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Maximal regularity with weights for parabolic problems with
inhomogeneous boundary conditions

NICK LINDEMULDER

Abstract. Inthis paper, we establish weighted LY —LP-maximal regularity for linear vector-valued parabolic
initial-boundary value problems with inhomogeneous boundary conditions of static type. The weights we
consider are power weights in time and in space, and yield flexibility in the optimal regularity of the initial-
boundary data and allow to avoid compatibility conditions at the boundary. The novelty of the followed
approach is the use of weighted anisotropic mixed-norm Banach space-valued function spaces of Sobolev,
Bessel potential, Triebel-Lizorkin and Besov type, whose trace theory is also subject of study.

1. Introduction

This paper is concerned with weighted maximal L9—L7?-regularity for vector-valued
parabolic initial-boundary value problems of the form

oru(x,t) + Ax, D, Hu(x,t) = f(x,t), xe€ O, tel,
Bi(x',D,u(x',t) =gjx',0), x' €dl, tel, j=1,....,n, (1)
u(x,0) =up(x), xe0.

Here, J is a finite time interval, & C RY is a smooth domain with a compact bound-
ary 90 and the coefficients of the differential operator .4 and the boundary operators
Bi, ..., B, are B(X)-valued, where X is a UMD Banach space. One could for in-
stance take X = CUV, describing a system of N initial-boundary value problems.
Our structural assumptions on A, B1, ..., B3, are an ellipticity condition and a con-
dition of Lopatinskii—Shapiro type. For homogeneous boundary data (ie., g; = 0,
Jj = 1,...,n), these problems include linearizations of reaction—diffusion systems
and of phase field models with Dirichlet, Neumann and Robin conditions. However,
if one wants to use linearization techniques to treat such problems with nonlinear
boundary conditions, it is crucial to have a sharp theory for the fully inhomogeneous
problem.
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During the last 25 years, the theory of maximal regularity turned out to be an im-
portant tool in the theory of nonlinear PDEs. Maximal regularity means that there is
an isomorphism between the data and the solution of the problem in suitable function
spaces. Having established maximal regularity for the linearized problem, the non-
linear problem can be treated with tools as the contraction principle and the implicit
function theorem. Let us mention [7, 15] for approaches in spaces of continuous func-
tions, [1,45] for approaches in Holder spaces and [3,5,13,14,24,53,55] for approaches
in LP-spaces (with p € (1, 00)).

As an application of his operator-valued Fourier multiplier theorem, Weis [65]
characterized maximal L?-regularity for abstract Cauchy problems in UMD Banach
spaces in terms of an R-boundedness condition on the operator under consideration.
A second approach to the maximal L”-regularity problem is via the operator sum
method, as initiated by Da Prato and Grisvard [16] and extended by Dore and Venni
[23] and Kalton & Weis [37]. For more details on these approaches and for more
information on (the history of) the maximal L7”-regularity problem in general, we
refer to [17,39].

In the maximal L9—L”-regularity approach to (1), one is looking for solutions u in
the “maximal regularity space”

W, (J; LP(0; X)) N LI(J; W3H(O; X)). )

To be more precise, problem (1) is said to enjoy the property of maximal LI9-L?-
regularity if there exists a (necessarily unique) space of initial-boundary data ;, C
L9(J; LP(3d0; X))" x LP(0; X) such that for every f € L9(J; L?(0; X)) it holds
that (1) has a unique solution u in (2) if and only if (g = (g1, ..., &n), Uo) € Zip.. In
this situation, there exists a Banach norm on Z;, , unique up to equivalence, with

Dip. — LI(J; LP(00; X))" ® LP(0; X),

which makes the associated solution operator a topological linear isomorphism be-
tween the dataspace L9 (J; LP(0; X))@ P; p,. and the solution space qu (J; LP(0; X))
NLA(J; W[%” (0; X)). The maximal L9—LP-regularity problem for (1) consists of es-
tablishing maximal L9—LP”-regularity for (1) and explicitly determining the space
Dip..

The maximal L9—L7?-regularity problem for (1) was solved by Denk, Hieber & Priiss
[18], who used operator sum methods in combination with tools from vector-valued
harmonic analysis. Earlier works on this problem are [40] (¢ = p) and [64] (p <
q) for scalar-valued second-order problems with Dirichlet and Neumann boundary
conditions. Later, the results of [18] for the case that ¢ = p have been extended by
Meyries & Schnaubelt [48] to the setting of temporal power weights v, () = t#, 1 €
[0, g —1); also see [47]. Works in which maximal L?-L?-regularity of other problems
with inhomogeneous boundary conditions are studied, include [20-22,24,48] (the case
g = p) and [50,61] (the case g # p).

It is desirable to have maximal L9—LP-regularity for the full range ¢, p € (1, 00),
as this enables one to treat more nonlinearities. For instance, one often requires large
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q and p due to better Sobolev embeddings, and g # p due to scaling invariance of
PDE:s (see, e.g., [30]). However, for (1) the case ¢ # p is more involved than the case
q = p due to the inhomogeneous boundary conditions. This is not only reflected in
the proof, but also in the space of initial-boundary data ( [18, Theorem 2.3] versus [18,
Theorem 2.2]). Already for the heat equation with Dirichlet boundary conditions, the
boundary data g have to be in the intersection space

1—L 21
F, " (J; LP(00) N LI(J; B, )/ (0)), 3)

1 1
which in the case ¢ = p coincides with W;_E (J; LP(00)) N LP(J; Wi_;(aﬁ));
here F; , denotes a Triebel-Lizorkin space and W, = Bj, , a non-integer order
Sobolev—Slobodeckii space.

In this paper, we will extend the results of [18,48], concerning the maximal L9—
LP-regularity problem for (1), to the setting of power weights in time and in space
for the full range g, p € (1, 00). In contrast to [18,48], we will not only view spaces
(2) and (3) as intersection spaces, but also as anisotropic mixed-norm function spaces
on J x O and J x 00, respectively. Identifications of intersection spaces of type
(3) with anisotropic mixed-norm Triebel-Lizorkin spaces have been considered in a
previous paper [43], all in a generality including the weighted vector-valued setting.
The advantage of these identifications is that they allow us to use weighted vector-
valued versions of trace results of Johnsen & Sickel [36]. These trace results will be
studied in their own right in the present paper.

The weights we consider are the power weights

@ =1" (tel) and wi(x)=dist(-,00) (x € 0), )

where © € (—1,g — 1) and y € (—1, p — 1). These weights yield flexibility in
the optimal regularity of the initial-boundary data and allow to avoid compatibility
conditions at the boundary, which is nicely illustrated by the result (see Example 3.7)
that the corresponding version of (3) becomes

1= 2 (1+y) 2-1(1+y)
Fyp (v PO N LY, vu: By (06)).

Note that one requires less regularity of g by increasing y .

The idea to work in weighted spaces equipped with weights like (4) has already
proven to be very useful in several situations. In an abstract semigroup setting, tempo-
ral weights were introduced by Clément & Simonett [15] and Priiss & Simonett [54],
in the context of maximal continuous regularity and maximal L?-regularity, respec-
tively. Other works on maximal temporally weighted L?-regularity are [38,41] for
quasilinear parabolic evolution equations and [48] for parabolic problems with inho-
mogeneous boundary conditions. Concerning the use of spatial weights, we would like
to mention [9,46,52] for boundary value problems and [2,10,25,56,62] for problems
with boundary noise.
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The paper is organized as follows. In Sect. 2 we discuss the necessary preliminaries,
in Sect. 3 we state the main result of this paper, Theorem 3.4, in Sect. 4 we establish
the necessary trace theory, in Sect. 5 we consider a Sobolev embedding theorem, and
in Sect. 6 we finally prove Theorem 3.4.

2. Preliminaries
2.1. Weighted mixed-norm Lebesgue spaces

A weight on R4 is a measurable function w : RY —> [0, o] that takes its values
almost everywhere in (0, co). We denote by W(R4 ) the set of all weights on R4 For
p € (1,00) wedenoteby A, = A p(Rd ) the class of all Muckenhoupt A ,-weights,
which are all the locally integrable weights for which the A ,-characteristic [w]4 , is

finite. Here,
LoN\PIP
i, = () (o)
0 0 0

with the supremum taken over all cubes Q C R? with sides parallel to the coordinate
axes. We furthermore set Ay, := ) Ap- For more information on Mucken-
houpt weights we refer to [31].

Important for this paper are the power weights of the form w = dist( -, 30)?, where
0 is a C*®-domain in R? and where y € (—1,00).If y € (=1, 00) and p € (1, 00),
then (see [27, Lemma 2.3] or [52, Lemma 2.3])

pe(,

w? = dist(-,00) € A, < ye(-lp-1). 5)
. d . . 3Ri
For the important model problem case & = RY, we simply write w, = w, ™ =

dist(-, aR9 ).

Replacing cubes by rectangles in the definition of the A -characteristic [w]a, €
[1, o0] of a weight w gives rise to the A;fc—characteristic [w]A7f<v € [1, o0] of w.
We denote by A;f“ = A;“(Rd) the class of all weights with [w]A;ec < 00. For
y € (=1, 00) it holds that w), € A7 ifand only if y € (=1, p — 1).

Letd=|d|1=d1+-- -+ withd =(dq,...,d) € (Zzl)l. The decomposition

R =R4 x ... x R4,

is called the & -decomposition of R . For x € R we accordingly write x = (x1, ..., x)
and x; = (xj1,....%;4), where x; € R and x;; € R (j = 1,....L;i =
1,...,d;). We also say that we view RY as being d-decomposed. Furthermore, for
each k € {1, ..., 1} we define the inclusion map

U= tgn) i R% — R x> (0,...,0,x,0,...,0),
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and the projection map

Tk = T[4:k] ‘RY —> R‘{’(, x =(x1,...,x) > Xg.
Suppose that RY is d-decomposed as above. Let p = (p1,...,p1) € [1, oo)l
and w = (wy, ..., wy) € ]_[lj:1 W(R%). We define the weighted mixed-norm space

L?4(R?, w) as the space of all f € LO(RY) satisfying

1/pi

p2/p1
SV pd ) = </Rf/ </Wl |f(x)|p'wl(xl)dxl) ...wz(XI)dXI> < 0.

We equip LP4(R?, w) with the norm || - || p.¢ (md - Which turns it into a Banach
space. Given a Banach space X, we denote by L? 4 (Rd, w; X) the associated Bochner
space

LPY (R, w; X) = LPY R, w)[X] = {f € L°RY; X) : || fllx € LP*(R?, w)}.
2.2. Anisotropy

Suppose that R? is £-decomposed as in Sect. 2.1. Given a € (0, 00)!, we define
the (4, a)-anisotropic dilation (Si‘{’a) on R? by A > 0 to be the mapping 5;\‘“” on R?
given by the formula

8§d’a)x = (AMxq, ..., A%y, x eRY,

A (d, a)-anisotropic distance function on R? is a function # : RY — [0, 00)
satisfying

(1) u(x) = 0if and only if x = 0.

(i) u(8{““x) = pu(x) forall x € R? and 1 > 0.
(iii) There exists a ¢ > 0 such that u(x + y) < c(u(x) + u(y)) forall x, y € R,
All (4, a)-anisotropic distance functions on RY are equivalent: Given two (4, a)-
anisotropic distance functions u and v on RY, there exist constants m, M > 0 such
that mu(x) < v(x) < Mu(x) for all x € RY

In this paper, we will use the (4, a)-anisotropic distance function | - |/ 4 : RY —
[0, 00) given by the formula
; 1/2
Xlga = | Y 1P (x e RY).

j=1

2.3. Fourier multipliers

Let X be a Banach space. The space of X-valued tempered distributions on R is
defined as S’ (R?; X) := L(S(R?); X); for the theory of vector-valued distributions
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we refer to [4] (and [3, Section IIL4]). We write L1(R?; X) := Z~'LI(R?; X)
S'(R?; X). To a symbol m € L%®(R4; B(X)), we associate the Fourier multiplier
operator

T, : LI(RY: X) — LIRY; X), f s Z ' mf].

Given p € [1,00) and w € ]—[ljzl As(R%), we call m a Fourier multiplier on
LP4 (R w; X) if T), restricts to an operator on z\l(Rd; X)NLP4(R?, w; X) which
is bounded with respect to LP "{(Rd, w; X)-norm. In this case, T}, has a unique exten-
sion to a bounded linear operator on L? 4 (R4, w; X) due to denseness of S(R?; X)
in L?4 (R4, w; X), which we still denote by 7},. We denote by Mp ¢w(X) the
set of all Fourier multipliers m € L>®(R%; B(X)) on L?*(R?, w; X). Equipped
with the norm mlim, s = WTnll@wr.d®e w:x)> M, ¢,w(X) becomes a Ba-
nach algebra (under the natural pointwise operations) for which the natural inclusion
Mp sw(X) — B(LP-%(R?, w; X)) is an isometric Banach algebra homomorphism;
see [39] for the unweighted non-mixed-norm setting.

Foreacha € (0, 00) and N € N, we define /\/15\‘,{’“) as the space of all m € CN (R?)
for which

||m||M(:f.a) = sup sup (1 + [&] )" ““|D*m(&)| < oo.
N le|<N geRrd

We furthermore define .7 (X) as the space of all operator-valued symbols m €
C! (R\{0}; B(X)) for which we have the R-bound

lmllsz.mx) = R{tm™(#) : 1 # 0,k =0,1} < oc;

see, e.g., [17,33] for the notion of R-boundedness.
If X is a UMD space, p € (1, oo)’,

A,RY, l=1,
and a € (0, oo)l, then there exists an N € N for which
MG < My 40(X). (6)
If X is a UMD space, p € (1, 00) and w € A,(R), then
RAM(X) = Mpw(X). @)
For these results, we refer to [26] and the references given there.

