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Abstract
Maximisation of treatment efficiency in hospitals can lead to significant growth in terms of patient sat-
isfaction, staff productivity and hospital revenue. Scheduling for the operating department is currently
done manually, using standard values for duration that vary with procedure type. This implies that no pa-
tient characteristics nor historical data are used to personalise predicted surgical duration. Furthermore,
schedules are not updated when procedures are delayed. A relevant step towards dynamic scheduling
is the realisation of real-time analysis of surgical workflow, based on intraoperatively acquired data. As
of yet, the amount research performed into the use of automatically generated online data for duration
prediction is limited. This research project involves an analysis of the usability and characteristics of
interventional X-ray data, for predicting the total duration of coronary angiograms intraoperatively. A
random forest classification algorithm is used to analyse each acquisition within the dataset and classify
the total duration of the corresponding procedure as being below 10 minutes, 10 to 20 minutes, 20 to
30 minutes or 30 minutes and over. From the original dataset, 30 features were selected and imple-
mented by the random forest model. An additional 22 features were generated to add data from prior
acquisitions of the same patient. Recursive feature elimination was used to determine the final feature set.

Based on out-of-bag validation, the overall accuracy of the classification model was found to be 92.8%.
Procedures with a duration lower than 10 minutes were correctly classified in 98.1% of the time. The
classification accuracy for the other three classes ranges from 87.4% to 89.5%. Considering an average
procedure duration of 11 minutes, the interventional X-ray data shows exceptional capabilities of clas-
sifying both standard and delayed procedures. For a deeper understanding of the model’s abilities, the
change in predicted duration class was evaluated with respect to procedural progress. This analysis shows
that some Class 1 acquisitions are overestimated to be Class 2 acquisitions, but that overestimation of
procedure duration rarely occurs for the other three phases. This implies that a prediction made beyond
10 minutes into the procedure can be perceived as the absolute minimum duration class of the procedure.
Additionally, Class 3 and Class 4 predictions are found to always correspond to the minimum procedure
time, independent of procedural progress. Class 2 and Class 3 acquisitions are underestimated up until
10 minutes and 20 minutes into the procedure, respectively. Class 4 acquisitions are correctly classified
at a relatively earlier point with respect to progress and are never incorrect beyond 20 minutes.

To gain further knowledge on the implementability of the model, several procedures were analysed
individually. New random forest models were generated using all data except for the acquisitions from
the analysed procedure. As a result, the classification abilities for some procedures appeared to be
different compared to prior analysis. A possible reason is that acquisitions from the same patient are
dependent and cannot be split into training data and test data, as this might bias the results. Duration
predictions for Class 1 continue to show overestimation and fluctuating class predictions. Nevertheless,
the model still shows that it is capable of detecting delay at an early moment in the procedure, even
when applied to entirely new data from unseen procedures. Given the fact that overestimation does not
occur beyond 10 minutes, nor when Class 3 or Class 4 is predicted, the first prediction of a new duration
class is concluded to be a reliable reference point. Further investigation has shown that most Class 3 and
Class 4 detection occur within the first five minutes of a procedure. Therefore, the model is successful
at predicting a total duration of 20 minutes or more at an early stage of the procedure. This could
significantly benefit the hospital in terms of procedure planning and knowing when to request the next
patient. In terms of prediction features, the acquisition frequency, longitudinal position of the operating
table, cumulative procedure duration, patient age and cumulative cine acquisition time were found to be
the most important. The implementation of these features in further research on CAG phases is recom-
mended. Movement of the operating table seems to be particularly informative for workflow analysis.
In terms of clinical application, further optimisation is required in order to enable accurate prediction
for the duration of shorter procedures. Furthermore, the exact effect of the model on procedure schedul-
ing requires validation by means of additional data such as existing schedules. Nevertheless, the model
provides an accurate tool for the real-time monitoring of procedural workflow and detecting significant
delay, which proves that the usability of the data goes far beyond machine maintenance and service only.
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1. Introduction
Maximising treatment efficiency in a hospital can have a significant impact on patient satisfaction and
hospital revenue. Rising healthcare costs cause it to be a relevant and popular research topic [23]. The
increase in costs can be linked to the continuous development of advanced medical technologies, as well
as an increased prevalence of diseases worldwide [28]. In order to deal with the increasing costs and
demand for medical intervention, changes must be made in all departments of the hospital. One of the
most expensive and resource-intensive areas of a hospital is the operating department [19]. Research
into optimisation within this department would not only benefit the surgical staff and patients, but also
largely affect the income of the entire hospital.

One way to increase efficiency in the operating department is by using complex planning procedures
to obtain a surgical schedule that is realistic and accurate. Surgical delay does not only impact the
current procedure, but also affects the schedule for the rest of the day. Realistic schedules can be created
by obtaining insight into the workflow of individual procedures. Accurate, real-time predictions of the
total procedure duration, including any delay, would increase the quality of such schedules substantially.
A specific type of operating room that could be an appropriate starting point for intraoperative duration
prediction is the cath lab, short for catheterization laboratory. This room allows for a limited number
of procedures with repetitive, detectable steps and is used to diagnose and treat cardiovascular diseases.
A structured use of the intervention room and its staff would save significant costs [50]. Currently,
many catheterization laboratories experience down times and non-productive times. Improvements in
this area could improve patient flow, safety and satisfaction, while putting an end to wasting equipment
and incidental overtime [26].

A procedure that is regularly executed inside the cath lab is the coronary angiogram. The procedure is
becoming increasingly common, due to the rising prevalence of cardiovascular diseases such as coronary
heart disease [15, 28, 57]. Coronary heart disease is the leading cause of heart attacks, which occur
when coronary arteries are blocked and blood can no longer flow to and from the heart freely. Coronary
angiography is used to detect and localise such obstructions in the arteries. The cath lab is among the
most important and complex places in the hospital [2, 50]. It is a room that can have high levels of
uncertainty, stress and volume [26]. Part of its complexity is due to the fast pace of the procedures, as
well as the large variety of equipment. Examples of the required equipment include the interventional
X-ray system and the C-arm, health monitoring systems, intravascular imaging tools and visualisation
workstations [50]. The equipment keeps track of the procedure by means of a large variety of parameters.
This means that the data from the equipment might be able to provide useful information regarding the
procedure and its progress. In order to test this hypothesis and use the data to analyse and predict
workflow or progress, machine learning can be applied. It can be used to detect certain patterns and
extrapolate these to predict future instances.

The benefit of combining machine learning and online data is that predictions regarding workflow can be
made intraoperatively, which allows for the creation of a dynamic surgery schedule rather than a static
one. Extensive research has been done on the different types of models that could be used for surgery
scheduling and intraoperative duration prediction [1, 7, 17, 34]. Models that can provide real-time
predictions generally show promising results with respect to prediction accuracy and applicability. Nev-
ertheless, most of these models are trained using data that is manually collected, for example by means
of interpreting video footage from the operating room. Therefore, the amount of input information into
the machine learning model is limited, as each data point must be validated by hand. The number of
cases used in online models typically ranges from 1 to 80, which shows that there is a significant research
gap regarding tests that use bigger sets of data [56]. Therefore, research into the application of machine
learning using real-time data that is automatically collected throughout the procedure is highly relevant.
Data from the medical equipment in the cath lab is an suitable choice, due to the generation of data at
each acquisition, represented by numerous features that could be used to indicate progress and workflow.
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The main aim of this report is to analyse the usability of data from the interventional X-ray system.
The scope of the research is limited to data from the interventional X-ray system of the Reinier de Graaf
hospital, provided by Philips Research. Furthermore, only data from coronary angiograms is used. The
overall objective of this research is specified by the following research question:

"To what extent can data logged by interventional X-ray systems be used to
intraoperatively predict the total procedure duration class of a coronary angiogram and

how do the most significant features affect the analysis?"

In order to answer the above research question, a general guideline is provided by the following sub-
questions:

1. How can a random forest classification algorithm be used to estimate procedure duration and analyse
feature importance of the available data?

2. Which additional features could be added to the the model in order to improve its predictive ability?

3. What are the optimal features and model parameters that lead to the highest possible classification
accuracy?

4. How effectively can the final model classify the procedures duration to be <10 minutes, 10-20 min-
utes, 20-30 minutes or >30 minutes?

5. When are the predictions made throughout the procedure and how could this affect the analysis of
real-life procedures?

6. Which features from the optimal feature set are most useful for determining the procedure duration
class and how do they change with respect to duration?

In terms of the structure of this report, background information about coronary angiography and the
cath lab is given in Chapter 2. This chapter also explains the overarching project of this research, as well
as the principle theory of the random forest machine learning algorithm. Chapter 3 explains the methods
of extracting and creating the optimal input dataset for the model, as well as the steps taken to set up
the classification model. Additionally, it explains the method applied to test model applicability and to
analyse the impact of individual features from the dataset. The results of the classification model are
presented in Chapter 4, including an analysis of the applicability and the behaviour of the most significant
features. Finally, the research question is answered in Chapter 5, along with recommendations for future
research on this topic.

2



2. Background
This chapter presents the background information that can be valuable for understanding the medical
and technical aspects of this report. First of all, the clinical setting is presented in Section 2.1. This
includes a description of the general structure and function of the heart and coronary angiography.
Furthermore, the medical staff, equipment and operating room required for coronary angiography are
explained, in order to provide a good understanding of the medical procedure that forms the essence of
this project. Thereafter, the overarching project of this research is presented in Section 2.2. Finally, the
theory behind the used machine learning algorithm is explained in Section 2.3.

2.1. Clinical Setting
The medical procedure to examine coronary vessels, the coronary angiogram, is described in Section 2.1.1.
The specific type of operating room that is required is explained in Section 2.1.2.

2.1.1. Coronary Angiography

Within the branch of cardiology, coronary procedures specifically involve the arteries that surround
and supply the heart [20]. The heart is part of the cardiovascular system, which is responsible for
maintaining the body’s homeostasis by making sure oxygen and nutrients are delivered to all cells in the
body and waste products are removed from them [57]. The heart consists of four chambers, where the
upper collecting chambers are called atria and the two lower pumping chambers are the left and right
ventricles. A diagram of the heart can be seen in Figure 2.1a. Deoxygenated blood enters the heart
on the right side, through the inferior and superior vena cava. The blood moves from the right atrium
(RA) into the right ventricle (RV) and from there, it is pumped into the pulmonary artery (PA) which
distributes it into the pulmonary circulatory system. When the blood reaches the alveoli of the lungs,
CO2 and water are exchanged with oxygen, leading to a significant increase in blood saturation. The
pulmonary veins guide the oxygenated blood back to the heart, where it enters through the left atrium
(LA). After the blood has entered the left ventricle (LV), it is pumped into the aorta (AO) and thereafter
to the rest of the body, to supply it with oxygen and nutrients. After the diffusion of oxygenated blood
into the tissue and the collection of waste products, the blood travels back through the veins towards
the inferior and superior vena cava, to complete the cycle [57].

(a) The circulation of blood around the heart [52]. (b) The main coronary vessels [44].

Figure 2.1: The direction of blood circulation in the heart and the heart’s main coronary arteries.
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Angiography refers to the radiological imaging of the arteries and veins using X-rays, after being injected
with a contrast agent. Coronary angiography specifically focuses on the heart and is used to diagnose
cardiovascular problems [57]. For example, a coronary artery may show narrowing (stenosis) or blockage,
reducing the oxygen supply to the heart. In this case, angiography can be used to detect the exact
location, so that appropriate treatment can be decided upon. An example of a critical case of stenosis
can be seen in Figure 2.2a. Angiography can be used to fix still images on film or capture moving images,
where the process of generating moving images is referred to as fluoroscopy. In both applications, the
resulting images can be viewed real-time by physicians. The use of a catheter to introduce the contrast
agents into the vessels or heart chambers is called catheterization. For cardiac catheterizations, catheters
are inserted by means of an injection in the wrist or in the groin, where entry through the wrist is the
most common and generally preferred option, due to of lower complication rates and less recovery time
[28, 29]. Generally, the right wrist is used, but when access to the artery or aorta arch cannot be attained,
the physician may divert to using the left wrist or the groin. Once the catheter has reached the aorta,
both the left coronary artery (LCA) and right coronary artery (RCA) are captured. For both steps,
contrast agent is injected at the tip of the arteries. Once a coronary angiogram of both arteries is made
and the medical issue has been localised, the catheter is retracted from the body.

(a) CAG of the LCA, showing 75% stenosis
depicted by the arrow.

(b) CAG of the RCA, showing no significant
obstructions.

Figure 2.2: Coronary angiograms of the left coronary artery and right coronary artery [27].

The staff team required to perform a coronary angiogram generally consists of four members. The
cardiologist is in charge and leads the procedure. Additionally, three support staff members are required,
with the following division of roles:

• Cardiologist - The cardiologist carries the main responsibility during the procedure. He or she
is in charge of the catheter and guides it to the desired location in the heart. Furthermore, the
cardiologist is in control of the foot pedal, which is used to capture the fluoroscopic footage [28].

• Scrub - The scrub assistant assists with the handing over of instruments to the cardiologist.
Furthermore, the injection of medication may be done by the scrub. The scrub handles the sterile
equipment [57]. In academic hospitals, the presence of a cardiologist trainee can make the scrub
redundant [38].

• Circulator - The circulator is responsible for the turnover, which refers to the preparation of the
room before patient arrival and cleaning up afterwards. The circulator helps to transfer the patient
to the table and prepares them for the intervention by attaching the ECG electrodes and inserting
an peripheral intravenous line if necessary. The circulator handles the non-sterile equipment [57].

• Monitor - The monitor observes and records the patient’s vital signs, as well as procedural
measurements [57].
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The Reinier de Graaf hospital assumes a procedure duration of 45 minutes when scheduling for the cath
lab [31]. Due to its minimally invasive nature, two-thirds of all cath lab procedures are performed on
outpatients. Outpatients are patients that do not have to stay overnight. For the outpatients, recovery
time takes about 4 to 6 hours. Inpatients have to recover for approximately 90 minutes before returning
to their rooms [29].

2.1.2. The Catheterization Laboratory

The cath lab is a special type of operating room that holds relatively modern and technically advanced
medical equipment, suitable for minimally invasive surgery and interventional radiology. The use of
radiological image guidance and minimally invasive access to vessels allows for very precise targeting,
applicable to both diagnosis and treatment [28]. Typically, the cath lab is a fast-paced and procedural
environment [46]. Even though interventional radiology has a wide range of applications, most proce-
dures involve the heart. Coronary angiography is one of the most frequently executed procedures done
inside the the cath lab [28].

The catheterization procedure requires three principal work zones. The first work zone is the preparation
and recovery area for preoperative assessment, post-procedure care and recovery. The catheterization
procedure itself takes place in the cath lab suite, which is a controlled environment where scrub attire
and cover gowns must be worn by all clinical staff [29]. Finally, there is a control room for supervision of
the procedure by means of imaging control panels and monitors [33]. Essential equipment inside the cath
lab includes an interventional X-ray system, a mobile patient table, a control panel and a monitor [20].
The general setup is shown in Figure 2.3. The interventional X-ray system contains an image intensifier,
used to improve image quality by means of amplifying the X-ray beams and converting the X-ray image
into a light image. The light image can then be displayed on the monitor through an image processor
[39].

Figure 2.3: Setup of the main components of a cath lab [40].

Due to its shape, as shown in the figure above, part of the X-ray system is referred to as the C-arm. The
main benefit of the C-shape is that it allows for both orbital and angular movement, while maintaining
the subject of interest at the isocenter and keeping X-ray scattering to a minimum. This also means
that the patient can be examined from head to toe using a large range of angles, without requiring any
movement from the patient. Furthermore, the X-ray system allows for three dimensional imaging, when
a particular software program is used [20]. The specific interventional X-ray system used in the cath lab
of the Reinier de Graaf hospital is the Allura Xper FD20 X-ray system [42]. The X-ray system logs each
procedure by means of many different parameters. This is the data that makes up the main dataset used
in this report, which is further elaborated upon in Section 3.1.1.
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2.2. The Workflow Project
This section contains a concise summary of the overarching project that this report contributes to.
Section 2.2.1 explains the relevance and vision of the project. Section 2.2.2 explains its status and future
steps that will be taken to achieve its final goal.

2.2.1. Project Vision

This report is part of an overarching project, initiated through collaboration between Delft University
of Technology, Philips Research, Philips Healthcare and the Reinier de Graaf hospital in Delft, aiming
to create a smart environment that provides insight into the workflow in the cath lab. A thorough un-
derstanding of the organisation inside the room can help detect ineffectiveness and improve efficiency. A
detailed analysis of procedural workflow would allow for a better understanding of the procedural steps,
which in turn could lead to a higher predictive accuracy of the remaining procedure time. Various tools
could be of use for this analysis. One of the selected devices for monitoring activity inside the cath lab
is a camera, due to its high sensitivity. A total of five cameras are used to record movement inside the
room from different angles. These could be used to observe the use of medical equipment and instru-
ments by the staff and track general movement inside the cath lab. Other possible sources of information
include the medical equipment inside the cath lab. The information can be used to detect patterns in
the data and obtain insight into different aspects of the procedure. Certain patterns could be linked
to procedural phases and provide information on the progress of the procedure. Furthermore, workload
of each medical staff member could be analysed. The analyses can be used to detect inefficiencies that
delay or complicate the process, providing the necessary background information for seeking solutions
and overall improvement.

Generally, the remaining duration of a procedure is estimated by the physician in the room, based
on a personal perspective. Surgical schedules are typically made using values for procedure duration
established from historical data. It is uncommon to take personal details such as patient characteristics
or the composition of the surgical team into account for this. Gaining insight into the separate phases
of a procedure and the effect of the aforementioned parameters would benefit the scheduling process
significantly. Moreover, being able to accurately predict remaining duration real-time would increase the
efficiency of patient inflow and outflow, which could eliminate unnecessary turnover aspects such as wait-
ing for the next patient to arrive. Furthermore, maximising the cath lab occupancy would significantly
benefit the hospital from a financial aspect.

2.2.2. Project Status

The first steps of the project consist mainly of writing protocols to establish an agreement between the
project owners and the hospital. General privacy regulations and medical policies result in strict rules
that must be applied to the process of recording footage inside the cath lab. In August 2020, all the
agreements were signed and the cameras were set up inside the cath lab. In October 2020, the first
footage was recorded.

Steps in the nearby future of the project include the collection and analysis of data. An algorithm
must be used to analyse the footage and possibly detect procedural phases automatically, using all the
available and collected information. Additionally, information regarding the phases can derived from
other devices such as the interventional X-ray system. A desired outcome of the project would be to
shift from a static to a dynamic schedule and to be able to analyse the workflow real-time and intraoper-
atively. In due course, the system might be applicable to other types of operating rooms and procedures.
The aim of this report is to contribute to an analysis of the feasibility of using machine data to monitor
workflow and improve procedural planning.
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2.3. Machine Learning Application
This section discusses the principal theory behind the selected machine learning algorithm. Section 2.3.1
describes why a random forest algorithm was selected to be the most appropriate method. Section 2.3.2
explains the concept of a decision tree, which is the fundamental element of a random forest model.
Section 2.3.3 elaborates on the random forest learning method itself.

2.3.1. Optional Methods

To be able to interpret large sets of data and use this information to predict procedure duration, machine
learning can be applied. Machine learning is a "branch of artificial intelligence focused on building appli-
cations that learn from data and improve their accuracy over time, without being programmed to do so"
[22]. The main advantage of using machine learning is that the model is able to learn automatically using
the information available. This implies that the model can also be used to predict the duration of future
procedures that are not part of the current dataset. Given the fact that the data from the interventional
X-ray system can be acquired and used real-time, this also implies that the model can predict duration
intraoperatively. Therefore, the predictions could contribute to dynamic procedure scheduling, making
the general throughput of the cath lab more efficient.

