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Abstract

Development of the autonomous vehicle has been a trending topic over the last few years. The
automotive industry is continuously developing Advanced Driver-Assistance Systems (ADAS)
that partially take over the driver’s workload. This has resulted in an increase in vehicle safety
and a decrease in fatal crashes [1]. Full vehicle autonomy has not yet been reached, as the
control systems involved are not yet capable of handling every situation. One of these critical
situations is when a vehicle enters the unstable motion of drifting. A vehicle is prone to
drifting on low-friction surfaces, and also during these generally unstable maneuvers, the
autonomous system should be able to remain in control. The performance of an autonomous
drifting controller should be exemplified by the experience of rally drivers in how to handle a
vehicle and keep control of a vehicle while drifting. The objective of this thesis is to design a
control system which is capable of handling a vehicle during a drifting motion and to follow
a certain desired path.

Vehicle dynamics are modeled as a three-state bicycle model to simplify the complex dynamics
of the vehicle and the interaction between tyre and road. The definition of longitudinal wheel
slip is reformulated to a smooth alternative to accommodate gradient based solving. With
the system dynamics defined, the drifting motion is analyzed and equilibrium points are
identified, showing differences between low- and high friction surfaces. Initially, a Model
Predictive Control (MPC) strategy is applied with the purpose of steering the vehicle to
desired drifting equilibria. Hereafter, the control system is extended to provide path following
properties and addition of a dynamic velocity controller allows for a larger range of equilibria
to be reached. The simulation setup intends to capture the experimental environment in
the Network Embedded Robotics DCSC lab (NERDlab) at the Delft Center for Systems
and Control (DCSC) department. Simulating a 1:10 scaled model allows to investigate the
challenges that arise when implementing the control strategy on a scaled vehicle. These
simulations show that autonomous drift control using the designed MPC strategy is possible,
even when accounting for possible uncertainties such as delay, noise, and model mismatch.

Master of Science Thesis B. Verlaan



B. Verlaan Master of Science Thesis



Table of Contents

Preface and Acknowledgements ix

1 Introduction 1
1-1  Why autonomous drifting? . . . . . .. ... 1
1-2 Research objective . . . . . . . . .. 3
1-3 Thesisoutline . . . . . .. 3

2 The vehicle as physical system 5
2-1 Bicycle Model dynamics . . . . . . .. .. L 6
2-2 Tyre-Road Interaction . . . . . . . . . .. 7
2-2-1 The Magic Formula tyre model . . . . . . . . . ... ... ... ... .. 8

2-2-2  Slip and Wheel dynamics . . . . . . . . ... 9

2-2-3 Tyre Variations . . . . . . . ... 10

2-3 Summary . .. 12

3 Analysis of drifting equilibria and reference trajectories 13
3-1 Theartofdrifting . . . . . . . . . . ... 13
3-2 Equilibrium Analysis . . . . . . .. 15
3-2-1 Definition of the Differential-Algebraic set of Equations (DAE) . . . . . . 15

3-2-2 Solvingthe DAE . . . . . . . . . 15

3-2-3  Analyzing found equilibria . . . . ... ..o 16

3-3 Track definition and deviation . . . . . . . .. .. .. L L 18
3-3-1 Track segments . . . . . . ... 18

3-3-2  Curvilinear coordinates . . . . . . . ... .. o 20

3-3-3  Error definition . . . ... 21

3-4 Summary . ... 22

Master of Science Thesis B. Verlaan



B. Verlaan

iv Table of Contents
4 Control System Design 23
4-1 Path following controller . . . . . . . . .. . ... 23
4-2 Dynamic reference velocity . . . . . . . .. ... 24
4-3 Reference generator . . . . . . . . 25
4-4 MPC formulation . . . . . .. 26
4-4-1 Optimal Control Problem (OCP) . . . ... ... ... ... .. ..... 26

4-4-2 Integration methods . . . . . . . .. ..o 27

4-4-3 Solvingthe OCP . . . . . . . . .. . . 28

4-5 Summary . ... 29

5 Control System evaluation 31
5-1 MPC for tracking of drift equilibria . . . . . . . . ... ... ... .. 32
5-2 Path following . . . . . . . . . .. 35
5-3 Dynamic velocity driving . . . . . .. .. 35
B5-4  Summary . . ... 42

6 Feasibility analysis for experimental validation 43
6-1 DCSC Experimental platform . . . . . . ... ... ..o 43
6-1-1 Scaled vehicle . . . . . . .. 44

6-1-2 Controller adjustment . . . . . . . . . ... L 46

6-2 Uncertainties and imperfections . . . . . . . . ... ... ... ... ... ... 47
6-2-1 Modeling of delay and noise . . . . . . . . ... ... L. 47

6-2-2 Actuator dynamics . . . . . ... 55

6-2-3 Parametric uncertainty . . . . .. . ... Lo 56

6-2-4 Initial condition variation . . . . . .. ... L Lo 61

6-3 Summary . . .. 62

7 Conclusions and recommendations 63
7-1 Summary . ... 63
7-2 Conclusions . . . . . . L 64
7-3 Future recommendations . . . . . .. .. 65
Bibliography 69
Glossary 73
List of Acronyms . . . . . . . . . L 73

List of Symbols . . . . . . . .. 74

Master of Science Thesis



2-1
2-2
2-3
2-4
2-5

5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8

List of Figures

Vehicle taking a right-hand corner . . . . . . . . . ..o oo 5)
Bicycle Model . . . . . . . . 6
Curve produced by the original Magic Formula (2-4a), source [2] . . . . . . . .. 8
Wheel dynamics model during braking . . . . . .. .. ... 9
i Friction ellipses for four tyre types (Table 2-1) . . . . . . . . . ... ... ... 11
Equilibrium solutions for Tyre 4 . . . . . . . . . .. 16
Equilibrium solutions for Tyre 1 . . . . . . . . . . . .. ... 17
Constant radius track segment . . . . . . . .. ... 18
Clothoid track segment . . . . . . . . . . .. ... 19
Transition in cornering direction . . . . . . . .. ... L. 19
Two complex tracks . . . . . . . . L 20
Lateral path deviations,, . . . . . . .. .. 21
Desired vehicle heading « and side-slipangle 8 . . . . . .. ... ... .. ... 21
General control system overview . . . . . ... ... 24
i friction ellipse for MF tyre 4 . . . . . . . . . .. 32
MPC performance . . . . . . . . ... 33
MPC execution time . . . . . . . . ... 33
Initial condition variation for constant radius cornering . . . . . . .. .. .. .. 34
MPC|PID performance . . . . . . . . ... 35
MPC|PID execution time . . . . . . . . ... ... 36
MPC|PID|DV performance . . . . . . . .. ... . ... 37
MPCIPID|DV execution time . . . . . . . . .. ... 37

Master of Science Thesis B. Verlaan



vi

List of Figures

5-9 Computational impact of integrators . . . . . . . . ... ... ... ... ..., 38
5-10 Simulating controller on complex track 2 . . . . . . . . ... ... L. 41
6-1 % friction ellipse for scaled vehicletyre . . . . . . . . .. ... 44
6-2 Equilibrium solutions for the scaled vehicle model . . . . . . . .. ... .. ... 44
6-3 Scaled vehicle - general controller performance . . . . . . . . ... ... ... .. 46
6-4 Results after introducing- and re-tuning fordelay . . . . .. .. .. .. ... .. 48
6-5 Algorithm convergence response to measurement noise . . . . . . . . . ... .. 50
6-6 Algorithm convergence response to measurement noise after Kalman Filter intro-
duction . . . . . L 51
6-7 System response after implementation of Ref. 2 (see Table 6-4) . . . . . . . .. 54
6-8 Steering angle effect due to actuator sampling time limitation . . . . . . . . .. 55
6-9 Parametric uncertainty for system without path following control . . . . . . . .. 57
6-10 System response to parametric uncertainty . . . . . .. ... ... 58
6-11 State trajectories for parametric uncertain system response clusters . . . . . . . . 59
6-12 Unstable state trajectories for parametric uncertain system response clusters . . . 60
6-13 Scaled vehicle initial condition variation . . . . . .. ... ... ... .. ... 61

B. Verlaan

Master of Science Thesis



List of Tables

2-1 MF parameters for various road conditions, source [3] . . . . . . ... ... ... 11
4-1 General Butcher tableau . . . . . . . . ... 27
4-2 RK Radau llIA3 tableau . . . . . . . .. .. 27
5-1 Vehicle parameters. . . . . . . . .. 32
5-2 Parameters for MF tyre 4 . . . . . . . L 32
5-3 MPC convergence . . . . . . . . . .. 33
5-4 MPCIPID convergence . . . . . . . ... 36
5-5 MPCIPID|DV convergence . . . . . . . . . ... 36
5-6 Integrator and controller scenarioindex . . . . . . . ... ... 38
5-7 Convergence for various integrators (Index Table 5-6) . . . . .. ... ... ... 39
6-1 Scaled vehicle parameters . . . . . . . . ... 44
6-2 MF parameters for scaled vehicle tyre . . . . . . . ... oL 44
6-3 Measured latency inthe NERDIlab . . . . . . . . . ... ... ... .. 47
6-4 Filtered measurements scenarios . . . . . .. ... oo 52
6-5 Scenarioresults . . . . .. 53
6-6 Actuator sampling time variance . . . . . .. ... L L 55
7-1 IMU accuracy recommendations . . . . . ... ... L 66
7-2 Parameter accuracy recommendations . . . . ... .. L 66

Master of Science Thesis B. Verlaan



viii List of Tables

B. Verlaan Master of Science Thesis



Preface and Acknowledgements

This is document is a part of my Master of Science graduation thesis.

Autonomous driving is currently seeing a huge development. This technology is seen as the
future of (personal) transportation, which I believe will be a huge benefit to society and
will help the overall mobility. This demand for mobility is increasing and as more and more
vehicles enter the road result the congestion levels keep rising. Autonomous driving vehicles
are ultimately expected to improve highway efficiency as computerized systems should be able
to respond much quicker opposed to humans.

Though I see driving as a fun activity, and hope to see that humans will always still be
able to drive manually as motor sports have always intrigued me. From looking at these
motor sports I find rally-driving to be an interesting sport where high-skilled drivers perform
extreme side-slip drifting maneuvers to tame a race track at high speeds. It is from this that
I found inspiration in doing this research. Images as found on the cover of this thesis: Mad
Mike Whiddett performs in his BADBUL RX8 at Hampton Downs race track, Waikato, New
Zealand on May 09, 2018 (© Graeme Murray/Red Bull Content Pool), excited and inspired
me to work on this project.

As ADAS systems are being developed at a rapid rate I hope to contribute to the development
of autonomous driving, starting with this thesis.

I would like to thank my supervisor dr.ir. Tamés Keviczky for his assistance during the
writing of this thesis. My thanks also go out to dr. Barys Shyrokau for his feedback and
lessons learned in vehicle dynamics control.

Delft, University of Technology B. Verlaan
April 15, 2019

Master of Science Thesis B. Verlaan



X Preface and Acknowledgements

B. Verlaan Master of Science Thesis



“There is nothing like a dream to create the future.”

— Victor Hugo






Chapter 1

Introduction

1-1 Why autonomous drifting?

Ever since the first automobile was built by Nicolas-Joseph Cugnot in 1769 [4] a lot of progress
has been made in the development of automobiles in terms of propulsion, comfort, and safety.
With more than 700 million cars roaming the world, the automobility system currently brings
fluid movement and freedom as its flexibility enables to travel at any time in any direction
along the complex road systems of western societies [5]. This beneficial system, however, has
also brought forth some issues.

The first accident to occur resulted in the death of Bridget Driscoll in August 1896. The
death was labeled an ”accidental death”, and it was hoped that such a thing would never
happen again. People perceived this as a chance phenomenon, a perception which was a
characteristic view on road safety till the 1920s. The present paradigm is more developed,
refraining from the term ”accident” to describe crash causes and lays focus on the interaction
between humans, vehicles, roads, and types of errors, blaming the system as a whole.

Advanced Driver-Assistance Systems (ADAS) are developed to prevent crashes from happen-
ing in the first place, with examples as Anti-lock Braking Systems, Adaptive Cruise Control,
and Lane Departure Warning Systems. These systems improve safety by intervening during
dangerous situations and/or ease the driving workload by decreasing demands placed on the
driver. This decrease in driver workload is a trending topic and leading towards the ability
of vehicles to drive autonomously. However, before full vehicle autonomy can be reached the
control systems facilitating this have to be able to handle the vehicle in all conditions and
during all circumstances. Low-friction conditions as snow and ice greatly increase the risk of
a vehicle crashing [6], and it is in these conditions that drivers lose control of the vehicle and
potentially get into an unwanted drift.

Vehicles are prone to slip and have the possibility to enter a drifting state either due to
aggressive evasive maneuvers or loss of control due to low friction road conditions. The
average driver is not experienced with this vehicle behavior and is often not able to (retrieve)
control during such an event. Particularly for this reason, it is useful for the vehicle to be able
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2 Introduction

to take autonomous control of this drifting vehicle and be able to steer the vehicle into a safe
trajectory. Autonomous Drift Control (ADC) could be this addition to the current ADAS,
providing an increase of vehicle and traffic safety.

Rally-drivers set the example when it comes to controlled handling of a vehicle on its limits.
Experience and skill with drifting allow them to corner faster, sustain drifting and safely return
to a normal driving state. This control allows these drivers to push the limits of drifting at
both high speeds and high body side-slip angles. The maneuverability which is normally only
accessible to skilled rally drivers can be computed and performed autonomously by a Finite
State Machine [7]. These state-of-the-art autonomous systems are able to control a vehicle
and utilize the limit-handling which is drifting to achieve minimum time cornering [3, 8].
When it comes to safety concerns autonomous drifting has shown the ability to perform
evasive maneuvers [9], showing that potential vehicle safety increase lies in controlling the
(unwanted) drift.

