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Summary

In this thesis we discuss concentration inequalities, relaxation to equilibrium of
stochastic dynamics, and random walks in dynamic random environments. In
stochastic systems one is interested in macroscopic and/or asymptotic proper-
ties as well as in fluctuations around typical behaviour. But the dependence
structure induced by the interaction between the components of the system
makes the analysis challenging. In order to overcome this in different settings
a variety of methods are employed.

Additive functionals of Markov processes play important roles in applica-
tions. In order to get exponential and moment estimates for their fluctuations
a non-standard martingale approximation is used. The resulting general theo-
rems do not require special properties like reversibility or a spectral gap. What
is needed is some control on the expected evolution. That is, the difference of
the evolution starting from two “adjacent” configurations has to be controlled.
Coupling methods are well suited to do perform this comparison. In concrete
examples couplings are used to prove the conditions of the theorems.

In statistical mechanics Gibbs measures and Markov random fields play im-
portant roles. The Poincaré inequality is an important property describing the
regularity of the measure. We prove the Poincaré inequality via a martingale
telescoping argument. To control the individual increments of the martingale
we use a coupling method called disagreement percolation. If the clusters of
this percolation are sufficiently small we obtain the Poincaré inequality.

When interacting spin systems and their dynamics have a delicate connection
to their ergodic measure(s) one has to take more care. We carefully study the
graphical construction of the dynamics to understand how the influence of the
measure can be preserved. An assumption is made that one can control how
fast the system in equilibrium can compensate for a single spin flip. Under
this assumption we obtain relaxation speed estimates for general functions. In
attractive spin systems the condition can be reduced to the decay of auto-
correlation of the spin at the origin. An application where this is of use is the
low-temperature Ising model.



Summary

Finally we look at random walks in dynamic random environments. Here a
time-changing random environment drives the motion of a particle. The goal
is to understand under which conditions the macroscopic behaviour of this
random walk is like that of a Brownian motion. We use coupling to prove a law
of large numbers as well as a functional central limit theorem for the position
of the random walk. Only polynomial decay of correlations in time are needed
for the environment, and the influence of the environment on the walk can be
very general.



Koppeling, concentratie ongelijkheden
en stochastische wandelingen in
dynamische toevallige omgevingen

Samenvatting

In dit proefschrift worden concentratie ongelijkheden, de toenadering naar
het evenwicht van stochastische dynamica en stochastische wandelingen in dy-
namische toevallige omgevingen besproken. In stochastische systemen is men
geinteresseerd in macroscopische alsook asymptotische eigenschappen en in de
fluctuaties rond het typische gedrag. De afhankelijkheidsstructuur geinduceerd
uit de wisselwerking van de componenten van het systeem vormt de uitdaging
van de analyse. Om dit te overkomen worden, afhankelijk van de situatie,
verschillende methodes gebruikt.

Additieve functionalen van Markovprocessen spelen een belangrijke rol in
toepassingen. Om exponentiéle en regulaire momenten van hun fluctuaties te
schatten wordt een niet-standaard martingaal voor de benadering gebruikt.
De resulterende algemene stellingen vereisen geen speciale eigenschappen zoals
reversibiliteit of een spectral gap. Wat nodig is, is enige controle op de te
verwachte ontwikkeling van het proces. Dat wil zeggen het verschil van de
ontwikkeling vanaf twee aangrenzende configuraties moet gecontroleerd worden.
Koppelingsmethoden zijn geschikt om dit soort vergelijk uit te voeren. In
concrete voorbeelden worden koppelingen gebruikt om de voorwaarden van de
stellingen te bewijzen.

In de statistische mechanica spelen Gibbsmaten en Markov random fields
een belangrijke rol. De Poincaré ongelijkheid is een belangrijke eigenschap die
de regelmatigheid van een maat beschrijft. Bewezen wordt de Poincaré on-
gelijkheid door een telescopische som van martingale incrementen. Om het



Samenvatting

individuele increment van de martingaal te controleren wordt van een kop-
pelingsmethode genaamd disagreement percolation gebruik gemaakt. Als de
clusters van deze percolatie voldoende klein zijn, krijgen we de Poincaré ongeli-
jkheid.

Als interactieve spin systemen en hun dynamica een delicate verbinding met
hun ergodische maat(en) hebben, moet men voorzichtig zijn. We bestuderen
de grafische opbouw van de dynamiek zorgvuldig om er achter te komen hoe
de invloed van de maat bewaard kan worden. Verondersteld wordt, dat men
kan bepalen hoe snel het systeem in evenwicht een enkele spin-flip kan com-
penseren. Onder deze aanname krijgen we ramingen voor de relaxatie snelheid
van algemene functies. In monotone spin-systemen kan dit teruggebracht wor-
den tot het verval van autocorrelatie van de spin in de oorsprong. Een applicatie
waar dit van gebruik is, is het lage temperatuur Ising-model.

Tot slot kijken we naar stochastische wandelingen in dynamisch toevallige
omgevingen. Hier zorgt een in de tijd veranderende omgeving voor de be-
weging van een deeltje. Het doel is: te begrijpen onder welke voorwaarden
het macroscopisch gedrag van deze stochastische wandeling gelijk is aan dat
van een Brownse beweging. We gebruiken koppelingsmethoden om de wet van
grote aantallen en een functionele centrale limietstelling voor de positie van de
stochastische stochastische wandeling. Alleen polynoom verval van correlaties
in de tijd is nodig voor de omgeving waarbij de invloed van de omgeving op de
stochastische wandeling zeer algemeen kan zijn.
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1 Introduction

This thesis has three main themes: concentration inequalities, relaxation to
equilibrium of stochastic dynamics, and random walks in dynamic random
environments. These three themes are intimately related. In this thesis the
focus is then on dependent variables, where the dependence is Markovian in
nature. In contrast to an i.i.d. context, which is well understood, many natural
questions prove to be challenging because of the dependence. In this thesis a
common approach to these themes are coupling techniques: in all chapters
coupling methods play a role.

In the study of interacting stochastic systems one is usually interested in
global and/or asymptotic behaviour. This means e.g. global changes in the
process when changing parameters, such as survival /extinction, diffusive versus
non-diffusive behaviour, exponential versus slow (power-law) decay of correla-
tions in space and/or time.

In interacting particle systems the following questions typically emerge:

a) properties of the stationary measure(s), and the speed of relaxation to it;
b) fluctuations of macroscopic time-averages along trajectories;
c) tagged particles;

d) behaviour of a particle driven by the interacting particle system.

In the following sections we provide some more details on the different themes.

1.1 Concentration inequalities

It is well known that the average X,, = %Z?:l Y; of independent and iden-
tically distributed random variables (Y;);>1 converges to EY; (as long as the
expectation exists). This fact, the law of large numbers, is perhaps the most
well-known theorem in probability theory. It can be explained quite intuitively,
by claiming that in the long run the fluctuations above and below the average

11



1 Introduction

balance out. It is, however, only an asymptotic statement. It does not include
any information about how close an average of size ten, one hundred or a mil-
lion is to the mean. The study of this question, the deviation probability from
the mean, is the domain of concentration inequalities.

There are various approaches to the question of deviation from the mean.
One key insight is the fact that changes in only one Y; result in only small
changes in X,,. This concept of small influence of each individual random
variable can be used to obtain deviation probabilities for the average X, [51].
The idea also generalizes from averages to other functions f(Y7,...,Y,). The
corresponding concept of small influence of each Y; is coordinate-wise Lipschitz
continuity of f. Denoting the Lipschitz-constants in the individual coordinates
by (d;f), one can look at the inequality

2

P(f —Ef >7) <e "Ton7, (1.1)

This inequality is called the Gaussian concentration inequality, and can be
obtained for example for i.i.d. bounded or Gaussian random variables. More
general, instead of looking just at Gaussian concentration one can try to obtain
inequalities of the type

B(f —Ef >7) < U(r, (5:f)): (12)

One aim is to obtain strong decay of ¥ as r increases. Besides Gaussian concen-
tration especially exponential concentration (¥(r) < cje2"/1911) is studied
much.

These types of inequalities have applications in many fields. Examples are
statistics, computer science and various areas in probability theory. They can
be used to judge the quality of an estimator or to calculate the required running
time of Monte-Carlo simulations. When simplifying calculations by replacing a
random value f(Y7,...,Y;,) by its expectation concentration inequalities provide
estimates on the error.

Besides the use in applications concentration inequalities have become a field
of research in themselves. This field has connections not only to probability
theory and statistics, but also to measure theory, functional analysis and ge-
ometry. In this field the relations between various types of inequalities of the
underlying measure are studied. Among those inequalities are isoperimetric
inequalities, transportation cost inequalities, functional inequalities and expo-

12



1.1 Concentration inequalities

nential and Gaussian concentration inequalities. Active research is done re-
garding conditions for obtaining these kinds of inequalities, as well as stability
under perturbation or taking product measures.

Typical for concentration inequalities is some sort of size parameter, like
volume, time, dimension, etc. How this size parameter effects improvements in
the deviation estimate (1.2) is usually of interest in applications. The above
mentioned stability under taking product measures which some inequalities
satisfy is of great use in this regard.

In the literature there are quite a few distinct methods for obtaining concen-
tration inequalities. Among those are the Chen-Stein method [15], transporta-
tion cost inequalities[28], log-Sobolev inequalities[49, 41, 31, 30], concentration
of measure[36, 50].

In general the Gaussian and exponential concentration behaviour for Lips-
chitz functions on a product measure is well understood. It is going beyond
this setting where there are still open questions. One can distinguish three
directions.

a) Dependent random variables:
What forms of concentration inequalities can one obtain for dependent
random variables? In many situations the i.i.d. assumption is not satis-
fied, for example for Gibbs random fields, interacting particle systems or
trajectories of Markov processes.

b) Strong dependence on the function:

How can one characterize concentration for non-Lipschitz functions, or
functions whose Lipschitz constants are very large but which do not depict
the typical behaviour of the function. An example of this would be the
maximal overlap of two i.i.d. binomial sequences of length n. Here a
single flip can lead to a change of order n, but typically the change is at
most of order log(n). Here the Poincaré inequality and other variants can
provide some answers.

¢) Beyond Gaussian and exponential estimates:
One is interested in forms of sub-exponential concentration. The need for
those estimates can come from a variety of sources. It could be that the
distribution simply has heavy tails, so one cannot hope for exponential
estimates. Or strong dependence between the variables, like in low tem-
perature spin systems. One could have a system which exhibits exponen-

13
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tial concentration for “good” functions, but sub-exponential (polynomial,
stretched exponential,...) for “bad” functions. This leads to the need for
moment estimates or estimates non-uniform in nature.

On first glance these directions may seem rather different. However there are
quite a few connections in between. For example, it is often possible to ex-
press a system of dependent random variables as a (complicated) function of
independent random variables. So one can go from dependent to independent
random variables at the price of more complicated functions.

Also, in many situations what one would consider “bad” functions are func-
tions which are mostly benign but which are very sensitive for exceptional con-
figurations. It is the interplay between “bad” configurations and the function
which causes the complications.

1.2 Functional inequalities and relaxation to
equilibrium

In the end one needs to understand the underlying measure and its interaction
with functions better. Inequalities like the Poincaré inequality are naturally
more sensitive to the interaction between function and measure. In the Poincaré
inequality,

d
Var(f) <3 / (@e ) ). (1.3)

one uses directional derivatives (or suitable analogues in other spaces) instead
of the Lipschitz constants of the function f.

Directional derivatives together with the measure also provide naturally as-
sociated dynamics in many cases. These associated dynamics, like heat-bath
Glauber dynamics for interacting spin systems, or diffusions in a potential, give
additional insight. If the measure satisfies good mixing properties in space, then
the dynamics have good mixing properties in time, and vice versa. For exam-
ple, a measure satisfying the Poincaré inequality is equivalent to the dynamics
relaxing exponentially fast to equilibrium in L2.

This connection between properties of the measure and relaxation of the
dynamics has many uses. It allows to obtain concentration along trajectories of

14



1.3 Random walks

the dynamics from understanding the equilibrium measure, and having control
on the dynamics, for example via coupling, can provide concentration of the
measure.

Most of the literature explores this connection in fast mixing regimes. In
comparison there are a lot less methods which can be used for relaxation to
equilibrium slower than exponential. The weak Poincaré inequality, which im-
plies sub-exponential relaxation to equilibrium, is one of the few exceptions[46].

In the end there is still much to be explored in concentration for dependent
systems. A direct proof of the Poincaré inequality using a method called dis-
agreement percolation is done in chapter 3. In chapter 2 additive functionals
of Markov processes are studied. The martingale method employed does not
require any form of information on the equilibrium measure, instead a specific
control on the relaxation of the dynamics is used. This has the advantage that
also sub-exponential concentration can be obtained, and the concentration re-
sult can be specific to a function. In 4 a detailed analysis of the dynamics of
Glauber dynamics of spin systems is used obtain relaxation to equilibrium of
the semi-group based on coupling probabilities.

1.3 Random walks

Random walks belong to the most important Markov processes and have been
heavily studied. The interest in random walks comes from the fact that they
are the standard model to represent motion in a noisy or complex system.

Some of the most important properties of random walks are the law of large
numbers and the invariance principle. The law of large numbers states that
asymptotically the random walk will have a deterministic speed. This makes
a line corresponding to that speed the best deterministic approximation to
the trajectory of a random walk. The invariance principle then states that
the random fluctuations around this line are asymptotically like a Brownian
motion. This description of of the macroscopic behaviour of the elementary
model of motion is key to explain diffusivity in a wide range of physical (and
other) models.

In the mathematical model, the position of the random walk (X,)n>0 is
given by the sum of the increments, X,, = > I ;| Y;. These increments are
assumed to be independent and identically distributed. This assumption is of
course an idealisation. In actual applications to model motion this assumption

15
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of i.i.d. increments cannot assumed to be satisfied. In more realistic situa-
tions, increments of the motion are produced by complex interactions with the
environment. However, if the environment is rapidly changing in a chaotic
manner and is homogeneous in space and time i.i.d. increments are a reason-
able approximation. It is then a question how far the macroscopic behaviour of
Brownian motion with drift can be generalized to models where the microscopic
assumption of i.i.d. increments is violated.

In order to make the simple random walk more realistic various variants have
been studied. When the environment’s influence on the random walk is only
slowly changing compared to the motion of the random walk, one can take the
idealization of an unchanging environment. In this environment the random
walk is exposed to inhomogeneities in space, which locally change the jump
probabilities of the random walk. this setting is called random walk in (static)
random environment.

In this thesis we focus on random walks in dynamic random environments.
Random walks in dynamic random environments form the regime in between
static environments and i.i.d. increments. The environment is assumed to
evolve at a similar time scale as the random walk.

Examples where static environments are appropriate could be electron move-
ment inside an impure conductor or migration of species with respect to geog-
raphy. Examples for dynamic environments are protein movement inside cells
or migration of species in competition with other species.

When studying a random walk (X;) in a random environment, one wants to
answer several questions:

a) The law of large numbers:
Does X;/t — v a.s. as t — oo? If the asymptotic speed exists, is it
possible to describe its value?

b) The (functional) central limit theorem:
Does % — N(0,06%)? Does the trajectory of (X;) converge to a
Brownian motion with drift? Can one quantify the variance?

c¢) Large deviation principle:
Is P(X;/t ~ 2) ~ e (*)? How does I look like?

d) Concentration estimates:
How does P(| X; — vt | > r) decrease in r in in non-asymptotic settings?

16



1.3 Random walks

e) Recurrence and transience:
Under which conditions is the random walk recurrent or transient? How
does that relate with the asymptotic speed, variance and the dimension?

Random walks in static random environments are well understood in 1 di-
mension. Going back to [48, 47], it is known that the macroscopic behaviour of
the random walk can drastically change even under small inhomogeneities in
space. Notably, recurrence is no longer equivalent to 0 speed. The random walk
can have an asymptotic speed of 0 but be transient. That is, asymptotically
the random walk will approach infinity (or minus infinity), but at a sub-linear
speed. On the level of fluctuations the behaviour can be anomalous as well,
with super-diffusivity and sub-diffusivity possible.

