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Maximal regularity with weights for parabolic problems with
inhomogeneous boundary conditions

Nick Lindemulder

Abstract. In this paper,we establishweighted Lq–L p-maximal regularity for linear vector-valued parabolic
initial-boundary value problems with inhomogeneous boundary conditions of static type. The weights we
consider are power weights in time and in space, and yield flexibility in the optimal regularity of the initial-
boundary data and allow to avoid compatibility conditions at the boundary. The novelty of the followed
approach is the use of weighted anisotropic mixed-norm Banach space-valued function spaces of Sobolev,
Bessel potential, Triebel–Lizorkin and Besov type, whose trace theory is also subject of study.

1. Introduction

This paper is concernedwithweightedmaximal Lq–L p-regularity for vector-valued
parabolic initial-boundary value problems of the form

∂t u(x, t) + A(x, D, t)u(x, t) = f (x, t), x ∈ O, t ∈ J,
B j (x ′, D, t)u(x ′, t) = g j (x ′, t), x ′ ∈ ∂O, t ∈ J, j = 1, . . . , n,

u(x, 0) = u0(x), x ∈ O.

(1)

Here, J is a finite time interval, O ⊂ R
d is a smooth domain with a compact bound-

ary ∂O and the coefficients of the differential operator A and the boundary operators
B1, . . . ,Bn are B(X)-valued, where X is a UMD Banach space. One could for in-
stance take X = C

N , describing a system of N initial-boundary value problems.
Our structural assumptions on A,B1, . . . ,Bn are an ellipticity condition and a con-
dition of Lopatinskii–Shapiro type. For homogeneous boundary data (i.e., g j = 0,
j = 1, . . . , n), these problems include linearizations of reaction–diffusion systems
and of phase field models with Dirichlet, Neumann and Robin conditions. However,
if one wants to use linearization techniques to treat such problems with nonlinear
boundary conditions, it is crucial to have a sharp theory for the fully inhomogeneous
problem.
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During the last 25 years, the theory of maximal regularity turned out to be an im-
portant tool in the theory of nonlinear PDEs. Maximal regularity means that there is
an isomorphism between the data and the solution of the problem in suitable function
spaces. Having established maximal regularity for the linearized problem, the non-
linear problem can be treated with tools as the contraction principle and the implicit
function theorem. Let us mention [7,15] for approaches in spaces of continuous func-
tions, [1,45] for approaches inHölder spaces and [3,5,13,14,24,53,55] for approaches
in L p-spaces (with p ∈ (1,∞)).

As an application of his operator-valued Fourier multiplier theorem, Weis [65]
characterized maximal L p-regularity for abstract Cauchy problems in UMD Banach
spaces in terms of an R-boundedness condition on the operator under consideration.
A second approach to the maximal L p-regularity problem is via the operator sum
method, as initiated by Da Prato and Grisvard [16] and extended by Dore and Venni
[23] and Kalton & Weis [37]. For more details on these approaches and for more
information on (the history of) the maximal L p-regularity problem in general, we
refer to [17,39].
In the maximal Lq–L p-regularity approach to (1), one is looking for solutions u in

the “maximal regularity space”

W 1
q (J ; L p(O; X)) ∩ Lq(J ;W 2n

p (O; X)). (2)

To be more precise, problem (1) is said to enjoy the property of maximal Lq–L p-
regularity if there exists a (necessarily unique) space of initial-boundary data Di.b. ⊂
Lq(J ; L p(∂O; X))n × L p(O; X) such that for every f ∈ Lq(J ; L p(O; X)) it holds
that (1) has a unique solution u in (2) if and only if (g = (g1, . . . , gn), u0) ∈ Di.b.. In
this situation, there exists a Banach norm on Di.b., unique up to equivalence, with

Di.b. ↪→ Lq(J ; L p(∂O; X))n ⊕ L p(O; X),

which makes the associated solution operator a topological linear isomorphism be-
tween thedata space Lq(J ; L p(O; X))⊕Di.b. and the solution spaceW 1

q (J ; L p(O; X))

∩ Lq(J ;W 2n
p (O; X)). The maximal Lq–L p-regularity problem for (1) consists of es-

tablishing maximal Lq–L p-regularity for (1) and explicitly determining the space
Di.b..
Themaximal Lq–L p-regularity problem for (1)was solved byDenk,Hieber&Prüss

[18], who used operator sum methods in combination with tools from vector-valued
harmonic analysis. Earlier works on this problem are [40] (q = p) and [64] (p ≤
q) for scalar-valued second-order problems with Dirichlet and Neumann boundary
conditions. Later, the results of [18] for the case that q = p have been extended by
Meyries & Schnaubelt [48] to the setting of temporal power weights vμ(t) = tμ, μ ∈
[0, q−1); also see [47].Works in whichmaximal Lq–L p-regularity of other problems
with inhomogeneous boundary conditions are studied, include [20–22,24,48] (the case
q = p) and [50,61] (the case q 
= p).

It is desirable to have maximal Lq–L p-regularity for the full range q, p ∈ (1,∞),
as this enables one to treat more nonlinearities. For instance, one often requires large
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q and p due to better Sobolev embeddings, and q 
= p due to scaling invariance of
PDEs (see, e.g., [30]). However, for (1) the case q 
= p is more involved than the case
q = p due to the inhomogeneous boundary conditions. This is not only reflected in
the proof, but also in the space of initial-boundary data ( [18, Theorem 2.3] versus [18,
Theorem 2.2]). Already for the heat equation with Dirichlet boundary conditions, the
boundary data g have to be in the intersection space

F
1− 1

2p
q,p (J ; L p(∂O)) ∩ Lq(J ; B2− 1

p
p,p (∂O)), (3)

which in the case q = p coincides with W
1− 1

2p
p (J ; L p(∂O)) ∩ L p(J ;W 2− 1

p
p (∂O));

here Fs
q,p denotes a Triebel–Lizorkin space and Ws

p = Bs
p,p a non-integer order

Sobolev–Slobodeckii space.
In this paper, we will extend the results of [18,48], concerning the maximal Lq–

L p-regularity problem for (1), to the setting of power weights in time and in space
for the full range q, p ∈ (1,∞). In contrast to [18,48], we will not only view spaces
(2) and (3) as intersection spaces, but also as anisotropic mixed-norm function spaces
on J × O and J × ∂O , respectively. Identifications of intersection spaces of type
(3) with anisotropic mixed-norm Triebel–Lizorkin spaces have been considered in a
previous paper [43], all in a generality including the weighted vector-valued setting.
The advantage of these identifications is that they allow us to use weighted vector-
valued versions of trace results of Johnsen & Sickel [36]. These trace results will be
studied in their own right in the present paper.
The weights we consider are the power weights

vμ(t) = tμ (t ∈ J ) and w∂O
γ (x) = dist( · , ∂O)γ (x ∈ O), (4)

where μ ∈ (−1, q − 1) and γ ∈ (−1, p − 1). These weights yield flexibility in
the optimal regularity of the initial-boundary data and allow to avoid compatibility
conditions at the boundary, which is nicely illustrated by the result (see Example 3.7)
that the corresponding version of (3) becomes

F
1− 1

2p (1+γ )

q,p (J, vμ; L p(∂O)) ∩ Lq(J, vμ; B2− 1
p (1+γ )

p,p (∂O)).

Note that one requires less regularity of g by increasing γ .
The idea to work in weighted spaces equipped with weights like (4) has already

proven to be very useful in several situations. In an abstract semigroup setting, tempo-
ral weights were introduced by Clément & Simonett [15] and Prüss & Simonett [54],
in the context of maximal continuous regularity and maximal L p-regularity, respec-
tively. Other works on maximal temporally weighted L p-regularity are [38,41] for
quasilinear parabolic evolution equations and [48] for parabolic problems with inho-
mogeneous boundary conditions. Concerning the use of spatial weights, wewould like
to mention [9,46,52] for boundary value problems and [2,10,25,56,62] for problems
with boundary noise.
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The paper is organized as follows. In Sect. 2 we discuss the necessary preliminaries,
in Sect. 3 we state the main result of this paper, Theorem 3.4, in Sect. 4 we establish
the necessary trace theory, in Sect. 5 we consider a Sobolev embedding theorem, and
in Sect. 6 we finally prove Theorem 3.4.

2. Preliminaries

2.1. Weighted mixed-norm Lebesgue spaces

A weight on R
d is a measurable function w : R

d −→ [0,∞] that takes its values
almost everywhere in (0,∞). We denote byW(Rd) the set of all weights on R

d . For
p ∈ (1,∞) we denote by Ap = Ap(R

d) the class of all Muckenhoupt Ap-weights,
which are all the locally integrable weights for which the Ap-characteristic [w]Ap is
finite. Here,

[w]Ap = sup
Q

( 
Q

w

)( 
Q

w−p′/p
)p/p′

with the supremum taken over all cubes Q ⊂ R
d with sides parallel to the coordinate

axes. We furthermore set A∞ := ⋃
p∈(1,∞) Ap. For more information on Mucken-

houpt weights we refer to [31].
Important for this paper are the powerweights of the formw = dist( · , ∂O)γ , where

O is a C∞-domain in R
d and where γ ∈ (−1,∞). If γ ∈ (−1,∞) and p ∈ (1,∞),

then (see [27, Lemma 2.3] or [52, Lemma 2.3])

w∂O
γ := dist( · , ∂O)γ ∈ Ap ⇐⇒ γ ∈ (−1, p − 1). (5)

For the important model problem case O = R
d+, we simply write wγ := w

∂Rd+
γ =

dist( · , ∂R
d+)γ .

Replacing cubes by rectangles in the definition of the Ap-characteristic [w]Ap ∈
[1,∞] of a weight w gives rise to the Arec

p -characteristic [w]Arecp
∈ [1,∞] of w.

We denote by Arec
p = Arec

p (Rd) the class of all weights with [w]Arecp
< ∞. For

γ ∈ (−1,∞) it holds that wγ ∈ Arec
p if and only if γ ∈ (−1, p − 1).

Let d = |d |1 = d1 + · · · + dl with d = (d1, . . . , dl) ∈ (Z≥1)
l . The decomposition

R
d = R

d1 × . . . × R
dl .

is called the d -decompositionofRd . For x ∈ R
d weaccordinglywrite x = (x1, . . . , xl)

and x j = (x j,1, . . . , x j,d j ), where x j ∈ R
d j and x j,i ∈ R ( j = 1, . . . , l; i =

1, . . . , d j ). We also say that we view R
d as being d -decomposed. Furthermore, for

each k ∈ {1, . . . , l} we define the inclusion map

ιk = ι[d ;k] : R
dk −→ R

d , xk �→ (0, . . . , 0, xk, 0, . . . , 0),
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and the projection map

πk = π[d ;k] : R
d −→ R

dk , x = (x1, . . . , xl) �→ xk .

Suppose that R
d is d -decomposed as above. Let p = (p1, . . . , pl) ∈ [1,∞)l

and w = (w1, . . . , wl) ∈ ∏l
j=1W(Rd j ). We define the weighted mixed-norm space

L p,d (Rd ,w) as the space of all f ∈ L0(Rd) satisfying

|| f ||L p,d (Rd ,w) :=
(ˆ

R
dl

. . .

(ˆ
R
d1

| f (x)|p1w1(x1)dx1

)p2/p1
. . . wl(xl)dxl

)1/pl

< ∞.

We equip L p,d (Rd ,w) with the norm || · ||L p,d (Rd ,w), which turns it into a Banach

space. Given a Banach space X , we denote by L p,d (Rd ,w; X) the associated Bochner
space

L p,d (Rd ,w; X) := L p,d (Rd ,w)[X ] = { f ∈ L0(Rd; X) : || f ||X ∈ L p,d (Rd ,w)}.

2.2. Anisotropy

Suppose that R
d is d -decomposed as in Sect. 2.1. Given a ∈ (0,∞)l , we define

the (d , a)-anisotropic dilation δ
(d ,a)
λ on R

d by λ > 0 to be the mapping δ
(d ,a)
λ on R

d

given by the formula

δ
(d ,a)
λ x := (λa1x1, . . . , λ

al xl), x ∈ R
d .

A (d , a)-anisotropic distance function on R
d is a function u : R

d −→ [0,∞)

satisfying

(i) u(x) = 0 if and only if x = 0.
(ii) u(δ

(d ,a)
λ x) = λu(x) for all x ∈ R

d and λ > 0.
(iii) There exists a c > 0 such that u(x + y) ≤ c(u(x) + u(y)) for all x, y ∈ R

d .

All (d , a)-anisotropic distance functions on R
d are equivalent: Given two (d , a)-

anisotropic distance functions u and v on R
d , there exist constants m, M > 0 such

that mu(x) ≤ v(x) ≤ Mu(x) for all x ∈ R
d

In this paper, we will use the (d , a)-anisotropic distance function | · |d ,a : R
d −→

[0,∞) given by the formula

|x |d ,a :=
⎛
⎝ l∑

j=1

|x j |2/a j

⎞
⎠

1/2

(x ∈ R
d).

2.3. Fourier multipliers

Let X be a Banach space. The space of X -valued tempered distributions on R
d is

defined as S ′(Rd ; X) := L(S(Rd); X); for the theory of vector-valued distributions
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we refer to [4] (and [3, Section III.4]). We write L̂1(Rd; X) := F−1L1(Rd; X) ⊂
S ′(Rd; X). To a symbol m ∈ L∞(Rd ;B(X)), we associate the Fourier multiplier
operator

Tm : L̂1(Rd ; X) −→ L̂1(Rd ; X), f �→ F−1[m f̂ ].
Given p ∈ [1,∞)l and w ∈ ∏l

j=1 A∞(Rd j ), we call m a Fourier multiplier on

L p,d (Rd ,w; X) if Tm restricts to an operator on L̂1(Rd ; X)∩ L p,d (Rd ,w; X) which
is bounded with respect to L p,d (Rd ,w; X)-norm. In this case, Tm has a unique exten-
sion to a bounded linear operator on L p,d (Rd ,w; X) due to denseness of S(Rd ; X)

in L p,d (Rd ,w; X), which we still denote by Tm . We denote by M p,d ,w(X) the
set of all Fourier multipliers m ∈ L∞(Rd;B(X)) on L p,d (Rd ,w; X). Equipped
with the norm ||m||M p,d ,w(X) := ||Tm ||B(L p,d (Rd ,w;X), M p,d ,w(X) becomes a Ba-
nach algebra (under the natural pointwise operations) for which the natural inclusion
M p,d ,w(X) ↪→ B(L p,d (Rd ,w; X)) is an isometric Banach algebra homomorphism;
see [39] for the unweighted non-mixed-norm setting.
For each a ∈ (0,∞)l and N ∈ N, we defineM(d ,a)

N as the space of allm ∈ CN (Rd)

for which

||m||M(d ,a)
N

:= sup
|α|≤N

sup
ξ∈Rd

(1 + |ξ |,a)a·d α|Dαm(ξ)| < ∞.

We furthermore define RM (X) as the space of all operator-valued symbols m ∈
C1(R\{0};B(X)) for which we have the R-bound

||m||RM (X) := R
{
tm[k](t) : t 
= 0, k = 0, 1

}
< ∞;

see, e.g., [17,33] for the notion of R-boundedness.
If X is a UMD space, p ∈ (1,∞)l ,

w ∈
{∏l

j=1 A
rec
p j

(Rd j ), l ≥ 2,

Ap(R
d), l = 1,

and a ∈ (0,∞)l , then there exists an N ∈ N for which

M(d ,a)
N ↪→ M p,d ,w(X). (6)

If X is a UMD space, p ∈ (1,∞) and w ∈ Ap(R), then

RM (X) ↪→ Mp,w(X). (7)

For these results, we refer to [26] and the references given there.

2.4. Function spaces

For the theory of vector-valued distributions, we refer to [4] (and [3, Section III.4]).
For vector-valued function spaces, we refer to [51] (weighted setting) and the refer-
ences given therein. Anisotropic spaces can be found in [6,36,42]; for the statements
below on weighted anisotropic vector-valued function space, we refer to [42].
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Suppose that R
d is d -decomposed as in Sect. 2.1. Let X be a Banach space, and

let a ∈ (0,∞)l . For 0 < A < B < ∞, we define �
d ,a
A,B(Rd) as the set of all

sequences ϕ = (ϕn)n∈N ⊂ S(Rd) which are constructed in the following way: given
a ϕ0 ∈ S(Rd) satisfying

0 ≤ ϕ̂0 ≤ 1, ϕ̂0(ξ) = 1 if |ξ |d ,a ≤ A, ϕ̂0(ξ) = 0 if |ξ |d ,a ≥ B,

(ϕn)n≥1 ⊂ S(Rd) is defined via the relations

ϕ̂n(ξ) = ϕ̂1(δ
(d ,a)
2−n+1ξ) = ϕ̂0(δ

(d ,a)
2−n ξ) − ϕ̂0(δ

(d ,a)
2−n+1ξ), ξ ∈ R

d , n ≥ 1.

Observe that

supp ϕ̂0 ⊂ {ξ | |ξ |d ,a ≤ B} and supp ϕ̂n ⊂ {ξ | 2n−1A ≤ |ξ |d ,a ≤ 2n B}, n ≥ 1.

We put �d ,a(Rd) := ⋃
0<A<B<∞ �

d ,a
A,B(Rd). In case l = 1 we write �a(Rd) =

�d ,a(Rd), �(Rd) = �1(Rd), �a
A,B(Rd) = �

d ,a
A,B(Rd), and�A,B(Rd)=�1

A,B(Rd).