There are various types of machine learning methods that would be appropriate for the purpose of in-
traoperatively predicting the total procedure duration and obtaining an insight into the most significant
information within the dataset. The first option is linear regression, which uses the linear least-square
method to algebraically fit a model that best represents the dataset. This is a model that is easy to
interpret and the effect of each feature on the response variable can be observed from the regression
equation. Furthermore, each coefficient in the regression equation represents an independent variable for
which there are no limits, making it a suitable method for large datasets with many different features.
However, the formula can become quite extensive and no information is provided on the correlation
between features. Furthermore, all features are taken into account for the construction of the regression
equation, meaning that no information is provided on whether some features are unnecessary or lead
to overfitting. Additionally, the model assumes a linear relationship between the input variables and
output, which is not always the case.

An alternative method would be to use support vector machines (SVM). This is a classification technique,
but is relatively sensitive to noise and not computationally efficient for large datasets [56]. Other methods
that are not appropriate for handling large datasets with many different features include Markov models
and Dynamic Time Warping (DTW). Neural networks are also a possible solution, but this method
also lacks computational efficiency when compared to some other methods. None of the aforementioned
methods are capable of providing sufficient information regarding feature importance. Since the aim of
this report is to understand the usability of the interventional X-ray data, rather than to merely apply
it, it is desirable to use a machine learning technique that provides information on the extent to which
each feature affects the predictions for procedure duration. A random forest algorithm, which consists of
multiple decision trees, is a suitable technique to analyse feature importance, as it can assess the impor-
tance of particular features by excluding them from certain permutations and measuring the reduction
in prediction accuracy. The exact theory behind the random forest method is described in the next two
sections.
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2.3.2. Decision Trees

A decision tree is a support tool for estimating an unknown property of the input data, by asking
consecutive questions regarding known parameters. Each point that holds a new question is called a
node and the connections between the nodes are called edges. Each node has one incoming edge. The
combination of nodes and edges give the graph a tree-like shape, hence its name [9]. The input data
for a decision tree consists of individual data points, where each data point is represented by multiple
components called features. In vector format, this can be represented as V = (x1, x2, ..., xN ), where x
represents a feature and N is the total number of features. Table 2.1 provides an example of a dataset
with three data points. Each data point represents a type of animal, characterised by three features.

Table 2.1: Input data for the example decision tree.

Sample Features
Feathers Ability to fly Fins

1 Yes Yes No
2 No No Yes
3 Yes No No

A simple example of a decision tree to determine the type of animal is presented in Figure 2.4. According
to the decision tree, animal 1 must be a hawk. As the tree is shallow and the number of features is limited,
the chance of misclassification is relatively high. However, by increasing the number of features and data
points used to make the decision tree, the classification accuracy can be increased.

Figure 2.4: Example of a decision tree for the data in Table 2.1 [8].

Each internal node is split by two functions that determine the path followed by the datapoint. For
simple datasets, these functions can be generated manually. For complex data, the model must evaluate
the optimal functions for each node itself, based on training data. In a supervised task, training data
refers to a set of data for which the response variable is already known. The response variable is the
answer that one seeks to gain using the decision tree, such as the type of animal in the given example.
Each data point, represented by different features and a response variable, is called a training point. In
an unsupervised task, the training point contains no response variable and only consists of the feature
responses. In this case, the model must detect clusters and specific patterns and define the output pa-
rameters by itself [9].

The optimal split functions are determined by analysing the amount of information gained from splitting
the data in a certain way. This concept is referred to as maximisation of the Information Gain. In order
to understand how Information Gain is deduced, the concept of Information Entropy must be explained,
which refers to the degree of variance within the dataset. A dataset with many repetitive datapoints
represents a low entropy, whereas many different datapoints result in a high entropy.
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The Information Entropy of a particular dataset, where each datapoint could be assigned to a a class C ,
is mathematically formulated as shown in Equation (2.1). In the example decision tree, the classes are
represented by the leaf nodes.

Ebr anch =−
C∑
i

pi log2pi (2.1)

In Equation (2.1), pi represents the probability that a data point belongs to class i . When the data is split
by a test node, the remaining two subsets are called branches. The entropy of each branch is evaluated
based on the number of datapoints from each class left after splitting, by means of Equation (2.1). When
the two entropies are calculated, the quality of the split is determined by weighting the entropy against
the total number of data points in each branch. This is shown by Equation (2.2), where lb refers to the
left branch after the split and r b to the right branch.

Espl i t = plbElb +pr bEr b (2.2)

Finally, the Information Gain (IG) is calculated as shown in Equation (2.3). The aim is to minimise the
Information Entropy that would result from a particular split, thus to maximise information gain.

IG = 1−Espl i t (2.3)

Based on the Information Gain, the most informative features and its corresponding functions are as-
signed to the split. The process of splitting occurs until no further splits can be made or when the
restrictions of the tree have been met. The terminal (leaf) node presents the most probable class or
value, based on the presented node tests throughout the decision tree and the type of decision tree.
Classification regression trees aim to classify input data, whereas regression decision trees are meant to
predict continuous values [9, 21, 30]. In this report, classification trees are used to estimate procedure
duration. This is because having fewer output options, with respect to regression, is likely to result in
a higher prediction accuracy. This in turn increases the reliability of the analyses regarding individual
features and data usability. Once the potential of classifying procedure duration and faulty aspects have
been analysed, regression could be used to further analyse the predictive abilities of the interventional
X-ray data. This is however beyond the scope of this research project.

2.3.3. Random Forest

A random forest is an ensemble of randomly trained decision trees. This implies that all trees that make
up the forest are different, improving generalisation and robustness [4, 6]. There are various parameters
that affect the generalisation of the model, the accuracy of the decision and computational efficiency.
These parameters must be selected based on data characteristics such as size of the dataset and the
presence of noise. More information on selecting such parameters, specifically applied to this report’s
model, can be found in Section 3.2.3.

A random forest uses a technique called Bootstrap Aggregation, commonly known as bagging [4]. This
is a technique in which each decision tree is trained using a different subset of the original input dataset.
The used observations are randomly selected with replacement, thus some observations may be selected
multiple times whereas other do not contribute to the sample. The observations that are not used to
construct a particular decision tree, are called out-of-bag observations [3]. These observations are unseen
to this specific tree and can later on be used to test the accuracy of the tree. Given the fact that different
subsets of training data are used for each tree and split nodes considers varying feature sets as well, a
random forest shows a combination of bagging and randomised node optimisation. The use of varying
training sets to construct each tree reduces the influence of dominant data points and noise, minimising
overfitting and increasing the prediction accuracy when the model is exposed to new data [9, 56]. The
concept of overfitting is further explained in Section 3.2.3.
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3. Data & Methodology
This chapter describes the extraction and optimisation of input data for the classification model, as
well as the required steps for building the model. The aim of Section 3.1 is to explain the interventional
X-ray data, whereas Section 3.2 elaborates upon the test setup of the classification model. The combined
optimisation of the dataset and model is explained in Section 3.3, followed by an overview of the final
classification model in Section 3.4. The method for testing the applicability of the model is explained
in Section 3.5. Finally, the setup for the analysis of individual features with respect to the procedure is
presented in Section 3.6.

3.1. Data Collection
In this section, the methods used to extract and create the data are explained. Section 3.1.1 elaborates
on the data from the interventional X-ray system. Section 3.1.2 explains the method used to filter
CAG procedures from the data. Section 3.1.3 describes the features that are currently logged by the
interventional X-ray system, whereas Section 3.1.4 presents additional features that could improve the
accuracy of the model. Finally, Section 3.1.6 presents how the data is split into training and test data.

3.1.1. Interventional X-ray Data

The data used for this report is provided by Philips Research and is extracted from the interventional
X-ray system in the cath lab of the Reinier de Graaf hospital. The intended purpose of this data is to
provide a technical overview, to be used for machine maintenance or in case of machine malfunctioning.
Each data point within the dataset represents one acquisition, which refers to the recording of a still or
moving X-ray image. The process of generating live moving images is referred to as fluoroscopy, which is
different from standard radiography, which generally fixes still images on film [24]. The vast majority of
CAG acquisitions are fluoroscopic video clips, but there are occasional applications of single-shot record-
ings as well. Throughout the CAG procedure, acquisitions are executed to localise the catheter inside
the body and to guide it towards the desired artery. Furthermore, acquisitions are made to record the
vascular problem and its precise location. Different X-ray settings can be selected based on the desired
purpose of the acquisition. A fluoroscopic acquisition is used for guiding the catheter and is generally
not recorded [32]. Alternatively, a cine acquisition can be selected, which uses a higher radiation dose
for a defined recording. This mode is applied when the catheter has been correctly positioned, after
which the narrowing or blockage is captured. Another possible method for recording the medical condi-
tion is using the Digital Subtraction Angiography (DSA) mode. In this mode, an initial angiography is
made, after which the contrast agent is injected. The initial image is then subtracted from subsequent
angiographs, which removes any content that appears in both images, such as surrounding tissue. This
allows for a clear visualisation of only the vessels that have been injected with the contrast medium, in
order to accurately locate medical impairments [39]. Finally, a single-shot acquisition can be selected,
which produces a still image. This technique is mostly used for determining values for parameters such
as object thickness [32]. To initiate any acquisition, the physician must press a pedal underneath the
surgical table, as can be seen in Figure 3.1. For moving images, the duration of the acquisition is equiv-
alent to the amount of time the pedal is pressed. In order to record the corresponding data, no further
action is required. When a suitable recording mode has been selected, recordings are saved automatically.

The used dataset contains data from all procedures that took place in the cath lab of the Reinier
de Graaf hospital between the 28th of April 2017 and the 19th of April 2019. Within this time frame,
the interventional X-ray system logged a total of 4,339 procedures. The procedures are registered by
means of 137,843 acquisitions, where the number of acquisitions per procedure varies. Each acquisition is
represented by 125 stored values, which correspond to the parameters logged by the interventional X-ray
system. In a machine learning context, such parameters are referred to as features. The total dimension
of the table that makes up the entire dataset is 137,843 by 125, which corresponds to the number of
acquisitions and features respectively.
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The program used to import and analyse the dataset is Matlab. When importing the Excel file that
contains the interventional X-ray data, all but three features are ready for immediate use. The features
that specify procedure date, start time and end time of the acquisition must first be transformed in order
to be compatible with Matlab functions. After importing and transforming all acquisitions into Matlab,
the next step is to filter the dataset as to exclude any procedures that are not CAGs. As this step is
less straight-forward than initially anticipated, a sub-analysis is done to investigate possible methods to
recognise CAG data within the dataset. This process is further explained in Section 3.1.2.

3.1.2. Procedure Type Determination

The dataset retrieved from the interventional X-ray system consists of all procedures that took place
within the aforementioned period, including non-CAGs. Since the model in this report specifically aims
to analyse the progress of a CAG, data from other procedures must be removed. Unfortunately, the
dataset does not specify the procedure type, meaning that this specification must be extracted using
a different method. Two applicable methods include the use of DoseWise data, or the extraction of
information regarding procedure type from other features logged by the machine. The usability of each
method is investigated and assessed below.

DoseWise Dataset
The Philips DoseWise Portal is an additional system that keeps track of each procedure and especially
focuses on monitoring patient radiation dose. Unlike the interventional X-ray dataset, which is meant
for servicing purposes such as maintenance and repair, DoseWise is a user-friendly program that con-
tinuously provides comprehensible insights throughout the procedure. It provides the control room with
real-time information on patient radiation events [41]. Overall, the information logged by the DoseWise
Portal is far less detailed than the information logged by the interventional X-ray system. Fortunately, it
states the type of procedure that is being executed and is therefore suitable for validating procedure type
within the interventional X-ray data. One entry from the DoseWise software represents one procedure
and individual acquisitions are not included. Nevertheless, procedure type can be deduced by matching
the dates and times between the two datasets. The acquired DoseWise dataset consists of 1,091 logged
procedures that took place between the 5th of January 2018 to 4th of April 2019. When matching the
dates and times of all procedures that specify the type to be ’CAG radialis’ to the interventional X-ray
dataset, a total of 601 overlapping procedures are found. The 601 procedures contain 16,536 acquisitions,
which is more than adequate for the creation of a representative model using a random forest algorithm,
given the number of features [3, 56]. Throughout the remainder of this report, only acquisitions from
confirmed CAG cases are used.

It is possible that some of the logged procedures in the DoseWise dataset contain unanticipated CAG
femoralis procedures, that were unregistered by DoseWise. According to cardiologist Dr. Hoftijzer,
catheter insertion through the groin rather than through the wrist is exceptional and occurs in approx-
imately 5% of the cases. However, validating whether this occurred is considered out of scope for this
report. Deduction based on values of the logged features would not be reliable enough. Alternatively,
individual patient records would have to be inspected. Nevertheless, the presence of unconfirmed CAG
femoralis procedures within the dataset does not harm the model. In fact, it is desirable to implement
these procedures rather than to exclude them from the dataset, in order to increase model suitability for
realistic application where a diversion to the groin might also occur.

Application and Procedure Name
A possible disadvantage of using DoseWise data is that it might not be available for real-time imple-
mentation into the model. This means that analyses could only be performed retrospectively, whereas
a desired application of the model is for intraoperative prediction of total procedure duration. An al-
ternative method could be to indirectly deduce it from the features logged in the interventional X-ray
dataset. Despite the fact that the data does not state the name of the procedure, several features provide
information that suggest a correlation with the procedure type. The two features of the dataset that
suggest promising abilities for determining procedure type include ’application name’ and ’procedure
name’, as they specify techniques used and refer to certain internal and external body parts. In order
to analyse this, the prevalence of each application and procedure name among CAGs and non-CAGs are
presented in Table 3.1 and Table 3.2.
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Table 3.1: The selected application names for CAGs and non-CAGs

Application name Occurrences within
CAG procedures

Occurrences within
non-CAG procedures

Abdomen 3D - 1
Abdomen ClarityIQ 19 13,100
Abdomen Thorax XperCT - 358
Cardiac ClarityIQ Xpertaste 16,250 44,900
Cardiac EP 1 9,760
Cardiac Swing ClarityIQ 5 53
Head 3D - 4
Head ClarityIQ 23 64
Head XperCT - 1
Peripheral ClarityIQ 190 48,320
Thorax 3D - 5
Thorax ClarityIQ 44 4,180

Table 3.2: The selected procedure names for CAGs and non-CAGs

Procedure name Occurrences within
CAG procedures

Occurrences within
non-CAG procedures

1 Lower Leg 1 fps 14 10,410
1 Upper Leg 2 fps 93 18,580
2 Lower Legs 1 fps 7 1,385
2 Upper Legs 2 fps 7 1,495
Abdomen 2 fps - 330
Abdomen 2 fps 25% 19 12,900
Abdomen 3 fps 25% - 59
Abdomen 6 fps 25% - 16
Abdomen Prop Scan - 1
Abdomen SingleShot - 132
Aortic Arch LAO 2 fps 23 -
Arm 2 fps 11 2,291
Cerebral 2 fps - 67
Cerebral Prop Scan - 1
Copy of Aortic Arch LAO 2 fps - 4
Exposure 15 fps - 7
Exposure 3.75 fps 1 9,340
Exposure 7.5 fps - 413
Hand Foot 1 fps - 907
Left Coro 15 fps Boost Xpertaste 1,304 4,252
Left Coro 15 fps Low 10,190 22,820
Left Coro 15 fps Normal Xpertaste 4750 17,630
Left Ventricle 15 fps 13 237
Pelvis/Iliac 2 fps 58 12,260
Swing LCA CRA 35 5.8s Xpertaste 3 1
Swing LCA CRA 30 5.3s Xpertaste - 7
Swing RCA AP 4.0s Xpertaste - 6
Thorax 2 fps 44 4,147
Thorax 6 fps - 24
Thorax SingleShot - 10
Xper CT Abdomen Roll (nurse) - 28
Xper CT Cerebral LD - 1
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As shown in Table 3.1, the ’Cardiac ClarityIQ Xpertaste’ application seems to be frequently used in
both CAGs and non-CAGs. Therefore, the fact that this application name is selected does not mean
that the procedure concerns a CAG. Since no other application name is commonly used in CAGs within
this specific dataset, the type of procedure cannot be deduced from the feature that states application
name. Regarding procedure name, three names are particularly common for CAGs, namely ’Left Coro
15 fps Boost Xpertaste’, ’Left Coro 15 fps Low’ and ’Left Coro 15 fps Normal Xpertaste’. Interesting is
that all these names refer to the LCA, but since a CAG captures both arteries, it can be assumed that
this setting is also used for the for recording the RCA. Unfortunately, it appears that the aforementioned
procedure names are regularly selected for non-CAG procedures as well. Therefore, the procedure name
is also not a suitable indicator of procedure type.

Further analysis shows that certain combinations of application and procedure names are not appro-
priate indicators of procedure type either. In 188 procedures, more than one application name was
selected. In most of these procedures, two different application names were used and in seven proce-
dures, three application names were selected. Nevertheless, none of these occasions concerned a CAG. No
combinations of application or procedure names are suitable to characterise the required procedure type.
In conclusion, neither feature can be used to deduce procedure type and further investigation would be
required to assess whether this can be done by means of other features or methods. Considering that
the DoseWise software is capable of providing the necessary information, methods to determine proce-
dure type have not been analysed further within this report. Instead, focus is put on the usability of
interventional X-ray data for other purposes, such as predicting procedural workflow or total procedure
duration. The next section describes the selected set of features used for the prediction model.

3.1.3. Machine Derived Features

Each acquisition in the dataset is represented by 125 different features. Some features represent general
aspects of the acquisition, such as date and time. Other features concern technical aspects, such as
radiation dose and other system settings. Positional features provide details on the exact position of the
surgical table and the interventional X-ray system during each acquisition. A few features are related to
personal characteristics, such as patient age. The complete set of features can be found in Appendix D.
Out of the 125 features, 30 were selected to be relevant for predicting and analysing the workflow and
progress of the procedure. The remaining 95 features were eliminated from the dataset because they
were either incomplete or considered irrelevant for the aim of this particular project. The 30 selected
features are presented and described in Table 3.3. For a better understanding of the configuration of the
interventional X-ray system, Figure 3.1 presents its main components. This diagram should also help
with understanding the features, as some of them refer to the particular components of the interventional
X-ray system.

Figure 3.1: The main components of the interventional X-ray system. Original image retrieved from [40].
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Table 3.3: The original features logged by the interventional X-ray system.

Code Feature name Unit Feature explanation
OF1 Type − Acquisition type (fluoro, cine, DSA or Single-shot) [5, 24, 32, 48].
OF2 Application name − Type of application selected [37]. See Section 3.1.2.
OF3 Procedure name − Type of procedure selected [37]. See Section 3.1.2.
OF4 Run kV Voltage across the X-ray tube. One of the X-ray generator settings

[37].
OF5 Run m A Emission current from the X-ray tube. The higher this number,

the higher the number of photons reaching the detector, thus the
higher the signal intensity.

OF6 Run ms Pulse width of the X-rays.
OF7 Acquisition time s Duration of the acquisition, referring to the total time during

which X-rays were emitted by the tube.
OF8 Frame speed F PS Number of frames recorded by the image detector per second [32].
OF9 Object thickness cm Depth of the irradiated tissue. A larger bodypart requires a larger

entrance dose to obtain the same detector dose [43]
OF10 Requested dose mG y Dose required by the detector to ensure sufficient image quality

[43].
OF11 Dose ratio % Amount of X-ray dose measured by the image detector, with re-

spect to the requested dose. [32, 43].

OF12 DAP mG y
·cm2 Dose Area Product. The dose of radiation delivered to the patient

multiplied by the area of the exposed skin. Provides an estimated
likelihood of skin damage.

OF13 Cumulative DAP mG y
·cm2 The sum of DAP values from all acquisitions, measured from the

start of the procedure.
OF14 AirKerma mG y Measure of the amount of radiation energy deposited to a unit

mass of air. Specifies the radiation concentration delivered to a
point.