2.4. Function spaces

For the theory of vector-valued distributions, we refer to [4] (and [3, Section II1.4]).
For vector-valued function spaces, we refer to [51] (weighted setting) and the refer-
ences given therein. Anisotropic spaces can be found in [6,36,42]; for the statements
below on weighted anisotropic vector-valued function space, we refer to [42].



Vol. 20 (2020) Maximal regularity with weights for parabolic problems 65

Suppose that R? is 4-decomposed as in Sect. 2.1. Let X be a Banach space, and
leta € (0,00) . For0 < A < B < oo, we define <I>A B(Rd) as the set of all
sequences ¢ = (¢n)neN C S (R4 ) which are constructed in the following way: given
a@o € S(RY) satisfying

0=<g¢o=1 ¢ =1if[§lsa = A, ¢0(6) =0 if|§]sq= B,

(@n)n=1 C S(RY) is defined via the relations

on(&) = G182, 8) = Go(8550E) — o8\ 6). £ eRn>1.

Observe that
suppPo C (€ | 1€]4a < B} and supp@, C (£ 12" 'A< |€lsq <2"B), n>1.

We put @44(RY) i= Uy p-pone @4 %R, In case I = 1 we write &9(R?) =
dLaRY), dRY) = IRT), DY L(R?) = d)i”%(Rd),andCDA’B(Rd):dJ}LB(Rd).

To ¢ € o4 *“(Rd), we associate the family of convolution operators (Sy),en =
(Snen C LS R X), Oy (RY; X)) C L(S'(RY; X)) given by

Suf =S0fi=gnx f=F gufl (f € SR X)). 8)

Here, Oy (R4; X) denotes the space of slowly increasing X-valued smooth functions
onR?. Itholds that f = Yo SufinS (R?; X), respectively, in S(RY; X) whenever
f e 8'(RY; X), respectively, f € S(R?; X).

Givena € (0,00)!, p € [1,00)', g € [1.00l, s € R, and w € []}_; Aco(RY),
the Besov space B;”Z’J(Rd, w; X) is defined as the space of all f € S'(R?; X) for
which

||f||B;v.‘;v‘[(Rd’w;x) = ||(2nssff)neN||zq(N)[vatf(Rd,w)](X) <

and the Triebel-Lizorkin space F;"; J(Rd, w; X) is defined as the space of all f €
S’ (R?; X) for which

A lEse i wix) = 12" Sy fIneN|l Lot R wypes vy x) < OO

Up to an equivalence of extended norms on S’(R%; X), || - || B (Rdw:X) and || -
p.q, e
[| ps.a LR w; X) do not depend on the particular choice of ¢ € ®%¢(R?).
P9, T

Let us note some basic relations between these spaces. Monotonicity of £7-spaces
yields that, for 1 < go < g1 < o0,

d d .
PQO d—(R w; X)c_)qu J(R , W; X)5
Fro (R wiX)— Fro (RY w; X). 9)



66 N. LINDEMULDER J. Evol. Equ.

For € > 0 it holds that

pwd(Rd w; X) = B lff(Rd,w; X). (10)

Furthermore, Minkowski’s inequality gives

s.a d . s,a d . s,a d .
By mintpr....prg).a R w3 X) = By (RE, i X) > Byt pgh.a R w5 X).
(11)

Let a € (0, 00)!. A normed space E C S'(R?: X) is called (4, a)-admissible if
there exists an N € N such that

m(D)f € E with |lm(D)flle < llmll ywallflle. — (m. f) € Ou@®R?) x E,

where m(D) f = F~! [mf]. The Besov space B;"; ‘[(Rd, w; X) and the Triebel—
Lizorkin space F 5.a J(Rd w; X) are examples of (4, a)-admissible Banach spaces.

To each o € R we associate the operators j[‘{ 1 e L(S'(R?; X)) and jf'“ €
L(S'(R?; X)) given by

JEN = Z7NA+ ) P7PF) and TR = Z Tofus I

G/ak

We call jd‘i @ the (4, a)-anisotropic Bessel potential operator of order o.
LetE — & (]Rd; X) be a Banach space. Write

I
Jng = (XEUL[‘{] ol <njog, ne(Zzl).

Given n € (Zzl)l, s,a € (0, oo)l, and s € R, we define the Banach spaces
WEIE]L H[E], HZ’“[]E] < S'(R?; X) as follows:

WAE] ={f € SR :D*f €E,a € Jy 4},

HYE] = {f e S®RH: T feE j=1,...1}

HE] = {f € S'RY) : T f € B},

with the norms

d;
WA llweey = Y D Flle, s g = Zn TS £l

OtEJnY‘[

d
1/ llpesormy = N £l

Note that H%[E] < H“[E] contractively in case that s = (s/ay, ..., s/a;). Fur-
thermore, note that if ' — S’(Rd ; X) is another Banach space, then



Vol. 20 (2020) Maximal regularity with weights for parabolic problems 67
E < F implies W?[E] = W"[F], HS[E] — HS[F], H[E] — HS[F].
(12)

IfE < S'(R?; X) is a (4, a)-admissible Banach space for a given a € (0, 00)!,
then

WIE] = HAE] = HSO[E],  seRn=sa'e (Z1), (13)
and
HY[E] = HElL,  s>0,s =sa . (14)
Furthermore,
* e B(HY[E] H, U “[E]), seR,aeN. (15)

Leta € (0,00)), p e [1,00), g €[1,00],and w € 1‘[lj:l Aso(R%). For s, 59 € R
it holds that

BIFOCRY w; X) = HG B (RY, w; X)),

pqi p.q.4
;*q“;[“(Rd w; X) = H ;Oq”d(Rd w; X)].

Let X be a Banach space, a € (0, 00)!, p e (1, oo), w e ]_[lj:l Ap; (R%), s e R,
s € (0,00) and n € (N.q)'. We define
Wo (RY, w; X) = WELPY (R, w; X)),
Hy (R w; X) = HE LD R, w; X)),
Hy G R w; X) = H LR, w; X)1.
If
o = WI']’ L{(Rd, w; X),n € (Zzl)l, n=sa ' or
e E= H;":[(Rd, w; X); or
e E=Hi (R" w;X),ae D a=sa",

then we have the inclusions

Frf JRLw X) > Ee FI9 (R w; X). (16)

Theorem 2.1. [43] Let X be a Banach space, | = 2, a € (0, oo)z, p.q € (1,00),
s>0,andw € Ap,(RM) x Ag(R®). Then,
Fot (R w X) = B2 (RE wa; LP(RY, wy; X)) 0 LY (R, wy;
Fy/a R, wy; X)) (17)

with equivalence of norms.

This intersection representation is actually a corollary of a more general intersection
representation in [43]. In the above form, it can also be found in [42, Theorem 5.2.35].
For the case X = C, 4] = 1, w = 1, we refer to [19, Proposition 3.23].
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3. The main result
3.1. Maximal LZ—Lﬁ—regularity

In order to give a precise description of the maximal weighted L9—L”-regularity
approach for (1), let & be either Ri or asmooth domain in R¢ with a compact boundary
d 0. Furthermore, let X be a Banach space, let

ge(l,o0), pe(—=l,g—1) and pe(l,00), ye(—1,p—1),
let v, and wﬁﬁ be as in (4), put

UL = W) (J, v; LP (0, wi7: X)) 0 LY, v; WE(O, wd; X)),

(space of solutions u)
IF')’,’:Z == L9(J,vy; LP (O, wgﬁ; X)), (space of domain inhomogeneities f)
Bﬁ’q == L9(J,v,; LP(80; X)), (boundary space) (18)

andletn, ny, ..., n, € Nbenaturalnumbers withn; < 2n—1foreachj € {1,...,n}.
Suppose that for each o € N9, || < 2n,

ay € D'(0 x J; B(X)) with a,D% € B(U)’/’Z,qu)

and that foreach j € {I,...,n}and 8 € N9, Bl < nj,
bjg € D' (B0 x J: B(X)) with bjgtrysDP € BULY, BY),

where the conditions aq D € B(Uf,7 ﬁ, ]Fp q) and b; ﬂtraﬁD'B € B(Uy i IB%p 7y have
to be interpreted in the sense of bounded extension from the space of X-valued com-
pactly supported smooth functions. Define A(D) € B (TU)I/7 Z, Fp ¥ w)and Bi(D), .

(D) € BUYL, BLY) by

AD) = Y agD*,

lee|<2n

(19)
Bj(D):= Y bjptryeD?,  j=1,...n
|Bl<n;
In the above notation, given f € F{,’ pand g = (g1,...,8n) € []B%ﬁ’q]”, one can
ask the question whether the initial-boundary value problem
du + A(D)u = f,
Bi(Dyu=gj, j=1,...,n, (20)

try—ou = uop.

. . p.q
has a unique solution u € Uy, ;.
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Definition 3.1. We say that problem (20) enjoys the property of maximal LZ—L{,7 -
regularity if there exists a (necessarily unique) linear space %; 5. C [IB%ﬁ’q]” x LP (0,
w;‘iﬁ; X) such that (20) admits a unique solution u € U}, if and only if (f, g, uo) €
9 =T}l x D, .. In this situation, we call Z; . the optimal space of initial-boundary
data and 2 the optimal space of data.

Remark 3.2. Let the notations be as above. If problem (20) enjoys the property of
maximal LZ—Lf/’-regularity, then there exists a unique Banach topology on the space
of initial-boundary data % 5. such that %; . < [BL?1" x LP(0, w)a/(f; X). Moreover,
if Z; p. has been equipped with a Banach norm generating such a topology, then the
solution operator

S D =Fl @ Dy, — UDL, (f. g, u0) > F(f, 8. u0) =u

is an isomorphism of Banach spaces, or equivalently,
lullypa = 11 fllgre +11(g, uolll g, u=S(f, g uo), (f, & uo) € 7.

The maximal LZ—L{,’—regularity problem for (20) consists of establishing maximal
LZ—L{,’—regularity for (20) and explicitly determining the space ;. together with a
norm as in Remark 3.2. As the main result of this paper, Theorem 3.4, we will solve the
maximal LZ—L{,’-regularity problem for (20) under the assumption that X is a UMD
space and under suitable assumptions on the operators A(D), B1(D), ..., B, (D).

3.2. Assumptions on (A, By, ..., By)

As in [18,48], we will pose two type of conditions on the operators A, By, ..., B,
for which we can solve the maximal LZ—L{,’—regularity problem for (20): smoothness
assumptions on the coefficients and structural assumptions.

In order to describe the smoothness assumptions on the coefficients, let ¢, p €
(1,00),ue(=1,g—1),y € (—1, p—1) and put

nj 1

jy =1——=—-—( € (0, 1), =1,...,n. 21
Ky 2~ TN EQD, n @1

(SD) For |@| =2nwehavea, € BUC(O x J; B(X)), and for |a| < 2n we have a, €
L>*(0 x J; B(X)).If 0 is unbounded, the limits a, (00, 1) 1= lim|y|—c0 da (X, 1)
exist uniformly with respectto ¢ € J, |a| = 2n.

(SB) Foreach j € {1,...,m} and |B] < nj, there exist s; g € [g,00) and rj g €
[p, o0) with
1 d—1 —n;
Kjy>—+ +|'3| . and u>i—1
Si.pB 2nrj,/3 2n Si.pB
such that

2nk; .y

bjp € Fy/l p(Ji L' (005 B(X) N L (J; By (86 B(X))).

If ¢ = R4, the limits b g (00, 1) := lim|y/|— o0 bj g(x', 1) exist uniformly with
respecttor € J,j € {l,...,n}, |Bl =n;.
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Remark 3.3. For the lower order parts of (A, By, ..., B,), we only need a, D%, |a| <
2n, and bj’ﬂtl'aﬁDﬁ, |Bjl <nj, j=1,...,n,toact as lower order perturbations in
the sense that there exists o € [2n — 1, 2n) such that a, D%, respectively, b, ﬂtl’gﬁDﬂ
is bounded from

HE (U, v LP(0, w275 X)) N LI(J, v5 HS (6, w275 X))

to LI(J, v,; LP(0, w(m' X))), respectively, Fy ”(J v LP(30; X)) N LI(J, vy

Z"K’ "(00; X)). Here, the latter space is the optimal space of boundary data, see the
statement of the main result.

Let us now turn to the two structural assumptions on A, By, ..., B,. For each
¢ € [0, ), we introduce the conditions (E)4 and (LS).

The condition (E) is parameter ellipticity. In order to state it, we denote by the
subscript # the principal part of a differential operator: given a differential operator
P(D) =3, < PyD” of orderk € N, P4(D) =3 | _ pyD”.

(E)p Forall t € J,x € 0 and €| = 1 it holds that o (As(x, &, 1)) C Y. If Ois
unbounded, then it in addition holds that o (Ag (o0, £,1)) € Cy forallr € J
and || = 1.

