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Summary

Coastal structures with horizontal overhangs are built due to design constraints, but wave loadings sub-
stantially increase under these confined geometries. Vertical structure elements, such as steel gates,
are vulnerable to damage caused by impulsive wave impacts, potentially exposing the coastal zone to
flooding and erosion. Existing formulas to determine impulsive loadings in engineering practice are
limited to purely vertical structures. Research has shown that openings along the surface of structures
relieve wave impact pressures, but there are currently no design methods available to quantify this
pressure release. The stochastic nature of impulsive impacts and uncertain influence of air adds to the
problem complexity. This study aims to investigate the influence of ventilations to reduce wave impact
loadings on vertical structures with horizontal overhangs, applying a theoretical pressure-impulse ap-
proach and computational fluid dynamics.

Laboratory scale experiments were conducted by de Almeida et al. (2019) to evaluate impulsive impacts
from non-breaking standing waves on vertical structures with overhangs. Measurements indicate that
impulsive loadings are associated with the water flow deflection during impacts caused by the exposed
horizontal surface. Moreover, longer overhangs lead to higher impact pressures under the same wave
conditions.

To examine wave impacts beneath a horizontal surface, Wood & Peregrine (1996) proposes the utiliza-
tion of the pressure-impulse theory. Defined as the integral of non-hydrostatic wave pressures over the
impact duration, the pressure-impulse is completely described theoretically by the Laplace equation.
In this study, the pressure-impulse model is implemented for the experimental cases in two and three
dimensions using a finite difference numerical scheme and validated against semi-analytical solutions
with high accuracy. Boundary conditions are modified to include and assess the influence of venting
holes on the pressure-impulse contours. To achieve the largest efficiency in the reduction of pressure-
impulses, rectangular ventilations are located at the critical corner between vertical wall and overhang
and spaced across the structure width.

Variation of geometrical parameters in the three-dimensional pressure-impulse model provides rela-
tionships between the release of pressure-impulses and the dimensions of the ventilations. The di-
mensional overhang length 𝐿 is taken as the scaling factor in the pressure-impulse model so that the
dimensionless overhang length 𝐿 is always unitary. Since the dimensionless wall height 𝐿 varies from
1.0 to 6.0, only cases where the overhang is equal or shorter than the vertical element are considered.
The dimensionless spacing between ventilations along the overhang 𝑆 ranges from 1.0 to 6.0, while
the dimensionless venting hole length 𝐿 and width 𝑊 varies from 0.1 to 0.5. Sensitivity analysis
of the venting parameters in the pressure-impulse model shows that spacing between holes exerts a
much larger individual influence in the release of pressure-impulses than the length or width of the
holes. Widening the venting holes is slightly more effective than increasing their lengths to decrease
pressure-impulses, as the largest loadings are concentrated where the overhang edge contacts the
vertical wall.

Based on the physical model dimensions, the open source CFD software OpenFOAM® is also em-
ployed to simulate standing wave impacts on structures. Three-dimensional simulations are performed
with 𝑆/𝐿 = 2.50, 𝐿 /𝐿 = 0, 0.10 for 𝐿 /𝐿 = 6.0, and with 𝑆/𝐿 = 1.25, 𝐿 /𝐿 = 0, 0.05, 0.10 for
𝐿 /𝐿 = 3.0. Wave conditions are constant in every simulation, with incoming wave height 𝐻 = 0.06
m, wave period 𝑇 = 1.30 s and wave length 𝐿 = 2.42 m. Waves are generated in the CFD model
using the waves2Foam toolbox, in conjunction with the OceanWave3D utility. Convergence of the CFD
model is achieved by gradually refining the mesh near the wave impact region, with spatial step of
3600 points per wave length. Validation between simulated and experimental total wave forces on the
vertical wall shows very good agreement for both overhang sizes.
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Summary v

Separation of impulsive and quasi-static loads is performed with pressure-distribution formulas and
low-pass filters to determine pressure-impulses. The results indicate that the filtering splitting method
is reliable and provides impulses more similar to experiments than the pressure-distribution formulas.
Calculated pressure-impulses are reduced with the inclusion of venting holes in the CFD model, even
for cases where peak pressures are amplified.

Determining vertical impact velocities is required to convert dimensionless to dimensional theoretical
pressure-impulses. Three distinct standing wave theories provide identical upward velocity values.
Velocities were derived from surface elevation measurements at the first wave gauge away from the
overhang. These derived velocities showed the best correspondence of dimensional pressure-impulses
between theoretical and CFD models, with slightly lower velocities for the case of shorter overhang.

The distribution of first impact pressure-impulses along the vertical structure show similar trends among
the pressure-impulse theory and CFD models. While large discrepancies are observed for predicted
maximum pressure-impulses, the relative error of total impulse at wall between both models is below
16% for all main cases, and 9% on average. From both CFD and pressure-impulse model results,
empirical relations are derived between relative venting area 𝐴 /(𝑆𝐿 ) and total impulse release 𝑅 ,
where 𝐴 = 𝑊 𝐿 is the total opening area. For the case of largest relative venting area (10%), the pre-
dicted release of total impulse is 25% in the CFD model and 61% in the pressure-impulse model. The
assumption adopted in the theory of zero pressure-impulse at the venting position is not reproduced
in CFD results, which leads to overestimation of the impact mitigation effects of ventilations using the
pressure-impulse theory. This divergence in the venting boundary condition is possibly linked to the
omission of convective acceleration terms in the pressure-impulse model, which describe the effect
of flow acceleration with respect to space caused by the abrupt geometrical change near the venting
hole. For considering the convective terms in the equations that describe the flow, the empirical relation
from CFD results is recommended over pressure-impulse theory results, especially when ventilation is
applied. Two main types of pressure-impulse release are found in CFD simulations of impacts with
ventilations. The first is a concentrated decrease of pressure at the venting position, measured by the
probe nearest to the hole. The second is a more intense and widespread release, measured both at
sections through and away of the hole and mostly controlled by the spacing between ventilations.

The direct use of impulses as a design variable is proposed in the work of Chen et al. (2019). This
is also endorsed in this study, due to the higher predictability potential of total impulses than peak
forces demonstrated in the analysis of wave impacts. Even small decreases of total impulse due to
ventilations may contribute significantly in the reduction of the design reaction force 𝐹 . Two ventilation
design methods for vertical structures with overhangs subject to wave impacts are proposed based on
the research conducted in this study. The first design method employs the derived empirical relations,
standing wave theories and theoretical pressure distributions to determine the total impulse affecting
the structure. The second design method applies the splitting approach of measured impulsive forces
with low-pass filters to calculate the total impulse, requiring numerical or physical modelling. Further
research is needed to support the models with small and large scale experiments using ventilations
and expand the validity range of the results.
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1
Introduction

1.1. Motivation
This thesis is motivated by the necessity to prevent damage to coastal structures with overhangs caused
by extreme wave impacts. Failure cases demonstrate that impacting waves generate uplift pressures
which threaten the stability of the structure. Climate change and sea level rise will probably increase
the occurrence of this phenomenon. The use of ventilations is proposed to alleviate the impact pres-
sures, but there are currently no design guidelines available. Better understanding of the effects of
ventilations would potentially lead to safer and more economical solutions.

1.1.1. Background
The coastal zone represents a crucial area of socio-economic development by providing valuable subsis-
tence resources, access to marine trade and navigation, along with recreational and cultural activities,
resulting on higher population density than in non-coastal areas. Population growth is expected to
further increase the demand for coastal developments in the next decades. By 2060, the global popu-
lation in the low-elevation coastal zone might increase up to 122% (Neumann et al. (2015)). Moreover,
studies indicate the median average of 0.72 m sea level rise until the end of the century (Nicholls et al.
(2018)), and 60% expansion from 2010 to 2050 of urban areas exposed to flooding caused by storms
expected to occur once every 100 years (Jongman et al. (2012)). Climate change is likely to increase
the frequency and intensity of storm surges and significant wave heights. Shortage of sediment sources
due to natural causes or human activities such as river damming aggravates coastal erosion. These
facts highlight safety concerns against flooding and the need for resilient coastal defense structures
under stronger wave loading scenarios.

Usually during storms or hurricanes, structural failure occurs if the wave loading exceeds the capacity
of the structure. Figure 1.1 demonstrates damage on decks at the U.S. 90 Bridge over Biloxi Bay due
to extreme vertical wave impacts after Hurricane Katrina, when storm surge level reached 6.6 m and
significant wave heights were about 2.6 m (Hayatdavoodi & Ertekin (2016)). Oumeraci (1994) reviewed
17 failure cases of vertical breakwaters and concluded that predicting wave impact loads, along with
dynamic soil characteristics, are the main sources of uncertainties affecting the stability of the structure.

Scientific observations of the force of the waves on maritime structures date back to the 19th century,
when dynamometers were used to measure wave breaking pressures at different levels of a sea wall
(Stevenson (1874)). But only in the 1930s, with the advent of electrical recording equipment, that
more precise measurements became available (Bagnold (1939)), allowing peak pressures to be identi-
fied over timescales in the order of milliseconds. Also known as shock pressures, these peak pressures
can reach values 220 times greater than the hydrostatic pressure (Kirkgöz (1991)).

Wave loads on coastal structures can be categorized as slowly-acting pulsating loads or short and in-
tense impulsive loads (Kisacik et al. (2014)). Impulsive loads are approximately 20 times more intense

1



2 1. Introduction

Figure 1.1: Damage on bridge decks caused by wave impacts during hurricane Katrina (Robertson et al. (2007)).

but 1000 times shorter in duration than pulsating or quasi-static loads (Cuomo et al. (2004)). Sain-
flou (1928) provided formulations to predict quasi-static wave loadings from standing waves using a
second order Stokes theory. Engineers often apply the method proposed by Goda (1974) to predict
pulsating horizontal wave forces on caisson breakwaters and the expanded method by Takahashi &
Hosoyamada (1994), which introduced coefficients to estimate impulsive forces. But these popular
methods fail to account for vertical impacts and, according to Cuomo et al. (2010), they both under-
estimate horizontal impacts for assuming they would be damped by a dynamic response of the caisson.

Several other theories have been developed to describe impulsive wave impacts on vertical structures
(Oumeraci et al. (2001)). Bagnold (1939) proposes that the peak pressures are caused by the abrupt
deacceleration of water mass by a thin layer of air compressed in between the wave front and the sea
wall. Partenscky (1989) defines the instantaneous pressure distribution as the momentum exchange
between the mass of water and the rigid structure. Cooker & Peregrine (1995) present a mathematical
model to determine wave impacts on vertical walls analytically, using the pressure-impulse theory. The
pressure-impulse of impacts has the advantage of being less variable than localized pressures Renzi
et al. (2018). The pressure-impulse model can be adapted to several geometries, such as caisson
breakwaters, vertical cylinders or flap-type energy converter (Walkden et al. (2001), Ghadirian & Bred-
mose (2019), Renzi et al. (2018)).

Previous research indicates that the magnitude of impulsive wave impact pressures on vertical walls is
highly dependent on the wave breaker types (Kisacik et al. (2014)). Oumeraci et al. (1993) classified
four main breaker types according to their temporal and spatial pressure distributions. Hull & Müller
(2002) investigated wave shapes through sequential flash photography, suggesting four main breaker
types: flip through, small air pocket, large air pocket and turbulent bore. The maximum pressure was
found for a plunging breaker type with large air entrapment.

Wave-in-deck loads refer to loads affecting overhanging structures exposed to wave action, includ-
ing decks, piers, jetties, platforms, cantilever slabs and beams (Allsop et al. (2009)). To reduce the
vulnerability of such structures, the air gap approach is recommended, which consists of setting the
deck above the reach of predicted wave conditions (McConnell et al. (2004)). However, sufficient deck
clearance is not always possible due to practical constraints. Prediction methods for wave-deck loads
have been proposed by Shih & Anastasiou (1992), Kaplan (1992), Cuomo et al. (2007), among others.
Based on experimental results and statistical analysis, Shih & Anastasiou (1992) suggested a relation-
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ship between wave height, water density and acceleration of gravity to estimate maximum vertical
pressures on decks. Kaplan (1992) describes the maximum vertical force on a flat plate deck structure
resultant from momentum and drag force analysis, using techniques derived from ship slamming stud-
ies. Cuomo et al. (2007) reviewed and compared six of the most important prediction methods, and
developed a new formula using parametric and dimensionless analysis.

1.1.2. Problem description
As discussed in the background section, knowledge about wave impact pressures on vertical coastal
structures such as caisson breakwaters and horizontal coastal structures such as bridge decks and piers
is well documented. However, research is still scarce regarding the case of a vertical structure com-
bined with a projecting surface. Even though exposed horizontal elements should be avoided from a
wave impact perspective, they are commonly designed in combination with sea walls and breakwaters
in the form of return walls to prevent wave overtopping (Kisacik et al. (2012), van der Meer et al.
(2018)), or due to other reasons. Since this particular enclosed geometry restricts dissipation of wave
energy through overtopping, Kisacik et al. (2012) argues that loading conditions for the combined case
(wall with overhang) are more severe than for the other isolated situations. Castellino et al. (2018) ob-
served a significant increase of the magnitude of wave impacts on recurved sea walls when compared
to vertical walls. Chen et al. (2019) mentioned the importance of developing a new design method for
impulsive impacts on vertical structures with overhangs.

Openings along the horizontal element, also known as ventilations or venting holes (Hofland et al.
(2019)), are proposed to promote energy dissipation and consequently release the wave impact load-
ings. Regarding the use of ventilations as a design tool, three main research gaps can be identified:

First, the theoretical effects of ventilations on the wave impact magnitudes are not described in the
literature. Wood & Peregrine (1996) give analytic solutions to determine wave pressure-impulses on
coastal structures with overhangs for infinite depth, infinitely long decks and in more general condi-
tions. It was demonstrated that the pressure impulse is greater for shallower depths and concentrated
near the landward edge of the deck. Increased shearing forces are found near the seaward edge of
the deck due to strong pressure gradients. Even though ventilations are not included in the theory,
their influence could be evaluated by modifying the boundary conditions of the problem.

Second, despite computational fluid dynamics already being utilized to successfully simulate wave-
structure interactions (Hu et al. (2016)), there still is a need for validated numerical models of wave
impacts on vertical structures that include ventilations. For instance, Huang et al. (2018) simulated
wave impacts on vertical and overhanging coastal structures using OpenFOAM and validated the model
using data from Robertson et al. (2013). The simulation results evaluated the effects of varying over-
hang lengths and bed slopes on the horizontal and vertical forces, but there was no indication of using
ventilations or any other design measures to release those forces.

Third, there are no guidelines available for the utilization of ventilations in engineering design. As
shown in Figure 1.2, the flood gates in the Afsluitdijk represent an example of vertical coastal structure
with an overhanging horizontal slab, which requires dimensioning of ventilations. Another example is
the Eastern Scheldt storm surge barrier, the largest of the Delta Works projects in the Netherlands.
Research is necessary to quantify wave pressure release, reduce uncertainties and provide guidance
regarding the optimal geometry, positioning and spacing of ventilations.

From the identified knowledge gaps, the problem description of this thesis can be outlined in three
main points:

• Theory: demand for testing theoretical methods to determine pressures on vertical structures
with overhangs including ventilations.

• Modelling: demand for validated numerical modelling to assess effects of ventilations for wave
pressure release on vertical structures.

• Design: demand for optimized engineering design of ventilations in coastal structures.
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Figure 1.2: Flood gates in the Afsluitdijk (Rijkswaterstaat (2015)).

1.2. Objectives
The central objective of this thesis is to address the demands for research consequent from knowledge
gaps in the literature. This is achieved by answering the following main research question and sub-
questions:

Research question:

What are the effects of ventilations in the design of vertical coastal structures with
overhangs described by the existing wave impact pressure-impulse theory and

computational fluid dynamics

Research sub-questions:

1. How can the pressure-impulse model be used to assess the three-dimensional effects
of ventilations on overhanging coastal structures?

2. What is the predicted reduction of impulsive wave impact loadings on overhanging
coastal structures with ventilations using computational fluid dynamics models?

3. How to apply the pressure-impulse model and computational fluid dynamics results
in the engineering design of coastal structures with venting and subject to wave im-
pacts?

1.3. Methodology
In order to answer the aforementioned research questions, the thesis work is divided in three main
parts, as depicted in Figure 1.3. Following the literature study, Part I applies a theoretical approach to
assess the effects of ventilations on coastal structures with overhangs. Part II simulates numerically
similar conditions using computational fluid dynamics. Part III comprises analysis and validation of
the performed modelling, discussion and application in engineering design.

• Part I: addresses research sub-question 1.

• Part II: addresses research sub-question 2.

• Part III: addresses research sub-question 3.

Part I employs the pressure-impulse method for wave impacts on horizontal surfaces from Wood &
Peregrine (1996) for boundary conditions including and excluding ventilations. The theory is applied
for problems in two and three dimensions.

Part II utilizes the software OpenFOAM coupled with waves2Foam to predict the influence of venti-
lations on wave impacts for similar cases. The numerical model is validated with experimental tests
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Figure 1.3: Main thesis parts and methodology.

conducted in the Fluid Mechanics Laboratory from TU Delft, as depicted in Figure 1.4 (de Almeida et al.
(2019)).

In Part III, the resulting wave loads from theoretical and computational fluid dynamics models are
compared for validation. Processing, analysis and engineering design implications are also treated.

Completing all three main parts of this thesis addresses every research sub-question and consequently
assures that the main research question is answered.

Figure 1.4: Wave flume used for physical experiments (de Almeida et al. (2019)).

1.4. Structure
The structure of this thesis is organized after the methodology defined in the previous section, as il-
lustrated in Figure 1.5.

Figure 1.5: Thesis structure and chapters.
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The content of each chapter is briefly outlined as follows:

• Chapter 2 - Literature review: introduces the theoretical concepts related to the prediction
of wave impact pressures on vertical coastal structures with overhangs.

• Chapter 3 - Pressure-impulse modelling: applies the available model from literature de-
scribing wave impacts on vertical structures with overhangs to assess the effects of ventilations.

• Chapter 4 - Computational fluid dynamics: sets up and simulates numerically wave impacts
on structures excluding and including ventilations using OpenFOAM.

• Chapter 5 - Analysis and validation: processing and comparison of the main results involved
in the performed theoretical and numerical models.

• Chapter 6 - Discussion: evaluates the validity and applicability of the models for engineering
design and discuss main findings and limitations.

• Chapter 7 - Conclusions and recommendations: summarizes main conclusions of the thesis
and suggests topics for future investigation.



2
Literature review

The main concepts and theories considered for the evaluation of ventilations to relieve wave impact
pressures on vertical structures with overhangs are summarised in this chapter. It includes the most
important methods and design aspects to assess pulsating and impulsive wave impacts on vertical
walls and overview of present research concerning wave loadings on vertical structures with overhangs.
The application of the pressure-impulse theory and the required estimation of wave velocity is then
discussed.

2.1. Vertical structures
Vertical structures in coastal engineering are represented mainly by sea defence structures such as
seawalls, caisson breakwaters and storm surge barriers. Wave loadings, the predominant load for
these structures, are classified as pulsating (quasi-static) or impulsive loads. The following sub-sections
presents the definition and common estimation methods for both loading classifications. Moreover,
conventional design practices for vertical structures are outlined.

2.1.1. Pulsating wave loadings
Pulsating or quasi-static wave loadings are characterized by slow pressure variations at a wall, result-
ing from large period waves. The size of the wave period is much greater than the natural structural
oscillation period, the pressures vary almost in phase with the wave elevation and there is no air en-
trapment phenomenon (Kisacik (2012)). The order of magnitude of the quasi-static loading duration is
usually between 0.25 to 0.5 times the wave period 𝑇, presenting forces as a function of the incoming
wave height (McConnell et al. (2004)). Due to the large period involved, pressures are considered to
be static in design calculations.

Pulsating wave loadings on vertical structures are typically associated in the literature with broken,
standing or upward-deflected waves Oumeraci et al. (2001). Assuming a standing wave scenario with
full reflection at wall, the simplest way of determining the quasi-static pressure distribution 𝑝(𝑦) along
depth (𝑦 direction) is given by linear wave theory (Kisacik (2012)):

𝑝(𝑦) = 𝜌𝑔𝐻 cosh(𝑘(ℎ + 𝑦))
cosh(𝑘ℎ ) for − ℎ < 𝑦 < 0,

𝑝(𝑦) = 𝜌𝑔𝐻 (1 − 𝑦
𝐻 ) for 0 < 𝑦 < 𝐻 , (2.1)

where:

7
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𝐻 = incoming wave height,
𝑘 = wave number (𝑘 = 2𝜋/𝑇),
ℎ = water depth,
𝜌 = water density,
𝑔 = gravitational acceleration.

Resultant forces at the structure can also be obtained by integrating pressures from Equation 2.1 over
the water depth. For a second order approximation of the pressures, Sainflou (1928) proposed a
formula using Stoke’s second order wave theory for relatively deep water:

𝑝 = (𝑝 + 𝜌𝑔ℎ ) 𝐻 + 𝛿
ℎ + 𝐻 + 𝛿 ,

𝑝 = 𝜌𝑔𝐻
cosh(𝑘ℎ ) ,

𝑝 = 𝜌𝑔(𝐻 − 𝛿 ), (2.2)

where:

𝛿 = increase of still water level (𝑘𝐻 coth(𝑘ℎ )/2),
𝑝 = maximum pressure at still water level,
𝑝 = maximum pressure at the toe of the structure,
𝑝 = maximum pressure under wave through.

Reasonably good predictions were found for Sainflou’s method when compared to experimental results,
in the region of incoming wave height to water depth ratios 𝐻 /ℎ between 0.2 and 0.5, but underpre-
dicted pressures outside this range (Oumeraci et al. (2001), McConnell et al. (2004)).