OF15 Cumulative Air-
Kerma mG y The sum of AirKerma values from all acquisitions, measured from

the start of the procedure.
OF16 Angulation start ◦ The roll of the C-arm at the start of the acquisition. See Figure 3.2.
OF17 Angulation end ◦ The roll of the C-arm at the end of the acquisition.
OF18 Rotation start ◦ The propeller of the C-arm at the start of the acquisition. See

Figure 3.2.
OF19 Rotation end ◦ The propeller of the C-arm at the end of the acquisition.
OF20 SID m Source-to-image distance. The distance between the X-ray tube

and the detector.
OF21 Position C-arm ◦×102 The unfiltered angulation of the C-arm.
OF22 Position detector ◦×102 The vertical position of the detector. Unfiltered version of the SID.

See Figure 3.2.
OF23 Position propeller µm The unfiltered rotation of the C-arm.

OF24 Frontal beam
long. position µm The longitudinal position of the X-ray system. See Figure 3.2.

OF25 Frontal rotation
detector µm The position of the detector, moving between portrait and land-

scape position. See Figure 3.2.
OF26 Frontal z-rotation ◦ The swing of the C-arm. See Figure 3.2.
OF27 Table height µm The vertical position of the operating table. See Figure 3.2.
OF28 Table lateral µm The lateral position of the operating table. See Figure 3.2.
OF29 Table longitudinal µm The longitudinal position of the operating table. See Figure 3.2.
OF30 Patient age range − The patient’s age group, defined by 10-year segments.
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The positional features in Table 3.3 refer to specific directions that the interventional X-ray system and
the operating table can move in. In order to clarify the implications of the stated directions, Figure 3.2
provides each positional feature code along with its specified direction.

Figure 3.2: The directional axes of particular logged features. Original image retrieved from [40].

3.1.4. Additional Features

One of the disadvantages of using a random forest algorithm is that it does not take into account repeated
measures. Repeated measures refer to the concept of repeating measurements of specific factors on the
same subject, in this case the patient [55]. In the interventional X-ray dataset, multiple acquisitions are
done on the same patient. However, random forest algorithms analyse individual data points, without
considering prior acquisitions from the same patient. Information from preceding acquisitions could
significantly benefit the analysis of the procedure. It is expected that progress estimations throughout the
procedure of a particular patient will be more accurate when information regarding previous acquisitions
is taken into account. In the original logged parameters, as presented in Table 3.3, no features provide
any information regarding the procedure progress or previous acquisitions except for the two features
’cumulative AirKerma’ and ’cumulative DAP’. In order to compensate for the lack of information from
previous acquisitions, a total of 22 extra features have been generated and added to the input data. This
ensures that the model takes into account the repeated measures that the random forest algorithm would
normally disregard. In a later stage of the project, a feature importance analysis will show whether the
additional features are indeed beneficial to the prediction model. The extra features and their definitions
can be found in Table 3.4. Most of the extra features are calculated based on prior acquisitions of that
particular procedure, using simple addition of cumulative values or occurrences relating to a specific
feature. Furthermore, two features relate to the operative phase of the acquisition. The creation and
implementation of these two features is explained in Section 3.1.5.
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Table 3.4: The extra features added to the interventional X-ray dataset.

Code Feature name Unit Feature explanation
EF1 Acquisition number − The total number of acquisitions since the start of the proce-

dure.
EF2 Cumulative time s The elapsed time since the start of the procedure.
EF3 Time since acquisition s The elapsed time since the end of the previous acquisition.
EF4 Cumulative cine time s The total duration of all acquisitions for which the cine mode

was used, within the procedure.
EF5 Cumulative fluoro time s The total duration of all acquisitions for which the fluoro

mode was used, within the procedure.
EF6 Cumulative DSA time s The total duration of all acquisitions for which the DSA mode

was used, within the procedure.
EF7 Number of cine uses − The number of acquisitions for which the cine mode was used,

within the procedure.
EF8 Number of fluoro uses − The number of acquisitions for which the fluoro mode was

used, within the procedure.
EF9 Number of DSA uses − The number of acquisitions for which the DSA mode was

used, within the procedure.

EF10 Cumulative acquisition
time s The total duration of all acquisitions, within the procedure.

EF11 Cumulative non-
acquisition time s The total amount of time during which no acquisitions were

made, within the procedure.
EF12 RCA phase − The estimated phase of the RCA recording. See Section 3.1.5

for more information.
EF13 LCA phase − The estimated phase the LCA recording. See Section 3.1.5

for more information.
EF14 Acquisition frequency 1/s The average number of acquisitions done per unit of time,

within the procedure.

EF15 Vert. distance travelled
table µm The total vertical distance travelled by the table since the

start of the procedure.

EF16 Number of vert. moves
table − The number of changes in the vertical position of the surgical

table since the start of the procedure.

EF17 Lat. distance travelled
table µm The total lateral distance travelled by the table since the start

of the procedure.

EF18 Number of lat. moves
table − The number of changes in the lateral position of the surgical

table since the start of the procedure.

EF19 Long. distance travelled
table µm The total longitudinal distance travelled by the table since

the start of the procedure.

EF20 Number of long. moves
table − The number of changes in the longitudinal position of the

surgical table since the start of the procedure.

EF21 Long. distance travelled
front beam µm The total longitudinal distance travelled by the frontal beam

since the start of the procedure.

EF22 Number of long. moves
front beam − The number of changes in the longitudinal position of the

frontal beam since the start of the procedure.
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3.1.5. Operative Phase Implementation

In prior work done for the overarching workflow project, K.M. van der Graaf defined the different phases
of a CAG [28]. For each acquisition within the interventional X-ray dataset, the corresponding operative
phase is estimated and used as additional input data for the model, with the aim of improving predictions
of procedure duration. In Table 3.4, the operative phase is expressed by means of two features, EF12
and EF13, which refer to the phases for capturing the right and left coronary artery respectively. This
subsection explains how the phases are detected within the interventional X-ray data and examines the
detectability of each step. Furthermore, it contains an analysis of the overall accuracy and usability of
the defined phases. In order to understand the numerical implementation of the operative phases into
the additional feature set, it might be helpful to first attain deeper knowledge of the complete set of
steps taken for a CAG.

1. Lab preparation
Start-up of the machines and readying of the cath lab for the first patient.

2. The procedure
Execution of the interventional procedure, including preparation and post-care of the patient.

(a) The patient preparation phase
Entry of the patient into the cath lab and preparation of the patient for the CAG.

(b) The operative phase
Execution of the CAG.

i. Realisation of endovascular access.
ii. Catheter insertion and guidance to the upper aorta.
iii. Entry and recording of the first coronary artery.
iv. Entry and recording of the second coronary artery.
v. Catheter removal and closure of the entry wound.

(c) The post-care phase
Finalisation of procedure and exit of the patient from the cath lab.

3. The turnaround
Cleanup of resources from the previous procedure and preparation of the cath lab for the next patient.

4. The clean-up
Cleanup of the cath lab and the shutdown of machines [28].

K.M. van der Graaf defined steps 1 to 4 to be the high-level workflow phases. Additionally, steps 2a-c
were presented as procedural phases. The second procedural step was further split up into steps 2b i-v,
representing the operative phases. In addition to assigning qualitative definitions to each step, steps
2b iii-iv were given quantitative values. These substeps represent the recording of the RCA and the
LCA, where recordings of the RCA generally require 3 steps, and capturing the LCA normally requires
5 sequential steps. According to K.M. van der Graaf, each of these steps correspond to a common range
of angles at which the C-arm is positioned. Based on this observation, she expressed the steps in terms
of angulation and rotation of the C-arm and hypothesised that the common values for angulation and
rotation might be useful for detecting the operative phase of the procedure. By implementing features
that state the detected steps of the LCA and RCA phase into this classification model, this hypothesis can
be tested. The steps and corresponding values for angulation and rotation are shown in Table 3.5, under
’original angulation’ and ’original rotation’. The intervals are expressed using terms that specifically
relate to the spinning direction of the C-arm. For example, caudal angulation (CAU) refers to a tilt of
the central ray, projected from the tube underneath the operating table towards the feet of the patient
as shown in Figure 3.4. For cranial angulation (CRA), the central ray is tilted towards the opposite
direction, pointing towards the head of the patient. At 0◦, the central ray is emitted vertically upward.
In terms of rotation, a Left Anterior Oblique (LAO) view points the central ray towards the left size of
the patient. For the Right Anterior Oblique (RAO), the tube is tilted as to capture the right side of the
subject, for which the detector moves to the right accordingly [36]. Both rotational directions can be
seen in Figure 3.3.
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Table 3.5: The general angulation and rotation values of each operational step [28].

Phase Step Original
angulation

Applied
angulation

Original
rotation

Applied
rotation

RCA
1 0◦ [-10◦, 10◦] [ 30◦, 40◦] LAO [ 20◦, 50◦]
2 [ 30◦, 40◦] CAU [ 20◦, 50◦] [ 30◦, 40◦] RAO [-50◦,-20◦]
3 [ 30◦, 40◦] CRA [-50◦,-20◦] [ 30◦, 40◦] LAO [ 20◦, 50◦]

LCA

1 0◦ [-10◦, 10◦] [ 30◦, 40◦] LAO [ 20◦, 50◦]
2 [ 30◦, 40◦] CAU [ 20◦, 50◦] [ 30◦, 40◦] LAO [ 20◦, 50◦]
3 30◦ CRA [-40◦,-20◦] 30◦ LAO [ 20◦, 40◦]
4 [ 30◦, 40◦] CRA [-50◦,-20◦] [ 0◦, 20◦] RAO [-30◦, 10◦]
5a 20◦ CAU [ 10◦, 50◦] 20◦ RAO [-30◦,-10◦]
5b 40◦ CAU [ 10◦, 50◦] 20◦ RAO [-30◦,-10◦]

Figure 3.3: The right and left anterior oblique rotation [51].

Figure 3.4: The caudal and cranial angulation [51].

For each acquisition, the RCA feature (EF12) states which combinations of angulation and rotation from
the RCA steps in Table 3.5 have been detected within the entire procedure so far. The same goes for
the LCA feature (EF13), based on the corresponding values for angulation and rotation from the LCA
steps. The standard value of both features is 0. As soon as the values for angulation and rotation of
the acquisition match the values from the first step of either the RCA or LCA phase, the value of the
corresponding feature changes to 1. Then, the model scans for a match between the subsequent acquisi-
tions and values for angulation and rotation of the second step. The model is configured to require the
detection of one step before being able to scan for a match with the next step. One feature tests for
indications that suggest a recording of the RCA, whereas the other feature aims to detect LCA acqui-
sitions. Most physicians first examine the RCA, followed by the LCA [28]. However, as this sequence
of events cannot be guaranteed, the analysis must test each acquisition for both phases. Therefore, the
two operative phases are simultaneously included in the interventional X-ray dataset.

18



In order to increase detectability, the angulation range and rotation range are given an extra mar-
gin of ±10◦. This implies that the value of the RCA feature switches to 1 if the angulation values are
within 10◦ CRA and 10◦ CAU and the rotation values are within LAO 20◦ and 50◦. The same goes
for the other RCA and LCA phases and their respective angulation and rotation values. All intervals
that correspond to the extended margins are shown under ’applied angulation’ and ’applied rotation’
in Table 3.5. Furthermore, the interventional X-ray system does not record the angles using the terms
shown in Figure 3.3 and Figure 3.4, but uses negative values to express the CRA and RAO directions
instead. The intervals that include the extended margins are expressed using the format that corresponds
to the interventional X-ray data. At last, step 5b from Table 3.5 is applied when 5a does not provide
an adequate recording. For simplicity purposes, the substeps are merged, corresponding to an angular
range of 10◦ to 50◦ and rotational range of 10◦ to 30◦.

Detectability of the operative phases
The histograms in Figure 3.5 show the distribution of detected phases for all acquisition within the
dataset, according to the intervals from Table 3.5. Based on the used dataset, there is no method to
retrieve the true phase of each acquisition. Nevertheless, the extent to which each of the defined phases
can be detected and might contribute to the predictions for procedure duration can be analysed. It
appears that no steps from either phase are detected for approximately 2,200 of the acquisitions. A pos-
sible clarification is that these instances correspond to acquisitions in which the other coronary artery
was being examined. A different option is that they are acquisitions during which the catheter had just
arrived in the aorta arch. When this is the case, the interventional X-ray system is usually in rest position
and both angulation and rotation values correspond to 0◦. Alternatively, the angulation and rotation
values are different from the common values for other reasons. Such reasons can merely be speculated
and validating this was considered to be beyond the scope of this research.

(a) Distribution of the RCA phase detection. (b) Distribution of the LCA phase detection.

Figure 3.5: The detection rate of each coronary artery phase within the dataset.

Step 1 is by far the most detected step in the dataset. It should be noted that for both the RCA and
the LCA phases, the first step corresponds to the same range of values for angulation and rotation.
Therefore, any step that has been detected as being step 1 for the RCA, has also been classified as step 1
for the LCA. More information would be required to validate whether the step concerns the RCA or the
LCA. Furthermore, the extra margins of 10◦ added to each step result in more overlap between intervals
that correspond to each step. Therefore, steps could be confused with one another. However, without
the use of the aforementioned margins, only a minimal number of phases have shown to be detected
using the available data. This shows a variability in angulation and rotation values, beyond the defined
range of values given in Table 3.5.
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To be able to analyse the detection of each step with respect to the procedural progress, progress is split
into segments of 10%. For each segment, the steps of all acquisitions within that segment are given. This
provides an insight into the moment at which specific steps are detected throughout the interventional
procedure. Figures 3.6 and 3.7 show that in the first 10% of the procedure, the model mostly detects
either no phase or the first step of the phases. Both RCA and LCA phases show the same increase in
detection rate of the first phase between 0% and 40% of the procedural progress, as expected since step
1 is the same for both phases. Furthermore, Figure 3.6 shows that the detection rate of the first step
of the RCA phase also increases between 70% and 100% of the interventional progress. Given the fact
that the angular and rotational range is the same for step 1 of both phases, one would expect the same
rise in the graph showing the detected LCA steps. Nevertheless, this is not the case. The reason might
be that subsequent acquisitions are found to correspond to higher steps of the LCA phase. The fact
that steps from the LCA phase lie closer together in terms of angular and rotational values could enable
this. This means that steps that are identified as step 1 are more likely to fit the angular and rotational
range of step 2 or higher. Alternatively, the defined range of values for steps of the LCA recording are
more accurate with respect to the true values for the position of the C-arm. Both reasons could explain
why the LCA phase shows a high detection rate for steps beyond the first step, whereas the majority
of the detected RCA steps correspond to step 1, even at the end of the procedure. This suggests a low
detectability of the second step of the RCA phase. The fact that there are generally fewer acquisitions
between 30% and 70% of a procedure, as shown in Appendix A, could also contribute to the fall and
subsequent rise in detection rate within this procedural time frame.

The fact that step 5 from the LCA phase and step 2 from the RCA phase are relatively similar in
terms of angulation and rotation could explain why the latter shows an exponential increase beyond
90% of the procedural progress. Following this increase in detection rate of step 2 from the RCA phase,
the model now seeks to detect step 3, resulting in an increased detection rate of the third step as well.
The LCA phase shows a more gradual increase in detection rate of all subsequent steps, with respect to
procedural progress. This observation further supports the theory of the low detectability of step 2 of
the RCA phase. This would imply that the angular and rotational intervals, as shown in Table 3.5, are
presumably not representative of the position of the C-arm in the RCA phase. If this assumption were
correct and the detected LCA steps are indeed more reliable, it is possible that the increased detection
rate of the LCA steps towards the end of the procedure is due to the fact that the LCA recordings are
usually performed after imaging of the RCA.

Figure 3.6: The detection rate of each RCA phase with respect to progress.
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Figure 3.7: The detection rate of each LCA phase with respect to progress.

Usability of the operative phases
In conclusion, the observations do not show enough evidence to state that the angulation and rotation
are beneficial for estimating the progress of the interventional procedure. The steps of the LCA phase
show a higher detectability, yet the detection accuracy cannot be guaranteed using the information that
is currently available. For an accurate analysis, the steps must be represented by more features, as the
angulation and rotation are too variable to be detected by the original intervals presented in Table 3.5.
When adding margins, the intervals are too similar and cannot be differentiated without extra informa-
tion. Even though the success of the features that detect the RCA and LCA phases cannot be guaranteed
based on this analysis, the features are still implemented into the random forest classification model. If
the model finds the additional features to be invaluable, it will automatically remove them from the fea-
ture set during the recursive feature elimination procedure. This is where the optimal number of features
to be implemented into the model is deduced, as well as the exact list of features that should make up
the final dataset. The steps for optimisation of the feature set are further elaborated upon in Section 3.3.

3.1.6. Data Framing

In order to move on to the creation of the classification model, the input dataset must be tested for
noteworthy outliers and split into training data and test data. The reason for these steps is explained
below.

Outlier removal
Two procedures within the dataset contain acquisitions that are separated by a significant amount of
time. One of these procedures contains multiple acquisitions within the first 12 minutes of the procedure,
followed by one last acquisition executed 58 minutes later. The other procedure shows a similar situation.
Since the procedures show only one acquisition after a relatively large amount of time, it is likely that the
datapoint is a mistake and is not part of the same procedure. This assumption has been acknowledged
by a cardiologist at the Reinier de Graaf hospital. It is possible that the new patient file had not yet
been uploaded. Alternatively, the foot pedal could have been pressed for cleaning purposes, rather than
to capture an acquisition. To ensure that the results would not bias the training and outcome of the
classification model, all acquisitions from the two procedures that possibly contained faulty data are
removed from the dataset.
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Further outliers in the data are a result of delayed procedures. Nevertheless, these procedures do not
show a questionable amount of time in between different acquisitions and are therefore assumed not to
be a mistake in the data. Furthermore, these outliers must be included within the data used to train
the classification model, in order to enable the detection of delayed procedures in the future. This trains
the model to understand how different features change when the procedures show a potential delay.
Additionally, random forest is said to be robust to bias due to outliers, due to its use of bagging. Seeing
that each tree is trained using a different subset of data, the outliers are only included in the training
data for a number of trees. This reduces the extent to which the model is biased towards the outliers
[3, 4].

Data splitting
In this report, the random forest model is optimised and tested by means of two different methods. This
is done because both methods provide interesting and sometimes varying insight into classification ac-
curacy and overfitting. The first method evaluates the out-of-bag error to assess classification accuracy.
The advantage of out-of-bag analysis is that all trees are tested using different subsets of data, which
means that the resulting accuracy is based on a larger variety of data. For example, if the test data
from the cross-validation method is not representative of the overall dataset and contains outliers that
the training data does not contain, the classification accuracy will be biased. When out-of-bag analysis
is applied, the presence of outliers in the test data has a lower effect on the classification accuracy, since
approximately one third of the trees are not tested using data that contains the outlier [3]. Furthermore,
out-of-bag analysis removes the need to split up the dataset into training and test data. This implies
that all data can be used to train the model, increasing its predictive abilities. This is also why the
out-of-bag method is particularly suitable for small datasets. Additionally, out-of-bag analysis has a
relatively fast computational speed. The tree can be built and evaluated simultaneously. Nevertheless,
each datapoint from the test data is only tested on the trees that did not use the datapoint to be con-
structed. This means that each datapoint is evaluated using a smaller number of trees compared to the
second validation method, which could lead to a lower classification accuracy [25].

The second method is based on cross-validation using test data. This method implies that once the
model is completed and optimised, results are tested using data that was not used to train the clas-
sification model. Therefore, each datapoint from the test data can be evaluated using every decision
trees within the random forest. Another advantage of cross-validation is that the method allows for
comparing the training error to the test error. When the model outputs a training error that is close
to zero and classification error based on test data is significantly higher, the model is too specifically
trained for the training data and overfitting has occurred. This implies that an excessive amount of the
noisy data was taken into account when creating the classification model. The random forest model now
requires generalisation to make it more suitable for unseen test data. This can be done by changing
the hyperparameters, as further explained in Section 3.2.3. Furthermore, cross-validation is suitable for
the testing the model using completely new datasets. For example, cross-validation allows for testing of
the classification model designed in this report using interventional X-ray data from other time periods,
without having to change the classification model itself.