The condition (LS) is a condition of Lopatinskii—Shapiro type. Before we can state
it, we need to introduce some notation. For each x € 9, we fix an orthogonal matrix
O, (x) that rotates the outer unit normal v(x) of 90 at x to (0,...,0,—1) € R? and
define the rotated operators (A", B”) by

A'(x, D, 1) := A(x, O] yD. 1), B'(x, D, 1) := B(x, ol D, 1).

v(x v(x

(LS)p Foreacht € J,x € 30, » € T,_g and &' € R ™! with (A, &’) # 0 and all
h € X", the ordinary initial value problem
)\w()’)‘i‘A;(é/, Dyvt)w(y) =09 y >O
B}f’#(é’, Dy, Hyw(y)|y=o =hj, j=1,...,n
has a unique solution w € C*°([0, oo); X) with limy_, o w(y) = 0.

3.3. Statement of the main result

Let O be either RE’; or a C*®-domain in R? with a compact boundary 9. Let X be a
Banachspace,q, p € (1,00),u € (—1,g—1),y € (-1, p—1)andn,ny,...,n, € N
natural numbers withn; < 2n—1foreach j € {1,...,n},andkyy, ..., ks, € (0, 1)
as defined in (21). Put

21—k

]1Ps‘1 =B, (o, waﬁ; X), (initial data space)
GPY = Fyly (Jous LP@O; X)) N LI, v Fay” @05 X)), j=1,....n,
G? ,q = Gf Z , D@ Ght y- (space of boundary data g) (22)

Furthermore, let U}/, and F}'/, be as in (18).
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Theorem 3.4. Let the notations be as above. Suppose that X is a UMD space, that
A(D), Bi(D), ..., B,(D) satisfy the conditions (SD), (SB), (E)y and (LS)y for some
¢ €(0,%), andthat/c“,;é “forall]e{l ., n}). Put

]D)I”Z = {(g, ug) € G)I,’:Z &) Hf,’:z Dtr—08j — B;=O(D)u0 =0 when kj, >

1+
Y,

q

where B;.:O(D) = Z|,3|Snj bj (0, )trye DP. Then, problem (20) enjoys the prop-
erty of maximal LZ—Lg-regularity with DJI/’,’Z as the optimal space of initial-boundary
data, i.e., problem (20) admits a unique solution u € Ugjz if and only if (f, g, uo) €
IF{;Z <) ]D){,’jZ. Moreover, the corresponding solution operator ./ : ]F{,’jZ oDIl —
U{,’jz is an isomorphism of Banach spaces.

Remark 3.5. The compatibility condition tr,—og; — B;.=0(D)uo = 0 in the definition
of ]D)p’Z is basically imposed when (g;, ug) — tri—og; — B;.:O(D)uo makes sense
® ]Ip to some topological vector space
12 u j® I to
L%(d0; X) when « i y > Hq_“ can be seen by combining the following two points:

as a continuous linear operator from Gy .

V. That it is indeed a well-defined continuous 11near operator from G-

(i) Supposek;, > — Then,thecondition (SB)yieldsb; g € Fy 77 (J; LT (0,

Sj.B-P
B(X))) withk; ,, > HT“ > W' By [49, Proposition 7.4],
Js

)7 (T3 LTi#(6: B(X)) = BUC(J: L' (6 B(X))).

Furthermore, it holds that 2n (1 — ) > nj 4+ ,soeachtrysDP, |B| < nj,
2’1(1_]+/L)_ 4y
is a continuous linear operator from 1)’} to B, , P (0;X) —

LP(E)ﬁ X)) by the trace theory from Sect. 4.1. Therefore, B’ YD) = qu
bj (0, Itrys DP makes sense as a continuous linear operator from Hp u to
L0(8 0; X).
(ii) Suppose k; , > HT“ The observation that
GO > Fyly (J, 0,5 LP(90; X))

in combination with the trace theory from Sect. 4.1 yields that tr,—¢ is a well-
defined continuous linear operator from Gﬁ’ﬂ’j to LP(30: X) — L°(30; X).

Remark 3.6. The C°°-smoothness on d& in Theorem 3.4 can actually be reduced
to C?"-smoothness, which could be derived from the theorem itself by a suitable
coordinate transformation.

Notice the dependence of the space of initial-boundary data on the weight parame-
ters i and y . For fixed ¢, p € (1, 00), we can roughly speaking decrease the required
smoothness (or regularity) of g and u¢ by increasing y and p, respectively. Further-
more, compatibility conditions can be avoided by choosing & and y big enough. So the
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weights make it possible to solve (20) for more initial-boundary data (compared to the
unweighted setting). On the other hand, by choosing u and y closer to —1 (depending
on the initial-boundary data), we can find more information about the behavior of u
near the initial-time and near the boundary, respectively.

The dependence on the weight parameters p and y is illustrated in the following
example of the heat equation with Dirichlet and Neumann boundary conditions:

Example 3.7. Let N € Nand let p, g, y, i be as above.

(1) The heat equation with Dirichlet boundary condition:
If2 — %(1 + ) # %(1 + y), then the problem

oru — Au = f,
trypu = g,
u(0) = up,

has aunique solutionu € qu(J, v LP (O, wiﬁ; CNynLaJ, Vs Wg(ﬁ, w)"iﬁ;
CM)) if and only the data ( f, g, uo) satisfy:
o feLI(J, v LP(O, wd?; CNY);

1— L (14y) 2-L(14y)

o geF, 7" (I LP@O:CYY N LI, vu: Fp )l (06: CVY):;
2—2(14

e ug€ BM"( "o wd?; CN);

e tr;_og = trysuo when 2 — %(1 +u) > %(1 +9).
(ii) The heat equation with Neumann boundary condition:
Ifl— 5(1 + ) £ %(1 + ¥), then the problem

oru — Au = f,
oyu = g,
u(0) = uo,

has a unique solution u € W[}(J, v LP(O, wﬁﬁ; CMy) N Li(J, Vs Wl%
(0, wgﬁ; CN)) if and only the data ( f, g, uo) satisfy:
o [ e LI, vy LP(O,w)?; CY));

1 1 1
. ) 1= L (14y)

o g F2, 7 (1 v LPOOCN) N LI, v Fp ' (90 CV)):
2-2(14+w) 06, ~N

® up € By, (0, wy, ; CYY;

e tr;—0g = trysuo when 1 — %(1 + ) > %(1 +9).

4. Trace theory

In this section, we establish the necessary trace theory for the maximal L},—~L}-
regularity problem for (20).
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4.1. Traces of isotropic spaces

In this subsection, we state trace results for the isotropic spaces, for which we refer
to [44] (also see the references there). Note that these are of course special cases of the
more general anisotropic mixed-norm spaces, for which trace theory (for the model
problem case of a half-space) can be found in the next subsections and in [42].

The following notation will be convenient:

1+y 14y

s S— >
0B85, ,(00:X) =B,y 00:X) and  OF), (00:X):=F,," (00;X).

Proposition 4.1. Let X be a Banach space, 0 C R¢ either Rﬂlr ora C*®-domain in R¢

with a compact boundary 00, o/ € {B, F}, p € [1,00), q € [1,0], ¥ € (—1, o)
1+y

and s > - Then

SRY; X) — SO0; X), [+ fpo,

uniquely extends to a retraction try s from dzf,q (Rd, 00 X) onto 3., oy (00; X).
There is a universal coretraction in the sense that there exists an operator extygy €
LS (30; X), S'(RY; X)) (independent of <, p q,y,s) which restricts to a core-
traction for the operator trys € B(;aflf,q RY, wd?; X), 0.4 (00; X)). The same
statements hold true with R? replaced by O.

Remark 4.2. Recall that S(R?; X) is dense in dliq RY, w 3ﬁ ; X) for ¢ < oo but not

forg = o0o.For g = oo uniqueness of the extension follows from the trivial embedding
A R, w7 X) — BY 1 (RY, wd 0. X), e > 0.

PqV

Corollary 4.3. Let X be a Banach space, 0 C R either Ri or a C*®-domain in R?
with a compact boundary 00, p € (1,00), y € (=1, p—1),n € Nygands > HTV

Then
SRY; X) — SO0; X), [+ fpo,

_ 14y
uniquely extends to retractions try g from W), R, w37 X) onto F pp | (0 X)and
_ Ity

from W; (RY, w 7. x ) onto F p.p | (30; X). The same statement holds true with R4
replaced by ﬁ

4.2. Traces of intersection spaces

For the maximal LZ—L{; -regularity problem for (20), we need to determine the
temporal and spatial trace spaces of Sobolev and Bessel potential spaces of intersection
type. As the temporal trace spaces can be obtained from the trace results in [50], we
will focus on the spatial traces.

By the trace theory of the previous subsection, the trace operator try, can be de-
fined pointwise in time on the intersection spaces in the following theorem. It will be
convenient to use the notation try s [[E] = F to say that try, is a retraction from [E onto
F.
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Theorem 4.4. Let O be either Rf{_ or a C®-domain in R with a compact boundary
d0. Let X be a Banach space, Y a UMD Banach space, p, q € (1,00), u € (—1,g—1)
andy € (=1, p—=1).Ifn,m € Z-gandr, s € (0, c0) withs > H_TV, then

g [ W, v L7 (0, w375 X)) 0 L9, w3 W (0, wl X))

g n ity m 1t 23)
=F,," " (J,u LPQ@O; X)NLI(J, v Fpp 7 (305 X))
and
r TP 00 . q . s a0,
tryo Hq (J,vu; LP(O, wy”s Y)NLYJT, vy, Hp(ﬁ, wy”s Y))
_rlt I+y (24)

r Ti s p
=F,, " (J,v LP@O Y)NLI(J,vu; Fpp " (005Y)).

The main idea behind the proof of Theorem 4.4 is, as in [60], to exploit the inde-
pendence of the trace space of a Triebel-Lizorkin space on its microscopic parameter.
As in [60], our approach does not require any restrictions on the Banach space X.

The UMD restriction on Y comes from the localization procedure for Bessel po-
tential spaces used in the proof, which can be omitted in the case & = Ri. This
localization procedure for Bessel potential spaces could be replaced by a localiza-
tion procedure for weighted anisotropic mixed-norm Triebel-Lizorkin spaces, which
would not require any restrictions on the Banach space Y. However, we have chosen
to avoid this as localization of such Triebel-Lizorkin spaces has not been considered
in the literature before, while we do not need that generality anyway. For localization
in the scalar-valued isotropic non-mixed-norm case, we refer to [44].

Proof of Theorem 4.4. By standard techniques of localization, it suffices to consider
the case 0 = Rf{_ with boundary 8¢ = R?~!. Moreover, using a standard restriction
argument, we may turn to the corresponding trace problem on the full space & x J =
R? x R.

From the natural identifications

_ yyim.n) d+1 .
W;’M(L{,’) N LZ(WI’,'fy = W(p’q)’(d,l)(R (wy, v X)

and

K _ () d+1 .
Hy (L) VLG(H ) = Hg) 0y R (y, 0): Y),

(16) and Corollary 4.9, it follows that
1114y (L 1

n P q m _ m p >\m’n
tr (W), (LEY N LE(W) )] = F,

) e (1o
p,q),p,(d—l,l) (R ’ (15 v/L)9 X)

and

_lly (1 1)
r p q s _ s p\s’r d .
tr[H, (L)) N L{(H, )= F(p,q),p,(d—l,l) (R, (1, v); Y).

An application of Theorem 2.1 finishes the proof. 0
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4.3. Traces of anisotropic mixed-norm spaces

The goal of this subsection is to prove the trace result Theorem 4.6, which is a
weighted vector-valued version of [36, Theorem 2.2].

In contrast to Theorem 4.6, the trace result [36, Theorem 2.2] is formulated for
the distributional trace operator; see Remark 4.8 for more information. However, all
estimates in the proof of that result are carried out for the “working definition of the
trace.” The proof of Theorem 4.6 presented below basically consists of modifications
of these estimates to our setting. As this can get quite technical at some points, we
have decided to give the proof in full detail.

4.3.1. The working definition of the trace

Let ¢ € o (Rd) with associated family of convolution operators (S;),en C
LS (Rd; X)) be fixed. In order to motivate the definition to be given in a moment, let
us first recall that f = Zf’io S,finS (R?; X) (respectively, in S’ (R?; X)) whenever
fes (RY; X) (respectively, f € S’ (R?; X)), from which it is easy to see that

e¢]

fiopxri-t = Y _(Sufjopxra- in SRTX), f e SRY: X).
n=0

Furthermore, given a general tempered distribution f € S'(R?; X), recall that S, f €
Oy (Rd; X); in particular, each S, f has a well-defined classical trace with respect
to {0} x R?~!. This suggests to define the trace operator 1 = 7% : D(y?) C
S'(R?; X) — S'(R41; X) by

T(pf = Z(Sﬂf)\{O}x]Rd*I (25)

n=0

on the domain D(t¥) consisting of all f € &’ (R4; X) for which this defining series
converges in S'(RY~!; X). Note that .# ' £(R?; X) is a subspace of D(t#) on which
7% coincides with the classical trace of continuous functions with respect to {0} x R4-1,
of course, for an f belonging to .Z ~1&/(R¥; X) there are only finitely many S, f
nonzero.

4.3.2. The distributional trace operator

Let us now introduce the concept of distributional trace operator. The reason for us
to introduce it is the right inverse from Lemma 4.5.