Initially created for caisson breakwaters, the formulation from Goda (1974) can also be applied to
calculate pulsating loads on vertical walls. The method utilizes fourth order wave theory in an attempt
to increase accuracy and is validated after experiments in a large wave channel. The results indicate a
trapezoidal distribution of pressures vertically, with maximum pressures given by

𝑝 = 0.5(1 + 𝑐𝑜𝑠𝛽)(𝛼 + 𝛼∗𝑐𝑜𝑠 𝛽))𝜌𝑔𝐻 ,
𝑝 = 𝛼 𝑝 ,
𝑝 = 𝛼 𝑝 , (2.3)

with parameters described as

𝜂∗ = 0.75(1 + cos𝛽)𝐻 ,

𝛼 = 0.6 + 0.5 ( 4𝜋ℎ /𝐿
sinh(4𝜋ℎ /𝐿 )) ,

𝛼 = 𝛼∗ = 𝑚𝑖𝑛 [(
ℎ − 𝑑
3ℎ )(𝐻𝑑 ) , 2𝑑𝐻 ] ,

𝛼 = 1 − (ℎ − ℎ
ℎ )(1 − 1

cosh(2𝜋ℎ /𝐿 )) ,

𝛼 = 1 − ℎ𝜂∗ for 𝜂∗ > ℎ ,

𝛼 = 0 for 𝜂∗ ≤ ℎ , (2.4)

where:
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𝐿 = wave length,
𝐻 = outside surf zone: 𝐻 = 1.8𝐻 / ; inside surf zone: 𝐻 = 𝐻 at distance 5𝐻 / from wall,
𝐻 / = deep water significant wave height,
𝐻 = maximum wave height among 250 random waves,
𝛽 = wave attack angle,
ℎ = water depth at distance 5𝐻 / from wall,
𝑑 = water depth at the structure,
ℎ = wall height,
ℎ = wall height above still water level.

The Linear Wave Theory, Sainflou and Goda methods follow first, second and fourth order wave theo-
ries, respectively. These are the most common models to predict quasi-static wave loadings on vertical
structures. Figure 2.1 illustrates the pressure distributions on vertical walls according to each method.
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If a wave is stopped by a wall a part is reflected. The result is a superposition of the 
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Figure 2.9 Pressure distribution according to the Sainflou Method 

 

One should realize that when the Sainflou formula is employed in Japan the design 
wave Hi is H1/3, while H1/10 in some other countries. In any case, it is recommended 
that the maximum wave height be applied for the design wave. (Takahashi, 1996) 

2.4.1.3 GODA METHOD (1974) 

Study of fourth order theory for finite amplitude waves has been made by Goda 
(1967). The wave pressure formula proposed by Goda (1974) for the design of 
vertical breakwaters assumes the existence of a trapezoidal pressure distribution 
along a vertical wall. Goda takes �Z[\ as the highest wave out of 250 waves. This 
has a probability of exceedance of 0.4%. Furthermore, the wave height is taken 
seaward of the surf zone. Within the surf zone the height is taken as the highest of 
the random breaking waves �Z[\ at a distance of 5�O/P seaward of the breakwater. 
The pressure distribution is sketched as in Figure 2.10.  

The maximum pressures at different locations are shown as: 
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The α-factors are given by: 
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in which: �: angle of incidence of the wave attack with respect to a line perpendicular to 
the structure; �a: Outside the surf zone: the highest wave in the design sea state is to be 
employed. Its height is taken as �Z[\ 	 1.8�O/P seaward of the surf zone. Within 
the surf zone: the height is taken as the heights of random breaking waves ��+ at 
the location at a distance 5�O/P seaward of the breakwater.  ��+: water depth at a distance of 5�O/P seaward of the breakwater front wall.  
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Figure 2.10 Pressure distribution according to the Goda Method (after Goda,1974) 

Figure 2.1: Pressure distributions as described by the Linear Wave Theory, Sainflou and Goda methods (Kisacik (2012)).
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2.1.2. Impulsive wave loadings
When waves approach shallow water, shoal and break in contact with a structure, intense impulsive or
shock pressures can be generated. Impulsive loadings are defined by very short and intense impact
pressures, composed of a horizontal and vertical components. During the brief impact time, the in-
coming wave that travels with celerity 𝑐 suddenly loses forward momentum, which is converted into an
impulse applied on the wall (Goda (2000)). The geometry of the wall and wave front, incoming wave
steepness, beach slope and air entrapment in water are among the main parameters that influence the
magnitude of the impulsive pressure (McConnell et al. (2004)).

Bagnold (1939) was one of the first to record impulsive pressures from breaking waves. Observations
from small scale tests identified shock pressures when a thin air layer is enclosed between the wave
front and the face of the wall. Peak pressures much larger than the hydrostatic pressure were mea-
sured. Kirkgöz (1991) reviewed several impact pressures empirical results from model, prototype and
field experiments and found maximum impulsive pressures up to 111 times the hydrostatic pressure, as
opposed to 220 times presented by Bagnold (1939). Kirkgöz (1991) performed experiments in a wave
flume 100 m long, 2 m wide, 1.25 m deep and 1/10 slope. It was concluded that maximum impact
pressures can be larger on sloping walls than on vertical walls and they most commonly happen slight
under the still water level. Statistical analysis showed that the stochastic behaviour of the impacts can
be fitted successfully on a log-normal distribution.

Hull & Müller (2002) analysed geometrical variations of the wave shape before, during and after collision
with a vertical wall using a 17 m long, 0.35 m wide, 1.20 m deep wave tank with 1/10 slope. The wave
impacts were photographed in a rate of 20 frames per second. Four breaker classifications were tested,
following work from Oumeraci et al. (1993):

1. Flip through: no air entrapment during wave breaking and the wave is upward deflected. It
consists of an intermediate stage between a total clapotis and a small air pocket breaker.

2. Plunging breaker with small air pocket: sharp sound due to air compression.

3. Plunging breaker with large air pocket: fast and complete wave front steepening with breaker
crest curling.

4. Turbulent bore breaker: collapse of the wave happens early, before reaching the wall.

Hull & Müller (2002) found that the maximum impact pressure occurs for a fully developed plunging
breaker with large air pocket at still water level. The impulsive pressure is regarded as a consequence
of a fluid-solid contact of the breaking wave with the wall. Air entrapment caused secondary oscillating
pressures.

Hofland et al. (2011) performed field scale measurements with extensive amounts of data in the Delta
Flume of Deltares, which is 200 m long, 5 m wide and 7 m deep. Among the 137 impacts measured,
8 impacts had pressures larger than 1 MPa, with 2.7 MPa as the maximum pressure measured. The
largest pressures were observed for flip through impacts.

Partenscky (1989) divided the wave breaking at a vertical wall in three phases: wave approaching
the wall, wave before hitting the wall and maximum wave impact on the wall. Assuming a linear
distribution of pressure 𝑝(𝑦, 𝑡) along the wall during the impact, impulsive pressures then can be
described theoretically as

𝑝(𝑦, 𝑡) = 𝑝 (𝑦)𝑡
𝑡 , (2.5)

with

𝑝 (𝑦) ≈ 2𝜌𝐻
𝑡 𝑉(𝑦), (2.6)

where 𝑉(𝑧) is the horizontal wave velocity component distributed along the wall height 𝑧 and estimated
from linear wave theory for 𝑦 ≤ 0 and approximated as half of the shallow water wave celerity 𝑐 = √𝑔ℎ
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for 𝑧 > 0. The time of increase of pressure until 𝑝 is represented by 𝑡 .

To account for impulsive impacts from breaking waves on vertical walls, Takahashi & Hosoyamada
(1994) introduced modification factors for the Goda (1974) method. A coefficient 𝛼∗ is given as func-
tion of wave and geometrical properties, and applied in Equation 2.3. Due to restrictions associated
with breaking wave conditions and structure geometry, the modified Goda method is out of the scope
of this thesis.

2.1.3. Design practices
For pulsating wave conditions, the design guidelines for vertical structures are relatively well developed.
The formula developed by Sainflou (1928) has been recommended by the Shore Protection Manual and
Coastal Engineering Manual to predict pulsating impacts caused by low steepness waves (McConnell
et al. (2004)). Also, the method developed by Goda (2000) constitutes the benchmark to assess wave
loadings at vertical walls (Hofland et al. (2011), Cuomo et al. (2010)).

For impulsive wave conditions, the method by Takahashi & Hosoyamada (1994) is widely utilized by
engineers to complement the original Goda method. According to Goda (2000), engineers should avoid
designing vertical structures at locations vulnerable to impulsive wave impacts and choose to utilize
mound breakwaters instead. If this is not possible due to physical constraints, it is recommended to
protect the vertical structure with energy-dissipating concrete blocks, allowing for much lower design
pressures to be adopted. The frequency of occurrence of impulsive waves can be even more important
than their magnitudes. Another crucial consideration is the angle of attack 𝛽 which the waves ap-
proach the structure. To evaluate the possibility of impulsive loads, a questionnaire has been proposed
contemplating specific combinations of wave conditions, bottom slope and profile characteristics of a
vertical wall.

A probabilistic approach for design of vertical, composite, perforated and armoured caisson breakwa-
ters has been proposed by the PROVERBS program (Oumeraci et al. (2001)). Concerning the hydraulic
aspects of the program, the objective was to review, test and improve existing design procedures,
especially the ones related to impulsive impact loadings. A new method was developed to obtain hor-
izontal forces on vertical breakwaters after extensive model, prototype and field scale experiments.
The parameter 𝑃% is introduced as a function of wave heights to determine whether non-breaking or
breaking loads are expected. However, the application of the PROVERBS methodologies is complex
and can still lead to significant prediction uncertainty (Kisacik et al. (2012)).

Oumeraci (1994) reviewed the technical causes of failure for 17 vertical and 5 armoured vertical break-
waters, from 1881 to 1987. The reasons for failure were classified in three main groups: causes related
to the structure, causes related to hydraulic conditions and causes related to geotechnical conditions.
The hydraulic conditions group was subdivided in wave loadings, design wave exceedance, wave con-
centration and wave overtopping. It was shown that almost all failures were mainly caused by wave
breaking pressures from violent storms, even though in some situations the depth conditions were
considered to prevent wave breaking on the structure. The early idea that vertical structures would
reflect wave energy towards open sea led many engineers to completely disregard the occurrence of
impulsive wave loadings. The most prevailing failure modes associated with horizontal wave loadings
are sliding and foundation shear failure.

2.2. Vertical structures with overhangs
The response from vertical structures with overhangs subject to wave impacts is significantly distinct
from entirely vertical structures. Only pulsating loads are observed for structures subject to standing
waves with freeboards larger than the wave height. In this case, the loads are equivalent to the situation
without overhangs. But if the standing wave collides with the horizontal overhang, impulsive loads are
generated (de Almeida et al. (2019)). The following sub-sections discuss specific wave loadings and
engineering design issues for this type of structure. Ventilations are introduced as design elements in
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sub-section 2.2.3.

2.2.1. Impulsive wave loadings
Huang et al. (2018) assessed wave impacts of solitary waves on vertical and overhanging coastal struc-
tures using IHFOAM. Two simulations with 𝐻 = 0.133 m and 𝐻 = 0.266 m were validated through
comparison of both wave surface elevations and horizontal forces with experimental data from Robert-
son et al. (2013). Analysis of the loading duration, bed slope and overhangs lengths concluded that
wave impacts are maximum for waves breaking at the structure. But this wave breaking was caused
by a sloping sea bed. For flat sea bottoms, wave breaking does not occur.

Standing waves are resultant from the interaction of incoming and reflected waves by solid vertical
boundaries such as seawalls. The incident and reflected waves have same phases but opposite direc-
tions, which leads to amplification of wave heights and possibility of reaching a suspended structure.
Wilde et al. (1998) investigated impulsive standing wave impacts on a horizontal plate though small
scale wave flume experiments. Resonance was established by the harmonic motion of a wave-maker,
inducing a standing surface wave with increasing amplitude in time until collision with the plate oc-
curred, causing a peak pressure of 14 kPa over a time interval of 10 ms. Similar impulsive impacts
from standing waves are also observed for larger scale physical and numerical experiments.

The scientific literature regarding impulsive breaking wave loadings is very extensive (Hull & Müller
(2002), Oumeraci et al. (1993)). Less known is the impulsive impact caused by non-breaking waves
in deeper water depths or flat bottoms, under confined configurations. Structures with exposed over-
hangs may be vulnerable to impulsive impacts from non-breaking standing waves under the horizontal
surface, which propagate also to the vertical part (Castellino et al. (2018)).

Experiments were conducted by Kisacik et al. (2014) in a small scale wave flume to investigate impulsive
wave impacts on a vertical wall 0.3 m high with an overhanging horizontal slab 0.6 m long. The tests
considered four water depths and five wave periods for regular and irregular waves. The relationship
between measured forces and the hydraulic parameters was analysed to generate response fitting
functions (𝑐 /ℎ ) so that the impulsive vertical force 𝐹 can be estimated as

𝐹 = 𝛽 𝜌𝑔ℎ (𝐻 /ℎ ) , (2.7)

where 𝛽 = −1.5(𝑐 /ℎ ) + 37.7 and 𝛽 = −0.22(𝑐 /ℎ ) + 3.83. This expression is valid for the range
0.45 ≤ 𝐻 /ℎ ≤ 0.80. The quasi-static vertical force 𝐹 can be estimated as

𝐹 = 𝛾 𝐹 , (2.8)

where 𝛾 = 0.021(𝑐 /ℎ ) +0.32 and 𝐹 is the horizontal quasi-static obtained by integrating pressures
from the Goda method through Equations 2.3 and 2.4 with 𝐻 = 1.8𝐻 . Then the rise time 𝑡 can be
estimated from the empirical relationship

𝐹
𝐹 = 0.22𝑡𝑇 − 0.56. (2.9)

Castellino et al. (2018) performed a numerical study on the influence of geometry of caisson break-
waters under standing wave loadings. Simulations of breakwaters with vertical and a fully recurved
wall (90°) were compared for varying wave conditions. Results showed impulse pressures significantly
higher for overhanging recurved walls, with peak pressures concentrated under the recurved parapet
(Figure 2.2). It is argued that this confined wave impact reflects the sudden interruption of horizontal
momentum of water mass due to the geometry of the structure, resulting on impulsive wave impacts
due to flow deflection. Effects of compressibility of water were considered to be minimal and air en-
trapment was not found on the experiments.

Chen et al. (2019) measured breaking and non-breaking wave impacts during laboratory scale experi-
ments for once in 10000 year conditions. The structure consisted of a vertical wall with an overhanging
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The observed force decrease, for decreasing angle of the recurved
wall is similar to the results obtained by Stagonas et al. (2014) for
breaking wave conditions.

6. Concluding remarks

Deep water breakwaters with a recurved parapet wall are often used
to reduce the wave overtopping discharge and therefore to protect and
safely use the port side. In this paper, we compared the pressures and
forces acting on a typical recurved wall versus those acting on a tradi-
tional pure vertical wall of the same height.

Aiming to understand the importance of the geometrical character-
istics on the hydrodynamics, numerical simulations have been carried
out using the IHFOAMmodel, based on the OpenFOAM®. To examine the
essence of the hydrodynamic processes only regular non-breaking waves,
and flat bottom without any berm at the toe of the structure, have been
considered. Although regular waves have been used, it is interesting to
note that the simulated regular wave conditions could represent (ac-
cording to the Rayleigh distribution) the highest waves for irregular
wave conditions with a wave steepness of roughly sop � 0:5s, where sop is
the wave steepness calculated as the ratio of the significant wave height
and the peak wave length in deep water and s represents the wave
steepness reported in Table 1. Therefore the tests represent conditions
with a steepness up to sop � 0:03:

The numerical simulations have shown that a fully recurved wall (90∘

angle) can induce a significantly high impulsive pressure peak.
This pressure peak is due to the wave evolution at the wall. We

identified the phenomenological genesis of the impulsive pressures and
forces on the recurved wall.

When the wave crest reaches the top of the recurved part, a high-

Fig. 17. Diagrams of the pressure and velocity fields at various time intervals for W4 the wave condition. The times considered are: t1 ¼ 20:9s, t2 ¼ 21:0s
and t3 ¼ 21:37s.

Fig. 18. Recurved parapet wall: comparison between numerical pressures
diagrams along the recurved (red line) and vertical (black line) wall. The
envelopes of the pressure peaks are reported on the entire structure for theW5
wave condition. (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)

M. Castellino et al. Coastal Engineering 136 (2018) 1–15
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Figure 2.2: Comparison of impulsive pressures on recurved and vertical walls (Castellino et al. (2018)).

beam. It was observed that impacts from standing waves produced more impulsive impact events
than breaking waves, specially for higher water levels, following the classification from Kortenhaus &
Oumeraci (1998).

2.2.2. Design aspects
Coastal vertical structures with overhangs are treated in the EurOtop Overtopping Manual (van der
Meer et al. (2018)) as seawalls with parapets or wave return walls. These elements are applied at
the top of structures to redirect up-rushing waves seawards, decreasing overtopping and consequently
preventing floods. An example of vertical wall with a fairly considerable parapet subject to impulsive
wave impacts is represented in Figure 2.3. Since the EurOtop Manual is focused on wave overtopping,
no direct guidelines regarding wave impacts on wave return walls or parapets are provided.

Figure 2.3: Sea wall with significantly large parapet at Cascais, Portugal (van der Meer et al. (2018)).

Guidelines for design of coastal structures under wave loadings, by McConnell et al. (2004), highlight
the importance of keeping a minimum vertical distance between the water level exposed horizontal
structural elements like decks and beams of jetties or piers. This air gap clearance is governed by an
extreme wave crest elevation estimated from significant wave heights. Also, Kaplan’s model (Kaplan
(1992)) is recommended to predict vertical forces from wave impacts. However, this model only holds
for horizontal elements detached from vertical structures.

According to Chen et al. (2019), even though impulsive impacts are crucial for the design of marine
structures, they are often not explicitly considered due to the assumption that the structural natural
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period is much longer than the wave loading durations. But dynamic effects of damping and amplifica-
tion from impulsive forces are not always understood, specially for slender structures like sluice gates
and storm surge barriers.

In addition to that, the common engineering methods for determination of wave loadings are not suit-
able for impulsive impact pressures on vertical structures with overhangs. For instance, formulations
from Sainflou (1928) and Goda (1974) are appropriate only for quasi-static loads. Even the modified
Goda method for impulsive loads by Takahashi & Hosoyamada (1994) is inadequate, since it only ap-
plies to solely vertical structures, such as caisson breakwaters. The absence of theoretical insights
on how to deal with these impacts became evident during the renovation projects of discharge sluice
gates in the Afsluitdijk (Chen et al. (2019)). To acquire knowledge about the phenomenon, engineers
implement physical or computational models.

From these models, the traditional engineering design approach consists of initially considering a time-
series of the impacting loadings. Then, statistical examination determines design peak loadings for an
arbitrary frequency of occurrence. This can be done through extreme value analysis, for example. Fi-
nally, these peak loads are applied to an structural model to obtain design reaction loads. For complex
geometries, this approach may lead to vast overestimation of wave loadings on the structure (Chen
et al. (2019)).

As an alternative to computational and physical modelling, the wave pressure-impulse theory devel-
oped by Cooker & Peregrine (1995) might provide a simplified but reliable way to consider impulsive
wave impact pressures. Measurements of wave impacts show good agreements with predictions from
this theory with relative insensitivity to the colliding wave shape (Cooker & Peregrine (1995),Wood &
Peregrine (1996)). Peak pressures from shock wave loadings are highly variable, show stochastic be-
havior and therefore are difficult to predict, but the integral over time of localized pressures is more well
behaved (Renzi et al. (2018)). Moreover, pressure-impulse calculations are much less computationally
expensive than computational fluid dynamics.

As an example of application of the pressure-impulse theory for complex geometries, Renzi et al. (2018)
developed an analytical model to predict wave slamming impacts on a flap-type wave energy converter.
The analytical model was compared to 27 pressure-impulse values measured from experimental data.
The influence of the air pocket during impacts was considered in the model by introducing an air en-
trapment coefficient. Parametric analysis was performed to evaluate a wetting parameter and impact
angle on the flap. The model was validated demonstrating that the peak slamming pressures predicted
for distinct air factors are in a compatible range with the experimental results.

Based on pressure-impulse analysis, Chen et al. (2019) introduced a new design approach for impulsive
loads on structures with overhangs. The new approach comprises filtering impulsive loads from quasi-
static loads using the theoretical principles from Cooker & Peregrine (1995), and statistically analysing
them separately. This approach provides better inclusion of impulsive wave impact loads into structural
models (Chen et al. (2019)).

2.2.3. Ventilations
The use of ventilations or openings along the structure consists of a design alternative sometimes
employed in coastal engineering. For instance, perforated vertical walls are commonly used in some
countries to reduce wave reflection and overtopping, even though few studies exist to assess the ef-
fects of the perforations (van der Meer et al. (2018)).

Gaeta et al. (2012) investigated the effects of venting on prototype jetties exposed to vertical wave
forces. The openings were tested in the form of circular holes at the corners of rectangular plates, in
two configurations: 3% and 10% of the total deck area. When compared to the case without venting,
it was observed that the holes decreased the maximum forces at the deck, as them allowed air and
water to quickly emerge upwards, but the pressure relief amount was not specified.



2.3. Wave pressure-impulse theory 15

Azadbakht & Yim (2016) performed numerical experiments to predict uplift and horizontal wave forces
at bridge superstructures. Ventilations were positioned along the bridge deck spans in the model (Fig-
ure 2.4a). It was argued that the effects of the venting holes are three dimensional since their lengths
are small compared to the bridge deck length. Simulations were performed without the effect of air
(single-phase model), including the effect of air and with ventilations. The results showed 56% aver-
age reduction of the wave loads with venting covering only 3% of the deck area (Figure 2.4b), due the
trapped air offering resistance against wave impacts and consequently increasing loads.