To ϕ ∈ �d ,a(Rd), we associate the family of convolution operators (Sn)n∈N =
(Sϕ

n )n∈N ⊂ L(S ′(Rd; X),OM (Rd ; X)) ⊂ L(S ′(Rd ; X)) given by

Sn f = Sϕ
n f := ϕn ∗ f = F−1[ϕ̂n f̂ ] ( f ∈ S ′(Rd ; X)). (8)

Here, OM (Rd ; X) denotes the space of slowly increasing X -valued smooth functions
onR

d . It holds that f = ∑∞
n=0 Sn f inS ′(Rd; X), respectively, inS(Rd ; X)whenever

f ∈ S ′(Rd; X), respectively, f ∈ S(Rd ; X).
Given a ∈ (0,∞)l , p ∈ [1,∞)l , q ∈ [1,∞], s ∈ R, and w ∈ ∏l

j=1 A∞(Rd j ),

the Besov space Bs,a
p,q,d (Rd ,w; X) is defined as the space of all f ∈ S ′(Rd ; X) for

which

|| f ||Bs,a
p,q,d (Rd ,w;X) := ||(2ns Sϕ

n f )n∈N||
q (N)[L p,d (Rd ,w)](X) < ∞

and the Triebel–Lizorkin space Fs,a
p,q,d (Rd ,w; X) is defined as the space of all f ∈

S ′(Rd; X) for which

|| f ||Fs,a
p,q,d (Rd ,w;X) := ||(2ns Sϕ

n f )n∈N||L p,d (Rd ,w)[
q (N)](X) < ∞.

Up to an equivalence of extended norms on S ′(Rd ; X), || · ||Bs,a
p,q,d (Rd ,w;X) and || ·

||Fs,a
p,q,d (Rd ,w;X) do not depend on the particular choice of ϕ ∈ �d ,a(Rd).

Let us note some basic relations between these spaces. Monotonicity of 
q -spaces
yields that, for 1 ≤ q0 ≤ q1 ≤ ∞,

Bs,a
p,q0,d

(Rd ,w; X) ↪→ Bs,a
p,q1,d

(Rd ,w; X),

Fs,a
p,q0,d

(Rd ,w; X) ↪→ Fs,a
p,q1,d

(Rd ,w; X). (9)
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For ε > 0 it holds that

Bs,a
p,∞,d (Rd ,w; X) ↪→ Bs−ε,a

p,1,d (Rd ,w; X). (10)

Furthermore, Minkowski’s inequality gives

Bs,a
p,min{p1,...,pl ,q},d (Rd ,w; X) ↪→ Bs,a

p,q,d (Rd ,w; X) ↪→ Bs,a
p,max{p1,...,pl ,q},d (Rd ,w; X).

(11)

Let a ∈ (0,∞)l . A normed space E ⊂ S ′(Rd ; X) is called (d , a)-admissible if
there exists an N ∈ N such that

m(D) f ∈ E with ||m(D) f ||E � ||m||M(d ,a)
N

|| f ||E, (m, f ) ∈ OM (Rd) × E,

where m(D) f = F−1[m f̂ ]. The Besov space Bs,a
p,q,d (Rd ,w; X) and the Triebel–

Lizorkin space Fs,a
p,q,d (Rd ,w; X) are examples of (d , a)-admissible Banach spaces.

To each σ ∈ R, we associate the operators J [d ; j]
σ ∈ L(S ′(Rd; X)) and J d ,a

σ ∈
L(S ′(Rd ; X)) given by

J [d ; j]
σ f := F−1[(1 + |π[d ; j]|2)σ/2 f̂ ] and J d ,a

σ f :=
l∑

k=1

J [d ;k]
σ/ak

f.

We call J d ,a
σ the (d , a)-anisotropic Bessel potential operator of order σ .

Let E ↪→ S ′(Rd ; X) be a Banach space. Write

Jn,d :=
⎧⎨
⎩α ∈

l⋃
j=1

ι[d ; j]Nd j : |α j | ≤ n j

⎫⎬
⎭ , n ∈ (

Z≥1
)l

.

Given n ∈ (
Z≥1

)l , s, a ∈ (0,∞)l , and s ∈ R, we define the Banach spaces
Wn

d [E],Hs
d [E],Hs,a

d [E] ↪→ S ′(Rd ; X) as follows:

Wn
d [E] := { f ∈ S ′(Rd) : Dα f ∈ E, α ∈ Jn,d },

Hs
d [E] := { f ∈ S ′(Rd) : J [d ; j]

s j f ∈ E, j = 1, . . . , l},
Hs,a

d [E] := { f ∈ S ′(Rd) : J d ,a
s f ∈ E},

with the norms

|| f ||Wn
d [E] =

∑
α∈Jn,d

||Dα f ||E , || f ||Hs
d [E] =

l∑
j=1

||J [d ; j]
s j f ||E,

|| f ||Hs,a
d [E] = ||J d ,a

s f ||E.

Note that Hs
d [E] ↪→ Hs,a

d [E] contractively in case that s = (s/a1, . . . , s/al). Fur-
thermore, note that if F ↪→ S ′(Rd ; X) is another Banach space, then
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E ↪→ F implies Wn
d [E] ↪→ Wn

d [F],Hs
d [E] ↪→ Hs

d [F],Hs,a
d [E] ↪→ Hs,a

d [F].
(12)

If E ↪→ S ′(Rd ; X) is a (d , a)-admissible Banach space for a given a ∈ (0,∞)l ,
then

Wn
d [E] = Hn

d [E] = Hs,a
d [E], s ∈ R, n = sa−1 ∈ (

Z≥1
)l

, (13)

and

Hs
d [E] = Hs,a

d [E], s > 0, s = sa−1. (14)

Furthermore,

Dα ∈ B(Hs,a
d [E],Hs−a·d α,a

d [E]), s ∈ R, α ∈ N
d . (15)

Let a ∈ (0,∞)l , p ∈ [1,∞)l , q ∈ [1,∞], and w ∈ ∏l
j=1 A∞(Rd j ). For s, s0 ∈ R

it holds that

Bs+s0,a
p,q,d (Rd ,w; X) = Hs,a

d [Bs0,a
p,q,d (Rd ,w; X)],

Fs+s0,a
p,q,d (Rd ,w; X) = Hs,a

d [Fs0,a
p,q,d (Rd ,w; X)].

Let X be a Banach space, a ∈ (0,∞)l , p ∈ (1,∞)l , w ∈ ∏l
j=1 Apj (R

d j ), s ∈ R,

s ∈ (0,∞)l and n ∈ (N>0)
l . We define

W n
p,d (Rd ,w; X) := Wn

d [L p,d (Rd ,w; X)],
H s

p,d (Rd ,w; X) := Hs
d [L p,d (Rd ,w; X)],

Hs,a
p,d (Rd ,w; X) := Hs,a

d [L p,d (Rd ,w; X)].
If

• E = W n
p,d (Rd ,w; X), n ∈ (Z≥1)

l , n = sa−1; or

• E = Hs,a
p,d (Rd ,w; X); or

• E = H a
p,d (Rd ,w; X), a ∈ (0, 1)l , a = sa−1,

then we have the inclusions

Fs,a
p,1,d (Rd ,w; X) ↪→ E ↪→ Fs,a

p,∞,d (Rd ,w; X). (16)

Theorem 2.1. [43] Let X be a Banach space, l = 2, a ∈ (0,∞)2, p, q ∈ (1,∞),
s > 0, and w ∈ Ap(R

d1) × Aq(R
d2). Then,

Fs,a
(p,q),p,d (Rd ,w; X) = Fs/a2

q,p (Rd2 , w2; L p(Rd1 , w1; X)) ∩ Lq(Rd2 , w2;
Fs/a1
p,p (Rd1 , w1; X)) (17)

with equivalence of norms.

This intersection representation is actually a corollary of amore general intersection
representation in [43]. In the above form, it can also be found in [42, Theorem 5.2.35].
For the case X = C, d1 = 1, w = 1, we refer to [19, Proposition 3.23].



68 N. Lindemulder J. Evol. Equ.

3. The main result

3.1. Maximal Lq
μ–L

p
γ -regularity

In order to give a precise description of the maximal weighted Lq–L p-regularity
approach for (1), letO be eitherRd+ or a smooth domain inR

d with a compact boundary
∂O . Furthermore, let X be a Banach space, let

q ∈ (1,∞), μ ∈ (−1, q − 1) and p ∈ (1,∞), γ ∈ (−1, p − 1),

let vμ and w∂O
γ be as in (4), put

U
p,q
γ,μ := W 1

q (J, vμ; L p(O, w∂O
γ ; X)) ∩ Lq(J, vμ;W 2n

p (O, w∂O
γ ; X)),

(space of solutions u)

F
p,q
γ,μ := Lq(J, vμ; L p(O, w∂O

γ ; X)), (space of domain inhomogeneities f )

B
p,q
μ := Lq(J, vμ; L p(∂O; X)), (boundary space) (18)

and letn, n1, . . . , nn ∈ Nbe natural numberswithn j ≤ 2n−1 for each j ∈ {1, . . . , n}.
Suppose that for each α ∈ N

d , |α| ≤ 2n,

aα ∈ D′(O × J ;B(X)) with aαD
α ∈ B(Up,q

γ,μ, F
p,q
γ,μ)

and that for each j ∈ {1, . . . , n} and β ∈ N
d , |β| ≤ n j ,

b j,β ∈ D′(∂O × J ;B(X)) with b j,β tr∂ODβ ∈ B(Up,q
γ,μ, B

p,q
μ ),

where the conditions aαDα ∈ B(U
p,q
γ,μ, F

p,q
γ,μ) and b j,β tr∂ODβ ∈ B(U

p,q
γ,μ, B

p,q
μ ) have

to be interpreted in the sense of bounded extension from the space of X -valued com-
pactly supported smooth functions.DefineA(D) ∈ B(U

p,q
γ,μ, F

p,q
γ,μ) andB1(D), . . . ,Bn

(D) ∈ B(U
p,q
γ,μ, B

p,q
μ ) by

A(D) :=
∑

|α|≤2n

aαD
α,

B j (D) :=
∑

|β|≤n j

b j,β tr∂ODβ, j = 1, . . . , n.
(19)

In the above notation, given f ∈ F
p,q
γ,μ and g = (g1, . . . , gn) ∈ [Bp,q

μ ]n , one can
ask the question whether the initial-boundary value problem

∂t u + A(D)u = f,
B j (D)u = g j , j = 1, . . . , n,

trt=0u = u0.
(20)

has a unique solution u ∈ U
p,q
γ,μ.
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Definition 3.1. We say that problem (20) enjoys the property of maximal Lq
μ–L

p
γ -

regularity if there exists a (necessarily unique) linear space Di.b. ⊂ [Bp,q
μ ]n × L p(O,

w∂O
γ ; X) such that (20) admits a unique solution u ∈ U

p,q
γ,μ if and only if ( f, g, u0) ∈

D = F
p,q
γ,μ ×Di.b.. In this situation, we callDi.b. the optimal space of initial-boundary

data and D the optimal space of data.

Remark 3.2. Let the notations be as above. If problem (20) enjoys the property of
maximal Lq

μ–L
p
γ -regularity, then there exists a unique Banach topology on the space

of initial-boundary dataDi.b. such thatDi.b. ↪→ [Bp,q
μ ]n×L p(O, w∂O

γ ; X). Moreover,
if Di.b. has been equipped with a Banach norm generating such a topology, then the
solution operator

S : D = F
p,q
γ,μ ⊕ Di.b. −→ U

p,q
γ,μ, ( f, g, u0) �→ S ( f, g, u0) = u

is an isomorphism of Banach spaces, or equivalently,

||u||
U

p,q
γ,μ

� || f ||
F
p,q
γ,μ

+ ||(g, u0)||Di.b. , u = S ( f, g, u0), ( f, g, u0) ∈ D .

The maximal Lq
μ–L

p
γ -regularity problem for (20) consists of establishing maximal

Lq
μ–L

p
γ -regularity for (20) and explicitly determining the space Di.b. together with a

norm as in Remark 3.2. As themain result of this paper, Theorem 3.4, wewill solve the
maximal Lq

μ–L
p
γ -regularity problem for (20) under the assumption that X is a UMD

space and under suitable assumptions on the operators A(D),B1(D), . . . ,Bn(D).

3.2. Assumptions on (A,B1, . . . ,Bn)

As in [18,48], we will pose two type of conditions on the operators A,B1, . . . ,Bn

for which we can solve the maximal Lq
μ–L

p
γ -regularity problem for (20): smoothness

assumptions on the coefficients and structural assumptions.
In order to describe the smoothness assumptions on the coefficients, let q, p ∈

(1,∞), μ ∈ (−1, q − 1), γ ∈ (−1, p − 1) and put

κ j,γ := 1 − n j

2n
− 1

2np
(1 + γ ) ∈ (0, 1), j = 1, . . . , n. (21)

(SD) For |α| = 2n we have aα ∈ BUC(O× J ;B(X)), and for |α| < 2n we have aα ∈
L∞(O× J ;B(X)). IfO is unbounded, the limits aα(∞, t) := lim|x |→∞ aα(x, t)
exist uniformly with respect to t ∈ J , |α| = 2n.

(SB) For each j ∈ {1, . . . ,m} and |β| ≤ n j , there exist s j,β ∈ [q,∞) and r j,β ∈
[p,∞) with

κ j,γ >
1

s j,β
+ d − 1

2nr j,β
+ |β| − n j

2n
and μ >

q

s j,β
− 1

such that

b j,β ∈ F
κ j,γ
s j,β ,p(J ; Lr j,β (∂O;B(X))) ∩ Ls j,β (J ; B2nκ j,γ

r j,β ,p (∂O;B(X))).

If O = R
d+, the limits b j,β(∞, t) := lim|x ′|→∞ b j,β(x ′, t) exist uniformly with

respect to t ∈ J , j ∈ {1, . . . , n}, |β| = n j .
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Remark 3.3. For the lower order parts of (A,B1, . . . ,Bn), we only need aαDα , |α| <

2n, and b j,β tr∂ODβ , |β j | < n j , j = 1, . . . , n, to act as lower order perturbations in
the sense that there exists σ ∈ [2n − 1, 2n) such that aαDα , respectively, b j,β tr∂ODβ

is bounded from

H
σ
2n
q (J, vμ; L p(O, w∂O

γ ; X)) ∩ Lq(J, vμ; Hσ
p (O, w∂O

γ ; X))

to Lq(J, vμ; L p(O, w∂O
γ ; X))), respectively, F

κ j,γ
q,p (J, vμ; L p(∂O; X)) ∩ Lq(J, vμ;

F
2nκ j,γ
p,p (∂O; X)). Here, the latter space is the optimal space of boundary data, see the

statement of the main result.

Let us now turn to the two structural assumptions on A,B1, . . . ,Bn . For each
φ ∈ [0, π), we introduce the conditions (E)φ and (LS)φ .

The condition (E)φ is parameter ellipticity. In order to state it, we denote by the
subscript # the principal part of a differential operator: given a differential operator
P(D) = ∑

|γ |≤k pγ Dγ of order k ∈ N, P#(D) = ∑
|γ |=k pγ Dγ .

(E)φ For all t ∈ J , x ∈ O and |ξ | = 1 it holds that σ(A#(x, ξ, t)) ⊂ �φ . If O is
unbounded, then it in addition holds that σ(A#(∞, ξ, t)) ⊂ C+ for all t ∈ J
and |ξ | = 1.

The condition (LS)φ is a condition of Lopatinskii–Shapiro type. Before we can state
it, we need to introduce some notation. For each x ∈ ∂O , we fix an orthogonal matrix
Oν(x) that rotates the outer unit normal ν(x) of ∂O at x to (0, . . . , 0,−1) ∈ R

d and
define the rotated operators (Aν,Bν) by

Aν(x, D, t) := A(x, OT
ν(x)D, t), Bν(x, D, t) := B(x, OT

ν(x)D, t).

(LS)φ For each t ∈ J , x ∈ ∂O , λ ∈ �π−φ and ξ ′ ∈ R
d−1 with (λ, ξ ′) 
= 0 and all

h ∈ Xn , the ordinary initial value problem

λw(y) + Aν
#(ξ

′, Dy, t)w(y) = 0, y > 0
Bν

j,#(ξ
′, Dy, t)w(y)|y=0 = h j , j = 1, . . . , n.

has a unique solution w ∈ C∞([0,∞); X) with limy→∞ w(y) = 0.

