
The Dynamic Dial-a-Ride Problem

with Time Windows in a

Competitive Multi-Company

Environment

Master’s Thesis

Ferdi Grootenboers

The Dynamic Dial-a-Ride Problem

with Time Windows in a

Competitive Multi-Company

Environment

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Ferdi Grootenboers

born in Ridderkerk, the Netherlands

Algorithmics Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

c©2009 Ferdi Grootenboers. All rights reserved.

The Dynamic Dial-a-Ride Problem

with Time Windows in a

Competitive Multi-Company

Environment

Author: Ferdi Grootenboers
Student id: 1149911
Email: fgrootenboers@gmail.com

Abstract

Door-to-door transportation for elderly and disabled people is for
many governments an important instrument to increase the mobility of
this group of people. Many issues arise in the implementation of such a
system, which is often modeled as the Dynamic Dial-a-Ride System with
Time Windows (DDARPTW). One of those issues is that taxi companies
try to maximize their profit by combining as many rides as possible. This
leads to longer travel times, a measure that is expressed in the service
quality of a ride. Our main contribution is a system in which multiple
companies compete on service quality to increase the average service
quality of the rides. We use an auction mechanism to assign rides to
companies and an on-line optimization technique to insert assigned rides
into current schedules. To determine an offer for announced requests,
we allow companies to use knowledge about the distribution of future
requests by the use of a Monte Carlo simulation.

Thesis Committee:

Chair: Prof. dr. C. Witteveen, Faculty EEMCS, TU Delft
University supervisor: Dr. M.M. de Weerdt, Faculty EEMCS, TU Delft
Committee Member: Dr. K.V. Hindriks, Faculty EEMCS, TU Delft
Committee Member: Dr. H.M. Zargayouna, INRETS, Paris, France

Preface

The completion of this thesis would not have been possible without the assis-
tance of my supervisors Mathijs de Weerdt and Mahdi Zargayouna. I would
like to thank you for the continuous support you provided and to motivate me
to perform the research that I have done. The meetings I have had with both
of you have been inspiring and very helpful.

Thank you Mathijs for introducing me to the field of mechanism design and
auctions in the seminar Cooperative Agent-Based Systems. You motivated me
to perform further research in this field and pointed me to the subject of door-
to-door transportation for elderly and disabled people.

Although you left us in August, I would like to thank you too, Mahdi, for
the time you have spent to help me with certain issues and to inspire me to
keep on going. The fact that you even gave me feedback on certain chapters
while you were back in Paris shows your great interaction with the project.

I would like to thank Cees Witteveen and Koen Hindriks for taking the
time to read this thesis and taking place in my committee.

I would like to thank my fellow students with which I have worked together
during my study. Thanks also go to my friends and my brother, which have
always been there for me to relax, to play cards, to play darts, to dance, or
to run. I cannot forget the boys of my soccer team, who gave me some great
Saturdays when we won another game.

Ruby, sorry for sitting all that days and evenings behind my desk instead
of spending more time with you. Thanks for keep supporting me through the
last stages of my study.

Last, but not least, I thank my parents for giving me the opportunity to
do this study, and for supporting me all that time.

Ferdi Grootenboers
Delft, the Netherlands

December 17, 2009

iii

Contents

Preface iii

Contents v

List of Figures ix

1 Introduction 1

1.1 Problem statement . 1

1.2 Moving to a multi-company environment 2
1.3 Prior work and our contributions 3

1.4 Outline . 5

2 The Dial-a-Ride Problem with Time Windows 7

2.1 The problem . 7
2.1.1 Elements of the DARPTW 8

2.1.2 Model . 9

2.1.3 Static versus dynamic 11
2.2 Centralized solution concepts 13

2.2.1 Exact algorithms . 13

2.2.2 Insertion heuristics . 15
2.2.3 On-line optimization . 18

2.3 Decentralized solution concepts 19

2.3.1 Decentralized versus centralized approaches 19
2.3.2 Negotiation . 21

2.3.3 Value determination . 22

3 Auctions 25

3.1 Mechanisms . 25
3.1.1 Context . 26

3.1.2 Equilibria . 27

3.1.3 Implementation . 27

v

CONTENTS

3.1.4 The revelation principle 28

3.1.5 Quasi-linear utility functions 29
3.2 Auctions as mechanisms . 30

3.2.1 Definition . 30

3.2.2 Example of an auction mechanism for the DDARPTW . 32

3.2.3 Sealed-bid second-price auctions 33

3.3 Sequential auctions . 35

3.3.1 The model . 35

3.3.2 The sequential auction problem 36

3.3.3 Options-based solution 37

3.3.4 Finding other equilibria 40

4 Moving to a multi-company environment 45

4.1 Mechanism overview . 46

4.2 Bidding service quality . 48
4.3 Auction type . 50

4.3.1 Rules and allocation . 50

4.3.2 Payments . 50

4.4 Insertion into schedule . 52

4.5 Bid calculation . 54

4.5.1 Insertion check . 54

4.5.2 Future requests . 55

4.5.3 Estimating expected profit 57

4.6 Summary . 61

5 Experiments 63

5.1 Implementation . 64

5.2 Problem instances . 64
5.3 Comparing bidding service quality to bidding additional costs . 68

5.3.1 Set-up . 68

5.3.2 Results . 69

5.3.3 Conclusion . 71

5.4 Incorporation of future requests into bid values 71

5.4.1 Set-up . 72

5.4.2 Results . 72

5.4.3 Conclusion . 75

5.5 Multi-company setting versus currently used setting 76

5.5.1 Set-up . 76

5.5.2 Results . 78

5.5.3 Conclusion . 78

5.6 Single-company setting with minimal service quality 78

5.6.1 Set-up . 79

5.6.2 Results . 79

5.6.3 Conclusion . 82

vi

CONTENTS

6 Summary and future work 85

6.1 Summary . 85
6.2 Future work . 87

Bibliography 91

A Glossary 97

B Software model 99

B.1 Class diagram . 99
B.2 Software parts used . 99

B.2.1 JADE . 99
B.2.2 SCIP and ZIMPL . 101

vii

List of Figures

2.1 Mixed Integer Program formulation to allocate requests to vehicles
within a company. The objective function minimizes costs. 11

4.1 The whole process of the assignment of a request to a company. . . 47

5.1 Computation time of solving problem instances a priori relative to
the number of customers. 64

5.2 Computation time of solving problem instances a priori relative to
the number of customers, with computation time axis in logarith-
mic scale. 65

5.3 Lower and upper bounds of 10 instances, together with bounds
that hold for every instance. 66

5.4 Service quality versus total costs for a setting in which compa-
nies compete on service quality and a setting in which companies
compete on costs. 70

5.5 Service quality versus total costs for a setting in which companies
have knowledge about future requests, and a setting in which they
have not. The requests arrive following a uniform distribution. . . 73

5.6 Service quality versus total costs for a setting in which companies
have knowledge about future requests, and a setting in which they
have not. The requests arrive following a normal distribution. . . . 74

5.7 Service quality versus total costs for a multiple company setting
and a single company setting in which the single company mini-
mizes costs. 77

5.8 Average total costs for instances tested with a minimal service
quality level. 80

5.9 Average service quality for instances tested with a minimal service
quality level. 81

ix

List of Figures List of Figures

5.10 Service quality versus total costs for a multiple company setting
and a single company setting in which the single company acts like
a company in a multi-company setting. 82

B.1 A simple class diagram of our Java implementation of the mecha-
nism proposed in this thesis. 100

x

Chapter 1

Introduction

The service quality in transportation systems for elderly and disabled people
is often more or less ignored. In this thesis we provide a mechanism for the
allocation of transportation requests and the construction of a schedule for
the serving of these requests that is designed from a customer’s point of view,
instead of from a company’s point of view.

1.1 Problem statement

In the Netherlands, elderly and disabled people rely on so-called door-to-door
transportation to travel. Often, they cannot use public transport services
due to inconvenient vehicles, or just because the nearest bus stop or train
station is too far away. Door-to-door transportation is used for various kinds
of trips, from a trip to the zoo to a, often more necessary, trip to the hospital.
Customers can request a ride by calling a taxi agency which has the exclusive
rights to serve requests in that certain area. This agency then tells them what
time they will be picked up.

Before a taxi agency can announce a pickup time for the request, it has to
update its schedule by inserting the new request. Different vehicles might be
available to serve the request, and the agency must search for the best way
to insert this request. This problem is known as the Dynamic Dial-a-Ride
Problem with Time Windows (DDARPTW). The problem is dynamic, because
new requests are become known during the planning period, as opposed to a
static setting, in which all requests are known beforehand. The definition of
”the best way to insert a new request” can differ, but commonly used measures
are total route costs, total route duration, and the total number of vehicles
used. Intuitively, a company tries to maximize its profit (i.e. maximize its
income and minimize its costs).

The biggest problem with the current approach used in the Netherlands,
is the unsatisfactory service quality. There are many complains of customers
about drivers that take big detours, drivers that behave inappropriately, and

1

1.2 Moving to a multi-company environment Introduction

late pickup times. High costs are not directly a problem for the customers,
because these are often covered by insurance companies or the government to
increase the mobility of the elderly and disabled people.

We think that one of the reasons for this unsatisfactory service quality is
the fact that there is only one company that has the rights to serve requests.
There is no direct incentive to serve requests with a high quality, because
profit will not increase at all. It is, of course, possible to give a company
punishments for not serving requests with high quality, but this has some
important disadvantages. When punishments are too low, companies can take
these penalties for granted if they can still make profit, and when punishments
are too high, companies have less money to spent on increasing the quality.
It is also possible to dissolve the contract with the transportation company if
this company does not meet specified service quality, but the disadvantage of
this solution is that a new procurement auction has to be started, which will
take even more time and money.

Our idea is to use multiple companies that serve requests in the same area,
to add an element of competition between companies. Competition may lead
to incentives to increase the service quality of requests. The question that we
try to answer in this thesis is the following:

”Can the service quality of Dynamic Dial-a-Ride systems for the transporta-
tion of elderly and disabled people be improved using a competitive multi-
company setting?”

In the next section we describe how we want to move the DDARPTW to
a multi-company environment and what consequences this has for solving the
DDARPTW.

1.2 Moving to a multi-company environment

In a single-company setting there is only one company that serves all requests
in a specific area. All incoming requests are assigned to that company and
the company itself must solve the problem of assigning the requests to specific
vehicles, in order to serve them. Although local authorities can give penalties
to a company for not meeting a certain quality level, the company does not
have to worry too much about optimizing service quality, because it is sure
that it will get assigned future requests. It just wants to optimize its total
profit, so if a penalty is worth it, the company will take it.

By moving to a multi-company setting we allow multiple companies to
serve requests in a specific area. Incoming requests must first be assigned to
the company that can serve the request the best, and this company then has
to assign the request to one of the vehicles it owns. The problem of deciding
which company can serve the request the best, is solved by the customer (or

2

Introduction 1.3 Prior work and our contributions

its representing government agency). It can choose for example the cheapest
company, the company that provides the highest quality, or the company with
the highest reputation.

In this multi-company setting, companies indirectly work together to ge-
nerate a solution for the assignment of requests to vehicles. We say that they
are playing a game, with the assignment of all requests as outcome. The
field of game theory studies the outcomes of games that are the result of the
(self-interested) behavior of the players of the game. Game theory is closely
related to the field of mechanism design, in which the rules of the game are
designed to obtain preferable outcomes. What we want are outcomes with a
high average service quality and low average costs.

In game theory, the players of the game are often called agents. In our
setting, both customers and companies are agents. All of our players are self-
interested, meaning that they try to maximize their own utility. Customer
agents try to maximize the service quality of their request, and company agents
try to maximize their profit. Intuitively, these two measures are opposites of
each other. With higher costs (i.e. lower profit) the quality can be increased.
In a single-company setting, the single company does not have the incentive
to make higher costs for better quality. By using a multi-company setting, we
try to design the rules of the game such that this incentive does exist.

In the next section we state our contributions in the context of prior work.

1.3 Prior work and our contributions

The basic problem in our dynamic setting is to assign incoming requests to
vehicles and to develop routes for these vehicles to serve the assigned requests
as efficient as possible. As mentioned earlier, this problem is known as the
Dynamic Dial-a-Ride Problem with Time Windows (DDARPTW).

Requests dynamically enter the system (e.g. customers call a taxi agency)
and these requests have to be assigned to vehicles with capacity to transport
the passengers. Routes for the vehicles are implicitly defined by the start
and end points of the requests a vehicle has been assigned to. A request also
defines certain time windows for the pickup and delivery of the passengers,
which decrease the flexibility to schedule these requests.

We notice that in almost all work done involving the DDARPTW or similar
problems, the authors assume a cooperative environment, and that objective
functions mainly includes the minimization of costs and route duration. In
this thesis we assume a competitive environment, in which multiple companies
compete for the rights to serve incoming requests. Our main contribution is
a mechanism to assign vehicles of different companies to incoming requests,
based on both service quality and costs. The proposed mechanism consists of
two phases; an assignment phase, and a scheduling phase. In the assignment
phase, companies make an offer which they announce to the customer. The

3

1.3 Prior work and our contributions Introduction

customer chooses the best offer and the associated company has to serve the
request according to the conditions defined in the second-best offer. In the
scheduling phase, the winning company actually inserts the new request into
its current schedule, conditioned on the constraints in the second-best offer.

The DDARPTW is NP-hard, even without the time windows, dynamic
requests, and multiple vehicles. Without these extra constraints, the problem
would be equal to the Traveling Salesman Problem (TSP), which is known to
be NP-hard [21]. There exist some mathematical models for the DDARPTW
that are defined as Mixed Integer Programs, such that they can be used to
solve the problem exactly [5, 36]. Because the DDARPTW is NP-hard, using
these algorithms in a dynamic context, would require too much computation
time; the algorithm needs to be executed every time a new request comes in.

In order to rapidly derive a near-optimal solution to the DDARPTW,
heuristics are designed which have a good empirical performance. One of
the first heuristics for the static variant of the DDARPTW is proposed by
Jaw et al. [17]. Strongly based on the work of Jaw et al. but in a dynamic
setting is an approach by Madsen et al. [25], who propose an insertion heuristic
called REBUS. They have solved a real-life problem in the city of Copenhagen
involving transportation for elderly and disabled people. New requests are
inserted taking into account their difficulty of insertion into an existing route.
This difficulty is a combination value of different measures.

The disadvantage of using a heuristic is that it provides good solutions in
most cases, but that it can provide very worse solutions in other cases. By
slightly modifying the mathematical model in order to reduce the computation
time, we make it possible to use an exact algorithm in a dynamic context
(called on-line optimization). This approach is used to schedule assigned
requests in the scheduling phase of the algorithm. However, we do use a
simple insertion heuristic for situations that require less accurate solutions.
We extend an approach by Solomon [40] to be able to check service quality
constraints and to check feasibility of both pickup and delivery nodes, instead
of only delivery nodes.

Instead of using centralized approaches, where a single authority is used
to assign requests to vehicles, involved agents can negotiate among themselves
about the assignment of requests. It is shown by Mes et al. that a properly
designed multi-agent approach performs as good as or even better than tradi-
tional methods [28]. The basic concept of such a system is that every vehicle
calculates the costs needed to serve an incoming request and proposes an offer
to the customer, in an auction.

Most research in the transportation field deals with problems in a coop-
erative setting, where companies or vehicles are working together to obtain
a common goal (e.g. the minimization of the total costs). In that case, the
vehicle agents do not care whether they get assigned a request or not, if the
assignment helps to optimize the common goal. This situation changes when
the vehicle agents are competitive and self-interested (i.e. each has their own

4

Introduction 1.4 Outline

goal). There is uncertainty about future requests and vehicles have to deal
with this when they want to maximize their profit. Mes et al. [27] and Figliozzi
et al. [11] introduced one-step look-ahead capability for these vehicles, with
which they incorporate the possible profit of the next incoming request into the
price of the current request that is auctioned. These extra costs can be seen
as opportunity costs that have to be made for the requests possibly forgone.

We propose a way of even further look-ahead capability by incorporating
knowledge about the future request distribution into the calculation of current
offers. This is where we use the modified insertion heuristic to perform a Monte
Carlo simulation to estimate the expected profit of a request.

Opposed to approaches in prior work, the offers that are announced in our
auction do not contain money elements, but contain a proposed service quality
for the request. A money element (expected profit) is taken into account in
the calculation of the service quality offer, but that is not announced to the
auctioneer. Although there is no negotiation about the price, but about the
service quality, costs for the serving of the requests need to be determined. A
lower and an upper bound are presented for the price per kilometer a customer
has to pay for its ride.

Summarizing, our contributions described in this thesis are:

• a mechanism to solve the Dynamic Dial-a-Ride Problem with Time Win-
dows in which companies compete on service quality for the assignment
of transportation requests,

• an extension to a mathematical model for the DARPTW by adding a
constraint to preserve service quality,

• adding constraints to a Mixed Integer Program based on this mathe-
matical model to compute exact solutions in an on-line optimization
approach,

• an extension to a basic insertion heuristic to be able to use it in a dial-
a-ride context and preserve service quality,

• define upper and lower bounds for the price per kilometer to be used in
a setting with fixed customer costs, and

• an approach to use Monte Carlo simulations to calculate expected profit
for future incoming requests to be used to incorporate knowledge about
the future in a current auction.

1.4 Outline

This thesis is structured as follows. We start by presenting a mathematical
model of the DARPTW in Chapter 2 and present both centralized and decen-
tralized solution concepts for it. In Chapter 3 some concepts of mechanism

5

1.4 Outline Introduction

design are discussed, and sequential auctions are introduced. Our main con-
tributions are presented in Chapter 4 and Chapter 5. Chapter 4 is devoted
to moving the DDARPTW to a competitive multi-company environment, and
in Chapter 5 we present the results of some experiments we did. Finally, our
conclusions and pointers to future work are discussed in Chapter 6.

6

Chapter 2

The Dial-a-Ride Problem
with Time Windows

In this chapter the Dial-a-Ride Problem with Time Windows (DARPTW) is
introduced, which is often used to model door-to-door transportation services
for elderly and disabled people. The problem to solve is how to allocate
incoming transportation requests from customers to vehicles that can serve
these requests, and how to design a route for these vehicles to serve multiple
requests. Different approaches to solve this problem exists, which can be
categorized into centralized and decentralized methods.

Before we discuss multiple solution concepts, we introduce some basic ele-
ments and assumptions of the DARPTW in Section 2.1, together with a math-
ematical model that we use later on in this thesis. In Section 2.2 some ap-
proaches to solve the problem centrally, with a single authority, are treated.
Opposed to centralized approaches, in decentralized approaches there is no
single authority that has full information knowledge and full control of the
solution process. Some important concepts of decentralized approaches are
dealt with in Section 2.3.

2.1 The problem

The DARPTW is a generalization of the well-known Traveling Salesman Prob-
lem (TSP), in which an optimal route has to be found between different cities
for minimum costs. The DARPTW adds multiple constraints to this problem
like time windows, capacity constraints, and maximum travel time. In Sec-
tion 2.1.1 these constraints and some other assumptions are discussed. All the
constraints come together in the integer programming model that is treated
in Section 2.1.2. This model is used in an optimization procedure in the
mechanism we propose in Chapter 4.

7

2.1 The problem The Dial-a-Ride Problem with Time Windows

2.1.1 Elements of the DARPTW

The DARPTW is the problem of how to design routes between multiple lo-
cations at which passengers need to be served (i.e. get in or get out of the
vehicle). The possible routes are conditioned on several constraints that are
either be stated by the transportation request (e.g. time windows and pickup
locations) or need to be satisfied in general (e.g. route duration, number of
vehicles). We follow an overview paper by Cordeau and Laporte [6] to state
some specific features of the problem.

The most important difference between the DARPTW and similar routing
problems, like the Pickup and Delivery Vehicle Routing Problem (PDVRP)
and the Vehicle Routing Problem with Time Windows (VRPTW), is the hu-
man perspective. In the DARPTW a balance has to be made between user
convenience and, for example, minimizing routing costs. The user convenience
is often measured by the average waiting time or by the actual traveling time
relative to a certain base time.

The transportation requests are made by a number of customers that wish
to travel between a pickup and a delivery location. It is assumed that cus-
tomers can impose a time window which includes the earliest possible time
and the latest possible time they can be either picked up or delivered at a
specific location. Most customers request both an outbound ride, which is a
ride from home to a remote location, and an inbound ride, which is a ride from
a remote location back home. In most models it is assumed that customers
specify a time window for the arrival time of their outbound ride, and a time
window for the departure time of their inbound ride.

Another difference with similar problems is that the capacity of a vehicle is
often constraining, meaning that only a few passengers can be served at a time
by a single vehicle. For example, the PDVRP is often used to model courier
systems for small packages, in which dozens of packages can be transported
at the same time by a single vehicle. This is opposed to DARPTW, in which
normal taxis can only take three or four passengers at a time.

We assume that there exist multiple vehicles, but that they do not need to
have the same capacity. It is allowed to serve passengers of different requests
the same time (i.e. to combine requests), but a request must be served by a
single vehicle. All vehicles start and end their route at a specific vehicle depot
location.

The DARPTW can now be stated as to design efficient routes and sched-
ules for the multiple vehicles to serve all known requests with respect to the
constraints described above. The efficiency of the solution to the problem
can be measured in different terms like the routing costs needed to serve the
requests, the duration of the routes, or the actual time needed to serve individ-
ual requests relative to the time needed if these requests were served directly
(i.e. no combinations of requests).

In the next subsection a mathematical model for the DARPTW is pre-

8

The Dial-a-Ride Problem with Time Windows 2.1 The problem

sented, which allows us to study the features of this problem in a formal way.

2.1.2 Model

The model that is presented here, contains all the features that are discussed
above, and can be used to either study the problem in a formal way or to use
as an input for a Mixed Integer Program (MIP) solver to solve the problem.
Because we want to incorporate all the features described above, we use the
approach of Cordeau [5].

The DARPTW can be represented as a directed graph of locations and
rides between these locations, G = (L,R). The set of locations L contains two
vehicle depots that serve as start and end vertex of all vehicles (denoted by l0
and l2n+1), n pickup locations P = {l1, . . . , ln}, and n delivery locations D =
{ln+1, . . . , l2n}. This implies that L is partitioned as L = {{l0, l2n+1}, P,D},
with |L| = 2n + 2.

A request is a combination of a pickup location li ∈ P and a delivery
location ln+i ∈ D and can be seen as an announcement from a customer that
it wants to travel from location li to location ln+i.