The distributional trace operator r (with respect to the hyperplane {0} x R?~1) is
defined as follows. Viewing C (R; D’ (R41: X)) as subspace of D’ (R?: X) = D'(R x
R4-1; X) via the canonical identification D’ (R; D'(R?~!; X)) = D'(R x R4~1; X)
(arising from the Schwartz kernel theorem),

CR; D'(RI™; X)) — D'(R; D'(RY™!; X)) = D'(R x R X),
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we define r € L(C(R; D'(R4~1; X)), D'(R4~!; X)) as the *evaluation in 0 map’
r:CR; DR X)) — D'RITL X)), > evof
Then, in view of
CR:X)=CR xR X) = CR; CRIT! X)) — CR; D' (R X)),

we have that the distributional trace operator r coincides on C (R?; X) with the classical
trace operator with respect to the hyperplane {0} x R4~ i.e.,

r:CR%: X) — CR7LX), f Ji0yxrd-1-
The following lemma can be established as in [36, Section 4.2.1].

Lemma 4.5. Let p € S(R) such that p(0) = 1 and supp p C~[1,2], a; € R,
d e (Zog) " withd = (1,d), a € (0,00)1, and (¢pp)neny € 4RI, Then,
for each g € S'(RY™1; X),

extg =Y pQ2" ) @ [¢n * g 26)
n=0

defines a convergent series in S'(R%; X) with

supp Z [p ® [po * gll C{& | [§ls,a < c}

27
supp FLp (2" ) @ [y % g1 C (£ | =120 < [Elgu <2} n=1, &

for some constant ¢ > 0 independent of g. Moreover, the operator ext defined via this
formula is a linear operator

ext: 'R X) — Cp(R; SR X))
which acts as a right inverse of r : C(R; S'(R4™!; X)) — S'(RY~1; X).

4.3.3. Trace spaces of Triebel-Lizorkin, Sobolev and Bessel potential spaces

Theorem 4.6. Let X be a Banach space, 4y = 1, a € (0, oo)[, p € (1, oo)[, q €
[1,00] y € (=1,00) and s > (1 +y). Let w € [T;_1 Asc(R%) be such that
wi(x1) = wy (x1) = |x1]” and w” € ]_[{/:2 Apjisr; (R%) for some ¥" = (ra, ..., 1)) €
0, D=1 satisfying s — %(1 +y) > lezz ajtfj(r—l/ — 1).! Then, the trace operator
T = ¥ (25) is well defined on F;z;)i(Rd, (wy, w”); X), where it is independent of
@, and restricts to a retraction

s—L (1+4y).a"

T Fy (R (wy,w); X) — F t 0 (R W X) (28)

for which the extension operator ext from Lemma 4.5 (with = d” and @ = a’)
restricts to a corresponding coretraction.

! This technical condition on w” is in particular satisfied when p” € (1, 00)! ! andw” e ]_[ljzz Ap; RY).
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Remark 4.7. In the situation of Theorem 4.6, suppose that ¢ < co. Then, S(R?; X) is
a dense linear subspace of F . J(R (wy, w w”); X) and T is just the unique extension
of the classical trace operator

SR X) — SR X), f > fiiopera-ts
to a bounded linear operator (28).

Remark 4.8. In contrary to the unweighted case considered in [36], one cannot use
translation arguments to show that

Fpe (RY (wy, w"); X) = CR; D'R; X))

fors > (1—|—y) However, for s > ‘” L(14y4),p € (1, oo) andw” € ]_[] AR 4y,
the 1nclu810n

Fro (R (wy, w"); X) = CR; 'R X))

can be obtained as follows: picking § with s > § > % (1 4 y4), there holds the chain
of inclusions
Fro «RY (wy ") X) > B (R (wy, w"); X)

"
(30) §—SLl4yy).a
— Cp(R, pp,,ys Bp” 111[[”

— CR; S' (R4 Xx)).

"

R w'; X))

Here, the restriction s > %(1 + y+) when y < 0 is natural in view of the necessity
of s > % in the unweighted case with p; > 1 (cf. [36, Theorem 2.1]).

Note that the trace space of the weighted anisotropic Triebel-Lizorkin space is
independent of the microscopic parameter g € [1, oo]. As a consequence, if E is a
normed space with

pIJ(Rd (wy, w"); X) = E <~ F* WJ(R (wy,, w"); X),

then the trace result of Theorem 4.6 also holds for E in place of F;’Z ‘ (R, (wy, w"); X).
In particular, we have:

Corollary 4.9. Let X be a Banach space, 4y = 1, a € (0, oo)l, p € (1, oo)l, y €
(=1, p1 — D ands > %(l 4+ ). Let w € ]_[lj:1 A,,j(RJJ‘) be such that wi(xy) =
wy (x1) = |x1]”. Suppose that either

e E=Wr (RY (wy, w"); X),n e (L)), n=sa"";or

o E= H”(Rd (wy, w"); X); or

e E= HS R (wy, w"); X), 5 € (0,00, s =sa".
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Then, the trace operator t = t¥% (25) is well defined on E, where it is independent of
@, and restricts to a retraction

.91 "
s——(14+y),a
t:E— F, "

d—1 .
P’ pr.d” (R s w”, X)

for which the extension operator ext from Lemma 4.5 (with d = 4" and @ = a”)
restricts to a corresponding coretraction.

4.3.4. Traces by duality for Besov spaces

Leti €{l,...,l}.Forb € R4, we define the hyperplane
Cigip =R x RE-1 x {b} x R+ x RY

and we simply put I'[4.;1 := I'[.i],0. Furthermore, given sets Sy,...,S; and x =
l . i
(x1,...,x1) € ]_[j:1 Sj, we write x[1] = (XLy ooy Xim 1y Xip s - - » X1)-

Proposition 4.10. Let X be a Banach space,i € {1, ...,1},a € (0, 00)!, p € (1, 00)’,
q €[1,00),y € (—dj,00) and s > %(c[,- +vy). Letw € Hlj:] AOO(R‘{J') be such that
w; (x;) = wy, (x;) = |x;|” and w; € Ap; for each j # i. Then, the trace operator

iy SR X) — SR X), £ fi

extends to a retraction

4 (f [i]
s d . 5= (dity).a
iy By, (R w; X) — B

plil g, dli] R4, wl; X) (29)

for which the extension operator ext from Lemma 4.5 (with 4 =dand a = a),
modified in the obvious way to the ith multidimensional coordinate) restricts to a
corresponding coretraction. Furthermore, if s > %(cﬁ + y4), then

1

_ S= e (dityy).all ;
B (RY w: X) < Cy(R%, pp i B (0 R wll X))

p.q.d plil g, 4]
— C(R%; S'(RI~%; X)), (30)
Y-
where pp,; , :=max{| - |, 1} 7i.
Corollary 4.11. Let X be a Banach space, a € (0, oo)’, p € (1, oo)l, q € [1,00),
y € ]_[lj:l(—z[j, 00) and s > Z[jzl Z—I/(L{] +yj4+). Letw € ]_[ljzl Aco(R%) be such
that wj(x;) = wy, (x;) = |x;|¥ for each j € {1, ...,1}. Then,

B;";J(Rd, w; X) = CoRY, ppy s . CoRE, 0y 5 X)),

Proof. Thanks to the Sobolev embedding of Proposition 5.1, it is enough to treat the
case w € ]_[lj=1 Ap; (R%), which can be obtained by [ iterations of Proposition 4.10.
O
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Remark 4.12. The above proposition and its corollary remain valid for ¢ = oo. In
this case the norm estimate corresponding to (29) can be obtained in a similar way,
from which the unique extendability to a bounded linear operator (29) can be derived
via the Fatou property, (10) and the case ¢ = 1. The remaining statements can be
established in the same way as for the case g < co.

Remark 4.13. Note that if y € [0, oo)l in the situation of the above corollary, then

s,a d . d.
Bp,q,:{(R ,w; X) — BUCRY; X)
by density of the Schwartz space S(R%; X) ¢ BUC(R?; X) in B;"; LRY w; X).
This could also be established in the standard way by the Sobolev embedding Propo-
sition 5.1, see for instance [49, Proposition 7.4].

Let X be a Banach space. Then,
[S'®RE 01 =SSR X" and  [SRY X)) = 8RR X
via the pairings induced by

(f®x*, g®x) = ((f.x"), (g, x)):

see [4, Corollary 1.4.10].

Leti € {1,...,1} and b € R%. Let triz.;1p € LSRY; X), S(RYT; X)) be
given by tris.i16 f = fir\s.;,,- Then, the adjoint operator i) := [trsi) 6] €
L(S' R x*), S'(RY; X*)) is given by Tr4:i1.0 f = b ®4:17 f, Which can be seen
by testing on the dense subspace S(R%) ®r4:11S (R4=%) of S(RY). Now suppose that E
is a locally convex space with S(R?; X) i) [E and that IF is a complete locally convex
space with S(RY~4; X) < . Then, B — S'(R?; X*) and F/ — S'(R?~%; X*)
under the natural identifications, and try.;}» extends to a continuous linear operator
trg_r from [E to IF if and only if T{4;} 5 restricts to a continuous linear operator T _,
from F’ to [, in which case [trgF] = Ty F'.

Estimates in the classical Besov and Triebel-Lizorkin spaces for the tensor product
with the one-dimensional delta-distribution §y can be found in [34, Proposition 2.6],
where a different proof is given than the one below.

Lemma 4.14. Let X be a Banach space, i € {1,...,1}, a € (0,00)}, p € [1, 00),
qg€l,o0],y € (—d,00). Letw € ]_[lj:] Aoo(RY) be such that w; (x;) = wy (x;) =

|x;|”. For each b € R% consider the linear operator

Tiein : S’ RIT4: X) — SR X), f > 8 Qi) f-

pi

s+a; (t[,-——({’dry),am
q,d

(i) If s € (—00, a; [‘ﬂp# — 5[,-]), then Tis.i1,0 is bounded from B
R4, wl; X) 10 B (R, w; X).

plil
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A GitY= il

(it) Ifs € (=00, aj dtv- _ ), then Tiz..p is bounded from BH_a’ (4 b )’a

s U Di 1|/ [&;i],b Pm,l]

(R4 wlil: X) to B;"; J(Rd, w; X) with norm estimate

7+
101511 Hai(#%y)_a[i] . < max{|b|, 1} 7.
BB i, R4 wlil; x), By (RY,w)))
In order to perform all the estimates in Lemma 4.14, we need the following two
lemmas.

Lemma 4.15. Let  : R? — C be a rapidly decreasing measurable function and
put Yg = R (R-) foreach R > 0. Let p € [1,00) and y € (—1, 00). For every
R > 0 and a € R4, the following estimate holds true:
d— 4ty
WR(- = )llLpga.ry SR 7 (la|R + 1)T+/P
Proof. By [11, Condition B)] (see [49, Lemma 4.5] for a proof), if w is an A,-weight
on R4 with ¢ € (1, 00), then

/ (1+ |x = YD ™% dy Sjuy,, 4 / w(y) dy. (31)
R4 B(x,1)

Soletus pick ¢ € (1, 00) sothat| - |V € A,. Then, as v is rapidly decreasing, there
exists C > 0 such that | (x)| < C(1 + |x|)"%/P for every x € R%. We can thus
estimate

d— 4ty
HYR(- —a)llppwa,).py =R 7 [IY(- = Ra)llppwa,). vy

d—atr —q/p
<CR" 7 |lt > (141t = Ral)" Pl o ). )

G ayy I/p
< RS ( [ dy)
B(la|R,1)

d+
< R (JalR + 1)rH/P.

O

Lemma 4.16. For every r € [1,00] and t > 0, there exists a constant C > 0 such
that, for all sequences (by)ren € C, the following two inequalities hold true:

|2 0kt 160 e oy = CNR*BrORentller @),

2 ) | =i Q.
| Sheoonl), ]y = N BORR Il

Proof. See [36, Lemma 4.2] (and the references given there). O

Proof of Lemma 4.14. Take ¢ = (¢,)neny € @D (RY) with g9 = ¢o ®(4;i) V0.
where ¢ = ($uey € ®U(RY) and ¥ = () € @A DRIE). For f €
S'(R4—4; X), we then have

Sy Qi) ) = Sgtsb ®L4:i] Sg’f = [¢o * 3] B(u;i) [Sg/f] =¢o(- — D) Qa0 Sg/f
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and, forn > 1,
SY 8 @it ) = @nx G @paziy ) = 2" oo™ ) % (8 Bpasiy f)
20D o 8t % By @y )
. , [il. /i1 i1 glil
= [2m g0 @) 58 | @1y [27" yo ek x £ ]
_ [2("71)“"‘#(150(2("71)“" ) % 81’] ®[af [2(11 Dall.¢ [’]1// (52‘5[ ]1 .l ) % f]
= 2008 4o 2"~ b]) By [2 4T 5 1]

_2(n—1)aitfi¢o(2(n—l)ai [- — b)) ®s [2(” Dalil. z{[”w (82[5[1]1 .all ) % f]

" n—1
= 2" o (2" — b)) @iy p SV f =20V go @D — b @Y ST £
j=0 =

Applying Lemma 4.15, we obtain the estimate

(-5 i e
11S¢ 8b ®1azi) Ol Lot @ xy S il =) b 4 1)

||S() f||Lp[l] 'f[’](]Rd 1 wlil. x) n=0;
1

||Z] =0 j f”LP['] ,{[l](Rd 1 ylil, x) + || ;l OSJ f||LP[1] "{[’](Rd 1 lil: x)? n > 1.

