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Abstract: In a concurrent multiscale (FE2) modeling approach the complex microstructure of 

composite materials is explicitly modeled on a finer scale and nested to each integration point of 

the macroscale. However, such generality is often associated with exceedingly high 

computational costs in real-scale applications. In this work, a novel Neural Network (NN) is used 

as the constitutive model for the microscale to tackle that issue. Unlike conventional NNs, the 

proposed network employs the actual material models used in the full-order micromodel as the 

activation function of one of the layers. The NN’s capabilities are assessed (i) for a single 

micromodel level, where its performance is compared to that of a Recurrent Neural Network 

(RNN), and (ii) for an FE2 example. A highlight of the proposed network is the ability to predict 

unloading/reloading behavior without ever seeing it during training, a stark contrast with highly 

popular but data-hungry models such as RNNs. 

Keywords: Neural Networks (NNs); Multiscale; Path-dependency  

1. Introduction 

Machine learning techniques are an increasingly popular alternative to time-consuming 

simulations in various fields. Recognizing this potential, the development and application of such 

methods gained traction in recent years in the field of concurrent multiscale analysis. However, 

a critical limitation of data-driven models is that they do not perform as well in extrapolation as 

they do within their training space. This can be especially critical when they are used as 

constitutive models in FE2 where the lack of basic physics-related constraints can cause 

numerical instabilities and convergence issues. 

On top of that, devising a sampling plan to train Neural Networks (NN) to capture path-

dependent behavior is itself a convoluted task. This is because stresses depend on the strain 

history of the material. Thus, independent pairs of strains and stresses cannot fully describe how 

the material should evolve. A common approach to handle that is to augment the feature space 

with an extra variable that carries information about the history of stress and/or strain: 

��� =  ���(	, �, �� , 
)                                   (1) 

where 	 and � are the model parameters of a NN, ��  and ���  are the macroscopic strain and the 

approximated stress tensors at time step t, respectively, and 
 is the history variable vector. 

891/1045 ©2022 Maia et al. doi:10.5075/epfl-298799_978-2-9701614-0-0 published under CC BY-NC 4.0 license ToC

https://doi.org/10.5075/epfl-298799_978-2-9701614-0-0
https://creativecommons.org/licenses/by-nc/4.0/
mailto:m.alvesmaia@tudelft.nl
https://doi.org/


Composites Meet Sustainability – Proceedings of the 20th European Conference on Composite Materials, 
ECCM20. 26-30 June, 2022, Lausanne, Switzerland 

Typically, the previous strain state  ���� or the accumulated absolute strain are chosen for that 

[1].   

Another highly popular alternative is to use Recurrent Neural Networks (RNNs). These networks 

can account to some extent for the typical loading/unloading by incorporating information from 

previous inputs as in the following parametric regression: 

��� =  ����(	, �, 	� , �� , ��)                 (2) 

where 	� and ��  represent additional model parameters shared across time to keep track of 

history-dependent materials in an implicit way. These parameters describe the evolution of the 

so-called hidden state and can capture information from previous iterations without the need 

to include previous strain states in the input vector as shown in Eq. (1). This way, the network 

ca learn how to process and predict a sequence of strains. As such, RNNs rapidly became a 

popular choice to model composite materials with path-dependency [2-4]. 

Despite their popularity, RNNs are still severely limited by the curse of dimensionality associated 

with sampling arbitrarily long strain paths. In this work, a physics-infused network is proposed 

to overcome this issue and accelerate concurrent multiscale simulations. In Section 2, the 

computational bottleneck in FE2 is briefly discussed, while in Section 3 the main features of the 

novel NN are described. Finally, results are presented in Section 4 and conclusions are shown in 

Section 5. 

2. Multiscale analysis 

Let M define the macroscopic domain being modeled subjected to a set of Neumann and 

Dirichlet boundary conditions acting on the body surface. To find the internal stresses and 

displacement field of such body, a boundary value problem that satisfies the following 

equilibrium equation is defined: 

div ���� = 0                                                                                                                                             (3) 

where div(·) is the divergence operator. To relate strains and stresses, a constitutive model � 

is required: 

�� = � ( ��, 
�)    with     �� = �
� �∇�� + (∇��)!�                                                                     (4) 

where 
� is a history term that accounts for path-dependency and �� is the macroscopic 

displacement field. However, in the concurrent multiscale approach, � is not directly formulated 

but is instead obtained by nesting a lower scale model to each integration point, as illustrated 

in Fig. 1. In that scale, complex materials can be explicitly modeled using simpler constitutive 

models and a geometrical representation of the microstructure.  