In this report, 15% of the datapoints are removed from the original dataset to be used as testing data.
Training points are randomly selected without replacement, to ensure that none of them are included
in the test data. For the remainder of this chapter, only the training data is used as input data for the
creation and optimisation of the random forest model. This means that both validation methods are
applied to the same model, created by using the training data. This enables evaluation of an identical
model, despite the validation method used. Only for the distribution analysis of procedure duration and
the selection of classes, the entire dataset is used. These steps are further elaborated on in Section 3.2.1
and Section 3.2.2 respectively. Once the model has been tested using both validation methods, the val-
idation method that results in the highest classification error is used to evaluate the model in further
depth. This is done to reduce the optimistic bias of the results to the fullest extent.
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3.2. Classification Test Setup
This section revolves around the preparation and optimisation of the random forest classification model.
In order to predict the procedure duration based on classification, the durational range of each class
must be defined in advance. The distribution of procedure duration within the dataset is analysed in
Section 3.2.1, based on which the classes are selected in Section 3.2.2. Finally, Section 3.2.3 explains the
optimisation of the random forest model, by means of hyperparameter tuning.

3.2.1. Sample Distribution

The aim of the classification model is to predict the total procedure duration for each individual acqui-
sition. The procedure duration refers to the time between the first acquisition and the last acquisition,
as this is the time frame logged by the interventional X-ray system. The other phases of the proce-
dure, including patient preparation and the post-care phase, are not considered in this particular model.
Nevertheless, most variation occurs in the operative phase, thus a large part of the indicators of a de-
viating procedure duration should be detectable by the model [28]. Since the model is used to classify
the estimated duration of each procedure, a number of preset classes must be defined, which is done
based on the distribution of data. In order to analyse this distribution, all procedures included in the
available dataset are arranged according to their value for total procedure duration. In order to account
for the fact that the procedures contain different numbers of acquisitions, one data point per procedure
is considered for the analysis. The distribution of procedure duration can be seen in Figure 3.8.

Figure 3.8: The distribution of procedure duration within the dataset.

In this particular histogram, each bin width represents a range of 2.5 minutes. For the majority of the
procedures, less than ten minutes were required to complete the examination of both arteries. A large
part of the procedures require only 5 to 7.5 minutes and a few examinations were even executed within
2.5 minutes. Nevertheless, several cases appear to have lasted longer than an hour, which makes it
clear that the total duration varies significantly. Underneath the histogram, a boxplot is used to clarify
the distribution and presence of outliers. The blue box represents the interquartile range, referring to
the middle 50% of data. All values outside 1.5 times the interquartile range are considered outliers,
corresponding to a procedure duration longer than 23 minutes. The median value for procedure duration
is 8 minutes and 9 seconds and the mean procedure duration is exactly 11 minutes.
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3.2.2. Class Selection

Appropriate procedure duration classes can be selected based on the distribution in Figure 3.8. The
aim is to select four classes that represent procedure duration and correspond to a standard duration,
slight delay, significant delay and severe delay. A possible option for defining the four classes is by using
the mean duration as a reference point and adding one, two and three standard deviations respectively.
This would mean that the classes are represented by the spaces within and outside the purple, green
and blue lines on Figure 3.9. Nevertheless, the mean is not an appropriate reference point because it is
skewed towards the outliers and is relatively far off from the most common value for procedure duration.
Using the median value to represent the standard duration of a procedure is more suitable in this case.
Furthermore, the approximate value of the first standard deviation from the mean is 20 minutes, but
the vast majority of the procedures requires less time to complete the examination. Therefore, extra
separation is required for more accurate predictions within this time frame. Given that the median value
for duration is approximately 8 minutes, the first two classes are selected to represent the range between
0 to 10 minutes and 10 to 20 minutes. An appropriate duration range for the third and fourth class
correspond to a duration of 20 to 30 minutes and a duration greater than 30 minutes respectively.

Figure 3.9: The distribution of procedure duration with respect to individual procedures and selected classes.

A distribution of all 599 procedures and their respective duration can be seen in Figure 3.9, along with the
selected classes separated by the dashed lines. From the figure above, it is clear that the standard class
shows the highest density in terms of procedures. Nevertheless, the other classes also contain a significant
number of procedures, which is required for adequate training of the random forest classification model.
The number of procedures per class is examined and presented in Table 3.6. The table shows that Class
1 is by far the most prevalent class, even though it corresponds to a duration range that lies below the
mean.

Table 3.6: The selected classes for procedure duration and occurrence within the dataset.

Class Duration (minutes) Number of procedures
1 0-10 369 (61.6%)
2 10-20 161 (26.9%)
3 20-30 47 (7.85%)
4 >30 22 (3.67%)
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Even though Class 3 and Class 4 are represented by a relatively small number of cases, they notably
contribute to the random forest model. The use of random forest is particularly appropriate for small
sample sizes, due to its application of bootstrap aggregation. By randomly selecting a subset of Class 3
or 4 data with replacement, there are no restrictions on the size of the training dataset, while maintaining
the characteristics of the original dataset. This ensures that an appropriately sized representation of the
data can be implemented into the model. Nevertheless, use of a smaller training dataset does reduce
model performance with respect to a bigger set of training data. In this case, the selection of classes
is based on the preference to optimise the model for detecting the severity of the delay, rather than
small deviations in terms of a few minutes. If the latter were the case, smaller margins would have
been selected, closer to the start of the procedure. As this is the first step of the analysis of this
particular dataset, broader margins seem more appropriate. Nevertheless, using smaller classes could be
an interesting modification in follow-up studies.

3.2.3. Hyperparameter Tuning

In order to set up the classification model, multiple parameters that characterise the random forest must
be defined. Such parameters are referred to as hyperparameters, whose values depend on the input
data and the aim of the model. Optimisation of the hyperparameters can maximise prediction accuracy.
However, incorrect hyperparameter tuning can lead to overfitting. This section defines the concept of
overfitting and explains how it can be prevented, after which each hyperparameters is described and
optimised.

Overfitting
Generalisability is one of the main objectives of machine learning [10]. Overfitting occurs when the
model is too specifically trained for the training data and performs poorly when exposed to new data,
which implies a low generalisability. When the noisy data and outliers are overly implemented into the
classification model, it becomes biased and shows a reduced performance on unseen data. The occurrence
of overfitting can be tested by running the model on the training data, followed by the test data. If the
training error is close to zero and the test error is significantly larger, the model is probably overfitted.
For out-of-bag evaluation, overfitting can be shown by means of a high classification error. However, the
error could in this case also be due to other reasons. In general, random forest techniques have a low
probability of overfitting, with respect to other machine learning methods [4]. Since the use of bagging
reduces the influence of noisy data and outliers, as explained in Section 3.1.6, the classification model is
less likely to be susceptible to dominant data. This results in a generalised model that is suitable for use
by new data.

In order to reduce the likelihood of overfitting to a minimum, the classification model should be defined
by the use of optimal hyperparameters. Ideally, the model is detailed enough to provide an accurate
prediction of procedure duration. Nevertheless, it should also perform well when tested on new data,
in order to allow for predictions of future procedures. Hyperparameters determine the behaviour of the
algorithm and affect its randomness and performance. Standard programmes are known to provide an
adequate set of default hyperparameters [14, 16]. Nevertheless, the application of an algorithmic opti-
misation could improve the selection of hyperparameters even further. For each of the hyperparameters
discussed in this section, multiple options are tested with respect to their out-of-bag error. The out-of-
bag error is used due to the fact that it is computationally efficient and can be tested simultaneously to
model creation. For each parameter, the value that corresponds to the lowest out-of-bag error should be
used. The error reduces as classification accuracy increases, yet the error will go up again as overfitting
starts to occur. Graphical demonstrations of this can be seen in the next few sections.

Number of trees
The first hyperparameter involves the number of decision trees used in the random forest model. As
more individual trees are built and trained by the model, more subsets of the training data are used to
optimise predictive ability, resulting in a higher classification accuracy. Therefore, the number of trees
must be sufficiently large, in order to prevent high error rates. Nevertheless, using more decision trees
leads to a significantly higher computation time, which increases linearly with respect to the number of
trees. As a rule of thumb, ten times the number of features used in the model can be used as a starting
value for the number of trees [9, 16]. At this point, the number of features implemented is 52.
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The sufficient number of trees required for the classification model can be deduced by graphing the
number of trees against the out-of-bag misclassification probability, which refers to the probability that
a data point is incorrectly classified with respect to its true duration class. When the misclassification
probability stabilises, the appropriate number of trees has been reached. When running the data through
a simple random forest classification model and setting the maximum number of trees to 600, as to ensure
that more than ten times the number of features are used, Figure 3.10 is produced.

Figure 3.10: The effect of the number of trees on the out-of-bag classification accuracy.

From this graph, it can be seen that from the point when approximately 150 decision trees are used, the
error rate stabilises. However, error still slightly reduces as the number of trees increases, especially up
to 300 trees. Even though the error rate never stabilises completely, deviations are minimal and do not
affect the misclassification probability enough to outweigh the increase in computation time. A total of
300 decision trees are used for the remaining optimisation of the random forest classification model.

In-bag fraction
The second hyperparameter is the in-bag fraction, which refers to the size of the sample set of observations
selected during the bootstrap aggregation process. Using a bigger sample set means that more data is
used to train the model, which will probably result in a higher classification accuracy. Nevertheless, a
higher in-bag fraction reduces the randomness of the model, which could lead to overfitting. The default
value for in-bag fraction is 1, which means that the entire dataset of observations is used. Nevertheless, as
replacement is used, the bootstrap sample is different from the training set. The observations are selected
with replacement, meaning that some observations are selected multiple times whereas others do not
contribute to the sample whatsoever. The latter observations are the so-called out-of-bag observations.
On average, two-thirds of the original dataset end up in each bootstrap sample, when replacement is used
[3]. In order to test for the optimal in-bag fraction (IBF) for this particular dataset and selected number
of trees, four different fractions are tested with respect to the out-of-bag misclassification probability, as
shown in Figure 3.11. From 25 trees onwards, an in-bag fraction of 1 results in the lowest misclassification
probability and is considered the most appropriate value. The occurrence of overfitting can be ruled out,
as this would have increased the misclassification probability notably, as described in Section 3.1.6.
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Figure 3.11: The effect of the in-bag fraction on the out-of-bag classification accuracy.

Number of features to sample
An essential characteristic of the random forest algorithm, as defined by developer L. Breiman, is that
at each decision split only a subset of the features are considered for further splitting [4]. The size of this
subset is defined by the number of features to sample [35]. This prevents dominant features from over-
shadowing other possibly relevant features and increases the stability of the model by reducing variance.
This in turn reduces the chances of overfitting [18]. In this context, variance refers to the sensitivity of
the classification model to specific characteristics of the dataset, such as noise and specific observations [6].

Variance can be decreased by increasing the number of features to use within a bootstrap sample, as to
reduce randomness. However, using too many features in a bootstrap sample could lead to overfitting.
In classification, the default value for the number of sampled features is the square root of the number
of features. With the current feature set of 52 features, this means that eight features would be used
for each decision tree. Different values for number of features to sample are tested against out-of-bag
misclassification probability as shown in Figure 3.12. These values correspond to 80%, 60%, 40%, the
square root and 10% of the number of features respectively. From this graph, it appears that when a
small number of features is sampled, such as 5, the model is not accurate enough. Furthermore, when a
high number of features is sampled, the misclassification probability increases and the model is probably
subject to overfitting. The optimal number of features to sample based on the current dataset and feature
set, out of the tested values, is 21 and corresponds to 60% of the feature set size. Despite its promising
results, using a set of 21 features at each decision split increases the computation time drastically. When
running the random forest classification model on the entire dataset and considering a feature set of size
21 at each split, the model takes 148.7 more seconds to run. For the recursive feature elimination, this
would result in approximately 21 extra hours of extra computation time. When using the default value
for number of features to sample, computation time is reduced by 18%. When put into perspective, this
leads to a decrease in out-of-bag misclassification probability of less than one percent. This change does
not outweigh the significant decrease in computation time. Therefore, the default value, equal to the
number of features squared, is used as the number of features to sample throughout the remainder of
the optimisation model.
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Figure 3.12: The effect of the number of sampled features on the out-of-bag classification accuracy.

Tree depth
The tree depth refers to the number of layers in each individual decision tree. Increasing the number
of layers in a decision tree increases the accuracy of the model and ensures that all necessary features
are taken into account. However, having too many layers could lead to overfitting. Furthermore, a high
number of layers reduces interpretability of the model, although this is unlikely to be of importance
when applying the decision trees to a bigger structure such as a random forest. In other programming
languages such as Python or R, the tree depth can be adjusted manually. However, Matlab does not
allow for this and controls the tree depth by means of three other parameters, including the maximum
number of branch node splits, the minimum leaf size and the minimum parent size, as discussed below.

Maximum number of splits
The maximum number of splits determines the maximum variation of binary pathways that a given node
can split into. In order to increase tree depth, a large number of possible splits must be used [21]. The
default value is n −1, where n is the length of the dataset. The total number of possible splits equals
2k−1 −1, where k equals the number of classes. As there are four possible duration classes, there are
seven possible splits. In order to ensure all possible splits are included in the model, the default value of
seven is maintained.

Minimum leaf size
The minimum leaf size is the minimum number of observations required per leaf node and determines,
among other parameters, when to stop the splitting process. Having a small leaf size means that the
tree will keep growing to split up the observations into further leaf nodes. For example, an input dataset
that consists of 1000 data points is split up into 600 and 400 data points. If the minimum leaf size is
set to 400, this condition has been satisfied and the tree can be considered finished, although probably
with a poor predictive performance. However, if the minimum leaf size is 60, the tree can keep growing
until 60 observations or more are left in the leaf node, which would probably result in a higher accuracy.
[4]. By default, a classification tree requires one observation per leaf [35]. Besides a higher accuracy,
a small leaf size may lead to overfitting, since noisy data is now also given individual leaf nodes. The
optimal leaf size can be found by graphing multiple random forest estimations against the out-of-bag
misclassification probability, using different leaf sizes.
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Figure 3.13: The effect of the minimum leaf size on out-of-bag classification accuracy.

Figure 3.13 shows that when a higher number of leafs is used, the model requires a lower number
of trees to stabilise the error rate. However, a higher number of leafs results in a higher out-of-bag
misclassification probability. The misclassification probability is lowest when the minimum leaf size is
1. The graph shows that when this leaf size is used, overfitting does not occur as the misclassification
probability stays low. Therefore, a leaf size of 1 is used for the remaining model optimisation steps.

Minimum parent size
The minimum parent size defines the number of observations in each parent node before a split is
attempted. This value must be small to get a large tree depth. Decreasing the minimum parent size
increases the predictive abilities of the model, but could lead to overfitting. The default value of minimum
parent size is twice the value for minimum leaf size, which means that a parent node would be required
to have at least two observations before further splitting. As it has been shown that overfitting does not
occur when the minimum leaf size is used and no restrictions are imposed on the minimum parent size,
the default value is maintained.
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3.3. Recursive Feature Elimination
Running a random forest model with too many features can lead to overfitting, resulting in a model that
is too excessively trained on the training data and will perform poorly once exposed to new data. Fur-
thermore, using too many correlated features impact the model’s ability to recognise strong predictors
[11, 45]. In order to find the optimal number and combination of features for the random forest classi-
fication model, a recursive feature elimination (RFE) method is applied. Using this iteration method, a
backward selection of important features is made by continuously removing the least important feature
for determining duration class. Initially, all 52 features are used as input for the random classification
model. The feature that has shown to be least significant for estimation of the duration class is then
removed from the feature set, along with its respective data and the model is run again. For each new
feature set, the misclassification error is evaluated and the removed feature is registered. This process is
repeated until only one feature remains, after which the misclassification errors are graphed against the
number of features used by the model. The lowest point of this curve represents the lowest misclassifica-
tion probability and corresponds to the optimal number of features. In order to provide a more robust
conclusion on the optimal number of features, as well as the optimal set of features, the RFE is run ten
times. Furthermore, two different types of error are used. For the first five runs, the out-of-bag error is
used to evaluate misclassification probability and eliminate features. For the other five, cross-validation
is used. In all ten RFE runs, different randomly selected subsets of training data are used, as to avoid
selection bias. The original training to test data ratio of 0.85 to 0.15 is maintained. The results of all
ten RFE runs are plotted in Figure 3.14. [14].

Figure 3.14: The misclassification probability against the number of features, based on 10 RFE applications.

The optimal number of features is deduced by taking the average of all ten optima, resulting in a set of
19 features. To find the optimal combination of features that should make up the final set, each feature
is given a score based on its final ranking in each of the RFE applications. The mathematical expression
for the feature score of feature i is given in Equation (3.1).

Scor ei = 1∑N
n=1 F in

(3.1)
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In Equation (3.1), F represents the ranking of feature i in one specific RFE application and N represents
the total number of times the RFE is applied. The process is repeated for each feature in the feature
set. The 19 features with the highest scores are displayed in Table 3.7. This is the final feature set
for estimating procedure duration class using the random forest model. Out of the 19 most significant
features, 13 correspond to features from the original dataset. The remaining features were added in
Section 3.1.4. The complete result of the RFE can be found in Appendix C.

Table 3.7: The optimal feature set based on results from the RFE.

Code Feature name Unit Score
EF2 Cumulative fluoro time s 1
EF14 Acquisition frequency 1/s 0.476
EF4 Cumulative cine time s 0.345
OF29 Long. position table µm 0.227
OF30 Patient age range − 0.217
OF9 Object thickness cm 0.156
EF19 Long. distance travelled table µm 0.139
OF22 Detector position µm 0.098
OF28 Lat. position table µm 0.083
OF24 Long. position frontal beam µm 0.078
OF18 Rotation start ◦ 0.076
OF19 Rotation end ◦ 0.074
OF20 SID m 0.073
EF5 Cumulative fluoro time s 0.073
OF26 Frontal z-rotation ◦ 0.065
OF23 Propeller position µm 0.064
OF4 Run kV 0.064
OF7 Cumulative acquisition time s 0.063
EF18 Number of lat. moves table − 0.059

3.4. Classification Model Overview
The final set of features, to be used as input for the random forest classification model in order to
predict CAG procedure duration class, is presented in Section 3.3. Considering that the feature set and
therefore the width of the input dataset has changed with respect to the initial dataset consisting of 52
features, the hyperparameters must be reevaluated. This is because the hyperparameters depend on the
characteristics of the input dataset and affect model performance. The renewed optimal characteristics
of the random forest classification model are found using the same steps as described in Section 3.2.3 and
are presented in Table 3.8. With respect to the hyperparameters of the initial dataset, only the number
of trees has changed from 300 to 350, in order to obtain the highest prediction accuracy.

Table 3.8: An overview of the hyperparameters of the final classification model.

Parameter name Value
Number of trees 350
In-bag fraction 1

Number of features to sample 5
Maximum number of splits 14,017

Minimum leaf size 1
Minimum parent size 2

Now that the feature set is optimised and all parameters of the classification model have been decided
upon, the model is ready for use. The results of the applied classification model are presented in
Chapter 4.
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3.5. Model Application Setup
Once the general model accuracy has been determined, the feasibility of the practical implementation of
the model must be evaluated. Unfortunately, use of a schedule that corresponds to the dates from the
available interventional X-ray data is not an option, since cath lab schedules are disposed immediately
after completion of the procedures. Nevertheless, the available data can be used to analyse and interpret
the CAG schedule retrospectively. Besides looking at application of the model with respect to the daily
schedule, more insight is required with regards to individual procedures as well. The second part of the
model application section analyses the timing of the predictions throughout the procedure, in order to
assess its potential applicability. For example, the model would be considered more successful if it could
predict the correct duration class early on in the procedure, rather than at the end of it.