This non-standard behaviour of the random walk can be explained by looking
at the environment as a potential landscape. Here valleys of the potential act
as traps for the random walk. Once the random walk enters the valley it takes a
long time to escape, with the time increasing exponentially in the depth of the
valley. If those traps are frequent and strong enough they can slow down the
random walk to such an extend that its asymptotic speed is 0 even though it is
transient. Similarly the traps are responsible for the non-diffusive behaviour.
But here also fluctuations in the frequency and depth of the traps play a role.

In dimensions 2 and higher the picture is a lot less clear. The reason for this is
that geometric structures in the environment start to play a role as well. There
are still many open questions in contrast to random walks in 1 dimensional
random environments where understanding is much more complete. One focus
of the literature are fluctuations of the random walk under the assumption
that it is ballistic, i.e., has a positive speed in some direction. Another focus
is understanding conditions for ballisticity better.

Random walks in dynamic random environments are very natural from the
point of view of many applications. Here the environment evolves at a time-
scale comparable to the movement of the random walk. The time- and space-
inhomogeneous nature of the environment poses very different problems in
comparison to the effect of disorder in the static case. On one hand diffusive
behaviour is more easily achieved because of additional averaging over time. On
the other hand the dependence structure of the increments is more complicated.
While the random walk given the environment is a Markov process this is no
longer true in dynamic environments because of the time-inhomogeneity.

For the behaviour of the random walk the mixing speed of the environment

17
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is very important. This is easy to see, as dynamic environments interpolate
between static environments (limit of 0 mixing speed) and i.i.d. increments
(limit of infinite mixing speed). This idea leads to two regimes, so called “slow
mixing” and “fast mixing” environments.

For fast mixing environments the correlations decay fast enough so that on
macroscopic scales the dependence is lost and the increments of the random
walk become i.i.d. For slow mixing environments some dependence structure
is retained even on macroscopic space and time scales. However, the existence
of those macroscopic space-time dependence structures in the environment are
not equivalent with non-standard behaviour of the random walk, as the nature
of the influence of the environment on the random walk is relevant as well.

In fact, the slow mixing regime is very poorly understood. In the literature
the only rigorous result is the existence of a flat piece in the large deviation
rate function for a random walk on a 1-dimensional simple symmetric exclu-
sion process [5]. Simulations for the same model suggest that depending on
the interaction the random walk can exhibit both diffusive and non-diffusive
behaviour [7].

As the slow mixing regime is very complicated much of the literature is
focused on understanding and expanding the fast mixing regime. Diffusive be-
haviour has been proven when the environment is independent in time or space
or uniformly exponentially fast mixing [11, 9, 12, 6, 23, 22, 13]. When the mix-
ing is typically exponential but slower for exceptional starting configurations
of the environment there are only a few results. In [10, 24] the supercritical
contact process is considered, where for specific forms of interaction diffusivity
is proven as well. In another work for non-uniformly mixing environments a
random walk with a strong drift is considered on the simple symmetric ex-
clusion process is studied [8], where the drift makes the effective environment
exponentially fast mixing in a way to obtain diffusivity.

When looking at sub-exponential mixing speeds there are only few results
available. In [2] environments with polynomial decay of correlations in space
and time are studied. Diffusivity of the random walk is obtained using a renor-
malization argument under the additional assumption that the random walk
is only weakly coupled to the environment. In [3] random conductance models
are studied for environments with only weak polynomial mixing. In dimen-
sion 3 and higher only mixing faster than ¢! is needed. However in random
conductance models the interaction between random walk and environment is

18



1.4 Overview of the individual chapters

restricted, which limits possible conclusions for other models.

The main contribution of chapter 5 to this field is using coupling to obtain
diffusivity for random walks in environments which are only polynomially mix-
ing. Here the influence of the environment on the random walk is completely
general up to some continuity conditions.

One important idea in the study of random walks in random environments
(both static and dynamic) is the environment-seen-from-the-particle process
(EP). It is this process, the perceived environment, which determines the move-
ment of the random walk. Just like the sequence (Y1,Y5,..) determines the
classical random walk X, = E?:lYi, the EP determines the random walk
in random environment. Studying the asymptotic properties of the EP al-
lows to obtain much information about the random walk itself. In the case of
Markovian dynamic environments the EP has another important property: in
contrast to the random walk, the EP is a Markov process. The key theorem of
chapter 5 then deals with strong ergodicity properties of the EP.

1.4 Overview of the individual chapters

Chapter 2: Concentration of Additive Functionals for Markov
Processes and Applications to Interacting Particle Systems

In chapter 2 we develop concentration inequalities for (time-inhomogeneous)
additive functionals of Markov processes on general state spaces. Both ex-
ponential and moment estimates are obtained. The method used is based on
martingales and does not need any information about the stationary measure of
the process. Instead a specific form of relaxation to equilibrium is used, which
is well-adapted to coupling methods. The connection via coupling is explained
via a general relation between the contractivity of the semigroup and bounds
on the generalized coupling time.

Applications include diffusions, random walks, and interacting particle sys-
tems. In particular the simple symmetric exclusion process, which is far beyond
the traditional methods.

19



1 Introduction

Chapter 3: Poincaré inequality for Markov random fields via
disagreement percolation

In chapter 3 we look at the Poincaré inequality for Markov random fields like
the high-temperature Ising model. Even though the Poincaré inequality is
already known to hold we obtain it in a new way. The method used is disagree-
ment percolation. If the influence of a single flip in a configuration is small
enough, the Poincaré inequality is obtained. If the influence is just finite, i.e.,
the disagreement percolation is sub-critical, then at least the weak Poincaré
inequality holds.

Chapter 4: A Variance Inequality for Glauber dynamics with
Application to Low Temperature Ising Model

Chapter 4 looks at the relaxation rate to equilibrium of Glauber dynamics. The
influence of a single flip is tracked through space-time in a detailed manner as
not to lose the influence of the ergodic measure. Because of this non-uniform
nature the method can be applied even in low teperature regimes, as long as
some control on the relaxation to equilibrium is available. In attractive systems
the decay of the auto-correlation of the spin at the origin is sufficient for that.

Chapter 5: Random Walks in Dynamic Random
Environments: A transference principle

We study a general class of random walks driven by a uniquely ergodic Marko-
vian environment. Under a coupling condition on the environment we obtain
strong ergodicity properties for the environment as seen from the position of
the walker, i.e., the environment process. We can transfer the rate of mixing
in time of the environment to the rate of mixing of the environment process
with a loss of at most polynomial order. Therefore the method is applicable
to environments with sufficiently fast polynomial mixing. We obtain unique
ergodicity of the environment process. Moreover, the unique invariant mea-
sure of the environment process depends continuously on the jump rates of the
walker.

As a consequence we obtain the law of large numbers and a central limit
theorem with non-degenerate variance for the position of the walk.
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2 Concentration of Additive Functionals

for Markov Processes and Applications

to Interacting Particle Systems!

2.0 Abstract

We consider additive functionals of Markov processes in continuous time with
general (metric) state spaces. We derive concentration bounds for their expo-
nential moments and moments of finite order. Applications include diffusions,
interacting particle systems and random walks. In particular, for the symmet-
ric exclusion process we generalize large deviation bounds for occupation times
to general local functions. The method is based on coupling estimates and not
spectral theory, hence reversibility is not needed. We bound the exponential
moments(or the moments of finite order) in terms of a so-called coupled func-
tion difference, which in turn is estimated using the generalized coupling time.
Along the way we prove a general relation between the contractivity of the
semigroup and bounds on the generalized coupling time.

2.1 Introduction

The study of concentration properties of additive functionals of Markov pro-
cesses is the subject of many recent publications, see e.g. [14], [55]. This subject
is strongly connected to functional inequalities such as the Poincaré and log-
Sobolev inequality, as well as to the concentration of measure phenomenon
[36]. In this chapter we consider concentration properties of a general class

LConcentration of Additive Functionals for Markov Processes and Applications to Interact-
ing Particle Systems
F. Redig, F. Véllering
http://arxiv.org/abs/1003.0006
submitted
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2 Concentration of Additive Functionals

of additive functionals of the form fOT fi(X¢) dt in the context of continuous-
time Markov processes on a Polish space. The simplest and classical case is
where f; = f does not depend on time. However the fact that time-dependent
functions f; are allowed can be a significant advantage in applications.

Our approach is based on coupling ideas. More precisely, we estimate expo-
nential moments or k-th order moments using the so-called coupled function
difference which is estimated in terms of a so-called generalized coupling time,
a generalization of the concept used in [20]. Because of this approach no knowl-
edge about a possible stationary distribution is required.

Our method covers several cases such as diffusion processes, jump processes,
random walks and interacting particle systems. The example of random walk
shows that for unbounded state spaces, the concentration inequalities depend
on which space the functions f; belong to.

The main application to the exclusion process, which has slow relaxation to
equilibrium and therefore does not satisfy any functional inequality such as e.g.
log-Sobolev (in infinite volume), shows the full power of the method. Besides,
we give a one-to-one correspondence between the exponential contraction of
the semigroup and the fact that the generalized coupling time is bounded by
the metric. For discrete state spaces, this means that the semigroup is expo-
nentially contracting if and only if the generalized coupling time is bounded.

This chapter is organized as follows: in Section 2.2 we prove our concentration
inequalities in the general context of a continuous-time Markov process on a
metric space. We derive estimates for exponential moments and moments of
finite order. In Section 2.3 we study the generalized coupling time and its
relation to contractivity of the semigroup. Section 2.4 is devoted to examples.
Section 2.5 deals with the symmetric exclusion process.

2.2 Concentration inequalities

Let X = (X;)i>0 be a Feller process in the Polish state space E. Denote by
PP, its associated measure on the path space of cadlag trajectories Djg [(E)
started in « € F and with

Fi:=0{X;0<s<t}, t>0,

22



2.2 Concentration inequalities

the canonical filtration. We denote by E, the expectation with respect to the
measure P,. For v a probability measure on F, we define E, := f]Ez v(dz),
i.e. expectation in the process starting from v. The associated semigroup we
denote by (S;);>0 and with A its generator, both considered on a suitable space
(B(E),C(E),Co(E),...).

The content of this section is to derive concentration inequalities for func-
tionals of the form

The most familiar case is when F' is of the form

[ rxoa

ie. fy=ffort<Tand f; =0 for t > T. We first formulate conditions on
the family of functions f; which we will need later.

Definition 2.2.1. We say the family of functions {fi,t > 0} is k-regular for
k e N, if:

a) The fi are Borel measurable and t — fi1(Xs) is Lebesgue-integrable
P.-a.s. for every x € E,t > 0, and E, fooo | fres(Xs) ]| ds < o0;

b) E; sup | fiys(Xs) |k is well-defined and finite for t > 0, x € E arbitrary
0<s<e
and € > 0 small enough;

c¢) There ezists a function v : E — R and ¢g > 0 such that for 0 < € < ¢
and x € E

supE, /O | Froess(Xa) = frra(X) | ds < er(a)

>0
and E,r(X)* < cc.

Remark If F(X) = fOT f(X,)dt, then B, sup | f(X,)|" < oo for some
0<t<T+eo

€0 > 0 implies conditions b) and c¢) of the k-regularity. In condition b) the
statement of well-definedness can be replaced by the existence of a measurable
upper bound.

23



2 Concentration of Additive Functionals

The technique to obtain concentration inequalities for functionals of the form
(2.1) is to use a telescoping approach where one conditions on §;, i.e., where
we average F'(X) under the knowledge of the path of the Markov process X up
to time ¢.

Definition 2.2.2. For 0 < s <t, define the increments
As = E[F(X)[§] — E[F(X)[3]

and the initial increment
Ao = E[F(X)[Fo] — E,[F(X)],

which depends on the initial distribution v.

The basic property of the increments is the relation Ag, = Ag; + Ay, for
s < t < u. Also, we have

E[F(X)[F7] — E,[F(X)] = Aso + Ao,

where we have to use A, o to accommodate for the initial distribution v. To
better work with the increment A, ;, we will rewrite it in a more complicated
but also more useful way.

Definition 2.2.3. Given the family of functions {f; : t > 0}, the coupled
function difference is defined as

By(z,y) = /0 Sufvra(@) — Sufvialy) du.

Remark We call ®; the coupled function difference because later we will see
that we need estimates on | ®; |, and for a coupling E of X starting in z and y
we have the estimate

By(z,y) < /0 oy | frn(Xu) = froa(Ya) | du.

In the next lemma we express the increments A, in terms of the coupled
function difference ®;.
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2.2 Concentration inequalities

Lemma 2.2.4.

sz/numf&ﬂnammﬂﬁﬂm&ﬂag

Proof. First, we note that

and

X)I&]=/Os fu(Xu)du+/ Su—sfu(Xs) du+ [St_s/oo Su_tfudu} (X,).
Hence,

Asp =E[F(X)[3:] — E[F(X)[3]

/n Xo) = Sucsfu(Xe)du

+St s |:/ Su tfu(Xt) uftfudu (Xs)
/ﬂtu—&mnmgm+mﬂ@mpm&> O

The following lemma is crucial to obtain the concentration inequalities of
Theorems 2.2.6 and 2.2.9 below. It expresses conditional moments of the in-
crements in terms of the coupled function difference.

Lemma 2.2.5. Fiz k € N, k > 2. Assume that the family (f;) is k-reqular and
suppose that ®;(-,z)* is in the domain of the generator A for all x € E. Then

lim E [Af,t—o—e |1’§t] = (A((Pt(aXt)k))(Xt)

e—0 €

Proof. We will use the following elementary fact repetitively. For k& > 2, if

- —k
|be| < ebe and sup Eb, < oo, then
0<e<eg

1 1
lim —E(ac + b.)* = lim ~Ea*. (2.2)
e—0 € e—0 €
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2 Concentration of Additive Functionals
By Lemma 2.2.4,

t+e
Avre = / Fu(X0) = Suc i fulX0) du+ [y (Xope )] (X0).

First, we show that we can neglect the first term. Indeed,

t+e
’ . fU(X’U«) - Suftfu(Xt) du

<e sup | frps(Xeps) |+ €BY, sup | fras(Ye),
0<s<e 0<s<e

we can use part b) of the k-regularity to apply fact (2.2) and get

1 1
lim ~E [Af, .| §] = lim -E [[Seq%ﬂ(xtﬁ’.)]k (X:) ‘St} :

e—0 € e—0 €

Next, by writing ®; . = ®; + (P41 — P;), we will show that the difference can
be neglected in the limit ¢ — 0. To this end, we observe that

| i ye(z,y) — Po(,y) | < /0 Es | frtetu(Xu) = frau(Xu) | du
+/o Eff | froeru(Xu) = firu(Xu) | du.

Part ¢) of the k—regularity condition allows us to invoke fact (2.2) again to
obtain

.1 1
lim (B [Afy |8 = (B [[82(Xre, ] (X0)

5.

Finally, to replace Sc®¢( Xy, ) by ®:(Xi1e, ) by applying fact (2.2) for a third
time, we estimate

[ [Se®i(y, ) (2) — Pi(y, x) |

< ‘ Su+eft+u+e(x) - Su-l—eft-‘ru (T’) du
0

+ ’ Suft-‘ru(x) du
0

< Er/ |ft+u+e(Xu+e) - ft+u(Xu+e) | du + €E, sup ft+u(Xu)a
0

0<u<e
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2.2 Concentration inequalities

where parts b) and c) of the k-regularity then provide the necessary estimates.
Now, the desired result is immediately achieved:

.1 .1 k
lim B (A |8 = lim - |5 (@, X0)"] ()
= A, (-, X1)"(Xy). -

We can now state our first main theorem, which is a bound of the exponential
moment of F(X) in terms of the coupled function difference ;.