The current situation shows that autonomous vehicles are in up-rise, and full vehicle auton-
omy is expected to arrive in 2030 [10]. ADAS systems are continuously being developed,
tested and implemented to enable this transition to autonomous driving. It is important to
continue research in this field to drive the transition to fully autonomous driving and allow
safe application under all driving conditions.

Full vehicle autonomy places control of the vehicle outside of the hands of human drivers.
This means that both the control of the steering and control of the velocity of the vehicle
will have to be accounted for. The autonomous drifting control scheme must be designed in
such manner that deviation of a desired, predefined, trajectory is minimized. To achieve this
the controller should be able to change the driving velocity of the vehicle to accommodate a
large range of curved trajectories. The control system must be able to compute the desired
control action while driving and is thus required to compute solutions at least just as fast
as the operating frequency. The system must also be robust enough to ensure an operating
envelope which is large enough to allow activation in a wide range of situations and steer the
vehicle towards a controlled drifting maneuver. After the design of this control system, the
proposed strategy is evaluated for previously mentioned performance indicators.

Further simulation of a scaled version of the system, able to capture the experimental envi-
ronment at the Network Embedded Robotics DCSC lab (NERDlab), will act as a feasibility
study. This study will provide an illustrative example indicating under which circumstances
implementation on a scaled system is possible. Result hereof will show which design aspects
of both controller- and vehicle are more critical than others, as well as provide design criteria
and recommendations for the experimental setup for future continuation of this research.

B. Verlaan Master of Science Thesis



1-2 Research objective 3

1-2 Research objective

In this thesis, a control system is designed to control a vehicle with a drifting motion on
low-friction surfaces. The control system will be given full control of the vehicle to simulate a
fully autonomous driving situation with the challenge being to autonomously initiate a drifting
maneuver and thereafter stabilize this drifting motion. Enhancement of the control system
will enable path-following properties and generate robustness for a larger range of scenarios.
This system is first simulated on an actual sized vehicle whereafter a simulation study, aiming
as a feasibility study, is done to analyze whether implementation of this control system on
a scaled vehicle is feasible. As there are differences between ideal simulation conditions and
actual real-world conditions, an attempt is done to account for these uncertainties. The final
control system should be able to initiate and maintain a steady-state drifting motion for a
scaled vehicle while regarding a large range of uncertainties.

This design of a control system capable of autonomous drifting on low-friction surfaces and
performing a feasibility analysis for a Rear Wheel Drive (RWD) scaled vehicle implementation
at the NERDIlab at the Delft Center for Systems and Control (DCSC) department is divided

into the following steps;

e Design of a controller capable of initializing a drift motion and stabilizing a RWD vehicle
around a set drifting equilibrium.

e Expand this system so that the vehicle can be stabilized onto any reference equilibrium
and can switch between various drift equilibria.

e Extend the control system design with a controller, allowing the system to exert path-
following properties for any nonzero driving velocity.

e Adjust the controller in such a way that it is able to successfully control a vehicle model
representative of a scaled vehicle at the NERDlab.

e Subject this model to a range of uncertainties which could occur at the NERDIlab,
re-tune and evaluate the designed control system for drifting behavior of the scaled
vehicle.

1-3 Thesis outline

To achieve this, in Chapter 2 the physical system of a vehicle is analyzed to allow modeling
of the vehicle dynamics and identify properties and characteristics of tyre-road interaction.
Hereafter the drifting maneuver is dissected and analysis of the equilibria during drifting
are discussed. This will allow for the design of a system which is able to generate reference
signals for the system. This is done to accommodate various road/track properties which are
discussed in Chapter 3. When all the boundary conditions are designed, the actual control
system based on Model Predictive Control (MPC) is proposed in Chapter 4. This MPC
controller is evaluated in Chapter 5 doing various drifting maneuvers and hereafter is when
can be determined if the control system could be implemented on a scaled system. This
feasibility study on a 1:10 scaled vehicle implementation is the subject of Chapter 6, and the
robustness against various uncertainties is evaluated before concluding in Chapter 7.
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Chapter 2

The vehicle as physical system

Vehicles exist in numerous variations ranging from large Sports Utility Vehicles to smaller
and compact hatchbacks and many more. However, the dynamics describing these vehicles
can be generalized to describe it’s behavior. This vehicle can be described using quantities
as the vehicle mass, height or length to define its dynamics. First, looking from above, a few
things can be said regarding a vehicle traveling along a certain path.

Figure 2-1: Vehicle taking a right-hand corner

Looking at the depicted vehicle driving along the dashed path in Figure 2-1 one can immedi-
ately identify two key characteristics. The vehicle is traveling at a certain velocity (V'), and
it is traveling along a curved trajectory (k) due to a slight rotation (r) around it’s Center of
Gravity (CoG). Two equations can describe this characteristic behavior of the vehicle (2-1).
These equations describe the curvature with which the vehicle is traveling and the overall
vehicle velocity;

(2-1a)

T
v
Vv o= m (2-1b)
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6 The vehicle as physical system
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Figure 2-2: Bicycle Model

These two equations are described by three quantities, the longitudinal velocity v,, the lateral
velocity v, and the yaw rate r. These quantities form the first physical states when describing
vehicle dynamics by using differential equations. Dynamical modeling of vehicle behavior can
be done in a various amount of ways, accounting or omitting for certain properties and
simplifying the system where possible. The most extensive models will capture almost all of
its dynamics, e.g. a full-car model will include roll-, pitch- and yaw-dynamics, include the
behavior of the suspension system by modeling for sprung- and unsprung-masses and can
include external forces as air resistance. Simplification of this model can be done by omitting
roll- and pitch- motions and omitting the suspension system. This resulting two-track model
now consists of four wheels and a rigid body, and even further simplification is possible.

2-1 Bicycle Model dynamics

Chosen is the three-state bicycle model to simulate the vehicle dynamics, a diagram describing
this model can be seen in Figure 2-2. This simplification of vehicle dynamics is obtained when
the two front- and two rear wheels are 'merged’ together into a single front and rear wheel.
The heading direction of the vehicle can be changed by steering with the front wheel (right
in Figure 2-2), where the steering angle § describes the angle of this front wheel with respect
to the vehicle heading.

The mass is modeled as a single point at the CoG, separating the front and rear half of the
vehicle. In this simplification, the pitch and roll dynamics are neglected and it is assumed
to be a rigid body. Newton-Euler balances tell that forces acting on the tyres determine the
accelerations and rotation of the vehicle. The differential equations governing this behavior
are given as follows;

1

Ux = %(Fx,r + Fx,fcos(é) + Fyvain((s)) — UyT (2-2&)
1

Uy = E(Fy,r + F, ¢sin(6) + Fy rcos(0)) + vgr (2-2b)
1

Po= g Byl + Frgsin(@)ly 4 Fy eos()ly) (2-2¢)
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2-2 Tyre-Road Interaction 7

There are variations on the three-state bicycle model where often is chosen to use the body
side-slip angle (2-3) as a differential state, for example as in [11]. Also, variations exist where
the dynamics are modeled in a world-fixed frame coordinate system, though this method
is mostly used for path planning purposes as in [12]. Chosen is to use the body-fixed frame
method describing the decomposed velocities and the yaw rate as this gives the opportunity to
place emphasis on both velocity states separately using the Model Predictive Control (MPC)
techniques. The side-slip angle 8 is seen more as a method to take corners rather than the
goal of the drifting maneuver.

B =tan"! (v—y) (2-3)
(%7

Most of the parameters describing the vehicle dynamics are governed by the parameters
describing the vehicle metrics, however, the forces that the tyres generate are possible subjects
of control. The angle at which the front wheel is turned can be controlled either manually or
autonomous through a steering wheel, and it is possible to apply gas or brakes in a car and
with it change the forces on the tyres. In this analysis a Rear Wheel Drive (RWD) vehicle is
taken, allowing only torque input on the rear wheel. From this we can conclude that a crucial
element of vehicle dynamics control lies in controlling the forces generated by the tyres, and
with this comes the opportunity to be in control of a vehicle’s dynamics. To do this it is
necessary to get an understanding of how these forces are generated from the interaction
between tyres and the road surface.

2-2 Tyre-Road Interaction

The forces acting on the chassis to change the vehicle’s velocity are generated at the tyres.
Here an interaction takes place between the tyres and the road, friction generated by the
relative velocities of the two translates into forces acting on the tyres. The magnitude of
the force is determined by various properties of both the road an the tyres, in combination
with the normal forces from the vehicle acting on the tyres. As there are many types of
road surfaces, each bringing forward a different interaction between tyre and road. The road-
friction coeflicient u, tells us how much of the vehicles normal force acting on the tyres can
maximally be translated into friction, generating forces on the tyre. For example, a dry
asphalt road will have a typical p, of around 1, where an ice surface will bring forward a
value of around 0.1.

Various methods to model these tyre-road interactions and generate the forces acting on
the tyres are developed [13, 14]. Each model has it’s pros and cons about whether the
formulation is derived from physical properties or empirically designed, and whether it’s
complexity and accuracy fits the rate at which the forces are to be computed. In this analysis,
the Magic Formula (MF) is considered to compute the forces from this tyre-road interaction.
[15] compares the Dugoff, a modified Dugoff and the MF method to describe force generation.
As comparable results are concluded in this analysis for the low slip-angle regions, at the higher
slip-angle regions both Dugoff methods could not compare to the accuracy of the MF. Besides
this, an ’if’ condition exists in the Dugoff method to compute forces. The higher accuracy of
the MF at high slip-angles and this non-smooth property within the Dugoff method provides
two reasons why is chosen for the Magic Formula.

Master of Science Thesis B. Verlaan



8 The vehicle as physical system

Figure 2-3: Curve produced by the original Magic Formula (2-4a), source [2]

2-2-1 The Magic Formula tyre model

Longitudinal and lateral forces acting on the front and rear tyres (F; ;) are computed using the
so-called Magic Formula (2-4)[2]. This semi-empirical model can be used for control system
design purposes as the complexity is low, but accuracy can be achieved when fitted with
enough empirical data [16]. Having a low complexity benefits high-frequency computation
while the sin(arctan) formula provides excellent fit for F, and F), curves as depicted in Figure
2-3. These properties are critical elements for vehicle dynamics control.

The complete Magic Formula tyre model consists of over 20 formulas with over 100 parameters
to compute longitudinal forces, lateral forces and self-aligning moments acting on the tyres.
However this is not beneficial in the case of a high-rate of computations, and therefore a
simplified model is chosen which has proven successful in the field of autonomous drift control
[17].

y(r) = Dsin[Ctan '{Bx — E(Bx — tan™'(Bx))}] (2-4a)

with
Y(X) = ylz)+ S (2-4D)
r = X+, (2—40)

In this Magic Formula, X and Y are the input and output variable respectively. This simplified
formulation contains six variables; B being the stiffness factor, C' is the shape factor, D is peak
value, FE is the curvature factor, Sy, defines horizontal shift and S, vertical shift. The variables
describing the Magic Formula can be chosen to be directional dependent for longitudinal and
lateral forces. However, isotropic behavior is assumed in this analysis.

Wij = %Dsin(Ca‘can(ajB—E(ajB—atan(ajB)))) (2-5a)
FiJ‘ = ,Ufi,jFZ,j (2-5b)

Formulation of the Magic Formula (2-5) is done as described by D. Tavernini [3] to compute
the slip coefficient p, where coupling between longitudinal and lateral forces is as described
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2-2 Tyre-Road Interaction 9

Figure 2-4: Wheel dynamics model during braking

in [2] using the theoretical slip quantities (2-9). Horizontal and vertical shift of the friction
curve is neglected in this formulation. The analysis of this tyre model is continued after the
introduction of slip and wheel dynamics (Section 2-2-3). The computation of the theoretical
slip is done when analyzing the wheel dynamics which describe the relative motion between
the tyre and the road.

2-2-2 Slip and Wheel dynamics

Slip occurs when there is a relative motion present between two surfaces. In the case of
tyre-road interaction, this slip can be found when looking at the velocity at which the contact
area of the tyre is traveling due to the angular velocity of the wheel, and comparing this to
the velocity at which the road surface is moving with respect to the vehicle. Assumed here is
that the vehicle is a rigid body and that the tyre is perfectly round, depicted in Figure 2-4.
Here, a (braking) torque Tyt is applied to the wheel which will result decrease of the angular
velocity w. The dynamical equation describing this behavior is given in (2-6).

1
&= 7 (=Faru + Toer) (2-6)

w

This difference in velocities of the vehicle and tyre is commonly described by the longitudinal
wheel slip coefficient A.

TwW — Uy (2_7)

- max (7,w, Uy )

Besides slip in the longitudinal direction, the angle of the wheel with respect to the vehicle
velocity results in lateral wheel slip a;. As the front wheel can be subjected to a steering
angle, the formulation of these descriptions varies. Also, the partial velocity generated by the
yaw rate of the vehicle accounts for the difference between descriptions.
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10 The vehicle as physical system

rl )
= S—tan (L 4+ ¥ 2-8
ay an (Ux +Ux) (2-8a)
—rl v
o= tan (% 2-8b
ar = —tan (T4 ) (2-5b)

As these two slip quantities are to be combined into a homogeneous slip description, theoret-
ical slip quantities (2-9) are used to quantify the slip angle and longitudinal slip coefficient
in directional vectors. When computed, these theoretical slip quantities can be used by Tav-
ernini’s deviation of the Magic Formula mentioned before.

S Aj U':tan(aj) S
Z,] 1+)\j’ Y,J 1+>\] ’ J T,] Y,J

(2-9)

Due to the non-smooth nature of the max-function in (2-7) gradient based solvers experience
difficulty working with this equation. To approximate the max-function a smooth alternative
has been used [18]. The soft maximum approaches the hard maximum when the difference
between the two values compared increases. Addition of the parameter p increases separation
of the two compared values for p > 1. However, as the difference between r,w and v,
decreases, so does the nominator of the fraction defining the slip, meaning that the absolute
value of A (and thus also the absolute error due to the approximation) decreases.