(32)
(1) Using (32), we can estimate
18 ®[zf;i] f||B;,‘:1,,f(Rd*w3X) = H (2m||Sy(f(‘S ®[a[;i] f)||Lp«d(Rd W'X))neN H@q
s+a; 4*7
S H( | D HZS Fll o an - i X)>n>o

j=0

As s + a; (z{,- — %) < 0, we obtain the desired estimate by an application of the

triangle inequality in L RI=1, wll; X) followed by Lemma 4.15.
(ii) Observing that

Gty v . dity—
2 () b 415 < 2 ) maxqel, 1
the desired estimate can be derived in the same way as in (i). O

Proof of Proposition 4.10. Let us first establish (29) and (30). Thanks to the Sobolev
embedding Proposition 5.1, we may restrict ourselves to the case y € (—1, p — 1), so

d ; d
that w € [T}_; Ap; (RY). As SRY; X) < ByY (RY, w; X) and S(RI~4; X) <

alil

B;[i] 4.l (Re—4 wlil: X) (5,1 € R), we have
By (RY w; X)) > S'RY X% and (BRI wll X)) < /RIS X7
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under the natural identifications; also see the discussion preceding Lemma 4.14. In
this way, we explicitly have

s,a d .. % _ p—s.a d 7. vk
(B, «RY w: X)I" = B, (RY, w'; X)

and
t,a!l d—d . [i]. * —t,alil d—d . /li].
[Bp[i],q,d[i](R l7w[]vX)] = Bp/[i],q/"{[i](R l7w[]»X)
1
p1—1

by [413] asw € ]_[lj:1 Apj(R‘[f), where p’ = (p},..., p) and w = (w, s
w, 1), Note here that w/ (x;) = |x;|? with y’ = — L. Since —[s — 4L (d; +y)] =
—s +a; (cﬁ — ’["pL{’/) and —[s — %(zfi +y)]l=—s+a (L[,- — ‘{"Jr;#), it follows

i

from Lemma 4.14 and the discussion preceding that

d
it F11 gt SAlle @i, f€SREX),

d—d; o [i].
il g il (Re=% jwll; X)

and, if s > %(t{i + 1),

||tr[d;i],b f|| S,%(,{iJrVJr),a[f]
Dl g 4li]

feSRY: X),beRE.

< o O Fllnoa o,
(Rd_”;"w[i];X) ~ ppz,y( )”f“qud(R w: X)

These two inequalities imply (29) and (30), respectively.

Let us finally show that the extension operator ext from Lemma 4.5 (with 4 = /]
and @ = al’l, modified in the obvious way to the ith multidimensional coordinate) re-
s =5 (d+y).all
plil g, dli]

X). In view of (the modified version of) (27) and Lemma A.3, it suffices to estimate

stricts to a coretraction for tr(,.;. To this end, we fix g € B (RA—4i plil,

12" p (2" ) ®r:i) [Yn * g])neN||£q(N;LPv'f(Rd,w;X)) 5 llgll w%(tfﬂrv)val"l

d—d; o i].
Sl gl RI~% wlil; X)

A simple computation even shows that

Q2" p 2" ) Qpa:i [Wn * g])neN||zq(N;LP~II(Rd,w;X))

= ||p||LP[(R‘{i’| . \y)”g” 5-%(4;-4_}/)41[”

d—d Il x)
plil.g.qlil (R wlll; X)

4.3.5. The proof of Theorem 4.6

For the proof of Theorem 4.6, we need three lemmas. Two lemmas concern estimates
in Triebel-Lizorkin spaces for series satisfying certain Fourier support conditions,
which can be found in “Appendix A.” The other lemma is Lemma 4.16.
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Proof of Theorem 4.6. Let the notations be as in Proposition 4.5. We will show that,
for an arbitrary ¢ € o4 (RY),

(I) ¥ exists on F;’Z L{(Rd, (wy, w”); X) and defines a continuous operator

o psa d Y 5= 5 (I4y).a”
T :Fp’!q’d(R ,(wy, w"); X) — F ,

o R WX

(Il) The extension operator ext from Proposition 4.5 (with {=d"anda = a")
restricts to a continuous operator

_ar "
5= (1+y).a

. d—1 . s d .
ext: Fy it RITL W X) — FY (R (wy, w'); X),

Since ZIC*RY; X) ¢ F71&RI7; X) N F;’,,";l @RI W X) s a dense

subspace of F;’,,'fm’ £ (]Rd, w”; X), the right inverse part in the first assertion follows
from (I) and (IT). The independence of ¢ in the first assertion follows from denseness
of S(R?; X) in F;iZ’J(Rd, (wy, w”); X) incase g < oo, from which the case ¢ = 0o
can be deduced via a combination of (10) and (11).

(I): We may with out loss of generality assume that ¢ = co. Let f € F;‘;o I[(Rd,
(wy, w”); X) and write f, := S, f for each n. Then each f, € S’(R?; X) has Fourier
support

1
supp fn - H[—cZ”“f, €214 1%
j=1

for some constant ¢ > 0 only depending on ¢. Therefore, as a consequence of the
Paley—Wiener—Schwartz theorem, we have f;,(0, ) € S’ (Rd -l x ) with Fourier sup-
port contained in ]—[ljzz[—c2"“1, ¢2"41% . In view of Lemma-A.1, it suffices to show
that
||<2”“51“+V“1;(0,o)
n

||LP”-tf//(Rd’l,w”;e’)1 (N; X)) S ||f||F;1';O,‘[(Rd,(wy,w”);X)-

(33)

>0

In order to establish estimate (33), we pick anry € (0, 1) suchthatw, € A,/ (R),
and write r := (r1,r”) € (0, 1)!. For all x = (x1,x”) € [27" 20-mai] x Rd—1
and every n € N, we have

[ fnCx1 — y1, x|
1+ [2nary |V ly =y
= Ci1 £ (r, b, &; x),

11/ (0, x| < Cy < (1+270) £ B, o x)

where b .= (2na1 . 2mar) € (0, 00)! and where i, b 4; .) is the maximal
function of Peetre—Fefferman—Stein type given in (59). Raising this to the p;th power,
multiplying by 2571 |x; |7, and integrating over x; € [27"%1, 2(1=41] we obtain
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far(y+1) _ 1 n(y_

sL+p)pr "
27V m 0, x")|P
5y [1/2 (0, x|

p
= Cf/ [Znsf;(”b["]v d; (x1,x”))] " xalY dx.
[2—"41 o1 n)al]
It now follows that

- (sfﬂ(lw))nm
pvARd FACESIL

< Co [ (2B aa ), gy,
R

from which we in turn obtain

o 91
‘ (2”“ R A -))

Since (freny C S'(RY; X) satisfies supp(fk) - ]_[ljzl[—bg.k], bgk]]‘[f' foreachk € N
and some ¢ > 0, the desired estimate (33) is now a consequence of Proposition A.6.
= (+n).a’
p1.d”
(R4=1, w”; X) and write g, = T, g for each n. By construction of ext we have extg =
Zsio p (2" )®g, inS'(R?; X) witheach p(2"% - )R g, satisfying (27) forac > 1
independent of g. In view of Lemma A.2, it is thus enough to show that

20l Lo " Rd=1 w; 071 (N; X))

(2 peep ai )

LPARY, (wy, w");£°(N))

(IT): We may with out loss of generality assume thatg = 1. Let g € F b

1G0@" ) ® gunz0ll s g, oy xp S MBI St

o Z; a (Rd*lvw”;X)
34)
In order to establish estimate (34), we define, for each x” € R4,
0 Pl
I1(x") = / (Z 2 p(2" " x1) gn (x| lx11”dx;. (35
R n=0

We furthermore first choose a natural number N > % (1 4+ y) and subsequently pick
a constant C; > 0 for which the Schwartz function p € S(R) satisfies the inequality
o™ x1)| < C1]2" x4 |_N for every n € N and all x; # 0.

Denoting by 7 (x”) the integral over R\[—1, 1] in (35), we have

p1
ne" <G / (Z p- 2“'||gn<x”)||) et VP iy
R\[-1,1]

P1
_a
=C / i [~V dxy (§ jz r (47 =N)aim (s3] “*”>"||gn<x”)||>
R\[-1,1]

n=0
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1
< / et |7V dy | <2<ﬁ“*”*N)“'”) 17,
R\[-1,1] >0 e (N
=:C2€[0,00)
s—2L(14y))n
i (z( ) ||gn<x“>||) 1. (36)
1
Next we denote, for each k € N, by Iy x(x”) the integral over Dy = {x;
R | 2=®FDar < |y < 27ka1} in (35). Since the Dy are of measure w, (Dy) <

C32 ka1 (r+D for some constant C3 > 0 independent of k, we can estimate

k 00 P1
Ioxx") < / (Z2S"||p||oo||gn<x”>||+ > clz“““”)”m|‘N||g,,<x”>||) 1] dxy
Dy n=0

n=k+1

k 00 P1
< Gy kv Hh (Zzsﬂnmoongn(x”)H > clz““1N>"2N“1<’<+”||gn<x”)|)
n=0 n=k+1

k P
< C327||pllfs27 kD (Z 25"||gn<x”>|)

n=0

P
+ C32P (C12Na|)PI2k< p] (}'+1) a py ( Z 2(s a|N)n||g (x//)|> .
n=k+1

Writing Io(x") := Y 2= lo.x(x”), which is precisely the integral over [—1, 1] in (35),

we obtain

oo k Pl 00
_1
Io") < Cqy 27k 0+D <Z2S"Ilgn<x”>ll> oy Y 2 (e o)
k=0

k=0 n=0
00 p1
( Z 2(su|N)n||gn(x//)||>
n=k+1
AL (14y)k a
4+
=c4||(2 pr (117) szngn(x”)n) g oy
n=0 keN

9
N—-L(1+y))aik .
+  Cy4ll (2( Pl V)a1 Z 2(3 alN)ann(x//)H) ||eP1(N)1
keN

n=k+1

which via an application of Lemma 4.16 can be further estimated as
” A4k sk ”
Io(x )SC5||(2 gy (x )||)k ) a0

N—-Ly+1))ark,—
+c5||<z( D Jak s a1N>k||gk<x”>||) 128 a0
k>

s—2L(14+y) )k
=2C5||(2(Y ) ||gk<x”>||) 155 o (37)
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Combining estimates (36) and (37), we get
_a
167 < | (z(s ) (e ) llerr @+
n>0

from which (34) follows by taking LP" 4" (R4~ w)-norms. O

5. Sobolev embedding for Besov spaces

The result below is a direct extension of part of [49, Proposition 1.1]. We refer to
[35] for embedding results for unweighted anisotropic mixed-norm Besov space, and
we refer to [32] for embedding results of weighted Besov spaces.

Proposition 5.1. Let X be a Banach space, p, p € (1, oo), q,q €[1,¢], 5,5 €R,
a € (0,00), andw, w € I—[ljzl Aco(RY). Suppose that J C {1, ...,1} is such that
[ pj = p~j andwj = lZ)ijI‘j ¢ J,'

o wi(x;) = |x;1" and Wj(x;) = |xj|’7f for j e J for some y;,y; > —d;
satisfying
&<ﬁ and G+ < L[j+yj.
pj ~ Pj pj pj

Furthermore, assume that g < § and thats — ) ;, ai% >S5 —aiy o =8
1

Then
s,a d . s.a d =~.
Bp,q,;{(R ,w; X) — Biz,q,d(R ,w; X).

Proof. Thisisanimmediate consequence of inequality of Plancherel-Pélya—Nikol skii
type given in Lemma 5.2. 0

Lemma 5.2. Let X be a Banach space, p, p € (1, 00)!, and w, w € ]_[?/:1 WRY).
Suppose that J C {1, ...,1} is such that

e pi=pjandwj =w; forj ¢ J;

o wi(x;) = |x;1" and Wj(x;) = |xj|7-f for j e J for some y;,y; > —d;
satisfying
&<ﬁ and G+ < Gty
Pj ~ pj pj pj

Then, there exists a constant C > 0 such that, for all f € S'(R%; X) with supp( f ) C
Hljzl[—Rl, R11% for some Ry, ..., R > 0, we have the inequality

8,
WS Lot e i x) = C l_[ RN NS Lot (e i x)
JjeJ

where §; = (d;j +v;)/p;j — (dj +v;)/Dpj > 0 foreach j € J.
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Proof. Step L. The case l = 1:
We refer to [49, Proposition 4.1].

Step II. The case J = {l}:

Under the canonical isomorphism D'(R%; X) = D/(R%; D/(R4+-+d-1. X))
(Schwartz kernel theorem), f corresponds to an element of S’ (R4 ; C (R4 +-+d-1; X))
having compact Fourier support contained in [—R;, R;]%. Given a compact subset
K C Ré+-+d-1 we have the continuous linear operator

mig : CRY; X) — LR X) — LV RY w1 X), g lkg,

whered =41 +...+d_1, d' =(,....,4-1), p == (p1,..., pi—1),and W' =
(w1, ..., w;—1). Accordingly, for each compact K C RY we have Igf =mif €
S'(R%: LP ' (RY w'; X)) with compact Fourier support contained in [—R;, R;]%,
so that we may apply Step I to obtain that

]
I Pl Lo @i g ®et iy = CRUIK Pl Lo it s« @ i)

for some constant C > 0 independent of f and K. Since LP4(RY, w; X) = LPI(R%,
wp; LP 7 RY w's X)) and LP4(RY, w; X) = LP(RY, wy; LP 4 (R, w'; X)), the
desired result follows by taking K = K,, = [—n, n]% and letting n — oo.