3.3. Statement of the main result

LetO be eitherR
d+ or aC∞-domain inR

d with a compact boundary ∂O . Let X be a
Banach space,q, p ∈ (1,∞),μ ∈ (−1, q−1), γ ∈ (−1, p−1) and n, n1, . . . , nn ∈ N

natural numbers with n j ≤ 2n−1 for each j ∈ {1, . . . , n}, and κ1,γ , . . . , κn,γ ∈ (0, 1)
as defined in (21). Put

I
p,q
γ,μ := B

2n(1− 1+μ
q )

p,q (O, w∂O
γ ; X), (initial data space)

G
p,q
γ,μ, j := F

κ j,γ
q,p (J, vμ; L p(∂O; X)) ∩ Lq(J, vμ; F2nκ j,γ

p,p (∂O; X)), j = 1, . . . , n,

G
p,q
γ,μ := G

p,q
1,μ,γ ⊕ . . . ⊕ G

p,q
n,μ,γ . (space of boundary data g) (22)

Furthermore, let U
p,q
γ,μ and F

p,q
γ,μ be as in (18).
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Theorem 3.4. Let the notations be as above. Suppose that X is a UMD space, that
A(D),B1(D), . . . ,Bn(D) satisfy the conditions (SD), (SB), (E)φ and (LS)φ for some
φ ∈ (0, π

2 ), and that κ j,γ 
= 1+μ
q for all j ∈ {1, . . . , n}. Put

D
p,q
γ,μ :=

{
(g, u0) ∈ G

p,q
γ,μ ⊕ I

p,q
γ,μ : trt=0g j − Bt=0

j (D)u0 = 0 when κ j,γ >
1 + μ

q

}
,

where Bt=0
j (D) := ∑

|β|≤n j
b j,β(0, · )tr∂ODβ . Then, problem (20) enjoys the prop-

erty of maximal Lq
μ–L

p
γ -regularity with D

p,q
γ,μ as the optimal space of initial-boundary

data, i.e., problem (20) admits a unique solution u ∈ U
p,q
γ,μ if and only if ( f, g, u0) ∈

F
p,q
γ,μ ⊕ D

p,q
γ,μ. Moreover, the corresponding solution operator S : F

p,q
γ,μ ⊕ D

p,q
γ,μ −→

U
p,q
γ,μ is an isomorphism of Banach spaces.

Remark 3.5. The compatibility condition trt=0g j − Bt=0
j (D)u0 = 0 in the definition

of D
p,q
γ,μ is basically imposed when (g j , u0) �→ trt=0g j − Bt=0

j (D)u0 makes sense

as a continuous linear operator from G
p,q
γ,μ, j ⊕ I

p,q
γ,μ to some topological vector space

V . That it is indeed a well-defined continuous linear operator from G
p,q
γ,μ, j ⊕ I

p,q
γ,μ to

L0(∂O; X) when κ j,γ >
1+μ
q can be seen by combining the following two points:

(i) Supposeκ j,γ >
1+μ
q . Then, the condition (SB)yieldsb j,β ∈ F

κ j,γ
s j,β ,p(J ; Lr j,β (O;

B(X))) with κ j,γ >
1+μ
q > 1

s j,β
. By [49, Proposition 7.4],

F
κ j,γ
s j,β ,p(J ; Lr j,β (O;B(X))) ↪→ BUC(J ; Lr j,β (O;B(X))).

Furthermore, it holds that 2n(1− 1+μ
q ) > n j + 1+γ

q , so each tr∂ODβ , |β| ≤ n j ,

is a continuous linear operator from I
p,q
γ,μ to B

2n(1− 1+μ
q )−n j− 1+γ

p
p,q (∂O; X) ↪→

L p(∂O; X) by the trace theory from Sect. 4.1. Therefore, Bt=0
j (D) = ∑

|β|≤n j

b j,β(0, · )tr∂ODβ makes sense as a continuous linear operator from I
p,q
γ,μ to

L0(∂O; X).
(ii) Suppose κ j,γ >

1+μ
q . The observation that

G
p,q
γ,μ, j ↪→ F

κ j,γ
q,p (J, vμ; L p(∂O; X))

in combination with the trace theory from Sect. 4.1 yields that trt=0 is a well-
defined continuous linear operator from G

p,q
γ,μ, j to L p(∂O; X) ↪→ L0(∂O; X).

Remark 3.6. The C∞-smoothness on ∂O in Theorem 3.4 can actually be reduced
to C2n-smoothness, which could be derived from the theorem itself by a suitable
coordinate transformation.

Notice the dependence of the space of initial-boundary data on the weight parame-
ters μ and γ . For fixed q, p ∈ (1,∞), we can roughly speaking decrease the required
smoothness (or regularity) of g and u0 by increasing γ and μ, respectively. Further-
more, compatibility conditions can be avoided by choosingμ and γ big enough. So the
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weights make it possible to solve (20) for more initial-boundary data (compared to the
unweighted setting). On the other hand, by choosing μ and γ closer to−1 (depending
on the initial-boundary data), we can find more information about the behavior of u
near the initial-time and near the boundary, respectively.
The dependence on the weight parameters μ and γ is illustrated in the following

example of the heat equation with Dirichlet and Neumann boundary conditions:

Example 3.7. Let N ∈ N and let p, q, γ, μ be as above.

(i) The heat equation with Dirichlet boundary condition:
If 2 − 2

q (1 + μ) 
= 1
p (1 + γ ), then the problem

∂t u − �u = f,
tr∂Ou = g,
u(0) = u0,

has aunique solutionu ∈ W 1
q (J, vμ; L p(O, w∂O

γ ; C
N ))∩Lq(J, vμ;W 2

p(O, w∂O
γ ;

C
N )) if and only the data ( f, g, u0) satisfy:

• f ∈ Lq(J, vμ; L p(O, w∂O
γ ; C

N ));

• g ∈ F
1− 1

2p (1+γ )

q,p (J, vμ; L p(∂O; C
N )) ∩ Lq(J, vμ; F2− 1

p (1+γ )

p,p (∂O; C
N ));

• u0 ∈ B
2− 2

q (1+μ)

p,q (O, w∂O
γ ; C

N );

• trt=0g = tr∂Ou0 when 2 − 2
q (1 + μ) > 1

p (1 + γ ).
(ii) The heat equation with Neumann boundary condition:

If 1 − 2
q (1 + μ) 
= 1

p (1 + γ ), then the problem

∂t u − �u = f,
∂νu = g,
u(0) = u0,

has a unique solution u ∈ W 1
q (J, vμ; L p(O, w∂O

γ ; C
N )) ∩ Lq(J, vμ;W 2

p

(O, w∂O
γ ; C

N )) if and only the data ( f, g, u0) satisfy:

• f ∈ Lq(J, vμ; L p(O, w∂O
γ ; C

N ));

• g ∈ F
1
2− 1

2p (1+γ )

q,p (J, vμ; L p(∂O; C
N )) ∩ Lq(J, vμ; F1− 1

p (1+γ )

p,p (∂O; C
N ));

• u0 ∈ B
2− 2

q (1+μ)

p,q (O, w∂O
γ ; C

N );

• trt=0g = tr∂Ou0 when 1 − 2
q (1 + μ) > 1

p (1 + γ ).

4. Trace theory

In this section, we establish the necessary trace theory for the maximal Lq
μ–L

p
γ -

regularity problem for (20).
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4.1. Traces of isotropic spaces

In this subsection, we state trace results for the isotropic spaces, for which we refer
to [44] (also see the references there). Note that these are of course special cases of the
more general anisotropic mixed-norm spaces, for which trace theory (for the model
problem case of a half-space) can be found in the next subsections and in [42].
The following notation will be convenient:

∂Bs
p,q,γ (∂O; X) := B

s− 1+γ
p

p,q (∂O; X) and ∂Fs
p,q,γ (∂O; X) := F

s− 1+γ
p

p,p (∂O; X).

Proposition 4.1. Let X be a Banach space,O ⊂ R
d eitherR

d+ or a C∞-domain inR
d

with a compact boundary ∂O , A ∈ {B, F}, p ∈ [1,∞), q ∈ [1,∞], γ ∈ (−1,∞)

and s >
1+γ
p . Then

S(Rd ; X) −→ S(∂O; X), f �→ f|∂O ,

uniquely extends to a retraction tr∂O from A s
p,q(R

d , w∂O
γ ; X) onto ∂A s

p,q,γ (∂O; X).
There is a universal coretraction in the sense that there exists an operator ext∂O ∈
L(S ′(∂O; X),S ′(Rd; X)) (independent of A , p, q, γ, s) which restricts to a core-
traction for the operator tr∂O ∈ B(A s

p,q(R
d , w∂O

γ ; X), ∂A s
p,q,γ (∂O; X)). The same

statements hold true with R
d replaced by O .

Remark 4.2. Recall that S(Rd ; X) is dense in A s
p,q(R

d , w∂O
γ ; X) for q < ∞ but not

for q = ∞. For q = ∞ uniqueness of the extension follows from the trivial embedding
A s

p,∞(Rd , w∂O
γ ; X) ↪→ Bs−ε

p,1 (Rd , w∂O
γ ; X), ε > 0.

Corollary 4.3. Let X be a Banach space, O ⊂ R
d either R

d+ or a C∞-domain in R
d

with a compact boundary ∂O , p ∈ (1,∞), γ ∈ (−1, p − 1), n ∈ N>0 and s >
1+γ
p .

Then

S(Rd ; X) −→ S(∂O; X), f �→ f|∂O ,

uniquely extends to retractions tr∂O from Wn
p (R

d , w∂O
γ ; X) onto F

n− 1+γ
p

p,p (∂O; X) and

from Ws
p(R

d , w∂O
γ ; X) onto F

s− 1+γ
p

p,p (∂O; X). The same statement holds true with R
d

replaced by O .

4.2. Traces of intersection spaces

For the maximal Lq
μ–L

p
γ -regularity problem for (20), we need to determine the

temporal and spatial trace spaces of Sobolev andBessel potential spaces of intersection
type. As the temporal trace spaces can be obtained from the trace results in [50], we
will focus on the spatial traces.
By the trace theory of the previous subsection, the trace operator tr∂O can be de-

fined pointwise in time on the intersection spaces in the following theorem. It will be
convenient to use the notation tr∂O [E] = F to say that tr∂O is a retraction from E onto
F.
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Theorem 4.4. Let O be either R
d+ or a C∞-domain in R

d with a compact boundary
∂O . Let X be aBanach space, Y aUMDBanach space, p, q ∈ (1,∞),μ ∈ (−1, q−1)
and γ ∈ (−1, p − 1). If n,m ∈ Z>0 and r, s ∈ (0,∞) with s >

1+γ
p , then

tr∂O
[
Wn

q (J, vμ; L p(O, w∂O
γ ; X)) ∩ Lq(J, vμ;Wm

p (O, w∂O
γ ; X))

]

= F
n− n

m
1+γ
p

q,p (J, vμ; L p(∂O; X)) ∩ Lq(J, vμ; Fm− 1+γ
p

p,p (∂O; X))

(23)

and

tr∂O
[
Hr
q (J, vμ; L p(O, w∂O

γ ; Y )) ∩ Lq(J, vμ; Hs
p(O, w∂O

γ ; Y ))
]

= F
r− r

s
1+γ
p

q,p (J, vμ; L p(∂O; Y )) ∩ Lq(J, vμ; Fs− 1+γ
p

p,p (∂O; Y )).

(24)

The main idea behind the proof of Theorem 4.4 is, as in [60], to exploit the inde-
pendence of the trace space of a Triebel–Lizorkin space on its microscopic parameter.
As in [60], our approach does not require any restrictions on the Banach space X .
The UMD restriction on Y comes from the localization procedure for Bessel po-

tential spaces used in the proof, which can be omitted in the case O = R
d+. This

localization procedure for Bessel potential spaces could be replaced by a localiza-
tion procedure for weighted anisotropic mixed-norm Triebel–Lizorkin spaces, which
would not require any restrictions on the Banach space Y . However, we have chosen
to avoid this as localization of such Triebel–Lizorkin spaces has not been considered
in the literature before, while we do not need that generality anyway. For localization
in the scalar-valued isotropic non-mixed-norm case, we refer to [44].

Proof of Theorem 4.4. By standard techniques of localization, it suffices to consider
the case O = R

d+ with boundary ∂O = R
d−1. Moreover, using a standard restriction

argument, we may turn to the corresponding trace problem on the full space O × J =
R
d × R.
From the natural identifications

Wn
q,μ(L p

γ ) ∩ Lq
μ(Wm

p,γ ) = W (m,n)
(p,q),(d,1)(R

d+1, (wγ , vμ); X)

and

Hr
q,μ(L p

γ ) ∩ Lq
μ(Hs

p,γ ) = H (s,r)
(p,q),(d,1)(R

d+1, (wγ , vμ); Y ),

(16) and Corollary 4.9, it follows that

tr [Wn
q,μ(L p

γ ) ∩ Lq
μ(Wm

p,γ )] = F
1− 1

m
1+γ
p ,

(
1
m , 1n

)
(p,q),p,(d−1,1) (Rd , (1, vμ); X)

and

tr [Hr
q,μ(L p

γ ) ∩ Lq
μ(Hs

p,γ )] = F
1− 1

s
1+γ
p ,

(
1
s , 1r

)
(p,q),p,(d−1,1) (R

d , (1, vμ); Y ).

An application of Theorem 2.1 finishes the proof. �
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4.3. Traces of anisotropic mixed-norm spaces

The goal of this subsection is to prove the trace result Theorem 4.6, which is a
weighted vector-valued version of [36, Theorem 2.2].

In contrast to Theorem 4.6, the trace result [36, Theorem 2.2] is formulated for
the distributional trace operator; see Remark 4.8 for more information. However, all
estimates in the proof of that result are carried out for the “working definition of the
trace.” The proof of Theorem 4.6 presented below basically consists of modifications
of these estimates to our setting. As this can get quite technical at some points, we
have decided to give the proof in full detail.

4.3.1. The working definition of the trace

Let ϕ ∈ �d ,a(Rd) with associated family of convolution operators (Sn)n∈N ⊂
L(S ′(Rd ; X)) be fixed. In order to motivate the definition to be given in a moment, let
us first recall that f = ∑∞

n=0 Sn f in S(Rd; X) (respectively, in S ′(Rd ; X)) whenever
f ∈ S(Rd ; X) (respectively, f ∈ S ′(Rd; X)), from which it is easy to see that

f|{0}×Rd−1 =
∞∑
n=0

(Sn f )|{0}×Rd−1 in S(Rd−1; X), f ∈ S(Rd; X).

Furthermore, given a general tempered distribution f ∈ S ′(Rd; X), recall that Sn f ∈
OM (Rd; X); in particular, each Sn f has a well-defined classical trace with respect
to {0} × R

d−1. This suggests to define the trace operator τ = τϕ : D(γ ϕ) ⊂
S ′(Rd; X) −→ S ′(Rd−1; X) by

τϕ f :=
∞∑
n=0

(Sn f )|{0}×Rd−1 (25)

on the domain D(τϕ) consisting of all f ∈ S ′(Rd; X) for which this defining series
converges in S ′(Rd−1; X). Note thatF−1E ′(Rd ; X) is a subspace ofD(τϕ) on which
τϕ coincideswith the classical trace of continuous functionswith respect to {0}×R

d−1;
of course, for an f belonging to F−1E ′(Rd; X) there are only finitely many Sn f
nonzero.

4.3.2. The distributional trace operator

Let us now introduce the concept of distributional trace operator. The reason for us
to introduce it is the right inverse from Lemma 4.5.

The distributional trace operator r (with respect to the hyperplane {0} × R
d−1) is

defined as follows. ViewingC(R;D′(Rd−1; X)) as subspace ofD′(Rd; X) = D′(R×
R
d−1; X) via the canonical identification D′(R;D′(Rd−1; X)) = D′(R × R

d−1; X)

(arising from the Schwartz kernel theorem),

C(R;D′(Rd−1; X)) ↪→ D′(R;D′(Rd−1; X)) = D′(R × R
d−1; X),
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we define r ∈ L(C(R;D′(Rd−1; X)),D′(Rd−1; X)) as the ’evaluation in 0 map’

r : C(R;D′(Rd−1; X)) −→ D′(Rd−1; X), f �→ ev0 f.

Then, in view of

C(Rd ; X) = C(R × R
d−1; X) = C(R;C(Rd−1; X)) ↪→ C(R;D′(Rd−1; X)),

wehave that the distributional trace operator r coincides onC(Rd ; X)with the classical
trace operator with respect to the hyperplane {0} × R

d−1, i.e.,

r : C(Rd ; X) −→ C(Rd−1; X), f �→ f|{0}×Rd−1 .

The following lemma can be established as in [36, Section 4.2.1].

Lemma 4.5. Let ρ ∈ S(R) such that ρ(0) = 1 and supp ρ̂ ⊂ [1, 2], a1 ∈ R,

d̃ ∈ (Z>0)
l−1 with d = (1, d̃ ), ã ∈ (0,∞)l−1, and (φn)n∈N ∈ �d̃ ,ã(Rd−1). Then,

for each g ∈ S ′(Rd−1; X),

ext g :=
∞∑
n=0

ρ(2na1 · ) ⊗ [φn ∗ g] (26)

defines a convergent series in S ′(Rd; X) with

suppF [ρ ⊗ [φ0 ∗ g]] ⊂ {ξ | |ξ |d ,a ≤ c}
suppF [ρ(2na1 · ) ⊗ [φn ∗ g]] ⊂ {ξ | c−12n ≤ |ξ |d ,a ≤ c2n} , n ≥ 1,

(27)

for some constant c > 0 independent of g. Moreover, the operator ext defined via this
formula is a linear operator

ext : S ′(Rd−1; X) −→ Cb(R;S ′(Rd−1; X))

which acts as a right inverse of r : C(R;S ′(Rd−1; X)) −→ S ′(Rd−1; X).

4.3.3. Trace spaces of Triebel–Lizorkin, Sobolev and Bessel potential spaces

Theorem 4.6. Let X be a Banach space, d1 = 1, a ∈ (0,∞)l , p ∈ [1,∞)l , q ∈
[1,∞], γ ∈ (−1,∞) and s > a1

p1
(1 + γ ). Let w ∈ ∏l

j=1 A∞(Rd j ) be such that

w1(x1) = wγ (x1) = |x1|γ andw′′ ∈ ∏l
j=2 Apj /r j (R

d j ) for some r ′′ = (r2, . . . , rl) ∈
(0, 1)l−1 satisfying s − a1

p1
(1 + γ ) >

∑l
j=2 a jd j ( 1

r j
− 1).1 Then, the trace operator

τ = τϕ (25) is well defined on Fs,a
p,q,d (Rd , (wγ ,w′′); X), where it is independent of

ϕ, and restricts to a retraction

τ : Fs,a
p,q,d (Rd , (wγ ,w′′); X) −→ F

s− a1
p1

(1+γ ),a′′

p′′,p1,d ′′ (Rd−1,w′′; X) (28)

for which the extension operator ext from Lemma 4.5 (with d̃ = d ′′ and ã = a′′)
restricts to a corresponding coretraction.