Each location li has an associated load qi, which denotes the number of
passengers that is pickup up or delivered at that location. We define q0 =
q2n+1 = 0, q ≥ 0 for i = 1, . . . , n, and qi = −qi−n for i = n + 1, . . . , 2n. To
account for service time at locations (i.e. time to get in and out the vehicle), we
associate with every location li a service duration di ≥ 0 and d0 = d2n+1 = 0.

The set of rides is defined as R = {(i, j) : i = 0 and j ∈ P , or i, j ∈
P ∪D and i 6= j and i 6= n+ j, or i ∈ D and j = 2n+ 1}, so this set contains
all possible connections between any two locations that a vehicle can actually
drive. This means that a ride is of one of the following six types:

• start at the start depot and end at a pickup location,

• start at a pickup location and end at a another pickup location,

• start at a pickup location and end at a another delivery location,

• start at a delivery location and end at another delivery location,

• start at a delivery location and end at another pickup location, or

• start at a delivery location and end at the end depot.

Note that we make a distinction between requests and rides here. A request
can be served directly by a single ride from the pickup location of the request to
the delivery location, or it can be served by a sequence of rides that eventually
ends at the delivery location of the request. So a request is a combination of
a pickup location and a delivery location defined by the customer, and a ride
could be any combination of two locations conditioned on the properties above.

9

2.1 The problem The Dial-a-Ride Problem with Time Windows

The set of vehicles is denoted byK, and with each vehicle k ∈ K a maximal
capacity Qk and a maximal route duration Tk are associated. The cost of a
ride from location li to lj with vehicle k is denoted by ckij , and the travel time
of a ride between li and lj is denoted by tij .

To incorporate time elements into the model, we define a planning horizon
H, which is the time period for which the routes are planned (e.g. an hour,
a day, or a week). For example, if the time period for which we schedule
requests is a whole day, we start at time 0 and end at time 1440. Note that
time variables are measured in minutes. Time windows (inbound as well as
outbound) are associated with a location li as [si, ei], with si the earliest
possible time the request can be served at that location (either pickup up or
delivery), and ei the latest possible time the request can be served.

Further, let uk
i be the time at which vehicle k starts servicing at a location

li, w
k
i the load of vehicle k upon leaving location li, and rk

i the ride time of a
customer that places the request to travel from li to ln+i. In the model that
follows, xk

ij is equal to 1 if and only if a ride from location li to lj is allocated
to vehicle k.

In Figure 2.1 the entire model is given, in which the objective function is
to minimize total routing costs (see Equation 2.1). It should be obvious that
many other objective functions can be stated.

We explain all the constraints denoted in the model above. Constraint 2.2
ensures that all requests are served only once and Constraint 2.3 ensures that
every vehicle will once drive to the start and end depot. Together with 2.4
and 2.5 this guarantees that every request is served once by the same vehicle
and that each vehicle starts and ends its route at a depot.

Constraint 2.6 says that the arrival time at a location must be higher or
equal to the start time of servicing at the starting location, plus the service
duration at that location, plus the time of the ride from start to end location.
It is also obvious that the load of a vehicle at the end location of a ride is higher
than or equals the load of that vehicle at the start location (Constraint 2.7).

The travel time of a user is higher than or equals the time the vehicle is
at his delivery location minus the time he picked up the user and minus the
duration of servicing at the pickup location; this is ensured by Constraint 2.8.
Constraint 2.9 says that the duration of a vehicle to drive from the start depot
to the end depot must be less than or equal to the total route duration specified
for that vehicle, while Constraint 2.10 ensures that every location is visited
within the specified time horizons. The ride time of a passenger is specified to
be as least as great as the time of a direct ride between its pickup and delivery
location and as most as great as the planning horizon (Constraint 2.11).

The load of a vehicle can never be higher than the highest possible load
specified. Note that the load of a vehicle increases at a pickup location and
decreases at a delivery location, so we can state Constraint 2.12. The last
constraint ensures that we deal with binary variables, so that a variable de-

10

The Dial-a-Ride Problem with Time Windows 2.1 The problem

Minimize

∑

k∈K

∑

i∈L

∑

j∈L

ckijx
k
ij (2.1)

subject to

∑

k∈K

∑

j∈L

xk
ij = 1 (i ∈ P), (2.2)

∑

i∈L

xk
0i =

∑

i∈L

xk
i,2n+1 = 1 (k ∈ K), (2.3)

∑

j∈L

xk
ij −

∑

j∈L

xk
n+i,j = 0 (i ∈ P, k ∈ K), (2.4)

∑

j∈L

xk
ji −

∑

j∈L

xk
ij = 0 (i ∈ P ∪D, k ∈ K), (2.5)

uk
j ≥ (uk

i + di + tij)x
k
ij (i, j ∈ L, k ∈ K), (2.6)

wk
j ≥ (wk

i + qj)x
k
ij (i, j ∈ L, k ∈ K), (2.7)

rk
i ≥ u

k
n+i − (uk

i + di) (i ∈ P, k ∈ K), (2.8)

uk
2n+1 − u

k
0 ≤ Tk (k ∈ K), (2.9)

si ≤ u
k
i ≤ ei (i ∈ L, k ∈ K), (2.10)

ti,n+i ≤ r
k
i ≤ H (i ∈ P, k ∈ K), (2.11)

max{0, qi} ≤ w
k
i ≤ min{Qk, Qk + qi} (i ∈ L, k ∈ K), (2.12)

xk
ij = 0 or 1 (i, j ∈ L, k ∈ K). (2.13)

Figure 2.1: Mixed Integer Program formulation to allocate requests to vehicles
within a company. The objective function minimizes costs.

notes whether a ride is allocated to a vehicle or that it is not, and we cannot
specify that half of that ride is allocated to another vehicle.

2.1.3 Static versus dynamic

A DARPTW can be either static or dynamic. In the static variant, all requests
are known beforehand and routes are designed before the first request is served.
In the dynamic variant, which is often denoted by the Dynamic Dial-a-Ride
Problem with Time Windows (DDARPTW), requests become known during
execution of the mechanism and these requests are dispatched to vehicles in
an on-going fashion.

A problem is often not purely dynamic, because a part of the requests is
known in advance and the other part is gradually revealed. In a study by

11

2.1 The problem The Dial-a-Ride Problem with Time Windows

Lund et al. [24] the notion of the degree of dynamism (dod) for a problem is
introduced. This most basic measure of dynamism is defined as the number
of dynamic requests in proportion to the total number of requests. Let the
number of requests that is revealed dynamically be denoted by ndyn, and the
number of requests that is known in advance by nadv. The total number of
requests, ntot, is therefore ndyn +nadv , and the degree of dynamism is defined
as:

dod =
ndyn

ntot

. (2.14)

A purely static system has a dod of 0 and a purely dynamic system has a dod
of 1.

Systems can be categorized by their degree of dynamism into one of three
groups. Systems with a dod below 0.2 − 0.3 are said to be weakly dynamic
and systems with a dod above 0.8− 0.9 are said to be strongly dynamic. The
other systems are said to be moderately dynamic.

It is obvious that a dispatcher would prefer requests coming in early in
the planning horizon to requests coming in late, because late requests need to
be planned much faster (i.e. they have a shorter reaction time). To make a
better distinction between problems, the effective degree of dynamism (edod) is
introduced [23], which represents the average of how late the dynamic requests
are received compared to the latest possible time these requests could be
received. Consider a planning horizon that starts at time 0 and ends at time T ,
and denote by ti the time at which dynamic request i is received (0 < ti ≤ T).
Note that requests that are known in advance have t = 0. The effective degree
of dynamism can now be defined as:

edod =

∑ndyn

i=1

(

ti
T

)

ntot

. (2.15)

Again, a purely static system has an edod of 0 and a purely dynamic system
has an edod of 1. Further note that the edod approaches 1, the later requests
enter the system:

lim
ti→T∀i

edod = 1. (2.16)

A request often defines a time window for a pickup or delivery location i,
[si, ei], with si the earliest time the request can be served, and ei the latest
time the request can be served. The reaction time is defined as the period
between the arrival of the request ti and the latest possible service time ei,
ei − ti. Now, the measure of effective degree of dynamism accounting for
reaction time can be defined as [23]:

edodtw =
1

ntot

ntot
∑

i=1

(

T − (ei − ti)

T

)

(2.17)

The degree of dynamism is important in the process of choosing an al-
gorithm to solve the problem. Experimental results show that there is a

12

The Dial-a-Ride Problem with Time Windows 2.2 Centralized solution concepts

significant difference in performance of algorithms applied to problems with a
different degree of dynamism [23]. In the next section we take a look a cen-
tralized solution concepts that can be used to solve either static or dynamic
variants of the problem.

2.2 Centralized solution concepts

In this section we discuss solution concepts in which a central authority has full
information knowledge and full control of the solution process. Known algo-
rithms can be roughly categorized into three groups: simple policies, heuristics
and exact algorithms. Simple policies can serve as a base for developing more
complex heuristics. Exact algorithms often need too much computation to
use them in a dynamic environment, but they can be used as a benchmark for
simple policies and heuristics. The DARPTW is often weakly to moderately
dynamic and heuristics seem to perform better than simple policies in weakly
dynamic systems [23].

Simple policies are rules used to dispatch individual requests to vehicles,
such as First Come First Served (FCFS) and Nearest Neighbor (NN). We do
not discuss these policies in this thesis, because they are not used as stand
alone algorithms, but are often part of a preparation step for an exact algo-
rithm or a heuristic.

Exact algorithms are treated first, because these algorithms give us the
best answers. The problem with these algorithms is their time complexity,
which is often exponential in the number of transportation requests. Heuristics
have a good empirical performance and can be used to rapidly derive a near-
optimal solution. Finally, we describe a concept called on-line optimization,
in which exact algorithms are used in a dynamic environment.

2.2.1 Exact algorithms

The model that we presented in Section 2.1.2 allows us to solve the problem
using exact algorithms to obtain an optimal solution. Due to its nature, such
an algorithm needs computation time that is exponential in the number of
transportation requests that has to be served. It can, however, be used as
a benchmark to which simple policies and heuristics can be tested and can
give insight into various operational trade-offs in dynamic problems. This can
form the basis of optimization-based approaches [45].

13

2.2 Centralized solution concepts The Dial-a-Ride Problem with Time Windows

Integer Linear Programming

The objective function can be optimized using Integer Linear Programming
(ILP) packages like CPLEX1, SCIP2 and GLPK3. Areas of refinement for
this kind of methods include the way cost is measured in assigning requests
to vehicles and in the computational procedures to perform the algorithm.
The first is exploited by comparing three different criteria to assign requests
to vehicles, namely to minimize the total costs, the average costs, or the
marginal costs of a vehicle [45]. The latter is exploited by adding additional
constraints to the program [5, 36] and we briefly discuss this method, known
as a branch-and-cut algorithm.

A branch-and-cut algorithm first solves the ILP without the integer con-
straints. This can result in integer variables being assigned fractional values.
An algorithm is used to find additional linear constraints that are satisfied
by all feasible integer points, but violated by the current fractional solution,
i.e. the search space is reduced around the integer solution. The idea behind
this method is that by repeatedly running the algorithm with additional con-
straints, the (fractional) solution is closer to the optimal integer solution than
in the previous run.

When no more additional constraints can be added to the program, a
branch-and-bound algorithm is used, which separates the program into two
parts. One with a constraint in which the fractional variable is less than or
equal to the previous integer value, and the other with a constraint in which
the fractional variable is greater than or equal to the next integer value. This
process is repeated until a solution is found that satisfies all integer constraints.

For the DARPTW, several additional constraints (called valid inequalities)
can be derived during pre-processing [5, 36]. Time windows can be tightened,
infeasible arcs can be eliminated and variables can be fixed. The separation
of the problem during executing the branch-and-bound algorithm can also be
led by certain heuristics which can identify invalid inequalities. Results are
known for instances with 16 to 36 [5] and 16 to 96 [36] requests.

Other exact algorithms

There exist some other exact algorithms that are not based on Integer Linear
Programming. We briefly mention a few interesting ones here.

An interesting approach is to assign one of three statuses (request waiting,
request being served, and request completed) to each known request and then
derive a graph containing all possible ways status changes can occur [9]. This
graph contains status vectors as nodes and status transitions as arcs. The
graph is reduced by eliminating duplicate status vectors that also appeared at

1http://www.ilog.com/products/cplex/
2http://scip.zib.de/
3http://www.gnu.org/software/glpk/

14

The Dial-a-Ride Problem with Time Windows 2.2 Centralized solution concepts

the same location. Once the graph cannot be further reduced, a shortest path
algorithm is applied to derive routes trough the pickup and delivery location
of the requests.

Several exact algorithms for vehicle routing problems are based on one of
the following four formulations:

• arc formulation,

• arc-node formulation,

• spanning tree formulation,

• path formulation.

Because these algorithms are not especially developed for the DARPTW, we
refer the interested reader to a survey by Kallehauge [20].

2.2.2 Insertion heuristics

In order to rapidly derive a near-optimal solution to the DARPTW, heuristics
can be used which have a good empirical performance. A difference can be
made between insertion heuristics and metaheuristics, but in this thesis we
only consider insertion heuristics. The reason for this is that metaheuristics
are not especially focused on the specific features of the kind of problem, and
that these heuristics are hardly ever used for dynamic problems, because they
tend to take more computation time.

Insertion heuristics insert new requests into the current routes at the best
possible position known. The challenge is not only to insert a request at a
position that is best for this request, but also leaves enough slack time for pos-
sible future requests. These future requests can be either known beforehand
(i.e. in a static problem), which implies that there is already some information
about these requests, or these requests can still be unknown (i.e. in a dynamic
problem), which implies that there is no information yet. Because we want
to focus on dynamic problems in this thesis, we mainly discuss heuristics for
dynamic problems here.

Basic insertion heuristic

Most of the insertion heuristics for dynamic problems are based on heuristics
for static problems, of which one of the first algorithms was proposed by Jaw
et al. [17]. In this algorithm for the DARPTW a non-linear objective function
combining several types of disutility is used. The heuristic selects requests in
order of earliest feasible pickup time and gradually inserts them into vehicle
routes so as to yield the least possible increase of the objective function. Note
that for dynamic problems, this pre-processing of creating an insertion order
is not possible, because the order is determined by the arrival of the requests.

15

2.2 Centralized solution concepts The Dial-a-Ride Problem with Time Windows

Algorithm 2.1: Basic insertion algorithm

input : The set of current vehicle schedules S, the set of requests that
have to be inserted R

output: Multiple schedules in which all unassigned requests r ∈ R are
inserted

forall r ∈ R do1

c∗ ← −∞2

forall s ∈ S do3

forall i ∈ s do4

forall j ∈ s where j ≥ i do5

if Feasible(r, i, j) and Cost(r, i, j) < c∗ then6

s∗ ← s7

i∗ ← i8

j∗ ← j9

c∗ ← Cost(r, i, j)10

end11

end12

end13

end14

Insert(r, s*, i*, j*)15

end16

Once a request is selected to be inserted into one of the vehicles routes two
steps are executed: a feasibility step and an optimization step. During the
feasibility step, all feasible ways to insert the pickup location and the delivery
location of the request into the routes of one of the vehicles are investigated.
An insertion is feasible if none of the constraints for the current request and
for the requests already inserted, are violated. In the algorithm proposed by
Jaw et al. [17] these constraints consist of time window constraints, capacity
constraints, service time constraints, and service quality constraints. These
service quality constraints guarantee that the ride times of customers will not
exceed a pre-specified maximum and that the time of pickup or delivery will
not deviate from the desired pickup or delivery time more than a pre-specified
maximum.

In the feasibility step, an additional cost variable is maintained for each
feasible insertion, to support the optimization step. When all vehicles are
examined for feasible insertions, the request is inserted into the schedule with
minimal additional costs. Notice that this cost variable can denote various
measures or combinations of measures. For example, it can denote monetary
costs needed to insert the request, it can denote a measure of additional route
duration, or it can denote some other measure of disutility.

In Algorithm 2.1 a basic insertion algorithm [2] is shown, in which both

16

The Dial-a-Ride Problem with Time Windows 2.2 Centralized solution concepts

the pickup and the delivery location are inserted into one of the vehicle routes
(denoted by s). Such a route consists of a sequence of locations with corre-
sponding departure times. The function Feasible(r, i, j) checks whether the
pickup location of request r can be inserted after location i and whether the
delivery location can be inserted after location j. The function Cost(r, i, j)
calculates the additional costs for this insertion. The variables marked with
a star (∗) denote the best values find for these variables. For example, c∗
denotes minimum additional costs, i∗ denotes the best position after which
the pickup node can be inserted, etcetera.

Time windows

The feasibility step in the insertion heuristic described above contains a check
whether time window constraints of both the current request and requests
that have already been inserted are not violated. Solomon [40] describes an
efficient way to check these constraints.

We assume that there exists a current route with multiple locations. Every
location i has an associated time window with an earliest possible time si and a
latest possible time ei at which the vehicle can depart from that location. The
current departure time from a location i is denoted by ui, and the departure
time after inserting a new location is denoted by unew

i . The waiting time at a
location wi is calculated as max{ei, ui−1 + di−1 + ti−1,i}, with di denoting the
service time duration at a location and ti−1,i the direct travel time between
location i−1 and location i. Assume further that we want to check upon time
feasibility for the insertion of a location l before location j.

When location l will be inserted before location j, the departure time uj

will be pushed forward if there is not enough slack time. The insertion is only
feasible if, with the push forward in mind, the vehicle still departs from all
subsequent locations within the associated time windows. The push forward
for location j can be defined as

PFj = unew

j − uj ≥ 0, (2.18)

and for subsequent locations as

PFi+1 = max{0,PFi − wi+1}, i ≥ j. (2.19)

When PFj > 0, then some time window constraints can become infeasible,
so we have to check these time window constraints for all locations that are
scheduled after the location to insert. We can stop checking locations i > r
if PFr = 0 (enough slack time to catch push forward), or if ur + PFr > sr

(time window constraints become infeasible), or when we reach the end of the
route (all time window constraints are feasible). The result of the first and
third stop condition is that the new location can be inserted at the specified
condition. The result of the second stop condition is that the new location
cannot be inserted, because time window constraints are violated.

17

2.2 Centralized solution concepts The Dial-a-Ride Problem with Time Windows

A similar approach can be used for checking the feasibility of capacity
constraints. Notice that these constraints only involve the locations between
the pickup and the delivery location that are inserted.

Implementations for dynamic problems

Implementations of the basic insertion heuristic described above mainly differ
in the way that additional costs are calculated and the type of constraints
tested in the feasibility phase. Remember that for dynamic problems, the
order in which requests are inserted is determined by the order in which they
arrive. In addition, the following approaches have in common that they have
constraints that deal with travel time.

Madsen et al. [25] solve a real-life DDARPTW with an insertion heuristic
called REBUS. This heuristic inserts new requests into existing vehicle routes
taking into account the difficulty of insertion. The algorithm is tested on a
300-customer, 24-vehicle instance, and good quality solutions, derived within
very short computing times, are reported. Constraints involving maximal
route duration and maximal deviation between actual and shortest possible
ride time are added.

A fuzzy logic approach is developed by Teodorovic and Radivojevic [42]
and works with fuzzy functions to calculate a certain preference for a request
to be assigned to a vehicle. Upon receiving a new request, this request is
inserted into one of the vehicle routes according to one of nine rules which
depend on whether the insertion has a ”small”, ”medium” or ”big” increase of
traveled distance, vehicle waiting time, and passenger ride time. Depending
on the outcome, the algorithm assigns a preference to each vehicle. This
system was tested on and solved 900-requests instances within reasonably
short computation time.

Finally, Coslovich et al. [7] propose a two-phase method, which first creates
a feasible neighborhood of the current route in an off-line phase. An on-line
phase is then used to insert the new request with the objective of minimizing
dissatisfaction. Other constraints used in this method are the deviation from
the desired service time and an upper bound on the excess ride time. Instances
containing 25 to 50 requests are solved with this approach.

For more implementations of insertion heuristics, we refer the interested
reader to an overview paper by Cordeau and Laporte [6].

2.2.3 On-line optimization

The disadvantage of using exact algorithms in a dynamic environment is that
these algorithms take too much computation time. The disadvantage of using
heuristics is that in most cases only near-optimal solutions are produced, and
that in some cases the solutions are even significantly far from the optimal
solution. In a technique called on-line optimization the optimal solution is

18

The Dial-a-Ride Problem with Time Windows 2.3 Decentralized solution concepts

searched for with exact algorithms, but by only taking into account that part
of the problem that we are interested in. For example, when searching for
the best departure times of the locations of a request to insert into a current
schedule, only that part of the current schedule that can be influenced by
inserting the new request needs to be considered in the solution process. This
results in smaller problems as input for exact algorithms, which implies less
computation time.

In an approach by Colorni and Righini [3] only the most urgent requests
and the delivery locations of those requests currently served are taken into
account, to reduce the computation time. They also recognize that the less
requests are taken into account, the faster computation becomes, but that this
results in less accurate solution (i.e. the further from the optimal solution).

More recently Mahr et al. [26] uses an on-line optimization technique that
only takes into account the current state of the world and makes definite
decisions just before a request is served. This technique is used to compare an
agent-based assignment approach with a centralized optimization approach.
In the following section we introduce such an agent-based approach and the
elements that are contained in decentralized solution concepts.

2.3 Decentralized solution concepts

Instead of using centralized approaches, where a single authority is used to
assign requests to vehicles, these vehicles can negotiate among themselves
about the assignment of requests. It is shown by Mes et al. that a properly
designed multi-agent approach performs as good as or even better than tra-
ditional methods [28]. In another article by Mahr et al. the authors conclude
that for problem instances where less than 50% of the requests are known in
advance, an agent-based approach is competitive to an optimization approach
[26]. The basic idea of such a system is that every vehicle calculates the costs
needed to serve an incoming request and proposes an offer to a special entity
that subsequently assign the request to a specific vehicle.

2.3.1 Decentralized versus centralized approaches

In this section we compare decentralized scheduling approaches with central-
ized ones. We also mention the key issues to be handled in a distributed
setting.

Approaches are decentralized if there is no single, central authority that
is in control of solving the problem. The control is distributed over diffe-
rent agents, that act together to solve the problem. The way these agents
act together can be different; when they cooperate then they have the same
common goal to solve the problem, but if they are competitive then they are
self-interested and the solution to the problem is a result of this competition.

19

2.3 Decentralized solution concepts The Dial-a-Ride Problem with Time Windows

Because different agents are involved, such a system is often called a multi-
agent system (MAS). The basic idea in multi-agent based scheduling is that
intelligent agents, which in our case are the vehicles, schedule their own routes.
This is the opposite of a centralized scheduling approach in which the dis-
patcher assigns requests to vehicles and constructs the routes for these vehi-
cles.