Theorem 2.2.6. Assume that for all k € N, the f; are k-reqular and ®;(-,z)* €
dom(A) for all x € E. Then, for any distributions u and v on E,

oo 0 1

logE, {eF(X)ﬂEyF(X)} < log(co) —|—/O sgg k|(A((I)k( x)))(x) dt,
[e%e] o 1

logE,, {e”X)—EvF(Xq >log(eo) + [ inf S —(A(®E(,2))) (@) dt,
o =EE 2 k!

where the influence of the distributions  and v is only present in the factor

¢ = / Yo y(d).

Remark If H; : E x F is an upper bound on | ®; | and H;(x,z) = 0 for all
x € E, then the upper bound of the theorem remains valid if @, is replaced
by H;. In particular, if f; = fl;<p, Hy := | ®o| 1< serves as a good initial
estimate to obtain the upper bound

logE, eFC=EF) | < og(c) 4+ T sup
zeE k=2

S AR [" (- 2)(2).

Further estimates on | ®¢ | specific to the particular process can then be used
without the need to keep a dependence on t.

Proof. Define

U(t) :=E, [eA**‘H’AO»‘} .
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2 Concentration of Additive Functionals

We see that for € > 0,

U(t+e€)— U(¢)

B, (¢d ot 80 b —1[3,))
=E, (e ( SERELRS ) [eA”*E = Appqe—1 | &]) ’

where we used the fact that E[A; ;1+¢|F:] = 0. Hence, using Lemma 2.2.5, we
can calculate the derivative of U:

V(t) =E, <€A*‘°+A°" > kl, (A(D:(, Xt)k))(Xt)> :

k=2

To get upper or lower bounds on ¥/, we move the sum out of the expectation as
a supremum or infimum. Just continuing with the upper bound, as the lower
bound is analogue,

v'( ) sup Z x)))(x).

IEE

After dividing by ¥(¢) and integrating, we get

T 1
W¥(T) ~wH(0) < [ sup S (A@EC ) (o)

which leads to

lim W(T) =B, [7O5 O] < w(0)e I sup 2, (Ao at

T— 00
The value of ¢ = ¥U(0) = E,e®+° is obtained from the identity
Avo =1 (Po(Xo,))- N

How the bound in Theorem 2.2.6 can be used to obtain a deviation probability
in the most common case is shown by the following corollary.

Corollary 2.2.7. Assume that F/(X fo ¢) dt, the conditions of Theorem
2.2.6 are satisfied, and supzeEA|<I>o| (-, )(Jc) < cick for some c1,c0 > 0.
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2.2 Concentration inequalities

Then, for any initial condition x € E,

1oz 2
*5(5)

P (F(X) - E,F(X) > ) <e T80

Proof. By Markov’s inequality,

Po(F(X) — E,F(X) > ) < Eper T EeAFX) =A@

13k k
eTc1 Done s mATey = Az

IN

)

where the last line is the result from Theorem 2.2.6. Through optimizing A,
the exponent becomes

z — (T +C£)log( +1).
2

Co TC162
-3(&)?

To show that this term is less than To gtz We first rewrite it as the following
1T 3 ¢y

inequality:

1z \2
3 (55

1l =z
T61+302

TCl—l-%

+

Z
Cc2

log( +1) >

Tcico
Through comparing the derivatives, one concludes that the left hand side is
indeed bigger than the right hand side. O

In applications one tries to find good estimates of ®;. When looking at
the examples in Section 2.4, finding those estimates is where the actual work
lies. In the case where the functions f; are Lipschitz continuous with respect
to a suitably chosen (semi)metric p, the problem can be reduced to questions
about the generalized coupling time h, which is defined and discussed in detail
in Section 2.3. In case that the exponential moment of F(X) — EF(X) does
not exist or the bound obtained from Theorem 2.2.6 is not useful, we turn to
moment bounds. This is the content of the next theorem.

Lemma 2.2.8. Assume that the f; are 2-regular and ®2(-, ) is in the domain
of the generator A. Then the predictable quadratic variation of the martingale
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2 Concentration of Additive Functionals
(Ao ,t)e>0 s

<A074>t:/0 AD?(-, X,)(X,) ds.

Proof. We have, using Lemma, 2.2.5 for k = 2,

4

1
& (A0.), = lim B [A7, [ §] = A®3(, X)(X). 0

Theorem 2.2.9. Let the functions f; be 2-regular and ®7(-, ) in the domain
of the generator A. Then

1
P

(E, | F(X) - E,F(X)[")* <C, <]EH (/OOO AD2(-, X,)(X;) dt) )
(2.3a)

+ (Eﬂ (?55 | Dy (X, X, >p> ;1 (2.3b)

1

H(fr @iy wan) e

where the constant C,, only depends on p and behaves like p/logp as p — oco.

Proof. By the triangle inequality,

=

(B, | F(X) — E,F(X) )7 < (| Ao [P)? + (B, | Auo [P)7 .

Since (Ag,)t>0 is a square integrable martingale starting at 0, a version of
Rosenthal’s inequality([43], Theorem 1) implies

D=

(EM | AO,T |p> < Cp

N »
(Bu (20,)7) +<IEH sup | Aoy — Aoy |P) ]

0<t<T

Applying Lemma 2.2.8 to rewrite the predictable quadratic variation (Ag.)r
and Lemma 2.2.4 to rewrite A;_ ;, we end with the first two terms of our claim
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2.3 Generalized coupling time

after letting T — oco. The last term is just a different way of writing A, o:

= ([ Iw@atenr u(dw)'l’ . 0

Let us discuss the meaning of the three terms appearing on the right hand
side in Theorem (2.2.9).

3 =

(EulAcol”)

a) The first term gives the contribution, typically of order T%, that one ex-
pects even in the simplest case of processes with independent increments.

E.g. if p is an invariant measure and F(X) = fOT f(Xy)dt, then

[SIS)

Ey ( / ) A¢%<~7Xt><xt>dt)g <74 [ (a0 0)(@)? ulde).

b
In many cases (see examples below), [ (A®3(-,z)(x))? p(dx) can be
treated as a constant, i.e., not depending on 7. There are however rele-
vant examples where this factor blows up as T — co.

b) The second term measures rare events of possibly large jumps where it is
very difficult to couple. If the process X has continuous paths, this term
is not present. Usually this term is or bounded or is of lower order than
the first term as T — oo.

¢) The third term has only the hidden time dependence of ®y on T. It
measures the intrinsic variation given the starting measures 1 and v and
it vanishes if and only if p = v = §,.

It is also interesting to note that the estimate is sharp for small 7: If one
chooses F(X) = + fOT f(X¢)dt and looks at the limit as T — 0, the first two

terms disappear and the third one becomes ([ | f(z) — v(f) |" ,u(dx))%, which
is also the limit of the left hand side.
2.3 Generalized coupling time

In order to apply the results of Section 2.2 we need estimates on ;. We can
obtain these if we know more about the coupling behaviour of the underlying
process X. To characterize this coupling behaviour, we will look at how close
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2 Concentration of Additive Functionals

we can get two versions of the process started at different points measured with
respect to a distance.

Let p: Ex E — [0, 0] be a lower semi-continuous semi-metric. With respect
to this semi-metric, we define

[ £ llpip = {r = 0] f(z) = f(y) <rple,y) Va,y € E},

the Lipschitz-seminorm of f corresponding to p. Now we introduce the main
objects of study in this section.

Definition 2.3.1.  a) The optimal coupling distance at time t is defined as

pi(z,y) = /p(x', y') m(da'dy'),

inf
7765]3(515“%53)

where the infimum ranges over the set of all possible couplings with mar-
ginals 6,S¢ and 64, i.e., the distribution of X, started from x ory.

b) The generalized coupling time is defined as

h(z,y) := /000 pt(z,y) dt.

Now that we have introduced the generalized coupling time, as first applica-
tion we obtain, using the remark following Theorem 2.2.6:

Corollary 2.3.2. Assume the functions f; are Lipschitz continuous with re-
spect to a semi-metric p, and that the conditions of Theorem 2.2.6 hold true.
Then

S coek:z

)

S Sk gy k) (x
E, [eF(X)—EVF(X)} 2 3 sup (A" (2)) (@)

where

supll fo Il oy ()
Co Z/etzo : p(dz),

> k
e = / sup | i 1%, dt.
0 t>0
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2.3 Generalized coupling time
In particular, if fr = f fort <T and fy =0 fort > T, then

co < /el\f\lmp'/(h(w»-)) ju(dz),
k
a<T|f HLip'

Remark If h is an upper bound on the generalized coupling time h with
h(x,z) = 0, then the result holds true with A replaced by h.

Proposition 2.3.3. The optimal coupling distance p; has the dual formulation

pe(z,y) =  sup  (Sif(x) — Sif(y))

IIf ”Lipzl

Proof. By the Kantorovich-Rubinstein theorem ([53], Theorem 1.14), we have

ﬂem(éizr*lsft,(gyst)/pdﬂ- - Hfﬁ];lizl {/fd((szSt) - ./fd(éySt)]
= sup [(Sif)(@) = (Sef)(w)] - [

I f HLip:1

Also, it is easy to see that the semi-metric properties of p translate to p; and
thereby to the generalized coupling time h.

Proposition 2.3.4. Both the optimal coupling distance p; and the generalized
coupling time h are semi-metrics.

Proof. We only have to prove the semi-metric properties of p;, they translate
naturally to h via integration.

Obviously, pi(z,z) = 0 and pi(z,y) = p:(y, ) is true for all z,y € E by
definition of p;. For the triangle inequality, we use the dual representation:

pe(z,y) = ” fiupzl(stf(x) - Sif(y))

o fiuPZI(Stf(x) — Sif(2) + Sef(2) — Sef(y)

< pie(w, 2) + pe(y, 2) O

A first result is a simple estimate on the decay of the semigroup S; in terms
of the optimal coupling distance.
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2 Concentration of Additive Functionals

Proposition 2.3.5. Let p be a stationary probability measure of the semigroup
S¢. Then

1508 = 1 ang < £l ([ o) ( | u(dy)pxx,y))p); |

Remark When we choose the metric p to be the discrete metric 1,», (a
choice we can make even in a non-discrete setting), we can estimate p;(z,y) by

~

Py (7 > t), the probability that the coupling time
T=inf{t>0| X} =X2Vs>t}

is larger than ¢ in an arbitrary coupling @xy of the Markov process started in
z and y. In this case, the result of Proposition 2.3.5 reads

150 = 1) ang < £ e ([ t0) ([ Bt > t>)p);’ ,

where || f|,,, = sup, ,(f(z) — f(y)) is the oscillation norm. Note that this can
also be gained from the well-known coupling inequality

1628¢ = 8yt llpyar < 2By (7 > 1).
Proof of Proposition 2.3.5. First,
|Sef (@) = u(f) | =1 Sef (@) — u(Sif)]
~[Eercen - [ utanz, s

< /u(dy) |Eof(X:) — By f(V:) |
< [ ) 1711, i)

This estimate can be applied directly to get the result:

P

150 = 1D oy = ([ o) 1.5 = ) )
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2.3 Generalized coupling time

<17y ([t u(dy)pm,y))p)'l’ D

The above result did not use the semigroup property of S;. When we use it
we can improve estimates considerably. The price is that from now on, p has
to be a metric, and this metric must be compatible with the Markov process,
which we will define a little bit later under the notion of contraction with
respect to this metric. The aim is to show how the uniform boundedness of the
generalized coupling time implies an exponential decay of the semigroup (S%)
in the Lipschitz seminorm. To this end, we need the following lemma:

Lemma 2.3.6. Under the condition that p is a metric,

sup pe(z,y) _ A

r#y P(af, y)

Proof. By the representation of the optimal coupling distance in Proposition 2.3.3,

S -5,
sup pe(z,y) sup  sup tf(x) — Sif(y)
T#yY P(ilf, y) £y || f HLip:l p(aja y)
= sup [ Sif ||Lip =[S HLip -here 0
IHfilp:p=1

Definition 2.3.7. We say that the process X acts as a contraction for the
distance p if

pe(@,y) < plz,y) VE=0, (2.4)
or equivalently,
1Sl <1 VE>0.

This property is sufficient to show that the process is contracting the distance
monotonely:

Lemma 2.3.8. Assume that the process X acts as a contraction for the dis-
tance. Then

pt+3(m7y) Spt('ray) vxvyeE7$7t20
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2 Concentration of Additive Functionals

Proof. Using the dual representation,

Prrs(T,y) = H fiup—1[5t+8f<x) = Strsf(Y)]

= sup [St(sz)(iC) - St(sz)(y)]

I 1lpip<t

By our assumption, the set of functions f with || f ||, <1 are a subset of the
set of functions f with || .Ssf|,;, < 1. Hence,

Pr+s(T,y) < sup [Se(Ssf)(x) — Se(Ss f)(y)]
Fill Ssfllpip<1

< ”SIﬂgl[Stg(x) — Sig(y)] = pe(z,9). [

With this property in mind, we can show the main theorem of this section.

Theorem 2.3.9. Assume that p is a metric and that the process X acts as a
contraction for the distance. Then the fact that the generalized coupling time
h is bounded by the metric p is equivalent to the fact that the semigroup (Sy) is
exponentially contracting. More precisely, for a > 1 arbitrary,

a) Vo,y € E: hz,y) < Mp(z,y) = Vt>Ma: [[Si],;, < i

) 1Sl <t = VayeE: hzy) < 2Lpx,y).

Proof. a) For xz,y € E, set

—_

Ty, = inf {t >0 ’ pe(w,y) < p(fmy)} :
(0%

Then,

oo Tz .y 1
Mp(x,y) > h(z,y) = / pi(z,y) dt > / pe(z,y) dt > Tw,yap(%y)
0 0

Therefore T, , is bounded by Ma. By Lemma 2.3.8, p;(z,y) < pr, , (7, y) for all
t > T,y Hence prra(z,y) < Lp(x,y) uniformly, which implies || Sazq lzip < L
b) Since pi(z,y) < p(z, y) || St HLi;ﬂ

oo

h(zx,y) =/ pe(z,y) dtép(x,y)/ [ Sell iy dt
0 0
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2.3 Generalized coupling time

> k oT
< P(may)TZ ST 1L < mp(z,y). O]
k=0

When we apply this theorem to an arbitrary Markov process where we use
the discrete distance, we get the following corollary:

Corollary 2.3.10. The following two statements are equivalent:

a) The generalized coupling time with respect to the discrete metric p(x,y) =
1y2y is uniformly bounded, i.e.

h(z,y) <M Vz,y € E;

b) The semigroup is eventually contractive in the oscillation (semi)-norm,
i.e., | ST |l,,. <1 for some T > 0.

osc

Remark Theorem 2.3.9 actually gives us more information, namely how the
constants M and T can be related to each other.

Proof. Since obviously sup p:(z,y) < 1, the process X acts as a contraction for

T#Y
the discrete distance and the result follows from Theorem 2.3.9, where we also
use the fact that in the case of the discrete metric, ||« ||, = [ || s O

Since Theorem 2.3.9 part a) implies that || S; ||, decays exponentially fast,
it is of interest to get the best estimate on the speed of decay, which is the
content of the following proposition:

Proposition 2.3.11. Assume that p is a metric, the process X acts as a con-
traction for the distance and the generalized coupling time h satisfies h(z,y) <
Mp(z,y). Then

1

.1
tlggo;logll St ||Lip < M

Proof. The proof uses the same structure as the proof of part a) in Theorem

2.3.9. First, fix e between 0 and ;. Then define

ot e 570}
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2 Concentration of Additive Functionals

By our assumption,

1 _ e_(%_E)Tm,y

Tz,y
Mp(z,9) > h(z,y) > plz,y) / e Gr=9% dt = Mp(z,y)
0 1—Me

Since the fraction on the right hand side becomes bigger than 1 if T}, , is too

large, there exists an uniform upper bound T'(¢) on T ,,. Hence, for all t > T'(e),
(L — . . . . 1 1

1St || i < e (r=9)%, which of course implies Jim £ | Sty < —37 + € By

sending € to 0, we finish our proof. O
Again, we apply this result to the discrete metric to see what it contains.