The computational bottleneck arises from the fact that to obtain the internal forces and the 

tangent stiffness matrix of a single integration point of the macroscale, an entire FE model is run 

instead of a single evaluation of a homogenous material model. To alleviate that, the alternative 

explored in this work consists in replacing the solution of a Representative Volume Element 

(RVE) subjected to a periodic boundary value problem with a physics-based neural network.  
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Figure 1. FE2 scheme 

3. Neural networks 

Consider the parametric regression model in Eq. (2). When training a neural network for ��, 

strains are fed its first layer (input) and the values are propagated until the final layer (output) 

to give the predicted stresses ���, which are in turn compared to the ground truth value using 

the loss function: 

ℒ = �
� ∑ �

� $��(�%�) & ���(�%�)$��%'�                                                                                                   (5) 

where ( is the number of pairs of �� & �� obtained from microscopic simulations. Eq. (5) is 

then minimized by updating the model parameters according to an optimization algorithm.  

3.1 Bayesian Recurrent Neural Network 

In practice, RNNs struggle with vanishing gradient problems and are not suitable for long-term 

dependent problems. Among other architectures, the Gated Recurrent Unit (GRU) has become 

a widely used alternative to circumvent that issue. The GRU contains more operations and 

parameters than a regular RNN and can control more precisely the flow of information, being 

able to retain or forget information in a long sequence. In this work, a GRU with Variational 

dropout (i.e., Gaussian dropout where the rates are learned implicitly by the network) [5], also 

referred as Bayesian Recurrent Neural Network (BNN), is used for comparison purposes. 

3.2 Adding physics-based material models 

The proposed regression model consists of a neural network composed of one fully-connected 

material layer followed by a Dense layer, as illustrated Fig. 2. The material layer is responsible 

for explicitly incorporating into the network the same physics-based material model used in the 

homogenization of the RVE.  
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                         (a) Proposed neural network                (b) Fictitious integration point j 

Figure 2. Physics-infused neural network 

Two different material models are used to describe the fibers and the matrix of the composite 

microscopic models in this work: the first consists of a linear elastic model and the second is an 

elastoplastic model ℳ. Since the latter is more complex, it is used to illustrate how its features 

are incorporated into the network. Model ℳ takes as input the current strain �� ∈ ℝ,-  and the 

internal variables from previous time step 
��� ∈ ℝ,./0123 , where 45 and 46,�789 are the 

number of strain components and number of internal variables of the material model, 

respectively.  

First, neurons are grouped in sets of the size of the input layer (light grey boxes in Fig. 2a) and 

only then activated as a subgroup, or fictitious material point. To store the internal variables 

used as input/output of the material model, an auxiliary vector :; ∈ ℝ,./0123  is defined. For the 

first time step, :; is initialized as zero for all subgroups.  

As information reaches the material layer and the material model is evaluated (or updated), 

three features are obtained: the stresses �;�  , the updated internal variables  
;� ,and the tangent 

stiffness matrix <;� ∈ ℝ,= > ,= . Then, stresses are propagated forward, and the updated internal 

variables 
� are stored in :;�  so that when new strains �;�?� are fed to the fictitious material 

point @ in the next time step, the material model is aware of its own history so far, as illustrated 

in Fig. 2b. Finally, to obtain the stiffness matrix, a full backwards differentiation pass is required. 

3.3 Decoders 

The decoder converts the outputs from the Material layer and combines them into the predicted 

macroscopic stress ���. In that sense, the decoder acts as the averaging operator in the 

multiscale approach. Therefore, weights of the output layer can be seen as the relative 

contribution of each fictitious material point to the average macroscopic stress as if they were 

obtained from a Gaussian quadrature, which are always positive. 

Based on that, four different approaches are investigated: (i) first, no constraints are applied and 

the weights can be positive and negative, then weight positivity is enforced either with (ii) a 

penalty approach or by applying the (iii) relu function or the (iv) softplus function on the weights. 

For the decoder with the penalty (ii), an extra term is added to the loss function in Eq. (5): 
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A (BC) = D 0.0, BC F 0
G |BC|, BC I 0                                                                                                                     (6) 

where G is a penalty parameter term introduced to penalize negative weights BC in the output 

layer. Finally, for the approaches (iii) and (iv), the transformation functions are applied element-

wise on the weight matrix.  

It is worth mentioning that the first two decoders are shown as reference results since only (iii) 

and (iv) guarantee that, after the transformation, weights will be positive. This is an important 

outcome for the FE2 framework because by constraining the decoder to be positive, the spectral 

properties of the Jacobian of the material model ℳ are inherited by the network when 

calculating the tangent stiffness matrix. 