< TypW — Vg
N =1 (2-10a)
log(efrvw + ervz)

A=A for p— oo (2-10b)

2-2-3 Tyre Variations

The MF contains four parameters (B — E) which can be set to vary the tyre-road interaction.
Tavernini defined four different tyres (Table 2-1) to simulate various surface behaviors ranging
from dry asphalt to soft off-road surfaces [3]. As this covers a wide range of scenario’s, and
due to the fact that these tyres are considered in various other researches on automobile
drifting these four variations are initially considered in this research. Their respective friction
ellipses can be observed in Figure 2-5.

These four tyre types can be split into two groups, the first of which contains convex slip
properties where the slip properties of the other are non-convex. These properties can be
observed with the help of the friction ellipse, where only i of each is depicted as the tyres are
assumed isotropic in z- and y directions. Convex slip properties for the tyre mean that there
is only one o — A pair which determines a specific p, — 1, pair. The tyre types 3 and 4 can
be identified as having these convex properties. The tyre sets with non-convex slip properties
(tyre 1 and 2 in Figure 2-5) show us that there are two intersections between a and \ curves.
For a certain force to be generated from the tyre-road interaction, multiple o — A pairs suffice.
This multiplicity of steady-states capable of completing the same corner tells us that there
are multiple driving modes available for this tyre type.

B. Verlaan Master of Science Thesis



2-2 Tyre-Road Interaction 11
Friction curves for MF Tyre 1 Friction curves for MF Tyre 2
0.9F ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
“05[ - A=0.05 =03 A=0.05
3 A=0.15 3 A=0.15
04H A =05 XN =0.5
0.3 -2 =09 02H A =09
a = 7.5[deg] a = 7.5[deg]
02 o = 15[deg] 0.1L a = 15[deg]
0.1 L]~ = a=22.5[deg] - - a=22.5[deg]
—a = 30[deg] : —a = 30[deg] :
% 0.2 04 0.6 0.3 % 01 02 03 04 05 06
Hazr H Ha,r H
0 Friction curves for MF Tyre 3 0 Friction curves for MF Tyre 4
0.5 0.5 V-
0.4} 0.4} PR %,
Z@ 0.3 A=0.05 ; 0.3 A =0.05 "
F A=0.15 £ A=0.15
e A =05 X =0.5
02} X = 0.9 02} X = 0.9
a = 7.5[deg] a = 7.5[deg]
01l a = 15[deg] 01l a = 15[deg]
- - a=22.5[deg] - - a = 22.5[deg]
—a = 30[deg] —a = 30[deg] i :
% 01 0.2 03 04 05 % 01 02 03 0.4
Har ] Hayr ]
Figure 2-5: 1 Friction ellipses for four tyre types (Table 2-1)
Table 2-1: MF parameters for various road conditions, source [3]
Tyre B C D E
1 6.8488 1.4601 1.0 -3.6121
2 11.415 1.4601 0.6 -0.20939
3 15.289 1.0901 0.6 0.86215
4 1.5289 1.0901 0.6 -0.95084
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12 The vehicle as physical system

2-3 Summary

The vehicle as a physical system has been the topic of discussion in this chapter. Differential
equations make it possible to describe vehicle dynamics in a general manner, allowing all sorts
of vehicles to be modeled when taking into account various assumptions and simplifications.
Simplifications of these sorts have brought forward the three-state bicycle model of a vehicle
which, in further chapters of this thesis, will be taken as the method to describe vehicle
dynamics. The dynamics of the wheel bring forward a fourth differential equation, also in a
simplified form, to conclude the description of the system states. A slight modification to the
calculation of the longitudinal wheel slip ratio A is made by substituting the maz-function
for a smooth alternative. The interaction between the tyres of the vehicle and road-surface
has been described in a simplified manner using an isotropic Magic Formula tyre model.
With these mathematical formulations, the forces acting on the vehicle can be computed, and
result in the simulation of a moving vehicle. This simulation can be done with the vehicle
performing a large range of maneuvers, traveling along a large range of paths. The following
chapter discusses in more detail the drifting maneuver, ranging from initiation of the drift to
stabilization hereof, and defining the paths along which the vehicle should drift.
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Chapter 3

Analysis of drifting equilibria and
reference trajectories

The characterizing movement of a vehicle with a high body side-slip angle portrays the image
of a drifting vehicle. Rally drivers are commonly known to be skilled at controlling this
maneuver, and when they do they make it seem as if it were an easy task. However, the
motion of a drifting vehicle is highly unstable, meaning that without proper control the vehicle
will either return to normal driving (low body side-slip angle) state or continue spinning
without the possibility of regaining control. Being able to keep the vehicle motion stable
requires pursuit of (drifting) equilibria, analysis of these equilibrium points is the subject of
the following chapter.

3-1 The art of drifting

Stability of drifting equilibria comes from balancing forces, acting from the wheels on the
chassis of the vehicle. Regarding the bicycle model described in Section 2-1 equilibrium occurs
when the forces acting on the rear and front tyre are in balance, resulting in no accelerations
and allowing control of the body side-slip angle [19]. However steady-state drifting does not
occur instantaneously and requires a series of actions for one to describe a successful drift
[20;

1. Drift initiation
The vehicle approaches a turn and by saturating the rear tyres a moment around the
body produces a yaw rate increase, inducing a side-slip angle to the vehicle body.

2. Steady-state drifting
When the vehicle is in a drifting state it is necessary to stabilize yaw rate and side-slip
and control these to achieve path following properties.
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14 Analysis of drifting equilibria and reference trajectories

3. Low side-slip stabilization
After the turn is made the vehicle will exit the drift by desaturating the tyres and
re-entering normal driving conditions with low side-slip.

After initiating the drift by performing a steering wheel maneuver a yaw moment is generated
which determines the direction of the drift. Hereafter it is necessary to saturate the rear tyre
to increase this yaw moment further and obtain a high side-slip angle.

Tyre saturation

There is a limit on forces that tyres can exert on the road, defining the saturation limit. The
forces that saturate the tyres are composed of lateral and longitudinal force directions. This
composition of forces can be found in the %—friction ellipses in the previous chapter. At
the intersection of the curves defined by the longitudinal slip A and the lateral slip «; lies a
combination of y; values which directly correlate to the force composition (2-5).

The longitudinal force is the result of torque applied to the axis connecting the engine and
wheel of the vehicle and, under normal driving conditions, results in acceleration of the vehicle.
The lateral force is generated when the vehicle is in cornering state, thus when changing the
heading of the vehicle, or when changing the steering angle of the front wheel. The drift is
properly initiated after this saturation of the rear-tyres, something that can be accomplished
by either reducing or accelerating the angular motion of the wheels by braking or applying
extra throttle. This results in an increase in the amount of wheel slip o;; applied to the
tyres and because of this the velocity of which the rear tyres move increases. This (generally)
unstable mode results in the rear wheels trying to surpass the front wheels, and with it
generates an increase of the yaw motion of the vehicle. This yaw motion defines the side slip
angle and naturally the yaw rate of the vehicle.

Side-slip and yaw rate

Once the vehicle enters the drifting mode by saturating the rear tyres the side-slip angle
increases due to the rear wheels having a higher velocity than the front wheels. From here on
it is necessary to control the forces acting on the tyres and with it stabilize the yaw rate of the
vehicle. This can be done by either redirecting the forces of the front tyre by actuating the
steering wheel or by applying a different amount of force on the rear wheel by reapplying the
throttle or brake. Actuating the steering wheel redirects the front wheel forces. To balance
out the yaw moment the steering wheel is to be directed towards a direction opposite to the
cornering direction, an action called counter steering.

Counter steering

Redirection of the front wheel counters the yaw moment of the vehicle applied after initiating
the drift. To do this the steering wheel, and with it, the front wheel is turned in the direction
opposite to the cornering direction [19]. For low side-slip angles, a small change of angle must
be taken. For larger angles, the steering wheel is turned much further. When the steering
action changes direction, the action is defined as counter steering, essential for high side-slip
control.
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3-2 Equilibrium Analysis

The stability of Rear Wheel Drive (RWD) vehicles when drifting is an unstable motion that
needs to be controlled by the driver or a control system [21]. However is unstable behavior
contains a number of equilibria, and for certain steering wheel inputs unstable saddle points
describe two or one steady-state drifting modes as well as one normal driving mode [22]. In
his analysis, Gerdes analyses the stability of drifting vehicles and distinguishes three types of
equilibria [23]. The first defines 'normal’ driving (neutral steer), where the other two describe
drifting due to extreme oversteer and extreme understeer behavior. Over- and understeer
happens when there is a difference in the front and rear slip angle «;.

The working points for steady-state cornering are determined by analysis of the equilibrium
points (£ = 0). When cornering a vehicle there are two properties to keep in mind, namely
the desired velocity and the desired curvature. Setting a grid of points with velocity and
curvature on the axis will allow finding equilibrium points for each possible driving state.
The dynamics defining these states come from the algebraic description of the vehicle.

3-2-1 Definition of the Differential-Algebraic set of Equations (DAE)

The differential states of (2-2) - (2-10) are considered. For equilibria, the differential states are
equal to zero, which tells us that there is a constant yaw rate. This is only possible when the
moment creating this angular velocity is equal to zero. The lateral forces from the tyres acting
on the vehicle body define this balance, and as the condition Ay = 0 is chosen as assumed is
that the front wheel can roll freely, the sole lateral force on the front of the vehicle is defined
by the slip angle ay. The force is defined by the tyre-road properties, discussed in Section
2-2, and from this can be said that for the non-convex tyre properties there exist multiple
equilibria for certain radius-velocity pairs. With the dynamics of the vehicle constraining the
nonlinear system, it is possible to solve this set of DAE to find equilibrium points.

3-2-2 Solving the DAE

An initial guess sets the starting point for the algorithm to search from. As there may be a
multiplicity in solutions it is crucial that the initial guess is a good estimate of the solution.
As for 'normal driving conditions’ the body side-slip angle [ is low, the initial guess for the
longitudinal velocity is estimated to be the total vehicle velocity. In the event of having found
a suitable equilibrium, as the search advances to a slightly higher velocity, the solving process
is warm-started by using the previous solution as the initial guess.

In the case of finding drifting equilibria, an extra constraint is added to the set of equations
to be solved, described in (3-1c¢). Initially was thought that this would constrain the search
to conditions where the tyres were saturated, though mathematically this constraint is al-
ways fulfilled. However interesting enough the solution will not converge successfully towards
drifting equilibria without this constraint.

The MATLAB function fsolve is used to solve this nonlinear set of equations. This function
uses the ’trust-region dogleg’ algorithm which incorporates the Powell dogleg procedure for
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Figure 3-1: Equilibrium solutions for Tyre 4

computing the step. Though this gradient based solver is not able to identify global minima,
a good initial guess and multiple searches allow finding each equilibrium set.

(3-1a)

K =

<|=

Vo= Jvi42 (3-1b)

Y
FZJ" \/ iu:2c,'r + /‘L%/,r \/ F:v2,r + Fy2,r (3_1C)

From this search a grid of equilibrium points arises.

3-2-3 Analyzing found equilibria

From Figure 3-1 it can be seen that there exists a large range of possibilities for a vehicle to take
a corner with a certain radius. For each corner, there exists a range of velocities accompanying
steady-state cornering conditions, limited by a maximum velocity. When approaching the
maximum velocity for each cornering radius the body side-slip angle decreases to high-negative
values. Approaching these high side-slip conditions the steering wheel angle crosses the zero-
line and decreases to negative values indicating counter steering behavior.

The non-convex tyre has a slightly more complex equilibrium grid as there is a multiplicity
for certain driving states, visible in Figure 3-2. Looking at the top view one will see that
the profile shape of the equilibrium solutions is somewhat equal, though this tyre allows
higher velocity cornering. Not all the properties are equal, as there exists a second plane with
lower (negative) body side-slip angles. These drifting equilibria contain both oversteer and
understeer areas where understeer allows more extreme side-slip angles.

Centripetal acceleration is defined as a, = V%, telling that either taking a corner at a max-
imum velocity or taking the smallest radius corner at a given velocity will bring maximum
centripetal acceleration. Therefore the southeast edge of this top view determines the states
with maximum centripetal acceleration. This edge contains almost only states that belong
to normal cornering properties, however, an extra region which looks like an elongation of
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Figure 3-2: Equilibrium solutions for Tyre 1

this edge belongs to drifting equilibria. This tells that there exists drifting equilibria dur-
ing which smaller radius cornering is possible, an area which is particularly interesting for

obstacle avoidance sit

uations.

With the driving equilibria found and with it the boundaries set it can be concluded that
there is a limited range of corners which the vehicle is able to take at a set velocity. The next
section discusses the formulation of the possible trajectories according to these corner radii.
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18 Analysis of drifting equilibria and reference trajectories

3-3 Track definition and deviation

Looking at a track from above will instantly reveal the Cartesian coordinate system, which
has a fixed axis on the track geometry. However, the axis of a vehicle is fixed to the body
of the vehicle which, when moving along a curved trajectory, will rotate with respect to the
Cartesian coordinates. To evaluate whether the vehicle follows a predefined track it is much
easier quantified using curvilinear coordinates. These tracks can be defined by their curvature
and definition hereof is the subject of this section.

3-3-1 Track segments
Constant radius circle

With this coordinate system in mind, a track layout can be rewritten from Cartesian to a
curvilinear description. The curvature of a track segment is defined by the inverse of the
radius of the arc that the segment produces. Circles with a constant radius, therefore, have
a constant curvature, depicted in Figure 3-3. This track type is interesting because it shows
whether the control scheme is able to stabilize the vehicle around the proposed equilibrium.