(a)

J. Ocean Eng. Mar. Energy (2016) 2:139–158 155

Fig. 17 a Uplift wave forces on
two 3D models and b
comparison of uplift wave forces
on intact and vented bridges
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cases, the formula estimation of the wave force considering
the maximum %AIR could underestimate the vertical force
up to 100 %, while the amount of underestimation is lower
for other wave field conditions. On the other hand, for larger
wave heights, use of the maximum %AIR value could result
in a substantial overestimation of the vertical force. As shown
in Fig. 19, this overestimation could be up to 200% for some
cases. This indicates that there is room for improvement in
determining the %AIR to provide a better estimation of the
wave forces on bridge superstructures.

A comparison of the numerical calculations of the hor-
izontal wave forces against maximum quasi-static forces
estimations of AASHTO for various wave periods, wave
heights, and bridge superstructure geometries is also pro-
vided in Fig. 19.As shown in the figure, the design expression
of the maximum horizontal force could lead to a reasonable
estimation of the wave forces on bridge superstructures. It
is found that the design expression of maximum horizontal
force could overestimate the wave force for relatively short
period waves.

It is noted that systematic studies on fluid impact effect on
bridge superstructures due to tsunami loads have recently
been presented (Yim et al. 2014a, b; Azadbakht and Yim
2014, 2015). However, the load characteristics of tsunamis,
which are highly transient and bore-like,may be significantly
different than those of wind-generated waves. Thus, results
on the effect of trapped air presented here may not be directly
extensible to those of tsunamis. Separate independent exper-
imental and numerical studies will need to be conducted.

8 Concluding remarks

A comprehensive study was conducted to evaluate the effect
of trapped air in increasing the vertical wave forces on coastal
bridge superstructures.A range ofwave conditions, i.e., wave
period and wave height, was studied as well as different
bridge superstructure geometries. The effect of the trapped air
was assessed by comparing the numerical results of single-
phase (water) and two-phase (air–water) flow simulations.
Single-phase simulations represent the situation where the
air trapped between the bridge girders has no effect on the
wave forces on the bridge and imposes no resistance against
waves striking the bottom of the bridge deck from below.
The two-phase simulations provide a simulation consider-
ing real properties of air and water. The effectiveness of the
bridge deck vents in reducing the uplift forces caused by the
trapped air between bridge girders (i.e., the trapped air effect)
was investigated. The numerical results of the computational
analyses of the wave forces on coastal bridge superstructures
were also compared to estimations from theAASHTOdesign
expressions. The following are the findings of the presented
study:

• Itwas clearly shown that, in the case of havingdiaphragms
as deep as the bridge girders (e.g., experimental setup in
Bradner 2008), the trapped air behaviors in each section
in the cross flow direction (i.e., normal to the wave prop-
agation direction) are practically identical. This is due to
the fact that the diaphragms block the transverse (cross

123

(b)

Figure 2.4: Effects of venting on a bridge deck (Azadbakht & Yim (2016)).

Even though a gap between a beam and vertical wall was considered in the experiments performed
by Chen et al. (2019) to assess impulsive forces due to wave impacts, there is no indication of the
influence of the venting hole for pressure release. The small scale physical model replicated a dis-
charge sluice in the Afsluitdijk, as seen in Figure 1.2. The investigation of venting holes applied in this
particular case would provide guidance to engineers involved in the renovation project of the Afsluitdijk
(Rijkswaterstaat (2015)).

2.3. Wave pressure-impulse theory
To evaluate the effects of wave impact pressures on vertical structures with overhangs, this section
provides an overview of the application of wave pressure impulse theory, its main assumptions, formu-
lation and boundary conditions. The analytical solution using conformal mapping and finite difference
numerical approximations in 2D and 3D are briefly discussed.

2.3.1. General concepts
Wave breaking on structures generates local pressures over a very short time interval that resemble
the shape in Figure 2.5 when recorded. For a specific point, there is an abrupt increase of pressure
relative to the initial hydrostatic level up to the peak pressure 𝑝 .

Although peak pressures have shown high variability for seemingly identical wave characteristics, the
pressure-impulse of the impact is nearly constant (Cooker & Peregrine (1995)). Considering the local
pressures as 𝑝(𝑥, 𝑡) along the time interval from 𝑡 to 𝑡 , the pressure-impulse is defined mathematically
as

𝑃(𝑥) = ∫ 𝑝(𝑥, 𝑡)𝑑𝑡. (2.10)

During wave impacts, the Reynolds number of the fluid motion is high, allowing viscosity terms to be
omitted from the Navier-Stokes equation. Therefore the flow can be described with the Euler equation
as
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Figure 2.5: Typical wave impact pressure signal sketch (adapted from Cooker & Peregrine (1995)).

− 1𝜌∇𝑝 =
𝜕�⃗�
𝜕𝑡 + (�⃗� ⋅ ∇)�⃗�, (2.11)

where 𝜌 is the water density and �⃗� is the velocity vector. Since the impact duration is extremely
short, the fluid acceleration and induced pressure gradient terms are much greater than the nonlinear
convective terms, giving

− 1𝜌∇𝑝 =
𝜕�⃗�
𝜕𝑡 . (2.12)

Integrating Equation 2.12 over time, and using the definition of pressure-impulse from Equation 2.10
yields

− 1𝜌∇𝑃 = Δ�⃗�, (2.13)

where Δ�⃗� is the difference between velocities after and before the impact. For an incompressible fluid
with constant density, ∇�⃗� = 0. Calculating the divergence of Equation 2.13 then leads to

∇ 𝑃 = 0. (2.14)

It has been demonstrated that the pressure-impulse 𝑃 satisfies the Laplace equation for a given set of
boundary conditions. For the problem of wave impact on a vertical structure of depth 𝐿 and overhang
of length 𝐿 , the geometric characteristics are depicted on Figure 2.6. The free surface is horizontal
and the shape of the incoming wave is considered to be unimportant for the pressure-impulse theory
(Wood & Peregrine (1998)).

The boundary conditions are summarized as follows:

• Bottom boundary: no variation of normal velocity before and after the impulse at a stationary
rigid boundary, 𝜕𝑃/𝜕𝑦 = 0.

• Left boundary: no variation of normal velocity before and after the impulse at a stationary rigid
boundary, 𝜕𝑃/𝜕𝑥 = 0.

• Right boundary: pressure impulse dissipates and tends to zero, 𝑃 → 0.

• Top boundary: solid along the overhang length, where the normal derivative of the pressure-
impulse is the unitary liquid approach velocity, 𝜕𝑃/𝜕𝑦 = 1. At the free surface, the pressure is
constant and assumes a zero reference , 𝑃 = 0.
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Figure 2.6: Boundary conditions and geometry of the problem to be solved (adapted from Wood & Peregrine (1996)).

Assuming a triangular pressure time series (Renzi et al. (2018)), the maximum pressure-impulse 𝑃
is related to the peak pressure 𝑝 , according to the equation

𝑝 = 2𝑃
Δ𝑡 . (2.15)

The total impulse on the wall 𝐼 is defined as the integral of the pressure-impulse over the wall height:

𝐼 = ∫ 𝑃𝑑𝑦. (2.16)

The pressure-impulse 𝑃 obtained by the mathematical model is dimensionless. For practical applica-
tions, the conversion to the dimensional 𝑃 is required using the relationship:

𝑃(𝑥, 𝑦) = 𝜌𝑈𝐿 𝑃(𝐿𝑥, 𝐿𝑦), (2.17)

where 𝑈 is the vertical wave impact velocity to be measured or estimated. All other variables are
known.

2.3.2. Analytical solution
A general analytical solution for the Laplace Equation 2.14 subject to the boundary conditions described
on section 2.3.1 has been proposed by Wood & Peregrine (1996). Since there is a singularity problem
at point B, three conformal maps are required to transform the original problem:

1. 𝑤 = 𝑢 + 𝑖𝑣 = cosh(𝜋𝑧/𝐿 ), where 𝑧 is the original plane from Figure 2.6.

2. ℎ = 𝑓 + 𝑖𝑔 = 𝑀𝑤 + 𝑁, where 𝑀 = 2/(cosh(𝜋/𝐿 ) − 1) and 𝑁 = 𝑀 + 1.

3. 𝜁 = 𝜉 + 𝑖𝜂 = 𝐿 cosh (ℎ)/𝜋, generating the 𝜁-plane shown in Figure 2.7.

Solving by separation of variables, the analytical expressions for the pressure-impulse become

𝑃 = ∑𝐴𝑒 cos(𝛼 𝜂), (2.18)

𝐴 = 2
𝛼 𝐿 ∫ 1

𝑀
sin(𝜋𝜂/𝐿 ) cos(𝛼 𝜂)

√𝑏 − 1
𝑑𝜂, (2.19)
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Figure 2.7: New boundary conditions of the problem after conformal mapping (adapted from Wood & Peregrine (1996)).

where 𝛼 = (𝑛 + 1/2)/𝜋/𝐿 and 𝑏 = (cos(𝜋𝜂/𝐿 1) − 𝑁)/𝑀.

Figure 2.8 demonstrates an example of pressure-impulse contours for depth 𝐿 = 2.0 and overhang
length 𝐿 = 1.0, determined by the analytical solution. It can be noted that the pressure-impulse
increases gradually towards the vertical wall and that the largest values are concentrated at the corner
between the overhanging element and vertical structure.

Figure 2.8: Pressure-impulse contours from analytical solution, for . (Wood & Peregrine (1996)).

2.3.3. Numerical solution
To solve the wave pressure-impulse problem described in 2.3.1, a numerical routine has been imple-
mented by Hofland et al. (2019). The mathematical model is discretized into an 𝑁×𝑀 rectangular grid
with Δ𝑥 = Δ𝑦, as shown in Figure 2.9 below.

The 2D Laplace equation 2.14 is then approximated using a second order central difference relaxation
scheme, so it can be rewritten for each 𝐾 iteration in the form:

𝑃 , =
Δ𝑦 (𝑃 , + 𝑃 , ) + Δ𝑥 (𝑃 , + 𝑃 , )

2(Δ𝑥 + Δ𝑦 ) , (2.20)

for 2 < 𝑗 < 𝑁 − 1 and 2 < 𝑖 < 𝑀 − 1. The boundary conditions are set as:

• Bottom boundary: 𝑃 , = 𝑃 , .
1The divisor was added to provide consistent results with the literature.
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Figure 2.9: Discretized 2D numerical grid and boundary conditions.

• Left boundary: 𝑃 , = 𝑃 , .

• Right boundary: 𝑃 , = 0.

• Top boundary: 𝑃 , = 𝑃 , + Δ𝑦 along the overhang length.

• Top boundary: 𝑃 , = 0 at free surface.

Similarly, the numerical algorithm was expanded to approximate the 3D Laplace equation, to consider
not only variations in overhang length, but also width. Using the 3D finite difference scheme from
Onabid (2012), the numerical approximation is defined as

𝑃 , , = 𝑃 , , + Δ𝑡Δ (𝑃 , , + 𝑃 , , + 𝑃 , , + 𝑃 , , + 𝑃 , , + 𝑃 , , − 6𝑃 , , ) , (2.21)

where Δ𝑡 = Δ /6 and Δ = Δ𝑥 = Δ𝑦 = Δ𝑧. The boundary conditions at the 𝑁×𝑀×𝑂 grid then become:

• Bottom boundary: 𝑃 , , = 𝑃 , , .

• Left boundary: 𝑃 , , = 𝑃 , , .

• Right boundary: 𝑃 , , = 𝑃 , , .

• Far boundary: 𝑃 , , = 0.

• Top boundary: 𝑃 , , = 𝑃 , , + Δ𝑧 along the overhang length.

• Top boundary: 𝑃 , , = 0 at free surface.

• Wall boundary: 𝑃 , , = 𝑃 , , .

The 3D solution with modified top boundary condition along the venting holes represents an interesting
tool to account for pressure-impulse loss due to ventilations.

2.4. Vertical impact velocity prediction
To apply the pressure-impulse theory for the case of a vertical structure with overhang, it is required
to estimate the vertical particle velocity at the moment of impact underneath the horizontal surface.
Three wave stading theories are explored in this section.

The most simple method to determine the vertical wave velocity is through Linear or Airy Wave Theory.
It consists of a first order description, where the wave is represented by a simple sine function. However,
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this approximation will probably not be very accurate for surface velocities, especially outside the
applicability range of ℎ /𝑔𝑇 > 0.02 and 𝐻 /𝑔𝑇 > 0.001 (Schiereck (1996)). For a velocity potential
Φ, the vertical velocity 𝑈 = 𝜕Φ/𝜕𝑦 is obtained as

𝑈 = 𝜋𝐻
𝑇

sinh(𝑘(𝑦 + ℎ ))
sinh(𝑘ℎ ) sin(𝑘𝑥 − 𝜔𝑡), (2.22)

where 𝜔 = 2𝜋/𝑇 represents the angular frequency. The expression above still holds for standing waves
by doubling the wave height under the full reflection assumption (Holthuijsen (2009)).

For engineering applications related to wave impacts, however, more advanced wave theories may be
used. Broughton & Horn (1987), for instance, developed a prediction method for vertical wave impact
forces at the underside of a deck, which required estimation of the wave celerity using Stoke’s 5th
Order Theory. For standing waves, Sobey (2009) developed a Stokes-style analytical theory up to 5th
order valid for the range 0.1 < 𝜔 𝐻 /𝑔 < 1.5 and 0.6 < 𝜔 ℎ /𝑔 < 4.0. The vertical wave velocity is
provided through

𝑈 = 𝑘(𝑔/𝑘 ) / ∑𝜖 ∑∑ 𝑗𝐴 , ,
sinh(𝑗𝑘(ℎ + 𝑦))

cosh(𝑗𝑘ℎ ) cos(𝑗𝑘𝑥) sin(𝑚𝜔𝑡), (2.23)

where the coefficients 𝐴 , , are expanded to order 𝑁 = 3 with:

𝑞 = tanh(𝑘ℎ );
𝜖 = 𝑘𝐻 ;

𝐴 , , = −1/√𝑞;

𝐴 , , =
3
16
−1 + 𝑞
𝑞 / ;

𝐴 , , =
1
16
1 + 3𝑞
𝑞 / ;

𝐴 , , = −
1
256

31𝑞 − 62𝑞 − 9
𝑞 / ;

𝐴 , , =
1
256

6𝑞 + 11𝑞 − 63𝑞 + 96𝑞 + 27𝑞 + 27
𝑞 / ;

𝐴 , , = −
1
256

39𝑞 − 53𝑞 + 5𝑞 + 9
𝑞 / ;

𝐴 , , = −
1
256

6𝑞 − 13𝑞 − 5𝑞 + 9𝑞 + 3
𝑞 / .

Tadjbakhsh & Keller (1960) developed a relatively simple theory to describe standing surface waves of
finite amplitude. The motion is determined to third order as a function of the amplitude 𝑎 divided by
the wavelength 𝐿 . The vertical velocity 𝑈 is given by

𝑈 = 1
8 ((𝜔 − 𝜔 ) + (𝜔 − 3𝜔 ) cos(2𝑡)) cos(2𝑥), (2.24)

where 𝑤 = √tanh(𝑘ℎ ).

A comparison of the maximum vertical wave velocities estimated by the three standing wave theories
is depicted in Figure 2.10. The results are shown as a function of the product between wave number
and amplitude 𝑘𝑎 and the product between wave number and water depth 𝑘ℎ . The range of variation
is based on the dimensionless water depth validity 𝜔 ℎ /𝑔, as suggested by Sobey (2009).
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Figure 2.10: Maximum vertical velocities as described by the linear, Sobey and Tadjbakhsh standing wave theories.



3
Pressure-impulse modelling

In this chapter, the theoretical pressure-impulse model is applied to evaluate the effects of venti-
lations on vertical structures with overhangs subject to upward wave impacts. First, the numerical
model in two dimensions is validated against the analytical method through a grid refinement study.
Subsequently, openings are included in the model to assess two study cases and their variations, for
two and three dimensions. Finally, the influence of ventilation and geometrical parameters to release
pressure-impulses are investigated.

3.1. Grid refinement study
Pressure-impulse results are obtained using the analytical and 2D numerical solutions discussed in
Sub-sections 2.3.2 and 2.3.3. The distributions of pressure-impulse are evaluated for wave impacts
beneath structures with unitary overhang length 𝐿 = 1.0, which is the chosen scaling parameter for
2D assessments. For the cases of dimensionless wall heights 𝐿 = 2.0, 𝐿 = 1.0 and 𝐿 = 0.5, the
analytical and numerical results are compared for validation. These are the same cases considered by
Wood & Peregrine (1996). The domain length 𝐿 is set to the maximum between 4𝐿 and 4𝐿 in all
cases to guarantee 𝑃 → 0 at the right boundary condition shown in Figure 2.6.

To solve the Laplace Equation analytically using conformal mapping, the sum in Equation 2.18 is taken
to thirty terms and numerical integration determines the coefficient of Equation 2.19. In this section,
the influence of ventilations for pressure relieve is not yet examined. Next, the iteration and grid size
effects related to the numerical method are shown.

3.1.1. Iteration effects
The accuracy of the results provided by the finite difference scheme of Equation 2.20 is highly depen-
dent on the total number of iterations 𝐾, since the value of the pressure-impulse 𝑃 , is updated under
an iterative process until convergence is reached.

The average difference 𝑑𝑃 of the pressure-impulse values between iterations tends to zero as the to-
tal number of iterations increases. The numerical solution is considered to converge when 𝑑𝑃 < 𝑡𝑜𝑙,
where 𝑡𝑜𝑙 is a tolerance value, small enough so that more iterations would lead to insignificant changes
on the final results. Numerical experiments demonstrated that 𝑡𝑜𝑙 = 10 is appropriate for a precision
of two decimal places, since 𝑑𝑃 rapidly decreases for iterations beyond this threshold (see Figure 3.1).

Figure 3.2 depicts the influence of the number of iterations until convergence on the pressure-impulse
results for wall heights 𝐿 = 2.0, 𝐿 = 1.0 and 𝐿 = 0.5, with spatial steps Δ𝑥 = Δ𝑦 = 0.01. The
results are compared with the analytical solution. It can be noticed that the convergence in general
approximates the numerical solution to the analytical. Also, larger domains need more iterations to
converge. To further increase the number of iterations has proven to be ineffective to decrease the
error of the numerical solution. Instead, the error remains approximately constant due to very small
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Figure 3.1: Pressure-impulse changes between iterations for . , . and . with . .

changes between iterations. Therefore, the effects of the grid size are also investigated.
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Figure 3.2: Effects of the number of iterations for . , . and . with . .

3.1.2. Grid size effects due to structure dimensions
The numerical model performance for each grid size is evaluated based on the relative error compared
to the analytical solution, defined as the average of differences between the numerical and analytical
solutions. After convergence is reached, the error is determined for grid sizes Δ𝑥 = Δ𝑦 = 0.100, 0.050,
0.010, 0.005 and 0.0025 with 𝐿 = 2.0, 𝐿 = 1.0 and 𝐿 = 0.5. These spatial step values are derived
from dividing 𝐿 = 1.0 by a factor 𝐹 into 10, 20, 100, 200 and 400 equally spaced elements, respec-
tively. Since the grid is composed by 𝑁 ×𝑀 points, the number of elements associated to refinements
along a dimension is directly proportional to the square of the total number of elements, which greatly
increases the required computing time.
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Table 3.1 compares the computed relative errors, showing that the numerical results become more
accurate for finer grids and that the optimal grid size is dependent on the geometry of the problem.
For instance, pressure-impulses obtained for 𝐿 = 2.0 with Δ𝑥 = Δ𝑦 = 0.050 are much more accurate
than for 𝐿 = 0.5 with Δ𝑥 = Δ𝑦 = 0.025. This implies that the smallest dimension between 𝐿 and
𝐿 should be the reference to determine optimal grid sizes. The expression to optimize spatial steps
without ventilation then becomes

Δ𝑥 = Δ𝑦 =
min(𝐿 , 𝐿 )

𝐹 , (3.1)

where 𝐹 ≥ 200 produces precise results within 2% relative error. The pressure-impulse values esti-
mated using 𝐹 ≤ 20 are not reliable due to the high relative errors reported. Figure 3.3 shows the
optimized numerical results compared to the analytical solutions for 𝐿 = 2.0, 𝐿 = 1.0 and 𝐿 = 0.5.
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Figure 3.3: Comparison of analytical (black) and numerical (red) solutions for . , . and . after grid
refinement.

Table 3.1: Computed pressure-impulse errors between numerical and analytical solutions.

𝐿 = 2.0
Δ𝑥 = Δ𝑦 Iteration cycles Absolute error Relative error (%)
0.1000 8351 0.0164 15.93%
0.0500 31463 0.0089 8.62%
0.0100 571420 0.0018 1.76%
0.0050 1909400 0.0002 0.14%

𝐿 = 1.0
Δ𝑥 = Δ𝑦 Iteration cycles Absolute error Relative error (%)
0.1000 4397 0.0907 39.29%
0.0500 16756 0.0425 18.40%
0.0100 319080 0.0078 3.39%
0.0050 1079200 0.0033 1.41%
0.0025 3516000 0.0005 0.21%

𝐿 = 0.5
Δ𝑥 = Δ𝑦 Iteration cycles Absolute error Relative error (%)
0.0500 13030 0.2834 47.43%
0.0100 248250 0.0435 7.28%
0.0050 855690 0.0186 1.86%
0.0025 2874600 0.0060 1.00%
0.0013 106750594 0.0048 0.80%
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3.1.3. Grid size effects due to venting dimensions
By replacing the top boundary condition along the horizontal overhang with a free surface condition,
openings of length 𝐿 can be introduced to the problem to simulate venting holes. The opening is lo-
cated at the corner where the vertical wall and the overhang meet, since this is the point of maximum
pressure-impulse.