We can mention four reasons why a decentralized method can be more
suitable for planning and control of dynamic transportation networks and
that motivate the use of a multi-agent based system [44, 28]. The first reason
is that the domain of transportation is naturally decentralized. Vehicles are
autonomous entities that can make their own decisions. Rather than letting a
central authority decide what they have to do, they can decide for themselves.
The second reason is that global optimization algorithms can be sensitive to
information updates, which can result in major modifications of the plan due
to minor changes in information. Because in multi-agent systems decisions
are made locally, problems can be solved and modifications can be made lo-
cally. Thirdly, timely response to unexpected events may not be possible in
centralized solutions, because the algorithm may take too much time to com-
plete. The central authority becomes a bottleneck in the computations, while
in multi-agent systems, all agents have computational power and can aid in
solving the problem. This can make the system more scalable. Finally, indi-
vidual agents (e.g. vehicles or customers) can be autonomous, self-interested
and not cooperative, and therefore are not always willing to share all their
information. Centralized algorithms are based on the fact that the dispatcher
has complete information about the system.

In contrast to centralized methods, there are two main issues that have to
be dealt with. All agents have to process the information they are responsible
for, and the agents have to communicate with each other.

A multi-agent system consists of several intelligent autonomous agents
pursuing their own goals. When agents are self-interested these goals does
not have to be equal (e.g. maximization of own utility), but when they are
cooperative these goals are equal for each agent (e.g. maximization of total
utility). As in centralized solutions, the decision to assign a specific request
to a vehicle mainly depends on how well these two are suited for each other.
In a centralized approach, the central authority has this information (or can
calculate this) for all vehicles, but in a decentralized approach all vehicles have
to determine and announce this themselves. We call this part of information
of a vehicle a bid, and the announcement and assignment process can be
seen as an auction.4 In Section 2.3.3 we further discuss bid determination in
cooperative and competitive settings.

As opposed to centralized methods, in which all information is known by

4In our definition of an auction, agents can behave strategically (competitive) or not
strategically (cooperative).

20

The Dial-a-Ride Problem with Time Windows 2.3 Decentralized solution concepts

the central authority, agents in a decentralized approach need a clear commu-
nication protocol to transfer information. Agents need to communicate their
bids, they have to be noticed about the final assignments, and new requests
have to be announced. Further details of how agents can communicate are
described in Section 2.3.2.

2.3.2 Negotiation

Vehicles and requests for transportation have to find each other at a virtual
market. In order to find each other they have to communicate and negotiate
about prices and contracts. The Contract Net Protocol is one of the earliest
approaches that precisely defines such a communication protocol. In this
section we briefly discuss this protocol and variations of it.

The Contract Net Protocol (CNP) has been originally developed by Smith
[39] to specify problem solving communication and control for nodes in a dis-
tributed solver. It facilitates distributed control of cooperative task execution
with efficient high level internode communication. The key problem to be
solved is how to distribute tasks among nodes that can process them. Nodes
with tasks to be executed must find in one way or another a node that can
execute these tasks. The basis for the CNP is the process of two nodes, the
manager and the contractor, negotiating for a contract that says that a node
has to execute the other node’s task. First, available contractors evaluate task
announcements from several managers and submit bids on the tasks for which
they are suited. Then, the managers evaluate the received bids and determine
which contractor is most appropriate to execute the task. The process can
be repeated by further composing the task in smaller parts and letting the
contractor act as a manager in the next round.

The protocol precisely defines the messages that can be send between
the nodes and the processing of the messages after receiving a message. A
distinction is made between task announcements, task announcement pro-
cessing, bidding, bid processing, contract processing, reporting results and
termination. In all these stages of the protocol different messages can be send
and information can be exchanged. The message types have been designed
to capture the types of interactions that arise in a task-sharing approach to
distributed problem solving. Message contents have been selected to capture
the types of information that must be passed between nodes to make these
interactions effective.

The CNP is based on the fact that the agents (i.e. managers and contrac-
tors) are cooperative to solve a common problem. In a paper by Vokř́ınek
et al. [43] the CNP is brought to competitive environments, a protocol they
call the Competitive Contract Net Protocol (CCNP). This protocol does not
only cover the phase of contracting the commitments, but does also allow for
negotiation about decommitment and termination. It consists of three phases:

• a contracting phase, where conditions of agreement are concluded,

21

2.3 Decentralized solution concepts The Dial-a-Ride Problem with Time Windows

• an optional decommitment phase, where a contract can be broken, and

• a contract termination phase, where the compliance with the concluded
contract conditions is evaluated.

To suite the CNP for transportation scheduling different modifications can
be found in the literature. Fisher et al. [12] developed the Extended Contract
Net Protocol (ECNP) which include better tools for task decomposition and
task allocation suited for the transportation domain. This ECNP is used to
further decompose requests and allocate requests to vehicles within a company.

Three shortcomings of the ECNP are the lack of backtracking in case of
infeasible solutions, the impossibility for contractors to bid the same time
on different requests, and the bid comparison, which is only based on price.
Perugini et al. [35] developed the Provisional Agreement Protocol (PAP) which
is based on the ECNP, but overcomes all the above shortcomings to suit their
domain of global transportation scheduling.

An approach especially developed for the on-demand planning of passenger
transportation requests is developed by Cubillos and Demartini [8]. Instead
of direct negotiation between managers and contractors, a mediator is intro-
duced through which all communication is passed. The task announcement
and reception of bids is carried out by the mediator, who then forwards only
a sub-group of the received bids to the manager, filtering out the other ones.
This allows solution concepts that lie somewhere in-between a completely cen-
tralized and decentralized approach. The mediator has a more global vision of
the underlying assignment problem and by filtering it can eliminate solutions
that are too bad from a global perspective. This results in less communication
and better solutions.

Miyamoto et al. [30] have developed a route planning method for the dial-
a-ride problem. The method is very general and distinguishes the assignment
problem and the routing problem. The assignment problem is solved using
an implementation of the CNP and the routing problem is solved using a
heuristic.

2.3.3 Value determination

Decentralized approaches use some kind of auction to assign transportation re-
quests to vehicles. This is also the case in centralized approaches, but in those
methods all information is known by the central authority. In this section we
describe the way agents determine their bids. The determination of the value
of a bid for a request is important for the vehicle (assignment of requests), the
customer (price to be paid) and the system as a whole (efficiency).

The auction mechanism used by Mes et al. [28, 27] is the so called second-
price sealed-bid auction, which the authors choose because of its simplicity. In
this kind of auction, all vehicles announce their bids to the customer, without
knowing about other agents’ bids. The request is assigned to the vehicle with

22

The Dial-a-Ride Problem with Time Windows 2.3 Decentralized solution concepts

the lowest bid and the price to be paid by the customer is the value of the
second-lowest bid. They also notice that the optimal bid for a single auction
is the net cost price of the bidder. We notice later that such a bid is not
always optimal in competitive environments. For more details about auctions
we refer to Chapter 3.

Every time a new request becomes known, an auction is started and ve-
hicles can bid to get the rights to serve the request. Note that we deal with
a reverse auction here, because we have multiple sellers (the vehicles) and a
single buyer (the customer that places a request). This means that the bidder
with the lowest bid wins the auction and must serve the request.

A result of using a second-price sealed-bid auction is that (in an individual
auction) the optimal bid of a vehicle for a new request is equal to the minimal
additional costs from serving its current requests plus the new request. These
additional costs are composed of additional waiting time, serving time, and
possible penalty costs when some requests cannot be served on time anymore.
All these components depend on the internal scheduling of the vehicle agent, so
the bid price is dependent on how a vehicle inserts new requests into its current
schedule. For this internal scheduling the heuristics and exact algorithms
described in Section 2.2 can be used.

Often only direct costs of adding a new request to a current schedule
are considered. We can argue that this is usually not the optimal bid in a
competitive environment, because of the uncertainty about future requests
assigned to a vehicle. Every request assigned to a vehicle influences the bids
and assignments of this vehicle for future requests. For example, a vehicle can
act by placing a very high bid for a request because he thinks in the near future
a request with more potential profit will be announced. The set of auctions
can be seen as a sequential auction instead of multiple single auctions. We
further discuss this phenomenon in Chapter 3 (Section 3.3).

To incorporate some look-ahead capability, one can determine bids based
on full opportunity costs instead of direct costs. If a new request is not the
last request that will be auctioned, the total profit that a vehicle can obtain
in successive auctions highly depends on the outcome of the current auction.
This means that the vehicle agent must incorporate in the bid, the potential
loss of profit in successive auctions by winning the current auction. Such a
method is proposed by Figliozzi et al. who developed a one-step-look-ahead
algorithm, which evaluates future profits of one step or period into the future
[11]. Experiments show that this approach outperforms the naive method
(using only direct costs) in loaded travel distance and that it results in higher
profits.

Another aspect to take into account in the determination of a bid is the
chance of new requests in specific regions of the serving area. If a new request
has its delivery location in a popular area (i.e. where many requests have their
pickup location), this can increase the bid for this request [41].

23

2.3 Decentralized solution concepts The Dial-a-Ride Problem with Time Windows

In the chapter that follows we take a deeper look into the details of auc-
tions, and especially how to deal with uncertainty of future requests.

24

Chapter 3

Auctions

An auction can be seen as a mechanism to solve the problem of allocating
a single item or multiple items among multiple self-interested entities. As
described in the previous chapter, this is exactly what has to be done in the
DDARPTW; allocating requests to vehicles. In this chapter we provide a
short introduction into auction theory, which is used to develop an auction
mechanism to allocate requests to multiple companies.

Auctions are actually applications of mechanism design, so before we take
a look at auctions in Section 3.2, we start by introducing mechanisms in
Section 3.1. One of the most powerful and most often used auction types is
the second-price sealed-bid auction. We also use this auction in the mechanism
we propose for the DDARPTW, so some theory about this type of auction is
given in Section 3.2.3. The properties of such a second-price sealed-bid auction
do not always hold when putting multiple auctions in a sequence. Such a
sequence of auctions is called a sequential auction, and different techniques to
avoid undesirable properties are discussed in Section 3.3.

For more details about the subjects discussed in this chapter we refer the
interested reader to books by Krishna [22] and Shoham et al. [38].

3.1 Mechanisms

An auction is actually an application of mechanism design, just like for ex-
ample voting mechanisms, and we therefore start to introduce mechanisms.
First, we define the context in which mechanisms appear, known as a Bayesian
game. We call this setting a game because we investigate strategic behavior
between different players, and we call it Bayesian because mechanism design
is most often studied in settings where agents’ preferences are unknown to
each other and so we deal with a setting with incomplete information. The
latter statement implies that each player has a belief of the type of every other
player, which this player can use to play the game. This belief can change
over time, which adds a probabilistic element to the game.

25

3.1 Mechanisms Auctions

3.1.1 Context

Let us assume an environment of n agents with certain preferences that are
private knowledge and that are modeled by a single type, denoted by θ ∈ Θ.
In each stage of the game, agents are allowed to perform an action (e.g. place
a bid, throw a dice) a ∈ A. The action they choose to perform depends on
their strategy s ∈ Σ, which is a function that maps types to actions.

A Bayesian game is composed of a Bayesian game setting and a mecha-
nism.

Definition 1 (Bayesian game setting). A Bayesian game setting is a tuple
(N,Ω,Θ, p, u), where

• N is a finite set of n agents,

• O is a set of outcomes of the game,

• Θ = Θ1 × · · · ×Θn is a set of possible joint type vectors,

• p is a probability distribution on Θ, and

• u = (u1, . . . , un), where ui : O × Θ 7→ R is the utility function for each
agent i.

Note that we have not mentioned the actions that the players can take in
the definition of a Bayesian game setting. We have only defined the utility
function of the players, which is a function that denotes the value that a player
has for a certain outcome of the game. A mechanism for the Bayesian game
setting is defined as follows.

Definition 2 (Mechanism). A mechanism in a Bayesian game setting is a
pair (A,M), where

• A = A1 × · · · ×An, with Ai the set of possible actions for agent i ∈ N ,
and

• M : A 7→ Π(O) maps each action profile to a distribution over outcomes.

The purpose of mechanism design is to design a mechanism for a given
game setting such that the outcome of the game has certain desired properties.
So roughly spoken, we try to design rules for the game, such that playing the
game results in a desired outcome. Such a mechanism has to deal with the fact
that the agents are self-interested and might lie about their true preferences to
become better off. This strategic behavior of agents influences the properties
of the outcome of the game. We therefore have to search for mechanisms that
together with the game setting gives us, in equilibrium, a desired outcome,
no matter what the actual preferences of the agents are. With equilibrium we
refer to a state of the system in which competing influences are balanced and
where, without distortion, no changes take place.

26

Auctions 3.1 Mechanisms

3.1.2 Equilibria

Different equilibria can be distinguished, but in this text we limit the discus-
sion of equilibria to the dominant strategy equilibrium and the Bayes-Nash
equilibrium because these two are the most commonly used in strategic envi-
ronments with agents having incomplete knowledge.

We call the mapping from a player’s utility function to the set of actions
it performs a player’s strategy and denote this by si for a player i. Denote
the vector of other players’ strategies by s−i. Players try to maximize their
own utility by taking actions that increases the probability of a high-valued
outcome. When a player plays a strategy to maximize its utility independent
of the other players’ strategies, it plays a dominant strategy.

Definition 3 (Dominant strategy). A strategy si of a player is called dom-
inant if the following condition holds: ui(si, s

′
−i) ≥ ui(s

′
i, s

′
−i). This condition

states that the utility gained by the agent playing strategy si is greater than or
equal to the utility when it plays another strategy s′i, independent of the other
players’ strategies s′−i.

When all players play their dominant strategy, the game is in equilibrium.
We call this a dominant strategy equilibrium and the mechanism is said to be
strategyproof.

Definition 4 (Dominant strategy equilibrium). A Bayesian game is in
a dominant strategy equilibrium if all strategies played by the players are dom-
inant strategies.

It does not always have to be the case that every player in a game has
a dominant strategy. A player can also maximize its utility by anticipating
upon the strategies the other players play. In this case a Bayes-Nash equilib-
rium can exist, when, taken into account the beliefs about the strategies the
other players play, a player cannot gain by playing another strategy than the
equilibrium strategy.

Definition 5 (Bayes-Nash equilibrium). A Bayesian game is in a Bayes-
Nash equilibrium if every player i plays a strategy si which is a best response to
the expectation over the strategies played by the other players s−i. Formally,
this can be stated as follows: E[ui(si, s−i)] ≥ E[ui(s

′
i, s−i)], where E[] denotes

the expectation over the other players’ strategies according to some known
distribution.

Note that when a game is in a dominant strategy equilibrium, it is also in
a Bayes-Nash equilibrium, but not the other way around.

3.1.3 Implementation

One of the most desired properties for the outcome of a game is the consistence
of this outcome with a given social choice function C : u 7→ Ω. This function

27

3.1 Mechanisms Auctions

maps the utility functions of all players to a ”best” outcome, that would
have been chosen by a single authority (e.g. the mechanism designer) that
has the power to select an outcome. The goal is to design a mechanism that
implements this social choice function.

We consider two implementation concepts that differ in the way that other
players’ actions influences the actions of a single player. The first implemen-
tation concept is an implementation in dominant strategies and the second
solution concept is an implementation in Bayes-Nash equilibrium.

Definition 6 (Implementation in dominant strategies). Given a Bayesian
game setting (N,O,Θ, p, u), a mechanism (M,A) is an implementation in
dominant strategies of a social choice function C if for any vector of utility
functions u, the game has an equilibrium in dominant strategies, and in any
such equilibrium a∗ we have M(a∗) = C(u).

Definition 7 (Implementation in Bayes-Nash equilibrium). Given a
Bayesian game setting N,O,Θ, p, u), a mechanism (M,A) is an implemen-
tation in Bayes-Nash equilibrium of a social choice function C if there exists
a Bayes-Nash equilibrium of the game such that for every θ ∈ Θ and every
action profile a ∈ A that can arise given type profile θ in this equilibrium, we
have that M(a) = C(u(· , θ)).

Besides the desire of the outcome to be consistent with a specific social
choice function, there are some other desired properties. The most important
of those properties is truthfulness, which means that agents act truthfully in
the sense of disclosing their preferences.

3.1.4 The revelation principle

In the search for truthful mechanisms we can limit ourselves to a small subset
of all possible mechanisms. Let us define a direct mechanism to be a mech-
anism in which the only action available to the players is to announce their
type. Then it is possible to define the set of actions available to a player, Ai,
by Θi, the set of possible types. A player can lie by announcing a type θ̂i, that
is different from its real type θi. A direct mechanism is truthful or incentive
compatible if it is a dominant strategy for each player to announce its real
type. So every direct mechanism that implements a social choice function in
dominant strategies, is truthful. In order to search for truthful mechanisms
that are not direct, we can use the following principle.

Theorem 1 (Revelation principle). If there exists any mechanism that im-
plements a social choice function in dominant strategies, than there is a direct
mechanism that implements this social choice function in dominant strategies
and is truthful.

28

Auctions 3.1 Mechanisms

Proof. Assume an arbitrary mechanism that implements a social choice func-
tion in dominant strategies. Now we construct a new, direct mechanism, in
which the players disclose their types to the mechanism. The mechanism de-
termines the dominant strategies of the players and chooses the outcome, that
would have been chosen by the original mechanism.

If a player can lie about its type in the new mechanism, it implies that it
can be better off by following another strategy. This contradicts with the fact
that the chosen strategy is a dominant strategy. This implies that the new
mechanism is dominant-strategy truthful.

With use of the revelation principle, we can limit the search for truth-
ful dominant strategy implementations of social choice functions to direct
mechanisms. The same reasoning holds for truthful Bayes-Nash equilibrium
implementations.

3.1.5 Quasi-linear utility functions

It turns out that not all social choice functions can be implemented by a
truthful mechanism. One of the reasons for this is that there are no restrictions
for the preferences of the players. That way it is possible for a single agent
to always determine the social choice by its preferences. We do not discuss
this problem in further detail, because that is out of the scope of this text.
We rather focus on the solution, to be able to design truthful mechanisms for
social choice functions.

We limit the set of preferences that a player can have by introducing a
money element and defining quasi-linear utility functions. The outcomes of
the game are split up in a non-monetary part (e.g. the allocation of an object
to an agent) and a monetary part (e.g. a payment to the auctioneer) and these
parts are incorporated in the utility functions of the agents as follows.

Definition 8 (Quasi-linear utility function). Agents have quasi-linear
utility functions in an n-player Bayesian game when the set of outcomes is
O = X × R

n for a finite set X, and the utility of an agent i given joint type
θ is given by ui(o, θ) = vi(x, θ)− fi(pi). Here, o = (x, p) is an element of O,
vi : X × Θ 7→ R is an arbitrary function to calculate the value for an out-
come from an agent’s type vector, and fi : R 7→ R is a strictly monotonically
increasing function that calculates the (possibly negative) payment an agents
has to make.

By using quasi-linear utility functions we are sure that the preference of an
agent for a selection of any choice x ∈ X is independent from its preference for
having to pay a certain amount pi ∈ R to the mechanism. A second implication
is that agents only care about their own payments to the mechanism and not
about the payments other agents have to make.

29

3.2 Auctions as mechanisms Auctions

As can be derived from the function fi, there is some flexibility in calcu-
lating and evaluating payments. Agents can have different risk attitudes in
the way they value a unit amount of payment. This risk attitudes can be in-
corporated in the function fi. Unless stated otherwise we assume that agents
are risk neutral, such that fi can be ignored.

We are now ready to define a general mechanism for the setting in which
agents have quasi-linear utility functions. Actually, in such a mechanism the
function M described above is split up into two functions; a function κ for the
mapping of actions to choices (e.g. allocations) and a function ϕ that maps
actions to payments.

Definition 9 (Quasi-linear mechanism). A mechanism for a setting in
which agents have quasi-linear utility functions (for a Bayesian game setting
(N,O = X × R

n,Θ, p, u)) is a triple (A,κ, ϕ), where

• A = A1 × · · · × An, in which Ai is the set of actions available to agent
i ∈ N ,

• κ : A 7→ Π(X) is a function that maps each action profile to a distribu-
tion over choices, and

• ϕ : A 7→ R
n is a function that maps each action profile to a payment for

each agent.

The definition of truthfulness can now be stated according to quasi-linear
mechanisms.

Definition 10 (Truthfulness). A quasi-linear mechanism is truthful if it is
direct (i.e. Ai = Θi) and agent’s i equilibrium strategy is to adopt the strategy
v̂i = vi (i.e. announcing its real valuation for the outcomes), for all i and vi.

With this brief introduction into mechanisms we are ready to focus on
auctions, which are an important application of mechanisms.

3.2 Auctions as mechanisms

We noted earlier that auctions can be seen as mechanisms to solve problems
related to allocating goods among different self-interested agents. In this sec-
tion we define auctions as mechanisms, show how auctions can be used to solve
the DDARPTW, and describe one of the most often used types of auctions.

3.2.1 Definition

Agents that compete to obtain the goods are called bidders or buyers, and
agents that allocate the goods are called sellers or auctioneers. We assume

30

Auctions 3.2 Auctions as mechanisms

that agents have quasi-linear utility functions, so the quasi-linear mechanism
setting can be used.1

The following elements of a mechanism with respect to an auction have to
be identified:

• a set of agents N ,

• a set of outcomes O = X × R
n, where n denotes |N |,

• a set of actions Ai available to each agent i ∈ N ,

• a choice function κ that selects one of the outcomes given the agents’
actions, and

• a payment function ϕ that determines what each agent must pay given
the agents’ actions.

Obviously, the set of agents N contains all the agents that are willing to
pay for the good, but in some settings the seller itself can also act as an agent
(e.g. in cases where the objective of the auction is to maximize revenue), and
then not all agents are bidders. Therefore, we denote by B ⊆ N the set of
bidders. The set of outcomes, O, consists of all possible ways to allocate the
good and all possible ways of charging the agents.

The set of possible actions, Ai, possible for an agent i can vary for different
auctions according to the defined rules. One can think of an auction in which
an agent can make a single bid and one can think of a different auction in
which multiple sequential bids can be released by an agent. In this text we
only consider settings in which the only possible action for an agent is to place
a single bid. In such a setting the strategy for bidder i ∈ B is a function that
maps its valuation for a certain outcome to a bid, βi : [0, ω] → R

+, where ω
is the highest possible valuation.