Clothoid transition

Once the ability to stabilize the vehicle has been confirmed, the arc radius of the curve can be
varied over its length linearly (Figure 3-4). This results in a clothoid track segment, similar
to an Euler spiral. A clothoid track type is interesting because the controller’s ability to track
a moving equilibrium is accessed, concluding the cornering ability of the controller. Clothoid
segments are implemented in highway and road designs [24].

E

Figure 3-3: Constant radius track segment
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Figure 3-4: Clothoid track segment

= -

___________________

Figure 3-5: Transition in cornering direction

Directional transition

As corners have to be taken in both directions the ability to switch between two directions is
analyzed. Changing the turning direction of the corner will not change its radius. However,
a distinction has to be made to determine whether the vehicle must turn left or right. That
is why in this analysis taking left-handed turns is defined by a positive curvature signal
and right-handed turn defined by a negative x, shown in Figure 3-5. This complies with the
description of the curvature which a vehicle is taken (x = {;), where clockwise rotation implies
a negative yaw rate (r) and counter-clockwise rotation a positive yaw rate. The transition
houses a zero-crossing at the instance when the cornering direction is switched, and whether
the controller is able to seamlessly handle such situations is something that is evaluated using
this track type.
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Figure 3-6: Two complex tracks

Complex tracks

Furthermore, two tracks are composed consisting of multiple constant radius circles, clothoids,
and transitions. The first of these tracks contain a large sequence of turns with approximate
equal radius, ideal for testing scenarios with a constant reference velocity. The second track
contains steeper transitions and smaller radius corners where the dynamic reference velocity
must be enabled. In the case that this is not enabled, setting a reference velocity for the
vehicle may result in the system demanding the vehicle to take a corner which radius is
too small for the vehicle to take at the set velocity. The layout of the tracks in Cartesian
coordinates and the curvilinear description hereof can be seen in Figure 3-6.

3-3-2 Curvilinear coordinates

This coordinate system (3-2) is primarily defined by a curved axis and the orthogonal direction
at each point along the line. Besides this axis a rotational velocity based on the tangent vector
of the curve is evaluated, defining the change of heading.

. Veos(a+ )

Ss = W (3—2&)

$n, = Vsin(a+ ) (3-2b)
Vv

& = r— chis(so;:ﬁ) (3-2¢)

Measurement of the vehicles ability to follow the path begins by measurement of the system
states. The body side-slip angle g is a difficult to measure quantity due to physical and
economic reasons as it requires precise measurement of the decomposed vehicle velocity states
(2-3).
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3-3-3 Error definition

To determine path following capabilities the curvilinear coordinate system (3-2) as described
previously is adopted. The use of these coordinates can be done with knowledge of the three
system states © = [vx vy 7]. In this coordinate system it is possible to determine the
distance traveled along the desired path sz, a property which is particularly useful when the
path layout is known beforehand. Besides this, the lateral deviation from the desired path
sp, can be found (Figure 3-7). As measurement of this signal is done in a discrete manner,
quantification of the path following ability of the system can be done by taking the Root-
Mean-Square Error (RMSE) value of this deviation.

Tracking of the desired path is achieved when ¢ = o + 8 = 0. The reason that these two
properties have opposite signs is that the heading angle is taken with respect to the velocity
vector, where the side-slip angle is taken with respect to the vehicle center-line. The error
between the desired heading and side-slip angle can be seen in Figure 3-8.

Figure 3-8: Desired vehicle heading o and
side-slip angle

Figure 3-7: Lateral path deviation s,
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3-4 Summary

Rally drivers are capable of cornering vehicles with a controlled execution of a drifting ma-
neuver. During this maneuver the tyres are saturated, the body side-slip angle is much higher
than during normal driving conditions and the driver must counter-steer to maintain the de-
sired yaw rate. When these situations occur the vehicle operates at a highly unstable mode.
However, this unstable mode still contains equilibria which, when steered toward correctly,
can be balanced upon. The differential equations governing the vehicle dynamics are the
key to finding these equilibria. An entire grid with potential driving modes can be found on
the R — V plane, with each point on this grid having a set of equilibrium states and control
inputs. Different tyre-road descriptions show different R — V' planes where high-friction sur-
faces contain multiple driving modes and for low-friction surfaces, there is a smooth transition
between normal driving- and drifting conditions. The path to be taken is described using the
curvilinear coordinate system, having a ke value for each point on the path. Movement on
the R —V grid, regarding the reference curvature, brings forward equilibrium trajectories for
the vehicle states to follow and provide control signals for the vehicle. Steering the vehicle
towards these equilibrium states is to be done using a control system which is designed in the
following chapter. The ability to correctly follow the desired path can also be measured using
the curvilinear coordinate system and provides useful information which is used to expand
the control system design.
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Chapter 4

Control System Design

Design of the control system can be done using various control strategies. Optimization-based
methods include Linear Quadratic Regulator (LQR), Model Predictive Control (MPC) and
State Dependent Ricatti Equation (SDRE) methods which all have been used for various
autonomous drift control purposes [11, 25, 26]. As MPC methods are found to be too compu-
tational intensive for implementation in vehicle dynamics control, due to the high operating
rate required and computational demanding optimization problem needed to be solved, the
Ricatti-based control strategies are generally used. Using a MPC strategy for autonomous
drifting brings forth the challenge to find a formulation which allows solving of the Optimal
Control Problem (OCP) fast enough. This chapter describes the MPC-based method used in
this thesis.

A general overview of the control scheme can be seen in Figure 4-1. The previous sections
have covered the offline computation of drift equilibria and the vehicle as a physical system.
This section covers the working of the different mechanisms acting together to compute the
control signals to enable drifting of the vehicle.

The system is built using four components; one low-level Model Predictive Controller to
generate the control signals for the vehicle, one Reference generator to compute the reference
horizon for the MPC and two high-level controllers which pre-process the reference signals
sent to the Reference Generator.

4-1 Path following controller

From the measurement of the vehicle states and the equations describing the curvilinear coor-
dinate system, the lateral path deviation s,, and desired vehicle heading @ can be determined.
In their turn, these values can be used to manipulate the desired path curvature st to obtain
path-following properties. The difference between desired and actual vehicle heading is found
as; € = a + . A Proportional Integral Derivative (PID) control strategy, initially tuned to
underdamp s,, is chosen as the vehicle cannot instantly change its direction. Therefore it is
prone to initially taking a larger radius corner than desired. This larger radius corner will
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Figure 4-1: General control system overview

always fall within the possible R — V equilibrium solutions when choosing constant velocity.
However, when the taken corner radius is smaller than desired, the PID controller will enlarge
the desired radius, potentially leaving the possible driving envelope. The weights are static,
and therefore the performance of the controller is different for varying vehicle velocities and
curvatures. The general description of the controller is as follows;

t As, t Ac
Arx = Kpisp+ Kj / Sp + Kle + Kpoe + Ko / €+ Kao—— (4-1a)
0 t 0 At

The computed control signal is then added to the reference signal (4-2), converted to cornering

radius (Ryper = i) which is to be processed by the Reference Generator.

Kref = Ak + Rref (4—28,)

Tuning of this controller preferably is done for each varying R — V' pair as the response of s,
is very dependent of the vehicle velocity. The desired response of the controller should not
result in exceeding the maximum velocity. To make sure that this does not happen a dynamic
reference controller for the velocity V is designed. This will allow a more rigorous response
from the PID controller as overshooting the maximum velocity will not happen anymore.

4-2 Dynamic reference velocity

Choosing a fixed vehicle velocity as a reference allows only a certain minimum radius corner
to be taken. For the vehicle to take smaller radius corners, the reference velocity must be
lowered. Also, when the desired corner has a larger radius than the minimum allowable
corner, for the fixed velocity, there lies a range of greater velocities at which the corner can
be taken. Allowing a controller to dynamically set the reference velocity according to the
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4-3 Reference generator 25

cornering radius will allow for a larger set of corners to be taken while cornering at a higher
velocity.

The maximum allowable velocity for a certain corner is determined offline during the compu-
tation of the equilibrium grid, and the driving velocity is assumed to be measured.

As the robustness against initial condition variation (further discussed in section 5-1) indi-
cates that for desired velocity increase there mustn’t be too large a difference, where for the
desired velocity decreases the algorithm is much more robust. Therefore a graduate increasing
reference velocity is chosen while a hard decrease in velocity taken (4-3a). Hereafter a sec-
ond check is done to verify whether the new reference doesn’t exceed the maximum velocity
(4-3b). The coefficient ¢ € [0 1] is used as a tuning parameter to slightly reduce the reference
velocity for robustness reasons.

Viax+V f V < V <

Vier = 2o ! e (4-3a)
VinaxC, else

V;ef = Vmaxca if V;ef > Vmax (4'3b)

4-3 Reference generator

The Reference Generator uses the two reference signals computed by the PID-, and dynamic
velocity controller to determine the vehicle equilibrium states. These states form the reference
signal for the MPC, containing all algebraic, differential and control states. The grid filled
with equilibria are pre-computed, as done in Section 3-2, and allow look-up of these reference
vehicle equilibrium states. This lookup is done by interpolating between points on the grid,
resulting in a smooth signal produced by the reference generator. This grid contains a finite
set of points, without reference for x = 0[m~!, and with it R = oo[m]. Therefore an extra
set of equilibrium values is computed for R = 10%[m]. This allows for a smoother transition
when k.ef transitions from positive to negative values, and vice versa.

2= [k Ve ug g g e g, T ) (44)
The reference signal generated is added at the end of the prediction horizon at each timestep,
which requires a prediction of the distance traveled along the sg-axis at the end of the horizon.
The N*™ kot value is found by integrating the current velocity over the horizon length. This
approximates the location along the ss;-axis and will be sufficiently accurate as long as the
velocity doesn’t change too much.

The multiplicity of equilibria planes generated for the non-convex tyres implicate a choice to
be made between 'normal’ driving and drifting. A high-level controller can determine which
equilibria to look-up for the reference R — V' pair, however this is not further analyzed in this
research.

These acquired reference signals are sent from the reference generator to the MPC controller,
which determines the actual control signals needed to direct the vehicle towards the desired
equilibrium states.
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4-4 MPC formulation

Linear and non-linear MPC techniques have already been addressed to vehicle dynamics
control in the application of autonomous drifting [27, 9]. Though some argue that this method
is too computational intensive it has proven its effectiveness in terms of the ability to achieve
steady-state drifting. The system is required to generate a control input and provide this
to the vehicle. By predicting the future states according to the differential equations of a
model one can construct a control signal which is optimal to steer the model towards the
desired system states. This MPC strategy computes these control inputs by solving the
OCP. Automatic Control and Dynamic Optimization (ACADO) provides a code generation
toolkit to construct a solver for the OCP which in its turn determines the control inputs for
the system.

4-41 OCP

The OCP is described as a normal discretized linear-least squares problem. This Quadratic
Problem (QP) can normally be solved using various algorithms, in this analysis Sequential
Quadratic Programming (SQP) is applied, which means that the problem is solved sequen-
tially and approaches the optimum by iteration. The constraints of this problem are the
system dynamics and a set of bounds to the control inputs.

N-1 2
Tp — T
7= YT ey - o0 (-50)
— ||Wk — Uy
k=0 w
min J (4-5b)
Tr1 = f(or) + g(2p, up)
s.t. y = h(xg) (4-5¢)

up < Uk < Uyb

The system states are chosen as « = [k V v, v, r w,], the control inputs as u =
[0 Thet,r], and the output signals of the system are chosen as y = [v, v, 7 w,|. With
this set of states describing the Differential-Algebraic set of Equations (DAE) it is possible to
choose the weighting matrices in such a manner that emphasis is placed on the two algebraic
states (k and V') to steer the vehicle motion to tracking behaviour of the predefined path.

The horizon N tells us how many steps we are predicting future state, to be able to solve
this optimal control problem the continuous time dynamics are to be discretized along this
prediction horizon. The method used to do this is by integrating the continuous time dynamics
and with it find the system states at each timestep along the horizon. The ACADO toolkit
allows for various integration methods to do this.
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4-4-2 Integration methods

The MPC strategy operates in the discrete time domain while the dynamical equations de-
scribing the system are given in the continuous time domain. Thus to predict the future
states the differential equations are integrated over time to find the predicted values hereof.
Integration can be done in various methods both explicit and implicit. ACADO provides a
variety of methods whom largely based on the Runge-Kutta (RK) methods, for explicit RK
methods the general description is as follows;

Ynt1 = Yn+h)y bik; (4-6a)
i=1
Where
kv = f(tn,yn) (4-6b)
ka = f(tn+ c2h,yn + h(azik)) (4-6¢)
ks = f(tn + c3h,yn + h(aziki + az2k2)) (4-6d)
kS = f(tn + Cshv Yn + h(aslkl + a32k2 +...05 s—lks—l) (4—66)

The parameter s determines the integration order. Choice of the exact method requires
definition of the parameters s, a;;, b; and ¢; for i € [0,1,...,s]. These parameters can be
represented in a Butcher tableau (Tab: 4-1). The integrating technique used in this analysis
is an implicit RK Radau IIA method of order three (Tab: 4-2). Implicit RK methods have
the form of;

S

Yn+1 = h Z blk‘l (4—7&)
=1
Where
k;, = f(tn—f—cih, yn+hZaZ—jkj>, fori,7 € [1,...,8] (4-7b)
j=1

Table 4-2: RK Radau IIA3 tableau
Table 4-1: General Butcher tableau

1/3|5/12 -1/12
1| 3/4 1/4
| 3/4  1/4

c| A
bT
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4-4-3 Solving the OCP

As the OCP is the most computationally intensive part of the controller a series of techniques
is implemented into the ACADO software to reduce the computational demand. The SQP al-
gorithm iterates the QP multiple times using Newton’s method in a Real-Time-Iteration (RTT)
scheme [28]. For this analysis, the Gauss-Newton Hessian approximation method is applied to
decrease computation time. Multiple shooting allows for the finite-time optimization horizon
to be divided into multiple segments. The discretized system then undergoes condensing to
construct a smaller-scale dense problem from the large and sparse QP. This sparse problem is
then given to the chosen solver, in this analysis the ¢pOASES solver is taken which employs
the Online Active SEt Strategy (OASES) [29]. An alternative for the ACADO toolkit to
solve the OCP is the FalcOpt toolkit [30], however, experimentation with this toolkit quickly
showed that it was not able to match the speed with which the ACADO toolkit was able to
solve the optimization problem. Besides using ¢gpOASES as solver ACADO is also capable of
using gqpDUNES or ForcesPro as solver. These solvers have not been tested in this thesis as
the gpOASES was able to quickly solve the OCP.

