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Abstract

The estimation of extreme quantile curves of a family of conditional distributions is a non-
trivial problem, due to the data-sparseness in the tail of the distribution. This thesis considers
the problem of post-processing extreme precipitation forecasts in Friesland from the numerical
weather prediction model HARMONIE. Assuming forecasts are accurate, it is natural to assume
a linear relationship between the precipitation observations and the forecasts. However, in
practice this relationship is not linear, due to large uncertainties in the modelling process. To
deal with this problem of non-linearity a non-parametric common shaped tail estimator (CST)
is proposed to adequately estimate the non-linear shape of the relationship. Performance of the
CST estimator is shown and compared to other extreme quantile estimators from the literature in
an extensive simulation study. The estimators are also compared using the quantile verification
skill score on a three year precipitation dataset in the province of Friesland. It is shown that the
estimator has a lot of bias in the estimation, which prevents the CST estimator to outperform
all other methods. However, the verification scores for the real data example exceed all scores
of the other estimators.
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Chapter 1

Introduction

Weather has a large influence on our daily lives. Everyday people make simple decisions based
on the weather. For example whether they should take the car or the bike to work, or how to
dress to be comfortable on a certain day. These are all relatively easy choices, that have little
impact, though there are also more critical problems which are heavily influenced by weather
conditions. For example wind turbines on the North Sea need to be stopped in order to prevent
damage when wind gusts become too severe. Control of the water levels is another important
issue in the Netherlands. Proper precautions need to be taken in the case of a forecast extreme
precipitation event, in order to prevent flooding.

All the above examples require accurate weather forecasts, but the wind turbine and ex-
treme precipitation examples require extreme weather forecasts. Low wind speeds and little
precipitation are not of interest in the prevention of the turbines breaking down and flooding
problems.

Weather forecasts are generally generated from a numerical weather prediction (NWP)
model. This model approximates the solution to the physical differential equations, which govern
the weather. These differential equations are non-linear which means that a small misspecifi-
cation in the initial or the boundary conditions can result in a completely different forecast.
Furthermore, as not all processes can be explicitly resolved, the forecast is sensitive to model
errors in sub grid scale parametrisations. This makes deterministic forecasts less useful, espe-
cially for extreme weather forecasts. Instead statistical methods are used to be able to make a
probabilistic forecast of the weather event using the historical relationship between the forecast
and the observations.

Consider Y to be the weather event and denote by X the forecast from the NWP model.
The interest lies in the conditional distribution of the weather event given the forecast, i.e. the
distribution of Y |X. When proper inference can be made on the distribution of Y |X, decision
rules can be created.

To make this more concrete, consider an alert system for extreme precipitation, i.e. a system
that issues an alarm when a heavy precipitation event is expected e.g. [14]. Therefore two
values need to be fixed. First let yext denote a threshold value such that, when the amount of
precipitation exceeds yext, it is considered an extreme event. Second, let τ denote a pre-specified
probability such that an alarm is given when P(Y > yext|X = x) > τ , i.e. the probability of
observing an extreme precipitation event is larger than the pre-specified probability.

This alarm system could also be written in terms of the quantile function QY |X of the random
variable Y |X, i.e. issue an alarm when QY |X(1 − τ |X = x) > yext. An example of an alarm
system is the code orange weather alert of the KNMI. Here a code orange is issued for τ = 0.6.

Clearly the performance of these alarm systems relies on adequately modelling the distri-
bution of Y |X. When the modelling of the distribution improves, also the alarm system will
improve. This thesis discusses the estimation of the quantile function in the tail, i.e. what
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6 CHAPTER 1. INTRODUCTION

happens with the quantile function QY |X(τ |X = x) when τ → 1. Four approaches to the es-
timation of QY |X(τ |X = x) are discussed, a linear quantile estimator [19], a non-parametric
quantile estimator [2], a likelihood estimation of the generalized Pareto distribution to the ex-
ceedances above a high threshold [7] and a non-parametric kernel estimator for the distribution
function [6]. These four estimators allow for a varying extreme value index over the covariates
X. This allows for a lot of freedom in the modelling process, but it also introduces large un-
certainties in the estimation. In Chapter 3 it is shown that these estimators introduce indeed
a lot of uncertainty when the data has the property of a stationary extreme value index. In
addition, in the linear quantile estimator the problem of quantile crossing appears, which will
be elaborated on in Chapter 2.

The aim of this thesis is to develop a non-parametric estimator, not affected by the quantile
crossing problem, for data that has the property of a stationary extreme value index. The
common shaped tail model is proposed, which is an additive model for the quantile function by
splitting the dependence on the covariate X and the dependence on τ hence,

Q(τ |X = x) = r(x) + ε(τ).

Based on this model a common shaped tail (CST) estimator is proposed.
The outline is as follows, first in Chapter 2 basic theory on extreme value statistics, quantile

regression and non-parametric estimation is discussed. Then the four approaches in the literature
for the extreme quantile estimation are discussed in Chapter 3. Chapter 4 introduces the new
CST estimator. An extensive simulation study will be done in Chapter 5 to show the performance
of the CST estimator and to compare it with the estimators from the literature based on a finite
data sample. In Chapter 6 the methods will be applied and verified on a real data example.
Finally, in Chapter 7, concluding remarks are made and future work is discussed. In Appendix
B documentation is listed for the R-code that is written for the implementation of the CST
estimator and the two non-parametric estimators from Chapter 3.



Chapter 2

Prerequisite information

The general topic covered in this thesis is the estimation of extreme quantiles of the conditional
distribution Y |X. Before discussing different approaches to this estimation problem, some sta-
tistical theory is introduced in the current chapter which will be important later on. This
chapter is subdivided in three sections. The first section covers basic theory on quantile regres-
sion that was first introduced by Koenker in [13]. The second section, covers the basic theory
on univariate extreme value theory and finally, the last section explains an approach to perform
non-parametric quantile regression.

In order to maintain consistency through the entire thesis, the basic notation will be fixed
here. Let (Y1, X1), . . . , (Yn, Xn) be paired response and covariates. Denote F (y|X = x) as
the distribution function of Y |X = x and let the conditional quantile function be given by
Q(τ |X = x) = F−1(τ |X = x), where τ ∈ [0, 1] is a percentile level.

2.1 Quantile regression

Regression techniques are applied in statistics to obtain a dependence relation between a response
variable and covariates. Inference about such a relation is always restricted to a specific part
of the conditional distribution Y |X. For example least squares regression obtains the relation
between Y and X by modelling the conditional mean, i.e. E(Y |X = x). Assume that Y |X = x
is a symmetric distribution for all values of x, and additionally assume the expectation exists; in
that case it must hold that E(Y |X = x) = Q(0.5|X = x) for all x. This means the conditional
mean is exactly the same as the conditional median. This is not the case when Y |X = x is
not symmetric or even heavily skewed. It would therefore be interesting to have a regression
method to obtain inference about the conditional median, which always exists, instead of the
conditional mean.

Fixing a sequence of percentile levels τ1, . . . , τp and obtaining inference about the conditional
quantiles at each of these percentile levels allows us to estimate the conditional quantile function
Q(τ |X = x) as a smooth function of x and a discrete function in τ .

For a fixed percentile level τ , a quantile curve as a function of x, x 7→ Q(τ |X = x) is called a
regression quantile. A regression quantile corresponding to percentile level τ can intuitively be
considered as a curve which splits the observations (Y1, X1), . . . , (Yn, Xn) in a portion τ under
the curve and 1− τ above it for every interval of X.

Using this intuitive idea of the regression quantile, a proper distance measure which leads to
a consistent estimator for the quantile curve is given by,

ρτ (u) = u(τ − 1u<0) = max(u, 0)τ + max(−u, 0)(1− τ). (2.1)

Here u is defined by the `1 distance between the curve, r(x), and the response, |Y − r(X)|.
Equation 2.1 is referred to in the literature as the quantile check function. The regression quan-
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8 CHAPTER 2. PREREQUISITE INFORMATION

Figure 2.1: The quantile check function with τ = 0.5 (left) and τ = 0.9 (right).

tile is obtained by minimizing the expectation of the check function. Intuitively, the obtained
regression quantile minimizes the distance between the observations above and below the re-
gression quantile relative to the expected number of observations above and below. In Figure
2.1 the quantile check function is shown for τ = 0.5 and τ = 0.9. It can be seen from the figure
that the function is symmetric for τ = 0.5, which is intuitive should have half the points above
and half the points below, i.e. u > 0 and u < 0 respectively. However, for τ = 0.9 this the
observations above and below the line are 1 to 9, which means that the observations above,
u > 0 should have higher weight than observations below u < 0. Now given the observations
denoted as above, the quantile curve rτ (x) is given by the following minimization problem,

f̂τ (x) = argminrτ

n∑
i=1

ρτ (Yi − rτ (xi)). (2.2)

Now in order to perform the minimization a choice is to be made for the class of the functions
rτ , as otherwise the minimization gives rτ (Xi) = Yi. Often this class is chosen to be the linear
functions, i.e. rτ = α+ βXi, but this can be any class of functions in general.

Below a common encountered problem will be discussed, namely the quantile crossing prob-
lem, which appears when regression quantiles are estimated for a sequence of percentiles τ1, . . . , τp.
Finally, the section will finish with a short discussion on the computational aspects of regression
quantiles.

2.1.1 The quantile crossing problem

A problem which arises ofr the independent estimation of regression quantiles for a sequence of
percentiles τ1, . . . , τp is the quantile crossing problem. Note that the crossing of two quantile
curves corresponding to two distinct percentile levels τ1 and τ2 contradicts the monotonicity of
the quantile function. For example, consider the median τ = 0.5, and the third quartile τ = 0.75.
In the case that the median curve and the third quartile curve cross, i.e. the median curve is
higher in comparison to the thrid quartile curve, the following contradiction will arise,

0.75 = P(Y ≤ Q(0.75)) ≤ P(Y ≤ Q(0.5)) = 0.5.
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When estimators of quantile curves cross, then they lose their interpretation as quantile
curves. The reason why the estimates of the quantile curves cross for different percentile levels
comes from the fact that they are estimated independently. Assume for simplicity that the
quantile curves rτ (x) are linear, i.e. rτ (x) = α(τ) + β(τ)x. Consider two distinct percentile
levels τ1 > τ2 and the corresponding estimated quantile curves,

Q̂τ1(x) = α̂1 + β̂1x

Q̂τ2(x) = α̂2 + β̂2x.

According to the monotonicity constrain of the quantile function, the estimated quantile
functions must follow the following inequality constrain, Q̂τ1(x) > Q̂τ2(x). Though, as the
parameters of the quantile curves are estimated independently of each other, the slopes of the
curves are generally not equal, i.e. β̂1 6= β̂2. In this case, there exists a value x1 = α̂1−α̂2

β̂2−β̂1
where

the curves cross. This means that either for x > x1 or x < x1, Q̂τ1(x) < Q̂τ2(x) and so in the
respective areas the quantile curves lose their natural interpretation.

In the paper of Chernozhukov [4] a monotone rearrangement is proposed to deal with
the quantile crossing problem. Denote the estimated quantile levels at a fixed point x∗ by
Q̂1(x∗), . . . , Q̂p(x

∗), corresponding to an increasing percentile sequence τ1, . . . , τp. Then in the
case that the sequence Q̂i(x

∗) is not monotonically increasing, the monotone rearrangement uses
the monotonically reordered estimates as the new quantile estimators, i.e. the order statistics
of the estimates, Q̂1,p(x

∗), . . . , Q̂p,p(x
∗. These reordered estimates have the monotone property

of the quantile function and are therefore interpretable as quantiles.

In Figure 2.2 an example of the crossing problem is shown, on the left crossing quantile
curves are shown and on the right side the monotone rearrangement of the curves.

Figure 2.2: Crossing quantile curves (left) and the monotone rearrangement method applied to
the quantile curve (right).

In Chapter 4 this problem will be tackled by proposing a common shaped tail model.
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2.1.2 Computational aspects of quantile regression

From a practical point of view, the computation of regression quantiles is of significant im-
portance. It will be shown below that the minimization problem as presented in Equation 2.2
can be written as a linear optimization problem. The aim of this section is not to provide the
reader with direct optimization methods for solving the quantile regression minimization. In-
stead, showing that the minimization problem can be written as a linear optimization problem,
enables the use of the extensive literature and software on this subject, which is beyond the
scope of this thesis.

The quantile regression minimization problem for a linear model is given by,

β̂ = argminβ

n∑
i=1

ρτ (Yi −X ′iβ),

where X ′i = (1, Xi) with Xi the covariate variable. Now define Ei(β) = Yi −X ′iβ and split it in
a positive part and a negative part, hence Ui(β) = max(Ei, 0) and Vi(β) = max(−Ei, 0). Now
the check function within the sum becomes,

ρτ (Yi −X ′iβ) = ρτ (Ei(β)) = max(Ei(β), 0)τ + max(−Ei(β), 0)(1− τ)

= Ui(β)τ + Vi(β)(1− τ).

Let U = (U1(β), . . . Un(β)) and V = (V1(β), . . . Vn(β)) and β = β+ − β− where β+ and β− are
the positive and negative part of β respectively. The minimization problem is now given by,

min c(U, V , β) =
∑n

i=1 Ui(β)τ + Vi(β)(1− τ)

Subject to

Yi −Xi(β
+ − β−) = Ui(β)− Vi(β)

Ui(β) ≥ 0 ∀1 ≤ i ≤ n
Vi(β) ≥ 0 ∀1 ≤ i ≤ n
β+ ≥ 0

β− ≥ 0.

By introducing extra slack variables ai in the equality constrain, this minimization problem can
be written as follows,

min c(U, V , β) =
∑n

i=1 Ui(β)τ + Vi(β)(1− τ)

Subject to

Ui(β)− Vi(β)−Xi(β
+ − β−) ≤ Yi + ai

Ui(β) ≥ 0 ∀1 ≤ i ≤ n
Vi(β) ≥ 0 ∀1 ≤ i ≤ n
β+ ≥ 0

β− ≥ 0.

Where this can be written as a linear optimization problem in standard form,


min cTx

Subject to

Ax ≤ b
x ≥ 0,
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Where x = ((U), (V ), β+, β−, a1, . . . , an), A and b are formed such that the linear system Ui −
Vi−X ′iβ ≤ Yi+ai holds for every 1 ≤ i ≤ n and c such that cTx is given by

∑n
i=1 Uiτ+Vi(1−τ).

2.2 Extreme value theory

Extreme value theory is the part of statistics that is concerned with a tail of the distribution.
Therefore, it enables the estimation of extreme quantiles. The estimation of quantiles from a set
of i.i.d. observations Y1, . . . Yn is a relatively simple problem. Consider, the ordered observations
Y1,n, . . . Yn,n, with Y1,n the sample minimum and Yn,n the sample maximum. An estimator for
Q( i

n+1) is given by Yi,n. The highest tail quantile, which could be estimated with this approach
is then Q( n

n+1). Extreme value theory provides the methods, which allow to extrapolate beyond
the range of the data and obtain quantile estimates for τ > n

n+1 .

In order to be able to extrapolate beyond the range of the data, some extra knowledge about
the limiting behaviour of the sample maxima Yn,n is needed when n tends to infinity. Equation
2.3 states in mathematical terms the limiting behaviour and raises the question what is the
limiting distribution G(y) of the sample maximum Yn,n when n → ∞. From this point all
theory is stated in terms of the sample maxima and the right tail of the distribution, all the
theory on the sample minima or left tail can be obtained in a similar way.

lim
n→∞

P

(
Yn,n − bn

an
≤ y
)

= lim
n→∞

Fn(any + bn) = G(y) (2.3)

Note that in order for G to be a non-degenerate limiting distribution, normalisation with an
and bn is necessary, otherwise Yn,n

p→ x∗, where x∗ = sup{x : F (x) < 1}.
The limiting distribution G turns out to be the extreme value distribution, which is proven

by Fisher, Tippet [9] and Gnedenko [11];

Theorem 2.2.1. The class of extreme value distributions is given by

Gγ(y) = exp
(
−(1 + γy)

− 1
γ

)
, 1 + γy > 0, (2.4)

with γ ∈ R called the extreme value index and for γ = 0, Gγ is given by exp(−e−y).

The convergence of the normalized maxima to an extreme value distribution does not hold
in general; but for most well known distributions it does hold. To make this more precise the
concept of domain of attraction is introduced,

Definition 2.2.2. The distribution function F is said to be in the domain of attraction of an
extreme value distribution, denoted by F ∈ D(Gγ), if there exists normalising constants an > 0
and bn ∈ R such that,

lim
n→∞

Fn(any + bn) = Gγ(y) = exp
(
−(1 + γy)−1/γ

)
,

for all y such that 1 + γy > 0

The distribution of the maxima is now given by a one-parameter family of distributions,
which can be subdivided in three distinct classes of tail distributions with their respective prop-
erties,

• The case γ > 0 or the Fréchet domain of attraction: are heavy tails with an infinite
endpoint, y∗ =∞. Because of the heaviness of the tails moments of 1/γ do not exist.
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• The case γ = 0 or the Gumbel domain of attraction: are light tails with a finite or infinite
endpoint, y∗ ≤ ∞. All moments always exist with these types of tails.