1 This technical condition onw′′ is in particular satisfiedwhen p′′ ∈ (1, ∞)l−1 andw′′ ∈ ∏l
j=2 Ap j (R

d j ).



Vol. 20 (2020) Maximal regularity with weights for parabolic problems 77

Remark 4.7. In the situation of Theorem 4.6, suppose that q < ∞. Then, S(Rd ; X) is
a dense linear subspace of Fs,a

p,q,d (Rd , (wγ ,w′′); X) and τ is just the unique extension
of the classical trace operator

S(Rd; X) −→ S(Rd−1; X), f �→ f|{0}×Rd−1 ,

to a bounded linear operator (28).

Remark 4.8. In contrary to the unweighted case considered in [36], one cannot use
translation arguments to show that

Fs,a
p,q,d (Rd , (wγ ,w′′); X) ↪→ C(R;D′(Rd−1; X))

for s> a1
p1

(1+γ ).However, for s> a1
p1

(1+γ+), p ∈ (1,∞)l andw′′ ∈ ∏l
j=2 Apj (R

d j ),
the inclusion

Fs,a
p,q,d (Rd , (wγ ,w′′); X) ↪→ C(R;S ′(Rd−1; X))

can be obtained as follows: picking s̃ with s > s̃ > a1
p1

(1+ γ+), there holds the chain
of inclusions

Fs,a
p,q,d (Rd , (wγ ,w′′); X) ↪→ Bs̃,a

p,1,d (Rd , (wγ ,w′′); X)

(30)
↪→ Cb(R, ρp1,γ ; Bs̃− a1

p1
(1+γ+),a

′′

p′′
,1,d ′′ (Rd−1,w

′′ ; X))

↪→ C(R;S ′(Rd−1; X)).

Here, the restriction s > a1
p1

(1 + γ+) when γ < 0 is natural in view of the necessity
of s > a1

p1
in the unweighted case with p1 > 1 (cf. [36, Theorem 2.1]).

Note that the trace space of the weighted anisotropic Triebel–Lizorkin space is
independent of the microscopic parameter q ∈ [1,∞]. As a consequence, if E is a
normed space with

Fs,a
p,1,d (Rd , (wγ ,w′′); X) ↪→ E ↪→ Fs,a

p,∞,d (Rd , (wγ ,w′′); X),

then the trace result ofTheorem4.6 alsoholds forE in placeof Fs,a
p,q,d (Rd ,(wγ ,w′′);X).

In particular, we have:

Corollary 4.9. Let X be a Banach space, d1 = 1, a ∈ (0,∞)l , p ∈ (1,∞)l , γ ∈
(−1, p1 − 1) and s > a1

p1
(1 + γ ). Let w ∈ ∏l

j=1 Apj (R
d j ) be such that w1(x1) =

wγ (x1) = |x1|γ . Suppose that either
• E = W n

p,d (Rd , (wγ ,w′′); X), n ∈ (Z≥1)
l , n = sa−1; or

• E = Hs,a
p,d (Rd , (wγ ,w′′); X); or

• E = H s
p,d (Rd , (wγ ,w′′); X), s ∈ (0,∞)l , s = sa−1.
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Then, the trace operator τ = τϕ (25) is well defined on E, where it is independent of
ϕ, and restricts to a retraction

τ : E −→ F
s− a1

p1
(1+γ ),a′′

p′′,p1,d ′′ (Rd−1,w′′; X)

for which the extension operator ext from Lemma 4.5 (with d̃ = d ′′ and ã = a′′)
restricts to a corresponding coretraction.

4.3.4. Traces by duality for Besov spaces

Let i ∈ {1, . . . , l}. For b ∈ R
di , we define the hyperplane

�[d ;i],b := R
d1 × R

di−1 × {b} × R
di+1 × R

dl

and we simply put �[d ;i] := �[d ;i],0. Furthermore, given sets S1, . . . , Sl and x =
(x1, . . . , xl) ∈ ∏l

j=1 S j , we write x[i] = (x1, . . . , xi−1, xi+1, . . . , xl).

Proposition 4.10. Let X be aBanach space, i ∈ {1, . . . , l}, a ∈ (0,∞)l , p ∈ (1,∞)l ,
q ∈ [1,∞), γ ∈ (−di ,∞) and s >

ai
pi

(di + γ ). Let w ∈ ∏l
j=1 A∞(Rd j ) be such that

wi (xi ) = wγ (xi ) = |xi |γ and w j ∈ Apj for each j 
= i . Then, the trace operator

tr[d ;i],b : S(Rd; X) −→ S(Rd−di ; X), f �→ f|�[d ;i] ,

extends to a retraction

tr[d ;i],b : Bs,a
p,q,d (Rd ,w; X) −→ B

s− ai
pi

(di+γ ),a[i]

p[i],q,d [i] (Rd−di ,w[i]; X) (29)

for which the extension operator ext from Lemma 4.5 (with d̃ = d [i] and ã = a[i],
modified in the obvious way to the i th multidimensional coordinate) restricts to a
corresponding coretraction. Furthermore, if s >

ai
pi

(di + γ+), then

Bs,a
p,q,d (Rd ,w; X) ↪→ Cb(R

di , ρpi ,γ ; Bs− ai
pi

(di+γ+),a[i]

p[i],q,d [i] (Rd−1,w[i]; X))

↪→ C(Rdi ;S ′(Rd−di ; X)), (30)

where ρpi ,γ := max{| · |, 1}−
γ−
pi .

Corollary 4.11. Let X be a Banach space, a ∈ (0,∞)l , p ∈ (1,∞)l , q ∈ [1,∞),
γ ∈ ∏l

j=1(−d j ,∞) and s >
∑l

j=1
a j
p j

(d j + γ j,+). Let w ∈ ∏l
j=1 A∞(Rd j ) be such

that w j (x j ) = wγ (x j ) = |x j |γ for each j ∈ {1, . . . , l}. Then,
Bs,a
p,q,d (Rd ,w; X) ↪→ Cb(R

d1 , ρpl ,γl ; . . .Cb(R
dl , ρp1,γ1; X) . . .).

Proof. Thanks to the Sobolev embedding of Proposition 5.1, it is enough to treat the
case w ∈ ∏l

j=1 Apj (R
d j ), which can be obtained by l iterations of Proposition 4.10.

�
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Remark 4.12. The above proposition and its corollary remain valid for q = ∞. In
this case the norm estimate corresponding to (29) can be obtained in a similar way,
from which the unique extendability to a bounded linear operator (29) can be derived
via the Fatou property, (10) and the case q = 1. The remaining statements can be
established in the same way as for the case q < ∞.

Remark 4.13. Note that if γ ∈ [0,∞)l in the situation of the above corollary, then

Bs,a
p,q,d (Rd ,w; X) ↪→ BUC(Rd ; X)

by density of the Schwartz space S(Rd ; X) ⊂ BUC(Rd ; X) in Bs,a
p,q,d (Rd ,w; X).

This could also be established in the standard way by the Sobolev embedding Propo-
sition 5.1, see for instance [49, Proposition 7.4].

Let X be a Banach space. Then,

[S ′(Rd; X)]′ = S(Rd ; X∗) and [S(Rd; X)]′ = S ′(Rd; X∗)

via the pairings induced by

〈 f ⊗ x∗, g ⊗ x〉 = 〈〈 f, x∗〉, 〈g, x〉〉;

see [4, Corollary 1.4.10].
Let i ∈ {1, . . . , l} and b ∈ R

di . Let tr[d ;i],b ∈ L(S(Rd ; X),S(Rd−1; X)) be
given by tr[d ;i],b f := f|�[d ;i],b . Then, the adjoint operator T[d ;i],b := [tr[d ;i],b]′ ∈
L(S ′(Rd−1; X∗),S ′(Rd; X∗)) is given by T[d ;i],b f = δb ⊗[d ;i] f , which can be seen
by testing on the dense subspaceS(Rdi )⊗[d ;i]S(Rd−di ) ofS(Rd). Now suppose thatE

is a locally convex space with S(Rd ; X)
d

↪→ E and that F is a complete locally convex

space with S(Rd−di ; X)
d

↪→ F. Then, E
′ ↪→ S ′(Rd ; X∗) and F

′ ↪→ S ′(Rd−di ; X∗)
under the natural identifications, and tr[d ;i],b extends to a continuous linear operator
trE→F fromE toF if and only if T[d ;i],b restricts to a continuous linear operator TF′→E′
from F

′ to E
′, in which case [trE→F]′ = TF′→E′ .

Estimates in the classical Besov and Triebel–Lizorkin spaces for the tensor product
with the one-dimensional delta-distribution δ0 can be found in [34, Proposition 2.6],
where a different proof is given than the one below.

Lemma 4.14. Let X be a Banach space, i ∈ {1, . . . , l}, a ∈ (0,∞)l , p ∈ [1,∞)l ,
q ∈ [1,∞], γ ∈ (−di ,∞). Let w ∈ ∏l

j=1 A∞(Rd j ) be such that wi (xi ) = wγ (xi ) =
|xi |γ . For each b ∈ R

di consider the linear operator

T[d ;i],b : S ′(Rd−di ; X) −→ S ′(Rd; X), f �→ δb ⊗[d ;i] f.

(i) If s ∈ (−∞, ai
[
di+γ
pi

− di
]
), then T[d ;i],0 is bounded from B

s+ai
(
di− di+γ

pi

)
,a[i]

p[i],q,d

(Rd−di ,w[i]; X) to Bs,a
p,q,d (Rd ,w; X).
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(ii) If s ∈ (−∞, ai
[
di+γ−

pi
− di

]
), then T[d ;i],b is bounded from B

s+ai
(
di− di+γ−

pi

)
,a[i]

p[i],q
(Rd−di ,w[i]; X) to Bs,a

p,q,d (Rd ,w; X) with norm estimate

||T[d ;i],b||
B(B

s+ai

(
di−

di+γ
pi

)
,a[i]

p[i],q (Rd−di ,w[i];X),Bs
p,q (Rd ,wγ ))

� max{|b|, 1} γ+
p .

In order to perform all the estimates in Lemma 4.14, we need the following two
lemmas.

Lemma 4.15. Let ψ : R
d −→ C be a rapidly decreasing measurable function and

put ψR := Rdψ(R · ) for each R > 0. Let p ∈ [1,∞) and γ ∈ (−1,∞). For every
R > 0 and a ∈ R

d , the following estimate holds true:

||ψR( · − a)||L p(Rd ,| · |γ ) � Rd− d+γ
p (|a|R + 1)γ+/p

Proof. By [11, Condition Bp] (see [49, Lemma 4.5] for a proof), if w is an Aq -weight
on R

d with q ∈ (1,∞), thenˆ
Rd

(1 + |x − y|)−dq dy �[w]Aq ,q

ˆ
B(x,1)

w(y) dy. (31)

So let us pick q ∈ (1,∞) so that | · |γ ∈ Aq . Then, as ψ is rapidly decreasing, there
exists C > 0 such that |ψ(x)| ≤ C(1 + |x |)−q/p for every x ∈ R

d . We can thus
estimate

||ψR( · − a)||L p(Rd ,| · |γ ) = Rd− d+γ
p ||ψ( · − Ra)||L p(Rd ,| · |γ )

≤ CRd− d+γ
p ||t �→ (1 + |t − Ra|)−q/p||L p(Rd ,| · |γ )

(31)
� Rd− d+γ

p

(ˆ
B(|a|R,1)

|y|γ dy

)1/p

� Rd− d+γ
p (|a|R + 1)γ+/p.

�
Lemma 4.16. For every r ∈ [1,∞] and t > 0, there exists a constant C > 0 such
that, for all sequences (bk)k∈N ∈ C

N, the following two inequalities hold true:∥∥(2tk ∑∞
n=k+1 |bn|

)
k∈N

∥∥

r (N)

≤ C ||(2tkbk)k∈N||
r (N),∥∥∥(2−tk ∑k
n=0 |bn|

)
k∈N

∥∥∥

r (N)

≤ C ||(2−tkbk)k∈N||
r (N).

Proof. See [36, Lemma 4.2] (and the references given there). �
Proof of Lemma 4.14. Take ϕ = (ϕn)n∈N ∈ �(d ,a)(Rd) with ϕ0 = φ0 ⊗[d ;i] ψ0,

where φ = (φn)n∈N ∈ �ai (Rdi ) and ψ = (ψn)n ∈ �(d [i],a[i])(Rd−di ). For f ∈
S ′(Rd−di ; X), we then have

Sϕ
0 (δb ⊗[d ;i] f ) = Sφ

0 δb ⊗[d ;i] Sψ
0 f = [φ0 ∗ δb] ⊗[d ;i] [Sψ

0 f ] = φ0( · − b) ⊗[d ;i] Sψ
0 f
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and, for n ≥ 1,

Sϕ
n (δb ⊗[d ;i] f ) = ϕn ∗ (δb ⊗[d ;i] f ) = 2na·d ϕ0(δ

[d ,a]
2n · ) ∗ (δb ⊗[d ;i] f )

−2(n−1)a·d ϕ0(δ
[d ,a]
2n−1 · ) ∗ (δb ⊗[d ;i] f )

=
[
2nai di φ0(2

nai · ) ∗ δb

]
⊗[d ;i]

[
2na

[i]·d [i]
ψ0(δ

[d [i],a[i]]
2n · ) ∗ f

]

−
[
2(n−1)ai di φ0(2

(n−1)ai · ) ∗ δb

]
⊗[d ;i]

[
2(n−1)a[i]·d [i]

ψ0(δ
[d [i],a[i]]
2n−1 · ) ∗ f

]

= 2nai di φ0(2
nai [ · − b]) ⊗[d ;i]

[
2nai ·d [i]

ψ0(δ
[d i ,ai ]
2n · ) ∗ f

]

−2(n−1)ai di φ0(2
(n−1)ai [ · − b]) ⊗[d ;i]

[
2(n−1)a[i]·d [i]

ψ0(δ
[d [i],a[i]]
2n−1 · ) ∗ f

]

= 2nai di φ0(2
nai [ · − b]) ⊗[d ;i]

n∑
j=0

Sψ f − 2(n−1)ai di φ0(2
(n−1)ai [ · − b]) ⊗

n−1∑
j=0

Sψ
j f.

Applying Lemma 4.15, we obtain the estimate

||Sϕ
n (δb ⊗[d ;i] f )||L p,d (Rd ,w;X) � 2

nai
(
di− di+γ

p

)
(|b|2nai + 1)

γ+
pi

·
{ ||Sψ

0 f ||
L p[i],d [i]

(Rd−1,w[i];X)
, n = 0;

||∑n
j=0 S

ψ
j f ||

L p[i],d [i]
(Rd−1,w[i];X)

+ ||∑n−1
j=0 S

ψ
j f ||

L p[i],d [i]
(Rd−1,w[i];X)

, n ≥ 1.
(32)

(i) Using (32), we can estimate

||δ ⊗[d ;i] f ||Bs,a
p,q,d (Rd ,w;X) = ∣∣∣∣ (2sn ||Sϕ

n (δ ⊗[d ;i] f )||L p,d (Rd ,w;X)

)
n∈N

∣∣∣∣

q

�
∣∣∣∣∣∣(2

(
s+ai

[
di− di+γ

pi

])
n∣∣∣∣ n∑

j=0

Sψ
j f

∣∣∣∣
L p[i],d [i]

(Rd−1,w[i];X)

)
n≥0

∣∣∣∣∣∣

q

.

As s + ai
(
di − di+γ

pi

)
< 0, we obtain the desired estimate by an application of the

triangle inequality in L p[i],d [i]
(Rd−1,w[i]; X) followed by Lemma 4.15.

(ii) Observing that

2
nai

(
di− di+γ

p

)
(|b|2nai + 1)

γ+
p � 2

nai
(
di− di+γ−

p

)
max{|b|, 1} γ+

p ,

the desired estimate can be derived in the same way as in (i). �

Proof of Proposition 4.10. Let us first establish (29) and (30). Thanks to the Sobolev
embedding Proposition 5.1, we may restrict ourselves to the case γ ∈ (−1, p− 1), so

that w ∈ ∏l
j=1 Apj (R

d j ). As S(Rd ; X)
d

↪→ Bs,a
p,q,d (Rd ,w; X) and S(Rd−di ; X)

d
↪→

Bt,a[i]
p[i],q,d [i](R

d−di ,w[i]; X) (s, t ∈ R), we have

[Bs,a
p,q,d (Rd , w; X)]∗ ↪→ S ′(Rd ; X∗) and [Bt,a[i]

p[i],q,d [i](R
d−di ,w[i]; X)]∗ ↪→ S ′(Rd−di ; X∗)
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under the natural identifications; also see the discussion preceding Lemma 4.14. In
this way, we explicitly have

[Bs,a
p,q,d (Rd ,w; X)]∗ = B−s,a

p′,q ′,d (Rd ,w′; X∗)

and

[Bt,a[i]
p[i],q,d [i](R

d−di ,w[i]; X)]∗ = B−t,a[i]
p′[i],q ′,d [i](R

d−di ,w′[i]; X)

by [43] as w ∈ ∏l
j=1 Apj (R

d j ), where p′ = (p′
1, . . . , p

′
l) and w = (w

− 1
p1−1

1 , . . . ,

w
− 1

pl−1

l ). Note here thatw′
i (xi ) = |xi |γ ′

with γ ′ = − γ
pi−1 . Since−[s− ai

pi
(di +γ )] =

−s + ai
(
di − di+γ ′

p′
i

)
and −[s − ai

pi
(di + γ+)] = −s + ai

(
di − di+(γ ′)−

p′
i

)
, it follows

from Lemma 4.14 and the discussion preceding that

||tr[d ;i] f ||
B
s− ai

pi
(di+γ ),a[i]

p[i],q,d [i] (Rd−di ,w[i];X)

� || f ||Bs,a
p,q,d (Rd ,w;X), f ∈ S(Rd ; X),

and, if s >
ai
pi

(di + γ+),

||tr[d ;i],b f ||
B
s− ai

pi
(di+γ+),a[i]

p[i],q,d [i] (Rd−di ,w[i];X)

� ρpi ,γ (b)|| f ||Bs,a
p,q,d (Rd ,w;X),

f ∈ S(Rd ; X), b ∈ R
di .