For the retrospective interpretation of the schedule, a full day at the cath lab is analysed. To do so, a
random day is selected during which five or more CAGs have been performed. This is to increase the
chances of obtaining a dataset with CAGs of variable duration. The retrospective timetable is analysed
and several procedures are studied individually. For a good understanding of the extent to which CAGs
can be scheduled, the average duration of each CAG phase is provided in Table 3.9. According to these
values, defined by K.M. van der Graaf, an entire CAG including turnaround takes approximately 48.6
minutes [28]. The definition of each phase can be found in Section 3.1.5. The Reinier de Graaf hospital
assumes a CAG duration of 45 minutes for the creation of a cath lab schedule. Based on the provided
average duration, break times and the fact that the cath lab requires preparation and cleaning, a maxi-
mum of nine CAG procedures can be scheduled per day. Within the available dataset, most days consist
of three to four CAG procedures. The minimum and maximum number of CAGs per day corresponds
to zero and ten respectively.

Table 3.9: The mean duration of the main phases of a CAG [28].

Phase of the CAG Mean duration (minutes)
Patient preparation phase 11.8

Operative phase 22.4
Post-care phase 4.6

Turnaround 9.8
Total 48.6

In order to simulate an appropriate scenario for the analysis of individual procedures, the model is
trained using all available data except for that one specific procedure. Subsequently, the model is tested
on this procedure. This ensures that none of the acquisitions from a particular procedure have been used
to train the model and examines the effect of this with respect to previous validations. The analysis
should give an insight into the throughput of CAGs per day, as well as the duration of each and the
time between each CAG. Furthermore, individual analyses provide a better understanding of the shifts
between different duration classes throughout a procedure.
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3.6. Feature Analysis Setup
The main goal of this research is to find the usefulness of the data from the interventional X-ray system
for predicting total procedure duration. The final step of this analysis is to assess the added value of
specific features that are logged during the procedure. Gaining insight into the relevance of particular
features is beneficial for knowing which features could be used to detect delay and analyse workflow.
Specifying such features allows for optimisation of the model and knowing which aspects of the data are
relevant for future research.

Based on the 19 features that make up the columns of the final dataset, a feature importance analysis
can be done using the OOBPer mutedPr edi ctor Del t aEr r or function in Matlab. Using this function,
Matlab reorders one column (feature) of the out-of-bag data for each tree and leaves the rest of the
out-of-bag data the same. If the accuracy of the model performance on the out-of-bag data drops signif-
icantly, the feature is relevant for predicting procedure duration class. However, if there is no significant
change in model accuracy, the feature is not particularly relevant for the model. This procedure is then
repeated for all features belonging to each out-of-bag data subset, where each data subset corresponds
to one decision tree from the random forest. In order to come to a final conclusion, the significance of
each feature is deduced by averaging the importance of identical features from all decision trees.

Once the importance of all features has been rated, the individual features can be analysed in more
detail. For the five most important features, three different types of analyses are performed. Initially,
the range of values within each feature is analysed, providing an indication of variance. Thereafter, an
analysis is done to investigate whether the value of the feature changes with respect to different proce-
dure duration classes. This is especially useful for determining the degree to which the feature is useful
to analyse procedure duration and workflow. Finally, the behaviour of the each feature throughout the
procedure is analysed, where each duration class is presented separately. The analysis is valuable to
detect whether the feature values change as the procedure progresses and whether this changes with
respect to procedures of varying total duration.
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4. Results & Discussion
This chapter presents the results obtained from running the optimised dataset from the interventional
X-ray system in a fine-tuned random forest classification model. Initially, the ability of the model to
classify the data points and predict the approximate procedure duration is presented in Section 4.1. The
results are discussed in Section 4.2. Subsequently, the feature importance of the finalised feature set
is presented in Section 4.3 and the five most important features for predicting procedure duration are
presented in Section 4.4. Finally, the interpretations of the results are discussed in Section 4.5.

4.1. Classification Accuracy
The ability of the model to estimate procedure duration has been tested on two different types of datasets,
to ensure in-depth validation of the data usability. Section 4.1.1 presents the results of testing the model
on out-of-bag data, while Section 4.1.2 presents the cross-validated results.

4.1.1. Out-of-bag Accuracy

The out-of-bag dataset of each decision tree that makes up the random forest, represents the data that
was not part of the subset used to generate the decision tree. Based on the hyperparameter tuning
methods explained in Section 3.2.3, a dataset of the same size as the original data is used. Nevertheless,
since each data point is selected using replacement, there are numerous repetitions in the dataset. All
data points that have not been used to train the model make up the out-of-bag data. This is information
that the decision tree has never seen before and can therefore be used to evaluate how it would perform
on new data. When running the model on each decision tree using its respective out-of-bag dataset and
averaging the error, the general performance is found. For this specific dataset and model, the out-of-bag
misclassification probability is 7.25%. This implies that 92.75% of all acquisitions have been correctly
assigned to the duration class of their corresponding procedure. The classification accuracy per class can
be presented by means of a confusion matrix, as shown in Figure 4.1.

Figure 4.1: Confusion matrix of the predicted versus the true duration based on out-of-bag data.
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The confusion matrix in Figure 4.1 shows the duration predictions of all acquisitions in the out-of-bag
data versus their actual duration class. The blue colour represents the degree to which acquisitions are
accurately estimated. Red tones represent the degree to which the acquisitions are incorrectly classified.
In both cases, a darker colour refers to a higher accuracy and error respectively. The horizontal error
bar shows the ratios of correct and incorrect estimations of procedure duration per predicted class.
Vertically, the percentages of correct and incorrect classifications within the actual duration classes are
shown. According to the figure, classification errors are mostly due to underestimation of procedure
duration, rather than overestimation. For only 141 out of 14,022 acquisitions, the procedure is estimated
to take longer than it actually does. For 736 acquisitions, the total procedure duration is estimated to
be lower than its true value. The duration class with the most incorrect classifications is the 10 to 20
minute class, for which 434 acquisitions are misclassified. However, with respect to the total number of
acquisitions per class, the duration class with the highest error rate is the 20 to 30 minutes time frame,
with a misclassification rate of 12.6%. In comparison to the three highest procedure duration classes, the
misclassification rate within the class that represents a procedure duration below 10 minutes is rather
low, namely 1.9%. Looking at the horizontal error bar, it seems that more than 90% of the predictions
made for all duration classes are correct. Predictions that state that the procedure will take 20 minutes
or longer are correct over 99% of the time. Given the fact that the interventional X-ray data is not
made for the purpose of estimating procedure duration and mostly logs technical parameters regarding
machine functionality, the results present an unexpectedly high accuracy.

4.1.2. Cross-validated Accuracy

A different method of validating the classification results is by running the optimised random forest model
using test data. This is data that was excluded during the initial model creation and has never been
seen by the model before. Based on this validation method, the resulting misclassification probability
equals 6.33%. The corresponding confusion matrix can be seen in Figure 4.2.

Figure 4.2: Confusion matrix of the predicted versus the true duration based on test data.

Whereas the data in Section 4.1.1 consists of 14,022 acquisitions, the test data has only 2,473 data points.
The cross-validated error rates are lower than the out-of-bag error rates, especially for procedures with a
duration of 20 minutes or longer. Only the error rate for procedures that have taken between 10 and 20
minutes is slightly higher based on cross-validation, namely 10.7% with respect to 10.2% for the out-of-
bag data. Again, more procedures are underestimated rather than overestimated in terms of duration.
In fact, only procedures that took under 10 minutes have been estimated to take longer.
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For procedures with an actual duration of 10 to 30 minutes, duration was never estimated to be higher
than its true value. All predictions that state a duration of 30 minutes or longer are correct. Out of
the 247 predictions that estimate a duration of 20 to 30 minutes, only one appears to be incorrect.
This implies that predictions by the model stating a duration of 20 minutes or over are particularly
accurate. The downside is that as of yet, it is uncertain at which point this prediction occurs. If the
model predicts the procedure to take longer than 20 minutes when 19 minutes of the procedure have
passed, the additional value of the prediction is relatively small. In order to analyse this further, the
classification timing is analysed in Section 4.1.3. Furthermore, individual interventions are analysed in
Section 4.1.4. In order to minimise bias within further results and use the biggest error to evaluate the
classification model, all further analyses are performed based on out-of-bag data.

4.1.3. Classification Timing

For understanding the functionality of the model, it is essential to analyse its classification abilities
beyond the average accuracy. One way of gaining insight into its predictive abilities throughout the
procedure, is by plotting the predicted class versus the cumulative procedure time. By doing this for
every class, information can be collected regarding changes in predicted duration class throughout the
procedure and how this varies among the duration classes. Figure 4.3, 4.4, 4.5 and 4.6 present the
predicted duration for each acquisition, separately graphed for every duration category. The graphs give
a general insight into the occurrence and timing of predictions for each duration class. For a more detailed
insight into the point at which predictions change to a different duration class, individual procedures
have to be analysed. This is realised and further elaborated on in Section 4.1.4.

Figure 4.3: Procedure duration predictions throughout all procedures that took 0-10 minutes.

For all acquisitions that were obtained from procedures with a total duration of 10 minutes or less, 98.1%
was classified correctly. Figure 4.3 shows that the rate at which acquisitions are incorrectly classified as
Class 2 does not decrease throughout the procedure. This could have to do with the fact that towards
the end of the procedure, indications that the procedure will exceed the 10-minute margin go up.
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Figure 4.4: Procedure duration predictions throughout all procedures that took 10-20 minutes.

Figure 4.4 shows predictions for the second duration class. As the cumulative procedure time approaches
the 10-minute margin, predictions that incorrectly estimate a duration of less than 10 minutes gradually
decrease. Nevertheless, underestimation appears to occur until the margin itself. Overall, the predictive
accuracy within the procedures that last between 10 to 20 minutes is 89.3%, as shown by Figure 4.1.
This is confirmed by the fact that the vast majority of the data points are plotted on the correct line
representing true duration class. Unlike Figure 4.3, Figure 4.4 does not show misclassification until the
end of the procedure. As a matter of fact, no incorrect predictions are made after the 10-minute margin,
not for higher duration classes nor for lower ones.

Figure 4.5: Procedure duration predictions throughout all procedures that took 20-30 minutes.
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In Figure 4.5, all duration predictions for procedures with a total duration of 20 to 30 minutes are shown.
In some cases, the correct duration class is estimated from the first minute onward. In other cases, the
model first predicts the total duration to be 0 to 10, or 10 to 20 minutes. The latter predictions occur
until the end of their respective margins. Ideally, this would not be the case, as being able to make
accurate, unforeseen predictions would increase the relevance of the model. Nevertheless, this graph
does not show a distribution of predictions for individual procedures, thus the current information is
not enough to draw such conclusions yet. According to Figure 4.1, this duration class shows the highest
error rate, namely 12.6%. This implies a prediction accuracy of 87.4%.

Figure 4.6: Procedure duration predictions throughout all procedures that took over 30 minutes.

Predictions for a duration of 30 minutes or more, as shown in Figure 4.6, appear to be more useful than
the distribution shown for the third duration class. From the 20-minute margin onwards, no incorrect
predictions are made. This implies that for all acquisitions done past the 20-minute margin, the prediction
that the procedure will take over 30 minutes is correct. For clinical application of the model, this is useful
for surgical planning. The accuracy of predictions for procedures from the last duration class is 89.5%,
as presented by Figure 4.1.
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4.1.4. Model Application

In order to analyse the model in further depth and evaluate the feasibility of practical application,
operating days and procedures are analysed individually. Initially, a random day within the dataset is
selected in order to assess the duration of each procedure, the throughput of patients and the change in
predicted class with respect to progress. Subsequently, several procedures are analysed that stand out
positively or negatively in terms of predicted duration. On top of the data from the interventional X-ray
system, DoseWise data is used to register the time that the patient documents were uploaded. This gives
a better indication of the total time of the procedure, including patient preparation time. The parameter
is relatively important for analysing the amount of time each patient occupied the cath lab, since this is
not registered by the interventional X-ray system. The randomly selected day that is analysed in further
depth is the 25th of February 2019, during which seven CAGs were performed.

February 25th 2019
On this day, the CAGs that took place in the cath lab of the Reinier de Graaf hospital are shown in
Table 4.1. The starting time, ending time and operative duration are logged by the interventional X-ray
system. The time that the patient file was uploaded onto DoseWise is shown in the third column. This
value can be used as an indication of when the patient entered the cath lab [28]. The operative duration is
the time between the first and the last acquisition, whereas total duration refers to the duration between
the patient document upload time and the last acquisition. The turnaround time of a procedure is the
time between the end of the previous procedure and the DoseWise file upload time of the current patient.

Table 4.1: All CAGs that took place in the cath lab of on February 25th 2019.

Exam
number

Turnaround
time

DoseWise
upload

Starting
time

Ending
time

Operative
duration

Total
duration

4181 - 09:06:00 09:28:28 09:38:57 00:10:29 00:32:57
4182 00:19:03 09:58:00 10:13:06 10:29:43 00:16:37 00:31:43
4183 00:25:17 10:55:00 11:00:13 11:57:59 00:57:46 01:02:59
4184 00:29:01 12:27:00 12:37:05 13:12:43 00:35:38 00:45:43
4186 01:02:17 14:15:00 14:29:28 14:42:03 00:12:35 00:27:03
4187 00:28:57 15:11:00 15:14:38 15:31:21 00:16:43 00:20:21
4188 00:27:39 15:59:00 16:00:11 16:13:10 00:12:59 00:14:10

Table 4.1 shows that the CAGs performed on this day show a high variability in terms of procedure
duration. The first procedures seem to run smoothly, with a total duration that is below the average
value of 48.6 minutes and the predetermined scheduled duration of 45 minutes, excluding post-care time.
However, the operative duration of the procedures with exam number 4183 and 4184 are above average.
The three follow-up procedures in the afternoon are of a relatively short duration. The procedures anal-
ysed in this section include exam number 4181, 4183 and 4184.

The predictions for the procedure with exam number 4181, which has an operative duration of 10
minutes and 29 seconds, are shown in Figure 4.7. Up to approximately 2 minutes, the model predicts
the correct duration class, until the prediction changes to Class 1. From the fifth minute onwards, the
output values go back to representing the correct duration class. From earlier analysis, it is known that
for procedures that take 0 to 10 minutes, the class can be overestimated up to the 10-minute margin. In
this case, the procedure took just over 10 minutes and the model is correct in its predictions. However,
the model does not provide much additional value in terms of an analysis of the workflow and an estima-
tion of procedure duration. Several acquisitions show an underpredicted duration. Moreover, the degree
to which the predicted duration of 10 to 20 minutes is useful, is questionable for this specific procedure.
With a duration that exceeds the first class by 29 seconds, the estimation that states a 10 to 20 minute
duration might be misleading. For procedures of such short duration, the 10-minute intervals that define
each class might be too big and not representative enough. An solution would be to implement smaller
classes for procedures with a duration below 10 or 20 minutes. A logarithmic scale could be useful in
this case, where class size increases as duration prevalence decreases.
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The red and green lines represent the last and first predictions of a newly predicted duration class
respectively. This is done to analyse the effect of using either prediction type as a reference point and
to determine the one that is more reliable. For this specific procedure, neither indications are of much
additional value.

(a) All and last duration predictions per class. (b) All and first duration predictions per class.

Figure 4.7: All procedure duration predictions throughout procedure 4181.

The next analysed procedure has a total operative duration of 57 minutes and 46 seconds. The classifi-
cation model’s predictions for this procedure are shown in Figure 4.8. Whereas the previous procedure
seemed to show overlap in duration class predictions, this graph shows a clear upward pattern without
any overlap. Using the last prediction for each duration class results in predictions as shown in Fig-
ure 4.8a, which is not much different than using the first predictions as shown in Figure 4.8b. Interesting
to note is that the procedure is predicted to take longer than 10 minutes from the first acquisition onward.
This means that particular starting values of the registered features within this dataset are indicative
of a total duration that is longer than average. At all stages, the model is useful for detecting that the
procedure will take longer than usual. Within the first 10 minutes, the model predicts the procedure to
take longer than 20 minutes. The shift to the fourth duration class is slightly less valuable, as this is
done just before the 30-minute margin. If this model were to be used for predicting procedural duration
more accurately than the physician in the room, it is not exceptionally useful. However, if the model
would be used to update a third party on the status and the workflow of the procedure, the model can
definitely be considered useful.

(a) All and last duration predictions per class. (b) All and first duration predictions per class

Figure 4.8: All procedure duration predictions throughout procedure 4183.
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Figure 4.9 shows the predictions for procedure 4184, which took 35 minutes and 38 seconds in terms
of the operative duration. The graph shows that the duration is never predicted to be lower than 10
minutes.

(a) All and last duration predictions per class. (b) All and first duration predictions per class.

Figure 4.9: All procedure duration predictions throughout procedure 4184.

Strangely enough, the model never predicts the correct duration class for this procedure. Even beyond
a cumulative procedure time of 30 minutes, it predicts a duration of 20 to 30 minutes. Section 4.1.3
shows that for the original model, this was never the case. Perhaps this occurs because the entire
procedure was left out of the training model. This would imply that in the general classification analysis
in Section 4.1, similar acquisitions from the same patient could have biased the model and therefore
prevented such errors. In order to improve the current model, a conditional restriction should be added.
When preventing the predicted duration class from being lower than cumulative procedure duration, the
graph would look as follows.

(a) Number of times each RCA phase was detected, with respect
to progress.

(b) Number of times each LCA phase was detected, with respect
to progress.

Figure 4.10: All renewed procedure duration predictions throughout procedure 4184.

Given the fact that the model might predict a duration that is lower than the cumulative procedure
time, the restriction shown in Figure 4.10 should be included in the final model, for backup purposes.
The effect of repeated measures, which is a possible reason for why this has not been seen in previous
testing, is further discussed in Section 4.2.
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May 22nd 2018
For procedures under 10 minutes, results have shown that the model tends to overestimate the total
duration by predicting a Class 2 duration. Procedure 3221, which took a total operating time of 6
minutes and 3 seconds, was predicted to take under 10 minutes during the first few acquisitions, as can
be seen in Figure 4.11. This indicates that the model does differentiate between procedures that are likely
to take 0 to 10 minutes and procedures that might take more time from the very start. However, before
the 2-minute mark, the prediction has already shifted to the second duration class. This verifies that
the assumption that a newly predicted duration class is always reliable, does not apply to to predictions
under 10 minutes. Only after 10 minutes have passed can such assumptions be used.

(a) All and last duration prediction per class. (b) All and first duration prediction per class.

Figure 4.11: All procedure duration predictions throughout procedure 3221.

April 20th 2018
An example of a successful application of the model is shown in Figure 4.12. This figure shows that
when the first prediction of each class is taken as the principle indication of duration class, as depicted
by the green vertical lines, accurate predictions are given early on in the process. At approximately 10
minutes, it states that the procedure will take over 20 minutes and at 15 minutes into the procedure, it
knows it will take longer than 30 minutes. Previous results have shown that after 10 minutes, the first
prediction of a new class can be seen as an accurate estimation of duration. Generally, the green lines
can be considered appropriate reference points, in particular for procedures over 10 minutes. After this
time, duration is rarely overestimated.

(a) All and last duration prediction per class. (b) All and first duration prediction per class.

Figure 4.12: All procedure duration predictions throughout procedure 3124.
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General applicability
In order to assess the overall ability of the model to classify each phase at a useful point throughout the
procedure, general overviews are made. Each general overview below shows a distribution of the time
at which the particular class was predicted for the first time, corresponding to the green lines in prior
figures.

(a) First predictions for Class 1 (0-10 minutes). (b) First predictions for Class 2 (10-20 minutes).

Figure 4.13: The procedure times at which the first predictions for Class 1 and Class 2 are made.