4. Results 

In this section, the performance of the proposed physics-infused network, or Material Neural 

Network (MNN), is compared to a Bayesian Recurrent Neural Network (BNN). The MNN was 

implemented in an in-house Finite Element code using the open-source Jem/Jive C++ numerical 

analysis library, while PyTorch was used to construct the BNN. The goal is to demonstrate the 

capabilities of the proposed network to capture path-dependent behavior in comparison to a 

popular method using exclusively monotonic data for training. The maximum number of epochs 

for both networks is 60000. For the BNN, an early stopping criterion of 5000 epochs is used. 

The microscopic model consists of an RVE with 9 elastic fibers with properties J = 74000 MPa 

and M = 0.2 embedded in an elastoplastic matrix with isotropic hardening. The latter is modeled 

using the von Mises yield criterion with properties J = 3130 MPa,  M = 0.3 and yield stresses 

given by:  

Q� = QR = 64.8 & 33.6 U�VWX
Y Z.ZZ[\Z]⁄                                                                                                   (7) 

where ε`a
b

 is the equivalent plastic strain. Plane strain conditions are assumed. 

For training the MNN, 18 curves with a priori known directions (black lines in Fig. 3a) are 

generated. Each curve consists of 60 pairs of �� & �� with monotonic loading (solid line in Fig. 

3b). These directions comprehend typical loading cases used for calibrating mesomodels and 

comprise pure uniaxial, shear, biaxial and biaxial with shear cases. The validation set consists of 

another 54 monotonic curves in random directions (red lines in Fig. 3a).   

      

               (a) Directions as unit load vectors                (b) Monotonic and non-monotonic loading 

Figure 3. Loading directions in (a) and loading function in (b) 
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Based on that, a preliminary study with 10 different initializations was carried out for each 

decoder and size of the material layer as shown in Fig. 4. It is clear from the results that using 

only 3 fictitious integration points (in contrast, the original FE micromodel comprises 7088 

integration points) is enough to accurately represent the homogenized material behavior. We, 

therefore, adopt a layer size of 3 points (9 units) with softplus-activated weights for the sake of 

parsimony. A similar procedure is followed for the BNN, and a network with a single GRU layer 

with 128 units is selected.  

 

Figure 4. Abs. error for validation set with different combinations of decoder and layer size 

4.1 Single scale 

In this section, the 18 curves with known directions are kept as a fixed part of the dataset of 

both networks, while the BNN is trained with additional random monotonic curves for different 

training dataset sizes. The test set consists of 100 random curves with unloading/reloading as 

shown in Fig. 3b. Again, 10 different initializations were considered for each case, but only the 

best performance is depicted in Fig. 5.  

 

Figure 5. Networks trained on monotonic data and tested for curves with unloading/reloading 

Note that as more curves are added, the BNN’s error decreases, but around 144 curves, the 

addition of more monotonic data is no longer useful to the network in this scenario. The initial 

error decrease is actually associated with the points before the unloading. Once that part of the 

curve is accurate enough, the error in the unloading will remain unchanged (and high) while the 

MNN can capture accurately the entire strain path, as illustrated in Fig. 6. Although this is a 

simplified scenario, it helps in elucidating the ability of the proposed network to predict non-
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monotonic data without the need to extend the training dataset with curves with arbitrary 

unloading/reloading cycles, as typically done for RNNs.  

            

(a)  Strain-stress view                                                         (b) Time step-stress view 

Figure 6. BNN trained on 144 monotonic curves cannot capture unloading/reloading behavior 

4.2 Multi-scale 

Here, the MNN trained in the previous section is tested as the constitutive model in a multiscale 

application. The structure consists of a composite tapered specimen with a length of 128 mm 

and a height of 8 mm loaded in transverse tension. The boundary and loading conditions are 

shown in Fig. 7, where the load-displacement curve using the full-order solution is plotted along 

with the network’s response. Good agreement is observed between the curves.  

 

Figure 7. Load-displacement curves using the full-order solution and the MNN  

5 Conclusions 

A network with embedded physics-based constitutive models was presented. The network 

captures unloading without ever seeing it during training, which is not observed in the BNN 

regardless of the number of monotonic curves considered. In the multiscale example, the 
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proposed approach showed good accuracy in an structure subjected to different strain states 

and reduced the CPU time from 9077 s to 3 s (excluding training and data generation times). 

Further details on the training of the networks and results over a broader range of test cases will 

be presented in a future publication. 
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