The influence of the grid size with Δ𝑥 = Δ𝑦 = 0.0050, 0.0033, 0.0025 and 0.0020 is tested for a case of
𝐿 = 0.05 and 𝐿 = 𝐿 = 1.00. As depicted in Figure 3.4, the pressure-impulse contours for each grid
size become more distinct in the region near the gap. The ventilation influence on pressure-impulse
results is considered insensitive to changes for spatial steps 10 times smaller than the opening length,
due to absolute differences of the maximum pressure-impulses at wall in the order of 10 between
this grid size and more refined grids. Consequently, the optimal spatial step considering ventilations is
given by the smallest Δ𝑥 = Δ𝑦 between 𝐿 /10 and Equation 3.1.
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Figure 3.4: Influence of the grid size for a venting hole with . on the pressure-impulse contours (left) and at wall (right).

3.2. Ventilation assessment
The numerical solutions for the 2D and 3D Laplace equation are employed to assess the pressure-
impulse release due to wave impacts on vertical structures with overhangs using ventilations. To
ensure high quality of the results, the insights from the 2D solution concerning number of iterations
and grid refinement are applied also in 3D. In this section, the conceptual pressure-impulse model is
applied to two small-scale reference cases, named Case 1 and Case 2. Both cases are also studied
at later stages under wave impacts using computational fluid dynamics and physical modelling tests.
Case 1 represents impacts on a vertical wall 60 cm high with a 10 cm long overhang and 1 cm long
venting hole. Case 2 refers to a vertical wall 60 cm high with a 20 cm long overhang, 1 and 2 cm long
venting holes. The scaled geometrical dimensions of each case are depicted in Figure 3.5.

3.2.1. Study cases in 2D
In the 2D ventilation assessment using the pressure-impulse numerical model, it is assumed that the
wave impact covers evenly the entire overhang length, both the domain and ventilation widths are
infinitely large and the water depth is level with the wall height. Case 1 is examined for two scenar-
ios: no venting (Case 1a) and 1 cm venting (Case 1b). Case 2 is examined for three scenarios: no
venting (Case 2a), 1 cm venting (Case 2b) and 2 cm venting (Case 2c). The dimensionless equivalent
parameters 𝐿 , and 𝐿 and 𝐿 are derived for both cases by dividing all geometrical dimensions by
their corresponding overhang lengths, as demonstrated in Table 3.2.

Following the recommendations from Section 3.1, the spatial step was defined as Δ𝑥 = Δ𝑦 = 𝐿 /200 =
0.005. This grid refinement is appropriate for the venting hole lengths since Δ𝑥 ≤ 𝐿 /10 holds for all
cases.
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Figure 3.5: Geometrical characteristics of Case 1 (left) and Case 2 (right). All dimensions are in cm.

Table 3.2: Geometrical parameters considered in the 2D simulations for all cases.

Case 𝐿 (cm) 𝐿 (cm) 𝐿 (cm) 𝐿 𝐿 𝐿
1a 10.00 60.00 — 1.00 6.00 —
1b 10.00 60.00 1.00 1.00 6.00 0.10
2a 20.00 60.00 — 1.00 3.00 —
2b 20.00 60.00 1.00 1.00 3.00 0.05
2c 20.00 60.00 2.00 1.00 3.00 0.10

The numerical results for Cases 1 and 2 are summarized on Figures 3.6, 3.7, 3.8 and 3.9. At wall, the
analytical and numerical solutions without openings are identical for Case 2 and present good agree-
ment for Case 1, which further validates the numerical results for these model dimensions.

In Figure 3.6, the decrease of dimensionless pressure-impulse with venting of 𝐿 = 0.1 is evident in
comparison to the situation without venting. There is a significant decrease not only in the maximum
pressure-impulse values, but also in the distance away from the vertical wall that is affected by the
impact.

Figure 3.6: Pressure-impulse contours for Cases 1a and 1b.

Figure 3.7 illustrates the influence of venting towards pressure-impulses along the wall. It can be no-
ticed that, when 𝐿 = 0, the pressure-impulse gradually increases from the bottom of the wall up to
𝑃 = 1 at the top. In contrast, when 𝐿 = 0.10, the pressure-impulse starts reduced at the bottom,
slight increases up to approximately 𝑦 = 5.7 and becomes zero at the top of the wall.
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Figure 3.7: Comparison between pressure-impulses from Cases 1a and 1b at the vertical wall.

A similar trend is observed for Case 2, with smaller relative wall height 𝐿 . Figure 3.8 shows the effects
of venting on the pressure-impulse contours. The reduction is more intense for the longer venting with
𝐿 = 0.10 compared to 𝐿 = 0.05.

Figure 3.8: Pressure-impulse contours for Cases 2a, 2b and 2c.

Along the wall height, Figure 3.9 indicates that the relative change between venting hole sizes is much
smaller than the difference between no venting (𝐿 = 0) and the smaller venting size (𝐿 = 0.10).

The opening in Case 1 was sufficient to dissipate the pressure-impulse completely before reaching the
bottom, since the depth to overhang length ratio is large. The reduction of maximum pressure-impulse
in Case 1 caused by 1 cm of ventilation, or 10% of the overhang length, is 79%. As a matter of
comparison, the same ratio of ventilation by overhang length for Case 2 reduced the pressure-impulse
by 75%. The maximum pressure-impulse, total impulse at wall and release due to ventilations for both
cases are indicated at Table 3.3.

3.2.2. Study cases in 3D
To examine the influence of ventilations in three dimensions using the conceptual pressure-impulse
model, three new parameters are introduced to the problem: the domain width 𝑊, the ventilation
width 𝑊 and the spacing between venting holes 𝑆, which is exactly the double of 𝑊. For consistency,
the overhang length 𝐿 remains the unitary scaling parameter. These parameters are represented in
Figure 3.10.
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Figure 3.9: Comparison between pressure-impulses from Cases 2a, 2b and 2c at the vertical wall.

Table 3.3: Maximum pressure-impulses, total impulse at wall and their reductions due to ventilations for Cases 1 and 2 from 2D
simulations.

Case 𝑃 𝑅 𝐼 𝑅
1a 1.02 — 1.64 —
1b 0.25 75% 0.64 61%
2a 1.03 — 1.31 —
2b 0.34 67% 0.63 52%
2c 0.26 75% 0.50 62%

Ly
W

S LoLh
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xz

Figure 3.10: Parameters considered in the 3D simulations.

The width of the wave crest that collides with the overhang is considered to be infinitely long, a reason-
able assumption for long-crested waves. The wave impact is assumed to occur homogeneously along
the overhang length and width. For Cases 1 and 2, the dimensional width of the model is 80 cm and
the width of the ventilation is the same as the length. All the employed dimensional and dimensionless
parameters are summarized in Table 3.4. The values are identical to the 2D cases, with the inclusion
of parameters related to the width of the domain, in the 𝑧 direction.

The spatial steps considered in the 3D simulation are Δ𝑥 = Δ𝑦 = Δ𝑧 = 𝐿 /100 = 0.010 and 𝐿 /200 =
0.005. Finer grid sizes could not be achieved due to computational constraints. To accelerate the
convergence of the finite difference model in 3D, the simulation started with a coarse grid refinement,
which provided preliminary pressure-impulse values to be used in progressively finer grids through
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Table 3.4: Geometrical parameters considered in the 3D simulations for all cases.

Case 𝐿 (cm) 𝐿 (cm) 𝑊 (cm) 𝐿 (cm) 𝑊 (cm) 𝐿 𝐿 𝑊 𝐿 𝑊
1a 10.00 60.00 80.00 — — 1.00 6.00 8.00 — —
1b 10.00 60.00 80.00 1.00 1.00 1.00 6.00 8.00 0.10 0.10
2a 20.00 60.00 80.00 — — 1.00 3.00 4.00 — —
2b 20.00 60.00 80.00 1.00 1.00 1.00 3.00 4.00 0.05 0.05
2c 20.00 60.00 80.00 2.00 2.00 1.00 3.00 4.00 0.10 0.10

interpolation, until the adopted grid is reached.

The results from 3D modelling of pressure-impulse for all cases are shown next.

Figures 3.11 and 3.12 depict the three-dimensional aspect of the problem. It can be observed that
there is a local release of pressure-impulses where the venting is located. Apart from this localized
effect, no other conclusions can be made in this representation. To detect more nuanced changes,
side and front slices of the problem are examined.

Figure 3.11: 3D view of Cases 1a (left) and 1b (right).

Figure 3.12: 3D view of pressure-impulse contours for Cases 2a (left), 2b (middle) and 2c (right).

The sideways comparison of pressure-impulses shown in Figures 3.13 and 3.14 reflects how the max-
imum values are concentrated at the corner between the wall and overhang for the cases without
openings. However, when ventilations are present, the maximum pressure-impulse shifts to the region
under the deck, reducing the loadings at the vertical wall. A similar effect was found in the 2D simu-
lations, but with much larger intensity. At the sections located in the end of the domain width, away
from the venting hole, the pressure-impulses become practically the same as the situation without ven-
tilation. This indicates that the spacing between ventilations is large enough to completely dissipate
the release effects of venting. The role of spacing and domain width on the model results are treated
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with more depth in Section 3.3.2.

Figure 3.13: Side view of pressure-impulse contours for Cases 1a (left) and 1b (middle and right).

Figure 3.14: Side view of pressure-impulse contours for Cases 2a (top left), 2b (top middle and bottom left) and 2c (top right
and bottom right).

This localized venting effect is also evident from Figures 3.15 and 3.16, which represent the front view
of the pressure-impulses affecting the structure. To effectively reduce wave impacts, multiple open-
ings, larger venting areas or reduced spacing are required.

Figure 3.17 illustrates the distribution of pressure-impulses along the wall, for both Cases 1 and 2.
Cases with venting always have zero pressure-impulse at the top, due to the adopted free surface
boundary condition at this location. Compared to the simulations in 2D, the reduction in pressure-
impulse due to venting is much inferior and mostly apply to the top of the wall, near the overhang
where the impact occurs. The pressure-impulse release is more prevalent in the situation with shorter
relative wall height (𝐿 = 3).

Figure 3.18 compares the results from 2D and 3D simulations at wall. Simulations with 𝑊 = 𝑊 was
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Figure 3.15: Front view of pressure-impulse contours for Cases 1a (left) and 1b (right).

Figure 3.16: Front view of pressure-impulse contours for Cases 2a (left), 2b (middle) and 2c (right).

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6
Pressure-impulse at wall, Ly=6.0

L
h
=W

h
=0

L
h
=W

h
=0 Analytical solution

L
h
=W

h
=0.1 Through hole

L
h
=W

h
=0.1 Edge of hole

L
h
=W

h
=0.1 Away from hole

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

2.5

3
Pressure-impulse at wall, Ly=3.0

L
h
=0

L
h
=W

h
=0 Analytical solution

L
h
=W

h
=0.05 Away from hole

L
h
=W

h
=0.05 Edge of hole

L
h
=W

h
=0.05 Through hole

L
h
=W

h
=0.10 Away from hole

L
h
=W

h
=0.10 Edge of hole

L
h
=W

h
=0.10 Through hole

Figure 3.17: Comparison between pressure-impulses from Cases 1 (left) and 2 (right) at the vertical wall.

performed in 3D for Case 1b and 2c to test how the pressure-impulses in 3D would correlate to the
2D results. The outcome implies that 2D simulations with gaps are approximately equivalent to 3D
simulations with venting across the entire domain in the 𝑧 direction. Therefore only two dimensions
are not sufficient to assess variations of the venting width𝑊 or the spacing 𝑆 between ventings. Three
dimensions are required to correctly assess venting hole effects.

Table 3.5 indicates the maximum pressure-impulse and the total impulse on the wall, at the section
through holes in the cases where ventilations are present. 𝑃 and 𝑃 refer to the sections away
and through the venting hole, respectively. Even though the values are very close without ventilations
(Cases 1a and 2a), the reduction of maximum pressure-impulse and total impulse due to venting are
very distinct.
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Figure 3.18: Comparison between 2D and 3D pressure-impulse results at the vertical wall for Cases 1 (left) and 2 (right).

Table 3.5: Maximum pressure-impulses, total impulse at wall and their reductions due to ventilations for Cases 1 and 2 from 3D
simulations.

Case 𝑃 𝑃 𝑅 𝐼 𝑅
1a 1.02 — — 1.63 —
1b 1.02 0.67 34% 1.50 8%
2a 1.04 — — 1.32 —
2b 1.03 0.75 27% 1.22 8%
2c 1.03 0.63 40% 1.12 15%

3.3. Parametric analysis
The relationship between the geometry of the structure, ventilation dimensions and maximum pressure-
impulses are examined in this section. The objective is to understand the relative significance of the
main parameters and attempt to define formulas for fast preliminary assessment of the influence of
ventilations on vertical structures with overhangs subject to wave impacts.

3.3.1. Geometric parameters
In the 2D simulation without ventilations, the geometric parameters are defined as the vertical wall
height 𝐿 , domain length 𝐿 and overhang length 𝐿 . Since 𝐿 is fixed as the unitary scaling parameter
and 𝐿 is the largest between 4𝐿 and 4𝐿 , it is possible to derive expressions to obtain the maximum
pressure-impulse 𝑃 , and 𝐼 as a function of only 𝐿 . Since no ventilations are used, 𝑃 , is always
located at the upper corner between the overhang length and the vertical wall and therefore is the
peak pressure-impulse affecting both elements.

By varying the dimensionless 𝐿 from 0.2 to 5.0, it is possible to determine the corresponding 𝑃 ,
and 𝐼 from the analytical solution. The results indicate maximum dimensionless pressure-impulses in-
versely proportional to the vertical wall height. When 𝐿 < 1, the overhang length under wave impact
is larger than the vertical wall, leading to a steep increase of pressure-impulses as 𝐿 decreases. For
𝐿 > 3, the value of 𝑃 , tends to 1.0. Two curves were fitted to evaluate the relationship between
the parameters, as shown in Figure 3.19. The total impulse at wall obtained are in accordance to
results published by Wood & Peregrine (1996).

The simple formula derived from curve fitting to obtain 𝑃 , is expressed as

𝑃 , = 2.788𝑒 . + 1.028. (3.2)

The total impulse formula is described by

𝐼 = 0.8844𝐿 . . (3.3)
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Figure 3.19: Fitted curves to determine , and from .

The maximum dimensionless pressure-impulses resultant from the analytical solution, numerical solu-
tion and formula for a range of vertical wall values are compared in Tables 3.6 and 3.7. Alternatively to
the formulas presented, the exact analytical results for a wide range of 𝐿 can be found at Table A.1
in Appendix A.

Table 3.6: Comparison of , for a range of .

𝑃 , Relative error

𝐿 Analytical Numerical Formula Numerical Formula

0.50 1.5724 1.5695 1.6153 0.18% 2.73%
1.00 1.1810 1.1891 1.1517 0.69% 2.48%
2.00 1.0496 1.0577 1.0335 0.77% 1.53%
3.00 1.0225 1.0285 1.0282 0.59% 0.56%
6.00 1.0057 1.0197 1.0280 1.39% 2.22%

Table 3.7: Comparison of for a range of .

𝐼 Relative error

𝐿 Analytical Numerical Formula Numerical Formula

0.50 0.7033 0.7014 0.6960 0.27% 1.04%
1.00 0.8722 0.8795 0.8844 0.84% 1.40%
2.00 1.1228 1.1336 1.1238 0.96% 0.09%
3.00 1.2979 1.3168 1.2928 1.46% 0.39%
6.00 1.6234 1.6308 1.6428 0.46% 1.19%
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3.3.2. Ventilation parameters
The main ventilation parameters involved with the theoretical pressure-impulse model are the length
of the venting hole 𝐿 , the width of the venting hole 𝑊 and the spacing 𝑆 between ventilations. The
area of ventilation is defined as 𝐴 = 𝐿 𝑊 and the relative pressure-impulse release due to venting is

𝑅 = 1 − 𝑃 ,
𝑃 ,

, (3.4)

where 𝑃 , and 𝑃 , are maximum pressure-impulses at wall including and excluding ventilations
at any given cross-section, respectively. 𝑃 , can be obtained from Equation 3.2. Similarly, the relative
total impulse release due to venting is given by

𝑅 = 1 − 𝐼 𝐼 , (3.5)

where 𝐼 and 𝐼 are the total impulses on the wall including and excluding ventilations at any given
cross-section, respectively. 𝐼 can be derived using Equation 3.3. Due to the ratios between the max-
imum pressure-impulses and total impulse in Equations 3.4 and 3.4, both 𝑅 and 𝑅 represent the
release also if dimensional quantities are considered.

The current analysis examines the maximum pressure-impulse and total impulse at the vertical wall, in
the middle section between two consecutive venting holes. In total, 41 3D simulations with 𝐿 = 𝐿 = 1
and Δ𝑥 = Δ𝑦 = Δ𝑧 = 𝐿 /50 were performed for the ranges of 1.0 < 𝑆 < 6.0, 0.1 < 𝐿 < 0.5 and
0.1 < 𝑊 < 0.5. Within these ranges, 13 simulations where 𝑆/𝐴 > 100 were avoided due to very
small significance of the openings to release pressure-impulses in the section away from the holes.
The release of total impulse due to venting among the considered parameters varied from 2% to 94%.
For 𝐿 = 2.0, 3.0 and 6.0, the same experiments were repeated. The complete results are available at
Tables A.2, A.3, A.4 and A.5 in Appendix A.

To investigate the influence of each parameter individually, the case of 𝑆 = 3.0 and 𝐿 = 𝑊 = 0.3
is utilized as reference for comparison. The height of vertical wall is fixed as 𝐿 = 1.0. Table 3.8
demonstrates the qualitative sensitivity analysis conducted. Surely, the spacing between ventilations 𝑆
has the highest influence on the release of maximum pressure-impulse and total impulse at wall among
the three parameters. The width of the opening 𝑊 influences slightly more than the length 𝐿 , since
it affects the direction where the largest pressure-impulses are concentrated, near the landward edge
of the overhang.

Table 3.8: Sensitivity analysis of the ventilation parameters.

𝑆 𝐿 𝑊 Δ𝑆 𝑃 Δ𝑃 𝐼 Δ𝐼
𝑆 1.0 0.3 0.3 -67% 0.37 -63% 0.25 -64%
𝑆 3.0 0.3 0.3 0% 1.00 0% 0.70 0%
𝑆 6.0 0.3 0.3 100% 1.16 16% 0.85 21%

𝑆 𝐿 𝑊 Δ𝑆 𝑃 Δ𝑃 𝐼 Δ𝐼
𝐿 , 3.0 0.1 0.3 -67% 1.09 9% 0.78 11%
𝐿 , 3.0 0.3 0.3 0% 1.00 0% 0.70 0%
𝐿 , 3.0 0.5 0.3 67% 0.95 -5% 0.64 -9%

𝑆 𝐿 𝑊 Δ𝑆 𝑃 Δ𝑃 𝐼 Δ𝐼
𝑊 , 3.0 0.3 0.1 -67% 1.10 10% 0.78 11%
𝑊 , 3.0 0.3 0.3 0% 1.00 0% 0.70 0%
𝑊 , 3.0 0.3 0.5 67% 0.92 -8% 0.62 -11%

As represented in Appendix A, the relationship between different variables is tested to identify functions
which predict 𝑅 and 𝑅 as functions of 𝑆, 𝐿 and 𝑊 . Good correlation was found against the relative
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venting area parameter 𝐴 /𝑆𝐿 . Figure 3.20 represents the data, fitted curves and 90% confidence
bounds. The expression to estimate 𝑅 becomes

𝑅 =
213.80 − 9.59

+ 29.20
. (3.6)

𝑅 is determined by

𝑅 =
163.30 + 18.48

+ 18.00
. (3.7)
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Figure 3.20: Fitted curves to determine and from ventilation parameters.

Equations 3.6 and 3.7 are only valid for the aforementioned ranges of 𝑆, 𝐿 and 𝑊 . It is implicitly
assumed by using 𝐴 that the influence from 𝐿 and 𝑊 are equal, but this uncertainty, for small
venting holes areas, is considered to be less than the uncertainties associated with more complex for-
mulas. After obtaining 𝑅 and 𝑅 from the formulas, the dimensionless maximum pressure-impulse
and total impulse acting on the structure with ventilations can be estimated from Equations 3.4 and 3.5.

The statistical fit shows that the total impulse and its associated release from the simulations are more
predictable than the maximum pressure-impulse. The same behaviour is found from the analytical
simulations. From the relationship demonstrated between 𝐴 /𝑆𝐿 , 𝑅 and 𝑅 , interesting design im-
plications can be inferred. For instance, selecting 𝐴 /𝑆𝐿 > 10% would release both 𝑃 and 𝐼 by
more than 50%. Another point is that the dimensionless relative venting area 𝐴 /𝑆𝐿 is equivalent to
the dimensional 𝐴 /𝑆𝐿 , since

𝐴
𝑆𝐿 = 𝑊 𝐿

𝑆𝐿 = 𝑊 𝐿 𝐿 𝐿
𝑆𝐿 𝐿 𝐿

= 𝐴
𝑆𝐿

. (3.8)
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Computational fluid dynamics

Wave impact simulations using computational fluid dynamics are carried out in this chapter. Two
reference cases of vertical walls with overhangs are investigated regarding the influence of venting
holes. They correspond to dimensional versions of Cases 1 and 2 from the pressure-impulse modelling
assessment. The main equations which govern the flow and the wave generation method are briefly
explained. The modelling procedure consists mainly of defining boundary conditions, establishing
measurement locations and mesh generation. In 2D, the appropriate mesh refinement is determined
though validation with experimental data. Finally, 3D simulations are performed to characterize the
relative effect due to ventilations.

4.1. Overview
4.1.1. Governing equations
The open source computational fluid dynamics (CFD) software OpenFOAM® provides a collection of
solvers and utilities appropriate to solve advanced fluid dynamics problems. The procedure to imple-
ment and execute an OpenFOAM® case is divided in three main stages: pre-processing, solving and
post-processing. In the first stage, the creation of meshes define the domain geometry, boundary
conditions and points where the solutions are saved. Subsequently, a variety of solvers are applied to
determine the variables of interest from equations describing the flow. The output is then manipulated
and visualized using post-processing tools in the last stage of the process.