Step II1. The case #J = 1:

Letus say that J = {jjo}. Then, as a consequence of the Banach space-valued Paley—
Wiener—Schwartz theorem, for each fixed x” = (Xjog1s -5 X)) € Réot1H-+d ye
have that f (-, x”’) defines an X-valued tempered distribution having compact Fourier
support contained in ]_[;‘):1 [—R;, Rj]‘f/'. The desired inequality follows by applying
StepIIto f (-, x”) foreach x” and subsequently taking L (Pio+1+-+++PDs(djg+1s-osd) (R djo+1+
..+ d, (Wjy41, ..., wy); X)-norms with respect to x”.

Step IV. The general case:
Just apply Step III repeatedly (#J times). 0

6. Proof of the main result

In this section, we prove the main result of this paper, Theorem 3.4.
6.1. Necessary conditions on the initial-boundary data

Let the notations and assumptions be as in Theorem 3.4. Suppose that g =
(Bi(D)u, ..., By(D)u) and ug = tr;—ou for some u € U}’},. We show that (g, ug) €
D -

It follows from [50, Theorem 1.1] (also see [55, Theorem 3.4.8]) that
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trio | W (R, v LP(RY, wy 3 X0) 0 LIGR, v W' (RY, w5 X)) |

2n(1— 12y

=B,, ‘' (R w,;X).

Using standard techniques, one can derive the same result with R replaced by J and
R replaced by ©:

trtzo[U{,’:Z] = H{,’:Z. (38)
In particular, we must have ug € ]If,’jﬁ.
In order to show that g = (g1, ..., gn) € GJI/’:Z, we claim that
Bj(D) € BWLY, G ), j=1,....n. (39)

Combining the fact that
LR, vy; LP(RY, wy; X)) = LPDEDRM (w,,, v,); X) > SR X)

is a ((d, 1), (%, 1))-admissible Banach space (cf. (6)) with (13), (15) and standard
techniques of localization, we find

1-4 ; _
DfeB (U;’;g, Hy ™ (J5 LP(0, wi?: X)) N L (J; WPl (o, wi?, X))) :
B eN |B| <2n.
From Theorem 4.4, it thus follows that, foreach 8 € N¢, j € {1, ..., n}with|B| < nj,

trys o Df is continuous linear operator

) nj—|Bl
tryg o Df 1 UL — Fyly 7 (1,0, LP(0; X))

NLI(J, v,; F2eir =Bl o, X)).
The regularity assumption (SB) on the coefficients b; g thus gives (39), where we use
Lemmas B.1, B.3 and B.4 for || = n; and Lemma B.5 for |8;] < n;.

Finally, suppose that «;, > HT“. Then, by combination of (38), (39) and Re-
mark 3.5,

tri=0 0 Bj(D), B~ (D) o trj—g € BWUL4, L°(30: X)),  j=1,....n.
By a density argument these operators coincide. Hence,
tri=0gj — B~ (D)ug = [tr=0 0 B;(D) — B7~(D) o tr—olu = 0.
6.2. Elliptic boundary value model problems

Let X be a UMD Banach space. Let A(D) = Z|a\:2n agD* Bj(D) = Z\ﬁ\:
njbj,ﬂtraRiDﬁ, J =1,...,n with constant coefficients ay, bg ; € B(X).
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In this subsection, we study the elliptic boundary value problem

v+ A(D)v =0,

. 40
Bj(Dyv=gj, j=1,...,n, (40)

on Ri. By the trace result of Corollary 4.3, in order to get a solution v € Wg" (R4, wy; X)

weneed g = (g1,...,8n) € ]_[;le F,ffl;j’y(Rd_l; X). In Proposition 6.2, we will see
that there is existence and uniqueness plus a certain representation for the solution
(which we will use to solve (49)). In this representation, we have the operator from
the following lemma.

Lemma 6.1. Let E be a UMD Banach space, let p € (1,00), w € Ap(Rd), and
n € Zxq. For each & € C\(—00,0] and o € R, we define L] € L(S'(R?; E)) by
Lif =770+ P f1  (f e SR E)).
Then, L restricts to a topological linear isomorphism from H;*z’"’ R4, w; E) 1o
H;,' (R?, w; E) (with inverse L;J)for each s € R. Moreover,
C\(=00,0] 3 A > LJ € B(H™" (R, w: E), Hy(R?, w; E)) 1)
defines an analytic mapping for every o € R and s € R.

Proof. For the first part, one only needs to check the Mikhlin condition corresponding
to (6) (with [ = 1 and @ = 1) for the symbol & > (1 + |£|2)~ /2 4 |£121)7.
So let us go to the analyticity statement. We only treat the case o € R\N, the case
o € N being easy. So suppose that o € R\N and fix a Ao € C\(—o00, 0]. We shall
show that A +— LY is analytic at A¢. Since L;O is a topological linear isomorphism
from HIS,H’”(Rd, w; E) to H; (Rd, w; E), T € R, for this it suffices to show that

s _1
C\(=00, 015 % > LIL;" = L} LI L, 7T € BLP 4, w; E))

is analytic at Ag. To this end, we first observe that, for each & € R4,
C\(=00,01 3 & > (. + [E7)7 (o + [§7) 7 € C
is an analytic mapping with power series expansion at Ao given by

O A+ EPT G + 16777 = 1+ 0 (o + €)' (4 = 20)
+o(o — Do +IEPN T2 =20 +--- (42)
for A € B()\g,d), where § := d (0,{ho+¢ |t >0}) > 0. We next recall that L)Tol
restricts to a topological linear isomorphism from L?” (Rd, w; E)to Hg” (R, w; E);in
particular, L;OI restricts to a bounded linear operator on L” (R4, w; E). Since L;Ok =

(L;OI)" for every k € N, there thus exists a constant C > 0 such that

||L;0k||B(L,,(Rd,w;E)) <Cck,  VkeN. (43)
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Now we let p > 0 be the radius of convergence of the power series z >
Y keN []_[];;(l)(o - j)] Ckzk, set r := min(s, p) > 0, and define, for each A €
B(M, r), the multiplier symbols m*, m}, m?, ... : RY — C by

m* (&) = (A P (o + 1€ 7 and m(§)
N

=y ]_[(6—1) (o + [EPD 7O = 20)".

k=0 [ j=0

Then, by (42) and (43), we get
m*(E) = lim mh (), &eR?
N—o0
and

lim [7,; —7,:]1=0 in B(L?(RY, w; E)),

N,M—o0 ny
respectively. Via the A ,-weighted version of [39, Facts 3.3.b], we thus obtain that

N
LIL; " =T, = lim 7,, = lim [T —i| Lk 20"

N—oo N N—>oo
in B(L?(RY, w; E))

for A € B(Ag,r). This shows that the map C\(—00,0] > A > LKL)TO” e B(LP
(R4, w: E)) is analytic at Aq, as desired. Il

Before we can state Proposition 6.2, we first need to introduce some notation. Given
a UMD Banach space X and a natural number k € N, we have, for the UMD space
E =LP(R4,| - |7; X), the natural inclusion

WERS wy: X) > WERT S LP Ry | - 72 X)) = HY RS E)
and the natural identification
LP(RY, wy; X) = HYRI™ E).

By Lemma 6.1, we accordingly have that, for A € C\(—o0, 0], that the partial Fourier
multiplier operator

k/2n
LA

€ LE®RTED® X)), [ F(8 7 18P o p]

restricts to a bounded linear operator

LY € BOWERL, wy: X), LP(RL, wy; X)).
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Moreover, we even get an analytic operator-valued mapping
C\(=00, 0] —> BWARL, wy: X), LPRYL, wy: X)), &> LY.

In particular, we have

nj+1

Ly Dy € BOVY T RL, wy X0, LPRY wys X)), j=1,m,
(44)

nj
2n

1—
LA

with analytic dependence on the parameter A € C\(—o0, 0].

Proposition 6.2. Let X be a UMD Banach space, p € (1,00), y € (=1, p—1), and
assume that (A, By, ..., B,) satisfies (E) and (LS) for some ¢ € (0, ). Then, for
each A € X _g, there exists an operator

SG) = (8§10 ... Su0) € Bl @ Fply” ®T x), W2 RL, wy: X)
j=1

which assigns to a g € @?:1 F,%fl,',(j’y (R=1: X) the unique solution v = S(\)g €
Wﬁ" (R4, wy; X) of the elliptic boundary value problem

v+ A(D)v =0,

. 45
Bi(Dyv=gj, j=1,...,n; 45)

recall here that kj, = 1 — '21—”1 — L1+ y). Moreover, for each j € {1,...,n}, we

2np
have that

i Bneg —> BV, ™ RL, wy: X)W RY, wy: X)), &> 85 (1) = §;(4) o try—o

2n—n;

defines an analytic mapping, for which the operators D“Sj(k) e BW,
(Rf{_, wy; X), L”(Rf{_, wy; X)), la| < 2n, can be represented as

nj+l

D*S;(0) = Tj!a(,\)Li‘% +T200L, 7 D, (46)
for analytic operator-valued mappings
T}y Tnp — BILPRY, wy: X)), A>T ,(0),  i€{l,2), (47
satisfying the R-bounds
ROMSET! 0) | 1 € Tag) <00, kel (48)

Comments on the proof of Proposition 6.2. This proposition can be proved in the same
way as [18, Lemma 4.3 & Lemma 4.4]. In fact, in the unweighted case this is just a
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modification of [18, Lemma 4.3 & Lemma 4.4] (also see the formulation of [47,
Lemma 2.2.6]). Here, [18, Lemma 4.3] corresponds to the existence of the solution
operator, whose construction was essentially already contained in [17], plus its rep-
resentation, and [18, Lemma 4.4] basically corresponds to the analytic dependence
of (47) plus the R-bounds (48). The analytic dependence of the operators 5’ j(A) on
A subsequently follows from Lemma 6.1 and (46). For more details, we refer to [42,
Chapter 6] and Remark 6.4. g

Remark 6.3. We could have formulated Proposition 6.2 only in terms of the mappings
S;. Namely, for each j € {1, ..., n} there exists an analytic mapping

) By — BW, T RL, wy; X), W RL wys X)), &> Sj(0)

with the property that, for every u € Wg” RZ, wy; X),v = S u is the unique solution
in Wg” (R, wy; X) of (45) with g; = §; ;B; (D)u, for which the operators

D*S; (M) € B(WZ”’”-" RY, wy; X), LP(RL, wy; X)), |a| < 2n,

can be represented as (46) for analytic operator-valued mappings (47) satisfying the
2n—n;

‘R-bounds (48). Then, given extension operators £; € B(F ;n;; @RI x ), W,
(Rf{_, wy,; X)) (right inverse of the trace try_o € B(W;n_nj (RY, wy; X), F,%Z’,(j‘y
R41: X)), j = 1,...,n, the composition S(A) = (S1(1)...S, (V) := (S1(A)...
Sp(A)) o (&1 ... &) defines the desired solution operator.

In this formulation, the proposition the weight w, can actually be replaced by
any weight w on R? which is uniformly A p in the y-variable. Indeed, in the proof
the weight only comes into play in [17, Lemma 7.1]. For weights w of the form
wx’,y) = v(x)|y|” with v € AP(Rd_l), we can then still define S(A) as above
thanks to the available trace theory from Sect. 4.1.

1/2n
Remark 6.4. In [18] the specific extension operator £, = e "Li" was used in the

construction of the solution operator S(A) = (S1(A), ..., S, (1)), which has the ad-
vantageous property that D&, = 1L i/ 2"&. Whereas in this way the obtained rep-

n

resentation formulae S;(A) = T/()»)L)lh_ﬁ& can only be used in the case ¢ = p
to solve (49) via a Fourier transformation in time (cf. [18, Proposition 4.5] and [47,
Lemma 2.2.7]), our representation formulae (46) can (in combination with the the-
ory of anisotropic function spaces) be used to solve (49) in the full parameter range
q,p € (1,00) (cf. Corollary 6.8). However, the alternative more involved proof of
Denk, Hieber & Priiss [18, Theorem 2.3] also contains several ingredients which are
of independent interest.

6.3. Solving inhomogeneous boundary data for a model problem

Let the notations and assumptions be as in Theorem 3.4, but for the model problem
case of top-order constant coefficients on the half-space considered in Sect. 6.2.
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The goal of this subsection is to solve the model problem

oiu + (1 4+ A(D)u =0,
Bi(Dyu=gj, j=1,...,n, 49)
try—ou :O,

for g = (g1,...,gn) With (0, 2,0) € DJ’,’jZ.
Let us first observe that, in view of the compatibility condition in the definition of
D}k, 0, g,0) € D)’} if and only if

Kjy 2n
8j €0Gj =000 F, q)(p (d)l 1)(R xRy, (1, v,); X)

Kjy- (211 1) o
Fiparop.a’n R R (1 v); X), iy <

Kjys an

1
D) (d- H)(R U Ry, (1, 0,); X) s trmow =0, &y > 2

weF( 7

forall j € {1, ..., n}. Defining
0G =061 @ ® oGy,

we thus have (0, g,0) € D}/ if and only if g € ¢G. So we need to solve (49) for
g € 0G.

We will solve (49) by passing to the corresponding problem on R (instead of R ).
The advantage of this is that it allows us to use the Fourier transform in time. This will
give

Fu ) =S +10)(F:1810), ..., F1gn(0)),

where S(1 + 10) is the solution operator from Proposition 6.2.