The first graph is not of the same relevance as the other three, as it has been proven that the predictive
accuracy is significantly lower for procedures of a shorter duration. Nevertheless, once the cumulative
time has exceeded the 10-minute margin, predictions are reasonably accurate. Figure 4.13a shows that
Class 1 is mostly predicted within the first 2 minutes of the procedure, especially during the first 30
seconds. According to Figure 4.13b, Class 2 is mostly predicted during the first 4 minutes, yet again
mostly during the first 30 seconds. Based on the classification matrices, inaccuracies in the predictions
among these two classes are relatively rare. Nevertheless, the errors are noteworthy and as of yet, the
predictions made during the first few minutes of a procedure are not accurate enough to be used for
important application.

(a) First predictions for Class 3 (20-30 minutes). (b) First predictions for Class 4 (>30 minutes).

Figure 4.14: The procedure times at which the first predictions for Class 3 and Class 4 are made.
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Figure 4.14 shows that predictions for the third and fourth class often occur relatively early on in the
procedure. In Figure 4.14a, the majority of the predictions are made in the first 5 minutes, with a peak
in the first minute. Almost all of the significant delays, which refers to a procedure duration between 20
and 30 minutes, are detected at least 10 minutes before the cumulative procedure time hits the 20-minute
mark. The fact that for 15 different procedures, a minimal duration of 20 minutes was predicted in the
first minute proves the promising predictive ability of the interventional X-ray data. The distribution of
the fourth duration class, as shown in Figure 4.14b, also shows a peak in the first minute. Generally, the
predictions for the fourth class occur within the first 10 minutes of a procedure. This means that most
of the severe delays are detected at least 20 minutes in advance. Again, it shows the ability of the model
to predict large delays at a useful point in the procedure.
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4.2. Interpretation of the Classification Results
The application of the optimised random forest model to the available data has resulted in a classification
accuracy of 92.75%. Given the fact that the technical data is not originally made for the purpose of
progress analysis, this is remarkably high. The random forest model without the additional features
from Section 3.1.4 and without RFE optimisation gives a classification accuracy of 88.24%. This shows
that the original data shows suitable characteristics, but that additional features and fine-tuning of the
feature set have made a significant contribution. The out-of-bag classification accuracy for Class 1, Class
2, Class 3 and Class 4 procedures was found to be 98.1%, 89.8%, 87.4% and 89.5% respectively.

For further analysis of the functionality of the classification model, acquisitions from every procedure
class were evaluated with respect to the time at which the correct duration was predicted. This also
provides insight into how predictions change with respect to progress. For particular Class 1 procedures,
the classification model estimated a duration of 10 to 20 minutes, which occurred up to the 10-minute
margin. However, only 1.9% of the procedures with a duration below 10 minutes were classified in-
correctly. For procedures that took between 10 and 30 minutes, incorrect predictions were made up
until the starting margin of the correct duration class. For example, several acquisitions from Class
2 procedures, which take between 10 and 20 minutes, were incorrectly classified up to the 10-minute
margin. The closer the predictions are to this margin, the less relevant they are for predicting duration.
At 9 minutes into the procedure, it is less useful to learn that the procedure will take more than 10
minutes than if this were told in the first few minutes. Therefore, earlier prediction is desirable. For
procedures that take 30 minutes or more, incorrect estimations are made up to the 20-minute margin.
This means that predictions for this duration class can generally be considered more useful, as they are
correctly predicted earlier on with respect to the overall duration of the procedure. Furthermore, Class
1 acquisitions showed to be the only data points for which procedure duration was overestimated. This
is beneficial, as it means that when Class 3 or Class 4 are predicted, this is most certainly the minimum
duration class of the corresponding procedure. Also, it means that predictions beyond the 10-minute
margin can be considered reliable indicators of minimum procedure duration.

A limitation of the aforementioned graphs is that they provide no insight into the density of acqui-
sitions with respect to cumulative procedure time. For multiple acquisitions within a specific time frame,
the data points simply overlap. Considering the minimum classification accuracy of 87.4%, the graphs
give a slightly pessimistic perspective of the model’s effectiveness, as the incorrectly classified acquisi-
tions stand out most because of less overlap. Further limitations of the graphs include the fact that the
distribution of acquisitions from individual procedures are not taken into account. Moreover, the general
distribution of acquisitions throughout all procedures, as shown in Appendix A, is not considered either.
For example, fewer acquisitions are generally applied in the first half of the procedure with respect to
the second half. In the graphs from Section 4.1.3, the general absence of observations at certain points
throughout the procedure might be misleading and suggest classification errors. Furthermore, the pro-
cedures are categorised based on 10-minute time slots, whereas the total duration of procedures varies
within this time frame. Naturally, the number of acquisitions decreases as the cumulative procedure
time increases, as fewer procedures last for this amount of time.

All of the aforementioned limitations are factors that were implemented for a more representative pre-
sentation of the results, as shown in Section 4.1.4. Within this section, model applicability was tested by
analysing various individual procedures from a randomly selected day. Within this day, the operative du-
ration ranges from 10 minutes and 29 seconds to 57 minutes and 46 seconds. For the shortest procedure,
the predicted duration classes include Class 1 and Class 2. Since the procedure duration barely exceeds
the 10-minute margin, the additional value of the prediction stating a duration of 10 to 20 minutes is
questionable. This proves that smaller duration classes would benefit the model. For delayed procedures,
the model seems to detect a duration of at least 20 minutes from the first acquisition onwards. This
shows that the values of certain features can indicate a difficult case or a delay early on in the process.
However, the exact delay is generally only estimated later on in the process. For one of the analysed
Class 4 procedures, the procedure was predicted to take 20 to 30 minutes within the first 10 minutes.
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At 15 minutes into the procedure, its duration was estimated to be over 30 minutes. This shows that
a duration analysis using a random forest algorithm is capable of providing early information regarding
delays, revealing promising scheduling benefits. For accurate prediction beyond 30 minutes, additional
classes would have to be added to the model.

In the analysis of individual procedures shown in Section 4.1.4, a comparison is made between using
the first time at which a duration class is newly predicted and the last time this occurs, depicted by
green and red vertical lines respectively. Based on the aforementioned conclusions, first-time class pre-
dictions can be considered reliable beyond the 10-minute margin, or when it concerns a Class 3 or Class
4 prediction. The individual analyses confirm this statement. For short procedures, the use of either
reference point is suboptimal, due to fluctuations between predictions that state a Class 1 and a Class
2 duration. Nevertheless, for long procedures, the model successfully detects delays, resulting in early
detection when the first-time predictions are used. Further analysis of the first-time detection of new
classes show that Class 3 and Class 4 procedures are normally detected within the first five minutes of
a procedure. Therefore, the model proves to be extremely successful in detecting significant delay at an
early point throughout the procedure.

Regarding the additional value of the model to procedure scheduling, it could reduce waiting time
of the next patient and improve general planning. For the specific day analysed in Section 4.1.4, accu-
rate predictions could have decreased the amount of time in between procedures that were done in the
afternoon. Nevertheless, the retrospective schedule provides no information on break times or why the
cath lab was empty for a relatively long period of time between different CAG procedures. Therefore,
no definite conclusions can be drawn regarding how the application of the model would have affected
this day, since the suggested improvements are merely based on assumptions. Further information is
required to validate the applicability. This is a limitation of the applicability analysis, which could be
further analysed through real-life observation or by means of individual patients files. Nevertheless, the
classification model has shown valuable predictive abilities regarding the detection of delay. Beyond the
10-minute margin, it is able to provide an accurate representation of workflow and procedure duration is
generally not overestimated. The intraoperative predictions could serve as a useful indication of workflow
for third parties, such as schedulers. Furthermore, they could serve as an indication for when to call
the next patient. By knowing that the procedure is delayed, one can wait to call the new patient or to
schedule extra procedures. Nevertheless, to ensure optimal patient throughput, the 10-minute classes
could be reduced to 5-minute slots or less, in order to increase prediction precision. This is because
procedures might still be completed earlier within the 10-minute time frame of the predicted duration
class. Such changes would need to be implemented before the model is suitable for application in clinical
settings. Only 11.52% of the procedures within the used dataset are delayed beyond 20 minutes. In
order to make the model financially viable, further refinement of all classes is needed. This would ensure
that the model is not only able to detect delay, but can also specify the delay more accurately and
predict the duration of shorter procedures. The main difficulty in predicting the duration for shorter
procedures is that at the start of a procedure, there is still a lot of uncertainty regarding procedural
events. As more acquisitions are made, more insight into the procedure is gained. Further research could
show whether more conclusions can be drawn from the initial acquisitions. Alternatively, it would be
interesting to implement more data that does not vary throughout the procedure, such as patient and
staff characteristics.

Out-of-bag vs. test data
The evaluation of classification accuracy was based on two different types of validation methods and
provides an interesting perspective on how the applied method can affect the results. Out-of-bag val-
idation is a suitable method for using the dataset to its fullest potential and is appropriate for small
datasets. This is because all training data is drawn with replacement, implying that an infinitely large
training set can be generated. Therefore, it is particularly appropriate for the implementation of data
from the third and fourth duration class, which contain a relatively small number of samples. However,
the quality of the training set reduces with excessive replacement. For out-of-bag analysis, the accuracy
is based on results from individual trees, using variable validation data. This ensures that dominant
values and outliers are included, but not in every tree, creating a generalised model with lower chances
of overfitting.
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For cross-validation, the classification model uses one set of validation data. The cross-validation test
data might contain fewer outliers, which could explain why the cross-validated error is lower. It was
important to implement cross-validation on top of out-of-bag validation, since the model was optimised
using hyperparameter tuning based on the out-of-bag classification error. However, since the out-of-bag
error appeared to be higher than the cross-validated error, it can be assumed that this did not bias
the classification model. In order to reduce optimistic bias, all predictions made beyond the evaluation
of general classification accuracy are made and evaluated based on out-of-bag data. Both methods
are applied to an identical model that only used 85% of the original dataset to train the classification
model. Therefore, they both provide a slightly more pessimistic view of the classification abilities of the
interventional X-ray data than if the entire dataset were to be used as training data.

Repeated measures
The analysis of individual procedures in Section 4.1.4 provide an interesting insight into the applicability
of the model. For each individual analysis, a new model was trained using all data except for the
acquisitions from the analysed procedure. At the start of the project, the fact that random forest does not
take into account data from previous acquisitions of the same patient was seen as a limitation. However,
the exclusion of entire procedures from the training data for the analysis of individual procedures has
shown that the overlap between repeated measures might be bigger than originally anticipated. This is
based on the fact that the individual procedures show phenomena that were not present in the overall
classification analysis, such as class predictions that suggest a lower total duration than the corresponding
cumulative procedure time of the acquisition. The data points within the available dataset could be
considered dependent because measurements are repeated on specific patients. For most features, this
value changes for each acquisition, but the exact resemblance has not been verified. Therefore, the
extent to which the repeated measures might have caused optimistic bias to the general classification
accuracy in Section 4.1 is uncertain. By means of elimination of the repeated measures from the training
data, chances of optimistic bias were reduced significantly. Despite the fact that classification accuracy
seems slightly lower, the model still shows promising abilities in terms of detecting delay. This can
be seen in Figure 4.8, Figure 4.9 and Figure 4.12. Furthermore, the first time Class 3 or Class 4 is
predicted is still a valid reference point for minimum procedure duration. Future research is required
to investigate the effect of repeated measures on the accuracy of the random forest classification model.
For this research project, a random forest classification method was selected due to its excellent ability
to analyse feature importance. Furthermore, it is suitable for dealing with datasets that include a high
number of features. Nevertheless, other machine learning techniques that are more suitable for dealing
with repeated measures, such as regression, could be used to study the effect of dependent data points.

Related work
Multiple studies have used machine learning to predict surgical duration, using various sources of data.
Kargar et al. looked into three different machine learning methods to estimate procedure duration of
104 different procedures [49]. A random random forest regression algorithm was found to provide better
results than linear regression and multivariate adaptive regression splines. The used data includes ad-
ministrative and elective surgery data, such as patient details, surgery characteristics and the medical
physicians involved. The resulting model improved the predictions made by current hospital methods
by 28%. Nevertheless, the quality of the current predictions are unknown. Techniques implemented by
other studies include ANOVA and linear mixed models [13, 54]. The studies showed an improvement of
15% and 36%, compared to estimations made by the physician. Most of the found studies focus on the
effect of predetermined parameters on the duration, such as surgical team composition, experience and
time of the day. Therefore, they focus on preoperative duration prediction, rather than using intraop-
erative data for real-time prediction. In order to enable the shift from a static to a dynamic schedule,
intraoperative analysis is required. This is a shortcoming that has been addressed in this report, where
online data is used to update duration predictions as the procedure progresses.

Besides estimating duration, some studies were found to predict the surgical workflow phase. Stauder
et al. used random forest classification to intraoperatively predict the surgical phase of a laparoscopic
cholecystectomy [53]. The data includes information regarding instrument usage and data such as the
weight of the irrigation and suction bags. The model resulted in a classification accuracy of 68.78%.
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A significant shortcoming of this study is that all surgical workflow phases had to be defined manually.
This was done based on the recorded data points from only four procedures, by means of manual clas-
sification of each training sample. This is a considerable disadvantage of implementing phases that are
not defined in terms of the input data. Appropriate methods are required to validate the phase, which is
often not possible due to a lack of information of the labour intensity of the process. The research done in
this report addresses this shortcoming by removing the need to implement phases, through evaluation of
the workflow with respect to time. As this is an automatic process based on readily available information,
the random forest model can be optimised indefinitely as the available input data increases. According to
F. van Luyn, the amount of cases used in online models ranges from 1 to 80, due to the aforementioned
reasons [56]. Nevertheless, the online model created in this report is based on 599 procedures.

No studies were found that use random forest classification to estimate duration. A likely reason is
that regression seems more appropriate, generating a numerical value for the estimated remaining dura-
tion. Furthermore, most studies focus solely on improving the predicted duration, using static data that
does not change throughout the procedure. For offline data, sensitivity to sudden changes is significantly
smaller, which increases the likelihood of obtaining a regression model that provides enough accuracy for
reliable conclusions. However, the aim of this report is to evaluate the usability of particular data that
is updated intraoperatively. Considering the early stage of this study, the use of classification allows for
more certainty of the drawn conclusions, regarding the quality of the data and the behaviour of specific
features.

The next sections focus on the second part of this research, where the influence of various features
on the predictions are analysed.

48



4.3. Feature Importance
Figure 4.15 presents the importance of each feature for classifying data points in terms of procedure
duration. The feature set implemented in this analysis is the final feature set and consists of 19 features
as deduced by the RFE in Section 3.3.

Figure 4.15: The out-of-bag importance of all features for the random forest classification model.

A definition of the out-of-bag feature importance can be found in Section 3.6. The features on the
x-axis are presented in the order in which the features were eliminated in the RFE. Therefore, it could
be argued that the importance should increase gradually as one moves to the right along the row of
features. However, relative importance changes according to the input dataset and the graph shows that
the feature importance for this specific feature set is indeed different. The most important feature for
predicting procedure duration is acquisition frequency, which is the average number of acquisitions per
unit time. The second most important feature is the longitudinal position of the table, thus the extent to
which it longitudinally moves towards and away from the centre of the X-ray system. Other important
features include cumulative procedure time, patient age and cumulative cine time. Here, cine refers to
the selected acquisitioning method. Cine acquisitions are specifically used to for capturing and recording
arteries, rather than guiding the catheter to the heart. The five most important features are analysed in
more depth in Section 4.4.

Interestingly enough, no features that refer to the position of the X-ray system are among the most
important features to predict total duration. However, the position of the table seems to be especially
relevant, particularly the longitudinal position. The fact that multiple features refer to the position of
the operating table means that this component from the cath lab must certainly be taken into account
in further research. Besides only focusing on the angulation and rotation of the C-arm, as was done
in Section 3.1.5, the operating table could also be used define the phases of a CAG. In fact, multiple
features are suitable for further research into phase definitions and more. This is further elaborated on
in Section 4.5.
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4.4. Feature Analysis
This section aims to provide an in-depth analysis of the most significant features for predicting procedure
duration. Section 4.4.1 presents the characteristics of the acquisition frequency, whereas Section 4.4.2
looks at the longitudinal position of the operating table. Section 4.4.3 presents the feature that concerns
cumulative procedure time, followed by patient age in Section 4.4.4 and finally cumulative cine time
in Section 4.4.5. The interpretation of the overall results is presented in Section 4.5. Furthermore,
Section 4.6 presents the author’s perspective on the clinical applicability of the model.

4.4.1. Acquisition Frequency

The acquisition frequency has proven to be the most important feature for analysing procedure duration,
based on the current classification model. The most common values for acquisition frequency lie below 0.1
acquisitions per second. This observation is made based on the very concentrated area on the histogram
in Figure 4.16a. The peaks in acquisition frequency at the values of 0.5 and 1 are probably from the
first acquisition of the procedures; the point at which cumulative procedure time is still relatively low.
The boxplot in Figure 4.16b shows that the acquisition frequency is lower for procedures of a higher
duration. Furthermore, the interquartile range and the number of outliers decrease for procedures of a
longer duration. This is especially visible for procedures that take longer than 30 minutes to complete.
Additionally, the median values seem to be fairly equally distributed with respect to the interquartile
range, for the highest three duration classes. For procedures under 10 minutes, the data is slightly skewed
left, indicating a higher concentration of data points to the left of the median. This implies that the
values of the lower acquisition frequencies are closer together than the slightly larger values, which can
be confirmed by Figure 4.16a.

(a) The distribution of all feature values. (b) The distribution with respect to duration class.

Figure 4.16: The distribution of all values for acquisition frequency within the dataset.

Figure 4.17 shows the general change in value for acquisition frequency throughout the procedure. Rather
than plotting against cumulative procedure time, procedure progress is used, in order to take into account
the varying duration among the procedures. As to achieve more insight into the variation among different
duration classes, the classes are analysed individually. Average values for each class are calculated in
segments of 5%, in terms of procedural progress. This means that twenty values are used for the
generation of each curve. As observed from previous graphs, procedures with a shorter total duration
have a higher acquisition frequency. Within the first 10% of the procedural progress, values for acquisition
frequency show a steep decrease. This is because cumulative procedure time is relatively low, resulting in
a high value for frequency. As time into the procedure goes by, fewer acquisitions are made with respect
to the passed time of the procedure. Further on in the procedure, the values for acquisition frequency
do not seem to change significantly. The curves that represent the first, third and fourth duration class
seem to show slightly more variation throughout the procedure, whereas the acquisition frequency for
procedures that last between 10 to 20 minutes seems more stable.
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Figure 4.17: The values for acquisition frequency with respect to progress and duration class.

4.4.2. Longitudinal Position of the Operating Table

The second feature to be analysed includes the longitudinal position of the operating table. The histogram
in Figure 4.18a shows the range of values for this feature, which seem to resemble a normal distribution.
This implies that the degree to which the operating table moves towards and away from the interventional
X-ray system, with respect to the mean position of the table, is roughly equal for both directions. This
is also shown by the fact that the interquartile range and whiskers are approximately of the same length,
on both sides of the median represented by the red vertical line. For all duration classes, the median
value for table position lies between 7500 and 8000 µm. The median is shifted towards lower values of
longitudinal table position for procedures that take between 10 and 30 minutes. The median position
for procedures under 10 minutes is slightly higher, whereas the median for procedures over 30 minutes
is the highest.

(a) The distribution of all feature values. (b) The distribution with respect to duration class.

Figure 4.18: The distribution of all values for longitudinal table position within the dataset.
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It is interesting to note that the changes in position of the operating table are relatively small. The total
range of recorded values is 9 mm, which is minimal compared to the size of the operating table and the
movements made by the X-ray system. Nevertheless, the small changes in position of the operating table
seem to have powerful predictive abilities.

Figure 4.19: The values for longitudinal table position with respect to progress and duration class.