Regarding the problem of impulsive wave impacts on structures, fluid velocities �⃗�, pressures 𝑝 and
forces �⃗�, along 𝑥, 𝑦 and 𝑧 directions over time 𝑡 are the main variables of concern. The governing
equations solved by OpenFOAM® to calculate these variables are (Holzmann (2016)):

1. Mass balance equation (Navier-Stokes)
𝜕𝜌
𝜕𝑡 = −∇ ⋅ (𝜌�⃗�)

2. Momentum balance equation (Navier-Stokes)
𝜕
𝜕𝑡𝜌�⃗� = −∇ ⋅ (𝜌�⃗� ⊗ �⃗�) − ∇ ⋅ 𝜏 − ∇𝑝 + 𝜌𝑔

3. Total energy equation

4. Kinetic energy equation

5. Internal energy equation

6. Enthalpy equation

36
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OpenFOAM® offers numerical schemes to apply the shear rate tensor 𝜏, as well as gradient ∇ and
divergence ∇⋅ operators. Since the fluid is considered to be incompressible, the enthalpy and energy
equations are not used in the wave impact simulations. The PIMPLE algorithm solves the Navier-Stokes
equations by coupling pressure and momentum (Holzmann (2016)), using the volume of fluid method
(Hirt & Nichols (1981)). This algorithm finds a steady-state solution using under-relaxation until con-
vergence is reached, and then proceeds to the next time step.

From the solutions of the mass and momentum balance equations, a scalar field 𝛼 is derived for each
finite volume to track its fluid content, where 𝛼 = 0 for air and 𝛼 = 1 for water. Then it is possible to
convey any fluid property Φ along space using the weighting

Φ = 𝛼Φ + (1 − 𝛼)Φ . (4.1)

4.1.2. Wave generation
The waves2Foam toolbox (Jacobsen et al. (2011)) is required to implement numerical modelling of
surface waves in OpenFOAM®. It has been validated and extensively employed in coastal and offshore
engineering problems where detailed wave simulations are desired.

Reflected waves can interact with the generated waves, impairing the quality of the simulations and
possibly causing discontinuities in the surface elevation boundary. To avoid this effect, an explicit
relaxation zone technique is utilized to correct the velocity �⃗� and 𝛼 fields after each time step. The
relaxation function is expressed as

Ψ(𝜒) = 1 − exp𝜒 . − 1
exp 1 − 1 , (4.2)

where 𝜒 = 0 at the inner edge and 𝜒 = 1 at the outer edge of the relaxation zone. The correction is
then applied inside the relaxation zone for Φ quantities (�⃗� or 𝛼) using

Φ = ΨΦ + (1 − Ψ)Φ , (4.3)

where Φ originates from solving the governing equations, and Φ designates solutions
obtained by an arbitrary wave theory defined in waves2Foam. In this work, Φ is handled by the
utility OceanWave3D (Engsig-Karup et al. (2009)), which generates waves in the first 10 meters along
the longitudinal domain direction, and the absorption zone 40 to 50 meters away from the origin. The
rectangular relaxation zone of inlet type is defined from 12 to 20 meters. These dimensions depend
on the problem hydraulic conditions and are shown in Figure 4.1.
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Figure 4.1: Wave generation, relaxation and absorption zones along the computational domain.
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4.2. Model set-up
4.2.1. Initial and boundary conditions
A 30-meters long, 1-meter deep numerical wave flume is created in order to replicate experimental
conditions from de Almeida et al. (2019). Similarly to the pressure-impulse modelling performed in
Chapter 3, simulations are conducted to characterize wave impacts on a vertical wall with 60 cm in
height and 10 cm or 20 cm in overhang length (Cases 1 and 2, respectively). Simulations in 2D are
only used for initial testing purposes. To study the effects of ventilations, 3D models of width equal to
12.50 cm are utilized, which would allow for complete dissipation of ventilation effects for square holes
of sides equal to 1 cm, according to the pressure-impulse model results.

Boundary conditions of wall type with no-slip velocity are assigned to vertical wall, overhang and bot-
tom of the flume. Inlet boundaries are applied to the vertical faces near the wave generation zone. The
top boundary is attached to atmospheric conditions and the lateral flume faces are of empty type in 2D
and of symmetry type in 3D models. A summary of the boundary conditions setup is presented at Ta-
ble 4.1. Fluid track 𝛼, velocity 𝑢 and non-hydrostatic pressure 𝑝 fields are assigned values as described.

Table 4.1: Boundary conditions employed in the numerical wave tank.

Boundary Condition Type 𝛼 𝑢 𝑝
Inlet patch waveAlpha waveVelocity zeroGradient

Bottom wall zeroGradient slip zeroGradient
Structure wall zeroGradient slip zeroGradient

Atmosphere patch inletOutlet pressureInletOutletVelocity totalPressure
Ventilation patch inletOutlet pressureInletOutletVelocity totalPressure
FrontBack empty/symmetry empty/symmetry empty/symmetry empty/symmetry

Regular waves of period 𝑇 = 1.3 s and incoming wave height 𝐻 = 6 cm characterizes all simulations
carried out. The constant water level of 60 cm is level with the overhang elevation. At the inlet region,
waves are generated in OceanWave3D for 40 s, allowing the waves to completely develop before the
start of the CFD calculations. Figure 4.2 depicts the wave propagation along time at 𝑥 = 25 m.
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Figure 4.2: Initial wave development at m.

The waves are generated as a stream function with wave length 𝐿 = 2.42 m and obtained by solving
a three-dimensional nonlinear potential flow problem using a multigrid finite difference scheme in
OceanWave3D (Engsig-Karup et al. (2009)).
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4.2.2. Probes and wave gauges
Particular points of interest are tracked for processing the simulation results. Probes record the non-
hydrostatic fluid pressures and flow velocities on the wall structure and overhang. The total forces on
the wall face is derived by integrating the pressures from each probe over the corresponding areas.
Wave gauges measure the surface elevations over time. In total, 12 probes and 10 wave gauges are
used at the locations depicted in Figures 4.3 and 4.4.
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Figure 4.3: Side view of probe locations (all units in cm).
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Figure 4.4: Side view of wave gauge locations (all units in cm).

In order to measure impulsive forces that occur in a very short time, it is crucial that the solver time
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step is small enough. For all simulations, the computation time interval 𝑑𝑡 varies from 1 × 10 s to
1 × 10 s, according to the relationship given by

𝐶 = �⃗�𝑑𝑡
Δ𝑥 ≤ 1, (4.4)

where the Courant number 𝐶 represents a stability parameter set as 0.45, based on the wave impact
simulations carried out in Castellino et al. (2018).

The function waveGaugesNProbes is executed to assign the wave gauges locations and sampling rate.
The output control is set to the adjusted time step from Equation 4.4, allowing for an adequate mea-
surement frequency.

4.2.3. Mesh creation and testing
Using the utility blockMesh, several two-dimensional meshes are created from a composition of blocks
with controlled number of segments along each coordinate direction. The quantity of cells resultant
from the divisions for Meshes 1, 2, 3, 4 and 5 are shown in Table 4.2. The cells are approximately
square in the impact region for better stability. Each mesh refinement is classified by the correspondent
number of points per wave length (p.p.w.l.).

Table 4.2: Properties of test Meshes 1, 2, 3, 4 and 5.

Mesh number Minimum Δ𝑥 ≈ Δ𝑦 (mm) Points per wave length Total number of cells

1 16.0 150 68420
2 11.0 225 154788
3 8.0 300 273680
4 5.0 450 250996
5 0.4 3600 179068

Even though Mesh 4 is more refined than Mesh 3 in the impact region, the total number of cells are
less due to the application of an expansion coefficient to improve efficiency by gradually decreasing
the cell size 5 times along the 𝑥 direction. Mesh 5 further optimizes Mesh 4 by using the expansion
approach also in the 𝑧 direction and receives a rectangular refinement region with two levels at the
corner between the wall and overhang through the utility snappyHexMesh. The visual comparison
between meshes is displayed in Figure 4.5.

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 (d) Mesh 4 (e) Mesh 5

Figure 4.5: Geometries of 2D test meshes (zoomed in at impact region).

Considering Case 1a, with 10 cm overhang and no ventilation, test runs are executed for each mesh
from 40 s to 50 s after the beginning of the wave generation. All mesh schemes are then validated
against experimental measurements from de Almeida et al. (2019), where no ventilations are present.
Figure 4.6 depicts how the convergence of impulsive force peaks is sensitive to mesh refinements. The
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validation over the entire force time series for Cases 1a and 2a using 2Dmeshes is depicted in Figure 4.7.
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Figure 4.6: Comparison of forces between test runs and experimental data for the first simulated impact at Case 1a.
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Figure 4.7: Validation of numerical surface elevation from incoming waves (top) and total forces on the wall for Cases 1a (middle)
and 2a (bottom).
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The results show good agreement between numerical simulations and the experimental data. How-
ever, it is essential that the computational grid is refined enough to converge the peak impulsive forces.
Only quasi-static loadings are observed using the most coarse grid, Mesh 1. Due to the need for accu-
racy to assess ventilations, Mesh 5 is then selected as the reference refinement for all simulations. A
comparison between numerical and experimental incoming wave surface elevations is also presented.
Generally, the numerical results underestimate peak measured forces, but the impact durations and
quasi-static loadings are well predicted.

4.3. Study cases results
After validating two-dimensional wave impact models, the effect of ventilations is examined through
three-dimensional models in this section. The meshes are now also refined along the width, including
additional elements to account for openings (see Figure 4.8). Since the side boundary conditions are
symmetric, only half of the gap width is simulated. At least 32 cells compose the surface area relative
to the opening to ensure that the flow is correctly resolved.

Figure 4.8: Three-dimensional mesh for the case of 10 cm overhang, 1 cm ventilation.

The simulations are performed on an Intel Xeon® 3.50 GHz cluster equipped with 64 GB of RAM and
using 20 processors in parallel. Figure 4.9 shows the surface elevation before, during and after wave
impact at a vertical wall with 1 cm ventilation. Snapshots for other cases are available in Appendix C.

(a) 𝑡 = 40.40 s (b) 𝑡 = 40.50 s (c) 𝑡 = 40.60 s

Figure 4.9: Surface elevation before (left), during (middle) and after (right) the first impact, for the case of vertical structure
with overhang 10 cm long and 1 cm of venting width.

4.3.1. Pressure release
The most visible pressure differences due to venting holes can be seen at Probe 1 located at the corner
between the wall and horizontal deck. Figure 4.10 illustrates how a venting hole with length 𝐿 = 1 cm
and width𝑊 = 1 cm affects pressures locally during the first simulated impact. At the section through
venting, the peak pressure 𝑝 decreases approximately 30%. Consequently, there is a substantial
reduction also of pressure-impulse 𝑃 at this point, which can only be quantified after separation of
impulsive and quasi-static loadings. The same behaviour is observed for the cases of 20 cm overhang
with 𝐿 = 𝑊 = 1 cm and 𝐿 = 𝑊 = 2 cm (Figure 4.11), showing peak pressure releases 𝑅 of 18%
and 30%, respectively.
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Figure 4.10: Comparison of pressures measured at probe 1 for Case 1.
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Figure 4.11: Comparison of pressures measured at probe 1 for Case 2.

In analogy to the releases of pressure-impulse 𝑅 and total impulse 𝑅 , the release of peak pressure
𝑅 is defined here as

𝑅 = 1 − 𝑝 ,
𝑝 ,

. (4.5)
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Table 4.3 lists the peak pressure 𝑝 , release of peak pressure 𝑅 and impact instants 𝑡 for each case.
Negative 𝑅 values mean that there is an increase peak pressure with venting 𝑝 , , compared to
the reference without ventilation 𝑝 , .

Table 4.3: Peak pressures and impact instants at Probe 1 for each simulated case.

Case 𝐿 (cm) 𝐿 = 𝑊 (cm) 𝑝 (Pa) 𝑅 𝑡 (s)

1a 10.00 0.00 950 — 40.3882
1b, away from hole 10.00 1.00 1023 -8% 40.4018
1b, through hole 10.00 1.00 663 30% 40.3871
2a 20.00 0.00 2224 — 40.4016
2b, away from hole 20.00 1.00 2712 -22% 40.4032
2b, through hole 20.00 1.00 1829 18% 40.4039
2c, away from hole 20.00 2.00 3258 -46% 40.4051
2c, through hole 20.00 2.00 1567 30% 40.4058

The pressure-impulse decrease through venting is aligned with the mathematical model treated in
Chapter 3. However, the increase of peak pressures at sections away from holes on the cases with
venting, was not expected and cannot be directly inferred from the pressure-impulse model. But there
is a delay effect at the section away from the hole, which slightly increases the time of impact 𝑡 , and
generally causes the impact shape to become narrower in comparison to the cases without venting.
Consequently, as long as the spacing between ventilations is long enough to disperse the venting pres-
sure release, the integral of the pressure over the impact duration away from hole is approximately
equivalent to the situation without venting, in agreement with the mathematical model.

A possible explanation for the peak increase and shorter duration of impacts lies on the increased wa-
ter flow velocities in the region around the hole. At the beginning of the impact, some water mass
first escapes through the venting and attenuates the impulse, even at the section away from the hole.
Since the gap is small, only a limited amount of water is able to flow out in the very short duration of
impact. The remaining mass then collides against the overhang with an increased velocity associated
with higher forces and pressures. But this increase in peak forces is compensated by a shorter impact
force area. Theoretically, a venting gap wide and long enough to allow outflow of all mass involved with
the wave impact would attenuate all impulsive forces and the impact on the wall would be equivalent
to the case without overhang at all.

In Chapter 5, a deeper analysis is done regarding pressure-impulses for the simulation results, by
separation of impulsive and pulsating loads. Also, the effects of ventilations on the velocity field are
discussed.

4.3.2. Pressure fields
Figures 4.12 to 4.15 compare the instantaneous non-hydrostatic pressure field for all cases during the
first simulated wave impact, at 𝑡 = 40.40 s. The results imply that ventilations release pressure locally
in a similar fashion to the pressure-impulse model discussed in Chapter 3.

Clearly, the efficiency of the venting holes is higher for the longer overhang, where the largest pressures
occur. The side view of pressure contours depicts the concentration of loadings at the corner between
the vertical wall and the overhang. In the presence of ventilations, this peak of pressures shifts to the
region below the horizontal surface, as depicted in Figures 4.12 and 4.13 for Cases 1 and 2, respectively.

By examining the front view of the instantaneous pressure contours at the moment of impact (Figures
4.14 and 4.15), it may be inferred that a hole 1 cm wide almost has no effect on the decrease of load-
ings for a structure with overhang 10 cm long, and the 2 cm gap would release a significant amount
of pressures by itself. But these interpretations are misled due to the change of geometry between
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Figure 4.12: Side view of pressure distribution in Cases 1a (left) and 1b (right).

Figure 4.13: Side view of pressure distribution in Cases 2a (left), 2b (middle) and 2c (right).

cases, which modifies the flow and consequently advances or delays the exact moment of the impulsive
impacts. Even though the changes are very short, this phenomenon hinders the ability to quantify the
real influence of ventilations due to the intense and fast nature of impulsive forces.

Therefore, the next investigations in Chapter 5 are based on the cumulative distribution of pressures
along time from pressure-impulse and total impulse quantities.

Figure 4.14: Front view of pressure distribution in Cases 1a (left) and 1b (right).
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Figure 4.15: Front view of pressure distribution in Cases 2a (left), 2b (middle) and 2c (right).



5
Analysis and validation

In this chapter, the pressure-impulse mathematical model from Chapter 3 is compared with compu-
tational fluid dynamics simulations performed in Chapter 4. To this end, some further translations of
results are necessary. Splitting of the simulated impulsive and quasi-static forces is achieved using
theoretical pressure distributions and low-pass filters. Both separation methods are evaluated against
available experimental data. Vertical impact velocities are determined from standing wave theories,
probes and wave gauges measurements employed in the simulations.

These approaches are combined and compared to process simulation results, as well as to convert
dimensionless pressure-impulses from theory to dimensional forms. Then pressure-impulses along the
wall height from the mathematical and CFD models are validated, allowing the identification of sim-
ilarities and discrepancies. The main parameters of comparison are the total impulse and maximum
pressure-impulse along the wall in conjunction with their releases due to ventilations.

5.1. Impact impulses
Instead of considering only local pressures as in Section 4.3.1, the total force is now used to represent
an integrated effect over the entire structure and to compare splitting methods with simulated and
experimental results. The total force 𝐹 on the wall, per meter wide, is calculated from the probe
pressure 𝑝 measurements as

𝐹 = ∫ 𝑝𝑑𝑦 ≈ 𝑝 𝐴 , (5.1)

where 𝑝 and 𝐴 are the pressure and area of influence, per meter wide, corresponding to each 𝑛 Probe.

Separation between impulsive and quasi-static loadings is the first step required to derive wave impact
impulses from a time series of recorded forces. Two main approaches are tested for this splitting, the
first consists of calculating theoretical pulsating loadings to find intersection points and the second
involves applying signal processing techniques to filter out impulsive loads.

Using Equation 2.1, the quasi-static force distribution from linear wave theory is determined for stand-
ing wave conditions with the hydraulic properties mentioned in Sub-section 4.2.1. An algorithm reads
both simulated and calculated loads, finds the force peaks in the time series and intersection points
between loads. The crossing points define the initial and final impact times, as well as the total impact
duration Δ𝑡. Integration of the total forces at wall from the initial to the final impact instants provides
the total impulse at wall for each wave impact.

Alternatively, the same process is repeated using the Sainflou (Sainflou (1928)) quasi-static force distri-
bution, as described by Equation 2.2. Figure 5.1 depicts this separation method using the linear wave

47
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and Sainflou theories. The method is applied to simulated results for the wall with 10 cm overhang,
without venting holes. It can be seen from the plots that the theoretical distributions are larger than
simulated loadings, specially when the Sainflou method is employed. This matches experimental re-
sults from Rundgren (1958), which concluded that Sainflou’s theory overestimates the non-breaking
wave force for steep waves (Kisacik (2012)).
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Figure 5.1: Derivation of impact impulses using linear wave theory and Sainflou quasi-static loadings.

In the second method of impact impulse derivation, impulsive and quasi-static loadings are separated
using a third order, low-pass Butterworth filter. Before this filter can be applied, linear interpolation of
the force signal achieves a steady frequency of 10000 Hz, as opposed to the variable frequency present
in the raw data. Once the filter is employed, the impact duration and impulses are found as described
in the previous method. Several cut-off frequencies were tested to find the filter that minimizes the
difference between simulated and experimental impulses. Filters with calibrated cut-off frequencies of
2.0 and 1.6 Hz were found to produce the best results for the cases of vertical structures with 10 and
20 cm overhangs, respectively.

The filters successfully eliminate the impulsive peaks from the data, while preserving the quasi-static
components of the original signal. Figure 5.2 shows the splitting and impulse derivation results applying
the filtering method using 1.6 and 2.0 Hz cut-off frequencies for the simulated force signal correspond-
ing to the seawall with 10 cm overhang, without venting.

Table 5.1 compares all impact impulses and durations from simulated and experimental data, obtained
by both methods and their variations. The results correspond to impacts on 10 cm and 20 cm long
overhangs, without venting (Cases 1a and 2a).

Due to overall better agreement of impact impulses between experimental and simulated data pro-
duced, the filtering method using 2.0 Hz cut-off frequency is selected as the standard for 10 cm over-
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Figure 5.2: Derivation of impact impulses using Butterworth filters with 2.0 and 1.6 Hz cut-off frequencies.

hang length and 1.6 Hz cut-off frequency for for 20 cm overhang length in further analyses. Even
though impact durations are much shorter in experimental than in simulated data using the filtering
technique, the higher force peaks compensate for these differences. In Appendix D, simulated and
experimental data filtering results can be found.

Table 5.1: Comparison of impact impulses and durations obtained by using theoretical pressure distributions and filtering. The
values represent averages between 8 impacts.

Total dimensional impulse 𝐼 (Ns/m) Impact duration Δ𝑡 (ms)

Pressure method Filtering method Pressure method Filtering method

Case LWT Sainflou 2.0 Hz 1.6 Hz LWT Sainflou 2.0 Hz 1.6 Hz

1a simulated 2.61 1.80 4.90 5.78 53.75 37.50 92.10 109.98
1a experimental 5.33 4.43 4.98 5.47 54.50 46.25 49.13 57.38
2a simulated 12.97 10.48 10.72 12.60 112.75 96.38 101.00 113.34

2a experimental 18.35 16.40 13.60 14.94 99.13 87.88 70.00 75.00

5.2. Impact durations and peak forces
After choosing the default splitting method, the initial impact instant 𝑡 , final impact instant 𝑡 and
total impact duration Δ𝑡 = 𝑡 − 𝑡 can be determined for all cases. Impact durations can be used
to estimate peak forces or pressures from pressure-impulse quantities. Since these durations vary for
different heights, they are obtained from the total force signal to represent the total impact on the wall.

Figure 5.3 illustrates how the filtering method provides distinct impact durations for Case 1, in which
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𝐿 = 10 cm, considering the first simulated impact. The force peak 𝐹 represents the difference be-
tween peak forces and the filtered quasi-static forces at the instant of impact. It can be noticed that
peak impulsive forces are higher in the experimental case than in simulated cases, but the total im-
pulses are similar due to shorter impact duration in physical modelling tests. The impact durations
are 49 ms for the experimental situation without venting, as opposed to 87 and 89 ms durations for
simulated cases without venting and including 1 cm venting, respectively.
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Figure 5.3: Total impulses, initial and final impact instants and force peaks for experimental Case 1a (left) and simulated Case
1a (middle) and 1b, section through hole (right).