At each timestep of 10[ms| the horizon of the OCP shifts with an equal step, demanding a
new of N*" equilibrium state-set to be added to the optimization horizon. Instead of solving
the entire SQP only one iteration is performed, this RTT method allows for faster computation
while allowing the QP to converge to the optimum over the period of a few timesteps.

Performance of the solving algorithm can be measured using two indicators. First from the
Karush-Kuhn-Tucker (KKT)-value, one can determine if an ’optimal solution’ is found and
whether this point is a KKT optimal point as described in [31, 32]. As the RTI scheme
sets a fixed amount of SQP iterations there is no tolerance for which the algorithm stops
and therefore no evaluation is done whether a KKT criterion is met. One can therefore
only say that performance is better when a lower KKT value is found, indicating that there
is less fluctuation from the desired state. This value is commonly measured by taking the
log;o(KKT-value).

As a second performance indicator, the execution time teyec required for the solver to perform
a SQP step and with it compute the desired control signal is measured. When one would
implement this control strategy onto an embedded system this would mainly decide the fre-
quency at which could be run. Having a lower execution time than the discrete timestep set
for the OCP is therefore seen as an acceptable performance.
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4-5 Summary

A control strategy for which a MPC controller forms the basis is designed in this chapter.
The reference states are pre-computed as done in the previous chapter. Using a dynamic
reference velocity and a path following PID controller to determine the reference curvature
allows generation of a reference trajectory for the MPC controller. The MPC requires solving
of the OCP which is described in a discrete manner. To find this discrete state description
the differential equations describing the vehicle dynamics can be integrated using one of
the described RK-based integration methods available for the ACADO toolkit. The OCP
can be solved using various solvers, wherein this analysis the ¢gpOASES solver is used. To
measure performance of the solving algorithm two performance indicators are used namely the
log;o(KKT-value) and the required execution time texec. These quantities indicate if solving
can be done within the desired and in which degree the solution computed is optimal. This
describes the groundwork for the control system, and the next task is to test this control
strategy and evaluate its performance.

Master of Science Thesis B. Verlaan



30

Control System Design

B. Verlaan

Master of Science Thesis



Chapter 5

Control System evaluation

Evaluation of the control scheme is done by analyzing vehicle behavior and algorithm con-
vergence during various maneuvers. Assumed is that the track is known beforehand, and
is described by a reference curvature k.. Each track is composed of a small straight track
segment, followed by a curvature. This straight segment allows the controller to initiate the
solving process before being demanded to take a corner.

Simulation settings and performance indicators

The system is simulated using MATLAB & Simulink 2018b running macOS 10.14.2 using a
2,6 GHz Intel Core i7 processor with 16 GB 2133 MHz LPDDR3 memory and a Radeon Pro
450 2048 MB graphics card.

The optimization is run using a 100-step horizon with 10[ms] steps, thus with a prediction
horizon of 1 second. The desired rate at which the optimization algorithm must be run to
allow for shifting of the horizon by one step per optimization is thus 100Hz, desiring the
execution time below 10[ms].

Each simulation regarding the analysis of the computational time required for the solver in
this chapter is repeated 10 times to analyze how the optimization algorithm performs. The
convergence to the reference states is equal for each repetition, however, the time required for
this computation varies.

The vehicle simulated requires a set of parameters for system dynamics. These parameters are
taken from a Porsche 911 Carrera S, obtained from the IPG Carmaker software. The Magic
Formula (MF) parameters are taken from Tyre 4 (Figure 5-1), simulating behaviour of a
low-friction surface. Assumed is that the model used by the Model Predictive Control (MPC)
matches the simulated vehicle perfectly. Though this is not a realistic scenario, from this the
ability of the control system to solve the Optimal Control Problem (OCP) and generate control
signals which steer the dynamic model towards the desired equilibrium can be concluded.
Besides this, the capabilities of the path-following Proportional Integral Derivative (PID)
and the dynamic velocity controller can be evaluated.
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Table 5-1: 0'6__::——<
Vehicle parameters Table 5-2: o o
Parameters for
Symbol Value MF tyre 4 04
m 1593.1[kg] Parameter  Value ::\'0'37 X=005
A=0.15
ly 2.383(m)] B 15280 o
a = 7.5[deg|
lrr 243[m] C 10901 0.17-- aigg[g(%dg] ]
I, 2575.9[kg m?] - 0.6 e T N B
* 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Tw 0.508]m] B 0.9508 per 1
Ly 3.916[kg m?] Figure 5-1:

% friction ellipse for MF tyre 4

5-1 MPC for tracking of drift equilibria

The MPC controller alone should be able to bring the vehicle into the desired reference state.
To verify, this controller is tested for simulation of a vehicle on three different track types
(described in Section 3-3-1). The first essential element for proper system response is the
initiation of the drift, where after steady-state drifting is the goal. These maneuvers must
be performed while the MPC controller is able to compute solutions to the OCP within the
timestep length.

Due to the initialization of the controller, the reference signal is zero for the first prediction
horizon, visible in Figure 5-2 describing the reference curvatures for three track segments.
After each timestep, the reference signal is continuously updated with additional reference
states at the end of the horizon.

A corner of a constant radius is initially considered. The curvature reference signal of the

circle with continuous radius is determined by a reference-step change of magnitude %f.

The controller responds by exciting the steering wheel angle §, forcing the vehicle to turn
rapidly and initiate the drift. The vehicle is then guided to its reference states to achieve the
desired steady-state velocity and curvature. Due to the fact that this step cannot be achieved
instantaneously by the vehicle the intermediate time will result in an offset of the path, and
with it, a lateral road error is generated, visible in Figure 5-2. For the directional transition,
quite equal behavior is observed. Even with the zero-crossing of the reference signal, there is
no exceptional decrease in computational performance.

Interesting is that for the clothoid track segment the path-following performance is best.
Likely due to the much smaller initial reference step-change, the lateral deviation is much
smaller and the track is well followed until the reference corner radius falls below the mini-
mum due to the fixed desired velocity. The Karush-Kuhn-Tucker (KKT) value rises signif-
icantly due to the constant change of reference states. Computational demands from the
controller can be observed in Figure 5-3 and show that the great majority hereof fall well
beneath the timestep length. There are maximum computation time values that exceed the
timestep length, bringing forward the question of what impact this would have on an actual
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implementation of the control system. The simulation environment only indicates this poten-
tial problem as it is able to simulate the system at a slower rate and thus doesn’t provide an

answer to the question.

Lateral road error
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Figure 5-3: MPC execution time
Table 5-3: MPC convergence
log o (KKT-value RMSE
MPC g10( )
Minimum Median 90 percentile 95 percentile 99 percentile Sn
Const C -13.6555  -12.8598 -10.7228 -7.1826 -2.3394 6.051
Clothoid -7.4132 -6.0359 -4.1670 -3.6373 0.0078 16.771
Transition | -12.8590  -8.3123 -4.9961 -2.2519 -0.5929 8.020
Complex 1 | -15.1694  -9.1928 -6.1330 -5.1949 -0.1874 6.932
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Initial condition variation

The simulations are done with the vehicle already having a certain initial velocity. However,
the controller could be needed when the vehicle is at a different state, potentially further
away from the desired equilibrium state. Figure 5-4 shows how the vehicle states behave
when the controller is activated while the vehicle is at a range of initial states. The green
circles indicate whether the controller is able to stabilize the vehicle as the optimization
algorithm converges the system states towards the desired equilibrium. The states varied are
vz, vy and r. However, the controller allowed convergence towards the desired equilibrium for
each initial yaw rate, and therefore the phase-plane is portrayed in 2D. Convergence from

Initial condition variation
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Figure 5-4: Initial condition variation for constant radius cornering

initial velocities which are higher than the desired velocity shows much better result than
when initiating from a lower velocity. This aspect was taken into account when designing the
dynamic velocity controller.

It can be concluded that the MPC controller is able to successfully initiate- and stabilize the
drifting maneuver. The next task is to add the path-following ability to the control system.
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5-2 Path following

The reference signal constructed from the desired curvature is a non-smooth signal, demanding
instant switches between equilibrium states. However, as this is not possible, the path taken
by the vehicle will deviate from the desired path. To steer the vehicle back onto the desired
path the path following PID controller from Chapter 4-1 is added to the control system. The
resulting change of the reference signal, which was constant before the introduction of the
PID controller, is visible in Figure 5-5.

Introduction of this PID controller instantly shows improvement of the path following ability
of the vehicle as the Root-Mean-Square Error (RMSE) value for lateral deviation has dropped
significantly (Table 5-5). For behavior on the constant radius circle and directional transition
track segments stabilization around zero lateral road deviation is achieved while converging
to the desired equilibrium states. Impact on execution time is minimal and the ability of the
algorithm to convergence drops slightly, due to the constant change of reference states. Even
though this increase of log;o(KKT-value) it can be concluded that the controller is able to
successfully drift the vehicle for the desired road curvatures. Analyzing the computational
impact of this varying reference curvature on the MPC, visible in Figure 5-6, shows that there
is little difference though slightly reduced computation time required.

Lateral road error
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Figure 5-5: MPC|PID performance

5-3 Dynamic velocity driving
After the change in reference curvature, the reference vehicle velocity is also dynamically set.
This maximum allowable velocity for the reference curvature is determined according to (4-3a).

For the constant radius circle and directional transition track segments, the vehicle’s track
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Table 5-4: MPCI|PID convergence
log o (KKT-value RMSE
MPC|PID Biof )
Minimum Median 90 percentile 95 percentile 99 percentile Sn,
Const C -12.8324  -7.6314 -3.7475 -2.7347 -1.7090 0.622
Clothoid -7.2267 -5.3909 -3.4678 -2.9351 0.6758 12.288
Transition -10.0550  -5.0681 -1.4290 -0.9586 0.5767 0.682
Complex 1 | -14.5729  -9.1099 -3.8206 -2.6966 -0.2461 0.389

following performance shows practically no change (Figure 5-7). For the clothoid segment, one
can observe two phenomena. Where first the lateral deviation was close to zero at the start
of the track there is a significant increase while using the dynamic velocity reference signal.
However, the other observation is that the vehicle is able to pass the point where previously
the reference cornering radius became too small, thereby allowing a greater range of corners
able to be taken. The RMSE values describing the path following ability all fall below 1[m)]
indicating that the control system is able to successfully drift a wide range of curved paths and
follow the desired path. The computational impact of the added dynamic velocity controller
shows that there is a slight increase in computational demand though generally, the required
time for these computations falls below the timestep length.

Table 5-5: MPC|PID|DV convergence

log;o(KKT-value) RMSE
MPC|PID|DV
Minimum Median 90 percentile 95 percentile 99 percentile Sn
Const C -6.2400  -4.8801 -3.7252 -3.1468 -1.2552 0.571
Clothoid -8.1852  -4.2423 -0.9064 6.7330 9.6778 0.900
Transition -8.6850  -4.8339 -1.7857 -0.8055 0.8503 0.686
Complex 1 -10.7984  -4.6713 0.6551 1.7604 4.0072 0.730

B. Verlaan

Master of Science Thesis



5-3 Dynamic velocity driving 37

Lateral road error
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Figure 5-8: MPC|PID|DV execution time

Computational impact of various integrators

There are a large number of integrators which can be used by the Automatic Control and
Dynamic Optimization (ACADO) controller to discretize the continuous time system. These
integrators vary in order/complexity and method, though all family of the Runge-Kutta (RK)
integration methods. Figure 5-9 shows how the execution times of the controller compare when
using these different integrators for different controller combinations described in Table 5-6.
Each scenario is run 10 times to get a good impression of the execution times. It can imme-
diately be concluded that the implicit integration methods require much more computation
time (up to 2x) when compared to the explicit RK method. Convergence of the algorithm
does not vary greatly between integrators, indicating that it does not improve performance
when taking a higher order integrator. Also, the lateral deviation of the drifting vehicle does
not change greatly when varying between integration methods. The best choice would be to
take the simplest integration method (RK-12, which is the forward Euler method), however
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further in this analysis, the implicit Radau ITA of order 3 (RIIA3) integrator is used.