• The case γ < 0 or the Weibull domain of attraction: are short tails with a finite endpoint,
y∗ <∞. As a result of the short tails also all the moments exist.

Some examples of distributions, which belong to these three domains are the student-t di-
stirbution with 1 degree of freedom, which belongs to the Fréchet domain of attraction with
γ = 1. The exponential distribution belongs to the Gumbel domain as it has an extreme value
index of 0 and the standard uniform distribution belongs to the Weibull domain of attraction
with γ = −1

The following proposition gives a necessary and sufficient condition for the domain of attrac-
tion of the Fréchet class,

Proposition 2.2.3. Let Y be a random variable with distribution function F , then Y ∈ D(Gγ)
with γ > 0 if and only if,

lim
t→∞

1− F (ty)

1− F (t)
= y

− 1
γ .

Two distributions are said to be tail equivalent if they share one common extreme value
index, i.e.

Definition 2.2.4. Two random variables Y1 and Y2 with distribution functions F1 and F2 which
are both in the domain of attraction of an extreme value distribution with γ1 and γ2 respectively
are said to be tail equivalent if γ1 = γ2

Figure 2.3: The selection of data for extreme value theory, the peaks over threshold method
(left) and the block maxima method (right). The data is simualted from a generalized Pareto
distribution with γ = 0.1.

The extreme value distributions as presented in Theorem 2.2.1 are the possible limiting
distribution of the sample maxima. In extreme value theory there is a second approach in
obtaining a limit distribution for the tail observations. This approach is instead concerned with
the behaviour of exceedances above a high threshold. The limiting theorem is due to Pickands,
Balkema and de Haan,
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Theorem 2.2.5. Let X be a random variable with distribution function F . Then F ∈ D(Gγ)
if and only if there exists a positive function f(t) such that the following limit relation holds,

lim
t→y∗

P

(
Y − t
f(t)

> y

∣∣∣∣Y > t

)
= lim

t→y∗
1− F (t+ yf(t)))

1− F (t)
= (1 + γy)−1/γ , (2.5)

with x∗ = sup{y : F (y) < 1}. The distribution Hγ(y) = 1− (1 +γy)−1/γ is called the generalized
Pareto distribution (GPD).

In extreme value theory, as the interest lies in the tail and not in the whole distribution,
only the k largest observations are included in the estimation process, with k << n. There are
two approaches of selecting the ”largest” observations for the estimation of the tail behaviour.
Let Y1, . . . , Yn i.i.d. random variables. The first approach is called the block maxima approach,
which splits the observations Y1, . . . Ym up in k blocks of observations. This is generally done with
respect to the time of measurement of the observations, for example blocks of a year or a month.
Assume there are k blocks then the maxima of these blocks are denoted by, M1, . . . ,Mk. From
Theorem 2.2.1 it is clear that these converge to an extreme value distribution when n

k tends to
infinity. The second approach considers all the upper order statistics exceeding a high threshold
d, i.e. Y(n−m+1) − d, . . . , Y(n) − d. From Theorem 2.2.5 these exceedances will asymptotically
follow the generalized Pareto distribution. See Figure 2.3 for both methods.

The second approach is preferred in this thesis as the extension to the tail is most natural
by modelling it as the exceedances above a high threshold, which is referred to as the peaks over
threshold method.

Two estimators of the extreme value index will be presented below; the first is called the Hill
estimator, [12]. This is the first estimator which appeared in the literature for the extreme value
index. It is however restricted to positive values of γ. This means that it estimates the extreme
value index for heavy tailed distributions, but not for light tailed or short tailed distributions.

Definition 2.2.6. The estimator γ̂H(k) is called the Hill estimator and is defined by

γ̂H(k) =
1

k

k∑
i=1

log Yn−i+1,n − log Yn−k,n (2.6)

Where Yi,n is the ith order statistic of an iid random sample.

The second estimator is the maximum likelihood estimator, which maximizes the likelihood
of the parameters of the generalized Pareto distribution over the exceedances above a high
threshold, [8]. This estimator is proven to be consistent for the extreme value index in the
range of [−1,∞), i.e. it is consistent for heavy tailed, light tailed and a range of short tailed
distributions.

Definition 2.2.7. The maximum likelihood estimators for the scale and shape are defined as
the values γ̂(k), σ̂(k) which maximize the following likelihood equations,{

1
k

∑k
i=1 log

(
1 + γ

σ (Yn−i−1 − Yn−k,n)
)

= γ
1
k

∑k
i=1

1
1+ γ

σ
(Yn−i−1−Yn−k,n)

= 1
γ+1

Note however that this estimator is based on the assumption that exceedances above Yn−k,n
follow a generalized Pareto distribution. The equations are then derived from the likelihood
of these exceedances assuming a generalized Pareto distribution. The choice of k is of high
importance here as the approximation of the GPD requires the threshold, i.e. Yn−k,n, to be
high.
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2.3 Non-parametric estimators

Models within statistics can roughly be divided into two classes, the so called parametric models
and the non-parametric models. The main difference between the two comes from the assump-
tions which are made before the estimation procedure. A parametric model assumes a specific
parametric structure on the data and a non-parametric model does not assume such a structure.
For example in the estimation of the distribution a parametric estimator assumes that the data
Y1, . . . , Yn are from a distributional family smoothly parametrized by F = Fθ for some finite
dimensional parameter θ. Consequently in order to estimate the distribution it is only required
to estimate the parameter θ.

These estimators are generally quite good when the parametric assumption holds, though
the problems with these parametric estimators arise when the assumption does not hold. As a
result, there can be a lot of bias in the estimation resulting from a bad assumption. Consider
for example to use an estimator for the normal distribution on data which is from a bimodal
distribution. The left plot in Figure 2.4 shows the exact bimodal distribution together with the
estimated normal density based on a dataset of n = 500. It is clear that the bad assumption of
normality leads to a large bias.

Figure 2.4: Comparison of non-parametric estimation (in red) and parametric estimation based
on normality assumption (in blue). Shown for both the density (left) and the distribution
function (right).

This motivates the introduction of non-parametric models, i.e. models which do not have
a parametric assumption on the data. Therefore they obtain the information in a more data
driven way. Staying with the same example as above, a well known non-parametric estimator
for the estimation of the distribution function is the empirical cumulative distribution function
which is defined by,

Fn(y) =

n∑
i=1

1(y≤Yi)

This estimator looks very simple the probability that Y ≤ y is estimated by the relative
frequency of occurrence, but is in fact very useful and well studied. In the next chapter this
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estimator will serve as a basis for an extreme quantile estimator. The right plot in Figure
2.4 shows the bimodal cumulative distribution function together with the empirical cumulative
distribution function. It is clear that this estimator is significantly better than the estimator
based on the normality assumption.

In the quantile regression setting as introduced above, often it is assumed that the quantile
curves are linear in the covariate, i.e. the relation between quantiles of Y and X is linear for
all values of τ . The quantile curve can then be parametrized by rτ (x) = α(τ) + β(τ)x. The
regression quantile estimator is then obtained estimating (α(τ), β(τ)). This would introduce
large biases when the quantile curves are in fact not linear.

A non-parametric regression estimator models the dependence relation between Y and X in
a local way. Consider a fixed covariate level x∗ and let h > 0 be a bandwidth. Non-parametric
quantile regression estimates fτ (x∗) by approximating the function in the neighbourhood of x∗,
[x∗ − h, x∗ + h], by a finite Taylor expansion. Let m > 0 be the order of the Taylor expansion,
then the quantile function can be approximated in a neighbourhood of x∗ by,

Q(τ |X = x) ≈
m∑
i=0

diQ(τ |X = x)

dxi

∣∣∣∣
x=x∗

(x− x∗)i

i!
=

m∑
i=0

βi(x− x∗)i,

where βi = diQ(τ |X=x)

dxi

∣∣∣∣
x=x∗

1
i! . Note that this does not assume any parametric structure on the

quantile curves. The approximation becomes more accurate when m increases. Taking m→∞
is however impossible as the number of parameters to estimate will go to infinity. In practice
the approximating function is chosen either local constant m = 0, local linear m = 1 or local
quadratic m = 2. In addition note that β0 = Q(τ |X = x∗), i.e. β0 is the point estimate of
f̂τ (x∗).

The parameters in this local Taylor expansion can be estimated by solving the minimization
given in Equation 2.2, rewriting the minimization problem for the current setting,

arg min
β0,...,βm

n∑
i=1

1(|Xi − x∗| < h)ρτ

Yi − m∑
j=0

βj(Xi − x∗)j
 .

Here the choice of h is a non-trivial and very important problem. The same bias variance trade-
off needs to be made as with the choice of k in extreme value theory. For small h the local
approximation is expected to hold quite well, which has a small bias as a resutl. However a
small h will limit the number of observations used for the estimation and will therefore blow up
the variance.

In the above minimization, every observation in the neighbourhood of x∗, [x∗ − h, x∗ + h],
has equal weight in the minimization problem. Observations which lie further from x∗ could
potentially introduce more bias, as the errors in the Taylor expansion are larger. Therefore it
would be better to put more weight on observations (Yi, Xi) for which Xi is closer to x∗. Let
w1(x∗), . . . , wn(x∗) denote a sequence of weights which sum up to 1. The minimization problem
can now be written as,

arg min
β0,...,βm

n∑
i=1

wi(x
∗)ρτ

Yi − m∑
j=0

βj(Xi − x∗)j
 .

Often a kernel function, K(.) is used for these weights, where the kernel is defined as a
probability density function on R. Generally the choice is made for a uni-modal symmetric
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distribution around 0 to put more weight on the observations close to x∗ and less weight on ob-
servations far from x∗. A weight for the non-parametric quantile estimator at x∗ with bandwidth
h is defined by,

wi(x
∗) = K

(
x∗ −Xi

h

)
.



Chapter 3

Extreme quantile estimators in the
literature

The conditional distribution function of Y depending on X is denoted as F (y|X = x) = P(Y ≤
y|X = x). The focus in this thesis will be on modelling the tail of F (y|X = x), which can be
denoted by P(Y ≤ c|X = x) for c large. There are already a variety of approaches for the tail
estimation of the conditional distribution. This chapter introduces four of these methods, each
method represents one of four approaches to this specific estimation problem.

Obtaining inference about the tail of the conditional distribution is in general a hard problem.
Tail observations are sparse by definition and additionally the tail distribution may depend on
the covariate information X. Therefore, instead of the estimation of a single extreme value
index, a function, γ(x), is to be estimated.

Clearly, this imposes quite a challenge as direct extrapolation as is done in univariate extreme
value theory is not possible, due to the lack of observations for the specific covariate levels x∗.
Instead, estimators are obtained in a two step procedure. To illustrate the procedure, the tail
distribution can be split into two parts.

1. Intermediate quantiles, Q(τn) s.t. n(1− τn)→∞ when n→∞

2. Extreme quantiles, Q(τn) s.t n(1− τn)→ c∗ when n→∞ with c∗ a constant

The intermediate quantiles can be interpreted as tail quantiles, which are in the range of the
data, i.e. q is an intermediate quantile if P (Y > q|X = x) > 1

n . The extreme quantiles can be
interpreted as the tail quantiles which exceed the range of the data, i.e. q is an extreme quantile
if P (Y > q|X = x) < 1

n .

The first step obtains an estimator for the intermediate part of the tail distribution. The
second step uses the estimator for the intermediate quantiles for a given X = x∗ and extrapolates
them to the extreme quantiles using methods from univariate extreme value theory.

Roughly, all estimators in the literature can be categorized in two groups. For the first group,
inference about the intermediate quantiles is obtained from the conditional distribution function.
The second group, on the other hand, obtains inference about the intermediate quantiles via
quantile regression. For each of the two groups both a parametric estimator and a non-parametric
estimator will be discussed.

The following section will introduce the general structure of the estimators and clarify the
choices that have to be made in the estimation process.

17
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3.1 General estimation structure

The structure of every estimator in the literature is similar, as also described above. This section
describes a general structure of the two step approach. All methods will be compared in this
general structure.

First, let τ1, . . . , τp denote a sequence of intermediate percentiles and let the corresponding
quantile curves be denoted by Q(τ1|X = x), . . . , Q(τp|X = x). Note that the quantile function
is the inverse of the distribution function and therefore estimators of the conditional quantile
function can be obtained by taking the left continuous inverse of the estimated conditional
distribution function, i.e. Q̂(τ |x) = F̂←(τ |x) = inf{t : F̂ (t|x) ≥ τ}.

In the second step the intermediate quantiles are extrapolated using methods from ex-
treme value theory. Note that quantile curves evaluated at a fixed covariate level, X =
x0, are an increasing sequence of p distinct values assuming a continuous distribution, i.e.
Q̂(τ1|x0), . . . , Q̂(τp|x0). This sequence of estimators can be considered as ordered observations
from the distribution Y |X = x.

For the estimation of the extreme quantiles of Y |X = x0, the extreme value index needs
to be estimated. Now let γ̂(Yn−k+1,n, . . . , Yn,n) be an estimator for the extreme value in-
dex based on the k upper order statistics. By substituting the upper order statistics by the
estimated quantile curves for a fixed point x0 the following estimator is obtained, γ̃(x0) =
γ̂(Q̂(τp−k|x0), . . . , Q̂(τp|x0)) for k < p.

The extreme quantile estimator for Y |X = x0 is now given by the following formula, with
τn an extreme percentile,

Q̂(τn|x0) =

(
1− τp−k
1− τn

)γ̃(x0)

Q̂(τp−k|x0).

3.2 Intermediate quantiles via quantile regression

This section discusses two estimators where inference about the intermediate quantiles is ob-
tained via quantile regression. First, a parametric estimator, proposed in [19], where the quantile
curves are assumed to be linear is discussed together with an extension of these results, proposed
in [18]. In Section 3.2.2 a non-parametric estimator is discussed, which was proposed in [2].

3.2.1 Linear quantile regression with power-transformations

In [19] a parametric estimator is proposed, which assumes the linear quantile curves in the tail
of the conditional distribution Y |X. More formally define a high percentile level τc close to 1,
the quantile curves of Y |X are assumed to be,

Q(τ |x) = α(τ) + xβ(τ) for τ ∈ [τc, 1] (3.1)

Note that this assumption does not pose any restrictions on the of the distribution corre-
sponding to the percentiles in [0, τc). Three motivations for the development of this estimator
are given. As a first motivation the authors argue that the assumption of linear quantile curves
is not very restrictive in practice. Consequently, the estimator has in these practical examples
better convergence rates and a higher efficiency in comparison to non-parametric methods, two
of which are introduced in the following sections. In addition the threshold in this model, i.e. a
high conditional linear quantile curve, is covariate dependent, which is an improvement with re-
spect to methods in the extreme value literature, which model the tail by considering exceedances
above a constant threshold. Finally, the proposed method allows for a varying extreme value
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index over the covariate levels, i.e. γ = γ(x), without assuming a parametric link-function, in
contrast to standard approaches in extreme value literature where this is necessary. An example
of such a method is discussed in Section 3.3.

To see how this estimator fits in the general framework, the sequence of percentile levels is
defined as follows, τc = τ1 ≤ · · · ≤ τp, where τc is a high percentile close to 1. For each of
the percentiles an estimate of the corresponding intermediate quantile curve can be obtained by
solving the following quantile regression problem,

(α̂, β̂) = argminα,β

n∑
i=1

ρτ (Yi − α− βxi).

To make this more intuitive a dataset is simulated from Y = 1.2 exp(2.2x) + ε, where x
is a randomly sampled from a uniform distribution on the interval [−1, 1] and ε ∼ GPD(γ =
0.25, σ = 1). The dataset has a size of 500 observations. The left panel of Figure 3.1 shows the
observations and the true quantile curves corresponding to percentile levels 0.8, 0.85, 0.90 and
0.95. The right panel shows the estimated linear quantile curves.

Figure 3.1: Simulated dataset of 500 observations with the exact quantile curves (left) and
the estimated linear quantile curves (right). The quantile curves correspond to the percentiles
0.8, 0.85, 0.9 and 0.95.

It is obvious that in this case the assumption of linearity of the quantile curves does not
hold. However, the quantile curves are given for each of the covariate values X. This enables
the use of the quantile estimates at a specific covariate level x∗ to extrapolate using univariate
extreme value theory on the sequence Q̂(τ1|X = x∗), . . . , Q̂(τp|X = x∗). Therefore, by modelling
the intermediate quantiles parametrically, the extrapolation can be done for each x∗.

Before discussing the extrapolation to the tails, first an improvement can be made on the lin-
ear quantiles by introducing power transforms. These power transforms, or Box-Cox transforms,
are introduced in a follow-up paper [18].

The Box-Cox transformation was first introduced in [3] as a power transformation which
maintains monotonicity of the transformed variable for every power λ. The Box-Cox power
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transformation is given by,

Λλ(y) =

{
yλ−x
λ if λ 6= 0

log(y) if λ = 0.

The power transformation is used to relax the assumption of the linear quantile curves of
Y |X = x. Instead it is assumed there exists a power λ, such that Λλ(Y )|X = x has linear
quantile curves.

In the estimation structure as described in Section 3.1, the power transform adds an extra
step, i.e. the estimation of the power λ. The power is obtained by the minimization problem
stated below; for more information the reader is referred to [15] and [20].