The choice and payment functions depend on the objective of the auction.
Some example objectives are to allocate the goods as efficient as possible, to
maximize revenue for the seller, or to minimize costs for the buyers.

The agents are self-interested in the way that they try to maximize their
utility. This utility is a quasi-linear function, described above, based on an
agent’s valuation for the auctioned good, the outcome of the auction and the
payment it has to make.

To be able to decide what action an agent will take and to calculate its
expected utility, an agent’s valuation must be modeled. This can be done in
different ways depending on the amount of information an agent has about
the other agents. The purpose of the different settings is to simplify the
many different valuations agents can have in order to better analyze specific
problems.

1From now on we leave out the term ”quasi-linear” in front of ”mechanism” and assume
that the mechanism used is always quasi-linear.

31

3.2 Auctions as mechanisms Auctions

The most commonly used setting is the Independent Private Value (IPV)
setting in which all agents’ valuations are drawn independently from the same
distribution. This distribution is commonly known by all agents and the type
of an agent depends only on its own information. This setting is appropriate
in auctions with buyers that have valuations based on personal tastes.

On the opposite of the IPV setting we find the Common Value (CV)
setting. In this setting all agents have the same value for the good but that
value is not known. Each agent has a private signal about this value, which
makes it possible to determine its belief about the distribution of this value.
An example can be found in the search for oil. Oil companies all have the same
value for a piece of land; namely the value of the amount of oil it contains.
However, it is uncertain how much oil the land exactly contains and therefore
the beliefs about the value distribution depends on the information retrieval
techniques of a company.

When we combine the IPV and CV settings we arrive at a setting called
Affiliated Values (AV) in which the bidders have both a private-value com-
ponent and a common-value component. This implies that a high valuation
of one particular agent increases the probability that other agents have high
valuations as well.

For the rest of this text, unless stated otherwise, we assume the IPV set-
ting. This means that a valuation vi from a bidder i is drawn, just before the
auction starts, from a commonly known distribution function F .

3.2.2 Example of an auction mechanism for the DDARPTW

To give the reader an understanding of how an auction mechanism can be used
in the DDARPTW, we identify the elements of a Bayesian game setting and an
auction mechanism for the DDARPTW in a multiple-company environment.

The set of agents N that appears in our setting is the set of the n compa-
nies. The customer that initiates the auction is not included in this set. An
outcome of the game played by the companies is an allocation of a request to
one of these companies, together with a (possibly negative) payment for each
of this companies. This means that the set of outcomes O consists of all pos-
sible combinations of allocations and payments. A type vector of an agent in
our setting consists of values that companies can announce to the auctioneer,
such that the auctioneer can determine an outcome. In our setting the type
of a company is its current schedule of requests. The set Θ consists therefore
of all the possible combinations of current schedules that companies can have.

It is hard to define a probability distribution p on the set of possible joint
type vectors, because in our setting, the type of a company is (based on) its
internal schedule. The utility function vector can be identified for the players
in our setting. For each company the utility function is a function of the set
of outcomes and the set of possible type vectors. The utility of a company is
calculated by subtracting its costs from its income, where the costs arise from

32

Auctions 3.2 Auctions as mechanisms

serving requests and the income arises from negative payments made by the
company to the mechanism.

If we want to define an auction mechanism for this setting, the following
additional elements need to be identified:

• a set of actions Ai available to each agent i ∈ N ,

• a choice function κ that selects one of the outcomes given the agents’
actions, and

• a payment function ϕ that determines what each agent must pay given
the agents’ actions.

The set of actions that is available to each company defines the way in
which this company communicates with the customer that announces the re-
quest. The choice function κ is a function of the auctioneer that selects the
company that has to serve the request, and the payment function ϕ is a func-
tion that determines the (negative) payment that each company must pay to
the auctioneer. One possible way these functions can be defined is to follow a
second-price sealed-bid auction. This often used type of auction is discussed
next.

3.2.3 Sealed-bid second-price auctions

One of the most often used auction types is the so called sealed-bid second-
price auction. In such an auction the bidders announce their bid in a ”sealed
envelop” to the auctioneer, so that these bidders cannot view each others’
bid. The highest bidder gets the object and has to pay the amount of the
second-highest bid.

If we let vi be the true valuation of bidder i for the good, let bi be the bid
that i places and bj denotes the bids of the other buyers. The utility for agent
i is:

ui =

{

vi −maxj 6=i bj if bi > maxj 6=i bj
0 if bi ≤ maxj 6=i bj

(3.1)

So, if the bid of i is the highest bid, it has to pay the second-highest bid and
its utility is the difference between its valuation and its payment, and if i does
not place the highest bid, its utility is zero. Two or more bidders can also tie,
which happens when the bids are equal. The winner is determined by flipping
a coin and the utility in this case is also zero, because the price paid (i.e. the
bid of the loser of the coin flipping) is equal to the bid of the winner.

In the following theorem it is showed that bidding behavior in a second-
price sealed bid auction is straightforward and that the best bid an agent can
place is equal to its valuation, bi = vi.

Theorem 2. In a second-price sealed bid auction, it is a weakly dominant
strategy for a bidder to bid its true valuation: β(v) = v.

33

3.2 Auctions as mechanisms Auctions

Proof. We start by describing why a bidder cannot gain from bidding less
than its true valuation vi and then describe why it cannot gain from bidding
more than this value.

Suppose bidder i bids v̂i < vi and let ri = maxj 6=i bj denote the highest of
the other agents’ bids. The bidder still wins the auction if vi > v̂i > ri and
its profit is still vi − ri. If ri > vi > v̂i, bidder i still loses with zero profit.
However, it is worse off if vi > ri > v̂i, because now it loses the auction, where
it would have won the auction if it had bid vi. So, when the bidder bids less
than its true value, it will never be better off.

Now, suppose that bidder i bids more than its true value, v̂i > vi. If
v̂i > vi > ri, it still wins the auction for the same price with profit vi − ri.
If the bidder did not won before, and does still not win, ri > v̂i > vi, then
it makes the same zero profit. In the case of v̂i > ri > vi the bidder makes
a loss, because then it wins the auction, but the price it has to pay is more
than its true valuation.

This leads to the conclusion that a bidder can never be better off by bidding
more or less than its true valuation, it can only be worse off. It implies that
truthful bidding is a weakly dominant strategy for a bidder.

It is also possible to write down the expected payment of a bidder i with
valuation vi. Clearly, this expected payment can be written as:

ϕ(vi) = Probability of winning the auction × Expected second-highest bid.

What is the probability that vi is higher than the maximum of all other
bids? Let the random variable Y ≡ Y (n−1) denote the highest value among
the n−1 bidders, other than i.2 Also, let G denote the distribution function of
Y . G can be derived from the distribution function of the bidders’ valuations
F : for all y, G(y) = F (y)(n−1). So, the probability that the value of a bidder
vi is higher than the maximum of the other bidders’ values is G(vi).

We now have to find the expected second-highest bid, given that vi is the
highest value. Using the definition of Y , we can easily say that the expected
second-highest value is Y .

To conclude, the expected payment of bidder i in a second-price auction
can be given by:

ϕ(vi) = G(vi)× E[Y | Y < vi] (3.2)

We derived the dominant strategy for a bidder and its ex ante expected
payment in a sealed-bid second-price auction. We now turn our attention to
a sequence of this kind of auctions and show some problems that arise.

2This variable is also called the highest order statistic.

34

Auctions 3.3 Sequential auctions

3.3 Sequential auctions

A sequential auction is actually a sequence of single auctions of whatever which
type and is often used in environments where the objects for sale become
available at different points in time. The main difference with single auctions
is that the bidding behavior of bidders in a sequential setting strongly depends
on future auctions. In this section we describe a generalized model to study
this kind of auctions and we show new equilibria for specific settings. We
also discuss a solution to the problem that sequential auctions do not have a
dominant strategy although their single auction elements do.

3.3.1 The model

The model we describe to study sequential auctions is a combination of the
generalized model used by Juda and Parkes [18] and the model to incorporate
different levels of information uncertainty discussed by Fatima et al. [10]. The
model allows bidders to desire multiple non-identical objects and it allows
bidders to arrive and depart dynamically.

We denote by B the set of bidders, which is a subset of the set of agents
N .3 The number of bidders is denoted by n and is equal to |B|. The different
types of goods are denoted by G = [1 . . . K] for a total number of K different
goods. Because we also allow bidders to desire multiple goods, we need to
specify valuations for bundles of goods instead of valuations for single goods.
Therefore, we denote by L a bundle of goods, where L ⊆ G. We assume that
a bundle contains at most one good per type.

In this online setting, the type of a bidder does not only include the
valuation for a certain bundle of goods, but also the arrival and departure
time of the bidder. Formally, the type of bidder i ∈ B is denoted by the tuple
(ai, di, vi), with arrival time ai ∈ {0, 1, . . . }, departure time di ∈ {0, 1, . . . }
and private valuation vi(L) ≥ 0 for each bundle of goods L that can be re-
ceived by the bidder between its arrival time ai and its departure time di. For
all other bundles a bidder has zero value. Again, bidders have quasi-linear
utilities, so the utility of bidder i receiving bundle L is ui(L, p) = vi(L) − ϕ
with a payment ϕ.

To deal with different information uncertainties, we further denote by mk

the number of single auctions where a good of type k will be awarded and
let Plast(jk) be the probability that auction jk (for 1 ≤ jk ≤ mk) is the last
auction held for a good of type k before the bidder will depart. At last, let
Pbidders(jk, r) denote the probability that auction jk for a good of type k has
r bidders.

3Note that the seller is also an agent, but that it is not included in B.

35

3.3 Sequential auctions Auctions

3.3.2 The sequential auction problem

Because bids of a bidder do not only depend on the current auction, but
also on future auctions, it is not obvious that a dominant bidding strategy
exists, even if each individual auction in the sequence is strategy-proof (i.e.
the sequential auction is locally strategy-proof). When this is the case, one
talks about the sequential auction problem, which is stated in Definition 11.

Definition 11 (The sequential auction problem). The phenomenon that,
given a sequence of auctions and despite each single auction being locally
strategy-proof, it does not follow that a bidder has a dominant bidding strategy
in the sequential auction.

There are a few causes for this problem to arise. The first cause is re-
lated to the bids of the competitors of a bidder. These competitors’ bids are
conditioned on the bids of the bidder in previous auctions, because there is un-
certainty about the number of bidders in the next auction (did the bidder won
the previous auction?) and the number of auctions still to come. Therefore,
a bidder does not know how to optimally influence the bids of competitors.

The second cause is called the multiple copies problem. The multiple copies
problem occurs when a buyer can act in multiple auctions for the same good.
It often happens that the winning bid is not the same in all these auctions and
therefore, the final price of the good for the buyer depends on the auction it
acts in. At the end, the buyer could end up winning the auction with a higher
winning bid than the winner in another auction, even if the latter agent’s real
value is higher.

The existence of bundles that are substitutes is also a reason for the prob-
lem to appear. Two bundles L1 and L2, such that L1∩L2 = ∅, are substitutes
if v(L1 ∪ L2) < v(L1) + v(L2). A bidder does not know which bundle among
the substitutes to pursue and therefore does not have a dominant strategy.

The fourth cause is the existence of items with uncertain marginal value4,
which happens if the marginal value of an item depends on the other goods
held by the bidder. The problem is that the bidder does not no what goods it
retrieves until its departure time. This is called the exposure problem. Infor-
mally, the exposure problem occurs whenever an agent has a valuation for a
bundle of goods which is greater than the sum of the valuations for the single
goods. In other words, there exists complement bundles. Two bundles L1 and
L2, such that L1 ∩ L2 = ∅, are complements if v(L1 ∪ L2) > v(L1) + v(L2).
This agent can buy a single good for a price higher than its valuation, in the
hope that it will win the rest of the bundle of goods in succeeding auctions at
a profitable price. If the agent fails to obtain the rest of the bundle, it will end
up with a loss, due to its overbid for the single good in the earlier auction.

4The marginal value of a good is the extra value this good adds to the total value of a
bundle.

36

Auctions 3.3 Sequential auctions

As by Juda and Parkes [18], the causes of the sequential auction problem
can be summarized as follows:

Theorem 3. Given locally strategy-proof single-item auctions, the sequential
auction problem exists for a bidder if and only if (1) its competitors’ bids are
conditioned on its bids in previous auctions, (2) the multiple copies problem
exists, (3) there exist bundles that are substitutes, or (4) the exposure problem
exists.

Proof. (Sketch) (⇒) It can be seen from the discussion of the sequential auc-
tion problem above, that if one of these causes exists, there can be no dominant
strategy. (⇐) If none of the causes exists, then in all single auctions it is a
dominant strategy to bid the marginal value of the auctioned good.

Next, we search for solutions to the sequential auction problem, which
can be divided into options-based solutions, and techniques to find other than
dominant strategy equilibria.

3.3.3 Options-based solution

A decentralized solution to the earlier noticed sequential auction problem is to
introduce options. An option can be seen as a right to buy the specific object
for an agreed price, called the exercise price. Instead of acquiring the good
directly, the buyers first bid to acquire an option for that good. At the end of
the sequence of auctions, a buyer can decide whether or not it will exercise this
option and pay the pre-agreed exercise price to retrieve the good. The result
is that the risk of not winning subsequent auctions (in which complementary
objects are auctioned), is (partly) transfered to the seller of the item. This
results in a solution to the exposure problem. A distinction can be made
between zero-priced options [18], which transfer all the risk to the seller, and
priced options [31], which transfer only a part of the risk to the seller.

Zero-priced options

We first take a look at a market design with zero-priced options and it turns
out that in this setting truth-telling is a dominant strategy. It must be noted
that in the original paper by Juda and Parkes [18], the buyers do not bid
directly to the seller, but they do this via a so called proxy-agent. We first
describe the design by assuming the buyers are intelligent agents and that
they communicate directly to the market mechanism. However, this is not
a direct revelation mechanism and it can be shown that this auction is not
incentive compatible. At the end of the discussion, we conclude that making
an explicit distinction between buyers and proxy-agents solves this problem.

In each single auction, an option to obtain a good k is auctioned. Every
buyer i determines the value of its bid by calculating its maximum marginal

37

3.3 Sequential auctions Auctions

value for the good:

vi(k) = max
L

[vi(L ∪ {k}) − vi(L)] (3.3)

The reason for a buyer to bid only its maximum marginal value for the good
is that, in this way, it will win any auction that could possibly benefit him and
it will only lose those auctions that could never be of benefit. Suppose that it
places a bid that is higher than its maximum marginal value. If it wins that
auction, it takes the risk of paying an exercise price higher than the maximum
benefit of obtaining the good.

The bidder with the highest bid receives the option and the exercise price
of this option is set to the second-highest bid. Let the set of all acquired
options be denoted by Φ, the bundle of goods corresponding to the set of
options φ by L(φ) and denote by π(L(φ)) the sum of exercise prices of the
bundle of goods corresponding to the set of options φ. At its departure time,
a buyer determines which options to exercise by maximizing its utility:

φ = arg max
φ⊆Φ

(vi(L(Φ))− π(L(φ))). (3.4)

If there is no combination of options with a positive utility, then all options
are returned.

To overcome the multiple copies problem, sellers allow buyers to match
exercise prices when, in a succeeding auction for the same good, the option
for that good has a lower exercise price. It would be obvious to just match
the lowest winning price they observe during their lifetime, but it turns out
that this scheme will not lead to a truthful mechanism. Assume a bidder who
reports a higher value than its real value and another bidder whose real value
is higher than the former bidder’s value, but less than the former bidder’s
reported value. Obviously, the first bidder wins the option with the exercise
price of the second bidder. Suppose that the same good will be auctioned
the next day, but that the losing bidder of the first day is departed. A third
bidder, whose real value is less than the others’, wins this second auction for
an exercise price of zero (because there are no other bidders). If the exercise
prices are matched, the exercise price of the winning bidder of the first auction
matches zero and it benefits from misreporting its value, because it wins the
second auction instead of the first auction. In Table 3.1, setting b, an example
is given.

For the reason described above, the following price matching scheme is
used. First, when a buyer wins an auction, it memorizes the buyer with the
second-highest bid. Second, although a buyer can only acquire one option
for a specific type of good, it keeps track of future auctions for this good
by checking the exercise price for the auctioned option. If this exercise price
is lower than the exercise price of the option it acquired and the winning
proxy is not in its local memory (i.e. this is the bidder to which it would have

38

Auctions 3.3 Sequential auctions

Setting Bidder Type Day1 Day2

a. Truth Alice {Day1,Day1,$10} 8Bob -
Bob {Day1,Day2,$8} - 6Claire

Claire {Day1,Day2,$6} - -

b. Misreport (Low price) Alice {Day1,Day1,$10} - -

Bob {Day1,Day2,$1̂2} 10 10→ 0
Claire {Day1,Day2,$6} - 0

c. Misreport (Scheme) Alice {Day1,Day1,$10} - -

Bob {Day1,Day2,$1̂2} 10Alice 8Alice → 6
Claire {Day1,Day2,$6} - 0

Table 3.1: Examples of price matching. (a) All bidders report their true
valuation. (b) One bidder misreports its valuation and exercise prices are
match to the lowest price seen. (c) One bidder misreports its valuation and
exercise prices are match using bookkeeping.

competed if it delayed bidding to this later auction), it will match its own
exercise price down to the new exercise price. When the highest bidder in the
second auction is not the same as the one already in its local memory, it will
replace this bidder with the second-highest bidder in the latter auction. If it
is the same bidder as in its local memory, it will clear its memory. This way,
a winning bidder always keeps track of the bidder who would have won the
option, if it itself was not present in that auction. In Table 3.1 three examples
are given to show (a) what happens when all bidders tell the truth, (b) what
happens when one is misreporting its value and prices are matched with the
lowest price, and (c) what happens when one bidder is misreporting its value
and prices are matched using the aforementioned price matching scheme.

The algorithm above is not truthful. The reason for this is that the options
are priceless and a buyer can therefore obtain as many options it wants by
representing itself as a bidder with high values. Suppose a bidder acts as if
it values all goods it wants higher than its true valuations. This way it can
collect many options and can decide at the end, what options to exercise. This
makes the auction very inefficient.

To overcome this problem, so called proxy-agents are introduced. Buyers
tell this proxy-agents their valuations for different combinations of bundles of
goods, their arrival time, and their departure time. Proxy-agents transform
the market into a direct revelation mechanism. In a study by Juda et al. [18]
it is proved that truthful revelation of valuation, arrival and departure to the
proxies is a dominant strategy for a buyer in this options-based market. It is
also showed that the mechanism is individually-rational for both buyers and
sellers, which means that taking part of the auction can never give them less
utility than not taking part. The utility for buyers is never negative, because
the proxy-agent chooses a set of options that maximizes a buyer’s utility or it

39

3.3 Sequential auctions Auctions

chooses no set at all. For a seller, the exercise price of each option is at least
zero, so the utility (i.e. revenue) for a seller is also never negative.

A problem that arises when proxy-agents are introduced is how to elicit
the preferences (i.e. valuations) for certain bundles of goods from a buyer. In
other words, how can a buyer tell its proxy-agent what bundles of goods it
like, or does not like? Some techniques for preference elicitation are developed
by Conen and Sandholm [4] and by Parkes [34].

Priced options

An advantage of using priced options over free options is that the options can
be auctioned instead of the goods, and that the exercise prices can be fixed
by the seller. This can attract more buyers, resulting in a higher revenue
for the auctioneer. A disadvantage of a method with priced options is that
bidders must also take into account the expected value of an option to justify
the costs, which makes it harder to support a simple, truthful dominant bid-
ding strategy [18]. Because we prefer simple, dominant strategies over higher
revenue, methods with priced options are only briefly discussed.

Mous et al. [31] propose an approach of using priced options to solve the
exposure problem in sequential auctions. In this approach, not the goods, but
the options are sold using a first-price sealed bid auction. The exercise price
is determined by the seller and it can fix this price in such a way to influence
the market entry effect (i.e. to encourage buyers to stay in the market).

It is showed analytically, that using priced options can increase the ex-
pected profit for both the buyer and the seller, compared to auctioning the
goods without options. The buyer can increase expected profit, because by
not winning a next auction, it limit its loss to the option price. The seller can
increase expected profit, because a buyer has more money to spend to place
a higher option bid, to increase its chances of winning a single auction.

A method to solve the multiple copies problem with priced options is dis-
cussed by Gopal et al. [15]. A comparison is made with options in financial
markets and it is demonstrated that these options cannot be employed in
auction markets, because the fundamentals of pricing the options are diffe-
rent. Experiments discussed in their paper suggest that options can provide
significant benefits for the seller as well as the buyer.

3.3.4 Finding other equilibria

The problem described in the previous subsection can be solved in different
ways. One way is to find other equilibrium strategies instead of the dominant
strategy. We show that a Bayes-Nash equilibrium can be designed for a setting
in which the number of bidders and the number of auctions is known, and for
a setting in which these numbers are not known.

40

Auctions 3.3 Sequential auctions

Known number of bidders and number of auctions

In this first setting, in which we assume identical objects (K = 1), the val-
uations for the m objects to be auctioned are independently and identically
distributed across the bidders. We denote by Vj : R

+ → [0, 1](1 ≤ j ≤ m)
the probability distribution function for the valuation for object j. We also
assume that each bidder needs only a single object, which implies that there
are n− j+ 1 bidders for auction j, and that these objects are auctioned using
sealed bid second-price rules.

In a sequential auction, a bidder’s bid does not only depend on the utility
it can derive in the current auction, but also on the expected utility of future
auctions. When a bidder expects to get a higher utility in a future auction, it
will not bid (or will place a zero bid) in the current auction. It turns out that
the expected utility of a bidder in a specific auction depends on the number of
total bidders in that auction. To calculate this expected utility for a specific
auction y we need the ex ante probability5 that a bidder wins this yth auction
in a series from the current to the last auction. Let ψ(y, j,m, n) denote this
probability, with j ≤ y ≤ m. Obviously, before the first auction, all bidders
have equal probability of winning this auction, so ψ(1, 1,m, n) = 1/n. In the
second auction, the winner of the first auction does not place a bid anymore,
so the ex ante probability of just winning the second auction is 1/(n − 1).
Then the ex ante probability before the first auction of winning the second
auction becomes (1− 1/n)(1/(n− 1)) = 1/n, because the probability of losing
the first auction is (1 − 1/n). Following the same reasoning, the ex ante
probability before the first auction of winning the yth auction is also 1/n.
We can generalize this to the ex ante probability before the jth auction of
winning the yth auction to ψ(y, j,m, n) = 1

n−j+1 . The expected utility for
the (y − 1)th auction depends on this probability. In the following formula
u1(j,m, n) is the ex ante expected utility from winning any auction in the
series of auctions from the jth to the last one m, and uy(m,n) is the expected
utility for the yth auction in the series of m auctions with n bidders for the
first auction:

u1(j,m, n) =
m

∑

y=j

ψ(y, j,m, n)uy(m,n) =
1

n− j + 1

m
∑

y=j

uy(m,n). (3.5)

The value of uy(m,n) can be calculated considering every possible outcome
for a bidder in that specific auction.6 This brings us to the following theorem:

5This is the probability calculated before the object values are drawn.
6For the last auction, uy is equal to the expected profit for a single sealed bid second-

price auction, but for the other auctions this is more complicated. In our opinion this does
not contribute to a better understanding of the theorem, and therefore we refer to existing
literature [10, 22].