Table 5-6: Integrator and controller scenario index

Runge-Kutta Radau ITA | Gauss-Legendre
1/2 2/3 4/5 7/811 3 512 4 6 8
MPC 1 4 7 10 |13 16 1922 25 28 31
MPC|PID 2 5 8 11 |14 17 20|23 26 29 32
MPC|PID|DV | 3 6 9 12 |15 18 21|24 27 30 33
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Table 5-7: Convergence for various integrators (Index Table 5-6)

log;o(KKT-value) RMSE
Index | Minimum Median 90 percentile 95 percentile 99 percentile Sn,
1 -15.041 -9.212 -6.052 -5.168 -0.151 6.880
2 -14.591 -9.066 -3.785 -2.661 -0.248 0.386
3 -10.881 -4.532 0.689 1.825 3.903 0.707
4 -15.172 -9.237 -6.100 -5.163 -0.149 6.932
5 -14.573 -9.118 -3.805 -2.678 -0.244 0.389
6 -10.967 -4.565 0.596 1.760 3.864 0.667
7 -15.169 -9.237 -6.099 -5.163 -0.149 6.932
8 -14.573 -9.117 -3.805 -2.678 -0.244 0.389
9 -10.812 -4.666 0.639 1.772 3.984 0.728
10 -15.169 -9.237 -6.099 -5.163 -0.149 6.932
11 -14.573 -9.117 -3.805 -2.678 -0.244 0.389
12 -10.833 -4.672 0.640 1.768 4.001 0.729
13 -15.293 -9.261 -6.145 -5.149 -0.174 6.959
14 -14.554 -9.167 -3.834 -2.700 -0.240 0.392
15 -11.042 -4.671 0.650 1.825 3.893 0.682
16 -15.169 -9.193 -6.133 -5.195 -0.187 6.908
17 -14.573 -9.110 -3.821 -2.697 -0.246 0.388
18 -10.798 -4.671 0.655 1.760 4.007 0.730
19 -15.169 -9.237 -6.099 -5.163 -0.149 6.932
20 -14.573 -9.117 -3.806 -2.678 -0.244 0.389
21 -10.812 -4.662 0.646 1.773 3.974 0.730
22 -15.168 -9.237 -6.099 -5.163 -0.149 6.932
23 -14.573 -9.117 -3.806 -2.678 -0.244 0.389
24 -10.832 -4.661 0.637 1.798 3.961 0.735
25 -15.169 -9.237 -6.099 -5.163 -0.149 6.933
26 -14.573 -9.117 -3.805 -2.678 -0.244 0.389
27 -10.799 -4.666 0.657 1.763 3.990 0.730
28 -15.169 -9.237 -6.099 -5.163 -0.149 6.932
29 -14.573 -9.117 -3.806 -2.678 -0.244 0.390
30 -10.797 -4.665 0.656 1.760 3.995 0.730
31 -15.169 -9.237 -6.100 -5.163 -0.149 6.933
32 -14.573 -9.117 -3.805 -2.678 -0.244 0.389
33 -10.816 -4.664 0.630 1.749 3.979 0.728
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Complex track 2

With the implementation of the path following and the dynamic velocity properties onto the
control system the controller can be tested on the second complex track (Figure 3-6). There
are a few things to be noticed in this figure, namely that there is an oscillatory behavior present
at each switch of cornering radius, something that can be tuned for different response by
altering the PID path following controller and the weighting matrices of the MPC controller.
However, this tuning is sensitive to the vehicle velocity and the desired driving curvature. It
would be a nice improvement to implement a dynamic weighting matrix strategy for this and
also a nonlinear PID strategy. Also, there can be spikes observed in the reference velocity,
which arise due to the fact that the switch from one direction to the other does not change the
reference curvature instantaneously to the other value but MATLAB interpolates this into a
continuous signal. Therefore when this curvature approaches the zero crossing, the reference
velocity shoots upward as low curvature corners have a high allowed maximum velocity. The
controller allows the vehicle to follow the desired trajectory with a lateral deviation smaller
than 3[m] which is interpreted as a good result regarding the vehicle velocity.
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Complex track 2
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5-4 Summary

The MPC controller is able to steer the states towards the desired equilibrium values. How-
ever, the transition towards this equilibrium results in the vehicle deviating from the desired
trajectory. The controller is able to solve the OCP in a fraction of the desired length showing
that this controller is feasible. The convergence of the algorithm shows that it is able to
converge towards the desired equilibria. Interesting is to see that the constantly changing
reference signal of the clothoid track results in a ’'worse’ algorithm convergence. The MPC
controller shows robustness when activated in cases where the vehicle velocity is larger than
the equilibrium value. Though, for velocities smaller than the desired equilibrium it fails to
converge to an optimal solution. The path following PID controller allows for a dynamic
curvature while also including a dynamic reference velocity allows for tracking of the desired
paths. With the reference trajectory constantly changing the algorithm has a more difficult
task to find the solution to the OCP. With this 'worse’ optimality, the controller is still able
to control the vehicle to achieve the autonomous drift for all tracks. The choice of integrator
leads to believe that the simplest integration method available is the best option. Deviation
from the desired path is hereby not influenced much, and the ability for the algorithm to
converge also stays generally equal while reducing computation times to the minimum. The
control system designed is thus able to successfully control the vehicle and steer the states
towards the desired equilibria. The next step towards implementation is to see if this is ap-
plicable to a 1:10 scaled vehicle. This is done by simulating this scenario, and with it identify
challenges and limitations which arise.

B. Verlaan Master of Science Thesis



Chapter 6

Feasibility analysis for experimental
validation

This simulation environment is built in Matlab/Simulink, allowing experimentation with the
control system and bridge the distance to potential experimental validation. Though this
implementation and validation is not part of this project, an analysis is made to take the
first step in this direction. Certain challenges arise when moving from simulation to imple-
mentation. These challenges are discussed, attempted to be recreated, and, overcome in this
chapter.

6-1 Delft Center for Systems and Control (DCSC) Experimental
platform

The Network Embedded Robotics DCSC lab (NERDlab) contains an experimental platform
on which autonomous driving can be tested. Inside this lab lies a Motion Capture ’arena’
provides position tracking inside a contained area. This tracking data is sent to a computer
which runs Robotic Operating Software (ROS), able to read this data and communicate
between a remote-controlled scaled vehicle and other local software e.g. Matlab/Simulink.

This remote controlled scaled vehicle equipped with various sensors can then be controlled
via ROS.
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6-1-1 Scaled vehicle

The platform on which vehicle dynamics controller can be tested is a 1:10 scaled remote
controlled vehicle. The dynamics describing this vehicle motion are roughly the same, though
due to the difference in dimensions the vehicle behaves differently. The parameters describing
the vehicle and it’s tyres can be found in Table 6-1, Table 6-2 and Figure 6-1.

05 Friction curves for MF Tyre 9

Table 6-1: Scaled ve-
hicle parameters Table 6-2: MF pa- 0451
rameters for scaled ve- L IR
Symbol Value hicle tyre 00: T
m 2.90 [kg] Parameter Value 3 0%y =005 Tl —"':v_‘ a
02K X=0.15 FRE Y
lfr 0.129 [m] C 1.057 01} Zzzs"’[‘[%?]]
’ 0.05 |- - a = 22.5(deg]
L 0.04 [km m?] D 0.494 e TN A
Tw 0.029 [m] B 09 o H
I, 0.0004 [kg mQ] Figure 6-1: i friction ellipse for

scaled vehicle tyre

With the new parameters describing the scaled vehicle, it is possible to compute the equi-
librium solutions as done in Section 3-2-2. This results in a grid of equilibrium points for
the scaled vehicle, shown in Figure 6-2. The equilibrium grid shows behavior similar to the
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Figure 6-2: Equilibrium solutions for the scaled vehicle model

grid computed for the full-scale vehicle. Steering angles decrease greatly when higher radius
corners are taken, while for increasing velocity these steering angles are reduced further to
reach negative values. For these negative steering angles, the vehicle side-slip angles become
highly negative, indicating drifting behavior.
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For the linearized 2-state bicycle model system described as in [22] one can determine the poles
(pi) of the system as in (6-1), deducted from a linearized two-state bicycle model (z = [3 7]).

1
P2 = *5 <Cl + 4/ C% + 460) (6—1&)

o = Ut (6-1b)
I,
2C C
f y’f y?f
= _1
“ (Izviq + mv§q> (6-1c)

The lateral front-tyre cornering stiffness Cy r can be determined by taking the tangent of the
Magic Formula (MF) curve describing the relation between F, ; and the slip angle of using
the differential equations (2-5),(2-8),(2-9) and the state measurements. Having determined
this quantity it is possible to find the poles of the system dynamics as done in [22] for each
drifting equilibria. These poles are used further when investigating parametric uncertainty of
the model, inaccuracies when measuring the vehicle parameters or estimating tyre parameters.
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6-1-2 Controller adjustment

To redesign the controller the new vehicle and tyre-parameters are used to redefine the dif-
ferential equations. These differential equations are used to compute a new set of driving
equilibria and define the model used by the Model Predictive Control (MPC) strategy.

Each of the controllers is re-tuned for the system to achieve stable drifting behavior on the
three test-track types. This includes a new weighting matrix, re-tuning the PID-controller
and new coefficients for the Dynamic Velocity controller. General controller performance can
be seen in Figure 6-3.

Lateral road error

S [m]

— Constant Circle| |
—— Clothoid L
—— Transition
2 \ \ \ \ ! I
0 10 20 30 40 50 60 70
Time s
Curvature

0.6 \ \ \ \ \

- — Constant Circle - Reference
- — Clothoid - Reference

- — Transition - Reference

—— Constant Circle - Vehicle
—— Clothoid - Vehicle

—— Transition - Vehicle
| T

50 60 70

 [1/m]

0 10 20
Time [s]

Velocity

T
- — Constant Circle - Reference
- — Clothoid - Reference H
— — Transition - Reference
—— Constant Circle - Vehicle H
—— Clothoid - Vehicle
—— Transition - Vehicle M

0 10 20 30 40 50 60 70
Time s

Figure 6-3: Scaled vehicle - general controller performance

The behavior of the scaled vehicle shows oscillation before settling to the reference curvatures.
The lateral deviation of the vehicle with respect to the desired path has become relatively a
much higher value as the reference radius of the corner equals 5[m]| and the lateral deviation
overshoots initially to 1.5[m|. Furthermore, the controller is able to stabilize the vehicle
around the desired equilibrium well.
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6-2 Uncertainties and imperfections

As the real world does not behave exactly as modeled, these non-ideal factors are to be ac-
counted for. To test whether the designed control system would still perform when confronted
with these factors, these non-ideal factors are simulated. The measurements done to identify
the system states does not happen instantaneously and without error. The delay and noise
acting on the system are analyzed and recreated.

6-2-1 Modeling of delay and noise
Process delay

A Bachelor Thesis group working on the implementation for autonomous drifting has identified
the delay acting on the experimental platform, quantifying this as in 6-3. Computation of
control signals was not done onboard the remote-controlled vehicle but on a PC connected to
the Motion Capture (MoCap) arena. The delay between the measurement of the vehicle states
and receiving this on the PC is defined as Lyjreless- The delay between the measurements done
by the MoCap system and receiving the information on the PC is given by Lyireq and the
latency between the computation of the control signal and the actuation of the vehicle is
defined as L¢ontrol-

Table 6-3: Measured latency in the NERDIab

Parameter Mean o 95% confidence interval
Lireless 239 ms 27 ms [184 ; 293] ms
Lyired 131 ns 31 ms [69 ; 193] ns
Lcontrol 66.7 ms - -
Total latency 306 ms 27 ms [252 ; 360] ms

This delay acting on the system simulated by placing a constant 250[ms] delay on the mea-~
surement of the states. Also, a delay of 65[ms] is placed on actuation of the steering wheel
angle and application of torque on the rear wheel. These constant time delays should provide
insight into the robustness of the control system to these delay sizes. Though not included
in this research, further analysis on variable time delays could be done for more accurate
simulation.

The drift controller is initially desired to achieve vehicle drifting in a constant radius circle.
After the delay was introduced to the system the controller was unable to converge to a
steady-state equilibrium, resulting in termination of the simulation. For the controller to be
able to work all the controllers are re-tuned, and the performance of the new system can be
seen in Figure 6-4. Interesting is that the performance of the controller after re-tuning has a
much better path following performance than the response where there was no delay present.
This better performance is most likely due to the much lower (16%) steady-state velocity,
which also results in a lower side-slip angle.
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Figure 6-4: Results after introducing- and re-tuning for delay
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Measurement noise

A second factor influencing the system is noise measured by the Inertial Measurement Unit
(IMU), containing two measurement types to measure the longitudinal/lateral acceleration
and yaw rate. The accelerations can be measured by accelerometers and the rotational veloci-
ties can be measured by the gyroscope. Some IMU’s may contain a magnetometer to measure
the magnetic field surrounding the body. In this case the longitudinal and lateral acceleration
a are measured (6-2) including additive zero-mean Gaussian noise 7,;

a= a(l) + Nay,  Na ~ N(07 Ugcc) (6_2)
The gyroscope is capable of measuring the yaw rate 7 (6-3);
F=r+b+ Ng, Mg ~ N(O? Ugyro) (6'3)

This is composed by the true yaw rate r, a bias b and additive zero-mean Gaussian noise 7,.
The bias is temperature-dependant and may change over time though can be approximated
as a constant. Even when the bias is known, integration of these measured values results in
parameter drift.

The final state to be measured is the angular velocity of the rear wheel w,. Various methods
to do this include a tachometer, or a laser source and patterned reflective surface on the wheel
rims.

The DC-motors powering the wheels generate magnetic fields, this influences the signals
generated by the IMU as the metal parts of which it is composed are acted upon. To account
for this behavior it is possible to use an IMU which measures the magnetic field and use
this knowledge to post-process the signal. Another possibility is to surround the IMU with a
magnetic field fending material.

When using the MoCap system to identify vehicle velocity, taken trajectory and desired
curvature assumed is that there is no noise and only a one-timestep-delay (10[ms]) present
on the measurements and computation.

Analyzing the convergence of the algorithm indicates the ability of the vehicle to achieve
stable sustained drifting. This shows that the increase of noise, results in more oscillations at
‘steady-state’, thus being less steady. The control input now generated by the controller is a
much higher frequency oscillating signal. This signal is then sent to the system which may
cause a problem as the actuator may not have the ability to handle such high rate oscillations
of the steering angle.