λ̂ = arg min
λ∈R

n∑
i=1

Rn(Xi, λ|τc)2,

where

Rn(x, λ|τ) =
1

n

n∑
i=1

1Xj≤x(τ − 1Λλ(yi)−Xiβ̂(τ |λ)≤0)

β̂(τ |λ) = arg min
b∈R

n∑
i=1

ρτ (Λλ(Yi)−Xib).

Here β̂(τ |λ) are the parameters of the regression quantile for the power transformed data
with parameter λ. The function Rn is a measure how well the power transformed line splits the
observations in τ portion below and 1−τ portion above the curve for an interval (−∞, x]. Then
the parameter λ is the parameter that optimizes this for all intervals (−∞, Xi], 1 ≤ i ≤ n.

The observations Yi are now transformed to Zi = Λλ̂(Yi) and the linear quantile curves are

estimated with (Z1, X1), . . . , (Zn, Xn) resulting in Q̂Z(τ1|X = x), . . . , Q̂Z(τp|X = x). These can
thereafter be transformed back by the inverse power transformation, hence

Q̂Y (τ |X = x) = Λ−1

λ̂
(Q̂Z(τ |X = x)).

The use of the Box-Cox power transform leads to an improved estimate of the intermediate
quantiles in the simulated data example. In Figure 3.2 the left panel shows again the data with
the true quantile curves and the right panel shows the estimated quantile curves fitted on the
power transformed data. The estimated power transform is here given by λ̂ = −0.7.

An important observation from this plot is that the estimated quantiles cross around x = 1.
This crossing first happens when the regression quantiles are estimated on the power transformed
data. Transforming the regression quantiles back, will again have this crossing, as is visible in the
figure, because the power transformation is monotone. This is noted in [19] and it is suggested
to use the monotone rearrangements proposed in [4].

The next step in the estimation process is to extrapolate the estimates for the intermediate
quantile curves to the tail. This is done in exactly the same way as described in the general
structure. For a fixed value x0 for the covariate, the estimates Q̂i = Q̂(τi|X = x0) are considered
to be observations from the intermediate part of the tail distribution of Y |X = x0. The extreme
value index estimator which is used is the Hill estimator, which gives the following estimate of
the extreme value index,

γ̂(x0) =
1

k

k∑
i=1

log
Q̂n−i+1

Q̂n−k
.
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Figure 3.2: Simulated dataset of 500 observations with the exact quantile curves (left) and
the power trasformed linear quantile estimator (right). The quantile curves correspond to the
percentiles 0.8, 0.85, 0.9 and 0.95 and power transform λ = −0.7

Furthermore the extreme quantile estimator for an extreme percentile τn is given by,

Q̂(τn|X = x0) =

(
1− τp−k
1− τn

)γ̂(x0)

Q̂p−k. (3.2)

Before the full estimator, can be applied to our simulated data example some choices have to
be made. Both the sequence of percentiles, τ1, . . . , τp, and the number k need to be determined.
Note that these choices are closely related to each other and are in fact one choice. Consider
first the sequence 1

n+1 , . . . ,
n
n+1 and note that no extra information is gained by considering

more percentiles. To see this recall that a quantile curve corresponding to percentile τ splits the
observations in a τ and a 1− τ portion below and above respectively. For example the quantile
curve corresponding to 2

n+1 splits the data 1 : n − 1 below and above the quantile curve and
3

n+1 splits the data 2 : n − 2 below and above the curve. The quantile curve corresponding to
2.5
n+1 does not add extra information as it either splits the data 1 : n− 1 or 2 : n− 2 which makes

it equivalent to the 2
n+1 or 3

n+1 quantile. The above percentile sequence is therefore the largest
percentile sequence of interest.

Therefore by fixing k, the largest percentile sequence of interest is given by, n−k
n+1 , . . . ,

n
n+1 .

The choice of k is generally considered a hard problem in extreme value theory and is in
practice often obtained using heuristics. Note that if k is really small the number of observations
used for the estimation of the extreme value index is small which will lead to a large variance.
On the other hand when k is large the estimator is not solely based on tail observations, which
will introduce bias in the estimate. To choose the right k in this bias-variance trade-off the
estimate γ̂ is often plotted as a function of k. The k where this function becomes stable is then
chosen.

In Figure 3.3 the left side shows the function γ(x), where for fixed x the number of upper
order statistics is chosen to be k = 37. The horizontal dotted line indicates the true value of
the extreme value index. It can be seen that the extreme value index is not estimated to be a
non-constant function of x, where it should be constant. Extrapolation to the tail can now be
done using the quantile estimator in Equation 3.2. Here Q̂n−k is given by the quantile curve
corresponding to the percentile 1 − k

n = 0.926. For τn equal to 0.95, 0.99 and 0.995 the curves
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Figure 3.3: The estimated extreme value index as a function of x (left) and the extrapolated
quantile curves (right) for the percentiles 0.95, 0.99 and 0.995.

are plotted on the right side of Figure 3.3. Note that there are little jumps on the right panel
of the plot. These are caused by the monotone rearrangements applied to the crossings which
appear in the upper right corner in the estimated quantile curves of Figure 3.2.

3.2.2 Non-parametric extreme quantile regression

In [2], a non-parametric approach for the estimation of the conditional tail distribution is pro-
posed. As explained in Chapter 2, non-parametric quantile regression approximates the quantile
function in a neighbourhood of a fixed covariate x∗ by a finite Taylor expansion of orderm around
x∗ hence,

Q(τ |x) ≈
m∑
i=0

1

i!

diQ(τ |x)

dxi
(x− x∗)i =

m∑
i=0

βi(x− x∗)i.

The τ quantile at x∗ is then found by solving the corresponding regression problem,

arg min
β∈Rm+1

n∑
i=1

1[x∗−h,x∗+h](xi)ρτ

Yi − m∑
j=0

βj(xi − x∗)j
 , (3.3)

where h is the bandwidth and ρτ (u) is defined in Equation 2.1.

Furthermore, note that the τ quantile estimator for a fixed point x∗ is given by the intercept
β̂0. The entire quantile curve can now be obtained by discretizing the range of x and creating a
grid of q points, i.e x∗1, . . . , x

∗
q . Performing the minimization in Equation 3.3 for every covariate

level, x∗j , 1 ≤ j ≤ q obtains a discrete representation of the quantile curve, β̂1
0 , . . . , β̂

m
0 .

Before these quantile curves can be estimated on the simulated data example a choice for
the grid on the covariate has to be made. Therefore, choose q = 1000 and let all covariate levels
be equally spaced on the range of x, i.e. [−1, 1]. Let h = 0.4 be the bandwidth. In Figure 3.4
the non-parametric quantile curves are plotted for percentiles 0.8, 0.9 and 0.95.

The influence of data sparseness is immediately visible from the Figure 3.4. The quantile
curve corresponding to τ = 0.8 looks good and resembles nicely the exact quantile curve. The
quantile curves for τ = 0.9 and τ = 0.95 on the other hand are a lot more erratic.
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Figure 3.4: The exact quantile curves (left) and the estimated quantile curves (right) using
the method of non-parametric quantile estimation. The curve correspond to the percentiles
τ ∈ (0.8, 0.9, 0.95) and the bandwidth used is h = 0.4.

Let x∗ be a fixed covariate level and define τ1, . . . , τp be a percentile sequence. Remember that
the number of observations used to estimate a quantile is in the non-parametric setting not equal
to n, but instead to the number of observations in the windows around x∗, n∗ =

∑n
i=1 1(Xi ∈

(x∗−h, x∗+h). The possible percentile sequence for the estimation of the intermediate quantiles
is then given by; 1

n∗+1 , . . . ,
n∗

n∗+1 . In addition, the bandwidth h needs to be determined, for which
the reader is referred to section 4 of [2] where a bandwidth selection method is proposed.

The intermediate quantile estimates for the above sequence are now given by

Q̂
(

1
n∗+1 |X = x∗

)
, . . . , Q̂

(
n∗

n∗+1 |X = x∗
)

. Notice that these quantile estimates are not restricted

to the tail, in which the interest lies. Therefore a number k of upper order statistics still needs
to be chosen to obtain a good estimate of the extreme value index. The estimator which will be
used for the extreme value index is the Hill estimator. For the data example the extreme value
index as a function of x is shown on the left side of Figure 3.5.

The last step in the extreme quantile estimation is the extrapolation to the extreme quantiles.
The extreme quantile estimator is now given by,

Q̂(τn|X = x∗) = Q̂

(
n∗ − k
n∗ + 1

∣∣∣∣X = x∗
)( k

n∗+1

1− τn

)γ̂
. (3.4)

In the right plot of Figure 3.5 the extreme quantile curves are shown for percentiles 0.95, 0.99
and 0.995. It can be seen that the high quantile curves are really erratic. This is a result from
the fact that for every point n∗ depends on x∗ and therefore n∗−k

n∗+1 is a different percentile for each
x∗. As a result, the extreme quantile estimates give information locally rather than globally.

3.3 Estimators using distribution function

In this section, the focus will be on two methods where the intermediate quantiles are estimated
from the perspective of the distribution function. Similar to the previous section, first a para-
metric estimator will be discussed and then a non-parametric estimator. A direct result from
the usage of the distribution function to obtain inference about the intermediate quantiles is



24 CHAPTER 3. EXTREME QUANTILE ESTIMATORS IN THE LITERATURE

Figure 3.5: The estimated extreme value index as a function of x (left) for the non-parametric
extreme quantile estimation. The extrapolated quantile curves (right) for the percentiles
0.95, 0.99, 0.995.

that the problem of quantile crossing does not appear. This will be immediately clear from the
structure of the following two methods.

3.3.1 Parametric estimation of a varying tail distribution

Parametric estimators for a distribution are quite common in statistics. As explained in Chapter
2, a parametric estimator uses a distributional assumption on the data, i.e. suppose the data is
distributed according to distribution function F = {Fθ : θ ∈ Θ}. The estimation of θ can now
be obtained by maximum likelihood estimation, moment estimators or other estimators.

Our setting differs from these parametric model in two ways. First, the interest does not lie
in the modelling of the entire distribution, but instead in the modelling of the tail distribution.
Therefore a distributional assumption is only concerned with the tail of the distribution. Second,
the parameters are functions of covariates, because the tail of the distribution is assumed to be
covariate dependent.

Define a constant c to be a high threshold and let Zi = Yi − c with Yi > c, such that Zi are
the exceedances above the threshold c. The distributional assumption on the tail distribution is
now given by Theorem 2.2.5, which states that the these exceedances approximately follow the
generalized Pareto distribution,

P(Yc ≤ y|Y > c)
c→∞→ F (y|σ, γ) = 1−

(
1 + γ

y

σ

)−1/γ
y > 0.

The second difference with the simple example, the dependence on the covariates, can now
easily be added by assuming a parametric function for the coefficients, σ = σ(x) and γ = γ(x).
Note that σ > 0, therefore the exponential link function is chosen, σ(x) = exp(xβ). For γ the
options are wider, when γ > 0 is assumed the same parametric form can be chosen, otherwise a
linear parametric form could be applied, γ(x) = xβ

In [7] an estimator is proposed for this model which is obtained by maximum likelihood
estimation. The distribution function of the covariate dependent tail distribution is given by,

P (Y − x ≤ z|X = x) = 1−
(

1 + γ(x)
z

σ(x)

)−1/γ(x)

z > 0.
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Note that this method is different from the previous methods as the modelling of the inter-
mediate quantiles is very limited, i.e. it is taken as a constant threshold, and the extrapolation
process is more elaborate by estimating the tail distribution for all values of the covariates,
instead of obtaining pointwise estimators.

3.3.2 Non-parametric kernel curves

Based on a univariate dataset Y1, . . . , Yn the ECDF given by Fn(y) = 1
n

∑n
i=1 1(Yi ≤ y) is the

most fundamental non-parametric estimator for the distribution function. In [6] and [5], an
extreme quantile curve estimator is proposed, which uses a smoothed version of the ECDF to
obtain inference about the intermediate quantiles of the conditional distribution Y |X = x.

The estimator is given as follows,

F̂n(y|X = x) =

∑n
i=1K

(
x−Xi
h

)
1(Yi ≤ y)∑n

i=1K
(
x−Xi
h

) , (3.5)

where K(.) is a probability density function on R. Note that by substituting

wi(x) =
K
(
x−Xi
h

)
∑n
i=1K

(
x−Xi
h

) , the estimator can be seen as a weighted ECDF where the weights are

with respect to the covariates.

F̂n(y|X = x) =
n∑
i=1

wi(x)1(Yi ≥ y) (3.6)

An estimator for the quantile function can now be obtained by inverting the estimator, i.e.

Q̂(τ |X = x) = F̂←n (τ |X = x) = inf(t : F̂n(τ |X = x) ≤ τ).

For a fixed percentile τ0, Q̂(τ0|X = x) is a continuous function in x, because F̂n(y|X = x)
is continuous in x as a result of the use of the kernels. On the other hand, when considering
the quantile function for a fixed x = x∗, it becomes a step-function with respect to τ where the
steps are equal to the weights, w1, . . . , wn. In Figure 3.6, this is demonstrated for the simulated
example.

The higher quantile curves become more erratic, which motivates the use of extreme value
theory to extrapolate to the extreme quantiles. Again a choice needs to be made for the percentile
sequence τ1, . . . , τp. No guidelines are given for the construction of this sequence in [6]. For
h = 0.3 there are approximately 30 observations in the interval [x∗−h, x∗+h] exceeding the 0.8
quantile. This amount is random and can therefore be slightly more or less therefore the choice
is made to consider 20 equally spaced percentiles between 0.8 and 0.99 for the data example.
Note that when more data is available the largest percentile can be even higher. Then for the
selection of k, a stable period is determined of the function γ(k), with k the number of upper
order statistics. The Hill estimator is used as an estimator for the extreme value index.

The estimate of the extreme value index as a function of x is shown on the left side of
Figure 3.7, where the number of upper order statistics is chosen to be k = 10. Now for the
sequence, τ1, . . . , τp, the corresponding quantile curve estimates are denoted with Q̂(τ1|X =
x), . . . , Q̂(τp|X = x). The extreme quantile estimator is now given by,

Q̂(τn|X = x0) =

(
1− τp−k
1− τn

)γ̂(x0)

Q̂(τp−k|X = x). (3.7)

Similar to Figure 3.5, for the non-parametric extreme quantile estimation are the estimated
quantiles are very erratic, and though the true value is constant the extreme value index varies
heavily over the covariates.
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Figure 3.6: The estimated quantile curves in red and the exact quantile curves in green (left)
for percentiles 0.8, 0.9, 0.95 and estimated with the kernel estimator. The estimated distribution
function in red and the exact distribution function in green (right) for the covariate values
−0.5, 0 and 0.5.

Figure 3.7: The estimated extreme value index as a function of x (left), where k = 10. The
extreme quantile estimates (right) for the percentiles 0.95, 0.99, 0.995 estimated with the kernel
quantile estimator.



Chapter 4

The common shaped tail model

In the previous chapter, several estimators are discussed to obtain inference about the tail of
the conditional distribution, Y |X = x. Every method makes use of a two step estimation
procedure. In the first step the intermediate parts of the tail is estimated by estimating the
quantile curves corresponding to a sequence of percentiles τ1, . . . τp. The second step extrapolates
these intermediate quantiles, by using methods from univariate extreme value theory, which allow
inference about the extreme quantiles of the conditional distribution, i.e. the quantiles that are
beyond the range of the data.

The estimators, which are discussed in Chapter 3, are proposed in a general setting where
the extreme value index is allowed to vary as a function of the covariates, i.e. γ = γ(x). This
introduces uncertainty, which is not desirable when the extreme value index can be assumed
constant, as in extreme value theory the sparsity of extremes cause already large uncertainties.

Data from practice might have the feature that the extreme value index does not vary as
a function of the covariates. For example, in the setting of post-processing of weather events
it is natural to assume a constant extreme value index, as the distribution of a weather event
given a forecast is not expected to have a varying tail index as a function of the forecast. The
post-processing of precipitation is done in Chapter 6 where it is shown that the assumption of
a constant extreme value index attains better validation results.

It can also be clearly seen from the Figures in previous chapter, i.e. 3.3, 3.5 and 3.5, that
in the case of a stationary extreme value index this is not always reflected by the estimators of
Chapter 3.

This gives the motivation to develop an estimator, that assumes a stationary extreme value
index, but models the quantile curves without a distributional assumption to adequately quantify
the relation between Y and X.

Therefore, a model will be introduced, which is referred to as the common shaped tail model.
Though the model assumes a constant extreme value index it is still very flexible and it includes
the common slope model which is introduced in [19]. By exploiting the structure of the model
a quantile regression estimator is proposed that combines information from different percentile
levels and thus is expected to be more efficient than the four methods introduced before, if the
data fit in our framework.

It will additionally be shown that, as a by-product, the quantile crossing problem is auto-
matically avoided in our procedure.

27
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4.1 Combining quantile curves

As discussed in Chapter 2, regression quantiles model the τth quantile of the conditional distri-
bution Y |X as a function of X. Consider now the following model for the quantile curves,

Q(τ |x) = r(x) + ε(τ). (4.1)

Note that in such an additive model the influence of x on different quantile levels is the
same, which means that all the quantile curves should be parallel. Typically, following the
theory outlined in Chapter 2, r(x) can be estimated by solving the following minimization
problem for τ0 such that ε(τ0) = 0,

arg min
r(x)

n∑
i=1

ρτ0(Yi − r(Xi)).