These two inequalities imply (29) and (30), respectively.
Let us finally show that the extension operator ext from Lemma 4.5 (with d̃ = d [i]

and ã = a[i], modified in the obvious way to the i th multidimensional coordinate) re-

stricts to a coretraction for tr[d ;i]. To this end, we fix g ∈ B
s− ai

pi
(di+γ ),a[i]

p[i],q,d [i] (Rd−di ,w[i];
X). In view of (the modified version of) (27) and Lemma A.3, it suffices to estimate

||(2nsρ(2nai · ) ⊗[d ;i] [ψn ∗ g])n∈N||
q (N;L p,d (Rd ,w;X)) � ||g||
B
s− ai

pi
(di+γ ),a[i]

p[i],q,d [i] (Rd−di ,w[i];X)

.

A simple computation even shows that

||(2nsρ(2na1 · ) ⊗[d ;i] [ψn ∗ g])n∈N||
q (N;L p,d (Rd ,w;X))

= ||ρ||L pi (Rdi ,| · |γ )||g||
B
s− ai

pi
(di+γ ),a[i]

p[i],q,d [i] (Rd−di ,w[i];X)

.

�

4.3.5. The proof of Theorem 4.6

For the proof of Theorem4.6,we need three lemmas. Two lemmas concern estimates
in Triebel–Lizorkin spaces for series satisfying certain Fourier support conditions,
which can be found in “Appendix A.” The other lemma is Lemma 4.16.
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Proof of Theorem 4.6. Let the notations be as in Proposition 4.5. We will show that,
for an arbitrary ϕ ∈ �d ,a(Rd),

(I) τϕ exists on Fs,a
p,q,d (Rd , (wγ ,w′′); X) and defines a continuous operator

τϕ : Fs,a
p,q,d (Rd , (wγ ,w′′); X) −→ F

s− a1
p1

(1+γ ),a′′

p′′,p1,d ′′ (Rd−1,w′′; X);

(II) The extension operator ext from Proposition 4.5 (with d̃ = d ′′ and ã = a′′)
restricts to a continuous operator

ext : Fs− a1
p1

(1+γ ),a′′

p′′,p1,d ′′ (Rd−1,w′′; X) −→ Fs,a
p,q,d (Rd , (wγ ,w′′); X).

Since F−1C∞
c (Rd; X) ⊂ F−1E ′(Rd−1; X) ∩ Fs,a′′

p′′,p1,d ′′(Rd−1,w′′; X) is a dense

subspace of Fs,a′′
p′′,p1,d ′′(Rd ,w′′; X), the right inverse part in the first assertion follows

from (I) and (II). The independence of ϕ in the first assertion follows from denseness
of S(Rd ; X) in Fs,a

p,q,d (Rd , (wγ ,w′′); X) in case q < ∞, from which the case q = ∞
can be deduced via a combination of (10) and (11).
(I): We may with out loss of generality assume that q = ∞. Let f ∈ Fs,a

p,∞,d (Rd ,

(wγ ,w′′); X) and write fn := Sn f for each n. Then each fn ∈ S ′(Rd; X) has Fourier
support

supp f̂n ⊂
l∏

j=1

[−c2na j , c2na j ]d j

for some constant c > 0 only depending on ϕ. Therefore, as a consequence of the
Paley–Wiener–Schwartz theorem, we have fn(0, ·) ∈ S ′(Rd−1; X) with Fourier sup-
port contained in

∏l
j=2[−c2na j , c2na j ]d j . In view of Lemma-A.1, it suffices to show

that

||
(
2
n[s− a1

p1
(1+γ )]

fn(0, ·)
)
n≥0

||L p′′,d ′′
(Rd−1,w′′;
p1 (N;X))

� || f ||Fs,a
p,∞,d (Rd ,(wγ ,w′′);X).

(33)

In order to establish estimate (33), we pick an r1 ∈ (0, 1) such thatwγ ∈ Ap1/r1(R),
and write r := (r1, r ′′) ∈ (0, 1)l . For all x = (x1, x ′′) ∈ [2−na1, 2(1−n)a1] × R

d−1

and every n ∈ N, we have

|| fn(0, x ′′)|| ≤ C1
|| fn(x1 − y1, x ′′)||
1 + |2na1 y1|1/r1

∣∣∣
y1=x1

≤ (1 + 2
a1
r1 ) f ∗

n (r, b[n], d ; x)
= C1 f

∗
n (r, b[n], d ; x),

where b[n] := (2na1, . . . , 2nal ) ∈ (0,∞)l and where f ∗
n (r, b[n], d ; · ) is the maximal

function of Peetre–Fefferman–Stein type given in (59). Raising this to the p1th power,
multiplying by 2nsp1 |x1|γ , and integrating over x1 ∈ [2−na1, 2(1−n)a1], we obtain
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2a1(γ+1) − 1

1 + γ
2
n
(
s− a1

p1
(1+γ )

)
p1 || fn(0, x ′′)||p1

≤ C p
1

ˆ
[2−na1 ,2(1−n)a1 ]

[
2ns f ∗

n (r, b[n], d ; (x1, x
′′))

]p1 |x1|γ dx1.

It now follows that
∞∑
n=0

2

(
s− a1

p1
(1+γ )

)
np1 || fn(0, x ′′)||p1

≤ C2

ˆ
R

||
(
2ks f ∗

k (r, b[n], d ; (x1, x
′′))

)
k≥0

||p1

∞(N)

|x1|γ dx1,
from which we in turn obtain∥∥∥∥∥

(
2
n[s− a1

p1
(1+γ )]

fn(0, ·)
)
n≥0

∥∥∥∥∥
L p′′,d ′′

(Rd−1,w′′;
p1 (N;X))

≤
∥∥∥∥
(
2ks f ∗

k (r, b[n], d ; · )
)
k≥0

∥∥∥∥
L p,d (Rd ,(wγ ,w′′);
∞(N))

.

Since ( fk)k∈N ⊂ S ′(Rd ; X) satisfies supp( f̂k) ⊂ ∏l
j=1[−b[k]

j , b[k]
j ]d j for each k ∈ N

and some c > 0, the desired estimate (33) is now a consequence of Proposition A.6.

(II): We may with out loss of generality assume that q = 1. Let g ∈ F
s− a1

p1
(1+γ ),a′′

p′′,p1,d ′′
(Rd−1,w′′; X) and write gn = Tng for each n. By construction of ext we have ext g =∑∞

n=0 ρ(2na1 · )⊗gn in S ′(Rd; X)with each ρ(2na1 · )⊗gn satisfying (27) for a c > 1
independent of g. In view of Lemma A.2, it is thus enough to show that

||(2snρ(2na1 · ) ⊗ gn)n≥0||L p,d (Rd ,(wγ ,w′′);
1(X)) � ||g||
F
s− a1

p1
(1+γ ),a′′

p′′,p1,d ′′ (Rd−1,w′′;X)

.

(34)

In order to establish estimate (34), we define, for each x ′′ ∈ R
d−1,

I (x ′′) :=
ˆ
R

( ∞∑
n=0

2sn||ρ(2na1x1)gn(x
′′)||

)p1

|x1|γ dx1. (35)

We furthermore first choose a natural number N > 1
p1

(1+ γ ) and subsequently pick
a constant C1 > 0 for which the Schwartz function ρ ∈ S(R) satisfies the inequality
|ρ(2na1x1)| ≤ C1|2na1x1|−N for every n ∈ N and all x1 
= 0.
Denoting by I1(x ′′) the integral over R\[−1, 1] in (35), we have

I1(x
′′) ≤ C1

ˆ
R\[−1,1]

( ∞∑
n=0

2−Na1n 2sn ||gn(x ′′)||
)p1

|x1|−Np1+γ dx1

= C1

ˆ
R\[−1,1]

|x1|−Np1+γ dx1

( ∞∑
n=0

2

(
1
p1

(1+γ )−N
)
a1n 2

(
s− a1

p1
(1+γ )

)
n ||gn(x ′′)||

)p1
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≤
ˆ
R\[−1,1]

|x1|−Np1+γ dx1||
(
2

(
1
p1

(1+γ )−N
)
a1n

)
n≥0

||p1


p′1 (N)︸ ︷︷ ︸

=:C2∈[0,∞)

||
(
2

(
s− a1

p1
(1+γ )

)
n ||gn(x ′′)||

)
n≥0

||p1

p1 (N)

. (36)

Next we denote, for each k ∈ N, by I0,k(x ′′) the integral over Dk := {x1 ∈
R | 2−(k+1)a1 ≤ |x1| ≤ 2−ka1} in (35). Since the Dk are of measure wγ (Dk) ≤
C32−ka1(γ+1) for some constant C3 > 0 independent of k, we can estimate

I0,k(x
′′) ≤

ˆ
Dk

(
k∑

n=0

2sn ||ρ||∞||gn(x ′′)|| +
∞∑

n=k+1

C12
(s−a1N )n |x1|−N ||gn(x ′′)||

)p1

|x1|γ dx1

≤ C32
−ka1(γ+1)

(
k∑

n=0

2sn ||ρ||∞||gn(x ′′)|| +
∞∑

n=k+1

C12
(s−a1N )n2Na1(k+1)||gn(x ′′)||

)p1

≤ C32
p1 ||ρ||p1∞2−ka1(γ+1)

(
k∑

n=0

2sn ||gn(x ′′)||
)p1

+ C32
p1 (C12

Na1 )p1 2
k
(
N− 1

p1
(γ+1)

)
a1 p1

( ∞∑
n=k+1

2(s−a1N )n ||gn(x ′′)||
)p1

.

Writing I0(x ′′) := ∑∞
k=0 I0,k(x

′′), which is precisely the integral over [−1, 1] in (35),
we obtain

I0(x
′′) ≤ C4

∞∑
k=0

2−ka1(γ+1)

(
k∑

n=0

2sn||gn(x ′′)||
)p1

+ C4

∞∑
k=0

2
k
(
N− 1

p1
(γ+1)

)
a1 p1

( ∞∑
n=k+1

2(s−a1N )n||gn(x ′′)||
)p1

= C4||
(
2
− a1

p1
(1+γ )k

k∑
n=0

2sn||gn(x ′′)||
)

k∈N
||p1


p1 (N)

+ C4||
(
2

(
N− 1

p1
(1+γ )

)
a1k

∞∑
n=k+1

2(s−a1N )n||gn(x ′′)||
)

k∈N
||p1


p1 (N)
,

which via an application of Lemma 4.16 can be further estimated as

I0(x
′′) ≤ C5||

(
2
− a1

p1
(1+γ )k

2sk ||gk(x ′′)||
)
k≥0

||p1

p1 (N)

+ C5||
(
2

(
N− 1

p1
(γ+1)

)
a1k2(s−a1N )k ||gk(x ′′)||

)
k≥0

||p1

p1 (N)

= 2C5||
(
2

(
s− a1

p1
(1+γ )

)
k ||gk(x ′′)||

)
k≥0

||p1

p1 (N)

. (37)
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Combining estimates (36) and (37), we get

I (x ′′)1/p1 ≤ C6||
(
2

(
s− a1

p1
(1+γ )

)
n||gn(x ′′)||

)
n≥0

||
p1 (N),

from which (34) follows by taking L p′′,d ′′
(Rd−1,w′′)-norms. �

5. Sobolev embedding for Besov spaces

The result below is a direct extension of part of [49, Proposition 1.1]. We refer to
[35] for embedding results for unweighted anisotropic mixed-norm Besov space, and
we refer to [32] for embedding results of weighted Besov spaces.

Proposition 5.1. Let X be a Banach space, p, p̃ ∈ (1,∞)l , q, q̃ ∈ [1,∞], s, s̃ ∈ R,
a ∈ (0,∞)l , and w, w̃ ∈ ∏l

j=1 A∞(Rd j ). Suppose that J ⊂ {1, . . . , l} is such that

• p j = p̃ j and w j = w̃ j for j /∈ J ;
• w j (x j ) = |x j |γ j and w̃ j (x j ) = |x j |γ̃ j for j ∈ J for some γ j , γ̃ j > −d j
satisfying

γ̃ j

p̃ j
≤ γ j

p j
and

d j + γ̃ j

p̃ j
<

d j + γ j

p j
.

Furthermore, assume that q ≤ q̃ and that s − ∑
i∈I ai

di+γi
pi

> s̃ − ai
∑

i∈I
di+γ̃i
p̃i

.
Then

Bs,a
p,q,d (Rd ,w; X) ↪→ Bs̃,a

p̃,q̃,d (Rd , w̃; X).

Proof. This is an immediate consequenceof inequality ofPlancherel–Pólya–Nikol’skii
type given in Lemma 5.2. �

Lemma 5.2. Let X be a Banach space, p, p̃ ∈ (1,∞)l , and w, w̃ ∈ ∏l
j=1W(Rd j ).

Suppose that J ⊂ {1, . . . , l} is such that

• p j = p̃ j and w j = w̃ j for j /∈ J ;
• w j (x j ) = |x j |γ j and w̃ j (x j ) = |x j |γ̃ j for j ∈ J for some γ j , γ̃ j > −d j
satisfying

γ̃ j

p̃ j
≤ γ j

p j
and

d j + γ̃ j

p̃ j
<

d j + γ j

p j
.

Then, there exists a constant C > 0 such that, for all f ∈ S ′(Rd; X) with supp( f̂ ) ⊂∏l
j=1[−R1, R1]d j for some R1, . . . , Rl > 0, we have the inequality

|| f ||L p̃,d (Rd ,w̃;X) ≤ C

⎛
⎝∏

j∈J

R
δ j
j

⎞
⎠ || f ||L p,d (Rd ,w;X),

where δ j := (d j + γ j )/p j − (d j + γ̃ j )/ p̃ j > 0 for each j ∈ J .



Vol. 20 (2020) Maximal regularity with weights for parabolic problems 87

Proof. Step I. The case l = 1:

We refer to [49, Proposition 4.1].

Step II. The case J = {l}:
Under the canonical isomorphism D′(Rd ; X) ∼= D′(Rdl ;D′(Rd1+...+dl−1; X))

(Schwartz kernel theorem), f corresponds to an element ofS ′(Rdl ;C(Rd1+...+dl−1; X))

having compact Fourier support contained in [−Rl , Rl ]dl . Given a compact subset
K ⊂ R

d1+...+dl−1 we have the continuous linear operator

m1K : C(Rd ′ ; X) −→ L∞
K (Rd ′ ; X) ↪→ L p′,d ′

(Rd ′
,w′; X), g �→ 1K g,

where d ′ := d1 + . . . + dl−1, d ′ = (d1, . . . , dl−1), p′ := (p1, . . . , pl−1), and w′ =
(w1, . . . , wl−1). Accordingly, for each compact K ⊂ R

d ′
we have 1K f = m1K f ∈

S ′(Rdl ; L p′,d ′
(Rd ′

,w′; X)) with compact Fourier support contained in [−Rl , Rl ]dl ,
so that we may apply Step I to obtain that

||1K f ||L p̃l (Rdl ,w̃l ;L p′,d ′
(Rd′

,w′;X))
≤ CRδl

l ||1K f ||L pl (Rdl ,wl ;L p′,d ′
(Rd′

,w′;X))

for some constant C > 0 independent of f and K . Since L p̃,d (Rd , w̃; X) = L p̃l (Rdl ,

w̃l; L p′,d ′
(Rd ′

,w′; X)) and L p,d (Rd ,w; X) = L pl (Rdl , wl; L p′,d ′
(Rd ′

,w′; X)), the
desired result follows by taking K = Kn = [−n, n]dl and letting n → ∞.

Step III. The case #J = 1:
Let us say that J = { j0}. Then, as a consequence of the Banach space-valued Paley–

Wiener–Schwartz theorem, for each fixed x ′′ = (x j0+1, . . . , xl) ∈ R
d j0+1+...+dl we

have that f (·, x ′′) defines an X -valued tempered distribution having compact Fourier
support contained in

∏ j0
j=1[−R j , R j ]d j . The desired inequality follows by applying

Step II to f (·, x ′′) for each x ′′ and subsequently taking L(p j0+1,...,pl ),(d j0+1,...,dl )(Rd j0+1+
. . . + dl , (w j0+1, . . . , wl); X)-norms with respect to x ′′.