The system copes much better with the variance of accelerometer data than to variance of
the yaw rate. In this case, the longitudinal and lateral accelerations are directly integrated
to obtain the state values v, and v,. Also, there is no bias on the accelerometer data, though
this noisy signal still gives rise to parameter drift due to direct integration. To account for
this unwanted situation a Kalman Filter is constructed to estimate the system states by
measurement of the IMU and MoCap signals and (partially) eliminate the noise.
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Figure 6-5: Algorithm convergence response to measurement noise

Filtering the measurement noise and state estimation

Many methods have been developed to estimate vehicle states and parameters [33, 34, 35].
In this analysis to filter the additive noise for this system an Extended Kalman Filter (EKF)
is designed. This discrete model of system dynamics is obtained by a first order lineariza-
tion of the continuous time bicycle model and by adding additive process and measurement
noise terms wy and vg. As the IMU measures accelerations rather than velocities the state

!/
description of the system is extended to be x = [vx z Vy Ay T w} .

Trp1 = flog,up) +wp,  wi ~N(0,0) (6-4a)
ye = h(zg,ug) +ok, v ~N(O, Jicc/gym) (6-4b)

To model various delays in the system gives rise to the state description (6-5).

[Tk+14D, ] [ Tk+Dy
Tk+2 Lh+1
Tpr1 | = | [f(xg,ug) + wg (6-5a)
Ug Uk—1
_U/ka2+1_ L uk*Dg J

The measurement functions g(x,uy) presents the output map of the IMU, MoCap system
and the Wheel speed encoder. As the measurements done by the IMU and the MoCap systems
are provided with a different (smaller) delay, their measurement can be incorporated in their
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Figure 6-6: Algorithm convergence response to measurement noise after Kalman Filter intro-
duction

(delayed) state. This gives us the following measurement functions;

IMU IMU 1

YirD, = C 7 2k, ‘H’l(szl (6-6a)

MoC 2

Yoop = oMy o (6-6b)
3

sl = V€, o)), (6-6¢)

The IMU is capable of measuring accelerations and rotations due to the accelerometer and
!/
gyroscope; (C™U = [O 1 011 O} ). The MoCap is capable of measuring the vehicle

!/
velocity and yaw rotation (CMoCap [1 0101 O} ). The angular velocity of the rear
!/
wheel is measured with a wheel speed encoder; (CWheel [0 00 00O 1} ).

Differentiating the state- and measurement functions along the states bring forward their
respective Jacobian;

F= 8fg: u) H, = Oh(x)

(6-7)

Tp_1)k—1-Uk ZTr|k—1
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The EKF estimates the states & according to the following recursive algorithm;

Predict
Tpp—1 = f(@p—1jk—1,uk)
Pk = PP B+ Qk
Update
Uk = yr— H(Zpp-1)
Sk = Hy Py Hi + Ry
Ky, = Py—1 Hi St
Ty)k = Trpk—1 + Kilk
Pk = (I — Ky Hy) Pyjp—1

Assumed is that v® and v® ~ N(0,0), with D3 = 1 and Dy = 0. Here the MoCap
measurement is delayed only one timestep to the process (D3 = 1). Where the wheel speed
encoder has direct measurement (D4 = 0). The output of the Kalman filter produces state
estimates for the controller to use, and using the state description previously mentioned it is

possible to estimate each state, including xy41, making it possible to counteract on the delay
brought forth by the IMU.

The Variance Accounted For (VAF) measures the similarity between two signals. If the VAF
is 100% the signals are the same, and when they are different the VAF value will be lower.

oy =9, 0w )
VAF = (1 var(y) ) % 100% (6-9)

The following four scenarios (Ref. 1-4) indicate variations of the defined measurement func-
tions (6-6) simulated;

Table 6-4: Filtered measurements scenarios

Ref. CMoCap D1 Dj
L l[to1o1o 2 1
2 [[to1000 2 1
3 [loooo 10 25 1
4 {foooooo 25 1

Without the implementation of the filter, a large range of noise descriptions results in a noisy
reference signal generated. The algorithm then doesn’t converge properly, resulting in a large
log;o(KKT-Value), visible in Figure 6-5. Implementation of the Kalman Filter, using the
information available from the IMU, MoCap (Scenario 2 from 6-4) and wheel speed encoder
is simulated. This results in great range increase the controller is able to steer the vehicle
successfully towards the desired equilibrium. This stabilizes the drifting motion for a great
range of noisy signals, as can be seen in Figure 6-6.
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Table 6-5: Scenario results

ot VAF-value log;o(KKT-value) [ RMSE
Uy vy T Median 95p Sn
1 199.9788 99.9936 99.9858 | -5.50 3.54 0.531
2 199.9904 99.9964 83.6720 | 4.86 7.08 0.586
3 191.8800 82.9110 99.0615 | 12.69 15.15 0.564
4 195.4483 69.0882 88.7909 | 12.89 15.444 | 0.825

The results of the second scenario are portrayed in Figure 6-7. This image shows clearly that
the noise acting on the system has a direct negative effect on the reference signals generated.

To further test the control system an IMU is chosen as case study [36]. The gyroscope of
this sensor has a Power Spectral Density (PSD) of 0.01[deg/s/v/Hz]. Running at 100[Hz] this
produces a noise output with a variance of 1.75 x 10_2[rad/ s|. The accelerometer has a PSD
of 300 * 107%[¢g/+/Hz], producing a noise with a variance of 3 * 1072[m/s?]. This sensor is
simulated in the remainder of this thesis to generate noise for the following simulations. The
sensor-bias is ignored in these cases.

State estimation is found to be an important factor for the controller and algorithmic perfor-
mance, especially as these states are also used by the reference generator. The noisy signal
entering the reference generator also results in a noisy signal entering the MPC controller,
which greatly reduces the log;,(KKT-Value). This noisy signal also results in noisy control
signals, which may impose problems when implementing the proposed strategy on actual
actuators. Another problem which arises when implementing this is the computational de-
mand of the filter. Though no actual indication is made in the quantity of time which this
would cost extra this is something potentially restricting implementation on a scaled vehicle.
Besides measurement, inaccuracy of the states further differences between the ideal vehicle
model and the actual scaled vehicle are discussed.
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Figure 6-7: System response after implementation of Ref. 2 (see Table 6-4)
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6-2-2 Actuator dynamics

Even though the control system runs at a frequency of 100[Hz] there is the possibility that the
actuators do not have the same rate. Therefore it scenario’s are considered that the actuator
sampling time t,c¢ may differ. The impact of these different sampling times can be found in
Figure 6-8.

The effect that this variation of actuator frequency brings is described in Table 6-6. This
shows that there is a slight decrease in the path following ability when the actuator sampling
time is greater than 0.03[s]. The ability to estimate system states does not rigorously change
as does the ability for the optimization problem to be solved.

Table 6-6: Actuator sampling time variance

- VAF-value log;o(KKT-value) | RMSE
Uy Uy r Median 95p Sn

0.01 [s] [ 99.9904 99.9964 83.6720 | 4.86 7.08 0.586

0.02 [s] [ 99.9905 99.9964 83.8383 | 4.86 7.10 0.586

99.9894 99.9956 86.6473 4.88 7.14 0.636

[s]
[s]
0.03 [s] | 99.9897 99.9956 85.8648 | 4.87  7.06 | 0.628
[5]
5] | 99.9905 99.9958 85.9719 | 4.85 7.00 | 0.647

Besides the possible difference in the sampling time of the actuators there is a limit in how
much the actuator can move within a given time. This gives rise to the potential problem
that the desired control inputs may not (fully) as desired. These limitations for the actuator
are to be investigated in further research.

The input for actuators may not be equal to the control signal computed, e.g. the servo
actuating the steering angle will not have the angle § as an input. A method to convert the
signals to ones actually usable for such servo must be designed.

Steering angle

§ [deg]

Time [s]

Figure 6-8: Steering angle effect due to actuator sampling time limitation
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6-2-3 Parametric uncertainty

Measurement of the vehicle parameters (Table 6-1 and tyre parameters 6-2) may not be
completely accurate when performed in the lab. Therefore an analysis is done to observe
system behavior when a discrepancy occurs between model- and actual parameters. Assumed
is that a minimum accuracy of 90% can be obtained for dimensional measurements of vehicle
parameters and that inertial values and Magic Formula Tyre parameters can be determined
with a 75% accuracy.

Using Monte Carlo simulation with random numbers to define parameter variance for each
simulation, provides an insight into the effects that parametric uncertainty have. The ability
of the vehicle to maintain a stable drifting motion is analyzed. To quantify the performance
the ability to track the desired curvature is analyzed and the ability for the controller to follow
the desired path is evaluated. Lateral deviation (oscillating) beyond 5[m]| defines the threshold
for undesired path following properties. For each situation the poles of the system, as done at
the beginning of this section, are computed. As this varies according to the vehicle parameters
a color-scale is applied for deviation from the baseline. For a more clear representation which
parameter combinations lead to successful drift control, the transparency is increased towards
the mean value, clustering the ’slowest’ and 'fastest’ pole combinations per color, allowing to
compare differences between these sets.

First, the Proportional Integral Derivative (PID)-path following controller and dynamic ve-
locity controller are deactivated, and a series of 556 simulations are performed with random
parameter settings. As there is no path following property for this configuration, this cannot
be evaluated. And thus only the curvature x is analyzed in Figure 6-9.

There are two major clusters identified in, one where the vehicle curvature is slightly below
the baseline and one where the curvature is slightly higher. These different behavioral clusters
highlight two specific parameter combinations occurring for these situations.

There are a number of parameters which tend to influence vehicle behavior more than others.
When looking at the mass of the vehicle m there tends to be ’slow’ and ’fast’ poles displaced
along the varying parameter. This indicates that this is not one of the critical parameters
influencing system behavior. The same can be said for the lengths from the Center of Gravity
(CoG) to the axles I, though still for all these parameters correct measurement is of course
preferred.

Three parameters describing the tyre-road interaction B, C, and D, and the yaw inertia tensor
I, tend to have a specific influence on the system behavior. State behavior for these clusters
can be observed in Figure 6-10. The curvature of all these highlighted behavior patterns are
highly comparable, varying only in the steady-state value to which these converge to. The
"faster’ cluster (highlighted in green) can be argued to take corners faster and sharper, having
a higher BC'D pair, indicating a steeper initial slope in the curve produced by the original
Magic Formula (Figure 2-3) and a higher road friction coefficient (due to a higher D value)
resulting in more acceleration for same steering and torque input. Also due to the lower
yaw inertia tensor, the vehicle will be prone to faster rotational acceleration than modeled.
The controller responds adequately by counter steering less stabilizes the drifting motion in a
slightly larger radius circle. The exact opposite can be said for the ’slower’ cluster (highlighted
in blue). However, there are a few scenarios where the velocities do not stabilize indicating
that having a vehicle which turns slower than expected may run into instability issues faster.
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Figure 6-9: Parametric uncertainty for system without path following control
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Figure 6-10: System response to parametric uncertainty

After activating the path following- and dynamic velocity controller, 518 simulations are
performed. Again using random parameter settings while implementing all uncertainties
mentioned before. Figure 6-10 shows how the system behaves regarding these uncertainties.

Many similarities are visible between both cases (with and without added PID|DV control),
as the clusters observed practically highlight the same parameter groups. The behavior of the
closed-loop system highlights three clusters in Figure 6-10; again on ’faster’ (green) cluster
and one ’slower’ (blue) cluster but now including one which shows unstable behavior where
the control system is not able to steer the vehicle towards the desired path.

It initially seems that both the slow- and fast- clusters are able to stabilize the vehicle and
are able to follow the desired path. However, when analyzing the behavior of the vehicle
states (Figure 6-11), it can be concluded that this is not always the case. The cluster with
fast system dynamics cases shows high-frequency oscillations for states and control inputs,
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Figure 6-11: State trajectories for parametric uncertain system response clusters
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Figure 6-12: Unstable state trajectories for parametric uncertain system response clusters

including for the steering angle 6. The slow cluster shows much more reasonable behavior
though the states are not damping nicely. Both forms of oscillations are not desired, though
re-tuning of the PID and Dynamic velocity controller could result in a better response.

The cluster with unstable behavior, unsuccessful in stabilizing the vehicle, is highlighted in
Figure 6-12. Most interesting is to see that the vehicle poles in the unstable cluster practically
are all slower than the baseline and that the smaller rear wheel radius r,, ratio shows a huge
dominance towards in the unstable behavior cluster. A smaller ratio than expected, when
having the same torque applied, results in a higher longitudinal force directed from the wheels
to the chassis. This partially explains why the velocity states (v, and v, in Figure 6-11) are
generally overall higher than desired, even though there is lower friction surface (due to the
lower BC'D pair) than expected.

From this analysis, it can be concluded that the system is much more robust to parametric
uncertainty when the actual system dynamics are faster than expected than when they are
much slower than expected when path following is the key performance indicator. However,
this gives rise to high-frequency oscillations in state dynamics and control input, indicating
that the controller itself is much less robust in these scenarios. Slower system dynamics
than expected should prove easier to compensate for when tuning the controllers. The wheel
radius remains a very important property to measure, especially as overestimation may result
in system instability.
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6-2-4 Initial condition variation

During simulation, the controller is switched on constantly and the simulation is initiated
regarding a specific set of initial conditions for the vehicle. When the initial conditions match
the desired equilibrium state closely it is much easier for the controller to actuate the system
to keep it at this desired equilibrium as when the desired equilibrium lies far apart from the
initial states. To find out whether a switching logic may be necessary to determine when the
controller could be activated a series of simulations is done with a variety of initial conditions
as done in Section 5-1.

From Figure 6-13 it can be said that the same general idea holds as that was made in the
previous chapter when regarding the full scaled vehicle, that the controller is more robust
when activated at a moment that the vehicle velocity is higher than the equilibrium state.
However, the state trajectories behave much more violent than for the full-scale vehicle, likely
due to the faster poles of the scaled vehicle. The multiplicity of desired (final) state equilibria
is due to the path following- and dynamic velocity controllers manipulating the reference
signal.