Though, for any percentile level τ the corresponding quantile curve is given by r(x) + c with
c a constant. This means that the shape of every quantile curve is exactly the same as r(x), but
shifted with a constant c.

Recall that a quantile curve estimate for a fixed percentile τ0 roughly splits the data in
τ0n observations below the curve and (1 − τ0)n observations above the curve. Consider now
a different percentile level τ1, for which the corresponding quantile curve is assumed to have
exactly the same shape as the quantile curve at τ0. Therefore the estimate could be improved
by considering τ0 and τ1 at the same time.

Combining information for several quantile levels will be one of the main properties of the
proposed estimator. The current section will restrict to the linear version of Model 4.1 to make
the explanation of combining quantile levels more clear, i.e.

Q(τ |x) = α(τ) + βx.

The common shape of the quantile curves is now given by the slope β, which is the same
for every percentile level τ . In [21] an estimator for the common slope was developed and is
referred to as the composite quantile regression. For a sequence of percentile levels τ1, . . . τp the
composite quantile estimator is then given by the following quantile minimization problem,

arg min
α1,...,αp,βc

p∑
j=1

n∑
i=1

ρτj (Yi − αj − βcXi).

The common slope estimator is shown to be more efficient in comparison with the slope
estimator for a single regression quantile.

The fact that a common slope or a common shape estimator, which will be introduced in
the next section , is more efficient is quite intuitive. To see this recall that a regression quantile
for a single percentile τ finds the optimal line that splits the observations in a portion τ and a
portion 1 − τ . The common slope estimator does exactly the same, but not for a sequence of
percentiles. It therefore estimates one curve and p intercepts.

In the following section the linear threshold model will be discussed, i.e. the fitting of the
generalized pareto distribution to the exceedances above a linear threshold. The usage of the
composite quantile regression will be used to obtain a more efficient estimator of the threshold.
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4.2 The common shaped tail model estimator

Consider the following model for the conditional distribution of Y |(X = x),

Y |(X = x) = r(x) + ε(U),

where ε(U) is some random variable with distribution function Fε. It can be easily seen from
this equation that the expression of the quantile curves is given as in Equation 4.1, where
ε(τ) = F−1

ε (τ) is the quantile function of Z.

Note that the additivity in the model imposes some significant structure. First of all, the
quantile curves as a function of x are all parallel, which implies that all the quantile curves are of
the same shape and only differ by a constant. Secondly, the conditional distribution Y |(X = x)
only depends on X via the sift parameter, which is in the model given by r(x).

The interest lies solely in the tail of the distribution, therefore the model can be stated more
generally. Define τc to be a high percentile, then the common shaped tail model is defined as,

Q(τ |X = x) = r(x) + ε(τ) for τ ≥ τc. (4.2)

There is one issue that needs to be resolved in this setting, which is the identifiability of the
model. Let c ∈ R denote a constant then the model can be rewritten as,

Q(τ |X = x) = (r(x) + c) + (ε(τ)− c) for τ ≥ τc.

To ensure identifiability assume that ε(τc) = 0.

In a similar way as is done in the methods of Chapter 3, inference about the tail can
be obtained via a two step approach, where the first step is concerned with the intermediate
quantiles and the second step extrapolates to the extreme quantiles. Let r̂(x) denote some
estimator of r(x) and the residuals of this estimator are given by,

ei = Yi − r̂(Xi). (4.3)

A theoretical expression of these residuals is now given by,

ei =

{
(r(Xi)− r̂(Xi)) + ε(ui) if ui ≥ τc
Q(ui|Xi)− r̂(Xi) otherwise,

(4.4)

where ui is defined by ui = F (Yi|X = Xi).

The following two propositions give us the tools to estimate the tail distribution of Y |X = x,

Proposition 4.2.1. Assume that the quantile curves of a random variable Y |(X = x) are given
by,

Q(τ |X = x) = r(x) + ε(τ)τ ∈ (0, 1)x ∈ R,

In addition assume that Y |(X = x) is in the Fréchet domain of attraction. Then Y |(X = x) is
tail equivalent for every x.

Proof. Let x1 and x2 be two arbitrary fixed values, γ1 and γ2 the extreme value index for
Y |(X = x1) and Y |(X = x2), respectively. Finally let U be a standard uniformly distributed
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variable. Then it follows for y > 0,

y−1/γ1 = lim
t→∞

P(Y > ty|X = x1)

P(Y > t|X = x1)
= lim

t→∞

P(r(x1) + ε(U) > ty)

P(r(x1) + ε(U) > t)

= lim
t→∞

P(r(x2) + ε(U) > ty + (r(x2)− r(x1)))

P(r(x2) + ε(U) > t+ (r(x2)− r(x1)))

= lim
s→∞

P(r(x2) + ε(U) > sy + (1− y)(r(x2)− r(x1)))

P(r(x2) + ε(U) > s)

= lim
s→∞

(
sy + (1− y)(r(x2)− r(x1))

s

)−1/γ2

= lim
s→∞

(
y +

(1− y)(r(x2)− r(x1))

s

)−1/γ2

= y−1/γ2 .

In the second line a substitution is made for t by s = t+ r(x2)− r(x1). Hence, γ1 = γ2 and for
all x; the tail is equivalent.

The proposition shows that the model as presented in Equation 4.2 has constant extreme
value index. The following proposition enables the estimation of the constant extreme value
index from the residuals of the estimation of r(x).

Proposition 4.2.2. Let Y be distributed according to the model in Equation 4.2 with x the
corresponding fixed covariate level and define γ to be the extreme value index of Y |x. Now let
β̂c be the estimated slope and the residuals Ei = Yi − r̂(Xi). Then the tail index of Ei is given
by γ

Proof. In the following part the expression of the residuals in Equation 4.3 is used. Define U as
a uniform random variable.

lim
t→∞

P(Ei > ty|X = x)

P(Ei > t|X = x)
= lim

t→∞

P(Q(U |X = x)− r̂(x) > ty|X = x)

P(Q(U |X = x)− r̂(x) > t|X = x)

= lim
t→∞

P(r(x) + ε(U)− r̂(x) > ty|X = x)

P(r(x) + ε(U)− r̂(x) > t|X = x)

= lim
t→∞

P(ε(U) > ty − (r(x)− r̂(x))|X = x)

P(ε(U) > t− (r(x)− r̂(x))|X = x)

= lim
t→∞

(
ty − (r(x)− r̂(x))

t− (r(x)− r̂(x))

)1/γ

= y1/γ

4.3 A non-parametric common shaped tail estimator

In this section an estimator is proposed for the common shaped tail model. As explained in the
previous section the estimation will consist of a two step procedure, where first the intermediate
quantiles are estimated and then extrapolated to the extreme quantiles.
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Recall the non-parametric quantile regression introduced in Chapter 2. The quantile curve
is approximated locally with the first m+ 1 terms of Taylor expansion around a fixed point x∗,

Q(τ |X = x) ≈ Q(τ |X = x∗) + r′(x∗)(x− x∗) +
r′′(x∗)

2
(x− x∗)2 + · · ·+ r(m)(x∗)

m!
(x− x∗)m

=

m∑
i=0

βi(x− x∗)i.

Then the parameters βi are estimated with quantile regression restricted to a neighbourhood of
x∗ defined by h > 0,

arg min
β0,...βm

n∑
i=1

1(Xi ∈ [x∗ − h, x∗ + h])ρτ

Yi − m∑
j=0

βj(Xi − x∗)j
 .

By assuming the model from Equation 4.2, all the quantile curves for τ ≥ τc are neces-

sarily parallel. Let τ1, τ2 ≥ τc and denote the estimated parameters by (β
(1)
0 , . . . , β

(1)
m ) and

(β
(2)
0 , . . . , β

(2)
m ) respectively. In order to impose the parallel restriction β

(1)
i = β

(2)
i for i ≥ 1.,

i.e all the higher order terms in the local Taylor expansion should be of a common shape as
they depend on the covariates. As a result, the common shape can be estimated by borrowing
strength from several quantile layers in [τc, 1]

For a fixed covariate level x∗ and bandwidth h, let the number of observations in the interval
[x∗ − h, x∗ + h] be denoted by N . Then let p = [N(1− τc)] denote the expected number of ob-
servations above the τc quantile curve. For the percentile sequence there are two requirements.
First, it must contain the intermediate percentile τc. Second, it must use all the information
available in the data, i.e. there must be one observation in between two quantile curves corre-
sponding to consecutive percentiles. A percentile sequence can now be constructed as follows,
τc, τc+ (1−τc)

p , . . . , τc+ (p−1)(1−τc)
p . This is percentile sequence which allows borrowing strength of

the maximum number of percentile levels. From now on, the percentile sequence will be denoted
by τ1, . . . , τp. Then the non-parametric quantile regression minimization can be done for all the
percentiles at the same time,

arg min
α1,...,αp,β1,...βm

p∑
j=1

n∑
i=1

1(Xi ∈ [x∗ − h, x∗ + h])ρτj

(
Yi − αj −

m∑
k=1

βk(x− x∗)k
)

Here β0 is replaced by parameter αj corresponding to the different percentile levels. Note that
ε(τc) = 0 implies Q(τc|x) = r(x). Therefore, it can be seen that α̂1 is a point estimate of
r̂(x∗). A sequence of point estimates can now be found for r(X1), . . . , r(Xn). Note that for two
covariate levels x∗1 and x∗2, the percentile sequence is not the same but always starts at τc. These
estimates in turn allow us to compute the residuals as indicated in Equation 4.3.

Figure 4.1 shows in the left panel the composite estimate of r(x) together with the ex-
ceedances in blue for the simulated data example. In the right panel the residuals are shown.

Continuing from the definition of the residuals given in Equation 4.3, the extreme value index
can be estimated from the residuals as is proven in Proposition 4.2.1. The maximum likelihood
estimator is now used as estimator, γ̂, for the extreme value index on the residuals.

An estimator for ε(τ) is obtained by the extrapolation of the residuals,

ε̂(τ) = en−k,n

(
1− τ

1− k/n

)γ̂
, τ > τc.

The final estimator of an extreme quantile corresponding to an extreme percentile τn is given
by,

Q̂(τn|X = x) = r̂(x) + ε̂(τn). (4.5)
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Figure 4.1: The simulated data example with the red line which is the 0.8 quantile curve(left),
the exceedences are indicated in blue. The residuals from the estimation of the shape function
r(x) (right) where also the blue points indicate the exceedances.

In Figure 4.2 the extrapolation procedure is applied to the simulated data example. Here k
is chosen to be 60. The extreme quantiles for percentiles 0.95, 0.99, 0.995 are shown in the right
panel. It is clear that the problem of quantile crossing does not appear and the extrapolation is
now consistent for all the covariate levels.

4.3.1 Some remarks

Note that for every residual, the curve estimate at the corresponding Xi needs to be made. In
the worst scenario all Xi are unique, which can make the estimation procedure very slow. To
solve this problem one can discretize the domain of X in m points. Then for these m points
the point estimates of the curve are given by r̂1, . . . , r̂m. The point estimate for r(Xi) can be
obtained by interpolating the two closest estimates in the discretization. The interpolated point
estimates r̂(X1), . . . r̂(Xn) can be used in the computation of the residuals as in Equation 4.3
and these can be used for extrapolation to the tail.

The CST estimator exploits the properties of the common shaped tail model, but the es-
timated are not exactly parallel due to the randomness of the data. An approach is tried to
force the quantile curves to be parallel, this did not yet give satisfying results. The approach is
discussed in Appendix A.

Note that in general any estimator can be used for the extreme value index. Initially the Hill
estimator was used for the estimation of the extreme value index. Though the Hill estimator is
not shift invariant, i.e.

log

(
Yn−i,n
Yn−k,n

)
6= log

(
Yn−i,n + a

Yn−k,n + a

)
.

For identifiability of the model, a percentile level is chosen for r(x), which in this case works
as a shift. Because this threshold is chosen large, the shift that is applied in the procedure is sub-
stantial, which influences the estimator severely. Therefore the maximum likelihood estimator
was chosen, because this estimator is shift invariant.
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Figure 4.2: The extreme value index as a function of the number of upper order statistics of the
exceedences (left). The vertical line indicates the number of upper order statistic that is chosen,
i.e k = 60. The extrapolated extreme quantile curves (right) for the percentile levels 0.95, 0.99
and 0.995.
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Chapter 5

Simulation study of current methods

In this chapter, the finite sample performance of the non-parametric CST estimator is tested and
compared to the existing methods from literature, that were discussed in Chapter 3. In the first
section the simulation set-up will be discussed. The set-up is chosen to compare the estimators
based on a wide range of possible distributions and shapes. The second section is concerned with
the non-parametric CST estimator defined in Equation 4.5. By means of a simulation study the
optimal choices for the threshold level, τc and the bandwidth h were determined. The selection
criteria are based on the estimation procedure of both r(x) and ε(τ). Finally, in the last section,
a comparison study was done by comparing the non-parametric CST estimator with the power
transformed linear quantile estimator in Equation 3.2 and the kernel estimator in Equation 3.7.

5.1 The simulation set-up

The simulation set-up will be the same for all the simulations in this chapter. The simulated
data was generated according to the model in Equation 5.1:

Q(τ |X = x) = r(x) + ε(τ), (5.1)

where r(x) = x, exp(x), sin(πx) and ε(τ) the quantile function for GPD(γ = 0.25), GPD(γ =
0.5), student − t(df = 1). The estimation of the extreme quantiles consists of the stages, that
are explained in the previous two chapters. Both stages influence the estimate of the extreme
quantile estimator. Recall that the extreme quantile estimator for our model was given by,

Q̂(τn|X = x) = r̂(x) + Q̂ε

(
1− k

n

)(
1− k

n

1− τn

)γ̂
The first stage, introduces direct uncertainty in the extreme quantile estimator, but also

indirectly as the extrapolation is based on the estimator via the residuals. The three different
shape functions are chosen to compare the estimators based on a linear shape, a monotone shape
and a non-monotonic shape. These three functions will enable us to test the performance of the
first stage of the estimation procedure in a broad way.

In the second stage of the estimation procedure, the estimation of ε(τ), the three different
tail distributions are chosen to test for varying tail heaviness. The distributions have an extreme
value index of 0.25, 0.5 and 1, respectively. The student-t distribution is chosen in order to see
how the performance of the estimator is when the distribution is in the domain of an extreme
value distribution, but not exactly equal to the generalized Pareto distribution.

Finally, three different sample sizes are considered to compare the performance for small(n =
100), medium sized (n = 500) and large samples (n = 1000).

35
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The covariate realizations are simulated from a uniform distribution between −1 and 1.
The uniform distribution was chosen, because for every neighbourhood around x∗ there are
approximately the same number of observations. With ε(τ) the quantile distribution of the
error distribution, the response variables Y , are simulated with,

Y = r(X) + ε(U)

Here U is a stand uniformly distributed random variable.
The results for extreme quantiles and the extreme value index will be compared with the

mean squared error (MSE) and the bias, defined by,

MSE(θ̂) =
1

m

m∑
i=1

(θ̂i − θ)2

bias(θ̂) =
1

m

m∑
i=1

θ̂i − θ,

where θ the exact value, θ̂ the estimate and m = 500 the number of re-samplings. However
for r(x), the interest does not lie in the performance of r̂(.) at a specific point x∗, but in the
performance in the entire range of the covariates. Therefore an adjusted MSE is used for the
estimator r̂(x),

MSE(θ̂) =
1

m

m∑
i=1

1∑
j=1

0(r̂i(x
∗
j )− r(x∗j ))2

bias(θ̂) =
1

m

m∑
i=1

1∑
j=1

0(r̂i(x
∗
j )− r(x∗j )),

where x∗j for 1 ≤ j ≤ 10 is an equally spaced sequence of covariates on the range of the covariate.

5.2 Choices for the non-parametric CST estimator

In this section, an extensive simulation study is done for the non-parametric common shaped
tail estimator introduced in Chapter 4. Before the estimator can be applied on data choice need
to be made for the hyper-parameters. For the CST estimator the choice needs to be made for
the percentile level τc. For the estimation of r(x) it generally holds that a lower τc results in
smaller errors, due to the sparseness of tail observations. However, τc must be sufficiently large,
such that the positive residuals follow approximately a generalized Pareto distribution.

In order to make these choices, both the estimation of r(x) and γ are addressed in this section.
The choice of h, the bandwidth, is generally done by a bandwidth selection method. The cross-
validation method is tried, but did not yet give satisfying results. Instead the bandwidth that
minimizes the MSE is chosen in this simulation study.

Before presenting the simulations consider Figure 5.1. This shows the quantile curve esti-
mated with the non-parametric composite quantile estimator for percentile level τc = 0.8 for a
dataset of size n = 100, with the model with r(x) = sin(xπ) and ε(τ) ∼ GPD(γ = 0.25).