Once the impact durations are known, peak forces are usually estimated assuming a triangular impact
shape (Renzi et al. (2018)), where the total impulse 𝐼 is defined by the area of a triangle with base
equal to the impact duration Δ𝑡 and height equal to the peak force 𝐹 . Therefore, the estimated peak
force �̃� is expressed as (Hofland et al. (2019)))

�̃� = 2𝐼
Δ𝑡 . (5.2)

Table 5.2 lists the first and final impact instants 𝑡 and 𝑡 , impact duration Δ𝑡, total impulse 𝐼 and
peak force 𝐹 obtained from the filtering method proposed in Section 5.1. These results correspond
to the first wave impact after 𝑡 = 40 s, when the simulations start. Duration of impacts from physical
modelling data tends to be significantly shorter than from simulated cases. Through Equation 5.2, the
peak force �̃� is estimated and compared to the actual peak force 𝐹 . Only for experimental Case 1a,
the error between predicted and estimated peak forces is small (3%). For all other cases, Equation
5.2 consistently underestimates maximum forces, which would be unacceptable in engineering designs.
The cause of this lack of prediction skill is the shape difference between the peak signal and an idealized
triangle. A more conservative approach would be to approximate the impulse area as 𝐼 ≈ �̃� Δ𝑡 / ,
where Δ𝑡 / represents the time interval between forces at half the peak force height. But a more
complete study, including more cases and impacts is required to test this hypothesis. These results are
demonstrated graphically in Appendix D.

Table 5.2: Impact duration and peak force analysis results for the first impact in all experimental and simulated cases.

Case 𝐿 (cm) 𝐿 (cm) 𝑡 (s) 𝑡 (s) Δ𝑡 (ms) 𝐼 (N⋅s/m) 𝐹 (N/m) �̃� (N/m) Error

1a, experimental 10.00 0.00 40.360 40.412 52.00 4.98 198 192 3%
1a, simulated 10.00 0.00 40.380 40.467 87.60 4.67 142 107 25%
1b, away from hole 10.00 1.00 40.380 40.469 89.20 4.58 162 103 37%
1b, through hole 10.00 1.00 40.380 40.469 89.60 4.46 156 99 36%
2a, experimental 20.00 0.00 40.379 40.451 72.00 14.86 515 413 20%
2a, simulated 20.00 0.00 40.381 40.465 83.80 13.33 532 318 40%
2b, away from hole 20.00 1.00 40.382 40.467 84.20 13.39 641 318 50%
2b, through hole 20.00 1.00 40.382 40.467 84.20 13.23 631 314 50%
2c, away from hole 20.00 2.00 40.388 40.469 80.50 13.27 694 331 52%
2c, through hole 20.00 2.00 40.389 40.470 80.20 12.94 678 323 52%
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5.3. Vertical impact velocities
A measure of vertical velocity at the wave impact 𝑈 is required to convert impulses from dimensional
to the dimensionless pressure-impulse form resultant from the pressure-impulse model discussed in
Chapter 3. For a standing wave of water level equal to the wall height ℎ = 0.60 m, wave height
𝐻 = 0.06 m and wave period 𝑇 = 1.30 s, the vertical velocity can be estimated using Equations 2.22,
2.23 and 2.24 from Subsection 2.4.

Using the surface elevations and vertical velocity distributions from the wave theories, an approach
similar to Wood (1997) is proposed. Since the pressure-impulse model assumes that impact occurs at
still water level, it is necessary to determine the standing wave velocity when the surface elevation is
approximately flat and equal to the wall height. At this instant, the velocity profile peak is taken to be
at wall, since it is a symmetry point. The average theoretical velocity is considered to be the mean from
the start until the end of the deck length, as seen in Figure 5.4 below. The mean velocity difference
between the shorter and longer decks is very small.
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Figure 5.4: Comparison between theoretical vertical wave velocities for flat surface elevation at overhang 0.6 m high and 0.2 m
long.

Table 5.3 shows the predicted velocity results from Airy (Schiereck (1996)), Tadjbakhsh (Tadjbakhsh &
Keller (1960)) and Sobey (Sobey (2009)) for overhangs of 10 and 20 cm. A major uncertainty involved
between theories and the simulated velocities is the wave reflection at wall, which is considered the-
oretically to be perfect, with 100% reflection coefficient. This effectively doubles the incoming wave
height as the wave becomes standing, but that is not exactly the case in the simulated results.

Table 5.3: Theoretical wave impact velocities for each overhang length.

𝐿 (cm) 𝑈 (m/s) 𝑈 (m/s) 𝑈 (m/s)

10 0.33 0.33 0.33
20 0.33 0.32 0.32

Every 100 ms, CFD simulation results are available for every domain cell, allowing the creation of ve-
locity field plots as seen in Figure 5.5. These plots show how velocities change direction to become
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vertical as the water flow approaches the wall, at 𝑡 = 40.40 s. The velocity magnitude gradually in-
creases near the surface, but remains somewhat constant along the 𝑥 direction. In Appendix E, plots
for all cases are available.

Figure 5.5: Side view of velocity fields in Cases 2a (left), 2b (middle) and 2c (right) at . s.

The presence of ventilations creates a region of increased velocities, slightly altering the mean impact
velocity. As the fluid enters the smaller cross-section, it has to speed up due to the principle of mass
conservation. This velocity raise is believed to be related to higher force peaks with shorter impact
durations observed for cases including venting holes, when compared against cases without openings.

By increasing the resolution of the plot near the gap (see Figure 5.6), it is possible to notice a sudden
decrease of velocities below the overhang, until zero velocity is reached in a thin layer close to the
surface. The same behaviour is predicted by Wood & Peregrine (1996) for velocities immediately after
impacts.

Figure 5.6: Decrease of velocity near the overhang and concentration of larger velocities due to ventilations.

Probes 1, 11 and 12 are used to measure vertical impact velocities along the overhang length. But the
measurements were found to indicate localized particle velocities instead of a representative impact
velocity associated with the entire water mass colliding with the overhang. Probe velocities exhibit high
peaks in a similar fashion to pressure measurements, but in slightly different impact instants for each
probe location, since not every water particle hits the exposed surface at the same time. A resultant
measured velocity 𝑈 is obtained through integration of the probe velocities along the overhang, and
collecting the peaks relative to each impact. This approach is far from perfect due to the insufficient
amount of probes both in overhang length and width, but produces results that are more similar to the
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theories. Figure 5.7 displays the resultant velocities for impact simulations on overhangs of 10 cm.
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Figure 5.7: Measured vertical impact velocity from Probes 1, 11 and 12 (Case 1a).

Another approach is to derive the vertical impact velocity from the surface elevation measurements at
Wave gauge 2, located 20 cm from the wall. To calculate each derived impact velocity 𝑈 , the derivative
of the measured surface elevation is taken with respect to time and then filtered with a Butterworth
filter with 2.0 Hz cut-off frequency for 𝐿 = 10 cm and 1.6 Hz cut-off frequency for 𝐿 = 20 cm, the
same previously applied to separate impulsive loads. The results are depicted in Figure 5.8. Even
though this method seems more reliable than using the probe measurements, there are still uncertain-
ties regarding how well the surface elevation measurement at one point could represent the entire wave
below the overhang. Also, the effects of ventings over the velocity field is not directly captured. The
second derivative of surface elevation with respect to time gives very high peak accelerations around
the moment of each impact, reaching values above 200 and 700 𝑚/𝑠 for 10 and 20 cm overhangs,
respectively.
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Figure 5.8: Derived vertical impact velocity from Wave gauge 2 (Case 1a).

Table 5.4 lists the measured and derived vertical wave impact velocities for each case, along with rela-
tive changes compared to the standing wave theories. Measured velocities increase in the presence of
venting holes, consistently with the velocity field data. But the least discrepancies are found between
the derived method and wave theories. The Airy wave theory, for its simplicity, seems to be a suitable
alternative to determine vertical wave impact velocities. In Appendix F, graphs comparing measured
and derived velocities are available for all main cases.
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Table 5.4: Measured and derived velocities for each case, compared to standing wave theories.

𝑈 Relative changes 𝑈 Relative changes

Case 𝑈 (m/s) 𝑈 (m/s) Airy Tadjbakhsh Sobey Airy Tadjbakhsh Sobey
1a 0.21 0.33 35% 34% 36% 0% 0% 2%
1b 0.23 0.33 31% 31% 32% 0% 0% 2%
2a 0.19 0.25 43% 41% 41% 24% 22% 23%
2b 0.31 0.29 5% 2% 3% 11% 8% 9%
2c 0.12 0.28 63% 62% 63% 15% 12% 13%

5.4. Pressure-impulses along the wall
Simulated pressure distributions along the wall height are retrieved from Probes 1 to 10, at cross-
sections parallel to the middle of the venting hole and to the simulated slice farthest away from the
hole, 12.5 cm distant. Figures 5.9 and 5.10 show the pressures for a particular impact relative to the
Case 1, with 𝐿 = 10 cm, including and excluding ventilations.
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Figure 5.9: Distribution of pressures measured by probes along the wall height for cm and no venting.
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Figure 5.10: Distribution of pressures measured by probes along the wall height for cm and cm. Probes
are located in the cross-sections away from the venting hole (left) and through the hole (right).

In the situations without venting and at the section away from the hole, it is noticeable how the pres-
sures gradually increase at higher locations and reach their maximum at 𝑦 = 𝐿 = 60 cm. Interestingly,
even though the peaks are higher away from the hole and the overall shape of the pressure signals
differ greatly between both, the areas below the pressure distributions of each probe are approximately
equivalent.
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In the situation with venting, at the section through the middle of the hole, there are visibly reduced
pressures measured by Probes 1 and 2, above the height of 𝑦 = 58 cm. There is an intense release of
pressure recorded by Probe 1 and, since this is the location where the highest pressure peak occurs, it
is evident that the venting hole is designed in the most efficient position for pressure release.

Using Butterworth filters as described in Section 5.1, the simulated impulsive and quasi-static pressures
are separated for each height to calculate pressure-impulses. For 10 and 20 cm overhangs, 2.0 and 1.6
Hz cut-off frequencies are utilized, respectively. The maximum dimensional pressure-impulse is taken
as 𝑃 and the total impulse at wall 𝐼 is determined through integrating the pressure-impulses over
the wall height, according to the expression

𝐼 = ∫ 𝑃𝑑𝑦 ≈ 𝑃 𝐴 , (5.3)

where 𝑃 and 𝐴 are the pressure-impulse and area of influence per meter wide relative to each 𝑛
Probe. Notice that the relationship between maximum pressure-impulse and total impulse is analo-
gous to that between peak pressure and peak force.

To compare the simulated results with the theoretical mathematical model covered in Chapter 3, the
dimensionless pressure-impulses 𝑃 are converted to dimensional 𝑃 with the equation

𝑃 = 𝑃𝜌𝑈𝐿 . (5.4)

Similarly, the dimensional total impulse at wall 𝐼 from the theory are then obtained from the dimen-
sionless impulse 𝐼 through the relationship

𝐼 = 𝐼𝜌𝑈𝐿 . (5.5)

Among the vertical impact velocities 𝑈 presented in Section 5.3, the best agreement between models
are found using the derived velocities 𝑈 = 0.33 m/s and 𝑈 = 0.25 m/s for 10 and 20 cm overhangs,
respectively. The velocities are constant for each overhang length, therefore it is assumed that the
ventilations does affect significantly the impact velocity. This prevents inconsistencies in the conversion
process.

Figures 5.11 and 5.12 compare dimensional pressure-impulses from CFD simulations and the theoret-
ical model. Only the first simulated impact of each simulation is considered. There is good agreement
between pressure-impulses along the wall, specially from bottom to the height of 𝑦 = 54 cm. Above
this height, the theoretical model consistently overestimate pressure-impulses for cases without vent-
ing and at sections away from the hole. At the section through the hole, the theory indicates a much
larger release of impulse at the top of the wall than the CFD results suggest. These differences are
related to the difficulties to predict peak impulsive forces due to wave impacts. However, if the total
impulse over the wall is considered, the agreement between models is satisfactory.

Table 5.5 compares simulated and theoretical maximum pressure-impulse results. It is noticeable how
different these predictions are, in particular for cases of 10 cm overhangs without venting and at the
section away from it, with 75% relative error. The theory implies higher pressure-impulses than sim-
ulated values when venting is not present. This could be achieved with higher peaks or longer impact
durations. But the theory also estimates lower pressure-impulses than CFD results if venting is applied.
Negative release values for Cases 2b and 2c away from hole indicates a very small increase of maxi-
mum pressure-impulse relative to the case without venting. Since CFD results were validated against
experimental data in Section 4.2.3 with good pressure-impulse agreement, the current theory probably
present less realistic results in the impact zone. Also, the CFD model is more robust and includes air
and wave shape effects.
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Figure 5.11: Validation of simulated and theoretical pressure-impulses along the wall for Case 1.
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Figure 5.12: Validation of simulated and theoretical pressure-impulses along the wall for Case 2.

Table 5.5: Validation of simulated and theoretical maximum pressure-impulses for the first impact in all cases.

Case 𝑈 (m/s) 𝑃 , (Pa⋅s) 𝑃 , (Pa⋅s) Error 𝑅 , 𝑅 ,

1a 0.33 19.09 33.33 75% — —
1b, away from hole 0.33 19.05 33.33 75% 0% 0%
1b, through hole 0.33 17.33 21.78 26% 9% 34%
2a 0.25 40.74 51.36 26% — —
2b, away from hole 0.25 40.95 51.36 25% -1% 0%
2b, through hole 0.25 39.21 37.28 5% 4% 27%
2c, away from hole 0.25 40.97 51.36 25% -1% 0%
2c, through hole 0.25 37.40 31.06 17% 8% 40%
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Regarding total impulses at wall, theory and simulations are reasonably aligned, as seen in Table 5.6.
The average relative error between all cases is 9%. Release of pressure-impulse due to venting is
detected by the CFD model, but only in minor quantities. This is presumably due to the very low
venting area to overhang surface area ratio. In Case 2b, for instance, only 0.2% of the total overhang
surface area is vented. Additional simulations are performed for 𝐿 = 10 cm in Section 5.5 to test this
hypothesis and increase the relative venting area by reducing the spacing between holes.

Table 5.6: Validation of simulated and theoretical total impulses for the first impact in all cases.

Case 𝑈 (m/s) 𝐼 (N⋅s/m) 𝐼 (N⋅s/m) Error 𝑅 , 𝑅 ,

1a 0.33 4.67 5.31 14% — —
1b, away from hole 0.33 4.58 5.31 16% 2% 0%
1b, through hole 0.33 4.46 4.90 10% 5% 8%
2a 0.25 13.33 13.04 2% — —
2b, away from hole 0.25 13.39 13.04 3% 0% 0%
2b, through hole 0.25 13.23 12.04 9% 1% 8%
2c, away from hole 0.25 13.27 13.04 2% 0% 0%
2c, through hole 0.25 12.94 11.07 14% 3% 15%

The final results for Cases 1a and 2a slightly deviate from the results shown in Section 5.1 for two main
reasons. First, the total impulses and maximum pressure-impulses were obtained by averaging all 8
impacts instead of only the first impact. Second, only the total forces on the wall were filtered before
obtaining the pressure-impulse. Now, the pressures from each probe are filtered individually, and the
total impulse is determined by integrating the pressure-impulses along the wall height. This allows a
more detailed assessment and comparison between models. In Appendix G, individual comparisons of
pressure-impulse along the wall are available for each case, considering the first impact and an average
between 8 impacts.

5.5. Venting spacing effects
So far, all presented CFD simulations have been performed with fixed spacing of 2𝑊 = 25 cm, where
𝑊 is the dimensional simulated domain width. Additional simulations with smaller spacing are con-
ducted to investigate the effects of higher relative venting areas 𝐴 /(𝐿 𝑆), while keeping the venting
dimensions constant. In this analysis, the gap length and width are 𝐿 = 𝑊 = 1 cm, with overhang
length 𝐿 = 10 cm.

Figure 5.13 depicts the first simulated impact for spacings between ventilations of 1, 5, 10 and 25 cm.
Since 𝑆 = 1 cm is equal to the venting width 𝑊 , this situation is equivalent to a venting with infinite
width and therefore was modelled in 2D. It can be noted from the total force distribution that less spac-
ing between venting openings leads to shorter impact durations, which leads to release of impulses.
Also, the effects of pressure relief due to venting are widespread between sections along the width of
the simulated domain, or the 𝑧 direction. As it has been depicted in Figure 5.10, the largest difference
between sections through and away the venting hole occurs locally at the gap position, measured by
Probe 1 in the corner between the overhang and vertical wall. But the local pressure release affects
only approximately 2% of the wall height (1 cm over 60 cm), hence the small difference in total force
away and through venting.

The distribution of pressure-impulses along the water depth in Figure 5.13 depicts a gradual reduction
of pressure-impulses as the spacing between venting holes decreases. But this decrease is less intense
than suggested by the theory, which is evidenced when 𝑆 = 1 cm. This trend was also identified
when validating all simulated cases in Section 5.4. Maximum pressure-impulse, total impulse and their
release quantities compared to the case without venting, for each spacing between holes, are listed in
Table 5.7. At sections through hole, the release of maximum pressure-impulse is always higher than
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Figure 5.13: Zoomed in view of total simulated force peaks on the wall and pressure-impulse distribution along height for different
spacings between ventings of cm.

the release of total impulse. But total impulse release dominates at sections away from the opening.

Table 5.7: Effects of spacing in the release of maximum pressure-impulse and total impulse. In all cases, cm and
cm.

Section 𝑆 (cm) 𝐴 /𝑆 𝐴 /𝑆𝐿 𝐼 (N⋅s/m) 𝑃 (Pa⋅s) 𝑅 , 𝑅 ,

Through hole 1 100.00% 10.00% 3.49 13.85 27% 25%
Away from hole 5 4.00% 2.00% 4.34 18.73 2% 7%
Through hole 5 4.00% 2.00% 4.25 16.19 15% 9%
Away from hole 10 1.00% 1.00% 4.52 18.80 2% 3%
Through hole 10 1.00% 1.00% 4.41 17.23 10% 5%
Away from hole 25 0.16% 0.40% 4.58 19.05 0% 2%
Through hole 25 0.16% 0.40% 4.46 17.33 9% 5%

These results are compared to empirical fits from the pressure-impulse model in Section 6.1.



6
Discussion

This chapter has the objective to explore engineering design approaches for the case of wave impacts
on overhanging vertical structures with ventilations and review main findings and limitations from the
modelling performed in previous chapters. Section 6.1 evaluates empirical relations found in Chapter
3. Sections 6.2, 6.3 and 6.4 address research sub-questions 1, 2 and 3, respectively.

6.1. Ventilation assessment formulas
In Section 3.3, empirical formulas were developed to assess the performance of ventilations on coastal
structures. They arise from the variation of geometrical and ventilation parameters in the three-
dimensional pressure-impulse model. In this Section, these formulas are tested against simulated
CFD results.

Consider wave impacts in Case 1, with a wall 60 cm high and overhang 10 cm long. The dimensionless
wall height is given by 𝐿 = 𝐿 /𝐿 = 0.60/0.10 = 6. The dimensionless maximum pressure-impulse at
wall due to wave impacts on the deck, without venting, can be estimated by Equation 3.2 as 𝑃 , ≈ 1,
since 𝐿 > 2.

The dimensionless total impulse at wall without venting is obtained by Equation 3.3 as

𝐼 = 0.8844𝐿 . = 0.8844 ⋅ 6 . = 1.64. (6.1)

To provide physical meaning to the maximum pressure-impulse and total impulse, they need to be
converted to dimensional quantities through Equations 5.4 and 5.5. Using 𝑈 = 0.3259 m/s from
Section 5.3 and 𝜌 = 1000 kg/m , the expressions are described as

𝑃 = 𝑃 𝜌𝑈𝐿 = 1 ⋅ 1000 ⋅ 0.3259 ⋅ 0.1 = 32.59 Pa ⋅ s, (6.2)

𝐼 = 𝐼 𝜌𝑈𝐿 = 1.64 ⋅ 1000 ⋅ 0.3259 ⋅ 0.1 = 5.34 N ⋅ s/𝑚. (6.3)

The same procedure is done for Case 2, with 𝐿 = 20 cm. Table 6.1 summarizes the results for both
cases using the formulas and compares them the pressure-impulse theory and to CFD simulations, con-
sidering an average between 8 simulated impacts. Formula estimations are converted to dimensional
form using the same process explained in Section 5.4. The total impulse and maximum pressure-
impulse formulas are very close to the solutions obtained from the pressure-impulse theory, with the
advantage that it is not necessary to solve the Laplace equations. Between formula and CFD outcomes,
the average maximum pressure-impulse relative error is 34% (see Table 5.5), while for total impulses
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the average is only 9% (see Table 5.6).

Table 6.1: Comparison between formula, theory and simulations results. Pressure-impulses units in Pa⋅s and total impulse units
in N⋅s/m (Case 1).

Formula Theory Simulation

𝑃 𝐼 𝑃 𝐼 𝑃 𝐼 𝑃 𝐼
Case 1 1 1.64 32.59 5.34 33.33 5.31 19.90 5.02
Case 2 1 1.30 49.50 12.83 51.36 13.04 41.01 13.33

Figure 6.1 compares the simulated total impulse at wall against empirical fit predictions from Equation
3.3. Very good correspondence is found for both cases with 10 and 20 cm overhangs, without venting.
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Figure 6.1: Dimensionless total impulse predicted by formula and CFD simulations.