41

3.3 Sequential auctions Auctions

Theorem 4 (Equilibrium in a sequential second-price auction). If
each auction in a series is conducted using the second-price rules, then the
equilibrium for auction j (1 ≤ j ≤ m) is:

βj(vj) = max{0, vj − u1(j + 1,m, n)} (3.6)

Proof. (Sketch) Intuitively a bidder has to make a bid of zero if it expect to
make more profit in any of the upcoming auctions (when vj − u1(j + 1,m, n)
is negative). When the difference between its valuation and the expected
profit in upcoming auctions is positive, the bidder has to spread its chances
of winning an object, starting with the current auction.

For the full proof of Theorem 4 and the calculation of uy(m,n) we refer
interested readers to an article by Fatima et al. [10] or a book by Krishna [22].

Uncertainty about number of bidders and number of auctions

We now point our attention to finding an equilibrium in a setting with an
uncertain number of bidders and an uncertain number of auctions [10]. This
means that new bidders can enter the series of auctions before every new
single auction starts and that the bidders do not know how many objects will
be auctioned. Let us denote by Pbidders(j, r) the probability that auction j
has r bidders and by Plast(j) the probability that auction j is the last auction.
We assume that all bidders know that there are no more than n bidders and
no more than m auctions. Also, let R be a vector of size m with element Rj

denoting the number of bidders in auction j. First, we find an equilibrium for
an uncertain number of bidders, which is then extended to an equilibrium for
both uncertainties. The ex ante probability of winning auction y in the series
of auctions from j to m, given the number of bidders per auction in R, is:

ψ(y, j,m,R) =
1

Ry

×
(

y−1
∏

k=j

(1−
1

Rk

)
)

, (3.7)

which is just the probability of winning auction y, times the probability of
losing all previous auctions.

The ex-ante expected utility of winning any auction y from the jth to the
mth then becomes, like the first setting (3.5):

u2(j,m,N) =

m
∑

y=j

ψ(y, j,m,N)uy(m,N). (3.8)

In general, we can say that the ex ante expected utility of winning any
auction in the series from the jth to the mth one is:

u2(j,m) =

n
∑

Rj=1

· · ·
n

∑

Rm=1

(

(

m
∏

i=j

Pbidders(i, Ri))× ψ(y, j,m,R) × uy(m,R)
)

.

(3.9)

42

Auctions 3.3 Sequential auctions

The equilibrium bids are the same as for the first setting, although the ex ante
expected profits u(j,m) are different:

βj(vj) = max{0, vj − u2(j + 1,m)}. (3.10)

This equilibrium can easily be extended to an equilibrium for the setting with
an unknown number of objects. We have to insert the probability of y being
the last auction into the ex-ante probability of winning this auction in the
series from the jth to the mth auction:

ψ(y, j,m,R) =
(

y−1
∏

k=j

(1− Plast(k))
)

× ψ(y, j,m,R) (3.11)

Substituting this in the previous ex ante expected profit, gives:

u2(j,m) =

n
∑

Rj=1

· · ·
n

∑

Rm=1

(

(

m
∏

i=j

Pbidders(i, Ri))× ψ(y, j,m,R) × uy(m,R)
)

.

(3.12)
which leads to an equilibrium bid of:

βj(vj) = vj − u(j + 1,m, n). (3.13)

The complexity of the computation of the Bayesian-Nash equilibria de-
pends on the calculation of the functions u1 and u2. These functions only
depend on information known by all bidders before the start of the first auc-
tion. Therefore, these functions can be calculated once and computing the
equilibrium bids in an auction takes constant time, O(1). The time to com-
pute the function u1 is O(m) and u2 can be pre-computed in time O(mnm).

Notice that in both settings, the equilibrium bid is build up from the true
valuation for the good, minus the expected utility for future auctions. The
assumptions that are made (i.e. that we are dealing with identical objects and
that each bidder only needs a single object) do not hold for our transportation
setting, because each transportation request is different and taxi companies
need multiple requests to create a route. Therefore the bid determination
method described above cannot be used in the mechanism we describe in the
next chapter, but we do use a similar approach in places where we have to
deal with uncertainty about future transportation requests. Because we are
dealing with two different measures for the bid value and utility, we have to
try to express one in the other. The bid is determined by subtracting that
part of the valuation that would lead to a significant decrease in probability
to win future auctions (i.e. when future requests result in negative profit).

43

Chapter 4

Moving to a multi-company
environment

Service quality is low in the current situation, where only one company has
the rights to serve requests made by customers. In this chapter a multi-
company environment is proposed, in which multiple companies compete with
each other on the assignment of requests. We try to create an incentive for
these companies to serve requests with a higher service quality. The general
idea is that multiple companies announce an offer to the customer, and that
subsequently the customer chooses the company that must serve its request.
Conditioned on some negotiated constraints, the winning company can insert
the request into its schedule. This way, companies and customers together
influence the final assignment of requests to vehicles.

The multi-company setting can be seen as a Bayesian game setting, a
concept that is already discussed in Chapter 3. Before we discuss the elements
that are contained in a such a setting (e.g. allocation function or payment
function), we provide in Section 4.1 an overview of the mechanism we propose.
In subsequent sections we discuss the elements of a Bayesian game setting
and the corresponding auction in greater detail. Section 4.2 is devoted to
describing the type of bid that is used. Opposed to earlier work, bids do not
contain monetary values, but do contain a measure of service quality.

In Section 4.3 we describe the type of auction that is incorporated into the
mechanism. Payments in this auction are not determined within the auction,
but before the auction starts. We show that if payments are too low or too
high, undesirable situations arise, and therefore we provide a lower and an
upper bound on this payments.

The outcome of an auction is an allocation of the auctioned request and
a payment for the winning company. After a company is allocated a request,
it must insert this request into its current schedule. By adding a constraint
for service quality to an existing Mixed Integer Program (MIP), we ensure
that the request is served according to the negotiated conditions. To speed up
the solving of the MIP, extra constraints are added for locations that cannot

45

4.1 Mechanism overview Moving to a multi-company environment

be changed anymore. The added constraints and the insertion process are
discussed in Section 4.4.

In Section 4.5 we show that calculating bid values in our setting is not
straightforward. Therefore, companies are allowed to incorporate some know-
ledge about future requests in their calculation, to be able to announce better
bids. To simulate the insertion of future requests a basic insertion heuristic
is used, to which we add a service quality component. By the use of a Monte
Carlo simulation, the best bid value is calculated. In Section 4.5 we show that
calculating bid values in our setting is not straightforward. Therefore, compa-
nies are allowed to incorporate some knowledge about future requests in their
calculation, to be able to announce better bids. To simulate the insertion of
future requests the MIP that was discussed earlier could be used, but that
would take too much computation time. Therefore, we use a basic insertion
heuristic, to which we add a service quality component. This heuristic is re-
peatedly used in a Monte Carlo simulation to calculate the best bid value for
a request.

As mentioned before, we start by giving an overview of the proposed mech-
anism.

4.1 Mechanism overview

In this section an overview is given of the mechanism we propose to allocate
incoming requests to multiple companies. From our knowledge of auctions,
described in Chapter 3, we know that these kind of mechanisms are an efficient
approach to allocate items to resources. The question is how to fill in the
elements of an auction such as the bid type and the bid calculation method.
For the sake of completeness of the dial-a-ride system, we also want to know
what happens after a request is assigned to a company, i.e. how the request
is inserted into a company’s schedule. In Figure 4.1 an overview is given of
the whole process from announcing a request by a customer to inserting that
request into a company’s schedule.

When a customer decides that it wants to travel between two locations, it
announces a request to all known companies, shown in Figure 4.1(a).1 Each
company has a number of vehicles that can be used to transport customers,
and we assume that all vehicles have equal capabilities (e.g. equal capacity,
same speed).

Once a company receives a new request, it checks whether it is possible
to insert this request into one of its vehicle schedules in any possible way (see
Figure 4.1(b)). This is done by trying to insert both the pickup node and

1In a real-life setting, a customer does not directly announce a request to all companies,
but it announces this request to a call center. This call center can check whether this request
is valid, and can then forward the request to all known companies. With the assumptions
we make in this thesis, there is no difference in the outcome when using a call center instead
of using a direct negotiation between the customer and the companies.

46

Moving to a multi-company environment 4.1 Mechanism overview

(a) Customer announces request to all
known companies.

(b) Each company checks whether the
incoming request can be inserted into
one of its current vehicle schedules and
possible future requests.

(c) Each company calculates the bid
value that it will announce, taking into
account its current vehicle schedules.

(d) Each company announces its bid to
the customer.

(e) Customer assigns the request to the
company that announces the best bid.

(f) The company to which the customer
has assigned the request, inserts the re-
quest into one of its vehicle schedules.

Figure 4.1: The whole process of the assignment of a request to a company.

the delivery node into the current schedule using a heuristic that is described
in Section 4.5.1. If it is not possible to insert the request into one of the
company’s vehicle schedules, the company cannot serve the request at all, and
it will not place a bid in the current auction.2 If it is possible to insert the
incoming request into one the company’s vehicle schedules, a bid value has to
be calculated for this request (see Figure 4.1(c)). This is done in the way that

2In our implementation a company announces a bid with a negative bid value in order
to let the customer know that the company cannot serve the request.

47

4.2 Bidding service quality Moving to a multi-company environment

is discussed in Section 4.5.
When a customer has received all bids (Figure 4.1(d)), it can determine

the best bid (e.g. highest service quality, lowest costs) and the conditions that
have to be met by the winning company in serving the request. A message
is sent to the winning company, that it must serve the request with these
determined conditions, and all other companies are sent a message that they
have not win the auction.

The company to which the request is assigned has to insert the request
into one of its vehicle schedules (Figure 4.1(f)). This is done by an on-line
optimization technique which is further handled in Section 4.4.

To be clear about the properties of the environment in which the algorithm
operates, we make the following assumptions:

• Travel times between two locations are constant. This implies that a ride
between these locations always takes the same amount of time, whatever
how busy it is.

• Vehicles are always driving according to their schedule; they cannot be
late and they always show up on a location.

• Vehicles are always available; there are no breakdowns.

• One request is auctioned at a time, so a company cannot delay proposing
an offer to wait for future requests.

• All requests made by customers are valid in the sense that if there are
no other requests in the system, this request can be served according to
the constraints of the model.

In the next sections, all the elements of the process described above are
discussed in more detail, starting with the type of the bids that are announced
by the companies.

4.2 Bidding service quality

Different types of bids can be used, from which the customer that initiated
the request has to decide upon the winning company. For example, a bid
value can denote the price that has to be paid for serving a request, or it
can denote the profit a company can make by serving the request. Actually,
what is done in similar work on the assignment of transportation requests is
to bid the additional costs needed to serve the request [11, 27]. To minimize
overall costs, the request is assigned to the vehicle that has announced the
bid with the lowest additional costs. The settings in which this approach is
used are single-company settings or settings in which companies cooperate,
with the objective to minimize costs. This is opposed to our competitive,
multi-company setting, in which we want to maximize service quality.

48

Moving to a multi-company environment 4.2 Bidding service quality

Because we strive for high average service quality, intuitively, we want to
let the companies compete on the service quality for an incoming request.
Therefore, the bid value in our setting contains the service quality that a
company promises to provide. The customer can then determine the company
that can promise the highest service quality, and so companies need to bid a
service quality as high as possible to win the auction.

Different definitions of service quality exist, which can be categorized into
two types: technical quality and functional quality [16]. Technical quality
is defined as what a customer receives as a result of its interaction with the
company, and functional quality is defined as how the outcome a customer
receives is obtained, i.e. the process itself. In the transportation domain tech-
nical quality often contains measures like the difference between actual and
desired delivery time, waiting time during the ride, maximum ride time, and
the ratio of actual ride time on direct ride time [33]. Functional quality ele-
ments contain measures like the type and amount of information given to a
customer, the comfort of the service, and the way in which reservations can
be made.

For our research we define a technical service quality, because we are
mainly interested in the final outcome of the mechanism, and less in how this
outcome is produced. A measure that is understandable by both customers
and companies is the ratio of the actual ride time on the direct ride time. For
example, when the time to travel from A to B directly (i.e. no detours) is 5
minutes, and the vehicle drives from A to B via C, in 7 minutes, then the
service quality is 5/7. One can see that the service quality converges to 1, the
less detours are taken. This means that the higher the ratio, the better the
service quality. For customers, this measure emphasizes one of their biggest
complaints, namely large detours. For companies, this ratio is a measure of
how efficiently different rides are combined. Another advantage of defining
service quality as this ratio is that it is directly influenced by the scheduling
process, allowing us to use scheduling techniques to increase the ratio.

In our approach the service times at both the pickup and the delivery
location are included in the travel time. We assume that a plan is a sequence
of locations with associated departure times. If the time at which service
starts at location i is denoted by ui, service duration at location i is denoted
by di, and the time needed to drive from location i to location j is denoted by
tij, then the service quality for a request with pickup location i and delivery
location j can be calculated as follows:

SQij =
tij + di + dj

(uj + dj)− (ui)
(4.1)

Many complaints of customers in this domain are about the large detours
(i.e. low ratio) that vehicles make, which implies longer travel times. By letting
companies compete on this service quality measure, we hope to decrease the

49

4.3 Auction type Moving to a multi-company environment

average travel time of customers. How this competition can be added to the
system is discussed in the next section.

4.3 Auction type

In this section we discuss the type of auction that is used in our request
assignment mechanism. This auction type determines the rules to be followed
by the companies, the payments to be made, and the allocation function.

4.3.1 Rules and allocation

The mechanism that we propose is based on a reversed sealed-bid second-
price auction. In such an auction, all bids are private to the company that
announces it, and the winner of the auction has to pay the second-highest bid
value that is announced.3

We call the auction reversed, because there are multiple sellers (the com-
panies) and a single buyer (the customer). This single buyer announces to all
the sellers what exactly it wants to buy by communicating the characteris-
tics of its request. Once the companies are informed about this request they
can announce their type by determining a bid value. As is described in the
previous section, service quality is used as a bid value.

The winning company is the company that announces the highest service
quality, and if multiple companies announce the same highest bid, one of
these companies is arbitrarily selected as winner. The request that has been
auctioned is allocated to the winning company, which now has to serve the
request.

4.3.2 Payments

The payments that are used in our auction are a little bit different from the
usual setting. Before our auction starts, a payment that the customer must
made to the winning company is defined. This payment is always equal to
the price per kilometer that is determined multiplied by the direct distance
between the pickup and the delivery location of the customer’s request. The
company that wins the auction, has to do something back to the customer;
serving the request. This can be seen as a ”payment” of the company to the
customer.

We first discuss customer payments, and then briefly describe the payment
of the company.

3We speak of ”paying” here, but actually, in our context, this is not the correct term.
Rather than paying something to the customer, the winning company has to serve a request
with at least the second-highest quality. The term ”paying” is used, because we want to use
auction terminology.

50

Moving to a multi-company environment 4.3 Auction type

Customer payments

The price per kilometer is fixed for a certain type of request and is determined
before the auction takes place, resulting in the fact that the total payment
made by a customer does not depend on the company that actually serves
the request. The price paid by the customer to the winning company can be
seen as a negative payment made by the winning company. Note also, that
this payment is independent from a company’s own bid, since it is determined
before the auction start and because it is fixed.

Companies try to maximize their utility, which in this setting is their profit.
Profit is defined as the total income a company receives from serving requests
minus the total costs needed to serve these requests. The income is dependent
on the price that customers have to pay to travel from their pickup location
to their delivery location. In this thesis we assume that the price a customer
has to pay for its ride, is linear to the distance between its pickup location
and its delivery location. The reason for this is that it is always clear for a
customer what the total price of its ride will be.4 It is also possible to work
with dynamic prices (e.g. dependent on the difficulty of the ride) but this
would create a very disordered situation from a customer’s point of view.

To be able to calculate the income of a served request (i.e. the price a
customer has to pay), the price per kilometer, Ckm, has to be defined. We
make two intuitive observations:

1. When Ckm is too low, a company serving the request can never make
profit, because it cannot combine any request in such a way that costs
are lower than income.

2. When Ckm is too high, companies will bid 1.0 for every request, because
they can make profit for this request, even without combining it, and
by bidding 1.0 they have the highest chance to win the auction. The
problem is that in this case, all requests have to be served with service
quality 1.0, and that this results in the fact that less requests can be
served.

The question arises, when is Ckm too low and when is Ckm too high? It seems
to be the case that these bounds can be defined.

The lower bound is the lowest price per kilometer that can be paid by the
customers, such that the companies make a zero profit. The lower bound can
be calculated by dividing the minimal total costs needed to serve all requests
by the total direct distance traveled by all customers. This means that for
this price, a company is sure that he will make zero profit. For lower prices
per distance, the company can never make profit, and it is not worth it to
serve requests. So, if the minimal total costs are denoted by TCmin, and the

4In the current situation in the Netherlands, prices are also fixed.

51

4.4 Insertion into schedule Moving to a multi-company environment

distance between the pickup location and the delivery location of customer i
is denoted by Di, with N customers, then:

Ckm ≤
TCmin

∑N
i=1Di

.

The higher bound, Ckm can be computed in a similar way as the lower
bound. Again we search for the point where the company makes zero profit,
but now assuming that all requests are served with service quality 1.0. Every
vehicle is driving from the depot to the pickup location, to the delivery loca-
tion, and back to the depot before serving the next vehicle (i.e. each vehicle
schedule contains only one request). This way, the maximal total costs TCmax

can be determined. Similar to computing the lower bound, these maximal to-
tal costs are divided by the total direct distance traveled by all customers, to
obtain the upper bound:

Ckm ≥
TCmax

∑N
i=1Di

.

A higher price per kilometer will not result in higher service quality, but will
only result in a higher profit for the company.

Now that the upper and lower bounds of the price per kilometer can be
determined, a price that lies between these bounds can be chosen and the
profit of a served request can be calculated.

Company payments

The winning company must ensure that the request is served with at least the
service quality that is announced by the company with the second-highest bid.
This can be seen as a positive payment made by the company, because it loses
some of its flexibility to insert and combine rides, resulting in possible higher
costs. This positive payment is also independent from a company’s own bid.
It only depends on the bids of the other companies.

4.4 Insertion into schedule

After a request is assigned to one of the companies, the winning company has
to actually insert the request into one of its current vehicle schedules. We also
use the insertion of requests for the calculation of bid values, but this is done
in another way (see Section 4.5.2). For the purpose of inserting requests after
these are assigned to a company, we use the mathematical model of Cordeau
and Laporte [6], which is already discussed in Chapter 2. This model is
formulated as a Mixed Integer Program (MIP) with an optimization function
that minimizes costs. The basic MIP is shown in Figure 2.1 and we add some
additional constraints to allow for promising service quality and to speed up
the solution process.

52

Moving to a multi-company environment 4.4 Insertion into schedule

To ensure that requests are served with a service quality higher or equal
than the promised service quality, we add an extra constraint to the MIP. The
promised service quality between locations i and j is denoted by SQij . We can
add a constraint for a request from i to j to the MIP formulation as is shown
in Equation 4.2. This equation is made linear as shown in Equation 4.3.

tij + di + dj

(uk
j + dj)− (uk

i)
≥ SQij (i ∈ P, j ∈ D, k ∈ K) (4.2)

(uk
j + dj)− (uk

i) ≤
1

SQij

(tij + di + dj) (i ∈ P, j ∈ D, k ∈ K) (4.3)

It is already known that the request can be inserted (i.e. the MIP is fea-
sible), and the company tries to find a schedule for all assigned requests that
have not been served yet, by solving the MIP. It is not needed to incorporate
requests that have already been served, because the departure times at the
corresponding locations cannot be changed anymore. It is sufficient to incor-
porate for every vehicle the delivery location of the last request that has been
completely served by that vehicle, together with all the locations of requests
that have not been served completely yet.

Departure times of locations that have already been visited, and departure
times of delivery locations of which the corresponding pickup location have
already been visited, cannot be changed anymore. It is clear that the depar-
ture times of locations that have been visited cannot be changed anymore, but
the second statement is not so straightforward. Departure times of delivery
locations of which the corresponding pickup location have already been vis-
ited cannot be changed anymore to be able to give the customer information
about the time it will arrive at its destination. The same concept is used
for the vehicle that is assigned to a location. This way we avoid modifying
the schedule a lot once a customer is pickup up. It is also possible to make
locations definite earlier than the time the pickup location is visited. This
makes it possible to give the customer information about its pickup earlier,
but inserting requests and minimizing costs becomes less flexible.

The following constraints can be added to the MIP to handle definite
departure times and definite vehicle assignments. The constraint for definite
departure times is given in Equation 4.4 and in Equations 4.5 and 4.6 the
constraints for the definite vehicle are given. In the constraints, Ldef denotes
the set of definite nodes, ki denotes the vehicle to which location i is already
assigned, and ui denotes the departure time that is definite for location i:

uk
i = ui (i ∈ Ldef, k ∈ K) (4.4)

∑

j∈L

xki

ij = 1 (i ∈ Ldef) (4.5)

∑

j∈L

xki

ji = 1 (i ∈ Ldef) (4.6)

53

4.5 Bid calculation Moving to a multi-company environment

By optimizing a company’s vehicle schedules every time a request is as-
signed to the company, an on-line optimization technique is used. Because for
every optimization not all the locations are taken into account, performance
and solution quality are increased. It is also possible to further decrease the
computation time, by collecting requests to insert, and generate solutions ev-
ery once in a while. Because we want to be as up-to-date as possible, we
choose to generate a solution every time a new request comes in.