Corollary 2.3.12. Let @xy be a coupling of the process X started in = resp.
y, and denote with 7 := inf {t > 0 | X! = X2 Vs >t} the coupling time. Set
M = sup Ez’yT. Then

z,yel
. 1
tli)m log || St ||osc = M

Equivalently, for f € L™,

1 1
o1 _ <c_1
Jim —logl| Sef — u(F)lloo < =57
where p is the unique stationary distribution of X.

Remarks a) If the the Markov process X is also reversible, then the above
result extends to L' and hence to any LP, where the spectral gap is then
also at least of size 4.

b) As an additional consequence, when a Markov process can be uniformly

coupled, i.e. sup Ex 4T < M < oo for a coupling E then there exists
T, yek

a possibly different) couplin IEI so that su IEE A < oo for all
p Yy pung Y p Y
z,yc &

A< % Note that without Corollary 2.3.12 this property is obvious only
for Markovian couplings.
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2.4 Examples

2.4 Examples

2.4.1 Diffusions with a strictly convex potential

Let V be a twice continuously differentiable function on the real line with
V" >c¢>0and [eV®dr = Zy < co. To the potential V is associated the
Gibbs measure

1
wy (dz) = Z—Vefv(gﬂ)dx

and a Markovian diffusion
dX, = —V'(X,) + V2dW,

with py as reversible measure.

To estimate the optimal coupling distance p; at time ¢(see Definition 2.3.1),
we couple two versions of the diffusion, X started in z and X/ started in y, by
using the same Brownian motion (W;);>0. Then the difference process X; — X}
is deterministic, z < y implies X¥ < X} and by the convexity assumption

d(X{ = X[) = —(V/(X{) = V'(X])) < —e(X} = X}).
Using Gronwall’s Lemma, we obtain the estimate
pe(z,y) < |z —yle™

on the optimal coupling distance. By integration, the generalized coupling time
h has the estimate h(z,y) < % |z —y|. As a consequence, Proposition 2.3.11
implies

tlggo log || S¢ [l < —c

Since the generator A of the diffusion is
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2 Concentration of Additive Functionals

we have

1 k 2 k=2,
A(G1-el) @=1;
c 0, k>2.

Therefore, for f : R — R be Lipschitz-continuous, we can use Corollary 2.3.2
to get the estimate

2 .
E,, |efo f(X0)di=Eu fon<Xt)dt] < ey et (2.5)

V1,V2 b

with the dependence on the distributions v and v, given by

Il £ HLq
Ey nJ "hep
Coy = Ej €72 le—yl

Remark a) An alternative proof that strict convexity is sufficient for (2.5)
to be true can be found in [54]. A proof via the log-Sobolev inequality
can be found in [36]. Hence the result is of no surprise, but the method
of obtaining it is new.

b) This example demonstrates nicely how in the case of diffusions the higher
moments of Ah¥(-,x)(z) can disappear because the generalized coupling
time is bounded by a multiple of the initial distance.

c) The generalization to higher dimensions under strict convexity is straight-
forward.

2.4.2 Interacting particle systems

Let E = {0, 1}Zd be the state space of the interacting particle system with a
generator L given by

Z Z nvI+A ( I+A)_f(77)}7

T ACZ4

where n” denotes the configuration 7 with all spins in A flipped. This kind of

particle system is extensively treated in [37]. For f : F — R, we denote with

ds(x) :==sup f(n") — f(n) the maximal influence of a single flip at site x, and
nek

with 6y = (67(z))zecr the vector of all those influences.
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2.4 Examples

If there is a way to limit how flips in the configuration affect the system as
time progresses, then we can obtain a concentration estimate. Again, denote
with F(n.) = fOT f(ne) dt the additive functional of the function f and the
particle system 7..

Theorem 2.4.1. Assume there exists a family of operators A, so that dg,5 <
Ady, and write

G .= / At dt,
0

which is assumed to exist. Denote with

ck = sup Z e, x4+ A)| A
NEEELt X 7

the weighted mazimal rate of spin flips. If || G'[|, o < oo for some p > 1, then
for any f with 6¢ € {P and any initial condition n € I,

< k|| Gy 151
EneF(n.)fE,,F(n.) < exp TZ Pk_" P

k=2

If additionally || G'||; < oo and || f | := || 7 ||, < oo, then for any two proba-
bility distributions vy, v,

E,, eF)=Ev F(n) < exp

IGIFN+T> 5

k=2

k k
= k[ Gl [167 IIP]

Applications of this Theorem are for example spin flip dynamics in the so-
called M < e regime, where there exists an operator I' with || T'||; = M, so
that

SStf < eft(efl“)(sf

holds. Since G = [[Te " Ddt = (e —I)7L, |G|, < (e — M)~'. Hence
| Gly_y < (e — M)~ for a first application of the Theorem. If the process is
reversible as well, |G|, = [|G|;, and by Riesz-Thorin’s Theorem, we have
|G, < (e — M), hence we get the result for functions f with || 0y ||, < oc.

Another example is the exclusion process. As a single discrepancy is pre-
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2 Concentration of Additive Functionals

served and moves like a random walk, A;(z,y) = p:(z,y), the transition prob-
ability of the random walk. In high dimensions, G(z,y) = fooo pe(x,y) dt has
bounded ¢! — ¢2-norm:

||GHH2— sup Z ZGw v)g

9 1—1

< sup ZZ|g )| G(x,y)? <ZG$O

lhgll,=1

:/0 /0 %:pt(o,x)ps(o,x)dsdt

= / / ps_,.t(O, O) dsdt < oo
0 0

in dimension 5 and higher. As the exclusion process switches two sites, ¢, < 2%,
and hence

TZ 2 Gl Il S|

E, eF)=EnF () < oxp -
k!

k=2

However, this is only a quick result exploiting the strong diffusive behaviour in
high dimensions. In the last section we will deal with the exclusion process in
much more detail to obtain results for lower dimensions as well.

Proof of Theorem 2.4.1. First, we notice that the coupled function difference
®, for a single flip can be bounded by

w0 ) < [ SO — Suf ()| dt

< /OOO 5Stf(1') dt < /OOO(At(sf)(LE) dt
< (Gog)(x)

uniformly in 7. To estimate the coupled function difference ®; we telescope
over single site flips,

®F ("2 m) < | AIF((Gop) (),
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2.4 Examples

and therefore

Lok (., Z Z (n,z + A)OF ("2 n)
z ACzd
<D e+ A) AT (Gop)k(x)
z AcCzd

< e[| GO Iy, < el Gop lly < el Gl l167 1y

Hence the first part is proven by applying these estimates to Theorem 2.2.6
for fixed and identical initial conditions. To prove the estimate for arbitrary
initial distributions, we simply observe that, again by telescoping over single
site flips,

Po(n,€) <Zsup¢’oC ,¢) <ZG5f ) <G =

2.4.3 Simple symmetric random walk

The aim of this example is to show that we can get concentration estimates
even if the process X - in this example a simple symmetric nearest neighbour
random walk in Z? - has no stationary distribution We will consider three
cases: f € (Y(Z%), £2(Z?) and ¢=(Z%), and F(X fo (X;)dt. To apply
Theorem 2.2.6, our task is to estimate | ®;(x,y) | where y is a neighbour of z.
We will denote with p;(z, 2) the transition probability from x to z in time ¢.
We start with the estimate on the coupled function difference

By (. y) | = / R S(X,) — By f(X,) ds

T—t
/ D FE) s, 2) = ps(y, ) ds
z€74
T—t
<SG [ pes) =pds

T
< Z|f(z) ‘/0 ps(,2) = ps(y, 2) ds
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2 Concentration of Additive Functionals

Now, depending on the three cases of f, we proceed differently. First, let f € £!.
Then,

T
| e(x,y) | < D1 f(2)] ‘ /O ps(@,2) = ps(y, 2) ds

/OTps(af»Z) — ps(y, 2) ds

< | flly sup
z

T
=Hf||1/0 p6(0,0) — py(y — 2,0)ds < Cy || £ -

Since |z — y| = 1, the constant C; = fooo ps(0,0) — ps(y — x,0) ds depends on
the dimension but nothing else.
Second, let f € £°°. Then,

|0z, y) | <D | f(2)] ‘ /O ps(x,2) — ps(y, 2) ds

<Ifle>

z

T
- Hflloo/o S s, 2) — a9, 2) | ds

/ ps(x, z) — ps(y, 2) ds
0

T
1
15l [ 5 1) =) Ly

T
< anoo/O B,,(r > s)ds

In the last line, we used the coupling inequality. The coupling @xy is the
Ornstein coupling, i.e., the different coordinates move independently until they
meet. Since x and y are equal in all but one coordinate, the probability of not
having succeeded at time ¢ is of order t=2. Hence we end up with

Third, let f € ¢2. This is the most interesting case.
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Lemma 2.4.2. Let x,y € Z% be neighbours. Then

T 2
> (/0 pt(zvz)_pt(y,z)dt> < o(T)

z€7Z4
with
O(VT), d=1;
a(T) € ¢ O(logT), d=2;
0(1), d>3

Proof. By expanding the product and using the fact that > p:(a, 2)ps(b, z) =
Pits(a,b) = prys(a —b,0), we get

Z (/0 pe(x, 2) — pe(y, 2) dt)

z€Z4

T T
= 2/ / Pi4+5(0,0) — prys(x —y,0)dtds

/ / A)pess(-,0)(0) dt ds

2/ ps(oa O) Pr+s (Oa O) ds
0

2

§2/Tps(0,0)ds =: o(T). O
0

Using first the Cauchy-Schwarz inequality and then Lemma 2.4.2,

k
2 2

T
[0z y) " < | F1I5 Z(/ pt<:c,z>pt<y,z>dt> < £5 a(T)%.

z

To conclude this example, we finally use the uniform estimates on ®; to apply
Theorem 2.2.6 and obtain

Eexp[/ f(Xydt—E /th dt]<exp

Tzcl |f||1],
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2 Concentration of Additive Functionals

Eexpl/ F(X)dt —E /th dt]<exp

g

M\?r
1

and

T T 00 k
E, exp M f(Xt)dtf]Ex/O f(Xt)dt] <exp T MT%

for f € (', f € > and f € £>°. Since the generator is Af(x) = 55>, . (f(y) —
f(x)), we use the estimates 2d times and divide by 2d, so no additional con-
stants appear in the results.

2.5 Application: Simple symmetric exclusion
process

This example is somewhat more involved(because of the conservation law), and
shows the full power of our approach in the context where classical functional
inequalities such as the log-Sobolev inequality do not hold.

The simple symmetric exclusion process is defined via its generator

Afn) = 3 oa (Fr) — 5n).
Ty

It is known that the large deviation behaviour of the occupation time of the
orlgln fo n:(0) dt is dependent on the dimension [35]. Its variance is of order
T3 in dlmenswn d =1, Tlog(T) in dimension d = 2 and T in dimensions d > 3
[4]. Here we will show the same kind of time dependence for the exponential
moments, in dimension d = 1 for functionals of any quasi-local function f, and
in dimension d > 2 for the occupation time of a finite set A.

Theorem 2.5.1. Let f : {0,1}2 — R be such that || f||| < oo, and fizx an
initial configuration no € {0,1}2. Then

T T
E,, exp (/0 f(ne)dt — ]Eno/o f(ne) dt) < exp

oo
Tie, 3 2 LA (c2 ||| f||| ’
k=2
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2.5 Application: Simple symmetric exclusion process

and the constants c1,co > 0 are independent of f, ng and T.

While it is natural to assume the same kind of result in all dimensions(with a
properly adjusted dependence on T'), we can only prove it in high dimensions(d >
5, see application of Theorem 2.4.1) or for a subset of the local functions, the
occupation indicator H4(n) := [] n(a) of a finite set A C Z9, with a slightly

acA

worse dependence on the function(i.e. | A|).

Theorem 2.5.2. Let A C Z% be a finite, and fix an initial configuration 1y €
{0, 1}Zd. Then, for all A > 0,

> 3k
Ta(T) >, AL

T T
E,, exp </ AH A(n) dt — Ey, / AH 4(ny) dt) <e K== ,
0 0

where a(T) € O(T2),0(logT) or O(1) in dimensions d =1, d =2 or d > 3.
The constant ¢ > 0 is independent of A, ng and T, but may depend on the
dimension d.

The proofs of Theorems 2.5.1 and 2.5.2 are subject of the two subsections
below. For Theorem 2.5.2, we will only look at d > 2, the case d = 1 is
contained in Theorem 2.5.1.

2.5.1 Concentration of quasi-local functions in d = 1: Proof
of Theorem 2.5.1

Let f be a quasi-local function. To derive an exponential estimate, we will
create a coupling between the exclusion process started in n and started in n*¥:

Proposition 2.5.3. There exists a coupling @n’nzy of P, and Py=y for which

By yew ]lng(z);ﬁnf(z) < C|pi(w,2) = pe(y,2) |
holds for some constant C > 0.

Proof. To couple two exclusion processes with almost identical initial condi-
tions, we use a variation of the graphical representation to describe their devel-
opment, which is the following: at each edge between two consecutive integer
numbers, we put an independent Poissonian clock of rate 1, and whenever this
clock rings we exchange the occupation status of the sites which are connected
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2 Concentration of Additive Functionals

by the edge associated to the clock, which is represented by a double sided
arrow. Now, to couple P, with P,.v, we instead take Poissonian clocks of rate
2, and additionally a sequence of independent fair coin flips associated to the
arrows. For both n' and 72, which use the same arrow configuration, if the
coin flip corresponding to an arrow is tails, that arrow is ignored, with one
exception explained a bit later. First, we notice that this leads to effective
rates of 1. Second, since we start with just two discrepancies(one at = and one
at y), those remain the only discrepancies, and they perform independent ran-
dom walk movements until they encounter the same arrow, which leads us to
the only exception of the mechanics described above: When there is an arrow
connecting the two discrepancies, the exchange of process n'! is suppressed if
the coin flip is tails, but then 1? performs the exchange, and if the coin flip is
heads, ' performs the exchange and 72 does not. After this event, n' and 7?2
are identical.

If we denote the position of the discrepancies by X; and Y;, those perform
independent random walks of rate 1 until they meet, then they stay together.
Hence

E “/]1 nt(2)#n?(z) — E ,y]lXﬁéYt,ze{Xt,Yt} < C|pt(x Z) pt(yvz) Iv

where we used the fact that in dimension 1, the independent coupling of two
random walks is optimal and hence

@zy(Xt:Yt:Z):pt(IvZ)/\pt(y,Z). O

)

To apply Theorem 2.2.6, we have to estimate

LOk(., <Z Z

/Sf () — stf<>dt

r€Z j==%1
k
<2 > (/ D05 (B et L 2 dt)
r€Zj==%1
k
<ckFy N (/ > 6p(2) | pul, 2) = puly, 2) | dt)
zr€Z j=%1
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2.5 Application: Simple symmetric exclusion process

<CkZZ/ Z5f ) pe(x,2) — pe(y, ) | dt

T€Z j=%1

r€Z j==%1

k—1
-<sur> _Sup/ Z5f ) pe(z,2) — pe(y, 2) | dt) :

where we used Proposition 2.5.3 to obtain the third line. To continue, we
calculate

ZZ/Z% ) I pe(2, 2) —pi(2 + j, 2) | dt

x€Z j==+1

Z Z(Sf / ||pt ) pt(j7 ) ||TVa7‘ dt

j=%x1 =z

<CII fIIVT.

Next,

sup sup / Zéf )| pe(x,2) — pe(x+ 4, 2) | dt
z€Z j==*1

T
< I Il sup sup / 1910, 2) — pi(j 2) | dt
j==x1 =z 0

T
= Il £ |l sup / pe(0,2) — pr(—1,2) dt.
220 J0

In order to control the supremum over z on the right hand side of the last line,

let 79 denote the first time a simple symmetric random walk (X;);>o hits 0.
Then

T
/0 pe(0,2) — pi(—1,2)dt

T T
— [ wond-5| [ 02
0 T

oNT
T
/ p+(0,2) dt
T—1oNT

X = _1]

Xo = —1]

=E
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2 Concentration of Additive Functionals

T
/ p(0,0) dt| Xo = —1]
T—1oNT

T
:/ p¢(0,0) — ps(—1,0) dt =: C' < o0.
0

<E

Hence
LO*(,n)(n) < I £ |IF VT CLCH

for suitable constants C7 and Cs, and Theorem 2.2.6 implies

T T ric, 3 (Callf I*
E, exp / f(ne) dt — E, / f()dt) <e k=2 '
0 0

for any initial configuration 7.