It can be seen that at the boundary the estimates decrease rapidly. This is caused by the
asymmetric distribution in the neighbourhood of a boundary point. This is quite unfortunate,
because this rapid decrease may cause a severe overestimation of the exceedances in the boundary
region and consequently, this will cause errors in the extrapolation. Although these boundary
problems have a potential high influence on the estimates, solving these problem lies beyond the
scope of this thesis.
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Figure 5.1: The plot shows the threshold estimate for data from the model of Equation 5.1 for
n = 100, r(x) = sin(xπ) and ε(τ) ∼ GPD(0.25). The estimate is shown as the black line and
the exact threshold is shown as the red line.

To verify the influence of the boundary problems on the estimation of r(x), two simulation
settings will be considered. This will be the normal setting as presented above, but also the
setting where the covariates are simulated uniformly between −1.5 and 1.5. The number of
observations will then be increased by 50% and the shape function r(x) will be calculated for
covariate values between −1 and 1. This second setting removes the boundary problems, as in
this setting there is no asymmetry of observations in a neighbourhood at the boundary. The
sample sizes small, medium and large are for this setting defined by n = 150, n = 750 and
n = 1500, respectively.

For the threshold, two percentiles are considered, τ1
c = 0.8 and τ2

c = 0.9. The bandwidth
chosen for the simulations is chosen as the bandwidth that has the minimal mean squared error.

In Table 5.1 the results for the performance of the composite quantile estimator for r(x) are
shown. As a first observation it is clear that the MSE for the 0.9 threshold is always higher in
comparison to the MSE for the 0.8 threshold. This is because the 0.9 threshold is in a more
sparse region of the distribution, which makes estimating the quantile much harder. Comparing
the simulation where the boundary problem arises and the part where the boundary problem
is eliminated, it is clear that the MSE decreases significantly in almost every case. This gives a
clear motivation for future research to deal with the boundary problem, as for the extrapolation
part, it is essential that the estimation at every point of the covariate goes well as these are
directly related to the residuals.

The bandwidth that is chosen for each of the simulation scenarios is displayed in Table 5.2.
The optimal bandwidth was chosen out of an equally spaced sequence of 50 bandwidth values
between the minimum h1, such that there are at least two points in the neighbourhood of x∗ = 0
and the maximum h50 = 1, which corresponds to the estimation over the entire interval.

From Table 5.2 it can be seen that for r(x) = x averaging over the entire area of the covariate
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is the best option, which is quite natural as the approximation is local linear. Additionally, it
can be seen that for both values of τc the exponential quantile curves can best be approximated
linearly when the sample size is small and the sine quantile curves are best linearly approximated
for the 0.9 threshold. Finally the observation can be made that although the tail of the student-
t distribution is more heavy then the generalized Pareto distribution with shape parameter
γ = 0.5 it allows generally for a smaller bandwidth. This can be explained with a picture of
the density functions in Figure 5.2. The red dots indicate that at the 0.8 quantile the density
of the student-t distribution is higher than the density of the generalized Pareto distribution.
Therefore the data is less sparse for the student-t distribution at this percentile level.

Figure 5.2: The plot shows in black the density of the student-t distribution with df = 1 and
in blue the density of the generalized pareto distribution with shape parameter γ = 0.5. The
red dots on the density curves indicate the 0.8 quantiles.

From the previous simulation it is clear that the 0.8 percentile is best for the estimation of
the threshold. This is obvious as the data at the 0.8 quantile is less sparse than the data at the
0.9 quantile. However, as already stated, this does not imply that this is the optimal percentile
level from the extrapolation perspective in the second stage.

In order to see whether the threshold is better set at 0.8 or 0.9 the MSE and the bias of the
extreme value index will be compared, which is the most important parameter related to the
tail of the distribution.

For τc three levels will be chosen 0.8, 0.85 and 0.9, such that the behaviour of the extreme
value index can be observed as a function of an increasing threshold. The selection of k, i.e.
the number of upper order statistics, also needs to be addressed. A few simulations have been
made and k is selected by visual inspection of the estimate as a function of k from which the
first stable period determines the choice of k. This is done for every scenario of the simulation.
Due to the fact that the maximum likelihood estimator was used for the estimation, there were
some convergence issues in some of the simulation scenarios. In these cases a slightly larger k
value was chosen and the simulation was restarted.
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r(x) dist With boundary problem Without boundary problem
τc = 0.8 τc = 0.9 τc = 0.8 τc = 0.9

n = 100
x GPD(0.25) 2.54 (-1.49) 6.16 (-3.00) 1.78 (-0.18) 4.00 (-1.51)

GPD(0.5) 5.68 (-0.94) 17.93 (-3.14) 3.64 (-1.12) 13.19 (-3.20)
t(1) 13.05 (1.87) 50.74 (-0.62) 2.65 (1.01) 34.92 (3.78)

exp(x) GPD(0.25) 2.56 (-0.74) 5.88 (-2.35) 1.82 (-0.24) 3.92 (-1.17)
GPD(0.5) 5.57 (-0.29) 19.61 (-1.80) 3.74 (-0.50) 13.09 (-2.13)
t(1) 5.46 (-1.24) 8153.31 (7.92) 3.62 (0.20) 21.55 (0.59)

sin(xπ) GPD(0.25) 2.90 (-0.11) 7.01 (-1.38) 2.00 (-0.48) 5.11 (-1.50)
GPD(0.5) 6.18 (-1.15) 20.28 (-2.80) 4.67 (-0.67) 14.02 (-2.79)
t(1) 526.48 (6.17) 14757.30 (10.98) 5.71 (-1.39) 31.61 (4.69)

n = 500
x GPD(0.25) 0.62 (-0.46) 1.53 (-1.33) 0.43 (-0.43) 1.06 (-0.42)

GPD(0.5) 1.27 (-0.31) 4.77 (-1.51) 0.87 (-0.50) 3.50 (-0.33)
t(1) 0.94 (-0.03) 11.75 (0.64) 0.63 (-0.09) 18.76 (-0.28)

exp(x) GPD(0.25) 0.58 (-0.23) 1.41 (-0.34) 0.42 (-0.21) 1.08 (-0.15)
GPD(0.5) 1.29 (-0.03) 4.53 (-1.33) 0.86 (-0.19) 3.35 (-0.31)
t(1) 0.97 (0.22) 11.49 (0.01) 0.59 (0.08) 3.00 (1.42)

sin(xπ) GPD(0.25) 0.87 (-0.41) 1.79 (-0.58) 0.64 (0.05) 1.38 (-0.49)
GPD(0.5) 1.55 (-0.19) 5.71 (-0.58) 1.19 (-0.37) 3.81 (-0.45)
t(1) 3.83 (-1.60) 5.63 (-0.25) 0.90 (-0.15) 4.09 (-0.33)

n = 1000
x GPD(0.25) 0.34 (-0.41) 0.81 (-0.39) 0.27 (-0.51) 0.55 (-0.27)

GPD(0.5) 0.68 (-0.58) 2.61 (-0.84) 0.51 (-0.57) 1.78 (-0.69)
t(1) 0.48 (-0.19) 602.73 (2.25) 0.32 (-0.28) 1.67 (-0.78)

exp(x) GPD(0.25) 0.33 (-0.18) 0.81 (-0.15) 0.26 (-0.20) 0.55 (-0.15)
GPD(0.5) 0.68 (-0.20) 2.65 (-0.13) 0.55 (-0.24) 1.81 (-0.32)
t(1) 0.45 (0.05) 186.86 (0.15) 0.34 (0.01) 1.62 (-0.27)

sin(xπ) GPD(0.25) 0.50 (0.03) 1.11 (-0.30) 0.33 (0.02) 0.86 (-0.31)
GPD(0.5) 1.01 (-0.38) 2.91 (-0.72) 0.69 (0.17) 2.16 (-0.62)
t(1) 0.84 (0.41) 2367.07 (3.59) 0.64 (-0.05) 120.84 (0.10)

Table 5.1: The table shows MSE and (bias) results for the simulation of the shape r(x). The
left part shows the results in the case when the boundary problems are present and the right
part shows the results for the case when the boundary problems are absent. The MSE is the
sum the the MSE of quantiles corresponding to 21 covariate levels equally spaced over [−1, 1].

r(x) x exp(x) sin(xπ)
GPD(0.25) GPD(0.5) student(1) GPD(0.25) GPD(0.5) student(1) GPD(0.25) GPD(0.5) student(1)

n = 100
τc = 0.8 1.00 1.00 1.00 0.89 1.00 1.00 0.51 0.64 0.64
τc = 0.9 1.00 1.00 1.00 0.64 1.00 1.00 0.54 1.00 0.58

n = 500
τc = 0.8 0.85 0.89 0.94 0.63 0.80 0.67 0.34 0.43 0.39
τc = 0.9 1.00 1.00 1.00 0.32 0.82 0.69 0.32 0.49 0.10

n = 1000
τc = 0.8 0.76 0.83 0.85 0.49 0.65 0.58 0.30 0.34 0.32
τc = 0.9 1.00 1.00 0.61 0.27 0.43 0.61 0.30 0.47 0.47

Table 5.2: The table shows the bandwidth that is chosen for each of the simulation for the
shape function. The bandwidth is chosen as the one that minimizes the MSE.
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The simulation results are shown in Table 5.3. For the small sample sizes the likelihood
maximization did not converge, due to a lack of observations. Therefore these results are not
reported. It can be seen that a higher threshold results in a larger MSE in all cases. Therefore
it is clear that for both the estimation of r(x) and the estimation of ε(τ) the threshold is best
set at 0.8.

Also observe that the estimates of the extreme value index are quite consistent over the
different shape functions, i.e. the mean squared error does not differ much between the different
functions of r(x). The bias disappears in the case of large sample sizes, but for small and
medium sample sizes the bias is negative for almost all the scenarios. Furthermore, the absolute
value of the bias increases with the threshold. This is counter intuitive as a higher threshold
should imply a better approximation of the GPD. This shows that the errors of r̂(x) have a
large influence on the residuals.

In the next section simulations of the extreme quantile estimates by the non-parametric CST
estimator are compared with the extreme quantile estimates of the other methods, introduced
in Chapter 3 to see how well it performs compared to the other estimators.

r(x) ε(τ) τc = 0.8 τc = 0.85 τc = 0.9

n = 100
x GPD(0.25) 2.44 (-1.88) NA NA NA NA

GPD(0.5) 2.79 (-1.80) NA NA NA NA
student(1) 3.85 (-2.01) NA NA NA NA

exp(x) GPD(0.25) 2.92 (-2.35) NA NA NA NA
GPD(0.5) 2.35 (-1.96) NA NA NA NA
student(1) 3.60 (-2.69) NA NA NA NA

sin(xπ) GPD(0.25) 2.23 (-1.74) NA NA NA NA
GPD(0.5) 4.43 (-1.93) NA NA NA NA
student(1) 3.80 (-1.95) NA NA NA NA

n = 500
x GPD(0.25) 0.24 (-0.29) 0.35 (-0.31) 0.53 (-0.68)

GPD(0.5) 0.33 (-0.21) 0.46 (-0.03) 0.81 (-0.41)
student(1) 0.58 (-0.50) 0.75 (-0.24) 1.23 (-0.17)

exp(x) GPD(0.25) 0.24 (-0.32) 0.33 (-0.33) 0.51 (-0.53)
GPD(0.5) 0.39 (-0.31) 0.49 (-0.14) 0.75 (-0.44)
student(1) 0.57 (-0.61) 0.72 (-0.19) 1.17 (0.02)

sin(xπ) GPD(0.25) 0.26 (-0.26) 0.39 (-0.25) 0.54 (-0.60)
GPD(0.5) 0.34 (-0.00) 0.46 (-0.13) 0.72 (-0.27)
student(1) 0.54 (-0.55) 0.77 (-0.42) 1.20 (0.05)

n = 1000
x GPD(0.25) 0.10 (-0.13) 0.14 (-0.09) 0.24 (-0.07)

GPD(0.5) 0.16 (0.05) 0.22 (0.08) 0.33 (0.05)
student(1) 0.27 (-0.30) 0.37 (-0.20) 0.59 (0.15)

exp(x) GPD(0.25) 0.11 (-0.04) 0.15 (-0.09) 0.23 (-0.13)
GPD(0.5) 0.16 (0.02) 0.21 (0.00) 0.30 (-0.08)
student(1) 0.27 (-0.27) 0.37 (0.03) 0.53 (0.12)

sin(xπ) GPD(0.25) 0.12 (-0.16) 0.16 (-0.14) 0.25 (-0.14)
GPD(0.5) 0.16 (0.07) 0.24 (0.03) 0.32 (-0.09)
student(1) 0.28 (-0.00) 0.35 (-0.13) 0.64 (0.15)

Table 5.3: Simulation results for the extreme value index. The MSE and the (bias) are multiplied
by 10. For the threshold at τ = 0.8 and for the threshold at τ = 0.9.
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5.3 Comparison of extreme quantile estimators

In this section the non-parametric CST estimator, from Equation 4.5 will be compared with
the power transformed linear quantile curve estimator, from 3.2, and the kernel estimator for
extreme quantile curves, from Equation 3.7. The comparison will be based on the MSE and the
bias for the extreme quantiles corresponding to the percentiles τ = (0.99, 0.995)

The simulation set-up is the same as in Section 5.1. The results are split up over three tables
where each table corresponds to a distribution of ε(τ).

For the non-parametric CST estimator τc is chosen to be 0.8, the bandwidth is chosen as the
bandwidth from (0.2, 0.4, 0.6, 0.8) as the one that minimizes the error in the threshold. The k
upper order statistics are chosen in the same way as is done for the simulation of the extreme
value index.

For the power transformed linear quantile curves the number of upper order statistics is set
at k = 3n1/3, which is supposed to be a point where the method becomes stable. There is
however a problem in the method for the student-t distribution. The implementation in R that
is used requires positive data. In order to achieve this, a shift can be performed on all data such
that the shifted data is positive. This is done by defining a > 0, such that Yi+a > 0, ∀1 ≤ i ≤ n.
This procedure was required because the log transform can only handle positive data. Because
of the very heavy left tail, the shift was too large, which resulted in information loss. Instead
the power of the transformation is estimated on the positive part of the distribution where the
log transform was not allowed. Then this power transform was applied to the data and the
procedure was continued from here. This worked in some cases, but unfortunately not for all.
When no results were obtained the table is filled with NA.

For the kernel estimator a percentile sequence is chosen of length 20, equally spaced between
0.8 and 0.99. The number of upper order statistics was chosen by plotting the estimate of
γk(x = 0) as a function of k and choosing k at the point where this function becomes stable.
Finally the bandwidth was chosen by a cross validation method which was proposed in [6].

The tables below show the results of the simulation study; Table 5.4 shows the results for
the GPD(γ = 0.25) error distribution, Table 5.5 for the GPD(γ = 0.5) error distribution and
Table 5.6 for the Student-t. In the Figures 5.3, 5.4 and 5.5 the MSE for the τn = 0.995 are
plotted for better comparison.

The results for GPD(γ = 0.25) in Table 5.4 and Figure 5.3 show clearly that the power
transformed linear curves estimator is the best. The CST estimator is only better one time
for n = 100. It can be clearly from the figure that relative to the other estimators, the CST
estimator becomes worse when the sample size increases. The kernel curves estimator is worse
than the other estimators, except for the large sample sizes where it is better than the CST
estimator. It can be seen that the MSE as a function of x is almost constant for the different
scenarios, which is not the case for the other estimators.

The results for GPD(γ = 0.5) in Table 5.5 and Figure 5.4 and the student-t distribution in
Table 5.6 and Figure 5.5 are comparable with the results with the GPD(γ = 0.25) distribution.
A final observation can be made for the bias. For the CST estimator the bias is in many cases
substantially larger then the bias for the other estimators. Especially for the large sample sizes,
i.e. n = 1000, the bias of the CST estimator is many times larger then the biases of the other
two estimators.