Step IV. The general case:
Just apply Step III repeatedly (#J times). �

6. Proof of the main result

In this section, we prove the main result of this paper, Theorem 3.4.

6.1. Necessary conditions on the initial-boundary data

Let the notations and assumptions be as in Theorem 3.4. Suppose that g =
(B1(D)u, . . . ,Bn(D)u) and u0 = trt=0u for some u ∈ U

p,q
γ,μ. We show that (g, u0) ∈

D
p,q
γ,μ.
It follows from [50, Theorem 1.1] (also see [55, Theorem 3.4.8]) that
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trt=0

[
W 1

q (R, vμ; L p(Rd , wγ ; X)) ∩ Lq(R, vμ;W 2n
p (Rd , wγ ; X))

]

= B
2n(1− 1+μ

q )

p,q (Rd , wγ ; X).

Using standard techniques, one can derive the same result with R replaced by J and
R
d replaced by O:

trt=0[Up,q
γ,μ] = I

p,q
γ,μ. (38)

In particular, we must have u0 ∈ I
p,q
γ,μ.

In order to show that g = (g1, . . . , gn) ∈ G
p,q
γ,μ, we claim that

B j (D) ∈ B(Up,q
γ,μ, G

p,q
γ,μ, j ), j = 1, . . . , n. (39)

Combining the fact that

Lq(R, vμ; L p(Rd , wγ ; X)) = L(p,q),(d,1)(Rd+1, (wγ , vμ); X) ↪→ S ′(Rd+1; X)

is a
(
(d, 1), ( 1

2n , 1)
)
-admissible Banach space (cf. (6)) with (13), (15) and standard

techniques of localization, we find

Dβ
x ∈ B

(
U

p,q
γ,μ, H

1− |β|
2n

q,μ (J ; L p(O, w∂O
γ ; X)) ∩ Lq

μ(J ;W 2n−|β|
p (O, w∂O

γ ; X))

)
,

β ∈ N
d , |β| < 2n.

FromTheorem4.4, it thus follows that, for eachβ ∈ N
d , j ∈ {1, . . . , n}with |β| ≤ n j ,

tr∂O ◦ Dβ
x is continuous linear operator

tr∂O ◦ Dβ
x : U

p,q
γ,μ −→ F

κ j,γ + n j−|β|
2n

q,p (J, vμ; L p(∂O; X))

∩Lq(J, vμ; F2nκ j,γ +n j−|β|(∂O; X)).

The regularity assumption (SB) on the coefficients b j,β thus gives (39), where we use
Lemmas B.1, B.3 and B.4 for |β| = n j and Lemma B.5 for |β j | < n j .
Finally, suppose that κ j,γ >

1+μ
q . Then, by combination of (38), (39) and Re-

mark 3.5,

trt=0 ◦ B j (D),Bt=0
j (D) ◦ trt=0 ∈ B(Up,q

γ,μ, L0(∂O; X)), j = 1, . . . , n.

By a density argument these operators coincide. Hence,

trt=0g j − Bt=0
j (D)u0 = [trt=0 ◦ B j (D) − Bt=0

j (D) ◦ trt=0]u = 0.

6.2. Elliptic boundary value model problems

Let X be a UMD Banach space. Let A(D) = ∑
|α|=2n aαDα B j (D) = ∑

|β|=
n jb j,β tr∂Rd+ D

β , j = 1, . . . , n with constant coefficients aα, bβ, j ∈ B(X).
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In this subsection, we study the elliptic boundary value problem

λv + A(D)v = 0,
B j (D)v = g j , j = 1, . . . , n,

(40)

onR
d+. By the trace result ofCorollary 4.3, in order to get a solutionv ∈ W 2n

p (Rd+, wγ ; X)

we need g = (g1, . . . , gn) ∈ ∏n
j=1 F

2nκ j,γ
p,p (Rd−1; X). In Proposition 6.2, we will see

that there is existence and uniqueness plus a certain representation for the solution
(which we will use to solve (49)). In this representation, we have the operator from
the following lemma.

Lemma 6.1. Let E be a UMD Banach space, let p ∈ (1,∞), w ∈ Ap(R
d), and

n ∈ Z>0. For each λ ∈ C\(−∞, 0] and σ ∈ R, we define Lσ
λ ∈ L(S ′(Rd; E)) by

Lσ
λ f := F−1[(λ + | · |2n)σ f̂ ] ( f ∈ S ′(Rd; E)).

Then, Lσ
λ restricts to a topological linear isomorphism from Hs+2nσ

p (Rd , w; E) to

Hs
p(R

d , w; E) (with inverse L−σ
λ ) for each s ∈ R. Moreover,

C\(−∞, 0] � λ �→ Lσ
λ ∈ B(Hs+2nσ

p (Rd , w; E), Hs
p(R

d , w; E)) (41)

defines an analytic mapping for every σ ∈ R and s ∈ R.

Proof. For the first part, one only needs to check theMikhlin condition corresponding
to (6) (with l = 1 and a = 1) for the symbol ξ �→ (1 + |ξ |2)−(nσ)/2(λ + |ξ |2n)σ .
So let us go to the analyticity statement. We only treat the case σ ∈ R\N, the case
σ ∈ N being easy. So suppose that σ ∈ R\N and fix a λ0 ∈ C\(−∞, 0]. We shall
show that λ �→ Lσ

λ is analytic at λ0. Since Lτ
λ0

is a topological linear isomorphism

from Hs+2nτ
p (Rd , w; E) to Hs

p(R
d , w; E), τ ∈ R, for this it suffices to show that

C\(−∞, 0] � λ �→ Lσ
λ L

−σ
λ0

= L
s
n
λ0
Lσ

λ L
− 1

n (s+2nσ)

λ0
∈ B(L p(Rd , w; E))

is analytic at λ0. To this end, we first observe that, for each ξ ∈ R
d ,

C\(−∞, 0] � λ �→ (λ + |ξ |2n)σ (λ0 + |ξ |2n)−σ ∈ C

is an analytic mapping with power series expansion at λ0 given by

(λ + |ξ |2n)σ (λ0 + |ξ |2n)−σ = 1 + σ(λ0 + |ξ |2n)−1(λ − λ0)

+σ(σ − 1)(λ0 + |ξ |2n)−2(λ − λ0)
2 + · · · (42)

for λ ∈ B(λ0, δ), where δ := d (0, {λ0 + t | t ≥ 0}) > 0. We next recall that L−1
λ0

restricts to a topological linear isomorphism from L p(Rd , w; E) to H2n
p (Rd , w; E); in

particular, L−1
λ0

restricts to a bounded linear operator on L p(Rd , w; E). Since L−k
λ0

=
(L−1

λ0
)k for every k ∈ N, there thus exists a constant C > 0 such that

||L−k
λ0

||B(L p(Rd ,w;E)) ≤ Ck, ∀k ∈ N. (43)
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Now we let ρ > 0 be the radius of convergence of the power series z �→∑
k∈N

[∏k−1
j=0(σ − j)

]
Ckzk , set r := min(δ, ρ) > 0, and define, for each λ ∈

B(λ0, r), the multiplier symbols mλ,mλ
0,m

λ
1, . . . : R

d −→ C by

mλ(ξ) := (λ + |ξ |2n)σ (λ0 + |ξ |2n)−σ and mλ
N (ξ)

:=
N∑

k=0

⎡
⎣k−1∏

j=0

(σ − j)

⎤
⎦ (λ0 + |ξ |2n)−k(λ − λ0)

k .

Then, by (42) and (43), we get

mλ(ξ) = lim
N→∞mλ

N (ξ), ξ ∈ R
d

and

lim
N ,M→∞[Tmλ

N
− Tmλ

M
] = 0 in B(L p(Rd , w; E)),

respectively. Via the Ap-weighted version of [39, Facts 3.3.b], we thus obtain that

Lσ
λ L

−σ
λ0

= Tmλ = lim
N→∞ Tmλ

N
= lim

N→∞

N∑
k=0

⎡
⎣k−1∏

j=0

(σ − j)

⎤
⎦ L−k

λ0
(λ − λ0)

k

in B(L p(Rd , w; E))

for λ ∈ B(λ0, r). This shows that the map C\(−∞, 0] � λ �→ Lσ
λ L

−σ
λ0

∈ B(L p

(Rd , w; E)) is analytic at λ0, as desired. �

Before we can state Proposition 6.2, we first need to introduce some notation. Given
a UMD Banach space X and a natural number k ∈ N, we have, for the UMD space
E = L p(R+, | · |γ ; X), the natural inclusion

Wk
p(R

d+, wγ ; X) ↪→ Wk
p(R

d−1; L p(R+, | · |γ ; X)) = Hk
p(R

d−1; E)

and the natural identification

L p(Rd+, wγ ; X) = H0
p(R

d−1; E).

By Lemma 6.1, we accordingly have that, for λ ∈ C\(−∞, 0], that the partial Fourier
multiplier operator

Lk/2n
λ ∈ L(S ′(Rd−1;D′(R+; X))), f �→ F−1

x ′
[(

ξ ′ �→ (λ + |ξ ′|2n)k/2n
)
Fx ′ f

]
,

restricts to a bounded linear operator

Lk/2n
λ ∈ B(Wk

p(R
d+, wγ ; X), L p(Rd+, wγ ; X)).
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Moreover, we even get an analytic operator-valued mapping

C\(−∞, 0] −→ B(Wk
p(R

d+, wγ ; X), L p(Rd+, wγ ; X)), λ �→ Lk/2n
λ .

In particular, we have

L
1− n j

2n
λ , L

1− n j+1
2n

λ Dy ∈ B(W
2n−n j
p (Rd+, wγ ; X), L p(Rd+, wγ ; X)), j = 1, . . . , n,

(44)

with analytic dependence on the parameter λ ∈ C\(−∞, 0].
Proposition 6.2. Let X be a UMD Banach space, p ∈ (1,∞), γ ∈ (−1, p − 1), and
assume that (A,B1, . . . ,Bn) satisfies (E) and (LS) for some φ ∈ (0, π). Then, for
each λ ∈ �π−φ , there exists an operator

S(λ) = (
S1(λ) . . . Sn(λ)

) ∈ B

⎛
⎝ n⊕

j=1

F
2nκ j,γ
p,p (Rd−1; X),W 2n

p (Rd+, wγ ; X)

⎞
⎠

which assigns to a g ∈ ⊕n
j=1 F

2nκ j,γ
p,p (Rd−1; X) the unique solution v = S(λ)g ∈

W 2n
p (Rd+, wγ ; X) of the elliptic boundary value problem

λv + A(D)v = 0,
B j (D)v = g j , j = 1, . . . , n; (45)

recall here that κ j,γ = 1 − n j
2n − 1

2np (1 + γ ). Moreover, for each j ∈ {1, . . . , n}, we
have that

S̃ j : �π−φ −→ B(W
2n−n j
p (Rd+, wγ ; X),W 2n

p (Rd+, wγ ; X)), λ �→ S̃ j (λ) := S j (λ) ◦ try=0

defines an analytic mapping, for which the operators DαS̃ j (λ) ∈ B(W
2n−n j
p

(Rd+, wγ ; X), L p(Rd+, wγ ; X)), |α| ≤ 2n, can be represented as

DαS̃ j (λ) = T 1
j,α(λ)L

1− n j
2n

λ + T 2
j,α(λ)L

1− n j+1
2n

λ Dy (46)

for analytic operator-valued mappings

T i
j,α : �π−φ −→ B(L p(Rd+, wγ ; X)), λ �→ T i

j,α(λ), i ∈ {1, 2}, (47)

satisfying theR-bounds

R{λk+1− |α|
2n ∂kλT i

j,α(λ) | λ ∈ �π−φ} < ∞, k ∈ N. (48)

Comments on the proof of Proposition 6.2. This proposition canbeproved in the same
way as [18, Lemma 4.3 & Lemma 4.4]. In fact, in the unweighted case this is just a
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modification of [18, Lemma 4.3 & Lemma 4.4] (also see the formulation of [47,
Lemma 2.2.6]). Here, [18, Lemma 4.3] corresponds to the existence of the solution
operator, whose construction was essentially already contained in [17], plus its rep-
resentation, and [18, Lemma 4.4] basically corresponds to the analytic dependence
of (47) plus the R-bounds (48). The analytic dependence of the operators S̃ j (λ) on
λ subsequently follows from Lemma 6.1 and (46). For more details, we refer to [42,
Chapter 6] and Remark 6.4. �

Remark 6.3. We could have formulated Proposition 6.2 only in terms of the mappings
S̃ j . Namely, for each j ∈ {1, . . . , n} there exists an analytic mapping

S̃ j : �π−φ −→ B(W
2n−n j
p (Rd+, wγ ; X),W 2n

p (Rd+, wγ ; X)), λ �→ S̃ j (λ)

with the property that, for every u ∈ W 2n
p (Rd+, wγ ; X), v = S̃ j u is the unique solution

in W 2n
p (Rd+, wγ ; X) of (45) with gi = δi, jBi (D)u, for which the operators

DαS̃ j (λ) ∈ B(W
2n−n j
p (Rd+, wγ ; X), L p(Rd+, wγ ; X)), |α| ≤ 2n,

can be represented as (46) for analytic operator-valued mappings (47) satisfying the

R-bounds (48). Then, given extension operators E j ∈ B(F
2nκ j,γ
p,p (Rd−1; X),W

2n−n j
p

(Rd+, wγ ; X)) (right inverse of the trace try=0 ∈ B(W
2n−n j
p (Rd+, wγ ; X), F

2nκ j,γ
p,p

(Rd−1; X))), j = 1, . . . , n, the composition S(λ) = (S1(λ) . . .Sn(λ)) := (S1(λ) . . .

Sn(λ)) ◦ (E1 . . . En) defines the desired solution operator.
In this formulation, the proposition the weight wγ can actually be replaced by

any weight w on R
d which is uniformly Ap in the y-variable. Indeed, in the proof

the weight only comes into play in [17, Lemma 7.1]. For weights w of the form
w(x ′, y) = v(x ′)|y|γ with v ∈ Ap(R

d−1), we can then still define S(λ) as above
thanks to the available trace theory from Sect. 4.1.

Remark 6.4. In [18] the specific extension operator Eλ = e− · L1/2n
λ was used in the

construction of the solution operator S(λ) = (S1(λ), . . . ,Sn(λ)), which has the ad-
vantageous property that DyEλ = ı L1/2n

λ Eλ. Whereas in this way the obtained rep-

resentation formulae S j (λ) = T j (λ)L
1− n j

2n
λ Eλ can only be used in the case q = p

to solve (49) via a Fourier transformation in time (cf. [18, Proposition 4.5] and [47,
Lemma 2.2.7]), our representation formulae (46) can (in combination with the the-
ory of anisotropic function spaces) be used to solve (49) in the full parameter range
q, p ∈ (1,∞) (cf. Corollary 6.8). However, the alternative more involved proof of
Denk, Hieber & Prüss [18, Theorem 2.3] also contains several ingredients which are
of independent interest.

6.3. Solving inhomogeneous boundary data for a model problem

Let the notations and assumptions be as in Theorem 3.4, but for the model problem
case of top-order constant coefficients on the half-space considered in Sect. 6.2.
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The goal of this subsection is to solve the model problem

∂t u + (1 + A(D))u = 0,
B j (D)u = g j , j = 1, . . . , n,

trt=0u = 0,
(49)

for g = (g1, . . . , gn) with (0, g, 0) ∈ D
p,q
γ,μ.

Let us first observe that, in view of the compatibility condition in the definition of
D

p,q
γ,μ, (0, g, 0) ∈ D

p,q
γ,μ if and only if

g j ∈ 0G j := 0,(0,d)F
κ j,γ ,

(
1
2n ,1

)
(p,q),p,(d−1,1)(R

d−1 × R+, (1, vμ); X)

:=

⎧⎪⎪⎨
⎪⎪⎩

F
κ j,γ ,

(
1
2n ,1

)
(p,q),p,(d−1,1)(R

d−1 × R+, (1, vμ); X), κ j,γ <
1+μ
q ,{

w ∈ F
κ j,γ ,

(
1
2n ,1

)
(p,q),p,(d−1,1)(R

d−1 × R+, (1, vμ); X) : trt=0w = 0

}
, κ j,γ >

1+μ
q ,

for all j ∈ {1, . . . , n}. Defining

0G := 0G1 ⊕ · · · ⊕ 0Gn,

we thus have (0, g, 0) ∈ D
p,q
γ,μ if and only if g ∈ 0G. So we need to solve (49) for

g ∈ 0G.
We will solve (49) by passing to the corresponding problem on R (instead of R+).

The advantage of this is that it allows us to use the Fourier transform in time. This will
give

Ft u(θ) = S(1 + ıθ)(Ft g1(θ), . . . ,Ft gn(θ)),

where S(1 + ıθ) is the solution operator from Proposition 6.2.
Recall that for the operator S̃ j (λ) = S j (λ) ◦ try=0 we have the representation

formula (46) in which the operators Lσ
λ occur. It will be useful to note that, for h ∈

S(Rd+ × R; X),

Lσ
1+ıθ0 [(Ft h)( · , θ)] = F−1

x ′ [((y, ξ ′) �→ (1 + ıθ0 + |ξ ′|2n))F(x ′,t)h( · , θ0)]
=

[
FtF

−1
(x ′,t)[

(
(y, ξ ′, θ) �→ (1 + ıθ + |ξ ′|2n))F(x ′,t)h]

]
( · , θ0)

= (Ft L
σ h)( · , θ0), (50)

where

Lσ ∈ L(S ′(Rd−1 × R;D′(R+; X))), f �→ F−1
(x ′,t)[(

(ξ ′, θ) �→ (1 + ıθ + |ξ ′|2n)σ
)
F(x ′,t) f

]
.