4.5 Bid calculation

Now that the type of the bids that are announced is determined, the auction
type is known, and it is known how an assigned requests is inserted in the final
schedule, a method to actually calculate the bids is needed. Before a company
starts to calculate a proper bid value, it is wise to first check whether the
announced request can be inserted into one of its schedules. For this check a
heuristic is used, which is described in Section 4.5.1. If this is not possible, the
company does not have to bid, or it can bid a negative value, indicating that
it cannot serve the request. If it is possible to insert the request, the company
can start to calculate a proper bid value. In Section 4.5.2, we explain why
bidding is not straightforward in our setting and we propose a way to include
some knowledge about future requests into the current bid.

4.5.1 Insertion check

Before a bid value is calculated, it is wise to check whether the incoming
request can be inserted at all. This can save expensive computation time. The
heuristic that is used for this check is based on insertion heuristics developed
by Jaw et al. [17] and Solomon [40], and is shown in Algorithm 4.1. Rather
than searching for a best place to insert the request, our algorithm stops when
an insertion of the request is possible.

The function IsFeasible determines whether or not a node can be inserted
into a schedule at a specified location. This function is further discussed
in Section 4.5.3, in which it is used in an approach to estimate expected
profit. For now, it is only important to note that this function has time
complexity O(N), with N the number of locations that already exist in the
schedules. In the worst case, the locations can be inserted at the end of the
last schedule. That means that the function IsFeasible is called (N + 1) times
for the pickup location. The delivery location can only be inserted after the
pickup location, so the further we proceed in a schedule, the less checks have
to made for the delivery location per check of the pickup location. Actually,
the total number of checks for the delivery location is (N+1)(N+2)

2 , so in total

the function IsFeasible is called (N + 1) + (N+1)(N+2)
2 times. Because each

54

Moving to a multi-company environment 4.5 Bid calculation

check has time complexity O(N), the result is that the whole algorithm has a
time complexity of O(1

2N
3 + 21

2N
2 + 2N).

Algorithm 4.1: Check whether a request can be inserted into one of
the vehicle schedules.

input : The request to insert r, and the set of current vehicle
schedules S

output: Whether r can be inserted into one of the vehicle schedules

forall s ∈ S do1

forall i ∈ s do2

pr ← pickup node of r3

dr ← delivery node of r4

if IsFeasible(pr, i) then5

forall j ∈ s where j ≥ i do6

if IsFeasible(dr, j) then7

return True8

end9

end10

end11

end12

end13

return False14

4.5.2 Future requests

Remember from the previous chapter, that bidding in a sequential auction is
not as straightforward as in a single independent auction. The outcome of the
current auction can influence the outcome of auctions of future requests and
can therefore influence the total profit of a company after a whole day.

Let us assume a setting with two myopic companies. These companies both
calculate and announce the best possible service quality they can provide for
an incoming request. The value of the winning bid of the very first request
will be 1.0, and because to none of the companies requests have been assigned,
the second-highest bid will also be 1.0. This means that this request can never
be combined with future requests, other than inserting future pickup nodes
before the pickup node of the current request and inserting future delivery
nodes after the current delivery node. The losing company of the first auction
can again bid a service quality of 1.0 for the second request to be auctioned,
but for the winning company there are three possibilities:

• bid 1.0 if it is possible to insert the second request as a direct ride,

55

4.5 Bid calculation Moving to a multi-company environment

• bid a service quality < 1.0 if it is possible to insert the request by
inserting the pickup node before the pickup node of the first request and
inserting the delivery node after the delivery node of the first request,

• or bid nothing if none of the above insertions is possible.

If the company bids 1.0, then the same as with the first request happens; the
request is inserted as a direct ride by either the first or the second company. If
the company bids a service quality < 1.0, then the losing company of the first
request can insert the second request with a service quality < 1.0, meaning
that for upcoming requests, it has more possibilities to insert these (e.g. nodes
can now also be inserted between the pickup and delivery nodes of earlier
requests). The same happens when the winning company of the first request
does not bid at all, because then the other company can insert the request
with service quality 0.

The above sequence is repeated for every next request that is auctioned,
resulting in the observation that once a company has to insert a request with
service quality 1.0, it has less chance to win successive auctions of request that
could have been combined with the current request.

The previous example shows that it is important for a company to incor-
porate knowledge about future requests into the calculation of the bid value
for the current request. A company wants to maximize its profit (minimize
costs) and there are different costs associated with the different service quality
values it can bid. The bid a company announces does not have to be its best
bid in terms of service quality. It can bid a low service quality for low internal
costs, or a high service quality for higher internal costs. Since the payments of
the customers are fixed (linear to direct distance), the company must decide
what bid value to announce.

The problem for the company now becomes one of announcing the best
bid. A company wants to optimize its profit, which is defined as income minus
costs. It can gain income by serving requests (winning auctions) and it can
decrease costs by combining requests. This combining of requests often leads
to a lower service quality (because there are less direct rides), which can lead to
winning less auctions. Promising a higher service quality results in a higher
probability to win the auction, but decreases the flexibility to insert future
requests.

For this reason (i.e. to incorporate the expected profit of future requests),
the companies must have some knowledge about the distribution of the time
and space components of future requests. From this distribution they can
calculate the expected profit for an incoming request, based on future requests
that can give the companies possibilities to combine rides and lower costs.

The risk of future requests not coming in according to the expectation can
be fully covered by the companies, or can be distributed among the companies
and the customers (or call center) by using options [15, 19]. When all the risk
lies with the companies, the quality of the expectation is very important.

56

Moving to a multi-company environment 4.5 Bid calculation

If they expect requests that can be well combined with currently inserted
requests in the future, but these do not come, companies can make a loss.
When using options, the risk is shared by the companies and the customers.
Options are rights to serve a requests, but no obligations. So, a company
receives an option when winning the auction, and it can exercise this option
if the expected future requests really come in. If they do not come in, the
company can discard the option, and the request has to be re-auctioned. A
disadvantage of using options is that problems can arise when a company
decides to not exercise an option just before the corresponding request has
to be served. There must be enough time to re-auction the request. In this
thesis, we assume that all the risk of future requests lies with the companies
and therefore do not use options.

Another way to incorporate the expectation of future requests is to use
combinatorial auctions [32, 37]. With these type of auctions, the assignment
of incoming requests is postponed until the last possible moment, such that
future requests up until that moment can be taken into account when calcu-
lating the costs for that single request. The problem is that this leads to an
exponential amount of combinations to calculate and therefore this can take
an exponential amount of time. Another problem is that agents must be able
to bid on combinations of requests (or at least must be able to value combi-
nations of requests). These problems make us to decide that we do not use
this technique, but a slightly different one.

Rather than the techniques mentioned above, a simple and fast approach
to estimate the best bid is proposed. A so called Monte Carlo [29] simulation
is used in combination with an insertion heuristic. This approach is discussed
next.

4.5.3 Estimating expected profit

The idea of this approach is to estimate the expected profit that a company
makes in the future assuming that the current request is inserted into the
schedule according to some conditions. The conditions that have to be met
are a specified level of service quality and all the conditions of the original
problem (e.g. time window constraints, capacity constraints). To calculate the
expected profit, a distribution has to be known on the arrival time of future
requests, the space components of these requests, and the time components of
these requests. With the help of these distributions, a set of possible future
requests can be generated and inserted into the schedule. Once this is done,
the total costs needed to insert these requests, and the total income gained by
inserting these requests, can be calculated. This results in an expected profit
gained by inserting the future requests, assumed that the stated conditions of
the current request hold.

57

4.5 Bid calculation Moving to a multi-company environment

Algorithm 4.2: Calculate the expected profit of inserting a request

input : The current request rcurrent, the set of current vehicle
schedules S, and the service quality value that must hold for
the current request qcurrent

output: The expected profit gained from serving all inserted requests

R ← set of generated, unassigned requests; current request included;1

sorted on ascending arrival time
qrcurrent

← qcurrent2

R ← R ∪rcurrent3

u← 04

forall r ∈ R do5

c∗ ← ∞6

forall s ∈ S do7

forall i ∈ s do8

pr ← pickup node of r9

dr ← delivery node of r10

if IsFeasible(pr, i) then11

forall j ∈ s where j ≥ i do12

if IsFeasible(dr, j) and ServiceQuality(r) ≥ qr13

then

if Costs(pr, i, dr, j) < c∗ then14

c∗ ← Costs(pr, i, dr, j)15

i∗ ← i16

j∗ ← j17

end18

end19

end20

end21

end22

end23

Insert(pr, i∗, dr, j∗)24

u← u+ (Income(pr, dr) - c∗)25

end26

return u27

58

Moving to a multi-company environment 4.5 Bid calculation

Insertion heuristic

In Algorithm 4.2 it is shown how the expected profit is calculated by using an
insertion heuristic based on those developed by Jaw et al. [17] and Solomon
[40]. The original algorithm is modified such that is capable of inserting both
a pickup and delivery node, and that it accounts for service quality. Although
we can use the MIP that was defined before for the insertion of requests,
we choose for a faster algorithm. The disadvantage of an insertion heuristic
(no optimal results) does not matter here so much, because the results are
averaged in the Monte Carlo approach.

The input of our algorithm consists of the current request, rcurrent, for
which a bid value has to be determined, the set of current vehicle schedules S,
and the service quality qcurrent that must hold for rcurrent. A vehicle schedule
s ∈ S is a list of nodes that the vehicle will visit, sorted on node departure
time. Multiple future requests are generated that are inserted after rcurrent.
These future requests are inserted conditioned on the service quality qcurrent

that must hold for rcurrent.

First, it is checked whether or not it is possible to insert the pickup node
of a request before a node i that is already in the schedule. If that is possible,
it is checked whether or not the delivery node can be inserted before a node j
that is already in the schedule. The locations at which the pickup and delivery
nodes can be inserted for the lowest costs are saved, and after all locations
are checked, these nodes are inserted into the schedule at these locations. The
procedures IsFeasible and Insert are discussed next.

Feasibility check

The feasibility checks that appear in the heuristic are shown in Algorithm
4.3. For a node i we denote by ei the earliest time to visit this node, by
li the latest time to visit this node and by qi the service quality that has
to be met for the request this node belongs to. Further, the time that a
vehicle depart from a node i is denoted by di, and the time that a vehicle
can arrive at node i is denoted by ai. The procedure TravelTime(i, j) cal-
culates the time needed to travel between node i and j, and the procedure
ServiceQuality(i,pushForward) calculates the service quality for the request
node i belongs to, after the departure time at node i is pushed forward. Both
procedures have time complexity O(1). Calculating the amount of time suc-
ceeding nodes needs to be pushed forward can also be done in constant time,
and this has to be done for at most N + 1 times, with N the number of nodes
in the schedule. This results in a time complexity of O(N + 1) for Algorithm
4.3.

59

4.5 Bid calculation Moving to a multi-company environment

Algorithm 4.3: Check whether or not a node can be inserted

input : The node to insert n, the node before which n has to be
inserted, i, and the schedule in which the new node has to be
tested s

output: True if and only if it is possible to insert the new node in the
schedule at the specified position

dn ← max(TravelTime(n, (i− 1)), en)1

if dn > ln then2

return False3

end4

forall j ∈ s where j ≥ i do5

if j == i then6

pushForward ← max(dn + TravelTime(n, j), ej)− dj7

else8

pushForward ← max(0, pushForward − (dj − aj))9

end10

if pushForward == 0 then11

return True12

else if dj + pushForward > lj or13

ServiceQuality(j, pushForward) < qj then

return False14

end15

end16

return True17

Insertion

During the insertion process, the departure times of the pickup and delivery
nodes are chosen in a way to maximize the service quality for that request.
This is done by departing as late as possible from the pickup node, and as
early as possible from the delivery node (i.e. decreasing the travel time for
this request). The insertion process is shown in Algorithm 4.4. Again, the
procedure TravelTime(i, j) calculates the travel time between node i and node
j in constant time. If there is a negative push forward for the first node
after the pickup node p, this means that there is some slack time available.
This slack time is used to decrease the time between the pickup and delivery
departure time of the request that is currently inserted.

The time of complexity of the insertion of a pickup node and a delivery
node is O(2N), because the whole schedule of N nodes has to be traversed at
most two times.

60

Moving to a multi-company environment 4.6 Summary

Algorithm 4.4: Insert pickup and delivery node in schedule

input : The pickup node p and delivery d node to insert, the node i
before which p has to be inserted, the node j before which d
has to be inserted, and the schedule s

output: A schedule s in which the pickup and delivery nodes are
inserted

dp ← max(TravelTime(p, (i− 1)), ep)1

pushForward ← max(dp + TravelTime(p, i), ei)− di2

if pushForward < 0 then3

dp ← min(dp + 0− pushForward, lp)4

else5

forall k ∈ s where k ≥ i do6

dk ← dk + pushForward7

pushForward ← max(0, pushForward − (dk − ak))8

end9

end10

s← s ∪ p11

dd ← max(TravelTime(d, (j − 1)), ed)12

pushForward ← max(dd + TravelTime(d, j), ej)− dj13

forall l ∈ s where l ≥ j do14

dl ← dl + pushForward15

pushForward ← max(0, pushForward − (dl − al))16

end17

s← s ∪ d18

Monte Carlo simulations

The specific set of generated future requests can have a big influence on the
calculated expected profit. Therefore, a Monte Carlo simulation [29] is per-
formed. The above algorithm is repeated a significant number of times, and
the final expected profit is taken as the average expected profit of these repe-
titions.

To obtain the highest service quality level for the current request, taking
into account future requests, Monte Carlo simulations are performed for diffe-
rent levels of service quality. The level for which the expected profit is closest
to zero is taken as the bid value. This procedure is shown in Algorithm 4.5.

4.6 Summary

In this chapter a mechanism is proposed in which multiple companies compete
on service quality for the assignment of transportation requests. This requests
are announced by customers that want to travel between two locations, and

61

4.6 Summary Moving to a multi-company environment

Algorithm 4.5: Calculate the service quality for which the company
makes a zero profit.

input : The current request rcurrent, the set of current vehicle
schedules S

output: The service quality level for which the expected profit is
closest to zero

closestEP ← 01

foreach quality level to test do2

totalEP ← 03

repeat4

totalEP ← totalEP + CalculateExpectedProfit()5

until all simulations done6

averageEP ← totalEP/ number of simulations7

if Absolute(0− averageEP) ≤ closestEP then8

closestEP ← Absolute(0− averageEP)9

bestSQ ← current quality level10

end11

end12

return bestSQ13

an auction is used to allocate these requests. In order to not only make profit
in the short term, but also in the longer term, possible future requests are
taken into account in the calculation of a bid value.

The company that bids the highest service quality is chosen by the cus-
tomer to serve the request, and gets paid a before-calculated amount. The
assigned request must be served with a minimal service quality that is defined
by the second-highest bid value. This is ensured by adding an additional
constraint to the insertion process of an assigned request into a company’s
schedule.

In the next chapter experiments are discussed that show the performance
of our mechanism in terms of computation time, average service quality,
and costs.

62

Chapter 5

Experiments

In this chapter we provide different experimental results of the use of our
mechanism, to be able to get information about the influence of specific ele-
ments of the mechanism on measures like service quality and total company
costs. A brief overview of our implementation is given in Section 5.1. For a
more extensive model of our implementation we refer to Appendix B.

Before the experiments can be performed a set of problem instances is
needed that can either be generated or can be obtained from real data. We
choose to use a generated set, because obtaining real data is a difficult task.
The set that is used is described in Section 5.2.

The experiments themselves are discussed by first stating the hypotheses
we want to test, describing the experiment set-up, presenting the results, and
finally coming back upon the hypotheses in a conclusion. We start in Section
5.3 by comparing average service quality and total costs for two different bid
types, namely a service quality bid and a bid that contains an additional costs
value. It is shown that there exists a significant difference between the two
settings.

The second experiment is described in Section 5.4 and is about the influ-
ence of having knowledge about the distribution of future requests. A com-
parison is made between a setting in which companies have future knowledge,
and a setting in which they have not.

In this thesis, we try to move from a single-company setting to a multi-
company setting. In an experiment discussed in Section 5.5 we compare aver-
age service quality and total costs for a multi-company setting and a single-
company setting like it is used nowadays in the Netherlands. Because this
experiment does not give us insight in the reasons behind the differences, an-
other experiment that simulates a minimal service quality level in the single-
company setting is described in Section 5.6.

Before we move on to the experiments we start by mentioning some im-
plementation characteristics and describing the problem instances.

63

5.1 Implementation Experiments

2 4 6 8 10 12 14 16

0
10

00
0

20
00

0
30

00
0

40
00

0

2 4 6 8 10 12 14 16

0
50

00
10

00
0

20
00

0
30

00
0

40
00

0

Number of customers

C
om

pu
ta

tio
n

tim
e

(s
ec

)

Computation time versus number of customers

Figure 5.1: Computation time of solving problem instances a priori relative
to the number of customers.

5.1 Implementation

Our approach is implemented in the Java programming language, and the
agents that occur in our setting (i.e. companies and customers) are imple-
mented in the Java Agent DEvelopment Framework (JADE) [1]. This frame-
work simplifies the implementation of multi-agent systems through a middle-
ware that complies with the FIPA specifications [13] for agent communication.

The MIP that must be solved to insert assigned requests into the compa-
nies’ schedules is solved by the MIP-solver SCIP, which is one of the fastest
non-commercial mixed integer programming solvers [14].

All of the experiments are performed on an Intel Xeon E5345 2.33GHz
Windows XP 64-bits system with 16 Gb RAM.

5.2 Problem instances

As we mentioned before, we use a set of generated problem instances, instead
of instances that are obtained from real data. The reason for this is that there
is not much real data available, because either companies does not maintain
history files of served requests, or they simply do not want make these files

64

Experiments 5.2 Problem instances

2 4 6 8 10 12 14 16

1e
−

01
1e

+
01

1e
+

03

2 4 6 8 10 12 14 16

1e
+

00
1e

+
01

1e
+

02
1e

+
03

1e
+

04

Number of customers

C
om

pu
ta

tio
n

tim
e

(s
ec

)

Computation time versus number of customers (log scale)

Figure 5.2: Computation time of solving problem instances a priori relative
to the number of customers, with computation time axis in logarithmic scale.

publicly available. The advantages of generating instances are that a lot of
different instances are available, and that we can decide upon the format
ourselves. Real data must first be converted into a format that is convenient
for our system.

Two sets of problem instances are used. These sets differ on the distribu-
tion of incoming requests during a planning period on a specific day. In the
first set Ru, the pickup and departure times of the requests are distributed
following a uniform distribution, and in the second set Rn these times are
spread following a normal distribution. By generating the second set, we try
to simulate a busier period (e.g. traffic hour). Test set Rn is used in the exper-
iment to compare settings with and without future knowledge. For the other
experiments only test set Ru is used, because there we do not expect different
results for these sets.

Both sets of problem instances contain 100 instances of 16 customers. This
limited number of customers is used because calculating the upper and lower
bounds for the price per kilometer takes exponential time. The lower bound
for a problem instance is calculated by solving an MIP as if all requests are
known a priori. To give an estimate of the time needed to compute these
bounds, computation times for instances with different numbers of customers

65

5.2 Problem instances Experiments

2 4 6 8 10

0
1

2
3

4
+

+

+ +
+

+
+

+
+

+

Instance

P
ric

e
pe

r
ki

lo
m

et
er

Lower and upper bound of instances

Lower bound
Upper bound

Figure 5.3: Lower and upper bounds of 10 instances, together with bounds
that hold for every instance.

are given in Figure 5.1. In Figure 5.2 the axis for computation time is displayed
in logarithmic scale to show a straight line that represents the exponential
increase in computation time.

Calculating the upper bound is not as computationally difficult as calcu-
lating the lower bound, because this bound is calculated as if all requests are
served with service quality 1.0 and with a different vehicle. In Figure 5.3 the
lower and upper bounds for all instances are shown, together with the lower
and upper bound over all instances. A price of 2 units per kilometer is used
for the experiments, unless stated otherwise. We refer to Section 4.3 for more
details about the price per kilometer.

The planning period that is considered for each instance starts at 10h00
and ends at 14h00. This implies that the earliest time a vehicle can leave its
depot is 10h00 and the latest time a vehicle has to be back at its vehicle is
14h00. The reason why we choose to use such a relatively short period is that
we want to increase the difficulty, because only a limited number of customers
is used. The time elements of the requests become closer to each other in the
time space, and more combinations are possible.

The coordinates of the pickup and delivery locations are randomly and
independently chosen, according to a uniform distribution, in the [−10, 10] ×

66

Experiments 5.2 Problem instances

[−10, 10] square. The start and end depot, from which every vehicle must
start and to which every vehicle must end its route, are located at the location
(0, 0). The routing costs and the travel time between two locations are equal
to the Euclidean distance between the two nodes. We further assume that all
time variables are measured in minutes and that every vehicle travels with a
constant speed of 1 kilometer per minute.

In an instance with n customers, customers 1, . . . , n/2 formulate outbound
requests (i.e. specify a delivery time window), and users n/2+1, . . . , n formu-
late inbound requests (i.e. specify a pickup time window). For an outbound
customer, a time window for its delivery time is generated by randomly choos-
ing a number in the interval [660, 810] (i.e. between 11h00 and 13h15) as the
earliest possible time, and setting the latest possible delivery time 15 minutes
later (i.e. a time window of 15 minutes). The interval between 11h00 and
13h15 is used, because a vehicle driving from the depot at 10h00 via a pickup
location to a delivery location takes at most 1 hour. Similarly, driving from
the last delivery location back to the depot takes at most half an hour, so it
must leave the last delivery location before 13h30 (latest possible time). For
the generation of test set Rn the mean of the normal distribution is set to
12h00, with a standard deviation of 40 minutes.

For inbound customers, a time window for its pickup time is generated by
choosing a number in the interval [630, 780] (i.e. between 10h30 and 13h00) as
the earliest possible pickup time. Again, the time window has a length of 15
minutes. The interval between 10h30 and 12h45 is used for a similar reason
as with outbound requests. It takes at most half an hour to drive from the
starting depot to the first pickup location, so the earliest possible pickup time
is 10h30. It takes at most 1 hour to drive from the latest pickup location via
the latest delivery location to the end depot, so the latest possible pickup time
is 12h45.

To derive dynamic problem instances, we need to add times at which cus-
tomers announce their request. This is done by randomly choosing a number
in the interval [ei − 90, ei − 60] (i.e. between 90 and 60 minutes before the
earliest pickup or delivery time). We choose these values, because we want
the instances as dynamic as possible. This means that customers announce
their requests quite late, but such that vehicles are able to respond to schedule
changes.

The maximum capacity for each vehicle is 3 passengers and the demand
from each customer is 1. The service duration is equal to the demand and is set
to 1 minute. The maximum route duration is 240 minutes, which means that
each vehicle must be returned to its end depot before 14h00. The maximum
ride time per customer is set to 30 minutes.