Recall that for the operator S (M) = Sj(X) o try—o we have the representation
formula (46) in which the operators LK occur. It will be useful to note that, for & €
SR x R; X),

LY [(FR) (-, 0] = 7' (v, &) > (14160 + |E'1*) Fwr.ph (-, 60)]

X

= [Z75 UG 8.0 > (416 +18'P) Fohl] ¢ 00
= (F L), 6p), (50)

where
7 e LR xR D' (Ry; X)), f > F
[((5’, 0) 1> (110 +I€'*)7) Feoy /]

(x )

Lemma 6.5. Let E be a UMD space, p,q € (1,00), v € A;(R), and n € Z~y. For
eacho € R,
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SR XRE) — SR xR E), fr> F!
(@80 a+i8+18P7) 7]

restricts to a bounded linear operator

o (4-1) -1 0.(4-1) d-1
H(p 0. d—1, 1)(R xR, (1,v); E) — H(p 0.d-1, 1)(R x R, (1,v); E).

Proof. This can be shown by checking that the symbol

(1 +1& + [E17)°
(1 + [&1]% + |&2[>)0/?

R xR 3 (1, &) —

satisfies the anisotropic Mikhlin condition from (6). U

Lemma 6.6. Let X be a UMD space, q, p € (1,00), y € (=1,p—1), v € A;(R).
Put

G, = Fly R, v; LP(R™L X)) N LI(R, v; F,%fl;j‘y(Rd’l; X)), j=1,...,n,
G=G1®...0G,, (51)
U:= qu (R, v; LP(RZ, wy; X)) NLY(R, v; W]%"(Rd , Wy X)),

where we recall that kj, =1 — Z,’z 2np (1 4+ y) € (0, 1). Furthermore, define OG

similarly to oG j and put OGJ =0G1 @ ...D0G,. Then the problem

oru+ (1 + A(D)u =0,

. 52
Bi(Dyu=gj, j=1,...,n, (52)

admits a bounded linear solution operator . : G —> U which maps oG to (U =
{ueU:u) =0}

For the statement that . maps 0@ to 0@, we will use the following lemma.
Lemma 6.7. {g; € S(R?; X) : tr;—0g; = 0} is dense in 0@]-

Proof. As a consequence of Theorem 2.1,

0G; = 0Fy/y (R, vus LPRYY X)) N LIR, vys iyt (RT: X)),

where
F: (R,v,;Y), s < T4
0F ,Rovu: ¥y =1 7 9 S 1fu
{f € Fq’p(R9 v/,L7 Y) . trl:()f = O}v s > T

Let (S;,),en be the family of convolution operator corresponding to some ¢ = (@) neN
€ ®(RY1). Then, §, 22 I asn — oo in both LP(R4~; X) s F)0 (RA1; X).

For the pointwise induced operator family, we thus have S, 3% Iin oG - Since
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d—1. —1eorpd—1. 0 d—1, —1eormd—1.
LPRTLX)NZIERT ) CcF) R )N FTIE R X)
2nk _
C Fpp” R X0,
it follows that

0Fy 7 (R vus Fpl” (RI1 X)) = 0 Fyly (R, vyt Fyly ™ (RA71: X0)
NLY(R, v,; F ”K’V(Rd L X))

is dense in ¢G; in fact,

K1 (R, vs Fa? RI71 X)) < 0G5
Since
(f €SR): £(0) =0} @ SR X) E {f € SR) : £(0) =0} @ F2 (RI1; X)
& 0FI R, v; F2"97 RE1, X))

by [44], the desired density follows. g

Proof of Lemma 6.6. (I) Put F := LI(R,v; LP(RY, wy;X)) and V =
ﬁ_lcg’o(Rd_l; X)® Z~1CP(R). Then V" is dense in G. So, in view of

&+ (1 +AD) eBUF) and Bj(D)eBUG), j=1,...,n,

it suffices to construct a solution operator . : V" — U which is bounded when
V™ carries the induced norm from G. In order to define such an operator, fix g =
(g1,--.,8n) € V". Let

=5 (3
£ €B@G H,, (51) >(R xR, (wy,v); X)), j=1,...,n, (53)

be extension operators (right inverses of the trace operator try—o) as in Corollary 4.9.
Then, £; maps V" into SR X)) @ F! (CZ°(R)); in particular,

Eigj e SRLXN®FHCPMR), j=1,....n
So, foreach j € {1, ..., n}, we have
Fi€jgj € SRL; X)) ® CX(R),
and we may also view ;£ g; as a function
[0 — (F:Eg,)()] € CP(R; W;"_"j RL, w,; X)).
Since

[0 S;(1+10)] € C®®: BW," ™ ®L, wy: X), WX RL wy: X)), j=1.....n,
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with S (1 +10) as in Proposition 6.2, we may thus define

Fg=F "0 > 8i(1+10)(FEjg)O) | € SR: W' (R, wy; X))
j=1

(IT) We now show that u = ?g e S(R; Wg" (R4, wy; X)) is a solution of (52)
for g € V. To this end, let & € R be arbitrary. Then, we have that (Z;£;¢;)(0) €
SERL; X)W, (R, w,: X)and (Frg;)(0) € S(RI~!; X) € Fyi” (RI-L; X)
are related by try—o(.%,€;g;)(0) = (F:g;)(0); just note that (% E£;¢;)(0,x",0) =
(F:18))(x', 0) forevery x’ € R?~! . Therefore, by Proposition 6.2, v(0) = (Fu)(0) =
(Z1.78)(0) = Y j_; Sj(1 +10)(F:E;g)(0) € WX (RS, wy; X) is the unique so-
lution of the problem

(1 4+10)v+ A(D)v =0,
Bi(Dyv = (Z:g))®), j=1,...,n.

Applying the inverse Fourier transform 35,_1 with respect to 6, we find

du + (1 + AD)u =0,
Bi(Dyu=gj, j=1,...,n.

(II1) We next derive a representation formula for . that is well suited for proving
the boundedness of .. To this end, fix a g = (g1,..., gs) € V". Then we have, for
each multi-index « € N?| |o| < 2n,

D*Fg = D*F; ' |0~ Y 8i(1+10)(FEg))(0)
j=1

= Y 77 [0 D801 +16)(FiEig)0)]

=1
n o
46 - -
@0 th : |:9 = Tj{a(l + 19)L1+120n (7:€;8)(0)

17nf+l

+7.—i2»a(1 + 19)L1+zéz’l Dy(f%gjgj)(@)]

n "
_ 1
= 2 F,! |:9 = T, (1 +10)Ly 7 (9z5jgj)(9):|
Jj=1

n ni+1
_ 1——L
+ 7! [9 — Tj?a(l +10)L, 5" (ﬂ,Dyejgj)(e)]
1

j=
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, |
DY g [0 T+ 0 FL e 5 0)]
j=1

n nj+1

+ yt_l [9 = 7}2,01(1 +10)(F L' Dygjgj)(Q)i| . (54)
j=1

(IV) We next show that ||?g||@ < |lgllg for g¢ € V". Being a solution of (52),
7 g satisfies

8.7g=—(14 AD)Sg.

Hence, it suffices to establish the estimate ||D°‘?g| I7 < llgllg for all multi-indices
a € N4, || < 2n. So fix such an |¢| < 2n. Then, in view of the representation
formula (54), it is enough to show that

_ _t .
177 [0 = T+ (AL T E8)@] E S liglls J=1,-0m,
(55)
and

nj

i+1
o Dyf‘fjgj)(9)} g Sligllg: j=1,...,n.
(56)

1.7, [9 > T2, (1+10)(F L'

We only treat estimate (56), estimate (55) being similar (but easier): Fix a j €
{1, ..., n}. Forthe full (d 4+ 1)-dimensional Euclidean space R? x R instead of Ri xR,

1= (1 miAl 1
2n°\ 2n> 2n 2n

1
) (g , (30:1) g .
D,eB <H(p,q),(d,l) Ry x R, (wy, v); X), H(p,q),(d,l) Ry x R, (wy, v); X)).

follows from (15) (and the fact that L(,,,q),(d,l)(RdH, (wy, vy); X) is an admissible
Banach space of X -valued tempered distributions on R4+ in view of (6)), from which
the Ri x R-case follows by restriction. In combination with (53) and Lemma 6.5, this
yields

1—’11%1 ral O’(ﬁJ) Rd—l R - LP(R V.
L5 Dy € B Gy H, oy (f11)( xR, (1, v); L"(Ry, | - 75 X))

=LI(R,v;LP(RL wy: X)) =TF
(57

Furthermore, we have that Tﬁa(l +1) € C®(R; B(LP (R4, wy; X))) satisfies
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R{6“05T2,(1+10) 10 e R} < R{(1+10)41-50fT2, (1 +10) : 0 e R

< 00, keN,

by the Kahane contraction principle and (48); in particular, ’]}%a(l + 1-) satisfies the
Mikhlin condition corresponding to (7). As a consequence, ’Tﬁa(l + 1-) defines a

bounded Fourier multiplier operator on L9 (R, v; L”(Rd , wy; X)). In combination
with (57), this gives estimate (56).

(V) We finally show that 7 € B(@G,D) maps oG to oU. As in the proof of [47,
Lemma 2.2.7], it can be shown that, if

n
2nk — .
g=(g1 ... € [[CLi®: F, ;" R X)) with g1(0) =...=g,(0)=0
j=1

and
ueCp (R LP(RY, wy: X)) N Cpi(R: W (RY, wy: X))
satisfy (52), then u(0) = 0. The desired statement thus follows from Lemma 6.7. [J

Corollary 6.8. Let the notations and assumptions be as in Theorem 3.4, but for the
model problem case of top-order constant coefficients on the half-space considered in
Sect. 6.2. Then, problem (49) admits a bounded linear solution operator

< {g:(0,2,0) e]D))’/’:Z} _)UJI/):Z'

6.4. Proof of Theorem 3.4

We can now finally prove the main result of this paper.

Proof of Theorem 3.4. In view of Sect. 6.1, it remains to establish existence and
uniqueness of a solution u € U{::Z of (20) for given (f, g, ug) € G,’:jz &) ID){,’:Z. Bya
standard (but quite technical) perturbation and localization procedure, it is enough to
consider the model problem

ou+ (1 + AD))u = f,
Bi(Dyu=gj, j=1,...,n,
u(0) = up,

on the half-space, where 4 and By, . . ., 3, are top-order constant coefficient operators
as considered in Sect. 6.2. This procedure is worked out in full detail in [47]; for further
comments we refer to “Appendix 7.”

Let (f, g, up) € F)l & Dyl In view of Theorem 4.4 and the fact that tr;—g o
Bj(D) = Bj(D) on U}/ otr;—g whenk;, < HT”, we may without loss of generality
assume thatuo = 0. By Corollary 6.8 we may furthermore assume that g = 0. Defining
Ap as the operatoron Y = L” (Ri, w, ) with domain

D(Ap) = {ue W "®R), wy): Bi(Dw=0,j=1,....n}
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and given by the rule Agv := A(D)v, we need to show that 1 + Ap enjoys the
property of maximal Lz—regularity: forevery f € L9(Ry, vy; Y) there exists a unique
u e Oqu(]RJr, v Y) N LY(Ry, vy D(Ap)) withu’ + (1 4+ Ap)u = f. In the same
way as in [17, Theorem 7.4] it can be shown that Ap € H*°(Y) with angle qbfﬁg < %
As Y is a UMD space, 1 + Ap enjoys maximal Lz-regularity for © = 0; see, e.g.,
[66, Section 4.4] and the references therein. By [12,54] this extrapolates to all u €
(—1,q9 — 1) (i.e., all u for which v, € Ay). O
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Appendix A: Series Estimates in Triebel-Lizorkin and Besov Spaces

Lemma A.1. Let X be a Banach space, a € (0, oo)’, p € [l,oo)l, q € [1,00],
s >0, and w € l—[1j=1 Aco(R%). Suppose that there exists an r € (0, 1)} such

that s > lezlajdj(rij —Dandw € ]_[lj:l Ap,r;RY). Then, for every ¢ > 0,
there exists a constant C > 0 such that, for all (fi)ken C S'(RY; X) satisfying
supp fk C Hlj=1[—02ka-/, —c2kai1 and

2% =0 € LY (R, w)[£9(N)](X)

it holds that ) " . fx defines a convergent series in S'(RY; X) with limit f € F;’Z £
(R?, w; X) of norm < C||(2ksfk)k20||LP.J(Rd7w)[eq(N)](X)-
Proof. This can be proved in the same way as [36, Lemma 3.19], using Lemma A.5 be-

low instead of [36, Proposition 3.14]. For more details, we refer to [42, Lemma 5.2.22].
O

Lemma A.2. Let X be a Banach space, a € (0, o0)!, p € [1,00)!, g € [1,00],5s € R,
and w € ]_[lj:1 Aoo(RY). For every ¢ > 1, there exists a constant C > 0 such that,
for all (fi)ren C S'(RY; X) satisfying

supp fo C {6 € RY 1|l <}, supp fu C{€ € RY 1712k < |&] 44 < 29}
k> 1), (58)
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and
2% fr=0 € LY (R, w)[£9(N)](X)

it holds that Yy fx defines a convergent series in S'(RY; X) with limit f € F;’Z p
(Rd, w; X) of norm < C||(2ksfk)k20||Lp,zf(Rd,w)[eq(N)](x)-
Proof. This can be proved in the same way as [36, Lemma 3.20]. In fact, one only

needs a minor modification of the proof of Lemma A.1. O

Lemma A.3. Let X be a Banach space, a € (0, oo)l, p ell, oo)l, q €[1,00], 5 €R,
and w € l_[l,'zl AOO(R’{J'). For every ¢ > 1, there exists a constant C > 0 such that,
for all (fi)ken C S'(R?; X) satisfying (58) and