Lemma 6.5. Let E be a UMD space, p, q ∈ (1,∞), v ∈ Aq(R), and n ∈ Z>0. For
each σ ∈ R,
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S ′(Rd−1 × R; E) −→ S ′(Rd−1 × R; E), f �→ F−1[(
(ξ1, ξ2) �→ (1 + ıξ2 + |ξ1|2n)σ

)
f̂
]

restricts to a bounded linear operator

H
σ,
(

1
2n ,1

)
(p,q),(d−1,1)(R

d−1 × R, (1, v); E) −→ H
0,
(

1
2n ,1

)
(p,q),(d−1,1)(R

d−1 × R, (1, v); E).

Proof. This can be shown by checking that the symbol

R
d−1 × R � (ξ1, ξ2) �→ (1 + ıξ2 + |ξ1|2n)σ

(1 + |ξ1|4n + |ξ2|2)σ/2 ∈ C

satisfies the anisotropic Mikhlin condition from (6). �

Lemma 6.6. Let X be a UMD space, q, p ∈ (1,∞), γ ∈ (−1, p − 1), v ∈ Aq(R).
Put

G j := F
κ j,γ
q,p (R, v; L p(Rd−1; X)) ∩ Lq(R, v; F2nκ j,γ

p,p (Rd−1; X)), j = 1, . . . , n,

G := G1 ⊕ . . . ⊕ Gn,

U := W 1
q (R, v; L p(Rd+, wγ ; X)) ∩ Lq(R, v;W 2n

p (Rd+, wγ ; X)),

(51)

where we recall that κ j,γ = 1 − n j
2n − 1

2np (1 + γ ) ∈ (0, 1). Furthermore, define 0G j

similarly to 0G j and put 0G j := 0G1 ⊕ . . . ⊕ 0Gn. Then the problem

∂t u + (1 + A(D))u = 0,
B j (D)u = g j , j = 1, . . . , n,

(52)

admits a bounded linear solution operator S : G −→ U which maps 0G to 0U =
{u ∈ U : u(0) = 0}.
For the statement that S maps 0G to 0U, we will use the following lemma.

Lemma 6.7. {g j ∈ S(Rd ; X) : trt=0g j = 0} is dense in 0G j

Proof. As a consequence of Theorem 2.1,

0G j = 0F
κ j,γ
q,p (R, vμ; L p(Rd−1; X)) ∩ Lq(R, vμ; F2nκ j,γ

p,p (Rd−1; X)),

where

0F
s
q,p(R, vμ; Y ) =

{
Fs
q,p(R, vμ; Y ), s <

1+μ
q ,

{ f ∈ Fs
q,p(R, vμ; Y ) : trt=0 f = 0}, s >

1+μ
q .

Let (Sn)n∈N be the family of convolution operator corresponding to someϕ = (ϕn)n∈N
∈ �(Rd−1). Then, Sn

SOT−→ I as n → ∞ in both L p(Rd−1; X) as F
2nκ j,γ
p,p (Rd−1; X).

For the pointwise induced operator family, we thus have Sn
SOT−→ I in 0G j . Since
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L p(Rd−1; X) ∩ F−1E ′(Rd−1; X) ⊂ F0
p,∞(Rd−1; X) ∩ F−1E ′(Rd−1; X)

⊂ F
2nκ j,γ
p,p (Rd−1; X),

it follows that

0F
κ j,γ
q,p (R, vμ; F2nκ j,γ

p,p (Rd−1; X)) = 0F
κ j,γ
q,p (R, vμ; F2nκ j,γ

p,p (Rd−1; X))

∩Lq(R, vμ; F2nκ j,γ
p,p (Rd−1; X))

is dense in 0G j ; in fact,

0F
κ j,γ
q,p (R, vμ; F2nκ j,γ

p,p (Rd−1; X))
d

↪→ 0G j .

Since

{ f ∈ S(R) : f (0) = 0} ⊗ S(Rd−1; X)
d⊂ { f ∈ S(R) : f (0) = 0} ⊗ F

2nκ j,γ
p,p (Rd−1; X)

d⊂ 0F
κ j,γ
q,p (R, vμ; F2nκ j,γ

p,p (Rd−1; X))

by [44], the desired density follows. �

Proof of Lemma 6.6. (I) Put F := Lq(R, v; L p(Rd+, wγ ; X)) and V :=
F−1C∞

c (Rd−1; X) ⊗ F−1C∞
c (R). Then V n is dense in G. So, in view of

∂t + (1 + A(D)) ∈ B(U, F) and B j (D) ∈ B(U, G j ), j = 1, . . . , n,

it suffices to construct a solution operator S : V n −→ U which is bounded when
V n carries the induced norm from G. In order to define such an operator, fix g =
(g1, . . . , gn) ∈ V n . Let

E j ∈ B(G, H
1− n j

2n ,
(

1
2n ,1

)
(p,q),(d,1) (Rd+ × R, (wγ , v); X)), j = 1, . . . , n, (53)

be extension operators (right inverses of the trace operator try=0) as in Corollary 4.9.
Then, E j maps V n into S(Rd+; X)) ⊗ F−1(C∞

c (R)); in particular,

E j g j ∈ S(Rd+; X)) ⊗ F−1(C∞
c (R)), j = 1, . . . , n.

So, for each j ∈ {1, . . . , n}, we have
FtE j g j ∈ S(Rd+; X)) ⊗ C∞

c (R),

and we may also view FtE j g j as a function

[θ �→ (FtE j g j )(θ)] ∈ C∞
c (R;W 2n−n j

p (Rd+, wγ ; X)).

Since

[θ �→ S̃ j (1 + ıθ)] ∈ C∞(R;B(W
2n−n j
p (Rd+, wγ ; X),W 2n

p (Rd+, wγ ; X))), j = 1, . . . , n,
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with S̃ j (1 + ıθ) as in Proposition 6.2, we may thus define

S g := F−1
t

⎡
⎣θ �→

n∑
j=1

S̃ j (1 + ıθ)(FtE j g j )(θ)

⎤
⎦ ∈ S(R;W 2n

p (Rd+, wγ ; X))

(II) We now show that u = S g ∈ S(R;W 2n
p (Rd+, wγ ; X)) is a solution of (52)

for g ∈ V n . To this end, let θ ∈ R be arbitrary. Then, we have that (FtE j g j )(θ) ∈
S(Rd+; X) ⊂ W

2n−n j
p (Rd+, wγ ; X) and (Ft g j )(θ) ∈ S(Rd−1; X) ⊂ F

2nκ j,γ
p,p (Rd−1; X)

are related by try=0(FtE j g j )(θ) = (Ft g j )(θ); just note that (FtE j g j )(0, x ′, θ) =
(Ft g j )(x ′, θ) for every x ′ ∈ R

d−1. Therefore, byProposition 6.2, v(θ) = (Ft u)(θ) =
(FtS g)(θ) = ∑n

j=1 S̃ j (1 + ıθ)(FtE j g j )(θ) ∈ W 2n
p (Rd+, wγ ; X) is the unique so-

lution of the problem

(1 + ıθ)v + A(D)v = 0,
B j (D)v = (Ft g j )(θ), j = 1, . . . , n.

Applying the inverse Fourier transformF−1
t with respect to θ , we find

∂t u + (1 + A(D))u = 0,
B j (D)u = g j , j = 1, . . . , n.

(III) We next derive a representation formula for S that is well suited for proving
the boundedness of S . To this end, fix a g = (g1, . . . , gn) ∈ V n . Then we have, for
each multi-index α ∈ N

d , |α| ≤ 2n,

DαS g = DαF−1
t

⎡
⎣θ �→

n∑
j=1

S̃ j (1 + ıθ)(FtE j g j )(θ)

⎤
⎦

=
n∑
j=1

F−1
t

[
θ �→ DαS̃ j (1 + ıθ)(FtE j g j )(θ)

]

(46)=
n∑
j=1

F−1
t

[
θ �→ T 1

j,α(1 + ıθ)L
1− n j

2n
1+ıθ (FtE j g j )(θ)

+T 2
j,α(1 + ıθ)L

1− n j+1
2n

1+ıθ Dy(FtE j g j )(θ)

]

=
n∑
j=1

F−1
t

[
θ �→ T 1

j,α(1 + ıθ)L
1− n j

2n
1+ıθ (FtE j g j )(θ)

]

+
n∑
j=1

F−1
t

[
θ �→ T 2

j,α(1 + ıθ)L
1− n j+1

2n
1+ıθ (Ft DyE j g j )(θ)

]
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(50)=
n∑
j=1

F−1
t

[
θ �→ T 1

j,α(1 + ıθ)(Ft L
1− n j

2n E j g j )(θ)
]

+
n∑
j=1

F−1
t

[
θ �→ T 2

j,α(1 + ıθ)(Ft L
1− n j+1

2n DyE j g j )(θ)

]
. (54)

(IV) We next show that ||S g||
U

� ||g||
G
for g ∈ V n . Being a solution of (52),

S g satisfies

∂tS g = −(1 + A(D))S g.

Hence, it suffices to establish the estimate ||DαS g||
F

� ||g||
G
for all multi-indices

α ∈ N
d , |α| ≤ 2n. So fix such an |α| ≤ 2n. Then, in view of the representation

formula (54), it is enough to show that

||F−1
t

[
θ �→ T 1

j,α(1 + ıθ)(Ft L
1− n j

2n E j g j )(θ)
]

||
F

� ||g||
G
, j = 1, . . . , n,

(55)

and

||F−1
t

[
θ �→ T 2

j,α(1 + ıθ)(Ft L
1− n j+1

2n DyE j g j )(θ)

]
||
F

� ||g||
G
, j = 1, . . . , n.

(56)

We only treat estimate (56), estimate (55) being similar (but easier): Fix a j ∈
{1, . . . , n}. For the full (d+1)-dimensional Euclidean spaceR

d×R instead ofR
d+×R,

Dy ∈ B
(
H

1− n j
2n ,

(
1
2n ,1

)
(p,q),(d,1) (Rd+ × R, (wγ , v); X), H

1− n j+1
2n ,

(
1
2n ,1

)
(p,q),(d,1) (Rd+ × R, (wγ , v); X)

)
.

follows from (15) (and the fact that L(p,q),(d,1)(R
d+1, (wγ , vμ); X) is an admissible

Banach space of X -valued tempered distributions onR
d+1 in view of (6)), fromwhich

the R
d+ ×R-case follows by restriction. In combination with (53) and Lemma 6.5, this

yields

L1− n j+1
2n DyE j ∈ B

⎛
⎜⎜⎜⎝G j , H

0,
(

1
2n ,1

)
(p,q),(d−1,1)(R

d−1 × R, (1, v); L p(R+, | · |γ ; X))︸ ︷︷ ︸
= Lq (R,v;L p(Rd+,wγ ;X)) =F

⎞
⎟⎟⎟⎠ .

(57)

Furthermore, we have that T 2
j,α(1 + ı ·) ∈ C∞(R;B(L p(Rd+, wγ ; X))) satisfies
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R
{
θk∂kθ T 2

j,α(1 + ıθ) : θ ∈ R

}
≤ R

{
(1 + ıθ)k+1− |α|

2n ∂kθ T 2
j,α(1 + ıθ) : θ ∈ R

}
< ∞, k ∈ N,

by the Kahane contraction principle and (48); in particular, T 2
j,α(1 + ı ·) satisfies the

Mikhlin condition corresponding to (7). As a consequence, T 2
j,α(1 + ı ·) defines a

bounded Fourier multiplier operator on Lq(R, v; L p(Rd+, wγ ; X)). In combination
with (57), this gives estimate (56).
(V) We finally show that S ∈ B(G, U) maps 0G to 0U. As in the proof of [47,

Lemma 2.2.7], it can be shown that, if

g = (g1, . . . , gn) ∈
n∏
j=1

CL1(R; F2nκ j,γ
p,p (Rd−1; X)) with g1(0) = . . . = gn(0) = 0

and

u ∈ C1
L1(R; L p(Rd+, wγ ; X)) ∩ CL1(R;W 2n

p (Rd+, wγ ; X))

satisfy (52), then u(0) = 0. The desired statement thus follows from Lemma 6.7. �

Corollary 6.8. Let the notations and assumptions be as in Theorem 3.4, but for the
model problem case of top-order constant coefficients on the half-space considered in
Sect. 6.2. Then, problem (49) admits a bounded linear solution operator

S : {g : (0, g, 0) ∈ D
p,q
γ,μ} −→ U

p,q
γ,μ.

6.4. Proof of Theorem 3.4

We can now finally prove the main result of this paper.

Proof of Theorem 3.4. In view of Sect. 6.1, it remains to establish existence and
uniqueness of a solution u ∈ U

p,q
γ,μ of (20) for given ( f, g, u0) ∈ G

p,q
γ,μ ⊕ D

p,q
γ,μ. By a

standard (but quite technical) perturbation and localization procedure, it is enough to
consider the model problem

∂t u + (1 + A(D))u = f,
B j (D)u = g j , j = 1, . . . , n,

u(0) = u0,

on the half-space, whereA andB1, . . . ,Bn are top-order constant coefficient operators
as considered in Sect. 6.2. This procedure is worked out in full detail in [47]; for further
comments we refer to “Appendix 7.”
Let ( f, g, u0) ∈ F

p,q
γ,μ ⊕ D

p,q
γ,μ. In view of Theorem 4.4 and the fact that trt=0 ◦

B j (D) = B j (D) onU
p,q
γ,μ ◦ trt=0 when κ j,γ <

1+μ
q , we may without loss of generality

assume that u0 = 0.ByCorollary 6.8wemay furthermore assume that g = 0.Defining
AB as the operator on Y = L p(Rd+, wγ ) with domain

D(AB) := {u ∈ W 2n
p (Rd+, wγ ) : B j (D)v = 0, j = 1, . . . , n}
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and given by the rule ABv := A(D)v, we need to show that 1 + AB enjoys the
property ofmaximal Lq

μ-regularity: for every f ∈ Lq(R+, vμ; Y ) there exists a unique
u ∈ 0W 1

q (R+, vμ; Y ) ∩ Lq(R+, vμ; D(AB)) with u′ + (1 + AB)u = f . In the same
way as in [17, Theorem 7.4] it can be shown that AB ∈ H∞(Y ) with angle φ∞

AB
< π

2 .

As Y is a UMD space, 1 + AB enjoys maximal Lq
μ-regularity for μ = 0; see, e.g.,

[66, Section 4.4] and the references therein. By [12,54] this extrapolates to all μ ∈
(−1, q − 1) (i.e., all μ for which vμ ∈ Aq ). �
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Appendix A: Series Estimates in Triebel–Lizorkin and Besov Spaces

Lemma A.1. Let X be a Banach space, a ∈ (0,∞)l , p ∈ [1,∞)l , q ∈ [1,∞],
s > 0, and w ∈ ∏l

j=1 A∞(Rd j ). Suppose that there exists an r ∈ (0, 1)l such

that s >
∑l

j=1 a jd j ( 1
r j

− 1) and w ∈ ∏l
j=1 Apj /r j (R

d j ). Then, for every c > 0,

there exists a constant C > 0 such that, for all ( fk)k∈N ⊂ S ′(Rd ; X) satisfying
supp f̂k ⊂ ∏l

j=1[−c2ka j ,−c2ka j ]d j and

(2ks fk)k≥0 ∈ L p,d (Rd ,w)[
q(N)](X)

it holds that
∑

k∈N fk defines a convergent series in S ′(Rd; X) with limit f ∈ Fs,a
p,q,d

(Rd ,w; X) of norm ≤ C ||(2ks fk)k≥0||L p,d (Rd ,w)[
q (N)](X).

Proof. This can be proved in the sameway as [36, Lemma 3.19], using LemmaA.5 be-
low instead of [36, Proposition 3.14]. Formore details, we refer to [42, Lemma 5.2.22].

�

Lemma A.2. Let X be a Banach space, a ∈ (0,∞)l , p ∈ [1,∞)l , q ∈ [1,∞], s ∈ R,
and w ∈ ∏l

j=1 A∞(Rd j ). For every c > 1, there exists a constant C > 0 such that,

for all ( fk)k∈N ⊂ S ′(Rd ; X) satisfying

supp f̂0 ⊂ {ξ ∈ R
d : |ξ |d ,a ≤ c}, supp f̂k ⊂ {ξ ∈ R

d : c−12k ≤ |ξ |d ,a ≤ c2k}
(k ≥ 1), (58)

http://creativecommons.org/licenses/by/4.0/
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and

(2ks fk)k≥0 ∈ L p,d (Rd ,w)[
q(N)](X)

it holds that
∑

k∈N fk defines a convergent series in S ′(Rd; X) with limit f ∈ Fs,a
p,q,d

(Rd ,w; X) of norm ≤ C ||(2ks fk)k≥0||L p,d (Rd ,w)[
q (N)](X).

Proof. This can be proved in the same way as [36, Lemma 3.20]. In fact, one only
needs a minor modification of the proof of Lemma A.1. �
Lemma A.3. Let X be a Banach space, a ∈ (0,∞)l , p ∈ [1,∞)l , q ∈ [1,∞], s ∈ R,
and w ∈ ∏l

j=1 A∞(Rd j ). For every c > 1, there exists a constant C > 0 such that,

for all ( fk)k∈N ⊂ S ′(Rd ; X) satisfying (58) and

(2sk fk)k≥0 ∈ L p,d (Rd ,w)[
q(N)](X)

it holds that
∑

k∈N fk defines a convergent series in S ′(Rd; X) with limit f ∈ Fs,a
p,q,d

(Rd ,w; X) of norm ≤ C ||(2sk fk)k≥0||L p,d (Rd ,w)[
q (N)](X).