For the student-t distribution the kernel distribution performs extremely bad for small sam-
ple sizes. Although the R-code was changed for the linear quantile curves and the student-t
distribution, it still fails some of the times, which makes comparison hard. However, when the
linear estimator works, it can be seen that in these parts the CST estimator performs better for
smaller sample sizes.
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x = −0.5 x = 0 x = 0.5
r(x) Method τ = 0.995 τ = 0.999 τ = 0.995 τ = 0.999 τ = 0.995 τ = 0.999

n = 100
x CST 11.17 (-2.14) 35.07 (-2.85) 10.94 (-2.12) 34.62 (-2.83) 11.01 (-2.14) 34.72 (-2.85)

linear 15.23 (0.23) 69.32 (2.06) 6.29 (0.04) 22.07 (1.29) 9.15 (-0.73) 25.02 (-0.31)
kernel 139.14 (4.36) 976.42 (11.06) 124.72 (3.96) 721.26 (9.13) 173.60 (3.62) 1310.78 (8.33)

exp(x) CST 12.64 (-2.14) 46.44 (-2.76) 12.48 (-2.07) 46.28 (-2.69) 12.18 (-2.06) 45.62 (-2.68)
linear 12.07 (-0.54) 37.07 (-0.02) 6.72 (-0.35) 18.04 (0.03) 8.46 (-0.93) 19.78 (-1.00)
kernel 1082.81 (5.19) 23447.52 (15.20) 123.71 (3.46) 587.46 (7.30) 222.12 (3.82) 1470.44 (7.94)

sin(xπ) CST 13.02 (-2.06) 59.12 (-2.73) 14.30 (-2.33) 60.91 (-3.00) 15.65 (-2.58) 62.83 (-3.25)
linear 10.80 (0.22) 40.65 (1.45) 6.73 (-0.29) 20.95 (0.64) 11.47 (-1.21) 29.53 (-0.83)
kernel 376.22 (5.16) 3860.68 (14.72) 1243.49 (6.10) 17912.60 (17.51) 310.46 (4.79) 2142.82 (11.28)

n = 500
x CST 4.97 (-2.02) 11.18 (-2.90) 4.88 (-2.01) 11.04 (-2.89) 4.88 (-2.01) 11.04 (-2.89)

linear 2.11 (-0.46) 5.82 (-0.19) 1.54 (-0.37) 4.09 (-0.09) 2.62 (-0.49) 6.88 (-0.43)
kernel 11.88 (1.54) 52.17 (3.94) 8.54 (1.04) 32.04 (2.68) 8.23 (0.81) 28.84 (2.08)

exp(x) CST 4.94 (-2.03) 11.09 (-2.92) 4.99 (-2.03) 11.17 (-2.93) 4.92 (-2.01) 11.08 (-2.91)
linear 2.02 (-0.50) 5.18 (-0.51) 1.37 (-0.26) 3.63 (-0.21) 2.32 (-0.47) 5.95 (-0.59)
kernel 9.84 (1.03) 33.40 (2.40) 9.33 (0.98) 30.30 (2.16) 8.77 (0.90) 25.29 (1.79)

sin(xπ) CST 3.98 (-1.74) 9.77 (-2.61) 4.94 (-1.99) 11.18 (-2.86) 6.00 (-2.25) 12.66 (-3.12)
linear 2.28 (0.04) 7.23 (0.30) 1.55 (-0.38) 4.26 (-0.13) 3.23 (-0.94) 7.34 (-0.87)
kernel 16.50 (2.07) 81.37 (5.39) 20.89 (1.74) 85.24 (4.08) 16.76 (1.34) 64.48 (2.96)

n = 1000
x CST 4.36 (-1.98) 9.61 (-2.86) 4.37 (-1.98) 9.63 (-2.86) 4.40 (-1.99) 9.68 (-2.87)

linear 1.12 (-0.40) 2.98 (-0.39) 0.77 (-0.34) 1.98 (-0.30) 1.35 (-0.36) 3.55 (-0.44)
kernel 4.96 (0.80) 21.33 (2.49) 4.30 (0.55) 16.04 (1.75) 3.90 (0.33) 12.59 (1.20)

exp(x) CST 4.46 (-2.01) 9.73 (-2.91) 4.41 (-2.00) 9.65 (-2.90) 4.29 (-1.97) 9.48 (-2.87)
linear 1.16 (-0.36) 2.99 (-0.46) 0.73 (-0.17) 1.96 (-0.21) 1.13 (-0.32) 2.93 (-0.51)
kernel 4.94 (0.59) 16.20 (1.62) 3.57 (0.29) 10.51 (0.97) 4.04 (0.28) 10.95 (0.78)

sin(xπ) CST 5.02 (-2.14) 10.62 (-3.06) 5.25 (-2.20) 10.93 (-3.11) 5.57 (-2.27) 11.41 (-3.18)
linear 0.98 (0.08) 3.03 (0.06) 0.80 (-0.35) 2.13 (-0.32) 1.88 (-0.84) 4.12 (-0.91)
kernel 12.83 (1.67) 65.18 (4.71) 7.63 (0.92) 27.95 (2.44) 5.52 (0.42) 16.52 (1.24)

Table 5.4: MSE and (bias) for simulations done for Q(τn|x) with residual distribution GPD(γ =
0.25), where τn = 0.995 and τn = 0.999

In the next Chapter the methods will be compared based on real dataset, with precipitation
data as response and predicted precipitation as covariates.
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x = −0.5 x = 0 x = 0.5
r(x) Method τ = 0.995 τ = 0.999 τ = 0.995 τ = 0.999 τ = 0.995 τ = 0.999

n = 100
x CST 0.99 (-0.08) 4.36 (-0.11) 1.00 (-0.08) 4.39 (-0.11) 1.00 (-0.08) 4.40 (-0.11)

linear 0.98 (-0.01) 4.71 (0.01) 0.63 (-0.01) 2.49 (-0.00) 0.76 (-0.02) 2.66 (-0.02)
kernel 13.56 (0.13) 147.04 (0.36) 8.84 (0.09) 75.27 (0.25) 16.61 (0.13) 145.12 (0.34)

exp(x) CST 1.04 (-0.08) 4.15 (-0.12) 1.03 (-0.08) 4.13 (-0.12) 1.03 (-0.08) 4.13 (-0.12)
linear 0.68 (-0.03) 2.21 (-0.03) 0.51 (-0.02) 1.64 (-0.03) 0.68 (-0.03) 2.12 (-0.05)
kernel 22.20 (0.16) 201.57 (0.42) 12.92 (0.11) 105.65 (0.28) 21.85 (0.14) 170.95 (0.36)

sin(xπ) CST 0.87 (-0.07) 3.42 (-0.10) 0.94 (-0.08) 3.50 (-0.10) 1.00 (-0.08) 3.59 (-0.11)
linear 1.12 (-0.01) 6.21 (0.02) 0.68 (-0.02) 2.85 (-0.01) 1.26 (-0.04) 6.64 (-0.04)
kernel 1114.72 (0.37) 67863.72 (1.98) 158.73 (0.24) 4389.14 (0.99) 196.84 (0.22) 4971.62 (0.89)

n = 500
x CST 0.75 (-0.08) 1.88 (-0.13) 0.75 (-0.08) 1.88 (-0.13) 0.75 (-0.08) 1.87 (-0.13)

linear 0.19 (-0.02) 0.70 (-0.02) 0.13 (-0.01) 0.47 (-0.02) 0.21 (-0.02) 0.75 (-0.02)
kernel 0.81 (0.03) 4.21 (0.09) 0.82 (0.03) 3.91 (0.08) 0.81 (0.03) 3.73 (0.07)

exp(x) CST 0.75 (-0.08) 1.90 (-0.13) 0.75 (-0.08) 1.90 (-0.13) 0.75 (-0.08) 1.89 (-0.13)
linear 0.20 (-0.01) 0.70 (-0.02) 0.14 (-0.01) 0.50 (-0.02) 0.23 (-0.01) 0.82 (-0.02)
kernel 0.48 (0.01) 1.92 (0.03) 0.55 (0.01) 2.23 (0.03) 0.41 (0.01) 1.49 (0.02)

sin(xπ) CST 0.71 (-0.08) 1.83 (-0.13) 0.75 (-0.08) 1.89 (-0.13) 0.80 (-0.09) 1.96 (-0.13)
linear 0.17 (-0.01) 0.62 (-0.02) 0.14 (-0.02) 0.46 (-0.02) 0.23 (-0.02) 0.76 (-0.03)
kernel 8.32 (0.11) 79.99 (0.33) 7.11 (0.09) 56.44 (0.24) 3.46 (0.07) 17.59 (0.15)

n = 1000
x CST 0.73 (-0.08) 1.83 (-0.13) 0.73 (-0.08) 1.83 (-0.13) 0.73 (-0.08) 1.83 (-1.33)

linear 0.11 (-0.01) 0.38 (-0.02) 0.07 (-0.01) 0.25 (-0.02) 0.10 (-0.01) 0.35 (-0.22)
kernel 0.31 (0.01) 1.48 (0.03) 0.29 (0.00) 1.19 (0.02) 0.23 (0.00) 0.86 (0.14)

exp(x) CST 0.73 (-0.08) 1.82 (-0.13) 0.73 (-0.08) 1.82 (-0.13) 0.72 (-0.08) 1.81 (-1.31)
linear 0.10 (-0.01) 0.37 (-0.02) 0.07 (-0.01) 0.25 (-0.02) 0.10 (-0.01) 0.39 (-0.23)
kernel 0.61 (0.02) 2.71 (0.05) 0.80 (0.02) 3.29 (0.05) 0.74 (0.02) 2.87 (0.38)

sin(xπ) CST 0.69 (-0.08) 1.76 (-0.13) 0.73 (-0.08) 1.82 (-0.13) 0.77 (-0.09) 1.89 (-1.35)
linear 0.09 (-0.01) 0.36 (-0.02) 0.07 (-0.01) 0.23 (-0.02) 0.12 (-0.02) 0.37 (-0.28)
kernel 1.11 (0.04) 6.93 (0.13) 1.51 (0.04) 8.61 (0.11) 0.96 (0.02) 4.14 (0.60)

Table 5.5: MSE ×10−1 and (bias) ×10−1 for simulations done for Q(τn|x) with residual distri-
bution GPD(γ = 0.5), where τn = 0.995 and τn = 0.999.
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Figure 5.3: The MSE of the simulation results in Table 5.4 for τn = 0.995, with n = 100
(left), n = 500 (middle) and n = 1000 (right). The scores for the CST estimator, the linear
estimator and the kernel curves estimator are plotted with the filled dots, the crosses and
triangles respectively.

Figure 5.4: The MSE of the simulation results in Table 5.5 for τn = 0.995, with n = 100
(left), n = 500 (middle) and n = 1000 (right). The scores for the CST estimator, the linear
estimator and the kernel curves estimator are plotted with the filled dots, the crosses and
triangles respectively.
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x = −0.5 x = 0 x = 0.5
r(x) Method τ = 0.995 τ = 0.999 τ = 0.995 τ = 0.999 τ = 0.995 τ = 0.999

n = 100
x CST 0.51 (-1.37) 4.86 (-2.12) 0.51 (-1.37) 4.86 (-2.11) 0.51 (-1.38) 4.86 (-2.12)

linear 1.88 (-0.22) 26.60 (0.92) 1.22 (-0.55) 14.35 (-0.64) NA NA NA NA
kernel 493.86 (15.12) 26812.27 (89.11) 99.10 (7.90) 3733.43 (37.65) 66.55 (7.82) 1920.71 (34.22)

exp(x) CST 0.59 (-1.24) 7.72 (-1.65) 0.59 (-1.23) 7.72 (-1.64) 0.59 (-1.23) 7.72 (-1.64)
linear NA NA NA NA 0.35 (-1.06) 1.86 (-2.63) 0.46 (-1.28) 2.41 (-3.13)
kernel 7376.44 (19.97) 1070301.61 (183.85) 15.97 (4.16) 253.32 (14.25) 90.46 (8.35) 2371.23 (34.24)

sin(xπ) CST 108.76 (0.34) 20355.43 (19.52) 108.76 (0.30) 20355.17 (19.48) 108.74 (0.25) 20354.88 (19.42)
linear NA NA NA NA 0.45 (-0.72) 3.01 (-1.37) NA NA NA NA
kernel NA NA NA NA 74290687.98 (1380.63) 380207753935.19 (90202.43) 7249.71 (40.64) 1069267.33 (350.97)

n = 500
x CST 0.27 (-1.52) 1.29 (-3.08) 0.27 (-1.52) 1.29 (-3.08) 0.27 (-1.52) 1.29 (-3.08)

linear 0.24 (-0.60) 2.15 (-1.26) 0.15 (-0.60) 1.09 (-1.45) 0.15 (-0.62) 0.97 (-1.64)
kernel 2.10 (0.98) 46.55 (4.13) 0.66 (0.55) 6.10 (1.89) 0.99 (0.64) 10.43 (1.93)

exp(x) CST 0.28 (-1.56) 1.35 (-3.16) 0.28 (-1.55) 1.35 (-3.15) 0.28 (-1.55) 1.35 (-3.15)
linear 0.17 (-0.76) 1.17 (-1.98) 0.13 (-0.77) 0.90 (-2.11) NA NA NA NA
kernel 12.00 (3.18) 228.60 (11.77) 21.85 (3.55) 571.30 (13.88) 11.29 (2.67) 201.00 (8.89)

sin(xπ) CST 0.27 (-1.51) 1.38 (-3.05) 0.28 (-1.53) 1.39 (-3.08) 0.29 (-1.56) 1.41 (-3.10)
linear 0.21 (-0.53) 1.53 (-1.27) 0.15 (-0.65) 1.11 (-1.56) 0.18 (-0.79) 1.25 (-1.89)
kernel 4.28 (1.95) 98.39 (8.39) 2.38 (1.40) 34.14 (4.88) 1.32 (0.67) 12.46 (2.03)

n = 1000
x CST 1.08 (-2.94) 40.41 (-12.89) 1.08 (-2.93) 40.40 (-12.89) 1.08 (-2.94) 40.41 (-12.89)

linear 0.14 (-0.41) 1.08 (-1.06) 0.09 (-0.49) 0.73 (-1.34) 0.09 (-0.54) 0.74 (-1.57)
kernel 0.92 (0.87) 10.88 (3.43) 0.69 (0.64) 6.52 (2.16) 0.94 (0.62) 9.79 (1.89)

exp(x) CST 0.26 (-1.56) 1.20 (-3.23) 0.26 (-1.56) 1.20 (-3.23) 0.26 (-1.56) 1.20 (-3.22)
linear NA NA NA NA 0.09 (-0.63) 0.66 (-1.90) 0.09 (-0.65) 0.72 (-1.99)
kernel 0.16 (-0.30) 1.07 (-0.81) 0.15 (-0.44) 0.92 (-1.28) 0.16 (-0.61) 0.98 (-1.83)

sin(xπ) CST 3.36 (-1.20) 224.57 (-0.96) 3.37 (-1.25) 224.58 (-1.01) 3.39 (-1.30) 224.60 (-1.06)
linear 0.13 (-0.42) 1.02 (-1.18) 0.10 (-0.53) 0.74 (-1.45) 0.11 (-0.62) 0.80 (-1.70)
kernel 0.59 (0.76) 6.64 (3.31) 0.45 (0.30) 3.82 (1.12) 0.31 (0.01) 2.05 (-0.08)

Table 5.6: MSE ×10−3 and (bias) ×10−1 for simulations done for Q(τn|x) with residual distri-
bution student− t(1), where τn = 0.995 and τn = 0.999.

Figure 5.5: The MSE of the simulation results in Table 5.6 for τn = 0.995, with n = 100
(left), n = 500 (middle) and n = 1000 (right). The scores for the CST estimator, the linear
estimator and the kernel curves estimator are plotted with the filled dots, the crosses and
triangles respectively.
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Chapter 6

Application on precipitation data

6.1 Introduction to numerical weather prediction models

Quantitative precipitation forecasting (QPF), is one of the most difficult problems in the field of
meteorology. This is due to large uncertainties in both the spatial and the temporal component.
Numerical weather prediction models (NWP) models approximate the solution to the physical
differential equations describing the atmospheric circulation pattern changes. This does not lead
to perfect forecasts, as these changes are highly dependent on the initial conditions. A small
change in these conditions can have a severe influence on the forecast, due to the non-linearity
of the differential equations.

The large uncertainties are intuitively quite obvious as a slight change in the wind direction
could cause a rain cloud to pass by instead of passing over a specific location. The large
uncertainties in the forecast are not only a result of the uncertainty in the initial conditions.
As a model is always an approximation of the real world there is also uncertainty introduced
by parametrizations of non-resolved processes like cloud formation. The non-resolved processes
are the processes, which are not described by the partial differential equations and therefore
estimated on a small scale by parametrizing them. The parametrization is a simplification of the
real world and therefore introduces uncertainty in the forecast. These two types of uncertainty
will be referred to as uncertainty of the initial conditions and uncertainty of parametrizations.

A quantification of the uncertainty due to both of these causes needs to be made. An ap-
proach to quantify that uncertainty is called an ensemble. In the ensemble from ECMWF,
instead of making one forecast using the ’best’ initial condition, 50 more forecasts are made.
Each of these forecasts has a perturbed initial condition and a slightly altered parametrization of
the non-resolved processes. Therefore, instead of a single prediction, an empirical distribution is
created, which corresponds to the uncertainty in both the initial condition and the parametriza-
tions. These 50 perturbed members are referred to as ensemble members. Denote these 50
ensemble members by P1, . . . P50. The estimates of the quantiles of the forecast distribution can
now be estimated by Q̂

(
i

51

)
= Pi,50. Note that approximating the solution to these non-linear

differential equations is a computationally heavy task. Therefore approximating the solutions
for an entire ensemble requires the use of a super computer to obtain the forecasts in time.

In Figure 6.1 a visualization is made of an ensemble forecast. Here the green lines represents
the forecasts of the 50 ensemble members. The blue line indicates the prediction with the
’best’ initial condition and the red line is a reference forecast using the same model and initial
conditions, but with a higher resolution.

The figure shows clearly that the first few days will be dry days with no rain, but as time
progresses the forecasts start to have more uncertainty. A slight change in the initial conditions
and the parametrizations at this time may cause an entirely different weather forecast for next
week.
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Figure 6.1: The visualization of an ensemble for precipitation (top), wind (middle) and
temperature (bottom). Source: https://www.knmi.nl/nederland-nu/weer/waarschuwingen-en-
verwachtingen/ensemble-verwachting-detail.

Statistical methods can be used to post-process the forecasts from the NWP models by using
historical data. Because the predictions are calibrated with real data the uncertainty and the
potential bias can be quantified and systematic errors can be corrected.