2.5.2 Concentration of the occupation time of a finite set in
d > 2: Proof of Theorem 2.5.2

Now, we want to show that the occupation time of a finite set A C Z¢,
/ Halne) dt, Ha(n) == [ nla
a€A

has the same time asymptotic behaviour as the occupation time of a single site.
As a stating point to estimate L | ®; |k (-,m), we use the following result of [26]:

Theorem 2.5.4. [26], Theorem 2.2

E, [T me(a) = T] o(@)

a€cA a€A
1
:—7/ ds Y Pa(X,=2)
zcz?
[Z]=|A|
Z p(ZhZQ)(p?—s(Zl) pt s 22 H pt s 23
21,220€7 23€Z
z17# 29 23#21,22
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2.5 Application: Simple symmetric exclusion process

Here Po(Xs = Z) is the probability of exclusion walkers started in A occupying
the set Z at time s, and p}(z) = E,ni(z) is the occupation probability of = at
time t given the initial configuration .

By using this comparison of exclusion dynamics with independent random
walkers, we get

Eyey H ne(a) — E, H ne(a)

acA acA
Ty Ty
=Eyev [[ m(a) = [[ #V (@) + [ o (a)
ac€A acA a€A
— [ i@+ ] ri(a) =B, I m(a)
a€EA acA acA
- 1/t
= (H o @) - T] pz<a>) 5[ X Pax.=2)
acA acA 0 zcr?
|Z|=|A]

Y p(an ) | (A=) = ps(22))* T piia(zs)

21,22€Z 23€Z
z21#29 237#21,22

_(p?75(21> - 9275(22))2 H p?75(23)

z3€Z
23F£21,22
Taking absolute values, we start to estimate the first difference:

11 e (@) - I ri(a)

acA acA

<[ @ = i)

a€A

= Z | pe(x,a) — pi(y,a)|.

acA

The next part is the big difference inside the integral. It is estimated by

z Ty

(p1—u(21) = p_(22))? = (PI_ o (21) — pi_(22))?
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2 Concentration of Additive Functionals

Ty
T | Pl e) () | (Pa(21) = p(22))?
z3€Z
23#£21,22

Now we come back to the original task of estimating L | ®; |* (-,5). From now
on, multiplicative constants are ignored on a regular basis, which results in an
omitted factor of the form c¢;c§. However warning is given by using < instead
of <. By using the above estimates, we obtain the upper bound

T k
S play) ( / S Ipe(.a) — puly.0)| dt) (2.6)

r€Z4 yeZa acA
T t
X S s | [d [ ds Y Pae=2) 3 perza)
€7 yeZd 0 0 VAlAd 21,22€Z
| Z|=| A z1#£22

Ty ry

[ ) = A — () — A (22)?])
2.7)

T t
+ 3> pla,y) /0 dt/o ds > Pa(Xe=2) > pla1,2)
zcz?

rE€Z4 yeZd 21,290€7Z
| Z|=]A]| z217#22

k

zy

S| e) = o) | (la() = P12 |

23€7
237£21,22

(2.8)

which we will treat individually.
For term (2.6), we estimate sum over A by the maximum times | A|. Hence

k

T
26) <[A" 3 3 play) ( / | pa(,a0) — pi(y, ao)| dt)

r€Z4 yeZa
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2.5 Application: Simple symmetric exclusion process

We note that

T
sup / | pe(2,a0) — pi(ys ao) | d
0

TEL,Yy~x
< sup/ p(0,0) — p¢(4,0) dt < o0
ljl=1J0

and

Z Z $ y </ |pt(x,a0) —pt(y,ao)\ dt)

r€Z% yezd
2
% Z > (/ pe(x, a0) — Pt(%ao-Fj)dt)
|J| 1zezd
< a(T)

by Lemma 2.4.2. Hence
(26) S| A[*a(T)
Next, we must treat (2.7). In the case k =1,

(2.7) /dt/ ds Y N> N Y PaX.=2)

T EZA Y~T 21 €79 za~z1 Z:z1,29€7Z

(2.9a)

Ty Ty
| P = ) = (o) + ol (22) | (2.9)
| = Pz + pa(1) — p(2) | (2:9)

Regarding the exclusion walkers X in (2.9a), we can simplify by using Liggett’s
correlation inequality ([37], chapter 8):

> Pa(X.=2)=Pa(21,2 € X,) <Pa(z1 € X,)Pa(z2 € X,)

= (Zps(zl,a)> (ZPS(ZQaa)>'
acA acA
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2 Concentration of Additive Functionals

Lemma 2.5.5. For |i|,|j|=1,

a) For any 7,

nm,erj nw,erj

pi () —pl (2 +0) = pi(2) +pi (2 +1)

<pe(x,z) —pe(x + 4, 2) = pe(w, 2 +4) + pe(x + j, 2 + 1) |,

b) > Ipi(x,2) —pi(x+j,2) —pe(w, 2 + 1) +pe(z +j, 2 +4) [ S (L + )7

YA

Part b) holds as well when we sum over z instead of x.
Proof. First we notice that
pi(y,2) —pu(@,2),  nx) =1,n(y) =0;

(Z) _p?('z) = pt(xaz) _pt(yaz)’ 77(37) :0777(9)
0, otherwise,

which immediately proves a). To show b),

S 1u(2,2) = e+ ) — pels = +8) + pula + o7+ )|
TEZ

= Z ’ Zpt/Q(xvu)pt/Q(uv Z) - pt/?(x +Ja u)pt/Q(u7 Z)
x u

= Puya (@ WPy, 2 4+ 1) + pugala + o)l 2 + )|
< Z Z | (ej2 (@, u) — pyja(@ + j,u)(pej2(u, 2) — pyya(u, z + 1)) |

= Z |pt/2(U,Z) 7pt/2(u,Z +Z) } Z |pt/2(xau) 7pt/2('r +]a U) |

=4 Hpt/Q(Ov ) = peya(iy) ||TVG,’I‘ H pe/2(0,) = pey2(Js ) HTVar
SA+t/2)77(1+¢/2)7 7 <2(1+8)7,

1

where the last line relies on optimal coupling of two random walks, see for

example [38].
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2.5 Application: Simple symmetric exclusion process

As a third observation,

107 (21) = pi(22) | = | > (pe(21, ) — pe(22,2))n(2)
xr
< ||pt(21,') _pt(22") ”T\/a'r7 (210)
which leads to the estimate

1
(2.9¢) < 2| pe—s(z1,°) = Pr—s(22,°) lpyar S (L+1—5)72.

Applying the estimates for (2.9a) to (2.9c), we have (for k = 1)

T t
(2.7)§/0 dt/o ds 3 3 S piena) Y pulena) 1+t —s)

z1 €74 22~z1 a€A acA

Nfw

T t
§2d|A|2/ dt/ ds pe(0,0)(1 41— )~
0 0

T t
STAP [ dt | ds (1+4s)”
0 0

sS4 a(T),

d
2

(1+t—s)2

where the last line is due to the following lemma:

Lemma 2.5.6.

. , VT, n=1;
/ dt/ ds (l—l—s)_%(l—i—t—s)_%,ﬁ log(1+T), n=2;
0 0
L,

Proof. Write
t m n
flm,n) = / (I+s) " 2(1+t—s)"2dt.
0

Then f satisfies f(m,n) < (1+¢)"2(f(m —1,n) + f(m,n — 1)) for m,n > 1:

! (1+1)3
/0 A19)%0t+i-sF %

[N

flm,n) =1+t~
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2 Concentration of Additive Functionals

n

(1+8)2(1+t—s)%
= (1+1)"2(f(m—1,n) + f(m,n —1)).

¢ 3 — 53
/ (I+s)z24+(1+t—ys) i@t
0

Also, f(n,0) = f(0,n) < (1+1t)2,log(1+¢)or 1forn=1,n=2o0rn > 3.
Using these two rules we obtain the given estimates. O

As we have already dealt with (2.7) when k = 1, we use the simple fact
> h(z)k < Zh Jsuph(2)) b= 0,

to generalize to any k. However, we must show that (2.7) is bounded by a
constant when we replace the sum by the supremum. When we use the same
initial estimates as above, we get

sup sup/ dt/ ds > Y (Zps a,z ) (Zps(a,@))

w€L Y~ 21 €Z4 z2~z1 \a€A a€A
: |pt75(x7 Zl) - ptfs(im 22) - ptfs(ya Zl) + ptfs(yv 22) ‘
! ” pt—s(zla ) - pt—s(ZQa ) ||TVa7" 5

and by taking the sum over z; over the p;_, differences,
T t .
< / dt/ ds (| A| ps(0,0))2(1 4t — )~
0 0
T t .
§|A|2/ dt/ ds (1+ ) (1 +t—s) 3 S[AP ifd>2.
0 0
Hence, finally, we have obtained the estimate

2.7) <|APPF a(T).

Part (2.8) is treated in a similar way:

Y PaXe=2) Y plazm) Y

VA4l 21,2267 23€Z
| Z|=|A| z1#£22 z37#21,22

Ty

p?,S(Z?,) - p;’,S(ZS)

(Pl o(21) = pl_o(22))?
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2.5 Application: Simple symmetric exclusion process

SO YD <Zps(a,zi)> | Pe—s(y, 23) — pr—s(@, 23) |

z1 z2~z1 23 i=1 \a€A

2
! ||ptfs(zlv ) _pt*S(z% ) ||TVar

By using the fact that

Z |pt75($ + 7, Z) — pi—s(, Z) | =2 ||pt73<.7'a ) = pe—s(0, ) ||TVar

we can sum over x to obtain another power of the total variation distance.
Also,

3
S (Zma,m) < 2d| A[’p,(0,0),

21 za~z1 z3 i=1 \a€A

hence we obtain the compound estimate
| AP po(0,0)(1+ 1 —5)7%/2,

which after integrating over s and ¢ is again of order «(T'). When we take the
supremum over z, we can instead take the sum over z3 on the middle term.
Hence we keep another ps(0,0) and we get and get

| AP ps(0,0)%(1+t —s)73/2,
which after integration is of order 1 if d > 2. Hence,

(2.8) S | AP a(T).
Returning to the original question,

L@ " (m)(m) S A alT) + [ A AT) + | AP a(T) S AP (D),
and after replacing < with <,

L@ " () () < erch | AP (D).
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2 Concentration of Additive Functionals

Now that we have this estimate, Theorem 2.2.6 gives us the estimate

T T
E, exp (/ AH A(ny) dt — ]En/ AH A(n:) dt)
0 0

<exp< clz CQA‘A| ),

=2

where the constants ¢; and ¢y do not depend on T or A.
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3 Poincaré inequality for Markov
random fields via disagreement
percolation?!

3.0 Abstract

We consider Markov random fields of discrete spins on the lattice Z¢. We use
a technique of coupling of conditional distributions. If under the coupling the
disagreement cluster is “sufficiently” subcritical, then we prove the Poincaré
inequality. In the whole subcritical regime, we have a weak Poincaré inequality
and corresponding polynomial upper bound for the relaxation of the associated
Glauber dynamics.

3.1 Introduction

Concentration inequalities is an active field of research in probability, with
applications in other areas of mathematics such as functional analysis, geom-
etry of metric spaces, as well as in more applied areas such as combinatorics,
optimization and computer science [36], [42], [25].

Gibbsian random fields on lattice spin systems provide examples of inter-
acting random systems having at the same time non-trivial and natural (e.g.
Markovian) dependence structure. They provide a good class of examples where
the validity of concentration inequalities in the context of dependent random
fields can be tested.

The relation between good mixing properties of Gibbs measures and expo-
nential relaxation to equilibrium of the associated reversible Glauber dynamics

Poincaré inequality for Markov random fields via disagreement percolation
J.-R. Chazottes, F. Redig, F.Véllering
Indagationes Mathematicae 22(3-4), 149-164 (2011)
doi:10.1016/j.indag.2011.09.003
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3 Poincaré inequality via disagreement percolation

is a thoroughly studied subject. Well-known results in this area were obtained
by Aizenman and Holley, [1]|, Zegarlinski [57], Stroock and Zegarlinski [49],
Martinelli and Olivieri [40]. One of the main results in this area is the equiv-
alence between the log-Sobolev inequality (implying exponential relaxation of
the dynamics in L*°) and the Dobrushin-Shlosman complete analyticity condi-
tion.

More recently, a direct relation between the Dobrushin uniqueness condition
and Gaussian concentration estimates was proved in [34], and a more general
relation between the existence of a coupling of a system of conditional distri-
butions and Gaussian and moment inequalities in [16]. Besides the Dobrushin
uniqueness condition, disagreement percolation technique appears here as a
basic tool in constructing a good coupling of conditional distributions. The
deviation of a function from its expectation is estimated in terms of the sum
of the squares of the maximal variation, via martingale difference approach
combined with coupling.

So far, no relation has been established between Gaussian concentration esti-
mates or moment estimates (such as the variance inequality) of a Gibbs measure
and relaxation properties of the associated reversible Glauber dynamics.

In this chapter we show the correspondence between the existence of a good
coupling of conditional distributions and the Poincaré inequality in the con-
text of lattice Ising spin systems. In [18] this was proved in dimension one for
a large class of Gibbs measures in the uniqueness regime. The extension to
higher dimension which we deal with here (for finite-range potentials) presents
new challenges. The Poincaré inequality estimates the variance of a function
in terms of the sum of its expected quadratic variations (instead of maximal
variation). Therefore, the Poincaré inequality gives much more information.
In particular it is equivalent with relaxation of the corresponding reversible
Glauber dynamics in L?. The Poincaré inequality is strictly weaker than the
log-Sobolev inequality. So in the complete analyticity regime, the Poincaré in-
equality is satisfied. A direct proof of the Poincaré inequality in the Dobrushin
uniqueness regime can be found in [56].

Our result gives a direct road between “good" coupling of conditional dis-
tributions and the Poincaré inequality. By good coupling we mean that if in
some region of the space we condition on two configurations that differ only in
a single point, then we can couple the unconditioned spins such that the set of
sites where we have a discrepancy in the coupling is small. Small here means:
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3.2 Setting

behaving as a subcritical percolation cluster, uniformly in the conditioning.
The size of this region of discrepancies can be thought of as the analogue of
the “coupling time" for processes. In order to derive the Poincaré inequality,
we need the existence of an exponential moment of the disagreement cluster.
which corresponds to a non-optimal high-temperature condition (which is e.g.
stronger than Dobrushin uniqueness, for the ferromagnetic case).

We want to stress however that the main message of the chapter is the direct
link between coupling of conditional distributions and the Poincaré inequality,
rather than finding an optimal region of 8 where the inequality holds.

In case the required exponential moment of the disagreement cluster does
not exist, we still obtain the so-called weak Poincaré inequality which gives
a polynomial upper bound for the relaxation of the corresponding Glauber
dynamics.

This chapter is organized as follows: in section 3.2 we introduce the basic
ingredients and discuss coupling via disagreement percolation. In section 3.4
we prove the Poincaré inequality for small S and h close to zero, in section 3.5
we treat the case h large, in section 3.6 we prove the weak Poincaré inequality
in the whole subcritical regime.

Acknowledgment. We thank Pierre Collet for fruitful discussions.

3.2 Setting

3.2.1 Configurations

We work in the context of Ising spin systems on a lattice, i.e., with state space
Q={-1, +1}Zd (d > 2). Elements of ) are denoted o,7, &, and are called spin
configurations. We fix a “spiraling” enumeration of Z?

7% = {x1,29,...,2p,...}.

such that x;y; lies in the exterior boundary of {z1,...,2;}. This enumeration
induces an order and lattice intervals like

[, = {zr,1 <k < i}

We use the notation fg, 1 <i<j < oo, for a configuration supported on the
set {x1,7 < k < j}. We denote by &'+, the concatenation of £&\~! with a
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3 Poincaré inequality via disagreement percolation

‘plus’ spin at site x;. More generally, we write £y &y for the concatenation of
a configuration &y supported on V' with a configuration &y supported on W.