To consider the effects of ventilations on the wave impacts, the pressure-impulse model derived re-
lations from Equations 3.6 and 3.7 provide the release of pressure-impulse only at the section away
from hole, since it is the critical section where the largest impacts occur. The release quantities are
largely dependent on the spacing between ventilations 𝑆. Applying these relations to Case 1b, with 10
cm overhang and 1 cm venting length, yields

𝑅 =
213.80 ( ) − 9.59

( ) + 29.20
=
213.80 ( ⋅

⋅ ⋅ 100) − 9.59

( ⋅
⋅ ⋅ 100) + 29.20

= 2.56%, (6.4)

𝑅 =
163.30 ( ) + 18.48

( ) + 18.00
=
163.30 ( ⋅

⋅ ⋅ 100) + 18.48

( ⋅
⋅ ⋅ 100) + 18.00

= 4.55%, (6.5)

where 𝐴ℎ = 𝐿 𝑊 = 1 cm . These results mean that, according to the pressure-impulse model, there
are releases of 2.56% and 4.55% of maximum pressure impulse and total impulse at the section away
from the gap. Since the pressure-impulse model tends to greatly overestimate venting release results
when compared to simulations, the same occurs with the empirical fit predictions. Simulated effects
from venting holes are much more localized than described by the theoretical model. Table 6.2 lists
the results obtained using the formula and simulated data.
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Table 6.2: Comparison between maximum pressure-impulse and total impulse releases predicted by empirical fit and CFD
simulations. In all cases, cm and cm at section away from hole.

𝑆 (cm) 𝐴 /𝑆𝐿 𝑅 , 𝑅 , 𝑅 , 𝑅 ,

1 10.0% 54.3% 27.4% 59.0% 25.2%
5 2.0% 13.4% 1.9% 17.3% 7.0%
10 1.0% 6.8% 1.5% 9.6% 3.3%
25 0.4% 2.6% 0.2% 4.6% 1.9%

Simulated results from Case 1 suggest a correlation between relative venting area and total impulse
release, similarly to the pressure-impulse theory results (Figure 6.2). The relationship occurs both for
sections away and through the venting holes. The graph compares empirical relations used to predict
release of total impulse, derived from each model. The fitted curve corresponding to CFD results at
the section away from hole is given by

𝑅 =
78.69 ( ) + 2.42

( ) + 21.29
. (6.6)
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Figure 6.2: Comparison between empirical relations from CFD and pressure-impulse theory for Case 1.

In summary, after validation of the pressure-impulse and CFD models, only the formula to determine
total impulse without venting indicates good correspondence between both models. Regarding release
estimations including venting holes, further improvements are required in the pressure-impulse model
before a better relationship can be derived. Therefore, the empirical relations of pressure-impulse re-
lease from CFD results are preferred over the theoretical results.



62 6. Discussion

6.2. Pressure-impulse model discussion
The predictability of pressure-impulses on overhanging coastal structures with ventilations using the
theoretical model is evaluated in this Section, addressing the research sub-question 1.

In order to include openings in the structure which receives wave impacts, a finite difference scheme
is developed to solve the Laplace equation with modified boundary conditions, in two and three di-
mensions. When compared to the analytical solution by Wood & Peregrine (1996), without venting,
numerical errors below 1% are found for well refined grids, as seen in Table 3.1. The refinement study
is performed by making the grid progressively finer and setting the average difference between iter-
ations as the tolerance parameter. To achieve proper number of iterations and grid cells for accurate
results requires extensive computational power, especially in three-dimensional cases.

Conversion from dimensionless to dimensional pressure-impulse quantities introduces a new source of
error in the determination of vertical impact velocities. Standing wave theories are employed following
guidelines from Wood (1997) regarding positioning of the velocity distribution and consideration of the
overhang length. Also, wave theories predict horizontal surface elevation at the moment of impact,
when water depth is equivalent to wall height. This matches assumptions from the pressure-impulse
model and simulated results (Figure 6.3). Theoretical velocities are in good agreement with simulated
data (Table 5.4) and estimations from Mao (2019). But improvements are possible if the wave reflec-
tion effects at the wall were investigated with more depth.

Figure 6.3: Approximately horizontal surface elevation shortly after the moment of impact.

Using simulated probe measurements to gather velocities which represent the entire water mass col-
lision is difficult due to limited number of probes, large variations of intensity and slightly different
impact instants between probes. Both probe and velocity field data indicate that flow velocities are
much higher at the positions of venting holes than along the overhang length. The attempt to calculate
an average velocity using only three probes along the overhang did not yield reliable results. Measur-
ing with more probes would provide more information about velocities, although no clear procedure
to process this data has been found, especially when such high accuracy is required. Therefore, other
methods are preferred in this study.

An improved approach is to derivate velocities from recorded surface elevations near the region of
impact, but away from the overhang to avoid flow disturbances. This method produces short, high-
intensity velocity peaks that resemble impulsive force peaks, as shown in Figure 5.8. There seems to
exist an impulsive and quasi-static behaviour in the derived vertical velocities, since applying exactly
the same filters to separate impulsive and quasi-static forces provides reasonable impact velocity esti-
mators. The derived velocities for the cases without venting provides the best agreement for validation
of theoretical pressure-impulses with simulations.

A major basic assumption from the pressure-impulse model is that gravity is neglected during the short
impact duration (Wood et al. (2000)). To verify this notion, fluid accelerations are deducted as the
second derivative of the surface elevation. Peak accelerations around the impact instants are found to
be much larger than 10𝑔, which supports the theory (Figure 6.4).
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Figure 6.4: Derived vertical impact accelerations from Wave gauge 2.

Comparing theoretical and simulated pressure-impulses along the structure wall height exposes dis-
crepancies in the region near the overhang, as shown in Figures 5.11 and 5.12. When venting is not
considered, above the depth of 55 cm there is a steep increase of pressure-impulse predicted by the
theoretical model, which is not followed by the simulated results. This reflects in large errors among
maximum pressure-impulses. However, below 55 cm, there is good agreement between models, which
leads to total impulse errors below 16% (Table 5.6) among all cases, considering only the first simu-
lated impact.

When venting is included in the theoretical model, the release of pressure-impulse is much larger than
what is observed in the simulations, independently of the geometry of the structure, venting dimen-
sions and spacing between holes. This overestimation is caused by the local boundary condition, which
assumes null pressure-impulse at the gap. Even though this condition is appropriate at the free surface
away from the overhang, as defined by Wood & Peregrine (1996), it is not realistic for small holes. Sim-
ulated probe measurements at the venting position indicate a significant decrease in local pressures,
but they still are larger than zero.

For small spatial steps around the venting region, the neglected convective acceleration terms (�⃗� ⋅ ∇)�⃗�
in the derivation of the pressure-impulse theory become important (Equation 2.11), affecting the va-
lidity of the simplified Laplace equation to describe pressure-impulses with venting. These convective
terms are related to the change of flow velocity due to spatial effects and are commonly considered in
nozzle design (Elger et al. (2012)). Since the Navier-Stokes equations include convective acceleration
terms, the CFD model is more complete to describe fluid flows with venting holes.

6.3. CFD model discussion
Computational fluid dynamics is applied to investigate the mitigation of impulsive loadings on vertical
structures due to wave impacts on overhanging elements through the use of ventilations, answering
research sub-question 2.

As shown in Figure 4.7, simulated impulsive forces due to wave impacts are largely dependent on
mesh size and time step. Convergence is found by increasing refinement levels, especially in the re-
gion around the corner between wall and overhang, where venting holes are positioned. To reduce
numerical uncertainties, all simulated cases have equal mesh refinement. Allowing adaptive time step
using the Courant number produces more stable simulations than fixing a constant value. Simulated
quasi-static loadings remain virtually unchanged across different mesh variations.

Validation between simulations and experimental results demonstrated good agreement between forces
and generated waves for both overhang lengths (Figure 4.7). By comparing numerical and experimen-
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tal force signals, it can be noticed that the overall force shape and time intervals between impacts are
very similar.

Overhang length has substantial effect over the magnitude of simulated impulsive force peaks and
impulses, although quasi-static loadings are more or less stable (see comparison in Figure 6.5). The
impulsive phenomenon is not associated with wave breaking conditions, but with flow deflection in-
stead, confirming Castellino et al. (2018) conclusions. And longer overhangs deflect more water mass,
inducing higher wave loads. This increase leads to higher pressure-impulses, in accordance with the
theoretical model.
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Figure 6.5: Simulated impact forces for 10 and 20 cm overhangs (Cases 1a and 2a).

A key limiting factor in the CFD modelling is the high computational power demanded to perform nu-
meric calculations. Since impulsive loads occur in extremely short time intervals, it is essential that
the simulation time step is low enough. For stability reasons, if the time step is reduced, the mesh
resolution has to increase proportionally. Furthermore, there are three length scales that needs to be
resolved properly: the wave propagation scale, in m, the structural scale, in cm and the venting scale,
in mm. Numerous tests were conducted to optimize the mesh efficiency without compromising the
integrity of the results. For simulations including venting holes with limited width, the computational
domain must be three-dimensional. These simulations require several days to complete, even using
cluster computing and optimized meshes. In one of the simulations with venting, the increased flow
velocity would decrease the time step to prohibitively low values, due to the Courant stability criterion.
Therefore, only the first impact results are considered for cases including ventilations.

The limited amount of impact samples may undermine the statistical significance of simulated results.
Regression analysis and extreme value analysis are some tools utilized to deal with the stochastic na-
ture of wave impacts (Renzi et al. (2018), Chen et al. (2019)). Due to computing challenges, statistical
analysis of CFD simulations has been neglected in this study.

Reliably splitting impulsive and pulsating processes is one the main weaknesses of the analysis. Theo-
retical quasi-static force distributions overestimate simulated results, notably using Sainflou’s formula.
This overprediction endorses observations from Rundgren (1958), after conducting physical modelling
tests (Kisacik (2012)). Low-pass Butterworth filters perform generally better compared to experimen-
tal data and can be used successfully across different probes along the wall height without adjustments.

According to Chen et al. (2019), the filtering cut-off frequency depends on the wave motion. In this
study, since wave conditions are constant for all simulations, the optimal filter frequency has found to
be also affected by the overhang length, due to its influence on the magnitude of impacts. The ratio
between impulsive and quasi-static force peaks 𝐹 /𝐹 might be an useful parameter to optimize this
splitting method. Moreover, increasing the force interpolation sampling rate from 1000 Hz to 10000 Hz
significantly enhanced the splitting results.

Unexpectedly, peak total impulsive forces are found to often increase with the use of ventilations, both
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at sections through and away from the openings (Figure 5.3 middle and right). This phenomenon is
probably associated with the increased velocities at the hole, responsible for the upward water jet flow
after the wave impact. However, the rate to which forces increase and decrease are higher, causing
a narrower peak. This leads to a decrease in the total area of the force during the impact, the total
impulse. A similar effect has been observed in Xiao & Guo (2018), which measured local amplifica-
tion of pressures using air relief openings (ARO) to mitigate wave impacts on bridge girders (Figure 6.6).

Figure 6.6: Local amplification of pressures due to air relief openings (Xiao & Guo (2018)).

CFD results indicate two main factors that induce impulse reduction due to venting. Firstly, there is a
local reduction of pressures near the hole, clearly demonstrated in probe measurements at the corner
between overhang and wall, at the section through hole (Figure 5.10). The influence of this release
is evidenced by the fact that total impulses at the section through venting are always smaller than
away from the openings. Secondly, there is a widespread reduction of pressure-impulse controlled by
the spacing between ventilations (Figure 5.13). This decrease affects the entire structure width and is
proportional to the relative venting area 𝐴 /(𝐿 𝑆), as depicted in Figure 6.2.

Wood et al. (2000) emphasizes the role of trapped air on wave impacts. At the moment of collision,
air bubbles are contracted by the body of water and then expand, making the water flow to bounce
back. This rebound of the water mass leads to higher impulses. Bagnold (1939) studied this phe-
nomena, and found that the pressure impacts are larger for smaller air pockets, which was observed
also by Mao (2019). Since air is assumed incompressible in the simulations, the bounce back effect is
not reproduced. Consequently, this could be the reason for lower simulated impulsive forces against
experimental data (Figure 4.7) and lower simulated pressure-impulses near the surface compared to
the theory (Figures 5.11 and 5.12). Higher impulses close to the impact region due to entrapped air
could also mean larger impulse releases and therefore better performance from venting holes in the
simulations. The distortion associated with air compressibility between model and prototype scales is
another consequence of air entrapment, introducing scale effects not only in numerical simulations,
but also experimental tests (Takahashi et al. (1985), Seiffert et al. (2015)).

6.4. Design applications
This Section adresses research sub-question 3, on how to apply results from pressure-impulse and
computational fluid dynamics models in the engineering design of overhanging coastal structures sub-
ject to wave impacts including ventilations. This question is explored by looking at practical examples
where the models apply and which structural elements are involved.

The main contributions from this study are to test and compare methodologies to determine design
loadings in vertical walls due to wave impacts on horizontal elements and quantify the use of venting
holes to relieve these impacts. In practice, the walls can represent steel gates such as the Afsluitdijk
flood gates or Terneuzen lock complex in the Netherlands (Figure 6.7). These slender structures are
particularly vulnerable to wave impacts due to their dynamic response.

In engineering design of coastal structures subject to wave impacts, the maximum pressure-impulse
and total impulse can be utilized to determine peak pressure or forces using Equation 5.2 by assuming
a triangular impact force time series. After testing in Section 5.2, it has been found that this method
does not reliably predict simulated peak impulsive forces. Not only the impact force shape differs from
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Figure 6.7: Sluice gates from the Terneuzen lock complex in the Netherlands (Gelders Staalstraal- en Schildersbedrijf B.V. (2019)).

a regular triangle, but also the correct determination of the impact duration is subject to uncertainties
in the impulse splitting process.

In both CFD and pressure-impulse models, the accuracy of total impulse estimations is much higher
than maximum pressure-impulse for all cases, attested through validation of experimental results and
comparison between models. This is related to the unpredictability of peak forces, even for identi-
cal wave impacts, which has been well-documented in the literature (Bagnold (1939), Hofland et al.
(2011)).

Instead of utilizing peak impulsive forces 𝐹 , Chen et al. (2019) proposes to use the total impulse 𝐼
directly as a design input for coastal structures subject to wave impacts, combined with quasi-static
forces 𝐹 . Extreme value analysis determines statistically 𝐼 and 𝐹 values for a certain exceedance
probability. The design total reaction force 𝐹 then can be assessed with the reformulated dynamic
response function

𝐹 = 𝐹 + 𝐼𝜔 𝐷 , (6.7)

where 𝜔 is the natural angular frequency of the structure and 𝐷 is the modified dynamic load factor.
This factor depends on the ratio between impact duration Δ𝑡 and natural period of the structure 𝑇
and can be obtained from the design chart depicted in Figure 6.8. The chart is divided in impulsive,
dynamic and static loading domains of the structure. The parameter 𝛼 is the ratio between impact
rise time 𝑡 and impact duration Δ𝑡.

Figure 6.8: Design chart for a single degree of freedom response function based on impact impulse. Adapted from Chen et al.
(2019).
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As suggested by Chen et al. (2019), this new envisaged method provides an optimized estimation of
the structural dynamic response. In the impulsive domain, it is clear from Equation 6.7 that the total
impulse release caused by venting also reduces the total reaction force on the structure, leading to
safer and more economic designs.

From the work developed and research conducted in this thesis, two simplified design methods for a
vertical structure (wall) with venting and subject to wave impacts on the overhang, could be outlined
in the following steps:

Pressure-impulse model design method

1. Determine geometric parameters: dimensionless wall height 𝐿 = 𝐿 /𝐿 , where 𝐿 and 𝐿 are
the dimensional wall height and overhang length, respectively.

2. Determine the ventilation parameters: dimensionless hole length 𝐿 , hole width 𝑊 and spacing
between holes 𝑆 by using 𝐿 as the scale factor.

3. Calculate dimensionless total impulse at wall without venting 𝐼 using Equation 3.3.

4. Derive the release of total impulse due to venting 𝑅 using Equation 3.7 derived from the pressure-
impulse model or the more conservative Equation 6.6 derived from CFD simulations.

5. Through Equation 3.5, determine dimensionless total impulse with venting 𝐼 .

6. Find vertical impact velocity 𝑈 using standing wave theories discussed in Section 2.4 and the
methodology from Section 5.3.

7. Convert dimensionless to dimensional total impulse with venting 𝐼 with Equation 5.5.

8. The quasi-static force 𝐹 can be determined with linear wave theory, Sainflou or Goda methods
from Section 2.1.1.

9. The reaction force at the vertical structure 𝐹 is found using Equation 6.7 and the design chart
from Figure 6.8, assuming impulsive loading domain, for a structure with known natural period
and frequency.

CFD model design method

1. Set-up numerical model with venting holes, validate and run simulations, as described in Chapter
4.

2. Split resultant impulsive and quasi-static forces through the use of low-pass filters according to
instructions in Section 5.1.

3. After the separation, calculate dimensional total impulse with venting 𝐼 at the section away
from hole, total impact duration Δ𝑡 and identify peak pulsating forces 𝐹 .

4. As recommended by Chen et al. (2019), perform extreme value analysis of 𝐼 and 𝐹 .

5. The reaction force at the vertical structure 𝐹 is found using Equation 6.7 with extreme values
and the design chart from Figure 6.8, for a structure with known natural period and frequency.

Nevertheless, further validation and testing with small and large scale physical models are required
before these design methods can be applied in engineering projects. Equation 3.7 in special requires
additional validation. Empirical relations are only valid for the limits specified in Section 3.3. The CFD
model design method can also be used for physical modelling tests.



7
Conclusions and recommendations

This study investigates the influence of ventilations on coastal structures with overhangs under wave
impacts. Two main design approaches are explored for several laboratory scale cases, focusing on the
impulsive loads caused by standing waves. Firstly, the pressure-impulse model is validated against
semi-analytical solutions available in the literature and then modified to include venting holes in three
dimensions. Secondly, computational fluid dynamics is employed to assess impact impulses on struc-
tures with openings after validation of the model with experimental data excluding venting. Both
models are compared and their associated findings, limitations and applicability to engineering design
are discussed.

Comprehensive search of the relevant literature has not identified any previous studies about the ap-
plication of the pressure-impulse theory on the release of wave impacts using ventilations. A novel
approach is presented and investigated for the application of the pressure-impulse theory in three-
dimensions, allowing for flexibility of geometric and boundary condition specifications. This study
represents some progress in the development of sophisticated design tools and measures to mitigate
wave impacts on coastal structures. Insights are provided about analysis procedures and guidelines
required in the implementation of the models. A contribution also is made to assert the advantages of
the pressure-impulse model relative to conventional approaches, which may also extend to the design
of other types of coastal structures.

7.1. Conclusions
7.1.1. Main findings
The research sub-questions, posed at the introduction of this thesis, are now answered based on the
outcomes of the study:

1. How can the pressure-impulse model be used to assess the effects of ventilations on
overhanging coastal structures?
The pressure-impulse model can be successfully adapted to evaluate three-dimensional structural
geometries and numerical errors are very small for sufficiently refined grid sizes. There is great
potential in the use of the pressure-impulse model for wave impacts on overhanging coastal
structures, due to its simplified and reliable way to describe impulsive loads. Pressure-impulses
can be evaluated much faster than with CFD models, since the Laplace equation is solved instead
of non-stationary Navier-Stokes equations. Comparison to CFD results indicates good similarity
for cases without ventilations, but also that further improvements are probably necessary to
correctly implement the venting hole boundary condition in the model. Empiric relations can
be derived from the theoretical model solutions for rapid assessment of total impulse release
using geometrical and ventilation parameters, without the need for computational or physical
modelling.
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2. What is the predicted reduction of impulsive wave impact loadings on overhanging
coastal structures with ventilations using computational fluid dynamics models?

CFD simulations predict a decrease of total impulse on overhanging vertical structures with venting
subject to wave impacts. For the cases tested, a correlation is found between simulated impulse
releases and relative venting area, controlled by the hole dimensions and the spacing between
them. The release of pressure-impulse at the critical section away from the opening ranged
from approximately 2% for 0.4% relative venting area to 25% for 10% relative venting area.
Compared to the pressure-impulse theory, only modest levels of wave impact impulse mitigation
are estimated using CFD.

3. How to apply the pressure-impulse model and computational fluid dynamics results
in the engineering design of coastal structures with venting and subject to wave im-
pacts?

For both pressure-impulse and CFD models, distinct design approaches for coastal structures with
venting subject to wave impacts are suggested. Applying the pressure-impulse model, all design
input variables are determined theoretically. Empirical relations are used to estimate the reduced
dimensionless total impulse due to venting from geometrical and ventilation parameters. The
conversion to dimensional impulse occurs by employing vertical impact velocities, as described in
standing wave theories. Pulsating forces can be obtained from theoretical methods such as the
Goda method. Using the computational fluid dynamics results, quasi-static and impulsive loads
are separated with low-pass filters. After the total impulse and quasi-static forces are known from
either pressure-impulse or CFD models, the reaction force at the structure is determined through
a reformulated dynamic response function, which also depends on the dynamic load factor and
natural frequency of the structure. Due to model limitations, comparing both design approaches
is recommended.

Following the answers to all research sub-questions, the main research question is then addressed:

What are the effects of ventilations in the design of vertical coastal structures with
overhangs described by the existing wave impact pressure-impulse theory and

computational fluid dynamics?

The pressure-impulse theory and computational fluid dynamics can effectively describe the effects of
venting in two and three dimensions. Both models, for all cases tested, demonstrated a relative de-
crease of total impact impulse on the structure with the inclusion of ventilations. Due to its simplifying
assumptions, the pressure-impulse model overestimates by 2 to 3 times the venting mitigation influ-
ence on impulsive loads, when compared to simulated results. The CFD model performs better with
venting than the pressure-impulse theory due to the inclusion of convective acceleration effects. No
significant changes are found for quasi-static pressures acting on the structure. Since the predictability
of total impact impulse is demonstrably superior to maximum pressure-impulses, this study endorses
using the total impulse as the primary design variable, instead of peak impact forces. As the total
impulse is directly applied in the reformulated dynamic response function of the structure, even small
levels of impact reduction can make a significant change on the design total reaction force.

7.1.2. Limitations
The assessment of the influence of ventilations on wave impacts involves complex physical processes
and requires very high spatial and temporal accuracy. Therefore, limiting assumptions are necessary
to implement the models.

