparsity in Deep Neural Networks", arXiv:1902.09574,
2019.

[9] J. Frankle, M. Carbin, "The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Net-
works" arXiv:1803.03635, 2018.

[10] C. Hong, A. Sukumaran-Rajam, I. Nisa, K. Singh, P. Sadayappan, "Adaptive sparse tiling for
sparse matrix multiplication", In Proceedings of the 24th Symposium on Principles and Practice
of Parallel Programming, ACM, 2019, pp. 300-314.

[11] X. Chen, "Escoin: Efficient Sparse Convolutional Neural Network Inference on GPUs",
arXiv:1802.10280, 2019.

[12] "NVIDIA TENSORRT," NVIDIA Developer. [Online]. Available:
https://developer.NVIDIA.com/tensorrt.

[13] W. Xu, S. Fan, H. Yu, X. Fu, "Accelerating convolutional neural networks by exploiting sparsity
on GPUs", arXiv preprint arXiv:1909.09927, 2019.

[14] C. Choy, J. Gwak and S. Savarese, "4D Spatio-Temporal ConvNets: Minkowski Convolutional
Neural Networks," 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2019, pp. 3070-3079, doi: 10.1109/CVPR.2019.00319.

[15] "Accelerating Inference with Sparsity Using the NVIDIA Ampere Architecture and NVIDIA
TensorRT". [Online]. Available: https://developer.NVIDIA.com/blog/accelerating-inference-with-
sparsity-using-ampere-and-tensorrt/

[16] K. He, X. Zhang, S. Ren, J. Sun, "Deep Residual Learning for Image Recognition", arXiv preprint
arXiv:1512.03385, 2015.

[17] "TrafficCamNet", [Online]. Available:
https://catalog.ngc.NVIDIA.com/orgs/NVIDIA/models/tlt_trafficcamnet

[18] A. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam,
"MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications", arXiv
preprint arXiv:1704.04861, 2017.

15



[19] J. Deng, W. Dong, R. Socher, L. -J. Li, Kai Li and Li Fei-Fei, "ImageNet: A large-scale hierarchical
image database," 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp.
248-255, doi: 10.1109/CVPR.2009.5206848.

[20] A. Geiger, P. Lenz, R. Urtasun, "Are we ready for Autonomous Driving? The KITTI Vision
Benchmark Suite", 2012 Conference on Computer Vision and Pattern Recognition (CVPR), 2012.

[21] Y. Zheng, c. Yang, A. Merkulov, "Breast cancer screening using convolutional neural network and
follow-up digital mammography", Computational Imaging III, 2018, pp.4, doi: 10.1117/12.2304564.

[22] M. Pietron, D. Zurek, "When deep learning models on GPU can be accelerated by taking advan-
tage of unstructured sparsity", arXiv:2011.06295, 2020.

[23] K. Abdelouahab, M. Pelcat, J. Serot, F. Berry, "Accelerating CNN inference on FPGAs: A
Survey", arXiv preprint arXiv:1806.01683, 2018.

[24] S. Singh, D. Alistarh, "WoodFisher: Efficient Second-Order Approximation for Neural Network
Compression", arXiv preprint arXiv:2004.14340, 2020.

16