3.2.2 Functions

For a function f : 2 — R we define the “discrete derivative” in the direction 7,
at the configuration 7 to be

Ve f(m) = f(n*) — f(n),

where 1* denotes the configuration obtained from 7 by “fHipping” the spin at
site x, i.e., iy = ny for all y # x and 1y =1 —n,. For a finite subset A C z4
we denote by o the configuration obtained from ¢ by flipping all the spins in
A, and

Vaf(o) = flo™) — f(0).

For an enumeration A = {y1,...,yn} of A, and z € A, we denote by A, the set
of those elements in A preceding = (z not included). For the minimal element
z* € A, in the chosen order of enumeration of A, A, = () by definition.
Elementary telescoping yields the estimate

Waf (@) < Y |V floher)

zEA

Notice that if A C B then we have the inequality

DIV fet<) <D N f (o)

T€EA z€B

in an order where we enumerate B by first enumerating A and then the elements
of B\ A.
The variation in direction o, is defined as

o f =sup (f(n") — f(n))-

neQ

The collection {4, f : € Z?} is denoted by Jf, and

I8£113 =" (d.1)%.

z€Z4
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3.2 Setting

3.2.3 Markov random fields

Let X = {X,,z € Z%} be a Markov random field of “Ising spins”, i.e., X,
takes values in {—1,+1}. In accordance with the previous section, we use the
notations X{, Xy, Xy&w, etc.

The conditional probabilities of X are thus given by

6Bh€ﬁJ ZyNI Ty

2cosh (Bh+ BT Y., . 7).

]P’(Xx = +1|de\x = O'Zd\z) = (3.1)

In this formula z ~ y means that x and y are nearest neighbors, J € R is
the coupling strength and h > 0 is interpreted as a uniform magnetic field.
Without loss of generality we can assume that |J| = 1. The case J =1 is the
Ising ferromagnet whereas the case J = —1 is the Ising anti-ferromagnet.

An easy consequence of (3.1) is the following uniform bound on the Radon-
Nikodym derivative w.r.t. spin-flip:

dpe )
AN < p28n+48a . e .
E a2

where P* denotes the image measure of P under spin-flip at lattice site x.
From the previous estimate we deduce that, for a finite subset A C Z<,

dp4
< ¢lAl(28h+45d) _
[5e], 5o 6

where P4 is the image measure of PP under simultaneous flips of all the spins in

A.

3.2.4 Glauber dynamics

In this section we review some well-known facts about Glauber dynamics. Much
more information can be found in [37], chapter 3.

Given a random field X with distribution P, the natural Glauber dynamics
associated to it is a Markovian spin-flip dynamics that flips the spin configura-
tion o with rate c(z, o) at lattice site . This is the Markov process {o; : t > 0}
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3 Poincaré inequality via disagreement percolation

with generator acting on the core of local functions given by

Lf(o) =Y c(z,0)Vaf(0). (3.4)

€7

We denote by S; the associated semigroup generated by L, i.e.,

Sif(0) = Eo(f(o4)).

The rates c(z,0) are assumed to be local, uniformly bounded away from zero
and uniformly bounded from above, i.e., there exist 0 < § < M < oo such

J<e(x,o) < M. (3.5)

Moreover, we assume the so-called detailed balance relation between c(z, o)
and P which reads, informally,

c(z,0)P(o) = c(z,0")P(c”).
This is formally rewritten as

c(z,o0) dP?
=3 ) (3.6)

c(z, o)

i.e., the lhs of (3.6) is a (and hence the unique) continuous (as a function of o)
version of the Radon-Nikodym derivative of P w.r.t. spin-flip at site x (i.e., the
rhs).

Several choices for the rates are possible, one common choice is the heat-bath
dynamics where

c(z,0) =P(X, = —0| Xzar, = Ogav,)-

The condition (3.6) ensures that P is a reversible measure for the Markov

process with generator (3.4), i.e., the closure of L is a self-adjoint operator on
L3(P).
The Dirichlet form associated to the rates c(z, o) is given by

a1 =2f-L)f) = 3 / o(2,0)(Vo f)? B(do). (3.7)

z€Z3
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3.2 Setting

where (-) denotes inner product in L?(PP). We say that the Glauber dynamics
has a spectral gap if for all f local functions with [ fdP =0,

Ee(f. ) = KI5

This implies that the (—L) has simple eigenvalue zero and that the L?(P)
spectrum has x as a lower bound. This in turn implies the estimate

Var(S:f) < e”™|fI3

i.e., exponential relaxation to equilibrium in L?(IP)-sense.
Defining the quadratic form

510 =Y [(rpar.
YA

we have by (3.5) the estimate

OE(f, f) < &f. f) < ME(f, f).

Hence, estimating the variance of a function in terms of the quadratic form
E(f, f) is equivalent with estimating the variance in terms of the Dirichlet form
(3.7) and therefore gives relevant information about the presence of a spectral
gap and hence L2-relaxation properties of the associated Glauber dynamics.

3.2.5 Coupling of conditional probabilities
We write P for the conditional distribution of X|; 11 ) given Xi=¢l

Remark Notice that we have the same bound (3.3) for the measure P, when
A C [1,4]¢, uniformly in &.

We denote by I/P\)gi‘—l_"_i,gii—l_i a coupling of the distributions ]P)gi'—l_,’_i and Pg;‘—l_i.

This coupling is a distribution of a random field
(Yo Zo)w € i+ 1Lo0)} on ({=1,+1} x {=1,+1})""),
Similarly we write @Xi'—1+i’xi—lii. We define the random set of discrepancies

G ={xr : k>i,Yy, # Zs, }
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3 Poincaré inequality via disagreement percolation

The distribution of this set depends of course on the choice of the coupling.

The coupling @£§—1+i’£i—17i which we will use throughout this chapter is
the one used in [52]. For the sake of self-consistency, we explain here the
construction of this coupling.

First we pick a site z} 1, with index higher than 4, which is a neighbor of
x;. The couple (Yz%+1 , thl) is generated according to the optimal coupling of
Pei1, (szl-f-l =) and ]P’Ei_lﬂ(XI}Jrl = ), i.e., the coupling that maximizes
the probability of agreement.

Having generated (szﬂv, Zmzﬂ-) for i + 1 < k < j, either we choose a new
lattice point x;ﬂ_l that has a neighbor in the previously generated sites where
Y and Z disagree, or if such a point does not exist, then we choose an arbitrary
neighbor higher in the order than the previously generated sites, and generate
the couple (ngj;}—i, ijﬁ_) according to the optimal coupling of

]P)Ei'—ly< (X1§1}_7 = ) and ]P)Ei_12< (X1_7’+1 = )

where Y., Z_ denote the values already generated before.

By the Markov character of the random field X, the sets of discrepancies %;
are almost-surely (nearest-neighbor) connected. So we can think of the %;’s
as “percolation clusters” containing for sure the lattice site x;, where we have
by the conditioning a disagreement. If these clusters behave as sub-critical
percolation clusters, then we say that we are in the “good coupling regime”, see
[52, 27]. We then expect to obtain corresponding good relaxation properties of
the natural Glauber dynamics associated to P. The reason to expect this is that
in the entire subcritical regime for the disagreement clusters, the corresponding
Gibbs measure is unique. In the case of the Ising model in d = 2 it is known
that in the entire uniqueness regime we have the log-Sobolev inequality, which
implies the Poincaré inequality. It is therefore natural to expect that also in
higher dimensions, and for arbitrary Markov fields, being in the uniqueness
regime implies at least exponential relaxation of the Glauber dynamics in L2.

3.2.6 Subcritical disagreement percolation

We suppose that, under the coupling @gi—l T P the disagreement clus-
ters %; are dominated by independent subcritical site-percolation clusters, uni-
formly in the conditioning £. In fact, we shall need more than subcriticality.
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3.2 Setting

We believe that it is an artefact of our method and that the Poincaré inequality
holds in the entire subcritical regime.

We denote by P, the distribution of independent site-percolation with pa-
rameter 0 < p < 1 and by p. the corresponding critical value. Let &; be the
open cluster containing ;. In our model (3.1), by the construction of the cou-
pling, we have domination by independent clusters, i.e., for any finite subset
Acz?

sup sup@gfhr g1 (6; D A) <P,(¢ D A), (3.8)
. ¢ 1 Qs

with
p=p(B,h) = e 2Pk (ewd — 674&1) . (3.9)
In particular,

quslgppgi—l+h£1i'—lii (16| > n) <P,(|€| > n),
K3

1
where € = €. Our subcriticality assumption reads as follows:
E, (\e:|ecl¢l) < o0, (3.10)

where c is defined in (3.2). This condition is satisfied for 8 sufficiently small or
h sufficiently large; see below for the precise region of (3, h).
can be realized in two

By the uniform bound (3.8), the coupling ]P)Ei'—1+i g1,
stages. Having generated Y, ,Z,, for k =i+ 1,...,i + n, we first generate
Yiiinsi- Then we flip an independent coin with success probability 1 — p (cor-

responding to certain agreement) given by (3.9). Given that we have success,

we put Zz, .., = Yz, ., If we do not have success, then we possibly choose
Zpiinir = Yoy O Zoy, o # Yo, ., in order to obtain the correct marginal

distributions of the coupling. The crucial point here is that the cluster of fail-
ures (=no success), which we denote %,, is a cluster that, is independent of Y
and contains the cluster of disagreement %;. Therefore, in events that depend
in a monotone way on the cluster of disagreements %;, we can replace it by €;,
the cluster of failures.
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3 Poincaré inequality via disagreement percolation

3.2.7 Sufficient conditions on 3

A sufficient condition for (3.10) to hold is that

o0
Zn p”(2d — 1)”66" < 00,

n=0

where c¢ is the constant appearing in (3.2) and p is defined in (3.9), and where
the factor n(2d — 1)” arrizes from counting self-avoiding paths. In turn, the

above series is finite if
e—4Bd

2d -1’

oABd _ —4Bd

which gives

1 2d

< olog (5= )- 3.11
F<ga'e5a-1 (311)

Notice that this condition is independent of h and of the sign of J i.e., holds

both in the ferromagnetic and the antiferromagnetic case.

For the ferromagnetic case J = 1, however, the Dobrushin uniqueness condition

reads
2dtanh(f) < 1

which is weaker. See [27] for more details and a comparison between uniqueness
based on disagreement percolation versus Dobrushin uniqueness.

3.3 The Poincaré inequality and related variance
inequalities

The general idea of concentration inequalities is to give an estimate of the
probability of a deviation event {|f —E(f)| > a}, in terms of a quantity that
measures the influence on f of variations of the spin configuration at differ-
ent sites. Usually, such estimates are obtained via Chebychev’s inequality, by
estimating moments of | f —E(f)]|, such as the variance of f, or higher order mo-
ments, exponential moments etc., in terms of a norm measuring the variability
of f. In this section we concentrate on estimates of the variance.
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3.3 The Poincaré inequality and related variance inequalities

3.3.1 Uniform variance estimate

The semi-norm

5£115 =D (6=6)°

z€Z3

measures the influence of spin-flips on f in a uniform way, i.e., for each x the
worst influence is computed.
The first inequality measures the variance in terms of ||0f||3.

Definition 3.3.1. We say that a random field X satisfies the uniform variance
inequality if there exists C' > 0, such for all f : Q — R, f € L?(P), we have

E((f —E(f))*) < Cllaf13 (3.12)

The uniform variance inequality estimates the variance in terms of the rather
“rough” norm || f||3. Surprisingly, it is still a powerful inequality with many
useful applications, such as almost-sure central limit theorems, convergence of
the empirical distribution in a strong (Kantorovich) distance, etc. See [17] for
a list of applications.

Examples where the uniform variance inequality is satisfied include high-
temperature Gibbsian random fields (where it follows from the much stronger
log-Sobolev inequality) and plus phase of the Ising model at low enough tem-
peratures, see [16].

3.3.2 Poincaré inequality

The quadratic form

(1.0 =Y [(prar
Iy

measures the influence of spin-flips on f, taking into account the distribution
of the spin-configuration, i.e., large differences between f(o®) and f(o) are
weighted less if they correspond to exceptional configurations (in the sense of
the measure P). We have the obvious inequality &(f, f) < ||0f]|3, therefore,
estimating the variance in terms of &(f, f) is clearly better, and, as we will see
in examples below, this difference can be substantial.
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3 Poincaré inequality via disagreement percolation

Definition 3.3.2. We say that the random field X satisfies the Poincaré in-
equality if there exists a constant Cp, > 0 such that for all f € L*(P)

JIE G R (3.13)

The Poincaré inequality is strictly stronger than the uniform variance in-
equality. Moreover, contrary to the uniform variance estimate, the Poincaré in-
equality gives exponentially fast decay to equilibrium for the associated Glauber
dynamics in L?(P). Indeed, (3.13) implies

Var(f) < %Cp(fc(ﬁ ) =2(f,(~L)f)

from which one easily sees that (—L) has a spectral gap in L?(P) of at least
k = 20/Cp, which implies the relaxation estimate

Var(S, f) < e || |3

3.3.3 Weak Poincaré inequality

Finally, the variance can be estimated in terms of a combination of &(f, f) and
another term ®(f), where ® is homogeneous of degree 2, i.e., ®(\f) = A\2®(f).
Examples are ®(f) = || f||%, or ®(f) = ||6f]|3. The idea here is that if the
Poincaré inequality does not hold, it can be due to “bad events” which have
relatively small probability (e.g. large disagreement clusters). The idea is then
to estimate the variance by &(f, f) on the good configurations and by ®(f)
on the bad configurations. This leads to the weak Poincaré inequality, initially
introduced by Rockner and Wang [46]. This inequality contains enough infor-
mation to conclude relaxation properties of the associated Glauber dynamics,

but now with Var(S;f) estimated with a stronger norm than the L?(P)-norm.

Definition 3.3.3. The measure P satisfies the weak Poincaré inequality if there
exists a decreasing function o : (0,00) — (0,00) such that for all bounded
measurable functions f: Q — R we have, for all T >0

/ (f —E(f)%dP < a(r) E(f. ) + rd(f) .
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3.3 The Poincaré inequality and related variance inequalities

If we have
®(Sef) < @(f) (3.14)

i.e., if S; contracts ®(-), then we obtain a relaxation estimate for the dynamics
from the weak Poincaré inequality. More precisely, in that case, for bounded
measurable functions f with [ fdP = 0, the weak Poincaré inequality implies
the estimate

Var(S: f) < &(t) (||f||% + (I’(f))

where £(t) — 0 as t — oo is determined by «:
. 1
&(t) = inf {r >0: —Sa(r) logr < 2t} , t>0.

where § > 0 is the lower-bound on the spin-flip rates. In the case when «a(r) <
1

1 1
Cr= for C,k > 0, we get {(t) < (1 + %)H*’" (28)" . We refer the reader to
[46] for more background and details.

3.3.4 Examples

Here we illustrate with some simple examples that the Poincaré inequality is
much stronger than the uniform variance inequality. The examples are repre-
sentants of a whole class of functions for which the effect of spin-flip is only
“typically small”, which gives a good estimate of &(f, f), but where the uniform
variation §; f is always of order one.

Let d = 1 and P be a translation invariant probability measure on configu-
rations o € = {—1, +1}%Z such that there exists 0 < 6 < 1 with

]P(Ul zal,...7an:an) ggn (315)

for all n € N, aq,...,a, € {—1,1}. Examples of such P are translation-
invariant Gibbs measures.
Consider for n € Nk <n

fk(0'17~-~,0'n):|{i€{17~-~7n_k}50i:ai+1:"':Ui+k:+1}|

i.e., the number of lattice intervals of size k, contained in [1,n]| and filled with
plus spins.
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3 Poincaré inequality via disagreement percolation

We have
V@)= Y (Moo =-1} 1o, =+1}) [ Uoi=+1}
JE[L,n—kK]: i€[j,j+k],iFEr
relj,j+k]

which gives

/(Vrfk)QdIP’ < 2k6*
and hence
E(fr, fr) < 2k(n — kK)o~

Therefore, if P satisfies the Poincaré inequality (e.g. for a large class of Gibbs
measures in one dimension in the uniqueness regime, [18]) then

Var(fi,) < Co2k(n — k)o*
Choosing now k = clog(n), and putting § = e~* we find that
Var(feiogn) < 2clog(n)(n — clog(n))n™ <.