Wetterskip Fryslân is the organization responsible for the water management in the province
of Friesland. Therefore it is important for them to have accurate forecasts concerning extreme
precipitation, such that proper precautions can be taken in case of a possible overloading of
the water drainage infrastructure. In the warm half year (April-October), there can be heavy
precipitation showers especially in the late afternoon and evening, (15-21 UTC).

In this chapter a dataset of precipitation forecasts and observations for the years 2010,2011
and 2013 in the 15-21 UTC period is considered. An attempt is made to post-process precip-
itation forecasts from the NWP model HARMONIE, which is a relatively new high-resolution
model used by KNMI. The methods that are compared are exactly the same as the ones in the
simulation study of Chapter 5.

In the following two sections the gathering of the precipitation observations and the model
output will be discussed. Then in the last two sections, the methods from Chapter 3 and Chapter
4 are applied to the dataset and compared using the quantile verification skill score as is used
in [10].
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6.2 Precipitation observations

Precipitation is measured with the radar system of KNMI. KNMI has radars in de Bilt and in Den
Helder which are able to measure precipitation amounts for every location in the Netherlands.
Due to the property of radar data to cover the entire area it is an easy operation to average the
amount of precipitation over a specific area. However radar data is subject to a lot of noise,
which affects the quality of the measurements.

To understand where the noise in the radar data comes from, the working of the radar will be
briefly explained. A radar transmits pulses in all directions and these pulses are reflected by the
drops of precipitation. The radar measures the reflections and these reflections are translated
to precipitation measurements. In the case of heavy rainfall the amount of water drops in the
air increases, which results in more reflections.

The radar measurements are displayed for a height of 1500 meters, but sometimes clouds are
located lower to the ground. As a result it could happen that in a rain event the radar is not
able to measure it.

Overestimation of the amount of precipitation is also possible. This happens when the air
is really dry and precipitation evaporates before it reaches the ground. Additionally, in some
circumstances the radar pulses could be bent towards the ground. When these radar pulses
touch the ground, water or buildings cause reflections which distort the measurements.

The quality of the radar measurements can be improved by calibrating the data with point
measurements of accumulated precipitation. KNMI has in addition to the radar data, a rain
gauge network. This network consists of approximately 300 stations where the amount of pre-
cipitation of the previous 24 hours is measured every day at 8 UTC and 35 automatic stations
where precipitation is measured continuously. These measurements are of significantly better
quality, but the spatial coverage is of course worse.

See [16] for further discussion of the radar calibration method with the rain gauge system.
This method will not be described here as it is beyond the scope of this thesis.

These calibrated radar data are used and area averaged to obtain the accumulated precipi-
tation in Friesland between 15 and 21 UTC.

6.3 Predictor variables from the HARMONIE NWP model

The predictive variables are from a NWP model called HARMONIE. As explained already, a
NWP model approximates the solution to the physical differential equations. By laying a grid
over the area of interest the solution is approximated at each grid point. A full description of the
HARMONIE model is not discussed as this is beyond the scope of this thesis. A full description
of a similar model used in France, i.e. the AROME model, is given in [17].

The main difference between HARMONIE and its predecessors is that it has a finer grid and
it resolves deep convection, which means that heavy showers can be resolved by the model. The
grid size for the HARMONIE model is 2.5 km in comparison to its predecessor HIRLAM, which
has a grid size of 11 km. Naturally, the computational complexity increases when the grid size
is smaller. The total size of the area is restricted to western Europe. The boundary conditions
are taken from the global ECMWF model, which has a lower resolution than both HIRLAM
and HARMONIE.

As a covariate variable the area-averaged accumulated precipitation in Friesland between 15
and 21 UTC is used. Four different run times are considered. These consist of the forecasts
started at 12 UTC, 6 UTC, 0 UTC and 18 UTC. The predicted periods all concern the 15-21
UTC interval, but will be denoted by the time interval with respect to the lead time, i.e 3-9 h,
9-15 h, 15-21 h and 21-27 h respectively.
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The averaging over the area of Friesland is done by averaging all the predictions at the
grid points which are in the smallest square covering Friesland. This square is defined by the
following coordinates: 5.35-6.45 E, 52.8-53.4 N.

In Figure 6.2 scatter diagrams of the precipitation observations and the forecasts from the
HARMONIE model are shown for the four different lead times. A problem with precipitation
observations is that a lot of observations are 0 as on a substantial number of days it does not
rain. In this chapter the focus on the conditional distribution of precipitation, given that it will
rain. Therefore only the days where there was precipitation observed were included, in total this
were 298 days for 2011,2012 and 2013. When used in practice also a forecast is needed for the
probability of precipitation. In post-processing often logistic regression is used for estimating
these probabilities.

Figure 6.2: Scattered diagrams of area-averaged precipitation against the area-averaged forecast
precipitation by HARMONIE for the 15-21 UTC period in Friesland. From left to right and top
to bottom the lead times are 3-9, 9-15, 15-21, and 21-27 h respectively.
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6.4 Data Analysis

Throughout this thesis, the distribution is assumed to be fat tailed. Therefore it is important to
check whether this assumption is justified for the precipitation data. In the non-parametric CST
estimator from Chapter 4, the Hill estimator is used for the extrapolation to the tail distribution.
It can be problematic when the assumption is not checked, as the Hill estimator is by definition
positive. Therefore, if data is from a short tailed distribution, the estimates will have large
errors.

There are several tools available in the literature which enable to derive the correct class
of tail distributions of the data. In this section three methods will be used to check for the
assumption of a heavy tailed distribution. First consider the QQ-plot, or quantile-quantile plot,
this plot is often used to check the validity of a distributional assumption.

Consider an ordered dataset Y1,n, . . . , Yn,n to construct a QQ-plot to visually check whether
the sample Yi for 1 ≤ i ≤ n follows a distribution F . Assume now that the dataset is indeed from
the distribution F , in that case ordered observations, or empirical quantiles, should be close to
the exact quantiles. For example, in this case it can be expected that the smallest observation
Y1,n corresponding to percentile p1 = 0.5

n should be close to F−1(p1). A general observation Yi,n
is expected to lie close to F−1

(
i−0.5
n

)
. In a QQ-plot the set of points

(
Yi,n, F

−1
(
i−0.5
n

))
are

shown. Note that the points lie on the line y = x when the data is from the distribution F .

This result can be formulated a bit more general, by noticing that when the dataset is from
F
(x−µ

σ

)
for some scale σ > 0 and some location µ the plotted points should still follow a linear

line.

In extreme value theory the QQ-plot is useful to determine whether the data is indeed from
a heavy tailed distribution, a light tailed distribution or a short tailed distribution. This is
determined best by comparing the distribution of the data with an exponential distribution,
which is light tailed. An exponential QQ-plot shows then a concave behaviour for heavy tailed
data, convex behaviour for short tailed data, and these two behaviours are shown in Figure 6.3.

Figure 6.3: The exact QQ-plot with a heavy tailed GPD(0.75), showing concave behaviour
(left) and a short tailed GPD(−1), showing convex behaviour (right).

For all the precipitation observations the QQ-Plot is shown in Figure 6.4 on the left side. It
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shows the concave behaviour for low values, but for high values there is some convex behaviour
visible. Therefore, it is not a clear indication of heavy tailed data. For the non-parametric
CST estimator, the heavy tailed assumptions holds for the exceedances above a non-stationary
threshold. By correcting for the dependence of the covariates, in this case the NWP output,
the QQ-plot could be a lot clearer. For a bandwidth h = 3, the 0.8 composite quantile curve is
estimated. In the right panel of Figure 6.4 the QQ-plot is shown for the exceedances of the 0.8
quantile estimate; notice the clear concave behaviour in the figure.

Figure 6.4: The QQ-plot for all the precipitation observations (left) and the QQ-plot for the
residuals of the common shape estimator (right).

The second plot that can be considered is the Zipf plot, that is based on the behaviour of
a heavy tailed distribution. As seen in Chapter 2, a heavy tailed distribution has asymptoti-
cally a power low decay with power − 1

γ . This means that a heavy tailed distribution can be
approximated by,

1− F (y) = y−1/γ .

Taking the log on both sides and plugging in the empirical cumulative distribution function
gives the following expression:

log(1− F̂n(y)) = −1

γ
log y.

This relation shows that by plotting the log observations against the log ECDF should result in
a linear decreasing line in the case of heavy tailed distributions. In Figure 6.5 the Zipf plot is
shown for different distributions to see the behaviour of other distributions.

Figure 6.6 shows on the left side the Zipf plot on all of the precipitation observations and
on the right side the exceedances as obtained for the QQ-plot. Both plots show a clear linear
decay, i.e. the data has a power-law decay which strengthens the hypothesis that the data is
heavy tailed.

In general, the linear decay is not always as good visible as in Figure 6.6. This is due to
the fact that the Pareto decay is an asymptotic result which is not necessarily visible from a
finite data set. This makes it hard to make the distinction between a power-law decay and a
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Figure 6.5: The behaviour of the Zipf plot for several distributional families (made by Dr. P.
Cirillo).

lognormal distribution. In addition, due to data sparseness in the tail, the most right part of
the Zipf plot is not always reliable.

The final plot to be discussed is the mean-excess plot. Let u be a threshold and consider the
function which maps this threshold to the expectation of the excesses above this threshold, i.e.

e(u) = E(Y − u|Y > u)

For heavy tailed distributions this function is always linear in the threshold. In Figure 6.7
the behaviour of the mean-excess plot is shown for several distributions. Notice that it is easier
to reject several distributions based on this plot as the different distributions do not have all the
same monotone behaviour.

In Figure 6.8 the mean-excess function is plotted on the left for all the precipitation obser-
vations and on the right for only the exceedances.

From both the left and right panel it can be seen that there is an approximately linear
increase, which strengthens the hypothesis of heavy tailed data.

The three plots (Figure 6.4, Figure 6.6 and Figure 6.8) clearly justify the heavy tailed
assumption of the precipitation data.

6.5 Model fitting

Similar to the simulation in Chapter 5 a comparison will be made between the Common shaped
tail estimator, introduced in Chapter 4, the extreme quantile estimator with linear quantile
curves by [18] and the extreme quantile curve estimator by [5]. As the true distribution of
the data is not known, the comparison will be made using the quantile verification skill score
(QVSS) introduced in [10].

First define the Quantile verification score of a quantile estimator Q̂(τ |x) by,

QV S(Q̂(τ |x)) =

n∑
i=1

ρτ (Yi − Q̂(τ |Xi)),
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Figure 6.6: The Zipf plot for all the precipitation observations (left) and the Zipf plot for the
location, r(x), corrected precipitation observations (right).

where ρτ (.) is the check function introduced in Chapter 2. Observe, that the QVS is given by the
quantile loss function which is used in the quantile regression framework. The QVSS is defined
relative to the quantile verification score of the empirical quantile as a reference:

QV Sref =
n∑
i=1

ρτ (Yi − Y[nτ ],n)

The QVSS for a quantile estimator Q̂(τ |x) is given by,

QV SS(Q̂(τ |x)) = 1− QV S(Q̂(τ |x))

QV Sref

Note that a higher QVSS corresponds to a better fit to the data.
In order to verify on independent data, the data will be split up in a part for the model

estimation and a part for the model validation, two thirds and one third respectively. As the
data consists of three years of data the years 2010 and 2011 will be used to train the models
and the year 2013 is used for the validation of the models.

It can be clearly seen from Figure 6.2 that the covariate is not uniformly distributed, which
is different from the simulated data in Chapter 5. This causes some problems for the non-
parametric methods, as they assume a single bandwidth, which is not optimal for a non-uniform
covariate. Therefore an adjusting bandwidth selection method is applied for both the CST esti-
mator in Equation 4.5 and the kernel quantile curves estimator in Equation 3.7. The bandwidth
h for a covariate level x∗ is chosen as the one which minimizes,

h(x∗) = arg min
h∈H

1

#{Xi : Xi ∈ [x∗ − h, x∗ + h]}
QV Sh(Q̂h(τc = 0.8|x∗)),

where QV Sh is the quantile verification score based on the model data with the covariate in
[x∗ − h, x∗ + h]. Here H denotes the set of bandwidths over which the expression is minimized,
which in this case are 100 equally spaced bandwidth values between 0.1 and 10. This method
thus, selects the bandwidth that minimizes the quantile verification score for the training period.
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Figure 6.7: The behaviour of the mean excess plot for several distributional families (made by
Dr. P. Cirillo).

For the validation the percentiles 0.9, 0.95 and 0.98 are considered. These quantiles are
not as extreme as the quantiles in Chapter 5, but in order to do the validation the empirical
quantiles need to exist.

The three estimators that are compared are the CST estimator from Equation 4.5, the power
transformed linear quantile estimator from Equation 3.2 and the kernel quantile estimator from
Equation 3.7. For the CST estimator the threshold percentile is set at τc = 0.8, the percentile
sequence for the extreme quantile curves estimator is chosen as 10 equally spaced values between
0.8 and 0.99. In all the methods the k is chosen at the point where the function γ̂(k) becomes
stable.

6.6 Verification results

It can be seen from Table 6.1 that only for the 0.9 quantile the kernel curves estimator is
better than the CST estimator for the 3 − 9 and 9 − 15h lead times. For all the other lead
times and quantiles the CST has higher QVSS values. The linear quantile curves estimator is
outperformed for every percentile level and lead time by both the CST estimator and the kernel
curve estimator.
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lead time(h) τ CST linear Kernel
3-9 0.90 0.540 0.450 0.541

0.95 0.662 0.496 0.596
0.98 0.779 0.550 0.653

9-15 0.90 0.519 0.290 0.635
0.95 0.681 0.391 0.659
0.98 0.816 0.505 0.636

15-21 0.90 0.683 0.278 0.510
0.95 0.776 0.320 0.554
0.98 0.861 0.388 0.571

21-27 0.90 0.546 0.200 0.340
0.95 0.704 0.263 0.376
0.98 0.835 0.363 0.414

Table 6.1: The table shows a comparison between the CST estimator, the linear quantile curves
estimator and the kernel curves estimator based on the QVSS score. The comparison is made
for the four different lead times and the percentiles 0.9, 0.95, 0.98.
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Figure 6.8: The mean-excess plot for all the precipitation observations (left) and the mean-
excess plot for the location, r(x), corrected precipitation observations (right).
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Chapter 7

Concluding remarks

In practice data may have an extreme value index which does not vary with respect to the
covariates, this is seen in Chapter 6 where precipitation observations were considered together
with forecasts from a NWP model. The aim of this thesis was to obtain proper tail inference
for data where the extreme value index is a constant function over the covariates. This is not a
trivial problem and several estimators from the literature are studied, which all take a different
approach to this problem. However, it is shown in Chapter 5 that the estimated extreme value
index from these estimators varies heavily as a function of the covariates. The freedom in these
estimators introduces large uncertainties in the estimations. This motivated the introduction of
an estimator that assumes a constant extreme value index over the covariates.

Additionally in quantile regression the problem of quantile crossing arises. When this hap-
pens the estimated curves can no longer be interpreted as quantile curves. The main method that
is applied in the literature is the monotone rearrangement method in [4], though this removes
the smoothness from the quantile curves.

Introducing the common shaped model in Equation 4.1, the common shaped tail (CST)
estimator is proposed to improve on the estimators from the literature for tail equivalent data.
The CST estimator takes, similar to all estimators a two step approach. First it estimates
the common shape, r(x), at several quantiles at the same time, by exploiting the common
shape property in the common shaped model. For the estimator a non-parametric version of
the composite quantile estimator proposed in [21] was used to model the dependence on the
covariate as flexible as possible. The second step continues the estimation process from the
residuals of the common shape defined in Equation 4.3. The positive residuals of this estimation
can be considered as exceedances above a high threshold, i.e. the estimated common shape.
Proposition 4.2.1 and Proposition 4.2.2 show that assuming the data is from a common shaped
model, the tail index can be estimated from the residuals.

In Chapter 5 an extensive simulation study is used to make the choices for the percentile
level of the shape function and to compare the CST estimator with estimators from Chapter 3.
The power transformed linear quantile curves from [18] and the kernel quantile curve estimator
from [6] are used in the comparison. From the simulations it is clear that for small and medium
sample sizes the CST performs better than the kernel estimator, but in general the power
transformed estimator performs better. The bias of the CST estimator appears to be very large
compared to the other estimators. This causes bad results in general, but especially for the large
sample sizes where the bias dominates the mean squared error. The few times that the CST
estimator performs better than both the other estimators is for the small sample sizes. This can
be an indication that the variance of the CST estimator is smaller compared to the variance of
the other estimators. Below some suggestions are made to reduce the bias of the estimator.

In Chapter 6 a dataset is analysed with area-averaged precipitation observations in the
province Friesland in the Netherlands as response and as a covariate the area-averaged precip-
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itation forecasts from the NWP model HARMONIE. First, it is shown that the data can be
assumed to be from a heavy tailed distribution and then all the three methods are applied to
the data to see which has better predictive ability. In order to compare the different methods,
the data was split up in the years 2010 and 2011 for the model training and 2013 for the verifica-
tion. The CST estimator has the best predictive abilities based on this dataset and the quantile
verification skill score.

It can be concluded that the method has potential in applications where weather data is
post-processed. Based on the small data example the predictive power of the CST estimator is
substantially larger than the predictive power of the other estimators.