Main limiting factors in this study can be summarized as:

• No experimental data including ventilations

• Underlying theoretical model assumptions (pressure-impulse equal to zero at venting boundary)
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• Air compressibility neglected (no bounce back effect)

• Impact velocity determination uncertainties

• Inconsistencies in the splitting of impulsive and pulsating loadings

• Numerical method errors

• Wave reflection differences between models

• Measurement inaccuracies

• Low quantity of impact samples

• Constant regular wave and water level conditions

• Scale effects

Even though these limitations are present, this study may be useful as a proof of concept, which could
be improved with further research.

7.2. Recommendations
In order to further advance the findings of this report and overcome some of the limitations faced
during this study, the following recommendations are suggested for future research:

1. Carry out laboratory experiments to validate models

It is crucial that small scale physical modelling experiments are conducted to provide reference
values of wave impact impulse release due to venting, pressure-impulses along the wall and
total impulses. Experiments should try to reproduce geometrical and venting parameters such
as height of the vertical structure, length of overhang, venting hole width, venting hole length
and spacing between ventilations. Standing waves could be generated to simplify the analysis of
impact impulses. But testing a wide range of wave and water level conditions is also desirable.
Multiple probes and wave gauges can be applied along the wall height and overhang length at
sections through and away from the venting hole, as exemplified in this study. The experimen-
tal outcomes could be compared to pressure-impulse and simulations results from this thesis.
In special, the relationship between relative venting area and total impulse at wall should be
investigated.

2. Pressure-impulse venting boundary condition analysis

Calibration of the venting hole boundary condition could improve the theoretical model predictions
when validating against physical model measurements or simulated results. Instead of assuming
zero pressure-impulse in this boundary, another relationship could be found related to the peak
of velocities in the hole, or with a constant associated to the size of the hole or overhang width.
Null pressure-impulse is commonly employed for free surface conditions away from the impact
region, but simulated measurements indicate that this condition does not hold for small holes,
possibly due to the omission of convective acceleration in the mathematical model.

3. Collect field and large scale data

Even though impulsive wave impacts can be extremely high, there is a scarcity of field data
available. Pressure measurements could be employed on decks subject to wave impacts from
standing waves. Alternatively, large scale experiments in facilities such as the Delta Flume could
be conducted (Hofland et al. (2011)). The importance of the field data is to verify how model
predictions are reproduced, considering scale effects. According to the literature, distortions can
be associated with the influence of entrapped air on wave impacts, since air compressibility cannot
be scaled (Takahashi et al. (1985)).
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4. Improve impact velocity derivation method
There is a high influence of impact velocities on theoretical pressure-impulses in the conversion
process to dimensional quantities, but a precise approach to obtain these velocities, considering
effects of the structure and venting holes, is yet to be found. To determine wave impact velocities
empirically, Wood et al. (2000) recommends the application of particle image velocimetry, which
would produce results similar to the velocity fields obtained in this study, but available at every
recorded instant. Wave theories applied in this study demonstrated good potential, but deeper
examination of the wave reflection at wall may lead to improved results. Impact velocities could be
derived also from known impact forces, as long as the colliding water mass is correctly estimated.
The connection between low-pass filters and impact velocities should be elucidated and whether
separation between impulsive and quasi-static processes applies also to velocities.

5. Study relationship between filters and wave loadings
Low-pass filters applied to separate impulsive and quasi-static loadings in this study are mostly
controlled by the specified cut-off frequency, which varied for different overhang lengths. The
dependence of the cut-off frequency with wave length, wave period and structural dimensions
could be explored in further studies. Perhaps the ratio between peak impulsive and quasi-static
loads can be determinant in the design of filters. Optimization and automation of the splitting
method would significantly decrease errors in the calculation of pressure-impulses.

6. Increase the numerical method efficiency
The refinement level required to adequately resolve ventilations demands high computational
power, for both the pressure-impulse model and simulations. Considering the pressure-impulse
model, the ideal spatial step could not be achieved in some cases. But there are still opportuni-
ties for further efficiency enhancements. Examination of the model convergence and relaxation
factor may create methods to predict accurate results with substantially fewer iterations. Parallel
computing and adaptive grid refinement could also be used to decrease calculation time by large
factors.

7. Sensitivity analysis of air effects in simulations
Effects of entrapped air in CFD simulations could be studied through sensitivity analysis. This
analysis could involve simulations without air, different air properties and compressibility magni-
tudes. Material porosities could also interfere on wave impact results. The objective is to verify if
the air bounce back effect (Mao (2019), Wood et al. (2000)) could be effectively simulated using
CFD and how it influences the distribution of pressure-impulses along the structure, especially in
the region near the wave impact.

8. Investigate other venting configurations
In some studies of wave impacts on bridge girders, air relief openings are distributed along
both the exposed surface width and length (Azadbakht & Yim (2016), Xiao & Guo (2018)). This
configuration could also be applied in overhangs subject to wave loads. This would allow for
an increased relative venting area, while keeping the area of each hole constant. In addition,
venting positions could be located along the wall height itself and circular hole shapes could be
tested.

9. Application of pressure-impulse theory to design other types of structures
Despite all limitations, the pressure-impulse model showed good predictive skill compared to CFD
and physical experiments, specially without venting. This robust model could be applied also to
evaluate other types of structures subject to wave impacts, such as decks, breakwaters, dikes,
bridges, piers and jetties. It could become an additional design standard to effectively assess
wave impact impulses with the aim to enhance safety against damage.
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A
Parametric analysis results

Variation of geometric parameters

Table A.1: Maximum pressure-impulse and total impulse at wall as a function of wall height.

𝐿 𝑃 𝐼 𝐿 𝑃 𝐼 𝐿 𝑃 𝐼
0.2 2.55 0.51 1.8 1.06 1.08 3.4 1.02 1.35
0.3 2.13 0.62 1.9 1.05 1.10 3.5 1.02 1.37
0.4 1.79 0.67 2.0 1.05 1.12 3.6 1.02 1.38
0.5 1.57 0.70 2.1 1.05 1.14 3.7 1.01 1.39
0.6 1.43 0.74 2.2 1.04 1.16 3.8 1.01 1.41
0.7 1.33 0.77 2.3 1.04 1.18 3.9 1.01 1.42
0.8 1.27 0.81 2.4 1.03 1.20 4.0 1.01 1.43
0.9 1.22 0.84 2.5 1.03 1.22 4.1 1.01 1.44
1.0 1.18 0.87 2.6 1.03 1.23 4.2 1.01 1.45
1.1 1.15 0.90 2.7 1.03 1.25 4.3 1.01 1.46
1.2 1.13 0.93 2.8 1.03 1.27 4.4 1.01 1.48
1.3 1.11 0.96 2.9 1.02 1.28 4.5 1.01 1.49
1.4 1.10 0.98 3.0 1.02 1.30 4.6 1.01 1.50
1.5 1.09 1.01 3.1 1.02 1.31 4.7 1.01 1.51
1.6 1.08 1.03 3.2 1.02 1.33 4.8 1.01 1.52
1.7 1.07 1.06 3.3 1.02 1.34 4.9 1.01 1.53

5.0 1.01 1.54

81



82 A. Parametric analysis results

Variation of ventilation parameters

Table A.2: Maximum pressure-impulse and total impulse at wall as a function of the venting geometry for . , , .
and . .

𝑆 𝐿 𝑊 𝐴 𝑃 𝑅 𝐼 𝑅
1.00 0.10 0.10 0.01 0.94 20% 0.68 22%
1.00 0.10 0.30 0.03 0.63 47% 0.46 47%
1.00 0.10 0.50 0.05 0.35 71% 0.31 65%
1.00 0.30 0.10 0.03 0.71 40% 0.49 44%
1.00 0.30 0.30 0.09 0.37 69% 0.25 72%
1.00 0.30 0.50 0.15 0.16 87% 0.13 86%
1.00 0.50 0.10 0.05 0.60 49% 0.39 55%
1.00 0.50 0.30 0.15 0.28 76% 0.15 82%
1.00 0.50 0.50 0.25 0.07 94% 0.05 94%
2.00 0.10 0.30 0.03 0.98 17% 0.69 21%
2.00 0.10 0.50 0.05 0.86 27% 0.59 33%
2.00 0.30 0.10 0.03 1.00 16% 0.70 20%
2.00 0.30 0.30 0.09 0.83 30% 0.54 38%
2.00 0.30 0.50 0.15 0.67 43% 0.41 53%
2.00 0.50 0.10 0.05 0.93 21% 0.63 27%
2.00 0.50 0.30 0.15 0.74 37% 0.46 47%
2.00 0.50 0.50 0.25 0.57 52% 0.32 63%
3.00 0.10 0.30 0.03 1.09 8% 0.78 11%
3.00 0.10 0.50 0.05 1.03 13% 0.72 17%
3.00 0.30 0.10 0.03 1.10 7% 0.78 10%
3.00 0.30 0.30 0.09 1.00 15% 0.70 20%
3.00 0.30 0.50 0.15 0.92 22% 0.62 29%
3.00 0.50 0.10 0.05 1.06 10% 0.75 14%
3.00 0.50 0.30 0.15 0.95 19% 0.64 26%
3.00 0.50 0.50 0.25 0.86 27% 0.55 37%
4.00 0.10 0.50 0.05 1.11 6% 0.79 9%
4.00 0.30 0.30 0.09 1.09 8% 0.78 11%
4.00 0.30 0.50 0.15 1.04 12% 0.73 16%
4.00 0.50 0.10 0.05 1.12 5% 0.81 7%
4.00 0.50 0.30 0.15 1.06 10% 0.75 14%
4.00 0.50 0.50 0.25 1.01 15% 0.69 21%
5.00 0.10 0.50 0.05 1.15 3% 0.83 5%
5.00 0.30 0.30 0.09 1.14 4% 0.82 6%
5.00 0.30 0.50 0.15 1.11 6% 0.80 9%
5.00 0.50 0.10 0.05 1.15 2% 0.84 4%
5.00 0.50 0.30 0.15 1.12 5% 0.80 8%
5.00 0.50 0.50 0.25 1.09 8% 0.77 11%
6.00 0.30 0.30 0.09 1.16 2% 0.85 3%
6.00 0.30 0.50 0.15 1.15 3% 0.83 4%
6.00 0.50 0.30 0.15 1.15 3% 0.84 4%
6.00 0.50 0.50 0.25 1.13 4% 0.82 6%
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Table A.3: Maximum pressure-impulse and total impulse at wall as a function of the venting geometry for . , , .
and . .

𝑆 𝐿 𝑊 𝐴 𝑃 𝑅 𝐼 𝑅
1.00 0.10 0.10 0.01 0.86 19% 0.90 20%
1.00 0.10 0.30 0.03 0.58 44% 0.64 43%
1.00 0.10 0.50 0.05 0.30 71% 0.47 58%
1.00 0.30 0.10 0.03 0.67 37% 0.67 40%
1.00 0.30 0.30 0.09 0.35 66% 0.36 68%
1.00 0.30 0.50 0.15 0.13 88% 0.22 81%
1.00 0.50 0.10 0.05 0.57 46% 0.54 52%
1.00 0.50 0.30 0.15 0.27 74% 0.23 80%
1.00 0.50 0.50 0.25 0.06 95% 0.10 91%
2.00 0.10 0.30 0.03 0.90 15% 0.90 20%
2.00 0.10 0.50 0.05 0.80 24% 0.78 31%
2.00 0.30 0.10 0.03 0.91 13% 0.91 19%
2.00 0.30 0.30 0.09 0.77 26% 0.72 36%
2.00 0.30 0.50 0.15 0.63 40% 0.55 51%
2.00 0.50 0.10 0.05 0.86 18% 0.83 26%
2.00 0.50 0.30 0.15 0.70 33% 0.60 46%
2.00 0.50 0.50 0.25 0.55 48% 0.43 62%
3.00 0.10 0.30 0.03 0.98 6% 1.00 11%
3.00 0.10 0.50 0.05 0.94 11% 0.93 17%
3.00 0.30 0.10 0.03 0.99 6% 1.01 10%
3.00 0.30 0.30 0.09 0.92 12% 0.89 21%
3.00 0.30 0.50 0.15 0.85 19% 0.79 30%
3.00 0.50 0.10 0.05 0.96 9% 0.96 15%
3.00 0.50 0.30 0.15 0.88 16% 0.82 27%
3.00 0.50 0.50 0.25 0.80 24% 0.70 38%
4.00 0.10 0.50 0.05 1.00 5% 1.01 10%
4.00 0.30 0.30 0.09 0.98 6% 0.98 12%
4.00 0.30 0.50 0.15 0.95 10% 0.92 18%
4.00 0.50 0.10 0.05 1.00 4% 1.02 9%
4.00 0.50 0.30 0.15 0.96 9% 0.94 17%
4.00 0.50 0.50 0.25 0.92 13% 0.86 23%
5.00 0.10 0.50 0.05 1.02 3% 1.05 6%
5.00 0.30 0.30 0.09 1.01 3% 1.04 8%
5.00 0.30 0.50 0.15 0.99 5% 1.00 11%
5.00 0.50 0.10 0.05 1.03 2% 1.06 5%
5.00 0.50 0.30 0.15 1.00 5% 1.01 10%
5.00 0.50 0.50 0.25 0.97 7% 0.96 15%
6.00 0.30 0.30 0.09 1.03 2% 1.07 5%
6.00 0.30 0.50 0.15 1.02 3% 1.04 7%
6.00 0.50 0.30 0.15 1.02 3% 1.05 6%
6.00 0.50 0.50 0.25 1.01 4% 1.02 9%



84 A. Parametric analysis results

Table A.4: Maximum pressure-impulse and total impulse at wall as a function of the venting geometry for . , , .
and . .

𝑆 𝐿 𝑊 𝐴 𝑃 𝑅 𝐼 𝑅
1.00 0.10 0.10 0.01 0.84 18% 1.05 19%
1.00 0.10 0.30 0.03 0.57 44% 0.76 41%
1.00 0.10 0.50 0.05 0.30 71% 0.57 56%
1.00 0.30 0.10 0.03 0.66 36% 0.79 39%
1.00 0.30 0.30 0.09 0.35 66% 0.44 66%
1.00 0.30 0.50 0.15 0.13 88% 0.27 79%
1.00 0.50 0.10 0.05 0.56 45% 0.63 51%
1.00 0.50 0.30 0.15 0.27 73% 0.28 79%
1.00 0.50 0.50 0.25 0.05 95% 0.13 90%
2.00 0.10 0.30 0.03 0.88 14% 1.04 20%
2.00 0.10 0.50 0.05 0.78 23% 0.91 30%
2.00 0.30 0.10 0.03 0.89 13% 1.05 19%
2.00 0.30 0.30 0.09 0.76 25% 0.83 36%
2.00 0.30 0.50 0.15 0.63 39% 0.65 50%
2.00 0.50 0.10 0.05 0.84 17% 0.96 26%
2.00 0.50 0.30 0.15 0.69 32% 0.70 46%
2.00 0.50 0.50 0.25 0.55 46% 0.50 62%
3.00 0.10 0.30 0.03 0.96 6% 1.16 11%
3.00 0.10 0.50 0.05 0.92 10% 1.08 17%

Table A.5: Maximum pressure-impulse and total impulse at wall as a function of the venting geometry for . , , .
and . .

𝑆 𝐿 𝑊 𝐴 𝑃 𝑅 𝐼 𝑅
1.00 0.10 0.10 0.01 0.83 17% 1.33 18%
1.00 0.10 0.30 0.03 0.57 43% 0.98 39%
1.00 0.10 0.50 0.05 0.29 71% 0.76 53%
1.00 0.30 0.10 0.03 0.65 35% 1.01 38%
1.00 0.30 0.30 0.09 0.35 65% 0.58 64%
1.00 0.30 0.50 0.15 0.12 88% 0.39 76%
1.00 0.50 0.10 0.05 0.56 44% 0.81 50%
1.00 0.50 0.30 0.15 0.27 73% 0.38 77%
1.00 0.50 0.50 0.25 0.05 95% 0.19 88%



B
Correlation between parameters
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Figure B.1: Correlation between , and ventilation parameters for . .
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86 B. Correlation between parameters
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Figure B.2: Correlation between , and ventilation parameters for . .
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Figure B.3: Surfaces relating , , , and ventilation parameters for . .



C
Surface elevation snapshots

(a) 𝑡 = 40.40 s (b) 𝑡 = 40.50 s (c) 𝑡 = 40.60 s

Figure C.1: Surface elevation before (left), during (middle) and after (right) the first impact, for the case of vertical structure
with overhang 10 cm long and no venting.

(a) 𝑡 = 40.40 s (b) 𝑡 = 40.50 s (c) 𝑡 = 40.60 s

Figure C.2: Surface elevation before (left), during (middle) and after (right) the first impact, for the case of vertical structure
with overhang 10 cm long and 1 cm of venting width.

(a) 𝑡 = 40.40 s (b) 𝑡 = 40.50 s (c) 𝑡 = 40.60 s

Figure C.3: Surface elevation before (left), during (middle) and after (right) the first impact, for the case of vertical structure
with overhang 20 cm long and no venting.
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(a) 𝑡 = 40.40 s (b) 𝑡 = 40.50 s (c) 𝑡 = 40.60 s

Figure C.4: Surface elevation before (left), during (middle) and after (right) the first impact, for the case of vertical structure
with overhang 20 cm long and 1 cm of venting width.

(a) 𝑡 = 40.40 s (b) 𝑡 = 40.50 s (c) 𝑡 = 40.60 s

Figure C.5: Surface elevation before (left), during (middle) and after (right) the first impact, for the case of vertical structure
with overhang 20 cm long and 2 cm of venting width.
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Impact impulse separation

Experimental data
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Figure D.1: Derivation of impact impulses using Butterworth filters with 2.0 Hz cut-off frequencies for experimental Case 1a,
with cm, cm and cm.
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Figure D.2: Derivation of impact impulses using Butterworth filters with 1.6 Hz cut-off frequencies for experimental Case 2a,
with cm, cm and cm.
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Simulated data: 8 impacts
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Figure D.3: Derivation of impact impulses using Butterworth filters with 2.0 Hz cut-off frequencies for simulated Case 1a, with
cm, cm and cm.
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Figure D.4: Derivation of impact impulses using Butterworth filters with 2.0 Hz cut-off frequencies for simulated Case 1b, with
cm, cm (section through hole) and cm.
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Figure D.5: Derivation of impact impulses using Butterworth filters with 1.6 Hz cut-off frequencies for simulated Case 2a, with
cm, cm and cm.
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Figure D.6: Derivation of impact impulses using Butterworth filters with 1.6 Hz cut-off frequencies for simulated Case 2b, with
cm, cm (section through hole) and cm.

Simulated data: first impact
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Figure D.7: Total impulses, initial and final impact instants and force peaks for simulated Case 1a.
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Figure D.8: Total impulses, initial and final impact instants and force peaks for simulated Case 1b, section away from hole (left)
and section through hole (right).
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Figure D.9: Total impulses, initial and final impact instants and force peaks for simulated Case 2a.
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First impact, total impulse on wall: 13.4 Ns/m
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Figure D.10: Total impulses, initial and final impact instants and force peaks for simulated Case 2b, section away from hole (left)
and section through hole (right).
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Figure D.11: Total impulses, initial and final impact instants and force peaks for simulated Case 2c, section away from hole (left)
and section through hole (right).



E
Velocity fields

Velocity fields at time 𝑡 = 40 s

Figure E.1: Side view of velocity fields in Cases 1a (left) and 1b (right).

Figure E.2: Side view of velocity fields in Cases 2a (left), 2b (middle) and 2c (right).
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Figure E.3: Front view of velocity fields in Cases 1a (left) and 1b (right).

Figure E.4: Front view of velocity fields in Cases 2a (left), 2b (middle) and 2c (right).



F
Vertical impact velocities

Measured velocities
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Figure F.1: Measured vertical impact velocity from Probes 1, 11 and 12 (Case 1a).
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Figure F.2: Measured vertical impact velocity from Probes 1, 11 and 12 (Case 1b).
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Figure F.3: Measured vertical impact velocity from Probes 1, 11 and 12 (Case 2a).
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Figure F.4: Measured vertical impact velocity from Probes 1, 11 and 12 (Case 2b).
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Figure F.5: Measured vertical impact velocity from Probes 1, 11 and 12 (Case 2c).
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Derived velocities
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Figure F.6: Derived vertical impact velocity from Wave gauge 2 (Case 1a).
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Figure F.7: Derived vertical impact velocity from Wave gauge 2 (Case 1b).
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Figure F.8: Derived vertical impact velocity from Wave gauge 2 (Case 2a).
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Figure F.9: Derived vertical impact velocity from Wave gauge 2 (Case 2b).
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Figure F.10: Derived vertical impact velocity from Wave gauge 2 (Case 2c).



G
Pressure-impulses

Comparison between CFD and pressure-impulse theory: first
impact only
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Figure G.1: Validation of simulated and theoretical pressure-impulses along the wall for Case 1a.
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Figure G.2: Validation of simulated and theoretical pressure-impulses along the wall for Case 1b, section away from hole (left)
and section through hole (right).
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Figure G.3: Validation of simulated and theoretical pressure-impulses along the wall for Case 2a.
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Figure G.4: Validation of simulated and theoretical pressure-impulses along the wall for Case 2b, section away from hole (left)
and section through hole (right).
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Figure G.5: Validation of simulated and theoretical pressure-impulses along the wall for Case 2c, section away from hole (left)
and section through hole (right).



102 G. Pressure-impulses

Comparison between CFD and pressure-impulse theory: average
of 8 impacts
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Figure G.6: Validation of simulated and theoretical pressure-impulses along the wall for Case 1a.
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Figure G.7: Validation of simulated and theoretical pressure-impulses along the wall for Case 1b, section away from hole (left)
and section through hole (right).
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Figure G.8: Validation of simulated and theoretical pressure-impulses along the wall for Case 2a.
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Figure G.9: Validation of simulated and theoretical pressure-impulses along the wall for Case 2b, section away from hole (left)
and section through hole (right).
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