Hence if ac > 1, Var(feiogn) goes to zero as n — co. It is immediate from
(3.15) that o > c the first moment E(f.105(n)) converges to zero as n — oo.
Therefore, ac > 1 implies that f.ien converges to zero in L?(P) (and hence in
probability) as n — oo.

On the other hand, it is clear that 6;(f) = 1 for all i = 1,...,n, therefore
the uniform variance estimate gives Var(fx) < Cn, which is not useful here.

One can consider similar quantities like the number of clusters of size k of
plus-spins, the number of self-overlaps of size k, etc. Such quantities will have
small &(f, f) (for measures satisfying (3.15)) and large ||Jf||3.

3.4 Poincaré inequality for the case h =0

We start with the following result.

Theorem 3.4.1. Consider the Markov random defined in (3.1) with h = 0.
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3.4 Poincaré inequality for the case h =0

For B chosen such that
E, <|¢|e0‘¢‘) < 0,
the Poincaré inequality (3.13) holds.

In section 3.5 below (Theorem 3.5.1), we will give a complementary result
which covers the case of large 8 and (correspondingly) large h.

Proof. The proof is divided in four steps.
Step 1 (Martingale decomposition).
Let f:Q — R be a bounded measurable function. Define

A; = Ay(X}) = E(f|F) — E(f|Fiz1)

where F; is the sigma-field generated by {X,, : 1 <k <4} for ¢ > 1 and where
Fo is the trivial sigma-field {0, Q2}. Then we have

Var(f) = S E(A?).

i€N

Step 2 (Coupling representation of A;)
We have (using that spins can take only two values)

|A2| = ’/dPXIl(gi)/d@X{,X{'lfi(aﬁl’nﬁl)
(fXTM X)) — F(XT M an)| (3.16)

< / ‘f(Xfil +i Uﬁl) - f(Xf;l i nﬁ1)| dpxifl+i7xifl_,i (Uﬁhﬁﬁﬁ
= / ‘f(X{_l +i U;‘)-T-l) - f(Xi_l —i 77?-?-1)| dIPXi"*1+hx’1"*1_i(Ufoa77?O)

-y / WByiry, i (07, 75°)

Adz,

1% = A} | f(X{ " nacaop,i—e) — F(XT T oaoaom,i—me)|
(3.17)

where @X;—1+i xi1_, is the coupling of conditional probabilities defined in
subsection 3.2.5. Notice that the sum over A runs over finite connected subsets
of Z¢ containing z; since %; is dominated by a subcritical percolation cluster.
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3 Poincaré inequality via disagreement percolation

In the sequel, we simply write oy &wn for oy &ncyuw)e to alleviate notations.

Step 3 (Telescoping and domination by independent clusters).
Start again from (3.17) and telescope the disagreement cluster:

dPX{*1+i,X}*1—i(U’ 7)

/ Z |fo(Xiflo.((€L)<l)| d@XIi_lJri’Xi_l*i(o—’n)

TESG;

A < / Ve f(Xi10%)

IA

IN

dPX’li—l_,’_i’X;'—l_i (0’, ’17)

[ X [vasxiot e

JJEC@Z'L

IE/ > Vo f (X 0@ dPyi-1, (o)

11?63921’

> S RE = ) [ [Vaf (X o) By (o)

Adx; x€A

In the third inequality the expectation is over the “failure cluster" %, only,
which is independent of o. This independence gives the factorization in the
last equality, by decomposing over the realization of this cluster (which is finite
with I/P\)X;'—l +.,xi-1_, brobability one under the subcriticality assumption).
Step 4 (Change of measure).

Using now the bound (3.3) and the remark in the beginning of subsection 3.2.5,
we further estimate, using

A< 3T SR, (€ = 4) e / V(X! i 0)] APy (0)

Adzx; x€A

where c is defined in (3.2).
Define the finite number (by the subcriticality assumption (3.10))

K = Z |A] Pp(€ = A) eclAl — Ep(|¢|ec|€‘),
A30
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3.5 Non-zero magnetic field

Then, using the elementary inequality

2
(Z akbk> S Zak Zakb% (318)
k k k

for ay, by > 0, we obtain

S E@A]) < K ) Y > el (e; :A)/(vxf)?dlp

€N i€EN Adz; x€A

[{2620(52)(‘}07 f-)7

where the extra factor e¢ arises from removing the plus in the conditioning in
]P)X;,—1+i. This finishes the proof of Theorem 3.4.1 O

3.5 Non-zero magnetic field

In this section we show how to prove the Poincaré inequality under a subcrical-
ity condition different from Theorem 3.4.1. It is strictly worse in the case h =0
(since it uses Cauchy-Schwarz to seperate the realization of the disagreement
cluster from the gradient of f) but can be used for § large and h large, where
the condition (3.10) fails.

Theorem 3.5.1. Suppose that p given in (3.9) is such that

D n(2d —1)"e "Py(|€] > n)'/? < oo, (3.19)

n

where
¢ =4p4d. (3.20)

Then the Poincaré inequality holds.
For (3.19) to hold, it is sufficient that

(2d —1)p2e’ < 1

which gives
(2d — 1)%e=2Ph(e12Pd _ o4Bdy < 1,
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3 Poincaré inequality via disagreement percolation

This is satisfied for 8 small enough or h large enough.

Proof. The telescoping and coupling steps are the same as in the proof of
Theorem 1. So we arrive at

‘A‘< Z Z/dPX’ R ca ( 0 55 )]1{% A}’Vf Xl 10A<:c )|

A>dzx; x€A

Now we use Cauchy-Schwarz inequality to obtain

~ 1/2
Al < Z Z (Pxi—lﬂ,xi—lﬂ- (% = A)) X

Adz; x€A

~ . 2
(/d]P)Xf1+i,Xi’1i(o—ioovnfo)(vibf(Xi_lo—A<mn)) )

1/2

(3.21)

Step 4 (Change of measure). In the r.h.s. of (3.21) we integrate over the
“composite” configuration o4_,n under the coupling @Xi_lﬂ’xi_lﬂ. To re-
cover the measure P (see later) we need to replace ca_, by na_,. The cost of
this replacement is independent of h and is estimated in the following lemma
where ]P’ 1y eit, is the coupling introduced above.

Lemma 3.5.2. Let A be a finite subset of Z¢ containing x; and let x € A. Let
Py be the distribution of Za_,Y(a_,)e and Py be the distribution of {Ya,x € Zd}.
Then Py is absolutely continuous with respect to Py and

H P _ o

where ¢’ is defined in (3.20).

Proof. Let A C Z% finite, large enough to contain A. We have by construction

of the coupling @51‘—1_’_“6;’—1_1 (see subsection 3.2.5):

~

Pe i (Zac, = ou Yavag, =naac,)

=

Peiiy, gim1_, (Ya, =0a_, . Yaa., =Naa_,)
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3.5 Non-zero magnetic field

= D P (0a) Peimip e, (maac,)%

<A<l‘
P£§71+17£§71—i(ZA<w =Ca,|Ya., =0a_,)
P§i71+iUA<w (nA\A<I)
P.i1 ) (77 \ I)
< sup £ HiCa, VIMA<

¢ P{iil+i0}4<m (nA\A<z)
< e 10A <] < el

We conclude by letting A 1 Z4. O

Returning to (3.21) and using the preceding lemma we get
B V2l
AT YN (Prrpx (G=4)) 7 M

Adz; x€A
1/2
(/dpxl () (ST )))

= 12,
= Z Z (]P)X{—lﬂ,xj—lﬂ (€ = A)) e 14l x

ASx; €A
</ dPy;(n) (me(an))2> v 7 (3.22)

where for the second inequality we used that, under the measure IP, the cost of
flip at a single site is bounded by ¢ (see (3.2)).

Step 5 (Domination by independent clusters). Using (3.8) we get from (3.22)

Al <e 303 (B(le] = 1A]) 2 e x

Adz, z€A
o 1/2
(/dPXf(”)(fo(X{n)) ) : (3.23)
Now let
K =3 SR, (€] = A2 e = 3 |4 Py(je] = A2 e 1A,
Adx; x€A A50
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3 Poincaré inequality via disagreement percolation

By assumption (3.19) K’ is finite. Using once more the elementary inequality
(3.18) we deduce from (3.23) that

ZE(A?) <K' SN SR (lef > A2 14l /(vwf)%up

i Adxz; x€A

=e*K Y (/ (sz)2dIP’> 3 1A B, (g > 1A]) 2 e 1Al
T A>zx
~Cy Z/(wa)QdP
where

C, = e*K".

This finishes the proof of Theorem 3.5.1. O

3.6 Weak Poincaré inequality

If the assumption (3.10) fails, but p < p. (where p. denotes the critical value
for independent site percolation) then we are still in the uniqueness regime (i.e.,
the conditional probabilities (3.1) admit a unique Gibbs measure) and expect
suitable decay properties of the Glauber dynamics.

We show that in this regime the weak Poincaré inequality holds, which gives
polynomial relaxation to equilibrium.

Theorem 3.6.1. Suppose that p (defined in (3.9)) satisfies p < p.. Then the
weak Poincaré inequality is satisfied. Moreover, there exists C,k > 0 such that

alr) < Cr™".

As a consequence,

14+ -
vash < (1+1) () OB+ a)

where § is defined in (3.5).

Proof. The proof follows the lines of the proof of Theorem 1, so we sketch where
we start to deviate from it: In the estimation of the variance, the contribution
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3.6 Weak Poincaré inequality

involving || f||2, will arise by cutting the cluster of disagreement at some order
of magnitude N.
The sum in (3.10) is now possibly infinite, so we define

N
Ky=)Y nemP,(|¢|>n).
n=0

Following the line of proof of Theorem 3.4.1, we follow the change of measure
road for realizations of the cluster €; = A of cardinality less than or equal to
N, and for A with |A] > N we use the uniform estimate

s%plf(nA) —fl <) 8uf < 24|lf ]l

z€A

Next estimate, using Jensen and the elementary inequality (3.18),

(X m@=9Y60)

€N  A>z;,|A|>N €A

< 4 (By(lel1{e] > N} fI%.
This gives the inequality
Var(f) < 2¢°K38(f, ) + 8 (Ep(1€P1{[e] > N D) [If]%.

The constant in front of &(f, f) blows up at most exponentially in N, i.e., we
have the estimate

2eCK]2\, < Cie*N

where C1, a are strictly positive and (3, h)-dependent. The constant in front of
| £II%, is exponentially small in the whole subcritical regime, by the exponential
decay of the cluster size, [29] i.e., we have the estimate

2 (]Ep(‘Q:\Q]l{\Qf\ > N}))2 < Cye N
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3 Poincaré inequality via disagreement percolation

where Cy, b are strictly positive and (8, h)-dependent. Therefore we can take

alr) < Oy ((;2)_2

and k = a/b. O
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4 A Variance Inequality for Glauber
dynamics with Application to Low
Temperature Ising Model

4.0 Abstract

A variance inequality for spin-flip systems is obtained using comparatively
weaker knowledge of relaxation to equilibrium based on a coupling estimate
for a single site disturbance. We obtain a variance inequality interpolating be-
tween the Poincaré inequality and the uniform variance inequality, as well as a
general weak Poincaré inequality. In the case of monotone dynamics the vari-
ance inequality is obtained from the decay of the autocorrelation of the spin at
the origin, i.e. from that decay we conclude decay for general functions. This
method is then applied to the low temperature Ising model, where the time-
decay of the auto-correlation of the origin is extended to arbitrary quasi-local
functions.

4.1 Introduction

Variance estimates and related inequalities have a long history in the study
of interacting particle systems. Classical inequalities are the log-Sobolev in-
equality or Poincaré’s inequality. A basic distinction between various types
of estimates is whether they deal with the mixing structure in space, with
respect to some measure, or in time, with respect to some dynamics. It is
well-established that strong mixing properties in space imply strong mixing
properties in time, and vice versa[40, 31]. Often this connection is made via
tensorization arguments of the corresponding inequalities.

In [19] it is shown how a different method, disagreement percolation[52], can
be used to obtain a Poincaré inequality. The idea used is to track how the
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4 Variance Inequality for Glauber dynamics

influence of a single spin-flip possibly percolates through space, and then use
subcriticality of the percolation to obtain results.

However the picture is a lot less clear when only weaker mixing properties
hold. One of the few general tools available are weak Poincaré inequalities,
which allow to translate a weaker type of spatial mixing to a form of mixing in
time.

In this chapter, we approach the problem of mixing in another direction.
We go from a restricted form of decay of correlations in time to general decay
of correlations in time. The idea is to track the influence of a single spin-flip
through time and space. In systems with weak mixing properties typically the
influence of such a single flip is limited, but there is the possibility of a big
influence, which leads to moment conditions on certain coupling times.

Given that an interacting particle system with nearest-neighbour Glauber
dynamics satisfies those coupling conditions we obtain variance estimates for
the ergodic measures as well as the relaxation of the dynamics. In the case
of attractive dynamics, the coupling condition can be relaxed to a condition
on the auto-correlation of the spin at the origin. Using the recent progress in
[39] on the low-temperature Ising model we can extend the results to obtain
quasi-polynomial relaxation to equilibrium of the Glauber dynamics.

4.2 Definitions and Notation

4.2.1 Setting

We consider the state space Q = {—1, —|—1}Zd. For a function f: Q — R, which
is generally assumed to be bounded and measurable, define

Vof) = f(*) = f(n), neQaelZl
where n” is the configuration 7 flipped at z, i.e., n*(x) = —n(x) and *(y) =

n(y) for y # x. We call f local if V,f = 0 for all but finitely many = € Z?. In
addition, we define a family of semi-norms for functions on €2,

£l == ngg(vmf(n))p , p>1.

zezd "
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4.2 Definitions and Notation

A probability measure p on the space €2 is a called a Markov random field
if the probability of observing a plus-spin(or minus-spin) given the spin of all
other sites depends only the spin of the nearest neighbours. In terms of a
random variable £ on 2 that means

p(€(z) =+1|Vy #z:£(y) = n(y))
=p(é(z) =+1|Vy,ly—z|=1:£(y) =ny))

for any n € Q. With this fact in mind, define

cr(@,m) = p(E(x) =+1|Vy #x:&(y)
c(z,n) =p(x)=-1|Vy #z:£(y)

ny));
ny)) =1—cy(x,n).

The conditional probabilities are called translation invariant if cy (x,n) = ¢4(0, 7,7),

where 7,.7(y) = n(x + y).

A natural dynamics with respect to p is the Glauber dynamics, where spins
at site = flip individually according to some rates c¢(x,n). Here we choose the
heat-bath Glauber dynamics, where the flip rates are given by the conditional
probabilities ¢4, c_:

c(x,n) = {C.t,_(m,n), n(r) = —1;
| c-(z,m),  n(z) =+1

The associated Markov process (1;):>0 is then defined via its generator L acting
on the core of local functions,

Lf(n) =) c(,n)Vaf(n).

reZ4

Let P,,n € €, be the path measures on the space of cadlag trajectories and
Sif(n) =E, f(n:) the corresponding semi-group.

4.2.2 Poincaré and uniform variance inequalities

The Dirichlet form &£ associated to L is given by

£6.0)= -2 [ fLs@ntan = 3 [ clen)(Tof) @) nidn).