- Initial condition variation
X Failed convergence

O Succesfull convergence
o= Desired state
Trajectory

Figure 6-13: Scaled vehicle initial condition variation

Interesting is to see that in comparison to the initial condition variation section (5-1) the
control system is able to successfully control the vehicle at initial conditions that are almost
zero. During the simulations the situations when the initial conditions where zero, it was not
the controller which wasn’t able to generate solutions to the Optimal Control Problem (OCP)
but rather the dynamic model of the vehicle which tended to reach singularities. This gives
reason to believe that the system can be activated with the vehicle at a stand-still condition,
a condition favorable when actually implementing the controller on the scaled vehicle.
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6-3 Summary

The experimental platform at the NERDIlab in the department of DCSC provides a scaled
vehicle which in the future can potentially be used to test an autonomous drift controller.
To evaluate the feasibility of this idea a simulation study is performed to test whether the
designed control system from the previous chapters could be implemented on this 1:10 scaled
vehicle. The resulting vehicle dynamics have much ’faster’ properties than an actual (full-
scale) vehicle, described in the previous sections. After scaling and re-tuning, the control
system was still able to initiate and sustain a drifting motion for the vehicle. Uncertainties and
imperfections of the system are added to the system to simulate noisy sensor measurements,
delayed signals and different operating frequencies for the actuators. The Kalman Filter
designed is computationally intensive and able to estimate the vehicle states fairly well when
using combined measurements. Simulating different operating frequencies for the actuators
show that there is a decrease in performance when t,¢; > 0.3[s]. Model parameter mismatches
show that there are two situations to be considered; when the system dynamics are slower
and faster than of the model description. These situations both have a different impact on
the behavior of the closed-loop system. The scenarios where the control system was unable to
stabilize the drifting motion occurred when the system dynamics were slower than modeled.
The controller can probably be initiated from a stand-still condition, a preferable condition
for future implementation. However, the simulation of this scenario proves difficult due to
singularity issues of the simulated vehicle.
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Chapter 7

Conclusions and recommendations

This chapter contains the conclusions based on this thesis and the recommendations for
further research in this field. First, a brief summary will describe the work done in this thesis.
Then some conclusions will be drawn regarding the methodology and the proposed simulation
model, whereafter the performance of the simulation model and control system is discussed.
After this, the focus will be on the potential implementation on a scaled vehicle, the limitations
that this brings and the challenges that arise in bringing this control system into reality.
After these conclusions, some recommendations are done for further research, investigating
where improvement of the simulation model and controller may lie when continuing work on
autonomous drift control systems.

7-1 Summary

As autonomous vehicles are in an up-rise the last few years and focus is placed on full vehicle
autonomy and safe implementation hereof. Advanced Driver-Assistance Systems (ADAS)
are preventing vehicle crashes and shows promising development, including applications for
Autonomous Drift Control (ADC). Control of this drifting motion will supplement the ability
of autonomous vehicles to drive in all situations and during all conditions.

Model Predictive Control (MPC) requires a description of the system to predict the future
behavior of the vehicle. This description is done by modeling the simplified system dynamics
as a three-state bicycle model. The tyre-road interaction is modeled with a simplified version
of the Magic Formula (MF) to approximate the F, and Fj, curves with respect to the wheel slip.
A modified longitudinal slip is proposed to better accommodate gradient-based optimization
methods.

The art of drifting is analyzed and three major components arise; saturation of the rear tyres,
large body side-slip angles, and counter steering. This behavior characterizes drifting motion
and can be found in equilibrium solutions describing stead-state drifting. It is shown that
different tyre-road specifications result in two types of R — V equilibria grids, convex tyres
providing a single plane of driving equilibria and non-convex tyres providing multiple planes.
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This equilibrium grid is used in combination with a curvilinear coordinate system to define
path following properties and with it identify deviations hereof.

A control system is designed based on the MPC strategy. The Automatic Control and Dy-
namic Optimization (ACADO) toolkit provides a flexible environment to efficiently compute
control inputs required to steer the vehicle towards desired drifting equilibria. It is found
that the simplest integration method is able to predict system dynamics well enough and
with it minimize computational demand. An additional path following Proportional Integral
Derivative (PID) controller is designed to let the vehicle follow a predetermined path. A
dynamic velocity controller is designed to adjust the vehicle velocity to accommodate small
radius corners while taking larger corners at a higher velocity. This control system shows the
ability of the simulated vehicle to successfully initiate a drifting motion and follow the given
path.

To prepare for implementation of such a control system a feasibility study is performed to
analyze differences between a full-scale and 1:10 remote-controlled vehicle. It is found that
the different properties result in a vehicle with much faster dynamics though simulations show
that this is not a problem for the designed control system. Also, various tests modeling noise,
delay, and other uncertainties are done to identify potential future challenges.

7-2 Conclusions

In literature, MPC is often regarded too computational intensive for application in settings
which require fast responses and computations at a high frequency. However, due to the
relatively low complexity of the tree-state bicycle model and application of the Real-Time-
Iteration (RTI) strategy to solve the Optimal Control Problem (OCP), application of the
MPC strategy for autonomous drift control can be considered feasible.

Modeling vehicle dynamics using the three-state bicycle model with simplified wheel dynamics
results in a compact system description which can be used for control purposes. The non-
smooth formulation of the wheel slip ratio can successfully be transformed into a smooth
approximation, introducing no further control issues.

Extending the MPC strategy with the proposed dynamic velocity controller allows the vehicle
to take a larger range of corners compared to a static reference velocity. This also provides
robustness for the system as the reference generator only generates feasible equilibria. Com-
bining this with a path-following PID controller lets the vehicle take a large range of paths
and adjust the velocity accordingly.

Future implementation will start with testing on a 1:10 scaled vehicle, and therefore a fea-
sibility study is performed. Adjusting the controller shows that the setup regarding vehicle
parameters and tyre profile does not pose a threat to the working of the controller. Although
the parameters describing the scaled vehicle result in a dynamically ’faster’ system, tuning
the controller accordingly allows usage of the proposed strategy.

Delays active in the system are not perceived as a threat to the control system when proper
(re-)tuning is done. Measurement of the system states based on the Inertial Measurement
Unit (IMU) results in a noisy signal, which can be partially corrected for using an Extended
Kalman Filter (EKF). However, using only the IMU specified in the analysis as a measurement
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source will provide state estimates which are not accurate enough to achieve proper path
following drift control.

The parameters describing the vehicle and the tyre-road interaction may deviate slightly
from its actual parameters, potentially having a great negative impact on the stability of
the closed-loop system. Especially properties linked to the tyres and wheels are identified
as critical components, therefore it can be concluded that the correct modeling of the tyres
requires much attention before the designed control scheme can be implemented. An analysis
is performed to identify these critical vehicle parameters.

Variation of the initial conditions shows that there is only a certain range of situations where
the simulation can be switched on. The system is to be initialized with a certain starting
velocity, which doesn’t have to be larger than 0.1[m/s] for the scaled vehicle, to allow the
algorithm to converge properly. This is different than for the actual vehicle, which may be
explained due to the addition of the dynamic reference velocity. This additional controller
makes the control system more robust to these low-speed initial conditions as the difference
between the low initial velocity and a high reference velocity is reduced.

7-3 Future recommendations

There is room for improvement of the simulation environment, as even though there are a lot
of uncertainties regarded in this analysis it is still not an exact replica of a real-life scenario.
Further simulation-based analysis can include controlling a higher order vehicle model to
approach a real-life scenario even better.

The path following PID controller should be re-tuned for varying R — V pairs as the reaction
of this controller is greatly dependant the lateral deviation s,. The current design of the
PID controller provides a good option for drifting in a constant radius circle, as the reference
velocity does not change much. This desired path should, therefore, be the first goal when
implementing the autonomous drift controller. There can be looked into the option of applying
a different strategy to achieve the path following properties that depends less on tuning and
is more resilient to varying vehicle velocity.

The controller computes two control signals for the system, namely the steering angle § and
the torque that is applied to the rear wheels Tjt,. These cannot be directly implemented
onto a scaled remote-controlled vehicle, as the servos actuating have a different electrical
signal as an input. This conversion has to be further identified and a way to bridge this
discrepancy is required and must be investigated.

The current delay of 250[ms] acting between the IMU and controller does not cause instability
of the system with proper tuning. Though minimization of this delay will allow for higher
vehicle speeds and with it higher side-slip angles. In this analysis the delays are assumed to
be constant. As this assumption is not realistic it is useful to investigate the impact of delays
with varying length. Placing the controller on-board the vehicle will reduce these delays
between sensors and controller, allowing a faster response of the MPC controller and with it
increase performance. Another option for improvement of the MPC controller is by modeling
the system delays inside ACADO integrator. Inside the C-code describing this controller the
discretized system is described and can be modified.
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When using the designed Kalman Filter and Motion Capture (MoCap) configuration to filter
noise from the IMU measurements, the variance of the measurements should not exceed the
values presented in Table 7-1. This prevents a noisy signal sent to the actuators and maintains
feasibility of the OCP. These variance-values are taken from the actual simulated IMU
specifications, as the generated noisy control signal was assumed usable for the actuators. Bias
values of +0.5, which are very high regarding actual sensors, bring forward no critical issues,
and therefore still could be used in this scenario. The state-observer design should be extended
or redesigned for use without the MoCap system, as the state-estimation performance of the
EKF should be improved to provide higher accuracy and control signals with less noise.

Table 7-1: IMU accuracy recommendations

Parameter Limit
agyro 0.0175 [rad/s]
o2 0.03 [m/s?]

b +0.5 [rad/s]

The uncertainty of the parameters describing the vehicle has shown to bring forward potential
instability of the system. The parameters describing the yaw inertial tensor I, the effective
wheel radius r,, and the parameters describing the tyre-road interaction B,C & D are crucial
to ensure stable system behavior. Accuracy recommendations for measuring these parameters
can be found in Table 7-2. These are determined specifically for the chosen simulation setup.
The yaw inertia tensor can not directly be identified as a parameter which results in instability,
however, for the model to rotate in a similar fashion a variation of +5% is recommended.
Variations, where the effective wheel radius of the vehicle is smaller than modeled, brings
forward most of the unstable scenarios. Measurement of this radius smaller than the actual
value should be avoided. The tyre parameters resulting in ’faster’ system dynamics result
in less unstable situations. As these values are determined empirically the recommendations
should be interpreted as a guideline. As tyre properties tend to be a crucial element in
the performance of the closed-loop control system investigated can be if the tyre modeling is
accurate enough or whether modeling hereof should be adjusted. Extending the tyre modeling
for anisotropic properties or transient properties could be done to capture the actual tyre-road
interaction better.

Table 7-2: Parameter accuracy recommendations

Parameter | Upper limit Lower limit
1, +5% -5%
Tw +5% -0%
B +5% -5%
C +10% -5%
D +10% -5%
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There will always be differences between the simulation environment and actual implemen-
tation. Testing of the control system the scaled vehicle will allow better identification which
challenges must be overcome to achieve this optimization based control for autonomous drift-
ing. Exemplified, in this thesis found is that initialization at initial conditions which are all
zero brings forward a lot of singularity issues in the simulation of vehicle behavior. This
issue will result differently when using an actual scaled vehicle, as there is then no need for a
simulated vehicle model.

Though application of autonomous drift controllers in actual sized vehicles to increase safety
should be further investigated, the opportunity to control these, exciting, high side-slip drift-
ing maneuvers definitely exists.
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List of Acronyms

ACADO
ADAS
ADC
CoG
DAE
DCSC
EKF
IMU
KKT
LQR
MF
MoCap
MPC
NERDIlab
OASES
OCP
PID

RK
RMSE

Automatic Control and Dynamic Optimization
Advanced Driver-Assistance Systems
Autonomous Drift Control

Center of Gravity

Differential-Algebraic set of Equations
Delft Center for Systems and Control
Extended Kalman Filter

Inertial Measurement Unit
Karush-Kuhn-Tucker

Linear Quadratic Regulator

Magic Formula

Motion Capture

Model Predictive Control

Network Embedded Robotics DCSC lab
Online Active SEt Strategy

Optimal Control Problem

Proportional Integral Derivative
Runge-Kutta

Root-Mean-Square Error
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ROS Robotic Operating Software

RTI Real-Time-Iteration

RWD Rear Wheel Drive

QP Quadratic Problem

SDRE State Dependent Ricatti Equation
SQP Sequential Quadratic Programming
VAF Variance Accounted For

List of Symbols

« Vehicle Heading [rad]

a; Lateral Wheel Slip [-]

Jé] Body Side-slip Angle [rad]

A Difference operator

0 Steering Angle [rad]

€ Heading Error [rad]

n Gaussian Noise

K Curvature [1/m)]

A Longitudinal Wheel Slip [-]

fr Road Friction Coefficient [-]

w Angular Wheel Velocity [rad/s]
p Scaling parameter [-]

0ij Wheel Slip [-]

i System poles

ac Centripetal Acceleration [m/s?]
Cy.s Front lateral cornering stiffness [N /rad]
Fij Force [N]

h Step size [s]

I, Yaw Inertia Tensor [kg m?]

Ly Wheel Inertia Tensor [kg m?]

1 Length from axle to Center of Gravity (CoG) [m]
m Mass [kg]

N Horizon length -]

Qk Process Noise Covariance matrix
R Radius [m]

r Yaw Rate [rad/s]
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Ry

Ss
Sn
Tnet

Vg

Vg

Wi

acc

gyro

ub

eq

IMU
MoCap
Wheel

Measurement Noise Covariance matrix
Effective Wheel Radius [m]
Integration Order
Longitudinal Distance [m)]
Lateral Distance [m)]

Netto Torque [Nm)]

Control Input

Velocity [m/s]
Measurement Noise
Longitudinal Velocity [m/s]
Lateral Velocity [m/s]
Process Noise

States

System Output

Accelerometer
Gyroscope

Lower bound

Upper bound
Direction, i € [z,y, 2]
Front- or rear, j € [f,r]

Timestep indicator

Equilibrium
IMU

MoCap

Wheel Encoder
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