Figure 4.19 shows the general longitudinal position of the table with respect to progress of the procedure.
It is noticeable that curves representing a procedure duration between 0 to 20 minutes show a low degree
of variation throughout the procedure. Generally, the lateral position slightly increases in the first 50% of
the short procedures, after which it slightly increases to end up at roughly the starting point. Procedures
with a duration of 20 minutes or more show much more variation throughout the procedure. The curve
that corresponds to the third duration class shows a relatively big decrease in terms of table position,
followed by significant variability between 60% and 80% of the progress. Nevertheless, this variability
could be due to one or two outliers, rather than the general pattern. Procedures with a duration of
30 minutes or over show the biggest variation. Again, this could be due to extreme outliers, or due to
the fact that the table is repositioned more often during procedures that take longer. The boxplot in
Figure 4.18b does not show a significant abundance and larger extremity of outliers for procedures that
take over 30 minutes, with respect to the other duration classes. Therefore, it is plausible that procedures
with a higher duration generally involve more longitudinal table movement.

4.4.3. Cumulative Procedure Duration

Cumulative procedure duration is a feature that is relatively simple to log, but one that is not part of
the current data from the interventional X-ray system. Only the duration of each individual acquisition
is logged, as of yet. Unsurprisingly, cumulative procedure duration is a useful feature for predicting
the total duration. Figure 4.20a shows the distribution of logged cumulative procedure times. Every
acquisition is processed and taken into account, so this histogram contains multiple data points from the
same procedure. All procedures contain acquisitions at the start, which explains the high prevalence on
the left side of the histogram. The occurrence decreases as the number of procedures with a cumulative
duration that corresponds to each segment decreases.
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Needless to say, the boxplot in Figure 4.20b show that the values for cumulative duration increase as the
total procedure duration increases. The interquartile range and presence of outliers also increase with
cumulative duration.

(a) The distribution of all feature values. (b) The distribution with respect to duration class.

Figure 4.20: The distribution of all values for longitudinal table position within the dataset.

Figure 4.21 shows how cumulative procedure duration changes throughout the procedure, with respect to
duration class. Among the duration classes, the higher classes seem to show more variation throughout
the procedure. The curves that correspond to procedures between 0 to 10 and 10 to 20 minutes are
relatively straight. The variability within the two highest classes is likely to be due to the fact that these
classes have more outliers.

Figure 4.21: The values for cumulative procedure duration with respect to progress and duration class.
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4.4.4. Patient Age Range

Since patient age does not vary among acquisitions of the same patient, this feature is plotted with
respect to procedure rather than each acquisition. Furthermore, the third graph is not included, for the
same reason.

(a) The distribution of all feature values. (b) The distribution with respect to duration class.

Figure 4.22: The distribution of the age of all patients within the dataset.

Figure 4.22a shows that most procedures involve patients between 70 and 79 years old. The second
most prevalent age group represents patients of 60-69 years old, followed by patients of age of 80-89.
Procedures with patients under 40 or 90 and over are relatively uncommon. According to Figure 4.22b, all
procedures done on patients younger than 40 years old were completed within 20 minutes. All procedures
that took longer than 30 minutes involve patients of 60 and older. The median age group of all procedure
duration classes is the 70 to 79 group. The third duration class shows a distribution in values that is
slightly less concentrated than the other three. Data points in the highest duration class, of 30 minutes
and over, are the most concentrated. The observations show an undeniable correlation between patient
age and total procedure duration, which explains the significance of the feature for predicting procedure
duration.
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4.4.5. Cumulative Cine Acquisition Time

A histogram of the cumulative duration during which the cine application is used, is presented in Fig-
ure 4.23a. The cumulative cine times range from 0 to 70 seconds. Comparing the values for cumulative
cine time of duration class 1 to duration class 4, the median value for cumulative cine time increases from
approximately 10 seconds to 16 seconds. This can be seen in Figure 4.23a. Furthermore, the interquartile
range and range of outliers increase as the duration class increases as well.

(a) The distribution of all feature values. (b) The distribution with respect to duration class.

Figure 4.23: The distribution of all values for patient age range within the dataset.

Figure 4.24 presents the general values for cumulative cine time with respect to procedure progress. As
was the case for the general cumulative procedure time graph, the higher duration classes show more
variation throughout the procedure. Especially the curve that corresponds to Class 3 procedures shows
significant instability. This can again be explained by the fact that the data points for procedures of
over 30 minutes are more widespread and therefore contain more outliers.

Figure 4.24: The values for cumulative procedure duration with respect to progress and duration class.
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4.5. Interpretation of the Feature Analysis
The analyses from Section 4.4 help to understand how the most important features change with respect
to procedure duration. Furthermore, they provide numerical representations of the features and how
these vary per duration class. As for acquisition frequency, the most significant feature for the model,
values are higher for procedures of a shorter duration. Furthermore, the acquisition frequency shows a
peak at the start of the procedure and remains stable throughout the rest of it. For some of the features
within the dataset, the change with respect to duration is less apparent than for others. An example is
the longitudinal table position, which shows no clear patterns with respect to duration class. Neverthe-
less, the random forest model considers it to be the second most important feature. This shows that a
lot of information can be extracted from the model, but some of its black-box characteristics remain. For
cumulative procedure time and cumulative cine time, the general patterns are more straight-forward.
Their respective graphs are self-explanatory and show clear differences with respect to each duration
class. The final feature that is analysed in further depth is patient age. Most procedures have been per-
formed on patients between the age of 60 and 90. None of the extreme delays have occurred in procedures
that involved patients below 60 years of age. Nevertheless, procedures that took under 10 minutes have
been performed on all ages. Further research into the effect of patient age could be used for preoperative
scheduling, where the expected procedure duration is personalised based on patient characteristics. This
is something that is currently not done at the Reinier de Graaf hospital, as the approximate procedure
duration of a CAG is estimated at 45 minutes for all patients.

In order to take the use and analysis of individual features to a new level, pattern recognition could
be applied to find new correlations between features and procedure duration or workflow. For example,
phases could be defined in terms of other features besides angulation and rotation, as has been done in
Section 3.1.5. Based on the RFE analysis, neither feature was included in the final feature set, which
means that they were not accurate enough to be considered useful for the classification model. By
analysing progress in terms of other features than time, individual sources of delay could be detected
that could, apart from just stating a delay, be used to explain why a particular delay occurs. This is not
an attribute of the current model, but could be of significant value for workflow analysis.

Medical interpretation
The results that have been found in this research project have been discussed with the cardiology de-
partment of the Reinier de Graaf hospital, in order to gain a better understanding of the reason that
features change throughout a procedure. An interesting finding in this report includes the fact that the
operating table provides relevant information about the procedural progress. As a matter of fact, the
analysis states that the longitudinal table position is the second most important feature for predicting
total duration, whereas features that regard the position of the interventional X-ray machine are not
included in the five most important features. According to cardiologist Dr. Gilly, the main reason for
moving the operating table is to place the tip of the catheter at a particular point with respect to the
entire picture frame on the monitor. This ensures that once the contrast fluid is injected, all desired
arteries will be displayed on the monitor. The correct display position is achieved by first repositioning
the interventional X-ray system, including the C-arm, followed by a change in position of the operat-
ing table. Since a standard CAG requires multiple views of each coronary artery, the table position is
changed almost every time. All three directions of the operating table are moved independently. The
operating table is predominantly moved in the longitudinal and lateral directions and generally requires
less vertical displacement. Furthermore, the cardiologists often require a bit of time to adapt to the posi-
tion of the equipment combined with the external and internal characteristics of the patient. Therefore,
the start of a procedure often shows more movement of the equipment. The same can be said about the
start of a new phase. Generally, the cardiologists start off by capturing the RCA, which requires some
adaptation but contains fewer steps and acquisitions. Once the LCA phase commences, the table again
requires some extra adjustments to ensure that the patient as well as the equipment are in the right
position. Since the LCA phase requires more acquisitions, the table is likely to show more movement
in this part of the procedure. However, Figure 4.19 does not show more fluctuations in the second half.
What can be observed is that the table seems to fluctuate more for procedures of a higher duration.
According to Dr. Gilly, this could indeed be because more movement is required to find the optimal
position for adequate display, which leads to a higher procedure duration.
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With regard to patient age, Dr. Gilly confirms that for older patients, vessels are brittle and pliable and
contain more turns. This can complicate the insertion of the guidewire and the catheter. Furthermore,
the presence of plaque can make it more difficult to enter the vessels. Nevertheless, the aforementioned
situations are only the case for some patients of age and the effect is not generalisable for any specific
age groups. Furthermore, access to the vessels might be hindered, but the CAG does not necessarily
require more acquisitions with respect to a younger patient. However, the fact that a higher age induces
a higher risk of obstructive situations is acknowledged. Furthermore, the width of the aorta increases
with age, which can lead to undesired withdrawal of the catheter. In all likelihood, these are the reasons
for the significant effect of patient age on predicted duration. Another patient feature that has shown
to be an important feature for determining duration, is object thickness. According to medical experts
Dr. Gilly and Dr. Hoftijzer, patients that lead the X-ray system to detect a higher object thickness are
more difficult to capture. This is because more radiation is required to penetrate the tissue and obtain
fluoroscopic recordings of good quality. Often, this implies that more acquisitions are required, leading
to a longer procedure duration.

Alternative sources of information
Section 3.1.4 elaborates on features that could be added to the dataset to provide more insight into
procedural workflow. This is information that can be calculated based on the data logged by the in-
terventional X-ray system. Nevertheless, there are further sources of information in the cath lab that
could be used to obtain information regarding the procedure. First of all, images recorded by the inter-
ventional X-ray system could provide relevant information regarding procedural progress. For example,
image recognition could be applied to detect a particular artery on the image, which can then be linked
to a procedural step of the CAG. This could result in precise evaluation of interventional workflow. If
the recordings were to be obtained and analysed real-time, it could even be used for intraoperative dura-
tion prediction. Another viable source of information is the operating table. Currently, only positional
parameters are tracked. Nevertheless, it could provide more information regarding the patient, such as
patient weight. The data logged by the interventional X-ray system does contain a column for patient
weight but the content is empty, implying that patient weight is not yet included. If a scale were to be
implemented into the operating table, it could also be used to detect when the patient lies down and
when the patient exits the room. This would give a better indication of the total procedure duration
than acquisition times or the time at which the patient file is uploaded on DoseWise.

The overarching workflow project, discussed in Section 2.2, aims to use camera footage to analyse pro-
cedural workflow and cath lab efficiency. This provides information on the presence and movements
of patients and medical staff. Furthermore, the footage could be used to detect specific steps of the
procedure, based on hand movement or other actions taken by the physicians. Currently, the cameras
only record the inside of the cath lab. This means that there is no registration of movement inside the
control room or in the patient waiting area. Further observation in these areas would provide additional
insight into the throughput of patients and cath lab efficiency. Alternatively, laser sensors could be used
to detect movement. This would result in data that is less informative and detailed, yet it would lead to
fewer issues with respect to patient privacy. Rather than tracking the actors inside the room, one could
also aim to observe other elements. For example, medical instruments could be tracked by means of
radio-frequency identification or other techniques. The use of instruments or tools can be linked to the
interventional step in which they are commonly used, providing new information regarding procedural
workflow.

With respect to the data logged by the interventional X-ray system, there are several elements that
would further increase the usefulness of the dataset for workflow analysis and duration prediction. First
of all, the additional features from Section 3.1.4 add valuable information regarding previous acquisitions
of the same patient and their implementation is recommended. Normally, a random forest classification
algorithm does not take this information into account, whereas it improves the predictions significantly.
Furthermore, it would be useful to log procedure type, to allow for real-time analysis without having
to confirm the procedure type using DoseWise software. Implementing this into the input data for the
random forest algorithm would lead to more distinction between different procedures and a better model
performance.
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More specifically, information on the type of CAG, such as CAG femoralis or bypass CAG, would
benefit the dataset even further. According to the cardiology department, a planned CAG femoralis
does necessarily result in a longer procedure. Nevertheless, the procedure is often delayed when the
physician first attempts a CAG radialis, to then divert to the groin. Bypass CAG procedures do usually
take longer than the average duration discussed in this report. Finally, additional offline data could be
added to the dataset used for the random forest algorithm. Examples include the composition of staff
members, their experience and the time of the day. This data could be used to extend the feature set
for training of the random forest model, as well as for preoperative scheduling.
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4.6. Clinical Implementation of the Model
The random forest classification model that has been created and tested in this report, aims to accu-
rately predict the total procedure duration based on intraoperative acquisition data. Based on the found
results, the model is particularly useful for detecting delay, which refers to procedures with a duration of
20 minutes or more. Based on the used dataset, such delays are are commonly detected within the first
five minutes of the procedure. Furthermore, the model does not tend to overestimate procedure duration
beyond a cumulative procedure time of 10 minutes. This implies that predictions made after this time
provide the minimum duration class of the procedure. For example, when the procedure is estimated
to take 20 to 30 minutes, the absolute minimum duration is 20 minutes. Nevertheless, the prediction
might shift to a duration of 30 minutes or more, in which case the minimum duration of the procedure
is now 30 minutes. In a clinical setting, this provides information regarding the minimum amount of
time for which the cath lab will still be occupied. This can then be applied for dynamic scheduling of
the cath lab and for knowing the minimum amount of time one should wait before calling the next patient.

For procedures that take less than 20 minutes, the model still shows a high prediction accuracy. As
a matter of fact, predictions for Class 1 and Class 2 procedures are more accurate than those for delayed
procedures, with a prediction accuracy of 98.1% and 89.8%. Nevertheless, results have shown that within
the first ten minutes of the procedure, 1.9% of the data points from Class 1 are overestimated. Therefore,
the assumption that the predicted values provide the minimum procedure duration is not reliable within
this time frame. Within the dataset, 61.6% of all procedures take less than 10 minutes. Once the cu-
mulative procedure time has exceeded the 10-minute margin, Figure 4.4 shows that Class 2 acquisitions
are no longer overestimated, but the usefulness of the predictions at that point are questionable. Once
the procedure time exceeds 10 minutes, the physician does not require a model to understand that the
minimum duration is more than 10 minutes. Nevertheless, the tool can be used to update third parties
on the status of the procedure without requiring verbal communication, which could possibly distract
the staff from the procedure itself.

Since the classification model is mainly useful for detecting and predicting delay, it is important to
understand how often procedures are delayed before evaluating whether model implementation is valu-
able. Table 3.6 shows that for 11.52% of the procedures within the used dataset, the operative phase took
longer than 20 minutes to be completed. With an average of 4.2 CAG procedures per day, based on the
distribution shown in Appendix B, approximately 4 to 5 procedures are delayed by more 20 minutes per
week. With respect to the overall occupation of the cath lab on a weekly basis, the model should undergo
further optimisation before it can be assessed as a viable prediction tool. For clinical implementation, a
model would need to be built for real-time extraction and analysis of the interventional X-ray data and
user interface must be designed to transfer the information to the physicians. It is currently uncertain as
to whether the efficiency increase is big enough to cover the costs of model implementation. In terms of
model optimisation, further research must be done into the additional value of the model, with respect
to the physician’s own interpretation of the situation. Furthermore, the accuracy of predictions made
within the first 10 minutes of the procedure should be improved, to make the model suitable for proce-
dures of a normal duration as well.

In terms of the advantages of the model to the hospital, the main one is that it can predict proce-
dural duration and delay. This allows for the creation of a dynamic schedule rather than a static one,
requiring less manual scheduling work due to unforeseen circumstances. Furthermore, the model can
be set to keep learning from new procedures, which means that data is actively used to continuously
improve duration predictions. Currently, the model is mostly suitable for indicating progress and pre-
dicting delays of 20 minutes or above. Nevertheless, a perfect model would allow for accurate prediction
for the duration of any procedure. It could notify the physicians and schedulers about predicted duration
as well as delays, at an appropriate amount of time in advance. Of course, it can never be completely
robust to last-minute changes or complications. Nevertheless, the logged data should be able to provide
enough information to generate an approximate value for procedural duration.
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As far as the generalisability of the model is concerned, it is currently only trained on data from CAG
procedures. For the application of the algorithm to CAG procedures from different time periods or
different hospitals, the model is assumed to be applicable and sufficiently generalised. It is trained on a
wide variety of CAG data and hyperparemeter tuning has shown that overfitting is reduced to a minimum.
Nevertheless, an additional system is required that calculates the additional features as part of the input
data, as these features are not currently part of the overall dataset. For intraoperative prediction of
procedure duration, these features must be calculated and extracted real-time. With regards to different
procedure types executed inside in the cath lab, the data format is identical. Therefore, if the specific
procedures were filtered from the data and the entire process described in this report would be repeated,
the resulting model could be applied to predict the duration for other procedure types. However, it
is important that the process of training the model is repeated and that the parameters and optimal
feature set are reevaluated using the new dataset. The final model created in this report, including the
hyperparameters and the feature set based on recursive feature elimination, is created and optimised
for CAG data only. Finally, the application of the model to other procedures that occur outside the
cath lab, such as surgeries in the operating department, requires further alteration of the model. First
of all, the data is likely to originate from other equipment than the C-arm. Therefore, its format must
be evaluated before an optimisation of the feature set can occur. For the interventional X-ray data,
several features had to be converted to allow for their implementation into the random forest algorithm
in Matlab. Furthermore, specific procedures would be required that generate multiple data points per
patient, in order to be linked to operative workflow. In conclusion, the applicability of the model cannot
be considered universal, as it depends on the type of input data and the procedure type. Nevertheless,
the steps for data collection and model optimisation are the same. Therefore, a large part of the Matlab
code could be reused.
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5. Conclusion & Recommendations
Section 5.1 presents the conclusions of this report and answers the research question stated in Chapter 1.
Section 5.2 presents the recommendations for future research within this project.

5.1. Conclusion
The main aim of the research presented in this report was to analyse the usability of interventional
X-ray data for intraoperatively predicting procedure duration of a CAG. Furthermore, the goal was to
analyse the most important features in further depth, as to understand how they change with respect
to progress and different duration classes. The available dataset from the interventional X-ray system
contains 601 CAG procedures, characterised by 16,536 acquisitions and 30 useful features. A total of 22
additional features were generated that implemented the information from previous acquisitions of the
same procedure, referred to as repeated measures. Subsequently, the optimal combination of features
was deduced using recursive feature elimination, resulting in a final feature set of 19 features.

In order to answer the research question: ’To what extent can data logged by interventional X-ray sys-
tems be used to intraoperatively predict the total procedure duration class of a CAG and how do the most
significant features affect the analysis?’, a random forest classification model was used. For each data
point in the interventional X-ray data, the model predicted whether the procedure would take 0 to 10
minutes, 10 to 20 minutes, 20 to 30 minutes or more than 30 minutes. Based on out-of-bag validation,
the model showed an overall classification accuracy of 92.75%. Given the fact that the interventional
X-ray data is mainly logged for machine maintenance and repair, this is exceptionally high. The model
has some difficulties in correctly classifying procedures that take under 10 minutes, where it predicts a
procedure duration of 10 to 20 minutes in 1.9% of the cases. For the remaining three classes, the model
only overestimates procedure time in less than 0.5% of the cases. Therefore, once a duration class has
been estimated beyond the 10-minute margin, the estimation can be considered reliable. Furthermore,
Class 3 and Class 4 predictions provide a reliable indication of minimum procedure duration from the
start. Nevertheless, the average operative duration of a CAG is 11 minutes. Therefore, the model seems
more applicable to delayed procedures, rather than to procedures of a standard duration.

For further analysis of model performance, the intraoperative predictions have been analysed with re-
spect to cumulative procedure time. Incorrect classification of Class 1 acquisitions seems to occur until
the 10-minute margin. For the other 98.1% of the acquisitions from procedures under 10 minutes, the
correct class is generally predicted within the first 2 minutes. For the observations from procedures that
took between 10 and 30 minutes, misclassifications occur until the start of the correct class, thus 10
and 20 minutes respectively. Nevertheless, the majority of the predictions for Class 2 and Class 3 are
made before a cumulative procedure duration of 5 minutes. Despite a small degree of uncertainty, the
model shows a high accuracy when predicting for Class 2 and Class 3. For procedures that take over
30 minutes, misclassifications occur until the 20-minute margin. Nevertheless, the majority of the Class
4 predictions occur within the first 6 minutes of a procedure. Predictions that state a duration of 30
minutes and over have an accuracy rate of 99.9%. In terms of predictive abilities, predictions for ex-
tremely delayed procedures are therefore very accurate and definitely competent for practical application.