67

5.3 Comparing bidding service quality to bidding additional costs Experiments

5.3 Comparing bidding service quality to bidding

additional costs

We have developed an auction mechanism in which the bids that companies
announce do not contain a money element, but do contain a measure of service
quality. It is good to know what influence this bid type has on the final
outcome of the assignment of requests. From the research question that is
stated in Chapter 1, the following specific question is derived: ”What is the
difference in total costs and in average service quality between an auction where
a bid contains the price of a request, and an auction where a bid contains the
promised service quality?”.

The costs of serving multiple requests depend on the way how these re-
quests are combined. By combining requests (i.e. not driving directly from
pickup to delivery location, but first pickup or deliver some other passengers)
a company can cut costs, but the service quality of individual requests will
decrease because of detours. For that reason, if customers can choose for the
lowest costs, the costs for companies will be low and service quality will be
low. The other way around, if customers can choose for the highest service
quality, costs for the companies will be higher, and service quality will also be
higher. Based on this line of reasoning, we define the following hypotheses:

1. The average service quality is higher in an environment where requests
are auctioned based on service quality than in environments where re-
quests are auctioned based on costs.

2. The average total costs are higher in an environment where requests are
auctioned based on service quality than in environments where requests
are auctioned based on costs.

The set-up to test these hypotheses is discussed next.

5.3.1 Set-up

For this experiment we run our algorithm on both test sets with two compa-
nies, each having two vehicles with the capacity of transporting customers.
The algorithm is run twice for each problem instance. The first time we let
companies compete on service quality, and the second time we let them com-
pete on costs. When companies compete on service quality, they calculate
their bid values with respect to future requests as discussed in Chapter 4.
When companies compete on costs, they announce a bid such that this bid
represents the minimal additional costs needed to serve the request. This is a
technique that we have seen in earlier work [11, 27].

The company that wins the auction is the company that bids the highest
service quality, or the company that bids the lowest costs, respectively. In
the first setting, the winning company must serve the request with at least

68

Experiments 5.3 Comparing bidding service quality to bidding additional costs

Instance SQq SQc TCq TCc #Rq #Rc

p 16 4 1 0.96 0.74 378.126 309.953 16 16
p 16 4 2 0.84 0.72 248.533 274.055 15 16
p 16 4 3 0.93 0.73 340.686 272.673 16 16
p 16 4 4 0.90 0.74 366.362 306.678 16 16
p 16 4 5 0.93 0.69 314.486 236.057 16 16
p 16 4 6 0.95 0.62 330.310 284.028 15 16
p 16 4 7 0.98 0.62 358.547 287.354 16 16
p 16 4 8 0.96 0.73 302.308 280.054 16 16
p 16 4 9 1.00 0.79 353.176 275.527 16 16
p 16 4 10 0.83 0.74 259.103 269.487 16 16

Table 5.1: Average service quality and total costs for instances solved by
bidding service quality (SQq and TCq) and bidding costs (SQc and TCc).
The last two columns contains the number of requests that have been served
in both settings.

the service quality of the second-highest bid, and in the second setting, the
winning company receives a positive amount equal to the second-lowest bid.
In the second setting, there are no restrictions on the insertion of a request.

For all problem instances the average service quality SQq is calculated
for companies bidding service quality, and the average service quality SQc is
calculated for the companies bidding costs. Total costs TCq are calculated for
companies bidding service quality, and total costs TCc are calculated when
the companies bid costs. We perform a paired t-test on all SQq and SQc

values to investigate the difference in means of the distributions of values of
both settings. Similarly, we perform a paired t-test on all TCq and TCc values
of both settings. A 95%-confidence interval is used for the mean difference
between the two settings for both service quality and costs.

5.3.2 Results

In Table 5.1 we present the results of 10 instances of the experiments done.
Observe that there are two instances for which not all of the requests can be
served when competing on service quality. This can be explained by the fact
that due to a service quality promise, it is not possible anymore to combine
rides such that all requests can be served.

It is clear that for all instances the average service quality is higher in the
setting where companies compete on service quality than in the setting where
they compete on costs. It is also shown in Table 5.1 that for eight problem
instances the total company costs are higher in the first setting than in the
second setting.

69

5.3 Comparing bidding service quality to bidding additional costs Experiments

0.5 0.6 0.7 0.8 0.9 1.0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

0.5

20
0

25
0

30
0

35
0

40
0

45
0

50
0

Service quality

To
ta

l c
os

ts

Service quality versus total costs

all served compete on service quality
all served compete on costs
not all served compete on service quality
not all served compete on costs

Figure 5.4: Service quality versus total costs for a setting in which companies
compete on service quality and a setting in which companies compete on costs.

To give an overview of the results of all the instances, a scatter plot is
shown in Figure 5.4, in which the service quality is pointed out against total
costs. Two clouds of points can be distinguished; one cloud for each setting.
It is also shown that the instances for which not all requests have been served,
have lower total costs. This can be explained by the fact that the requests
that have not been served, do not increase the total costs; the additional cost
for this requests is zero.

For both service quality and total costs, we perform a paired t-test to
test whether the means of the two distributions of values are indeed different
(i.e. whether the service quality values of both settings are from different
distributions, and whether the total costs values of both settings are from

70

Experiments 5.4 Incorporation of future requests into bid values

different distributions). The result of a paired t-test for service quality gives
us a mean difference of 0.262 with a 95%-confidence interval of [0.242, 0.282],
between the average service quality in the first setting and the second setting.
For the paired t-test of total costs, the result is a mean difference of 52.7 with
a 95%-confidence interval [45.0, 60.4].1 The p-values of both tests are smaller
than 2.20 × 10−16.

5.3.3 Conclusion

Taking our hypotheses mentioned in the beginning of this section, and look-
ing at the results in the previous subsection we have no reason to reject these
hypotheses. The p-values of the paired t-tests are very low, implying that
the probability to get the same results assuming that respectively the service
quality values and the total costs values of both settings come from the same
distribution, can be neglected. With this information we come to the conclu-
sion that, on the average, both service quality and total costs are higher in
an environment in which companies compete on service quality, than in an
environment in which they compete on costs.

5.4 Incorporation of future requests into bid

values

A company wants to optimize its profit, which is defined as income minus
costs. It can gain income by serving requests (winning auctions) and it can
decrease costs by combining requests. This combining of requests often leads
to a lower service quality (because there are less direct rides), which can lead
to winning less auctions. Promising a higher service quality results in a higher
probability to win the auction, but decreases the flexibility to combine future
requests with the current request.

To investigate the influence of information about future requests on the
average service quality, the total company costs, and the number of requests
that can be served, we compare a setting in which companies run Monte Carlo
simulations to incorporate future requests in the current bid calculations, with
a setting in which the bid is calculated only based on the current situation.

Based on the reasoning above and the research question about bid calcu-
lation stated in Chapter 1, the following hypotheses are defined:

1. The average service quality of served requests is lower in a setting where
information about future requests is incorporated into the calculation of
current bids than in a setting where this information is not incorporated.

1The values of instances for which not all requests have been served are also included in
the paired t-test for completeness. As shown in the results, this has no influence about our
final conclusions, because without these instances average total costs will be even higher in
the setting where companies compete on service quality.

71

5.4 Incorporation of future requests into bid values Experiments

2. Average total costs are lower in a setting where information about future
requests is incorporated into the calculation of current bids than in a
setting where this information is not incorporated.

3. The number of served requests is higher in a setting where information
about future requests is incorporated into the calculation of current bids
than in a setting where this information is not incorporated.

The set-up for the experiments to test these hypotheses is discussed next.

5.4.1 Set-up

In this experiment we run our algorithm twice for each problem instance.
Again, two companies are used, both with two vehicles. The first time, com-
panies calculate their bid value based on their current schedule and the current
request only. This means that they do not incorporate their knowledge about
future requests, and that they will bid the best service quality they can provide
for the request that is being auctioned.

The second time the algorithm is run on a problem instance, the companies
have knowledge about the time and space distribution of future requests. To
incorporate this knowledge they use the algorithm described in Section 4.5.2.
The levels of service quality to test are chosen from 0, 0.1, . . . , 0.9, 1 and per
level 200 simulations are performed.

For this experiment we use both the test set containing problem instances
in which requests arrive following a uniform distribution (Ru), and the test
set in which the requests arrive following a normal distribution (Rn).

Paired t-tests are performed for service quality, costs, and the number of
served requests, similar to the tests performed in Section 5.3.

5.4.2 Results

In Figure 5.5 and Figure 5.6 a scatter plot is given with the service quality and
total costs for all instances. We cannot observe two clouds as clearly as we
could in the previous experiment, but we notice that the values for instances
tested in the setting with future knowledge are more widely spread than the
values for instances tested in the setting without future knowledge.

A noteworthy observation is that there are quite some instances tested in
the setting with future knowledge, for which not all requests have been served.
An explanation for this result could be the fact that with future knowledge,
companies bid more conservative values, resulting in lower service quality
promises and more possible future combinations. Because both companies can
make more combinations, they both announce bids for future requests, and
the service quality promise that is made after the requests has been auctioned
is equal to the second-highest bid. When companies have no future knowledge,
they bid the highest service quality that is possible for the current request,

72

Experiments 5.4 Incorporation of future requests into bid values

0.6 0.7 0.8 0.9 1.0

20
0

25
0

30
0

35
0

40
0

45
0

20
0

25
0

30
0

35
0

40
0

45
0

Service quality

To
ta

l c
os

ts
Service quality versus total costs

all served, future knowledge
all served, no future knowledge
not all served, future knowledge
not all served, no future knowledge

Figure 5.5: Service quality versus total costs for a setting in which companies
have knowledge about future requests, and a setting in which they have not.
The requests arrive following a uniform distribution.

which will lead to higher average service quality (as shown in Figure 5.5).
This results in less possible combinations of future requests for the winning
company, probably forcing this company to bid nothing for upcoming requests.
When this company bids nothing and the other company does bid something,
the other company does not have to make a service quality promise. This
leads to more possibilities to insert future requests than in the setting in
which companies does have future knowledge.

The result of a paired t-test for the average service quality between the
two settings for test set Ru gives us a mean difference of 0.072 between the
setting with future knowledge and without future knowledge, where the av-

73

5.4 Incorporation of future requests into bid values Experiments

0.6 0.7 0.8 0.9 1.0

20
0

25
0

30
0

35
0

40
0

45
0

20
0

25
0

30
0

35
0

40
0

45
0

Service quality

To
ta

l c
os

ts

Service quality versus total costs (requests following normal distribution)

all served, future knowledge
all served, no future knowledge
not all served, future knowledge
not all served, no future knowledge

Figure 5.6: Service quality versus total costs for a setting in which companies
have knowledge about future requests, and a setting in which they have not.
The requests arrive following a normal distribution.

erage quality in the latter setting is higher. The 95%-confidence interval is
[0.057, 0.086], with a p-value of 2.27× 10−16. The difference in service quality
for test set Rn is a bit larger; the mean difference for that test set is 0.091 in
the confidence interval [0.072, 0.110], with a p-value of 3.93 × 10−16.

For the total costs, the paired t-test gives us a mean difference of 7.98,
with lower costs in the setting with future knowledge. The p-value is still less
than 0.05, namely 1.06 × 10−3. This means that the probability of obtaining
the same test results when we assume that total costs in both settings are
equal, is 0.106%. The 95%-confidence interval lies between 3.29 and 12.7. For
test set Rn, the difference in total costs is also larger than for the problem

74

Experiments 5.4 Incorporation of future requests into bid values

instances in Ru, namely 12.65 in the confidence interval [7.13, 18.2] and a p-
value of 1.55 × 10−5. This implies that the total costs are on average 3.8%
higher when companies do not take into account their future knowledge.

As noticed before, it seems to be the case that in the setting without
future knowledge, more requests can be served, than in the setting with future
knowledge. For test set Rn we observe less served requests in both settings,
but this can be explained by the fact that during the peak (i.e. traffic hour)
not all requests can be served at all with the vehicle capacity that is assumed.

To be able to judge about the hypothesis stated previously, we also per-
form a paired t-test for the number of served requests in both settings. This
test results in the following values for test set Ru: a mean difference of 0.04
with more requests served in the setting without future knowledge, a 95%-
confidence interval of [−0.039, 0.11], and a p-value of 3.20×10−1. When using
a normal distribution of the arrival of requests, the difference is less significant.
The mean difference is only 0.01 with a large p-value of 9.04 × 10−1.

5.4.3 Conclusion

From the results stated above, we conclude that both service quality and
total costs are lower in a setting where companies have some knowledge about
the distribution of future requests than in a setting in which they have not.
The p-values of both paired t-tests are lower than 5%, implying that the
null hypotheses can be rejected.2 Because the tests show that the means in
both settings are different, and that the means of the setting without future
knowledge are greater, we can accept both hypotheses.

For test set Ru, the p-value obtained from the paired t-test for the number
of served requests is also smaller than 5%, so we can reject the null hypothesis
that says that the average number of served requests is equal in both settings.
So for Ru, we also conclude that more requests can be served in the setting
without future knowledge. This cannot be concluded for Rn, because the p-
value is way too high, which indicates that there is a probability of about
90% to obtain the same number of served requests assuming that there is no
difference in the number of served requests between the two settings.

When we compare the results for the two test sets, we see that the dif-
ferences in service quality and total costs are larger for Rn than for Ru. The
conclusion is that the type of distribution for the arrival of requests influences
the way companies can incorporate their knowledge about future requests. It
needs further investigation to conclude about the exact influence.

Following from the results of the tests, we conclude that in a setting with
future knowledge average service quality is approximately 8% lower and av-
erage total costs are approximately 3% lower than without future knowledge.

2Notice that the hypotheses we stated for this experiment are actually alternative hy-
potheses, and that the null hypotheses state that there is no difference in means. To reject
a null hypothesis it is common that the p-value has to be smaller than 5%.

75

5.5 Multi-company setting versus currently used setting Experiments

The fact that service quality decreases more than twice as much as the to-
tal costs surprises us, because we thought that the two measures would have
decreased more equally. An explanation for this could be the fact that we
use only two companies in our setting, and that if one company bids a low
service quality, the promise that has to be made for the quality of serving the
request is also low. The more companies, the probability increases that the
second-highest service quality bid is higher than in the two-company setting,
and thus the higher the average service quality.

5.5 Multi-company setting versus currently used

setting

One of the main ideas in this project is to use multiple companies to serve
requests instead of only one company. We want to know what the influence of
moving to such a multi-company setting is on total costs and average service
quality compared with these measures in the setting that is currently used in
the Netherlands.

First of all, a company in a single-company setting can switch vehicles and
combine requests until just before the moment that a request has to be served.
Of course, after a request is assigned to a company, it cannot be switched to
another company anymore, only to other vehicles within the same company.
So, in a multi-company setting, a company is less flexible to combine rides
and to decrease costs, which implies higher costs.

Because service quality cannot be less than the service quality promised
upon assignment and because there is competition between companies, the
average level should be higher in a multi-company setting than in a single-
company setting. Notice that this reasoning is only valid if the single company
announces bids that are calculated by minimizing costs. This is a realistic
assumption, because a single company has no incentive to bid high service
quality values, and only cares about minimizing its total costs.

We define the following hypotheses based on the reasoning above:

1. Average total costs are higher in a multi-company setting than in the
currently used single-company setting.

2. Average service quality is higher in a multi-company setting than in the
currently used single-company setting.

To make fair comparisons, the total number of vehicles in both settings is
equal. Further experiment characteristics are discussed next.

5.5.1 Set-up

For each problem instance, the algorithm is run two times. The first setting
consists of two companies, each having two vehicles and competing on service

76

Experiments 5.5 Multi-company setting versus currently used setting

0.6 0.7 0.8 0.9 1.0

20
0

25
0

30
0

35
0

40
0

45
0

20
0

25
0

30
0

35
0

40
0

45
0

Service quality

To
ta

l c
os

ts
Service quality versus total costs

all served, multiple companies
all served, single company (min costs)
not all served, multiple companies
not all served, single company (min costs)

Figure 5.7: Service quality versus total costs for a multiple company setting
and a single company setting in which the single company minimizes costs.

quality. They incorporate knowledge about future requests into the calculation
of their current bid.

The second time the algorithm is run, there is only a single company,
having four vehicles and minimizing costs. In a single-company setting, that
company does not have any incentive to bid high service quality, because it
knows already that it gets assigned the request.

Paired t-tests are performed once more between the first and the second
setting to investigate the differences in values for total costs and service quality.

77

5.6 Single-company setting with minimal service quality Experiments

5.5.2 Results

In Figure 5.7 a plot is given for the comparison of service quality and total
costs between the first and the second setting. Two clouds of points can
be distinguished, similar to the clouds we found in Section 5.3. The cloud
of points of instances with multiple companies is situated with relative high
service quality and high total costs. The other cloud of points has less quality
and less total costs and mainly contains instances with a single company.

A paired t-test is performed for both average service quality and total
costs to test the hypotheses 1 and 2 discussed above. The mean difference for
service quality is 0.097 with a higher quality in the multi-company setting.
The confidence interval is [0.071, 0.122] and the probability that this results
are obtained assuming that there is no difference between the two settings is
5.98 × 10−10.

For the mean of the total costs for both settings, the t-test gives us a mean
difference of 37.5 higher costs for the multi-company setting, with a confidence
interval of [25.3, 49.8], and a p-value of 1.25 × 10−7.

5.5.3 Conclusion

In the t-test on total costs, we discovered that total costs are higher in the
multi-company setting than in the single-company setting, namely 13% higher.
This is in line with the hypothesis we defined in the introduction of this
experiment.

The fact that companies in a multi-company setting have the incentive
to bid higher service quality instead of minimizing costs, does result in a
higher average service quality. This follows from the results of the paired t-
test performed on the values of setting 1 and setting 2, where the mean of
setting 2 is 12% lower than that of setting 1, and a p-value such that the null
hypothesis can be rejected.

5.6 Single-company setting with minimal service

quality

In the previous experiment we compared our multi-company setting to the
single-company setting that is currently used in the Netherlands. We assumed
that there are no incentives for serving requests with high quality in this single-
company setting. The results of that experiment show a significant difference
in both service quality and total costs, but the cause of these differences
is not very clear yet. The question remains whether these differences occur
because of the difference in the number of companies directly, or whether these
differences occur because of the incentives to promise higher service quality
(which follow from the fact that there are multiple companies).

78

Experiments 5.6 Single-company setting with minimal service quality

In this experiment we assume that there is a minimal service quality for
which requests need to be served by a company in the single-company setting.
This is not unrealistic, because in the real world these minimal service quality
conditions are also used, together with punishments given if a company does
not meet these conditions. By using such minimal service quality levels, we
are able to investigate how the number of companies influences the total costs.
By increasing the minimal service quality in the single-company setting, we
can compare the costs in both settings with more or less equal service quality.

We define the following hypothesis for the average total costs:

1. The average total costs in a single-company setting in which the company
minimizes costs increases when the minimal service quality this company
has to provide increases.

2. The average total costs are lower in a single-company setting than in a
multi-company setting for equal average service quality.

5.6.1 Set-up

The first hypothesis is tested by running our mechanism with a single com-
pany and setting the promised service quality for all requests to a specific
minimal level. For this experiment minimal service quality values are used
from {0.00, 0.05, . . . , 1.00}. To be able to draw a conclusion about the first
hypothesis, we set out the minimal service quality level against the average
total costs in a plot and calculate the correlation coefficient between these two
measures. This way we can conclude whether or not the values are increasing,
the higher the minimal service quality.

To compare the single-company setting with the multi-company setting
with equal average service quality, we force the company in the single-company
setting to derive the same average service quality as it would have done in a
multi-company setting. This means that we set a minimal service quality that
is equal to the level for which a single company derives the same average service
quality as in a multi-company setting. We can get this information from the
experiment above, where we investigate the relation between minimal service
quality levels and total costs and average service quality. A paired t-test is
performed to show the difference in costs between the two settings.

5.6.2 Results

In Figure 5.8 it is shown that the average total costs are increasing as from
a service quality level of 0.4, with a decrease at level 1.0. This decrease of
average total costs can be declared by the fact that if the minimal service
quality level is 1.0, less requests can be served, which leads to lower total
costs. The non-increasing part of the figure (from level 0.0 to 0.4) can be
declared by the fact that the levels do not influence the outcome, because

79

5.6 Single-company setting with minimal service quality Experiments

0.0 0.2 0.4 0.6 0.8 1.0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

Minimal service quality

To
ta

l c
os

ts

Total costs with minimal service quality

Figure 5.8: Average total costs for instances tested with a minimal service
quality level.

even when a single company minimizes costs, it still serves requests with an
average service quality of about 0.66. This is also shown in Figure 5.9, in
which we see no increase in service quality at this interval.

To show the strong correlation between total costs and minimal service
quality, we calculate the correlation coefficient between these two measures.
Taken the whole interval of quality levels from 0.0 to 1.0, the correlation
coefficient is equal to 0.93. When we take only the interval from 0.40 to 0.95
into account, the coefficient is even higher: 0.99.

The minimal service quality level that is needed in order to let the company
in the single-company setting serve requests with an equal average service
quality as in the multi-company setting is derived by searching in Figure 5.9

80

Experiments 5.6 Single-company setting with minimal service quality

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Minimal service quality

A
ve

ra
ge

 s
er

vi
ce

 q
ua

lit
y

Average service quality with minimal service quality

Figure 5.9: Average service quality for instances tested with a minimal service
quality level.

for the corresponding level. The average service quality over all instances in
the multi-company setting is 0.93 and when we search for the corresponding
minimal service quality level we found a value of 0.77.

In Figure 5.10 a scatter plot is shown in which service quality is plotted
against total costs, for the multi-company and single-company setting. The
costs are somewhat higher in the multi-company setting, but the points in the
plot are too close to each other to give a proper judgment about this measure.
The paired t-test gives us a mean difference of 23.5, a 95%-confidence interval
of [11.9, 35.0], and a p-value of 1.71 × 10−4, with higher total costs in the
multi-company setting.

Another paired t-test is performed to judge about the difference in average

81

5.6 Single-company setting with minimal service quality Experiments

0.6 0.7 0.8 0.9 1.0

20
0

25
0

30
0

35
0

40
0

45
0

20
0

25
0

30
0

35
0

40
0

45
0

Service quality

To
ta

l c
os

ts

Service quality versus total costs

all served, multiple companies
all served, single company (min level = 0.77)
not all served, multiple companies
not all served, single company (min level = 0.77)

Figure 5.10: Service quality versus total costs for a multiple company setting
and a single company setting in which the single company acts like a company
in a multi-company setting.

service quality between the two settings. There should be almost no difference
between the two settings, because of the way we determine the minimal service
quality level for the single-company settings. The results of this test give us a
mean difference of 0.0013 higher service quality in the multi-company setting,
a confidence interval of [−0.023, 0.026], and a p-value of 0.92.