7.1 Future research

The results from Chapters 5 and 6 provide motivation for future research on the CST estimator.
As stated in the conclusion, the properties of the estimator are shown by means of an extensive
simulation study, but the properties still need to be mathematically proven. The setting in
Equation 4.2 is general from an extreme value theory perspective, as it does not pose assumptions
on the sign of the extreme value index. Though a heavy tail is assumed in this thesis, the peaks
over threshold method also works in the short tailed setting, which would allow to extend to
the general domain of the extreme value distribution. In the current estimator this is already
implicitly assumed by the usage of the maximum likelihood estimator, which is consistent for
γ > −1

2 . The reason this estimator was chosen came from the fact that the Hill estimator was
not shift invariant, which resulted in large errors in the estimation procedure.

In the conclusions it was already noted that the bias of the CST estimator was substantially
larger compared to the other estimators. This caused large errors and bad performance compared
to the other estimators. Here two improvements are proposed to reduce the bias in the estimator.
The first improvement is suggested for the boundary issues which occur in the non-parametric
composite quantile estimation. The estimates at the boundary are equally important as the
estimates in the middle as all residuals are used in the extrapolation to the extreme quantiles.
Future research should therefore be focussed on removing the boundary issues for the composite
quantile estimator. Other improvements could be the introduction of kernel weighting of the
different observations to obtain smooth quantile curve estimates or the weighting of the different
quantile levels as the sparseness in the higher quantiles may influence the estimates too much.

A second improvement can be made in the extrapolation to the extreme quantiles. The
maximum likelihood estimator does a reasonably good job in the estimation of the extreme
value index, but the estimation setting of the two step procedure might produce better results
with a different extreme value index estimator. The residuals can be considered as contaminated
observations and tail estimation from a contaminated dataset might benefit from a different tail
index estimator. Future research has to reveal which estimator would be best in this estimation
framework.

The selection of the bandwidth is a very important part which needs further investigation.
In our research a cross validation approach is tried, but did not yet give satisfying results. The
extension to a framework where d dimensional covariates are considered can be obtained in a
similar way.

From a meteorological point of view it would be interesting to compare the results of the CST
estimator on the precipitation data from Chapter 6 with ensemble forecasts. In Chapter 6 it was
explained that the ECMWF ensemble quantifies the uncertainty from the initial conditions and
the parametrizations by perturbing the initial condition and parameters in 50 different ways and
considering the empirical distribution of these 50 weather forecasts. A statistical post-processing
approach, can correct for systematic errors in the mean and spread of the ensemble. Therefore it
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should have better predictive power, maybe also compared to the larger ensemble members using
the estimator proposed in this thesis. This would be an interesting topic for future research.

As this MSc thesis is a precursor to the PhD research with title ”Probabilitic forecasts of
extreme weather utilizing advanced methods from extreme value theory”, a rough outline will
be sketched of future research which can be done in the coming four years.

A first question that would be of interest is how to verify extreme quantile predictions. In
Chapter 6 the verification is done for the percentiles 0.9, 0.95 and 0.98, because 0.98 is the
highest possible percentile in the verification dataset (n = 88). This means that there should
be exactly one observation above the 0.98 quantile curve. Naturally the verification based on
a single observation will cause such high uncertainties that it is not reliable in practice any
more. Therefore it would be interesting to develop methods that would enable the verification
of extreme quantiles which are in the range of the data, i.e intermediate quantiles, or even exceed
the data, i.e. extreme quantiles.

Secondly it would be interesting, when the model is expanded to d dimensional covariates,
to develop variable selection methods based on the extremes. Most variable selection methods
select the variables which have the largest explanatory power for the middle part of the distri-
bution. It would therefore be interesting to develop methods, which select variables based on
the explanatory power for the extremes.

Furthermore it is interesting to consider not only one response variable, but two instead.
The modelling of the bivariate tail distribution conditioned on covariates will create insight in
the bivariate risks of concurrent extreme weather events. An application of the modelling of
these combined weather risks is the railway system. In the Netherlands the railway system is
fairly complex due to the high density of cities especially in the west. The combination of snow
and low temperatures results in ice on the tracks. This could potentially result in delays for the
traveller if proper precautions have not been taken. Skillfull forecasting of the bivariate risks of
low temperature and snowfall will enable a company as ProRail to take proper actions in time.

All the approaches above are focussed on the extremal behaviour of Y given some covariate
x. However, in the example of a weather alert system that is considered in the introduction, i.e.
issue an alarm if a threshold is expected to exceed with a specified probability, the probability
of exceedance is generally quite large. For code orange issued by KNMI this probability is set at
60%. So given the prediction from the NWP model, it would be interesting to model the middle
part of the distribution. This concerns modelling Y |X in a part where both the observations Y
and covariates X are sparse. Some parametric assumption on the relationship between Y and
X could be assumed here, which would result in better estimates in these data sparse parts with
respect to X.
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[6] Abdelaati Daouia, Laurent Gardes, Stéphane Girard, and Alexandre Lekina. Kernel esti-
mators of extreme level curves. Test, 20(2):311–333, 2011.

[7] Anthony C Davison and Richard L Smith. Models for exceedances over high thresholds.
Journal of the Royal Statistical Society. Series B (Methodological), pages 393–442, 1990.

[8] Holger Drees, Ana Ferreira, and Laurens de Haan. On maximum likelihood estimation of
the extreme value index. The Annals of Applied Probability, 14(3):1179–1201, 08 2004.

[9] Ronald Aylmer Fisher and Leonard Henry Caleb Tippett. Limiting forms of the frequency
distribution of the largest or smallest member of a sample. In Mathematical Proceedings
of the Cambridge Philosophical Society, volume 24, pages 180–190. Cambridge Univ Press,
1928.

[10] P Friederichs and A Hense. Statistical downscaling of extreme precipitation events using
censored quantile regression. Monthly weather review, 135(6):2365–2378, 2007.

[11] Boris Gnedenko. Sur la distribution limite du terme maximum d’une serie aleatoire. Annals
of mathematics, pages 423–453, 1943.

[12] Bruce M. Hill. A simple general approach to inference about the tail of a distribution. The
Annals of Statistics, 3(5):1163–1174, 09 1975.

[13] Roger Koenker and Gilbert Bassett Jr. Regression quantiles. Econometrica: journal of the
Econometric Society, pages 33–50, 1978.

[14] CJ Kok, BGJ Wichers Schreur, and DHP Vogelezang. Meteorological support for anticipa-
tory water management. Atmospheric Research, 100(2):285–295, 2011.

65



66 BIBLIOGRAPHY

[15] Yunming Mu and Xuming He. Power transformation toward a linear regression quantile.
Journal of the American Statistical Association, 2012.

[16] Aart Overeem, Iwan Holleman, and Adri Buishand. Derivation of a 10-year radar-based
climatology of rainfall. Journal of Applied Meteorology and Climatology, 48(7):1448–1463,
2009.

[17] Y Seity, P Brousseau, S Malardel, G Hello, P Bénard, F Bouttier, C Lac, and V Masson. The
arome-france convective-scale operational model. Monthly Weather Review, 139(3):976–991,
2011.

[18] Huixia Judy Wang and Deyuan Li. Estimation of extreme conditional quantiles through
power transformation. Journal of the American Statistical Association, 108(503):1062–1074,
2013.

[19] Huixia Judy Wang, Deyuan Li, and Xuming He. Estimation of high conditional quantiles for
heavy-tailed distributions. Journal of the American Statistical Association, 107(500):1453–
1464, 2012.

[20] Guosheng Yin, Donglin Zeng, and Hui Li. Power-transformed linear quantile regression
with censored data. Journal of the American Statistical Association, 103(483):1214–1224,
2008.

[21] Hui Zou and Ming Yuan. Composite quantile regression and the oracle model selection
theory. The Annals of Statistics, pages 1108–1126, 2008.



BIBLIOGRAPHY 67



68 BIBLIOGRAPHY



Appendices

69





Appendix A

An extension to the CST estimator

The common shaped tail estimator exploits the properties of the common shaped model intro-
duced in Chapter 4 and given by,

Q(τ |x) = r(x) + ε(τ), ε(τc) = 0. (A.1)

The main property that is exploited by the common shaped tail estimator is the fact that the
quantile curves are parallel. Recall that the quantile shape estimator for r(x) is based on a
percentile sequence τc = τ1, . . . τp and at a fixed covariate level x∗ the estimate of r(x∗) is given
by α̂1 in the following minimization,

arg min
α1,...,αp,β1,...βm

p∑
j=1

n∑
i=1

1(|Xi − x∗| ≤ h)ρτj

(
Yi − αj −

m∑
k=1

βk(x− x∗)i
)

(A.2)

Though the estimator exploits the fact that the quantile curves are parallel, the estimates
will not be exactly parallel. Similar to the quantile crossing problem, this is caused by the fact
that for two distinct covariate levels x∗1 and x∗2 the parameters are fitted independently of each
other.

To clarify consider two percentile levels x∗1 and x∗2 and let α1
1, . . . α

1
p denote the intercepts at

x∗1 and α2
1, . . . α

2
p at x∗2. Rewriting these parameters, they can be considered relative to the curve

r(x), define d1
i = α1

i = α1
1 and d2

i = α2
i − α2

1. These can then be interpreted as the distances
between the quantile curves of levels τc and τi. Because model A.1 assumes parallel quantile
curves, it must hold that d1

i = d2
i for all 1 ≤ i ≤ p. Note this is not is not necessarily true as

the estimates are based on a different subset of the n observations.

In this appendix an idea is proposed to exploit Model A.1 even more by forcing the quantile
curves to be parallel.

Parallel quantile curves estimation

The distances, defined above, can be written as the difference of the quantile function ε(τ).

d1 = QY |x(τ1|x)−QY |x(τ1|x) =ε(τ1)− ε(τ1)

...
...

dp = QY |x(τp|x)−QY |x(τm|x) =ε(τp)− ε(τ1)

In order to maintain the same distance between the curves, the optimization needs to be per-
formed over a sequence of covariate levels x∗1, . . . , x

∗
m. For simplicity from now on everything
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will be written for a local linear expansion, though it would be straightforward to write it in
terms of pth order expansion. Hence the optimization problem can be written by,

arg min
rk,dj ,β

i
k

m∑
k=1

p∑
j=1

n∑
i=1

1(|Xi − x∗k| ≤ h)ρτj (Yi − rk − dj − βk(Xi − x∗k)) (A.3)

For each grid point x∗k the estimated point on r(x) is given by r̂k and extrapolation can
be based on d1, . . . , dp. The strength of the estimator is that it combines the infomation in a
semi-parametric way. First non-parametrically it determines the local dependence between the
response between Y and X and then it uses global information, i.e. the distances dj , to improve
on this local relationship by imposing the parallel constraint.

This is exactly where the difficulty of the model comes in. As can be noted, the model
contains two intercepts, i.e. rk and dj , which makes the estimation procedure extremely hard
to perform at once. In the research for this thesis a proper minimization method is not found
and will be interesting for future research.

Though an iterative optimization scheme was tried, which did not give satisfying results.
The taken approach estimated a first iterate for r̂(x) at the grid-points x∗1, . . . , x

∗
m, this iterate

will be denoted by r̂1 = (r̂1
1, . . . , r̂

1
m). From this estimate iteratively the parameters dj can be

estimated. Then from the residuals of d̂j a new iterate r̂2 can be obtained. The algorithm is
given as follows,

1. Obtain an initial estimate r̂0 = (α̂1
1, . . . , α̂

m
1 ) by solving for every x∗k, 1 ≤ k ≤ m, the

non-parametric composite quantile minimization problem,

arg min
α1,...,αp,β1,...βm

p∑
j=1

n∑
i=1

1(|Xi − x∗k| ≤ h)ρτj

(
Yi − αkj − βk(x− x∗)i

)
2. Let x∗q be defined, such that it minimizes |Xi − x∗k| for 1 ≤ k ≤ m. Then the residuals of

iterate r̂l is given by,

Ei = Yi − r̂lq − β̂lq(Xi − x∗q)

3. estimate dj corresponding to τj by calculating the τjth empirical quantile by minimizing

arg min
dj

n∑
i=1

ρτj (Ei − dj)

4. Estimate a new iterate r̂l+1 by the following minimization for each grid point x∗k

arg min
rk,β

i
k

p∑
j=1

n∑
i=1

1(|Xi − x∗k| ≤ h)ρτj

(
Yi − d̂j − rk − βk(Xi − x∗k)

)

5. Repeat from step 2 until step 4 until the estimates of r̂l and dlj converge.

Note that in step 4 the quantile curves at percentile levels τ1, . . . , τp are estimated at the
same time by estimating one curve r(x) and correcting the percentiles τ2, . . . , τp by correcting

for d̂j . For the implementation of step 1 the composite quantile estimator in [21] is used and
for steps 2 and 3 the implementation is straightforward. Though existing quantile regression
methods were not sufficient for step 4. The implementation for this step was done by a simplex
method which was proposed in [1].



Appendix B

R-code

Non-parametric quantile estimator using a kernel estima-
tor

Description
Estimates the intermediate quantiles for a sequence of percentiles using the estimator
in Equation 3.5

Usage
kernel.intermediate(y,x,xstar,taus,h)

Arguments
y a column vector of response variables
x a column vector with covariates
xstar a column vector of covariate values for which to calculate the intermediate

quantiles
taus an increasing percentile sequence for which to estimate the quantiles
h the bandwidth defining the width of the neighbourhood for the estimates

around xstar

Output
A list with the intermediate quantiles and the corresponding percentile sequence.
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Bandwidth selection for the extreme kernel curves estima-
tor

Description
Select a bandwidth for the extreme kernel curves estimator using a cross validation
approach

Usage
kernel.bandwidth(y,x)

Arguments
y a column vector of response variables
x a column vector with covariates

Output
The selected bandwidth h.

Non-parametric extreme quantile estimator extrapolating
using the kernel quantile curve estimator

Description
Estimates the extreme quantiles by extrapolating the quantiles from the ker-
nel.intermediate function using the estimator in Equation 3.7

Usage
kernel.intermediate(y,x,xstar,taus,h)

Arguments
y a column vector of response variables
x a column vector with covariates
xstar a column vector of covariate values for which to calculate the intermediate

quantiles
taus an increasing percentile sequence for which to estimate the quantiles
h the bandwidth defining the width of the neighbourhood for the estimates

around xstar

Output
A list with the intermediate quantiles and the corresponding percentile sequence.
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Non-parametric quantile estimator using quantile regres-
sion

Description
Estimates the intermediate quantiles using the non-parametric quantile estimator from
Equation 3.3

Usage
nonpar.quant.intermediate(y,x,xstar,h)

Arguments
y a column vector of response variables
x a column vector with covariates
xstar the covariate values for which to calculate the quantiles.
h the bandwidth defining the width of the neighbourhood for the estimates

around xstar
Output
A list with the estimated quantiles and the estimated percentiles for every covariate
xstar.

Non-parametric extreme quantile estimator using quantile
regression

Description
Estimates the extreme quantiles by extrapolating the estimated quantiles from the
function nonpar.quant.intermediate using the estimator in Equation 3.4

Usage
nonpar.quant.extrapolate(k,quant,tau,tau.e)

Arguments
k the number of upper order statistics used for the extrapolation
quant a list where each element consists of the estimated quantiles from the non-

par.quant.intermediate function
tau a list where each element corresponds to the percentile sequence for the ele-

ments in quant
tau.e a column vector of extreme percentiles

Output
A list with the estimated extreme value index and the extreme quantile estimates.
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Bandwidth selection method for the non-parametric quan-
tile regression estimator

Description
Selects the optimal bandwidth for the non-parametric quantile estimator in Equation
3.4 using a bootstrapped approach

Usage
nonpar.quant.bandwidth(y,x,xstar,tau.e)

Arguments
y a column vector of response variables
x a column vector with covariates
xstar a covariate value for which to select the bandwidth
tau.e the extreme percentile for which to select the bandwidth

Output
The selected bandwidth h.

Point estimator for the shape estimator of the CST esti-
mator

Description
Point estimator for r(x) in the Common Shaped Tail estimator of Equation 4.5

Usage
local.quantile(y,x,h,xstar,tau.c)

Arguments
y a column vector of response variables
x a column vector with covariates
h the bandwidth defining the neighbourhood of estimation around xstar
xstar the value of the covariate for which a point estimate is wanted at the tau.c

quantile
tau.c the percentile levels at which to obtain a quantile estimate

Output
A list with a column vector containing the quantiles and the corresponding percentiles
tau.c and above.
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The CST estimator

Description
Estimates an extreme quantile for using the CST estimator specified in Equation 4.5

Usage
CST.fit(y,x,h,tau.c,tau.e,k,xstar=NULL)

Arguments
y a column vector of response variables
x a column vector with covariates
h the bandwidth defining the width of the neighbourhood for the estimates

around xstar
tau.c the percentile levels at which to obtain a quantile estimate
tau.e a column vector with extreme percentiles bigger than tau.c
k number of upper order statistics that need to be used for the extrapolation
xstar the covariate values for which to calculate the quantiles. If not specified only

the shape function for the values of x are calculated

Output
A list with the shape function for x and xstar and the extreme quantile estimates.