The above two lemmas are through Lemma A.5 based on the following maximal
inequality:

Lemma A.4. Let a ∈ (0,∞)l and w ∈ ∏l
j=1W(Rd j ). Let j0 ∈ {1, . . . , l} and

r j0 ∈ (0,min{p j0 , . . . , pl}) be such that w j0 ∈ Apj0/r j0
(Rd j0 ). Then

M[d ; j0],r j0 ( f )(x) := sup
δ>0

( 
B(x j0 ,δ)

| f (x1, . . . , x j0−1, y, x j0+1, . . . , xl)|r j0 dy
)1/r j0

, x ∈ R
d ,

gives rise to a well-defined bounded sublinear operator M[d ; j0],r j0 on L p,d (Rd ,w).
Moreover, there holds a Fefferman–Stein inequality for M[d ; j0],r j0 : for every q ∈
(max{1, r},∞] there exists a constant C ∈ (0,∞) such that, for all sequences
( fi )i∈Z ⊂ L p,d (Rd , w),

||||(M[d ; j0],r j0 ( fi ))i∈Z||
q (Z)||L p,d (Rd ,w) ≤ C ||||( fi )i∈Z||
q (Z)||L p,d (Rd ,w).

Proof. This can be easily derived from [28, Theorem 2.6], which is a weighted ver-
sion of the special case of the L p-boundedness of the Banach lattice version of the
Hardy–Littlewood maximal function [8,29,57,63] for mixed-norm spaces (also see
[28, Remark 2.7]). �
Lemma A.5. Let X be a Banach space, p ∈ [1,∞)l , q ∈ [1,∞], and w ∈ ∏l

j=1

A∞(Rd j ). Suppose r ∈ (0, 1)l is such that w j ∈ Apj /r j (R
d j ) for j = 1, . . . , l. Let

ψ ∈ S(Rd) be such that supp ψ̂ ⊂ {ξ ∈ R
d | |ξ |d ,a ≤ 2}, and set ψn := ψ(δ

[d ,a]
2n · )

for each n ∈ N. Then, there exists a constant C > 0 such that, for all ( fn)n∈N ⊂
S ′(Rd; X) with supp f̂n ⊂ ∏l

j=1[−R2na j , R2na j ]d j for some R ≥ 1, the following
inequality holds true:

||(ψn ∗ fn)n≥0||L p,d (Rd ,w;
q (N;X)) ≤ CR

∑l
j=1 a j d j

(
1
r j

−1

)
||( fn)n≥0||L p,d (Rd ,w;
q (N;X)).

Proof. As in the proof of [36, Proposition 3.14], it can be shown that
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||(ψn ∗ fn)(x)||X ≤ cR

∑m
j=1 a j d j

(
1
r j

−1

) [
M[d ;l],rl (. . . M[d ;1],r1(|| fn||X ) . . .)

]
(x),

n ∈ N, x ∈ R
d ,

for some constant c > 0 independent of ( fn)n . The desired result now follows from
Lemma A.4. �

Given a function f : R
d −→ X , r ∈ (0,∞)l and b ∈ (0,∞)l , we define the

maximal function of Peetre–Fefferman–Stein type f ∗(r, b, d ; · ) by

f ∗(r, b, d ; x) := sup
z∈Rd

|| f (x − z)||X
(1 + |b1z1|d1/r1) . . . (1 + |bl zl |dl/rl ) , x ∈ R

d . (59)

Lemma A.6. Let X be a Banach space, p ∈ [1,∞)l , q ∈ [1,∞], and w ∈ ∏l
j=1

A∞(Rd j ). Let r ∈ (0, 1)l be such that w j ∈ Apj /r j (R
d j ) for j = 1, . . . , l. Then,

there exists a constant C > 0 such that, for all ( fn)n∈N ⊂ S ′(Rd; X) and (b[n])n∈N ⊂
(0,∞)l with supp f̂ ⊂ ∏l

j=1[−b[n]
j , b[n]

j ]d j for all n ∈ N, we have the inequality

||( f ∗
n (r, b[n], d ; · ))n≥0||L p,d (Rd ,w;
q (N) ≤ C ||( fn)n||L p,d (Rd ,w;
q (N;X)).

Proof. As in the proof of [36, Proposition 3.12], it can be shown that

f ∗
n (r, b, d ; x) ≤ c

[
M[d ;l],rl (. . . M[d ;1],r1(|| fn||X ) . . .)

]
(x), n ∈ N, x ∈ R

d

for some constant c > 0 only depending on r . The desired result now follows from
Lemma A.4. �

7. Comments on the localization and perturbation procedure

As alreadymentioned in the proof of Theorem 3.4, the localization and perturbation
procedure for reducing to the model problem case on R

d+ is worked out in full detail
in [47]. However, there only the case q = p with temporal weights having a positive
power is considered. For some of the estimates used there (parts) of the proofs do not
longer work in our setting, where the main difficulty comes from q 
= p. It is the goal
of this appendix to consider these estimates.

Top-order coefficients having small oscillations

The most crucial part in the localization and perturbation procedure where we need
to take care of the estimates is [47, Proposition 2.3.1] on top-order coefficients having
small oscillations. To be more specific, we only consider the estimates in Step (IV) of
its proof.
Before we go to these estimates, let us start with the lemma that makes it possible

to reduce to the situation of top-order coefficients having small oscillations.
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Lemma B.1. Let X be a Banach space, J ⊂ R and interval, O ⊂ R
d a domain

with compact boundary ∂O , κ ∈ R, n ∈ N>0, s, r ∈ (1,∞) and p ∈ [1,∞]. If
κ > 1

s + d−1
2nr , then

Fκ
s,p(J ; Lr (∂O; X)) ∩ Ls(J ; B2nκ

r,p (∂O; X)) ↪→ BUC(∂O × J ; X).

Proof. By a standard localization procedure, we may restrict ourselves to the case that
J = R and O = R

d+ (so that ∂O = R
d+). By [43],

Fκ
s,p(R; Lr (Rd−1; X)) ∩ Ls(R; B2nκ

r,p (Rd−1; X)) = { f ∈ S ′(Rd−1 × R; X)

: (Sn f )n ∈ Ls(R)[[
pκ (N)]Lr (Rd−1)](X)} (60)

with equivalence of norms, where (Sn)n∈N correspond to some fixed choice of ϕ ∈
�(d−1,1),( 1

2n ,1)(Rd). For ε > 0, we thus obtain

Fκ
s,p(R; Lr (Rd−1; X)) ∩ Ls(R; B2nκ

r,p (Rd−1; X)) ↪→ B
κ−ε,

(
1
2n ,1

)
(r,s),s,(d−1,1)(R

d; X).

Choosing κ̃ with κ > κ̃ > 1
s + d−1

2nr , the desired inclusion follows fromCorollary 4.11.
�

Lemma B.2. Let X be a Banach space, i ∈ {1, . . . , l}, T ∈ R and

R
d
[d ;i],T := {x ∈ R

d : xi,1 < T } = ι[d ;i][(−∞, T ) × R
di−1].

Then, there exists an extension operator E[d ;i],T ∈ L(S ′(Rd
[d ;i],T ; X),S ′(Rd; X)

which, for every a ∈ (0,∞)l , s ∈ R, p ∈ [1,∞)l , q ∈ [1,∞] and w ∈ A∞(Rd j ), re-
stricts to a bounded linear operator from Fs,a

p,q,d (Rd
[d ;i],T ,w; X) to Fs,a

p,q,d (Rd ,w; X)

whose operator norm can be estimated by a constant independent of X and T .

Proof. This can be shown in the same way as in [59]. �

Lemma B.3. Let X be a Banach space, I = (−∞, T ) with T ∈ (−∞,∞], κ > 0,
n ∈ N>0, p, q ∈ [1,∞), r, u ∈ (p,∞), s, v ∈ (q,∞)with 1

p = 1
r + 1

u and
1
q = 1

s + 1
v
.

Let μ ∈ (−1,∞) be such that v
qμ ∈ (−1, v − 1). Then,

|| f g||
F

κ,
(

1
2n ,1

)
(p,q),p,(d−1,1)(R

d−1×I,(1,vμ);X)

� || f ||L∞(Rd−1×I ;B(X))||g||
F

κ,
(

1
2n ,1

)
(p,q),p,(d−1,1)(R

d−1×I,(1,vμ);X)

+|| f ||Fκ
s,p(I ;Lr (Rd−1;B(X)))∩Ls (I ;B2nκ

r,p (Rd−1;B(X)))||g||
F
0,
(

1
2n ,1

)
(u,v),1,(d−1,1)(R

d−1×I,(1,v v
q μ);X)

with implicit constant independent of X and T .

Note here that v
qμ < v − 1 when μ < q − 1.

Proof. Extending f from R
d−1 × I to R

d−1 × R by using an extension operator of
Fichtenholz type and extending g from R

d−1 × I to R
d−1 × R by using an extension

operator as in Lemma B.2, we may restrict ourselves to the case I = R.
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Let (Sn)n∈N correspond to some fixed choice of ϕ ∈ �(d−1,1),( 1
2n ,1)(Rd), say with

A = 1 and B = 3
2 . As in [58, Chapter 4] (the isotropic case), we can use paraproducts

associated with (Sn)n∈N in order to treat the pointwise product f g. For this, it is con-
venient to define Sk ∈ L(S ′(Rd; X)) by Sk := ∑k

n=0 Sn . Given f ∈ L∞(Rd ;B(X))

and g ∈ F
κ,( 1

2n ,1)
(p,q),p,(d−1,1)(R

d , (1, vμ); X) ↪→ L(p,q),(d−1,1)(Rd , (1, vμ); X), if the
paraproducts

�1( f, g) :=
∞∑
k=2

(Sk−2 f )(Skg),�2( f, g) :=
∞∑
k=0

1∑
j=−1

(Sk+ j f )(Skg),�3( f, g)

:=
∞∑
k=2

(Sk f )(S
k−2g),

exist (as convergent series) in S ′(Rd; X), then

f g = �1( f, g) + �2( f, g) + �3( f, g).

Here, the Fourier supports of the summands in the paraproducts satisfy

suppF [(Sk−2 f )(Skg)] ⊂ {ξ : 2k−3 ≤ |ξ |d ,a ≤ 2k+1}, k ≥ 2,

suppF [(Sk+ j f )(Skg)] ⊂ {ξ : |ξ |d ,a ≤ 2k+1}, k ≥ 0, j ∈ {−1, 0, 1},
suppF [(Sk f )(Sk−2g)] ⊂ {ξ : 2k−3 ≤ |ξ |d ,a ≤ 2k+1}, k ≥ 2.

Using Lemma A.1, it can be shown as in [47, Lemma 1.3.19] that

||�i ( f, g)||
F

κ,
(

1
2n ,1

)
(p,q),p,(d−1,1)(R

d ,(1,vμ);X)

� || f ||L∞(Rd ;B(X))||g||
F

κ,
(

1
2n ,1

)
(p,q),p,(d−1,1)(R

d ,(1,vμ);X)

, i = 1, 2,

and

||�3( f, g)||
F

κ,
(

1
2n ,1

)
(p,q),p,(d−1,1)(R

d ,(1,vμ);X)

� ||(2nκ Sn f )n||Ls (R)[[
p(N)]Lr (Rd−1)](X)

||g||L(u,v),(d−1,1)(Rd−1×I,(1,v v
q μ);X).

The desired estimate now follows from (16) and (60). �
Lemma B.4. Let the notations and assumptions be as in Lemma B.3. For each δ >
1
s + d−1

2nr , the inclusion

F
δ,
(

1
2n ,1

)
(p,q),∞,(d−1,1)(R

d−1 × I, (1, vμ); X) ↪→ F
0,
(

1
2n ,1

)
(u,v),1,(d−1,1)(R

d−1 × I, (1, v v
q μ); X)

holds true with a norm that can be estimated by a constant independent of T and X.

Proof. Thanks to Lemma B.2, we only need to establish the inclusion for I = R.
Writing ε := δ − [ 1

s + d−1
2nr

]
> 0, we have

F
δ,
(

1
2n ,1

)
(p,q),∞,(d−1,1)(R

d , (1, vμ); X) ↪→ B
δ,
(

1
2n ,1

)
(p,q),∞,(d−1,1)(R

d , (1, vμ); X)
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↪→ B
ε,
(

1
2n ,1

)
(u,v),∞,(d−1,1)(R

d , (1, v v
q μ); X)

↪→ F
0,
(

1
2n ,1

)
(u,v),1,(d−1,1)(R

d , (1, v v
q μ); X),

where the second inclusion is obtained from Proposition 5.1. �
Let us write

0F
s,
(

1
2n ,1

)
(p,q),p,(d−1,1)(R

d−1 × I, (1, vμ); X)

:=

⎧⎪⎨
⎪⎩

F
s,
(

1
2n ,1

)
(p,q),p,(d−1,1)(R

d−1 × I, (1, vμ); X), s <
1+μ
q ,

{ f ∈ F
s,
(

1
2n ,1

)
(p,q),p,(d−1,1)(R

d−1 × I, (1, vμ); X) : trt=0 f = 0}, s >
1+μ
q .

A combination of Lemmas B.3 and B.4 followed by extension by zero for g and
extension of Fichtenholz type for f yields

|| f g||
0F

κ,
(

1
2n ,1

)
(p,q),p,(d−1,1)(R

d−1×J,(1,vμ);X)

� || f ||L∞(Rd−1×I ;B(X))||g||
0F

κ,
(

1
2n ,1

)
(p,q),p,(d−1,1)(R

d−1×J,(1,vμ);X)

+|| f ||Fκ
s,p(J ;Lr (Rd−1;B(X)))∩Ls (J ;B2nκ

r,p (Rd−1;B(X)))||g||
0F

δ,
(

1
2n ,1

)
(p,q),∞,(d−1,1)(R

d−1×J,(1,vμ);X)

with implicit constant independent of X and T , which is a suitable substitute for the
key estimate in the proof of [47, Proposition 2.3.1].

Lower order terms

By the trace result Theorem 4.4, in order that the condition for the boundary oper-
ators in Remark 3.3 is satisfied, it is enough that there exist σ j,β ∈ [0, n j−|β|

2n ) such
that b j,β is a pointwise multiplier from

F
κ j,γ +σ j,β
q,p (J, vμ; L p(∂O; X)) ∩ Lq(J, vμ; F2n(κ j,γ +σ j,β )

p,p (∂O; X))

to

F
κ j,γ
q,p (J, vμ; L p(∂O; X)) ∩ Lq(J, vμ; F2nκ j,γ

p,p (∂O; X)).

This is achieved by the next lemma.

Lemma B.5. Let X be a Banach space, I = (−∞, T )with T ∈ (−∞,∞], κ, σ > 0,
n ∈ N>0, p, q ∈ [1,∞), r, u ∈ (p,∞), s, v ∈ (q,∞)with 1

p = 1
r + 1

u and
1
q = 1

s + 1
v
.

Let μ ∈ (−1,∞) be such that v
qμ ∈ (−1, v − 1). If κ + σ > 1

s + d−1
2nr , then

|| f g||
F

κ,
(

1
2n ,1

)
(p,q),p,(d−1,1)(R

d−1×I,(1,vμ);X)

� || f ||Fκ
s,p(J ;Lr (Rd−1;B(X)))∩Ls (J ;B2nκ

r,p (Rd−1;B(X)))

||g||
F

κ+σ,
(

1
2n ,1

)
(p,q),p,(d−1,1)(R

d−1×I,(1,vμ);X)

with implicit constant independent of X and T .
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Note that for μ ∈ (−1,∞) to be such that v
qμ ∈ (−1, v − 1) it is sufficient that

μ ∈ (−1, q − 1) with μ >
q
s − 1.

Proof. As in the proof of Lemma B.3, we may restrict ourselves to the case I = R

and use paraproducts. Using Lemma A.1 and Lemma 4.16, we find

||�1( f, g)||
F

κ,
(

1
2n ,1

)
(p,q),p,(d−1,1)(R

d ,(1,vμ);X)

� || f ||
B

−σ,
(

1
2n ,1

)
(∞,∞),∞,(d−1,1)(R

d ;X)

||g||
F

κ+σ,
(

1
2n ,1

)
(p,q),p,(d−1,1)(R

d ,(1,vμ);X)

.

Using Lemma A.1, for i = 2, 3 we find

||�i ( f, g)||
F

κ,
(

1
2n ,1

)
(p,q),p,(d−1,1)(R

d ,(1,vμ);X)

� ||(2nκ Sn f )n||Ls (R)[[
p(N)]Lr (Rd−1)](X)

||g||L(u,v),(d−1,1)(Rd−1×I,(1,v v
q μ);X).

Similarly to Lemma B.1, choosing κ̃ with κ + σ > κ̃ + σ > 1
s + d−1

2nr , we have

Fκ
s,p(R; Lr (Rd−1; X)) ∩ Ls(R; B2nκ

r,p (Rd−1; X)) ↪→ B
−σ,

(
1
2n ,1

)
(∞,∞),∞,(d−1,1)(R

d; X),

where we now use (the vector-valued version of) [35, Theorem 7] instead of Corol-
lary 4.11. The desired estimate follows from Lemma B.4 and (16). �
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