5.6.3 Conclusion

We conclude that in a single-company setting in which the company must en-
sure a minimal service quality, the total costs increase the higher the minimal

82

Experiments 5.6 Single-company setting with minimal service quality

service quality level. This is concluded from the fact that the correlation co-
efficient between the two measures is quite large over the whole interval, and
almost equal to 1 at some points.

Compared to the multi-company setting, the total costs in a single-company
setting are less, even if this single company provides equal service quality. This
means that the difference in total costs between a multi-company setting and
the currently used setting discussed in Section 5.5 (i.e. single company min-
imizing costs) is mainly due to the higher average service quality and is not
due to number of companies.

The main conclusion of this experiment is that although higher service
quality in the door-to-door transportation can also be obtained by increasing
the minimal service quality level for which the requests have to be served in a
single-company setting, a multi-company setting introduces natural minimal
service quality levels that result in the same average quality for a minimum of
extra costs. Because increasing the minimal service quality levels is difficult, as
we mentioned in the introduction chapter, it is surely worth it to pay attention
to a multi-company solution.

83

Chapter 6

Summary and future work

In this concluding chapter we give a brief overview of this thesis and we present
some pointers for future work.

6.1 Summary

In this thesis we focused on developing a mechanism for an environment in
which multiple companies compete with each other on service quality to get
assigned transportation requests. Increasing the average service quality in the
door-to-door transportation for elderly and disabled people in the Netherlands
has been the motivation for the development of such a mechanism.

In Chapter 2 we introduced the Dynamic Dial-a-Ride Problem with Time
Windows (DDARPTW), which is often used to model door-to-door trans-
portation. In this problem, routes have to be designed for vehicles that trans-
port passengers from their pickup to their delivery location, where time win-
dows decrease the flexibility to insert requests into the current schedule. We
added a constraint for preserving service quality to the model by Cordeau and
Laporte [6], such that this model could be used in our mechanism to guaran-
tee promised service quality. We also added some constraints, such that the
model could be used in an on-line optimization algorithm. A Mixed Integer
Program based on the model is used to solve the problem exactly, by running
a specialized solver.

The DDARPTW is NP-hard, so while solution concepts such as the one
mentioned above give optimal solutions, the time to compute these solutions
increases exponentially in the size of the problem input. We discussed a basic
insertion heuristic that can be used to obtain near-optimal results in most
cases and has good empirical performance. To this heuristic we added checks
for the preserving of service quality, and we modified it such that it could be
used in a dial-a-ride system.

In dynamic environments, information becomes known during the execu-
tion of the system. This implies that the solution needs to be updated fre-

85

6.1 Summary Summary and future work

quently and that using exact algorithms takes too much time. We described
a way in which these algorithms can be used in dynamic environments, called
on-line optimization. By only taking into account that parts of the prob-
lem that can change or can influence the information needed at the current
moment, problem sizes decrease.

Another way to deal better with dynamic settings is to use a decentralized
multi-agent approach. According to Mahr et al. [26] an agent-based approach
is competitive to an optimization approach for problem instances where less
than 50% of the requests are known in advance, and Mes et al. [28] shows
that a properly designed multi-agent approach performs as good as or even
better than traditional methods. In such a decentralized approach all agents
have to process the information they are responsible of, and the agents have
to communicate with each other. We described the Contract Net Protocol
(CNP) which contains rules for negotiation, contracting and decommitting.

A concept that is often used for assigning requests in a decentralized envi-
ronment is an auction. In Chapter 2 we briefly mentioned how an auction can
be used in a transportation context, but in Chapter 3 this concept is discussed
in more detail. An auction is an application of mechanism design, which deals
with the design of rules and strategies for games, such that the outcome of
these games have some desirable properties.

In Chapter 4 we proposed an auction mechanism for the assignment of re-
quests to multiple transportation companies. Different from other approaches
is the bid type, which in our method is a service quality value. The company
with the highest bid gets assigned the request and promises to serve this re-
quest with a minimal service quality. To ensure that quality, an additional
constraint was added to a Mixed Integer Program, which we used in an on-line
optimization approach to insert requests into vehicle schedules.

The prices that customers pay in the auction are not depended on the out-
come of the auction. However, these prices do influence the bidding behavior
of the companies. We showed an upper and lower bound for the price per
kilometer, and discussed why the actual price must not exceed these bounds.
A price that is too low will result in continuous losses for the companies, and
a price that is too high will result in less requests that can be served.

A type of auction in which players have the incentive to truthfully an-
nounce their preferences is the widely used sealed-bid second-price auction,
but problems with this truthfulness arises when multiple auctions are put in a
sequence. Based on models by Juda and Parkes [18] and Fatima et al. [10], we
provided a model in which sequential auctions can be studied. It seems that
for different reasons it does not follow that a bidder has a dominant strategy
in sequential auctions, while it has one in the single auctions.

There are ways to overcome the sequential auction problem; using op-
tions to allow decommitment, or finding other equilibrium strategies, such as
a Bayes-Nash equilibrium. To deal with the sequential auction problem in
our mechanism, we chose a simple method that is similar to the Bayes-Nash

86

Summary and future work 6.2 Future work

equilibrium approach discussed in Chapter 3. A Monte Carlo simulation is
performed to determine the level of service quality for which the company
makes about zero profit, taking into account future requests. This way, know-
ledge about the distribution of future requests is used to determine a bid for
a current request. Because many insertions of requests need to be done in
the Monte Carlo simulation, we chose to use an insertion heuristic, instead of
exact solution concepts.

The results of the experiments that are discussed in Chapter 5 showed that
the service quality is increased by 39% using our mechanism, instead of using
an approach where companies compete on the price of a ride. We observed
that total costs are also increasing when service quality is increasing. In this
case the increase in total costs is 19%.

The incorporation of knowledge about future requests into the calculation
of bids results in less optimistic bids, and therefore in less average service
quality (−8%). We did not notice an increase in the number of served requests,
but we think this is because the problem instances are too small to notice this
difference.

It also follows from the results of the experiments that the same average
service quality can be obtained in a single-company setting for less costs than
in a multi-company setting. This is done by introducing a minimal service
quality level in the single-company setting. The incentive to provide higher
service quality must be explicitly added to the single-company setting, while
in the multi-company setting the competition takes care of this incentive.

What we have reached in our work is providing a mechanism for door-
to-door transportation in which companies compete on service quality for
the assignment of customer requests, which leads to higher average service
quality. There are some additional costs opposed to a single-company setting
in which a minimal service quality level is determined, but due to problems
that result from keeping to this minimal service quality, the additional costs
for a multi-company setting fade away against the costs to solve the problems
in a single-company setting.

6.2 Future work

To conclude this thesis, we state here some departure points for future work.

• An important assumption that we made in Section 4.1 is that vehicles
are always driving exactly according to their schedule. It is obvious that
in real-life this is not true, and because this can have a big influence on
the scheduling and the final service quality, it is interested to investigate
a setting where this assumption is not made.

• Another assumption that we made is that only one request is being
auctioned at a time. It is also possible for a company to collect multiple

87

6.2 Future work Summary and future work

request announcements and to calculate a combined bid value. Instead
of a sequential auction, this would be a combinatorial auction, where
players can bid on combinations of goods.

• In a real-life environment, all the valid requests made by customers must
be served. This can be accomplished by hiring extra vehicles in the case
that a request cannot be inserted in any of the vehicles’ routes, but this
results in additional costs. How to deal with rejected requests and what
influence these extra costs have on the final solution needs to be further
investigated.

• In Section 2.1.3 the degree of dynamism is defined, but for computational
reasons we only considered problem instances in which all the requests
are dynamic. The earlier a request arrives into the system, the longer
it is present in the MIP formulation, so the more computation time
is needed to insert subsequent requests. With the presence of static
requests, companies are able to use knowledge about multiple requests
in the calculation of a bid for a single request. This might lead to a
different bidding behavior by the companies.

• Our definition of service quality as the ratio between direct and actual
travel time is quite simple, but we think it was a good definition to start
with. In the future, combined measures can be used, and even functional
quality (instead of technical quality) measures can be used.

• The problem instances we used in our experiments are randomly gener-
ated and therefore it is hard to draw conclusions about our mechanism
in real-life. By using real, historic data from taxi companies or insurance
companies it would become possible to say something about the useful-
ness of the mechanism we proposed in real-life. Our problem instances
are also quite small, containing only 16 requests. To present more accu-
rate experimental results, it is important to investigate in future work
how larger instances can be used.

• In Section 4.5.2 we provided a simple approach to incorporate future
knowledge into the calculation of the current bid. This approach is simi-
lar to defining new equilibria for sequential auctions, which is described
in Section 3.3.4, but we implemented it very simple. A pointer for fu-
ture work is a theoretical analysis of defining equilibria in the sequential
auction we used in our mechanism.

• The work in this thesis is quite practical and therefore we did not provide
many theoretical analyses of our approach. Our idea was to present
another way to assign requests to vehicles in a dial-a-ride system (i.e.
by bidding service quality). In future work these analyses have to be

88

Summary and future work 6.2 Future work

provided and they may lead to new insights in the use of a mechanism
like the one we provided.

89

Bibliography

[1] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. JADE - a
FIPA-compliant agent framework. In Proceedings of the Practical Appli-
cations of Intelligent Agents, 1999.

[2] Ann Melissa Campbell and Martin Savelsbergh. Efficient insertion heuris-
tics for vehicle routing and scheduling problems. Transportation Science,
38(3):369–378, 2004.

[3] Alberto Colorni and Giovanni Righini. Modeling and optimizing dynamic
dial-a-ride problems. International Transactions in Operational Research,
8(2):155–166, 2001.

[4] Wolfram Conen and Tuomas Sandholm. Preference elicitation in combi-
natorial auctions. In EC ’01: Proceedings of the 3rd ACM conference on
Electronic Commerce, pages 256–259, New York, NY, USA, 2001. ACM.

[5] Jean-Franois Cordeau. A branch-and-cut algorithm for the dial-a-ride
problem. Oper. Res., 54(3):573–586, 2006.

[6] Jean-Franois Cordeau and Gilbert Laporte. The dial-a-ride problem:
models and algorithms. Annals of Operations Research, 153(1):29–46,
2007.

[7] Luca Coslovich, Raffaele Pesenti, and Walter Ukovich. A two-phase inser-
tion technique of unexpected customers for a dynamic dial-a-ride prob-
lem. European Journal of Operational Research, 175(3):1605–1615, De-
cember 2006.

[8] Claudio Cubillos and Claudio Demartini. An on-demand passenger trans-
portation architecture based on a mediated contract-net. In SAINT-W
’05: Proceedings of the 2005 Symposium on Applications and the In-
ternet Workshops, pages 388–391, Washington, DC, USA, 2005. IEEE
Computer Society.

91

BIBLIOGRAPHY

[9] Anke Fabri and Peter Recht. Online dial-a-ride problem with time win-
dows: An exact algorithm using status vectors. Operations Research
Proceedings 2006, pages 445–450, 2006.

[10] Shaheen. S. Fatima, Michael Wooldridge, and Nicholas R. Jennings. Se-
quential auctions in uncertain information settings. In Proc. 9th Interna-
tional Workshop on Agent-Mediated Electronic Commerce, pages 15–28,
2007.

[11] Miguel Andres Figliozzi, Hani S. Mahmassani, and Patrick Jaillet. Pricing
in dynamic vehicle routing problems. Transportation Science, 41(3):302–
318, 2007.

[12] Klaus Fischer, Jorg P. Muller, and Markus Pischel. Cooperative trans-
portation scheduling: an application domain for dai. Journal of Applied
Artificial Intelligence, 10:1–33, 1996.

[13] Foundation for Intelligent Physical Agents. Specifications, 1997. Avail-
able from http://www.fipa.org.

[14] Konrad-Zuse-Zentrum für Informationstechnik Berlin. Scip. Available
from http://scip.zib.de/.

[15] R. Gopal, S. Thompson, Y. A. Tung, and A. B. Whinston. Managing
risks in multiple online auctions: An options approach. Decision Sciences,
36(3):397–425, 2005.

[16] Cristian Grönross. A service quality model and its marketing implica-
tions. European Journal of Marketing, 18(4):36–44, 1984.

[17] Jang-Jei Jaw, Amedeo R. Odoni, Harilaos N. Psaraftis, and Nigel H. M.
Wilson. A heuristic algorithm for the multi-vehicle advance request dial-
a-ride problem with time windows. Transportation Research Part B:
Methodological, 20(3):243–257, June 1986.

[18] Adam I. Juda and David C. Parkes. The sequential auction problem on
ebay: an empirical analysis and a solution. In EC ’06: Proceedings of the
7th ACM conference on Electronic commerce, pages 180–189, New York,
NY, USA, 2006. ACM.

[19] Adam I. Juda and David C. Parkes. An options-based solution to the
sequential auction problem. Artif. Intell., 173(7-8):876–899, 2009.

[20] Brian Kallehauge. Formulations and exact algorithms for the vehicle
routing problem with time windows. Comput. Oper. Res., 35(7):2307–
2330, 2008.

92

BIBLIOGRAPHY

[21] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller
and J. W. Thatcher, editors, Complexity of Computer Computations,
pages 85–103. Plenum Press, 1972.

[22] Vijay Krishna. Auction Theory. Academic Press, 2002.

[23] A. Larsen, O. Madsen, and M. Solomon. Partially dynamic vehicle routing
- models and algorithms. Journal of the Operational Research Society,
53:637–646, jun 2002.

[24] K. Lund, O.B.G. Madsen, and J.M. Rygaard. Vehicle routing problems
with varying degrees of dynamism. Technical report, Institute of Mathe-
matical Modelling, Technical University of Denmark, 1996.

[25] O.B.G. Madsen, H.F. Ravn, and J.M. Rygaard. A heuristic algorithm
for the a dial-a-ride problem with time windows, multiple capacities, and
multiple objectives. Annals of Operations Research, 60:193–208, 1995.

[26] Tamas Mahr, Jordan Srour, Mathijs M. de Weerdt, and Rob Zuidwijk.
Agent performance in vehicle routing when the only thing certain is un-
certainty. In Proceedings of the workshop on Agents in Traffic and Trans-
portation (ATT), 2008.

[27] Martijn Mes. Sequential Auctions for Full Truckload Allocation. PhD
thesis, Universiteit Twente, Enschede, The Netherlands, 2008.

[28] Martijn Mes, Matthieu van der Heijden, and Aart van Harten. Com-
parison of agent-based scheduling to look-ahead heuristics for real-time
transportation problems. European Journal of Operational Research,
181(1):59–75, August 2007.

[29] Nicholas Metropolis and S. Ulam. The monte carlo method. Journal of
the American Statistical Association, 44(247):335–341, 1949.

[30] T. Miyamoto, K. Nakatyou, and S. Kumagai. Route planning method
for a dial-a-ride problem. Systems, Man and Cybernetics, 2003. IEEE
International Conference on, 4:4002–4007 vol.4, Oct. 2003.

[31] Lonneke Mous, Valentin Robu, and Han La Poutré. Using priced options
to solve the exposure problem in sequential auctions. In Proc. of the 10th
Int. Workshop on Agent Mediated Electronic Commerce (AMEC’08), Es-
toril, Portugal, 2008. (Full paper, post-proceedings to appear in Springer
LNAI).

[32] Noam Nisan. Bidding and allocation in combinatorial auctions. In EC
’00: Proceedings of the 2nd ACM conference on Electronic commerce,
pages 1–12, New York, NY, USA, 2000. ACM.

93

BIBLIOGRAPHY

[33] Julie Paquette, Jean-François Cordeau, and Gilbert Laporte. Quality of
service in dial-a-ride operations. Computers & Industrial Engineering,
56(4):1721–1734, May 2009.

[34] David C. Parkes. Auction design with costly preference elicitation. Annals
of Mathematics and Artificial Intelligence, 44(3):269–302, 2005.

[35] D. Perugini, D. Lambert, L. Sterling, and A. Pearce. A distributed agent
approach to global transportation scheduling. Intelligent Agent Tech-
nology, 2003. IAT 2003. IEEE/WIC International Conference on, pages
18–24, Oct. 2003.

[36] Stefan Ropke, Jean-François Cordeau, and Gilbert Laporte. Models and
branch-and-cut algorithms for pickup and delivery problems with time
windows. Netw., 49(4):258–272, 2007.

[37] Ilya Segal. The communication requirements of combinatorial allocation
problems. In Y. Shoham P. Cramton and R. Steinberg, editors, Combina-
torial Auctions, chapter 11, pages 265–295. Cambridge, Massachusetts:
MIT Press, 2006.

[38] Yoav Shoham and Kevin Leyton-Brown. Multiagent Systems: Algorith-
mic, Game-Theoretic, and Logical Foundations. Cambridge University
Press, 2008.

[39] R. G. Smith. The contract net protocol: High-level communication
and control in a distributed problem solver. IEEE Trans. Comput.,
29(12):1104–1113, 1980.

[40] M. M. Solomon. Algorithms for the vehicle routing and scheduling prob-
lems with time window constraints. Oper. Res., 35(2):254–265, 1987.

[41] P. J. ’t Hoen, V. Robu, and J. A. La Poutre. Decommitment in a Com-
petitive Multi-Agent Transportation Setting. Birkhäuser Basel, 2005.

[42] Dusan Teodorovic and Gordana Radivojevic. A fuzzy logic approach to
dynamic dial-a-ride problem. Fuzzy Sets Syst., 116(1):23–33, 2000.

[43] Jǐŕı Vokř́ınek, Jǐŕı B́ıba, Jǐŕı Hod́ık, Jaromı́r Vyb́ıhal, and Michal
Pĕchouček. Competitive contract net protocol. In SOFSEM ’07: Pro-
ceedings of the 33rd conference on Current Trends in Theory and Practice
of Computer Science, pages 656–668, Berlin, Heidelberg, 2007. Springer-
Verlag.

[44] Michael P. Wellman, William E. Walsh, Peter R. Wurman, and Jeffrey K.
MacKie-Mason. Auction protocols for decentralized scheduling. Games
and Economic Behavior, 35(1-2):271–303, April 2001.

94

BIBLIOGRAPHY

[45] Jian Yang, Patrick Jaillet, and Hani S. Mahmassani. On-line algorithms
for truck fleet assignment and scheduling under real-time information.
Transportation Research Record: Journal of the Transportation Research
Board, 1667(1):107–113, 1999.

95

Appendix A

Glossary

In this appendix we give an overview of frequently used terms and abbrevia-
tions.

a priori with the information known beforehand

AV Affiliated Value

ex ante in expectation from the beginning of execution

CCNP Competitive Contract Net Protocol

CNP Contract Net Protocol

CV Common Value

DARPTW The Dial-a-Ride Problem with Time Windows

DDARPTW The Dynamic Dial-a-Ride Problem with Time Windows

dod degree of dynamism

ECNP Extended Contract Net Protocol

edod effective degree of dynamism

ILP Integer Linear Program

IPV Independent Private Value

MIP Mixed Integer Program

PAP Provisional Agreement Protocol

PDVRP Pickup and Delivery Vehicle Routing Problem

SCIP A non-commercial mixed integer programming solver

97

Glossary

TSP Traveling Salesman Problem

VRPTW Vehicle Routing Problem with Time Windows

98

Appendix B

Software model

In this appendix we present a class diagram that give some insight into our
implementation of the mechanism proposed in this thesis. In Section B.2,
some software libraries that we use in our implementation are discussed.

B.1 Class diagram

In Figure B.1 a class diagram is shown of our Java implementation of the
mechanism proposed in this thesis.

B.2 Software parts used

In this section we discuss some software parts that we used in our implementa-
tion. A framework to develop agent-based systems, called JADE, is described
in Section B.2.1 and a Mixed Integer Program solver, called SCIP, is treated
in Section B.2.2.

B.2.1 JADE

Description

The Java Agent DEvelopment Framework (JADE) is a software framework
fully implemented in the Java language. It simplifies the implementation
of multi-agent systems through a middle-ware that complies with the FIPA
specifications and through a set of graphical tools that supports the debugging
and deployment phases. The communication between the agents is all taking
care of and behaviors of agents can simply be added. Because it is fully
implemented in Java, it can be easily extended.

The communication architecture offers flexible and efficient messaging,
where JADE creates and manages a queue of incoming ACL messages, pri-
vate to each agent; agents can access their queue via a combination of several
modes: blocking, polling, timeout and pattern matching based.

99

B.2 Software parts used Software model

Figure B.1: A simple class diagram of our Java implementation of the mech-
anism proposed in this thesis.

The agent platform provides a Graphical User Interface (GUI) for the
remote management, monitoring and controlling of the status of agents, al-
lowing, for example, to stop and restart agents. The GUI allows also to create
and start the execution of an agent on a remote host, provided that an agent
container is already running.

Review

JADE can be used as the framework for our implementation. The behavior
of the agents is strictly separated from the communication, so they can be

100

Software model B.2 Software parts used

developed independently from each other. It is very easy to extend agents
and define behaviors for these agents. It is also very easy to send and receive
messages. The underlying infrastructure is all taking care of by the framework.

An important benefit is that we can make the system act as a real multi-
agent system, because all agents live in their own threads and can even exist
on different computers (e.g. have their own cpu). Another benefit is the ex-
perience that already exists in working with Java.

A drawback could be that the framework is too extensive, in the sense that
there are a lot of superfluous features that we won’t use.

Source

Documentation, tutorials and source code of JADE can be found at http:

//jade.tilab.com/.

B.2.2 SCIP and ZIMPL

Description

SCIP is currently one of the fastest non-commercial mixed integer program-
ming solver. It is also a framework for Constraint Integer Programming and
branch-cut-and-price. It allows total control of the solution process and the
access of detailed information down to the guts of the solver.

To simplify the development of problem instances, the language ZIMPL
is developed. In this language, higher level data structures (e.g. sets) and
operations over these data structures (e.g. summation) can be used. Input
files written in ZIMPL can be fed directly to SCIP or they can be converted
to LP files (default SCIP input).

Review

When the model is developed using mixed integer programming, SCIP can be
used to solve this problem. To solve sub-problems (e.g. within a vehicle), we
can define this problem in ZIMPL and give this to SCIP to solve the problem.

Source

SCIP is maintained by Konrad-Zuse-Zentrum für Informationstechnik Berlin,
and can be downloaded from http://scip.zib.de/.

101