Q% fk=0 € LY (R, w)[£ (N)](X)

it holds that Yy fx defines a convergent series in S'(RY; X) with limit f € F;”Z’J
(R, w; X) of norm < C||(2kak)k20||Lp,4(Rd,w)[eq(N)](X)-

The above two lemmas are through Lemma A.5 based on the following maximal
inequality:
Lemma Ad. Leta € (0,00) and w € [],_, WR%). Let jo € {1.....1} and
rjo € (0,min{pj,, ..., p}) be such that wj, € Al,,jo/,j0 (R‘ffO). Then

1/rj
Mg jo,rj, (S)(x) == sup f (X1 s Xjom1s Yo Xjog1s - o os X)) [0 dy , xeR’
50 \JB(xj,.8)

gives rise to a well-defined bounded sublinear operator Mg, joy,r; on LP4 (R, w).
Moreover, there holds a Fefferman—Stein inequality for M[d;jo],rjo : for every q €
(max{l, r}, oo] there exists a constant C € (0, 00) such that, for all sequences
(fdier. C LP* (R, w),

WM, jor.ri (Fi)diezllea @)l Lpd v wy < CUNSDiezlles @)l Lot me -
Jo ( ) (

Proof. This can be easily derived from [28, Theorem 2.6], which is a weighted ver-
sion of the special case of the L”-boundedness of the Banach lattice version of the
Hardy-Littlewood maximal function [8,29,57,63] for mixed-norm spaces (also see
[28, Remark 2.7]). O
Lemma A.5. Let X be a Banach space, p € [1,00)!, g € [1,00], and w € ]_[lj=1
Aso(R%). Suppose r € (0, 1) is such that wj € Ap/r; (R%) for j = 1,...,1. Let
¥ € S(RY) be such that suppr C (& € R | [E|4.q < 2), and set = Y (85 -)
for each n € N. Then, there exists a constant C > 0 such that, for all (f,)nen C
S'(RY; X) with supp f, C nlj:l[—RZ"aj, R2™i1% for some R > 1, the following
inequality holds true:

1 1
Z_i:l ajdj (ﬁ_1>

Proof. As in the proof of [36, Proposition 3.14], it can be shown that

||(‘ﬂn * fn)n20||Lp,ri(Rd,w;eq(N;x)) =< CR ||(fn)n20||Lp,J(Rd,w;eq(N;x))-
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=1 ajdj

m L_—]
(W * f)(X)Ix < cR <r’ ) (Mg (- Migyn (1 fallx) - 0] (),

neN,xeRd,

for some constant ¢ > 0 independent of (f;),. The desired result now follows from
Lemma A.4. 0

Given a function f : R — X, r € O, oo)l and b € (0, oo)l, we define the
maximal function of Peetre—Fefferman—Stein type f*(r, b, d; -) by

f*(r,b,d;x) = sup 1f(x —2)llx

) xeRY (59
cerd (L4 [brzi |47y o (14 |byzg|47m) 59

Lemma A.6. Let X be a Banach space, p € [1,00)!, g € [1,00], and w € ]_[1/21
AsoRY). Let r € (0, 1) be such that wj € Ay, (RY) for j = 1,....1. Then,
there exists a constant C > 0 such that, for all (f)neny C S'(R?: X) and (B"),en C
(0, 00)! with supp f C ]_[ijl [—bE-"], bg."]]‘{f foralln € N, we have the inequality

||(fy;k(", bm]? d; ‘))nzOHLp,d(Rd,w;zq(N) = C||(fn)n||Lp-d(Rd,w;zq(N;X))-

Proof. As in the proof of [36, Proposition 3.12], it can be shown that

i, b, d;x) < c[Mign (o Mgy (Lfallx) .. )] (x),  neNxe R?

for some constant ¢ > 0 only depending on r. The desired result now follows from
Lemma A.4. U

7. Comments on the localization and perturbation procedure

As already mentioned in the proof of Theorem 3.4, the localization and perturbation
procedure for reducing to the model problem case on ]RflF is worked out in full detail
in [47]. However, there only the case ¢ = p with temporal weights having a positive
power is considered. For some of the estimates used there (parts) of the proofs do not
longer work in our setting, where the main difficulty comes from g # p. Itis the goal
of this appendix to consider these estimates.

Top-order coefficients having small oscillations

The most crucial part in the localization and perturbation procedure where we need
to take care of the estimates is [47, Proposition 2.3.1] on top-order coefficients having
small oscillations. To be more specific, we only consider the estimates in Step (IV) of
its proof.

Before we go to these estimates, let us start with the lemma that makes it possible
to reduce to the situation of top-order coefficients having small oscillations.
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Lemma B.1. Let X be a Banach space, J C R and interval, © C RY g domain
with compact boundary 90, k € R, n € Nog, s,r € (1,00) and p € [1,0]. If
K > + then

2nr ’

$,(J1 L0 X)) N L (J: B2 (00; X)) = BUCQO x J; X).

Proof. By astandard localization procedure, we may restrict ourselves to the case that
J =Rand ¢ =R (so that 36 = R4). By [43],

CSRLTRTL X)) NLIR: BRI X)) = {f e SR xR: X)
: (Snf)n e L' (®)[[eL(N)IL"(RI™H1(X)) (60)

with equivalence of norms, where (S, ),en correspond to some fixed choice of ¢ €
1
®@=1.D.(;-D(R4) For € > 0, we thus obtain

L
Ff,@®: LR X)) N LY R: B (R X)) B(”)S((d ?I)GR‘Z X).

Choosing # withk > & > 14 4=1

5o » the desired inclusion follows from Corollary 4.11.

O

Lemma B.2. Let X be a Banach space, i € {1,...,1}, T € R and
Rﬁ[l ={x e RY : xi1 < T} =qgil(=00,T) x R4

Then, there exists an extension operator Es.1. 7 € L(S (Rld! 1 X), S'(R?; X)
which, for everya € (0,00)!, s € R, p € [l, oo)l q €[1,00] and w € Aso(R%Y), re-
L w X) 10 Fo (RY w; X)
whose operator norm can be estimated by a constant independent of X and T.

stricts to a bounded linear operator from F J(R

Proof. This can be shown in the same way as in [59]. O

Lemma B.3. Let X be a Banach space, | = (—o0, T) with T € (—o0, 00], k > 0,
n €Nso, p,q €[1,00),r,u € (p,0),s,v € (q,00) with% = }—i-%and[ll = %+l

5
Let u € (—1, 00) be such that %u € (=1,v —1). Then,

lrell ( ) <||fHL°°(]Rd‘><IB(X))||g|| ()

1. RITIX (1,v);X) oy ood—1.1y RITIXL (Lv); X)

(p.4).p.

FI SN rg (117 -1 BOONALS (1 B2 -1 B0y 8] 0.(4.1)
wort,@—1,n R, ve,)iX)

with implicit constant independent of X and T.

Note here that gu <v—1whenpu <q—1.

Proof. Extending f from R™! x I to RY~! x R by using an extension operator of
Fichtenholz type and extending g from R?~! x I to RY~! x R by using an extension
operator as in Lemma B.2, we may restrict ourselves to the case / = R.
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Let (S;)nen correspond to some fixed choice of ¢ € Q(d_l’l)’(ﬁ'l)(Rd), say with
A=1land B = % Asin [58, Chapter 4] (the isotropic case), we can use paraproducts
associated with (S,),en in order to treat the pointwise product fg. For this, it is con-
venient to define S¥ € £(S'(R?; X)) by ¥ := Y¥_ . S,. Given f € L®(R?; B(X))

and g € FOED L RY (1w, X) <> LOO@ID®RI (1, y,); X), if the

(p.q).p
paraproducts
00 00 1
Mi(f,8) =) (SN (Ske), Ta(fo ) =D D (Sierj I(Ske), Ta(f, @)
k=2 k=0 j=—1

=) (k) g
k=2

exist (as convergent series) in S’ (R?; X), then

fe =Th(f, & + a(f. ) + I3(f, 8)-
Here, the Fourier supports of the summands in the paraproducts satisfy
supp ZL(S* 2N (See)] € {5127 < fglea < 271) k=2,

supp F[(Sk4 [)(Sk&)] CE 1 |6l <251, k>0,j€{~1,0,1},
supp Z[(Sk (K21 (£ : 2873 < gl < 2FF1), k=2

Using Lemma A.1, it can be shown as in [47, Lemma 1.3.19] that

[T (f, )1 (%) Sl pe@e; By llgll (1) i=12,
F(pq)pm 1) R0 Fipapp a1, B (Lv); X
and
NTT3(f, @)l e (%1) ) S NQ™Sn PnllLs @rier a1z @a-1y10x)
(o, (d—1,1) RE (L) X)

||g||L(u‘v),(d—l.l)(Rd—l XI,(],UBH);X)'
q

The desired estimate now follows from (16) and (60). O

Lemma B.4. Let the notations and assumptions be as in Lemma B.3. For each § >
< +

2n = the inclusion

F8(71) R 5 I, (1, v,): X 0.4 R x 1, (1 P X
(pq)oo(dll)( X 1 (Lv); X) = Fo o (a—1,1)( X ’(’Ugu)’ )

holds true with a norm that can be estimated by a constant independent of T and X.

Proof. Thanks to Lemma B.2, we only need to establish the inclusion for I = R.
Writing € :=§ — [% + ‘én;rl] > 0, we have

S(Zn 1) 5(1 l)
Fip.g).00.- Ly R (1, v); X) = B(pq)oo(d Ly R (1L w5 X)
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e (%) d
= B y)o0.a—1.) R (L v,)s X)

0.(3:1) y
= Fuda—1.® (1, ve )i X,
where the second inclusion is obtained from Proposition 5.1. O

Let us write

s (301)
2n> d—1 )
F(pq)p(d Ly R XL (1L v X)

5 (21”’1> d—1 1+
N Fopnpia—t R L (1L v); X, s < q“,
T 1
S 2)1’1 _ 1
€ Fpp patny@®T XL (1L v X) ttmo f =0}, s > —1F.

A combination of Lemmas B.3 and B.4 followed by extension by zero for g and
extension of Fichtenholz type for f yields

[1fgll (1)

0 <nznp(d L1

Sl ee@i-txr: By 18] (1)

2n’

(G AR Y 0F(p.g)pd-1.1)

(R J,(1,0); X)

I e L @a-1:BOOYNL (72 B2 et B 18IT 5 (L)

r.p _ .
0F gyt 11y BRI X (10 X0

with implicit constant independent of X and 7', which is a suitable substitute for the
key estimate in the proof of [47, Proposition 2.3.1].

Lower order terms

By the trace result Theorem 4.4, in order that the condition for the boundary oper-
ators in Remark 3.3 is satisfied, it is enough that there exist o g € [0, njz;nlﬂl) such
that b; g is a pointwise multiplier from

Kjytoj.p

F3r 00 (J v, LP 0 X)) O LT, v FoS7 00

(00; X))
to

Fi3 (0, 0,1 LPDO: X)) 0 LY, v Fyw3? (00 X)),
This is achieved by the next lemma.

Lemma B.5. Let X be a Banach space, I = (—oo, T) with T € (—o0, 00], k, 0 > 0,
neN.o, p,qell,00),ruc(p, )s,velqg, oo)with% = }+%and% =141

1 d—1
Let 1 € (—1, 00) be such that gu, €(Lv=N0.Ifc +o > ; + 5, then
||fg|| ( ) < ||f||F£p(];Li‘(Rd—l;B(X)))QL.Y(J;B%})K(Rd—I;B(X)))

(p.q)p.(d—1, 1)(Rd IxI,(1,u): X)

1811 can (1)

F(p @).p.(d—1, 1)(Rd71><1»(1»v//,);x)

with implicit constant independent of X and T.
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Note that for & € (—1, c0) to be such that gu € (—1,v — 1) it is sufficient that
uwe(—=1l,qg—1) withu > %—1.

Proof. As in the proof of Lemma B.3, we may restrict ourselves to the case I = R
and use paraproducts. Using Lemma A.1 and Lemma 4.16, we find

LSRRy SHA o (pa gl (L .
(”‘(qé?p'(l_l'])(Rd'(l'uu);x) (DO,ECZ)],loo.)(d—lAl) Rd;X) (qu),(,f?d_?y1)(RII¢(1-U;¢)§X)
Using Lemma A.1, fori = 2, 3 we find
LM e (3.) S N@Sn Hnlles @urer v =100
(p,q)p,(d—1, 1)(IR J(Lv): X)
gl Low@-10 a1 1,100 )i
q
Similarly to Lemma B.1, choosing k¥ withk + 0 > k + 0 > % + ‘Zr] , we have
d—1. 2 d—1, ’(21;1’1)
FE R L' (R X)) 0 LY ®R; B2 (R X)) — B R?; X),

(00,00),00,(d—1,1)

where we now use (the vector-valued version of) [35, Theorem 7] instead of Corol-
lary 4.11. The desired estimate follows from Lemma B.4 and (16). O
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