When analysing individual procedures, it seems that the model’s applicability varies per procedure.
Each analysis is done by a different random forest classification model, that is trained using all available
data except for the acquisitions from the analysed procedure. One procedure shows incorrect predictions
that were not made in previous analyses. A possible reason is all acquisitions from the procedure were
excluded from the training set, removing any possible optimistic bias. It could explain why some of the
individual results seem slightly less useful with respect to the general results. This would imply that
acquisitions from the same patient are too dependent to be split into training and test data. Further
research would have to show whether the repeated measures do indeed bias the results, or whether the
individual analyses are different based on an alternative reason.
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Within the analysis of individual procedures, some intraoperative predictions for procedures that take
under 10 minutes shift from Class 1 to Class 2 and vice versa. Due to this fluctuating output, the appli-
cation of the model is not as useful for shorter procedures. Nevertheless, for other individual procedures,
the model is able to estimate delay from a relatively early point in the procedure. Additionally, for some
procedures that take over 10 minutes, the initial observations are immediately classified as Class 2 or
over. Since the model generally does not overestimate after a cumulative procedure time of 10 minutes,
the first prediction of a new class beyond this time can be considered a reliable reference. From this
point onwards, it is safe to assume that the new minimum duration of the procedure lies within the range
of this newly predicted class.

In terms of feature importance for estimating duration class, the acquisition frequency was found to
be the most important feature, followed by the longitudinal position of the operating table and cumu-
lative procedure duration. Patient age and cumulative cine acquisition duration time were also found
to be significant. Among these features, the acquisition frequency and cumulative duration values show
a clear pattern throughout each procedure. Furthermore, their difference with respect to procedures of
varying duration classes is evident. Nevertheless, the effect of table position on the prediction is not
directly apparent. Further analysis into these findings, that are partially hidden behind the black box
characteristics of the model, would have to be done for a full understanding of the feature’s contribution.

To answer the research question, data from the interventional X-ray system is definitely useful for pre-
dicting progress and the total duration of a CAG procedure. For procedures that take less than 10
minutes, the random forest model has difficulties in accurately predicting procedure duration. As most
procedures have an operative length of less than 10 minutes, more research must be done into optimising
predictions within this duration range. This optimisation should be implemented before the model can
be considered viable. Nevertheless, the classification model shows exceptionally predictive properties for
determining delay. Most delays are detected and correctly classified within the first five minutes of the
procedure. These characteristics could be extremely useful for an efficient throughput of the cath lab and
could be further developed to create a tool for analysis and prediction of CAG workflow. The original
features logged by the interventional X-ray system are informative and show promising abilities when
it comes to intraoperatively classifying duration. Furthermore, the addition of features that take into
account repeated measures have shown to improve the classification accuracy significantly. As the model
is able to keep track of procedures progress, the model could also be used for updating third parties on
the workflow of the procedure, such as hospital schedules. This would eliminate the need of personal
communication with the cath lab, in which the staff can now maintain their focus on the procedure
itself. The main area of improvement of the classification model concerns the prediction of duration of
procedures that are not delayed. For future research on this or on the usability of interventional X-ray
data in general, this report provides a useful and informative starting point.

5.2. Recommendations
This section provides recommendations for future research, that exceeded the scope of this research.
One element that could be further examined is the use of other machine learning methods that are par-
ticularly suitable for datasets containing repeated measures, such as (non-)linear regression. Also, the
random forest model could be tested using a smaller class size, to test the extent to which the model can
predict duration based on shorter time intervals. Using smaller classes could be particularly beneficial
for analysing short procedures. Another improvement could be to link more features to progress or
duration. Currently, the phases of a CAG have only been defined in terms of the angulation and rotation
of the C-arm. Nevertheless, the operating table has shown to contain an equal number of informative
properties as the X-ray system. Pattern recognition could be applied to define phases with respect to
such features. These phases could then be implemented to analyse workflow, or to improve the input
data of the current random forest model. This could possibly increase the ability of the model to detect
a delay or predict duration earlier on in the procedure. Further research into this subject would provide
more information on the feasibility of predicting duration early on in the procedure. The minimum time
at which workflow can be analysed and unforeseen events can be predicted is currently unknown.
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In terms of the input data, relevant information could be added by indicating CAG procedures in
which the physician had to divert to the groin or where the arteries were accessed through a bypass.
By implementing this information into the input data, the model could be trained to detect a delay due
to the diversion to another type of CAG. Alternatively, the effect of the repeated measures in the data
could be further investigated, including the similarities between acquisitions from the same patient. One
could also experiment with datasets from other equipment, such as medical instruments. With respect to
the CAG data, it is recommended to include data from previous acquisitions within the procedure when
using a random forest model. The additional features are not expected to increase the degree of bias from
repeated measures. Furthermore, the system should record the time at which the patient enters the room
or when the electronic patient record is uploaded. This would provide relevant information regarding the
occupancy of the cath lab. Also, procedure type should be implemented into the interventional X-ray
data, to avoid the need of validation using DoseWise sotware. Alternatively, research could be done into
other methods to determine procedure type.

To expand the understanding of the classification model, more testing could be done on new datasets
using cross-validation, in order to fully remove the influence of repeated measures. Furthermore, the
model could be trained and tested using data from different procedures that also consist of multiple
acquisitions per patient. Moreover, testing could be done on CAG procedures from different hospitals.
The results could provide hospital-specific information regarding feature importance and workflow. For
a better insight into the functionality of the current model, available hospital schedules could be used
to compare the original planning to the outcome, with and without the applied classification model.
Furthermore, the effect of including specific procedures could be analysed. For example, procedures that
contain a few acquisitions would train the model differently than procedures with many acquisitions. The
effect of such differences might influence the classification accuracy. Overall, it is favourable to include
all data types in the training data, as to represent a realistic dataset as closely as possible.

To take the current classification model up a notch, a random forest regression model could be developed
and tested. Rather than classifying delay, this would predict a numerical value for total procedure dura-
tion. Nevertheless, attempts have shown that more information regarding the data and its phases would
be required to obtain accurate predictions. Alternatively, the classification model could be combined
with information regarding the workflow of a CAG in terms of other parameters. Currently, progress is
only measured with respect to time. Using workflow analysis and the aforementioned pattern recognition
tool to analyse the information from alternative features, a combined model could be created for detailed
workflow analysis, rather than a tool for duration prediction. To conclude, results regarding the usability
of the interventional X-ray data are highly promising and further research into the application of the
data is recommended.
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A. Distribution of Acquisitions
The following graph shows the distribution of acquisitions with respect to procedural progress. The
insight provides an additional perspective on the graphs that represent classification timing, as presented
in Section 4.1.3. Figure A.1 shows that the number of acquisitions slightly increase between 20% and
40% of the procedural progress. After decreasing to a minimum between 40% and 50% of the procedure,
the number of acquisitions increase exponentially, until a maximum is reached between 90% and 100%
of the total procedure duration.

Figure A.1: The distribution of acquisitions with respect to procedural progress.
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B. Distribution of Daily CAG Procedures
Figure B.1 shows a distribution of the number of CAG procedures per day, within the used dataset.

Figure B.1: A distribution of the number of CAG procedures per day.
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C. Results of the RFE
Table C.1 shows the complete results of the RFE, based on the method presented in Section 3.3 and
Equation (3.1). Based on observations from the RFE evaluation, the top 19 features were included in
the final feature set.

Table C.1: The ranking of features based on the recursive feature elimination.

No. Feature name Score
1 Cumulative time 1.000
2 Acquisition frequency 0.476
3 Cumulative cine time 0.345
4 Table longitudinal 0.227
5 Patient age range 0.217
6 Object thickness 0.156
7 Long. distance travelled distance 0.139
8 Position detector 0.098
9 Table lateral 0.083
10 Frontal beam long. position 0.078
11 Rotation start 0.076
12 Rotation end 0.074
13 SID 0.073
14 Cumulative fluoro time 0.073
15 Frontal z-rotation 0.065
16 Position propeller 0.064
17 Run (kV) 0.064
18 Cumulative acquisition time 0.063
19 Number of lat. moves table 0.059
20 Cumulative non-acquisition time 0.059
21 Table height 0.058
22 Lat. distance travelled table 0.048
23 Angulation end 0.042
24 Number of cine uses 0.042
25 Angulation start 0.041
26 Position C-arm 0.039
27 Cumulative DAP 0.038
28 Run (mA) 0.035
29 Number of long. moves table 0.034
30 LCA phase 0.034
31 Cumulative AirKerma 0.032
32 Run (ms) 0.030
33 Vert. distance travelled table 0.030
34 AirKerma 0.028
35 DAP 0.028
36 Acquistion time 0.028
37 Number of fluoro uses 0.027
38 Procedure name 0.027
39 Requested dose 0.025
40 Acquisition number 0.025
41 Long. distance travelled front beam 0.025
42 RCA phase 0.025
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No. Feature name Score
43 Time since acquisition 0.023
44 Number of long. moves front beam 0.023
45 Dose ratio 0.022
46 Number of vert. moves table 0.022
47 Frontal rotation detector 0.021
48 Application name 0.021
49 Cumulative DSA time 0.020
50 Number of DSA uses 0.020
51 Type 0.020
52 Frame speed 0.019
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D. Complete Set of Logged Features
This section presents all parameters logged by the interventional X-ray system, including a brief descrip-
tion. All features that were left blank in the dataset were not investigated further and are therefore not
defined in the tables below.

Table D.1: The original features logged by the interventional X-ray system.

No. Feature name Unit Feature explanation
1 Exam − The procedure number within the dataset.
2 Date − The date on which the procedure took place.
3 Start time hh : mm : ss The time at which the acquisition was initiated.
4 End time hh : mm : ss The time at which the acquisition was completed.
5 Type − Acquisition type (fluoro, cine, DSA or Single-shot) [5, 24, 32,

48].
6 Channel − ’Frontal’ for all entries.
7 Road map − States whether the radiological Road Map technique was ap-

plied, using image subtraction at peak opacification [32].
8 Technique − Selected radiation technique to determine the hardware and

software components used [32].
9 Application name − Type of application selected [37]. See Section 3.1.2.
10 Procedure name − Type of procedure selected [37]. See Section 3.1.2.
11 Fluo flavor − The selected level of fluoroscopy dose (low, medium, normal)

[40].
12 Run kV Voltage across the X-ray tube. One of the X-ray generator

settings [37].
13 Run m A Emission current from the X-ray tube. The higher this number,

the higher the number of photons reaching the detector, thus
the higher the signal intensity.

14 Run ms Pulse width of the X-rays.
15 Focus − The size of the focal spot used (small, large) [32].
16 Filter type − Type of filter used to reduce skin dose.
17 Cluster mode − Setting related to the hardware of the system.
18 Detector size mm2 The selected area of the electron-receiving detector.
19 Detector diameter mm The selected diameter of the electron-receiving detector.
20 Acquisition time s Duration of the acquisition, referring to the total time during

which X-rays were emitted by the tube.
21 Frame speed f ps Capturing speed of the image detector [32].
22 Number of frames − The number of frames taken within the acquisition duration.
23 Sub images − The number of sub-images taken that encompass a catheter or

arterial segment [47].

24 Phase 1 image
speed f ps Desired image speed for the first part of the procedure, manu-

ally selected by the cardiologist. Empty for most entries.
25 Phase 1 duration s Desired acquisition duration for the first part of the procedure,

manually selected by the cardiologist. Empty for most entries.

26 Phase 2 image
speed f ps Desired image speed for the second part of the procedure, man-

ually selected by the cardiologist. Empty for most entries.
27 Phase 2 duration s Desired acquisition duration for the second part of the proce-

dure, manually selected by cardiologist. Empty for most en-
tries.
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Code Feature name Unit Feature explanation

28 Phase 3 image
speed f ps Desired image speed for the third part of the procedure, manually

selected by the cardiologist. Empty for most entries.
29 Phase 3 duration s Desired acquisition duration for the third part of the procedure,

manually selected by cardiologist. Empty for most entries.

30 AGL TestShot
DoseRatio % The dose ratio for the test phase. Empty for most entries.

31 TestShot kV The voltage across the X-ray tube during the test phase. Empty for
most entries.

32 TestShot m A The emission current from the X-ray tube during the test phase.
Empty for most entries.

33 TestShot ms The pulse width of the X-rays during the test phase. Empty for
most entries.

34 Object Thickness cm Depth of the irradiated tissue. A larger bodypart requires a larger
entrance dose to obtain the same detector dose [43]

35 Requested dose nG y Dose required by the detector to ensure sufficient image quality [43].
36 Dose ratio % Amount of X-ray dose measured by the image detector, with respect

to the requested dose. [32, 43].

37 Entrance dose
limit nG y The maximum AirKerma received.

38 Dose sense taste − Selected transfer curve (linear or logarithmic) applied to the image
signal, manually selected by the cardiologist [32].

39 DAP mG y
·cm2 Dose Area Product. The dose of radiation delivered to the patient

multiplied by the area of the exposed skin. Provides an estimated
likelihood of skin damage.

40 Cumulative DAP mG y
·cm2 The sum of DAP values from all acquisitions, measured from the

start of the procedure.
41 AirKerma mG y Measure of the amount of radiation energy deposited to a unit mass

of air. Specifies the radiation concentration delivered to a point.

42 Cumulative
AirKerma mG y The sum of AirKerma values from all acquisitions, measured from

the start of the procedure.
43 MatrixSize px The desired size of the acquired image, in order to convert it using

an analogue-to-digital device [12].
44 Shutter position µm Selects the area to be irradiated by changing the direction of the

collimators [43].
45 Valid rectangle px The area to be irradiated, determined by the shutters and wedges.
46 Measuring field px Specifies the region of interested and affects image sharpness and

radiation dose [32].
47 Wedge 1 distance µm The position of the first wedge. Wedges control the X-ray intensity

by means of positioned filters [43].
48 Wedge 1 angle ◦ The angle of the first wedge.
49 Wedge 2 distance µm The position of the second wedge.
50 Wedge 2 angle ◦ The angle of the second wedge.
51 Angulation start ◦ The roll of the C-arm at the start of the acquisition. See Figure 3.2.
52 Angulation end ◦ The roll of the C-arm at the end of the acquisition.
53 Rotation start ◦ The propeller of the C-arm at the start of the acquisition. See

Figure 3.2.
54 Rotation end ◦ The propeller of the C-arm at the end of the acquisition.
55 SID m Source-to-image distance. The distance between the X-ray tube and

the detector.
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Code Feature name Unit Feature explanation
56 Position C-arm ◦×102 The unfiltered angulation of the C-arm.
57 Position detector µm The vertical position of the detector. Unfiltered version of

the SID. See Figure 3.2.
58 Position propeller ◦×102 The unfiltered rotation of the C-arm.

59 Frontal beam
longitudinal µm The longitudinal position of the X-ray system. See Figure 3.2.

60 Frontal beam
transversal µm Zero for all entries.

61 Frontal rotate detector ◦ The position of the detector, moving between portrait and
landscape position. See Figure 3.2.

62 Frontal swing ◦ ’Unknown’ for all entries.
63 Frontal Z-rotation The swing of the C-arm. See Figure 3.2.
64 Table height µm The vertical position of the operating table. See Figure 3.2.
65 Table lateral µm The lateral position of the operating table. See Figure 3.2.
66 Table longitudinal µm The longitudinal position of the operating table. See Fig-

ure 3.2.
67 Contrast TransferTaste − Empty for all entries.

68 Subtraction contrast
TransferTaste − Empty for all entries.

69 Perception Transfer-
Taste − Empty for all entries.

70 Processed export
TransferTaste − Empty for all entries.

71 SmartMask contrast
TransferTaste − Empty for all entries.

72 Motion comp. active − Empty for all entries.
73 Motion comp. taste − Empty for all entries.
74 Spatial NR active − Empty for all entries.
75 Spatial NR taste − Empty for all entries.
76 Temporal NR active − Empty for all entries.
77 Temporal NR taste − Empty for all entries.
78 Temporal NR factor − Empty for all entries.

79 Temporal NR factor
GeoMoving − Empty for all entries.

80 Temporal GeoMoving
applicable − Empty for all entries.

81 Temporal NR factor
OutOfSteam − Empty for all entries.

82 Subtraction active − Empty for all entries.
83 Start subtraction index − Empty for all entries.
84 Build subtraction mask − Empty for all entries.
85 Subtraction MaskTaste − Empty for all entries.

86 StartBuild subtraction
MaskIndex − Empty for all entries.

87 Build subtraction
MaskDuration − Empty for all entries.

88 Build landmark mask − Empty for all entries.
89 Build trace mask − Empty for all entries.
90 Trace type − Empty for all entries.
91 Contrast − Empty for all entries.
92 Brightness − Empty for all entries.
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Code Feature name Unit Feature explanation
93 Edge enhance − Empty for all entries.
94 Edge enhance kernel − Empty for all entries.
95 Harmoni zation − Empty for all entries.
96 Video invert − Empty for all entries.
97 Subtraction contrast − Empty for all entries.
98 Subtraction brightness − Empty for all entries.

99 Subtraction Edge-
Enhance − Empty for all entries.

100 Subtraction Edge-
Enhance kernel − Empty for all entries.

101 Subtraction harmoni
zation − Empty for all entries.

102 Subtraction video invert − Empty for all entries.
103 Zoom − Empty for all entries.
104 Pan X − Empty for all entries.
105 Pan Y − Empty for all entries.
106 Subtract enabled − Empty for all entries.
107 Subtraction gain − Empty for all entries.
108 Live gain − Empty for all entries.

109 Subtraction live
gain − Empty for all entries.

110 Landmark enabled − Empty for all entries.
111 Landmark gain − Empty for all entries.
112 Vessel gain − Empty for all entries.
113 PixelShift X − Empty for all entries.
114 PixelShift Y − Empty for all entries.
115 NonSubtract device − Empty for all entries.
116 Hospital − The hospital at which the procedure took place.
117 System − Empty for all entries.
118 Exam ID − Anonymous procedure identification number.
119 Patient ID − Anonymous patient identification number.
120 Physician ID − Anonymous physician identification number.
121 Patient age from year s Minimum year of the patient’s age range, divided up into

10-year segments.
122 Patient age till year s Maximum year of the patient’s age range, divided up into

10-year segments.
123 Patient weight from kg Minimum weight of patient’s weight range, divided up into

10-kilogram segments. Not logged correctly.
124 Patient weight till kg Maximum weight of patient’s weight range, divided up into

10-kilogram segments. Not logged correctly.
125 FXD − Empty for all entries.

75


	Preface
	Abstract
	Introduction
	Background
	Clinical Setting
	Coronary Angiography
	The Catheterization Laboratory

	The Workflow Project
	Project Vision
	Project Status

	Machine Learning Application
	Optional Methods
	Decision Trees
	Random Forest


	Data & Methodology
	Data Collection
	Interventional X-ray Data
	Procedure Type Determination
	Machine Derived Features
	Additional Features
	Operative Phase Implementation
	Data Framing

	Classification Test Setup
	Sample Distribution
	Class Selection
	Hyperparameter Tuning

	Recursive Feature Elimination
	Classification Model Overview
	Model Application Setup
	Feature Analysis Setup

	Results & Discussion
	Classification Accuracy
	Out-of-bag Accuracy
	Cross-validated Accuracy
	Classification Timing
	Model Application

	Interpretation of the Classification Results
	Feature Importance
	Feature Analysis
	Acquisition Frequency
	Longitudinal Position of the Operating Table
	Cumulative Procedure Duration
	Patient Age Range
	Cumulative Cine Acquisition Time

	Interpretation of the Feature Analysis
	Clinical Implementation of the Model

	Conclusion & Recommendations
	Conclusion
	Recommendations

	Bibliography
	Distribution of Acquisitions
	Distribution of Daily CAG Procedures
	Results of the RFE
	Complete Set of Logged Features