€72
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4 Variance Inequality for Glauber dynamics

A Poincaré inequality is said to hold if for some K > 0
Var, () S KEFS) =K 3 [ elam) (Vo) nlan) (4.1)
r€Zd

hold for all f € L?(x). The Poincaré inequality is equivalent to a spectral gap
of the (self-adjoined) generator L in L?(u) and implies exponential relaxation
of the semi-group in L?(x). Under the assumption that inf,cq c(n,0) > 0 (4.1)
is equivalent to

Var, (1) S K32 [ (V2 ldn) = K 3 [V oy (42)
YA zezd

A much weaker inequality is the uniform variance inequality

Var, (/) < K" || flI3=K" Y [ (Vah)? || - (4.3)

TEZ
To the authors knowledge this inequality is not related to any form of relaxation
of the semi-group.
4.2.3 Weak Poincaré inequality

When the Poincaré inequality does not hold (K = K’ = oo) but (4.3) is too
weak because one still wants to obtain some information about the relaxation
speed to equilibrium one can go to other inequalities. One is the so-called weak
Poincaré inequality, usually formulated as

Var, (f) < a(r)E(f, f) +r@(f), p(f)=0,r>0, (4.4)

where ®(\f) = A\2®(f),®(f) € [0,00], and « is a function decreasing to 0.
This implies the following relaxation to equilibrium:

Var, (S1.) < £(T) (igg B(S.f) + Varu(f))

with £(T) = inf{r > 0: —1a(r)log(r) < T} (see [46]).

84



4.3 Results and discussion

4.3 Results and discussion

4.3.1 Main results

Let @n’ﬁ be the basic coupling (based on the graphical construction, see Section
4.4. See also for example [37]) between two copies of the dynamics starting from
the configurations 7, & € Q. Set

0u(n) = c(0,m)Pyo (0t #nf), t>0. (4.5)

For p € [1, o0] define the function D, : [0, co[— [0, 0] as

o0
D,(T) = /T (E+1)%2 16, | dt.

where 1% + % =1
The function D, is going to determine the relaxation speed of S, f for general
functions. Note that by definition D, is decreasing.

Theorem 4.3.1. Let p be a translation invariant Markov random field, and
Sy the associated heat-bath semi-group. Fiz p € [1,00] and assume D,(0) < co.
For all f:Q — R with ||| f|l2 < oo the following inequality holds:

Var, (S7f) < CaDyp(T) D [ (Vaf)? |1y (4.6)

reZ4

Here Cy is a universal constant depending only on the dimension d.

Remark For T' = 0 we obtain the variance inequality

Var,(f) < D,(0) Z | (Vaf)? ||LP(M) ’

TE€Z

which interpolates between the Poincaré inequality (p = 1) and the uniform
variance inequality (p = 00).

Remark The factor 242 = ¢2(4+1) appears for two reasons. First the volume
of a space-time cone in Z? starting at the origin and growing as time progresses
is of order t?*1. Then an application of Cauchy-Schwarz’s inequality produces
the square.
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4 Variance Inequality for Glauber dynamics

The need to obtain the necessary estimate for Theorem 4.3.1 in terms of a
specific coupling instead of some other measure of suitable decay of correlations
in time can be an obstacle to applications. If the spin-system is attractive that
obstacle can be avoided. By exploiting that attractive spin-systems are well-
adapted to the coupling P we reduce the dependence on the coupling to the
auto-correlation of the origin:

Theorem 4.3.2. Assume that the spin-system is attractive. Let o(t) :=
Var,(S:g9), 9(n) =n(0), be the auto-correlation of the spin at the origin. Then
the function D, can be estimated by

D,(T) < € /T (12 (o)),

with a dimension dependent constant C/; > 0.

A good example where this result can be applied is the two-dimensional
low-temperature Ising model. Recently in [39] the estimate

Var,,+ (Sig) < exp (_ec(ﬁ)\/log(t—i-l))
was obtained, with ¢(8) some temperature dependent constant. Combining
this with Theorem 4.3.2 gives a variance estimate for general functions.
Corollary 4.3.3. Fizp > 1. Let D, : [0, 00[— [0, 00[ be given by
~ o —1
D,(T) = cp(ﬂ)/ exp <8 log(t+1) — pTec(B) \% 10g(t+1)> dt.
T P

For all f : Q — R the relaxzation of the semi-group in the plus-phase is estimated
by,

Var;ﬁ(STf) < f)p(T) Z H (VWf)Q HLP(M) )

T€Z

4.3.2 Discussion

If D1(0) < co Theorem 4.3.1 implies a Poincaré inequality, and hence exponen-
tially fast convergence to equilibrium. If || 6, ||, decays exponentially fast
Theorem 4.3.1 still implies exponentially fast decay of the variance, but with
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4.3 Results and discussion

respect to a stronger norm. This, however, is sufficient to prove a spectral gap
of the generator L or, equivalently, a Poincaré inequality.

Proposition 4.3.4. Suppose [;° || 6; o) eMdt < oo for some X > 0 and
1< qg<oo. Then]— \/2,0] belongs to the resolvent set of L.

In fact, we can say even more about the connection between || 0; [|;4(,) and
the Poincaré inequality.

Proposition 4.3.5. Suppose the spin system is attractive and inf,cq c(n,0) >
0. If the spin system satisfies the Poincaré inequality, then || 6, ||Lq(u) decays
exponentially fast for any 1 < q < oco.

This shows that for attractive spin systems equivalence between exponential
decay of || 0y ||, ,1 << oo, and the existence of a spectral gap.

It is then natural to ask if even stronger inequalities are implied by fast decay
of [| 04 || o< ()~ This is indeed the case:

. 1
Proposition 4.3.6. Set D(T) = [.(t + 1) 6, 170 () dt and suppose

D(0) < co. Then for all f : Q2 — R with ||| |1 < oo and all T >0

1 S2f = u(f) |l < C2D@) I £ 1l -

If D1(0) = oo, but D,(0) < oo for some p > 1 (but with sub-exponential
decay), it is natural to compare Theorem 4.3.1 with a weak Poincaré inequality.
Under essentially the same conditions, we can prove the following weak Poincaré
inequality.

Proposition 4.3.7. Assume the conditions of Theorem 4.3.1 and c(n,z) >

5> 0. Then for all f : Q= R with 3,y | (Vo f)? ||,y and all t >0,

Var, (Sif) < Cad ' D1(0, R)E(f, f) + Dp(R)®r(f),
where

R
DO.F) = [+ 1P 6, 10

o) = VR <O D T

z€Z4
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4 Variance Inequality for Glauber dynamics

This weak Poincaré inequality leads (with a minor modification of the proof
in [46]) to

Var, (Srf) < E(T) | Ca Y [ (V) || 1oy + Varu(f)

z€Z3

The decay &(T) is of order Dp(Tﬁ), which is worse than the one from The-
orem 4.3.1. The reason for that is that in the weak Poincaré inequality the
diverging D1(0, R) is partially used, while in Theorem 4.3.1 only the converg-
ing D,(0, R) is used.

4.4 Graphical construction

The graphical construction of the Glauber heat bath dynamics is the encoding
of the random evolution of the process 7; into basic random components and
a deterministic function of this randomness and the initial configuration. It is
a well-known tool in the study of spin and particle systems.

Let N be a Poisson point process on Z¢ x [0, c0[ with intensity one(wrt.
the counting measure on Z? and the Lebesgue measure on [0,00[). A point
(x,t) € N represents a chance of flipping the spin at site z and time ¢. To
realize this chance let U = (U,)nen be a countable iid. collection of [0, 1]-
uniform random variables independent of N. We assume that to each (z,t) € N
there is an associated U from U (which can be realized by a bijection from N
to N, and we simply write U : N — [0,1]). We denote the expectation with
respect to N and U by [dN and [ dU.

The elementary step is then as follows. Given the configuration 7;_ be-
fore a possible flip at (z,¢) € N and the to (z,t) associated random variable
U = U((z,t)) we determine the configuration 7; after the possible flip deter-
ministically. All sites y € Z¢,y # z, are unchanged, i.e., n:(y) = n_(y). If
U < cy(x,m—), then n(z) = +1, otherwise n:(z) = —1. Since we ignore the
original spin at x and simply replace it with a new one drawn according to
conditional probability given the other spins we call this a resampling event.

The configuration n; is then given by the successive application of all re-
sampling events to the initial configuration 79. As those are infinitely many
steps one has to take care that this is indeed well-defined. The goal is to define
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4.4 Graphical construction

a deterministic function ¥ which will output the configuration at time ¢, 7,
given the inputs N, U and 7. We now focus on the precise construction of the
graphical representation and its properties.

For a single resampling event the definition of ¥ is simple. Let ¥ : Q x (Z
[0,00[%[0,1]) = € be given by

d %

+17 y:$70+($77]) SU;
U(n, (z,t,u)(y) == < —1, y=x,c_(x,m) >y
n(y), y#x

This definition is directly extended recursively to a finite number of resampling
events. For (z,,t,, un)1<n<n C 74 x [0,00[x[0,1] with t; <ty < ... < tn,

U (0, (@5, tns un)1<nn) = V(U (1, (21, t1,11)) , (Tn, tns Un)2<n<n)
and W(n,0) = .
Definition 4.4.1. Let G be a countable subset of Z¢ x [0, oc].

a) A partial order <g on 7% x [0, 00| is defined as follows: (z,t) < (y,s) iff
either x =y andt < s or there exists a finite subset {(z1,t1),... (xx,tx)} C
G such that t < t1 < to < ... < tg < s and |Tpm —Tm-1| = 1,
2<m<K,aswellas |1 —z|=1 and xx = y.

b) Write T, := sup{t : (z,t) € G},x € Z¢, and G-, = {(y,t) € G :
(y,t) <g (z,Ty)}. We call G locally finite, if | G, | < oo for all z € Z°.

¢) For GY a countable subset of Z¢ x [0,00[x[0, 1] the definitions a) and b)
are copied in the canonical way(projection of GU onto 79 x [0, co]).

The purpose of this definition becomes transparent by the following fact.

Lemma 4.4.2. For any GU C Z¢ x [0,00[x[0, 1] finite, x € Z¢ and n € Q,

U(n,GY)(x) = ¥(n,GY,)(z).

Proof. The nearest-neighbour property of ¢, means that to determine the new
spin after a resampling event (x,t) it is sufficient to know the spin value of the
neighbours of . Those might depend on earlier resampling events, which have
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4 Variance Inequality for Glauber dynamics

again nearest neighbour dependencies, and all resampling events (y, s) which
have an influence on (x,t) satisfy (y,s) <g (x,1). O

This leads is to the final definition of ¥. For GU a locally finite subset of
74 x [0,00[x[0,1] (or G C Z¢ x [0,00[,U : G — [0,1],GY := {(z,t,U(x,1)) :
(z,t) € G}),

\I}(nvGU)(x) = \Il(nngx)(x)7 z el

An important property of the graphical construction evident here is that ¥
is tolerant to certain changes in the order of resampling events. Intuitively, a
resampling event (z,¢) is influenced only by resampling events which happen
before ¢t and are not too distant from x. This intuition can be formalized via
the ordering >¢, which we now do.

Lemma 4.4.3. Let GY C Z¢ x [0, 00[x[0, 1] be locally finite and A, B C GY a
decomposition of GY such that ¥ (xq,t1,u1) € A, (22,t2,us) € B : (x1,t1) #c
(22,t2). In words, A does not happen after B. Then

‘11(777 GU) =V (\I](n’ A)v B) .

Proof. Assume GU is finite. If not, restrict to GZ,.
The proof is a consequence from the following basic fact. For (x;,t;,u;) €
74 x [0,00[x[0,1],i = 1,2, with |21 — 22| > 1,

U(n, {(z1,t1,u1), (T2, t2,u2)}) = V(¥ (n, (21, t1,u1)), (72, t2,u2)).  (4.7)

By the property of the decomposition for each (x1,t1,u1) € A, (z2,t2,us) €
B, either t; < ty or |1 — z2| > 1. The proof of the lemma is an iterative
application of fact (4.7). Let a;,i = 1..| A| be the elements of A ordered in
increasing time. Starting from ¥(n, AU B) = ¥(¥(n,0),{a; : i =1,...,|A|} U
B), we can use fact (4.7) to move a; past all resampling events in B and perform
this resampling event first:

U(n,AUB) =9 (¥(n,{a1}),{a; :i=2,...,] A|} UB).

Repeating this procedure for all other elements of A in their time-order then
proves the claim of the lemma. O
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4.4 Graphical construction

[ b5
» by
as b
L
3
» by
as Ay
L
as bl
ai

Figure 4.1: Resampling events az, ..., as do not depend on by, ..., bs.

The final proposition of this section sums up the properties of the graphical
representation.

Proposition 4.4.4. Let f : @ — R be quasi-local. The function ¥V has the
following properties:

a) [[f <\I/(77,Nij)> dUdN = S;f(n) , where WtU = {(x,s,u) € N ois<

t};
b) For any locally finite G C Z% x [0, 00|,

//f (1,GY)) dU p(dn) = /f

¢) For n',n? € Q the coupling @nlmz of P,n and P, is defined via

Byt 2 f (0,07 // ( sz(n N, )) dUdN.

Proof. a) The point process (Nf)tzo is a Markov process on the subsets of
Z? x [0,00[x[0,1] under dU dN and with respect to the canonical filtration.
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4 Variance Inequality for Glauber dynamics

The image process

5 T
7t = W(n, Ny )

is also a Markov process since ¥ preserves the Markov property:

io= 0 (05) = v (v 8D FON) =0 (0, 5O ) o> sz0
The generator of 7; is

Pty =Y / £ (¥, (z,0,u))) — £() du. (48)

€7

Since ¥(n, (z,0,u)) is either 1 or n*, after integrating over u we obtain Lf=Lf
on the core of local functions f : Q2 — R.
b) The proof follows the construction of ¥. Let G = {(x,t)} and write

ni(z) = +1, n§(y) = n(y) for y # = (n2 analogue). Then

//f(‘lf(n,Gﬁ)) dU pu(dn) =//01f(‘1’(77, (z,t,u))) dup(dn)
= [erlam ) + e (om0 nlan)
= /f(n)u(dn)~

For G a finite set the result is true by the iterative construction. For G count-
able but locally finite we observe that for local f only finitely many resampling
steps have to be performed to determine the expectation of f.

c) By part a) IEnlmzf(ntl) = S f(n') and I@nlmzf(nf) = Sif(n?), so @WIJIQ is
indeed a coupling.
O

4.5 Proofs of the results

The first step is to rewrite the variance. As the following formula holds fairly
generally and not just in this setting we formulate the lemma with more ab-
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4.5 Proofs of the results

stract conditions.

Lemma 4.5.1. Let i be an ergodic measure wrt. Sy and f : Q — R such that
Sif, (Sef)? € dom(L). Then, for 0 <T < S < oo,

Var,, (S f) — Var,(Ss f) (4.9)
// (Sf — SF(m)?] (n) u(d) dt (4.10)
/ |3 el (Sur7) = Sun)* ) . (4.11)

reZd

Note that by ergodicity limg_,~ Var,(Ssf) = 0.
Proof. Since

G V(i) = [ 287 LSS o) n(an),

we can express the variance as

S
Var, (St f) — Var, (Ss f) = /T / 28, £ () LS4 f (n) () .

By stationarity, [[L(S:f)?](n)u(dn) = 0, hence
Var,(Stf) — Var,(Ssf)

/ / (Sef)71(n) = 25 f () LS, f () p(dn) di
:/T /[L(Stf — Sif())%)(n) p(dn) dt. -

Note that ||| f ||| < co implies both S;f € dom(L) and (S;f)? € dom(L) in
the setting of Glauber dynamics([37]).

The idea of the proof of Theorem 4.3.1 is to rewrite (4.9) using the graphical
representation to describe the semi-group S;. Then various applications of
Holder’s inequality are used to separate different parts contributing to the
variance formulation (4.9). However the calculation is fairly sensitive to the
order in which different aspects are treated, and has one crucial non-trivial use
of the graphical construction on the infinite volume.
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4 Variance Inequality for Glauber dynamics

We start by looking how the graphical construction can be used in light of
Lemma 4.5.1. Let, by slight abuse of notation, N C Z% x [0,00[ be a fixed
realization of the Poisson point process on Z? x [0, 00, the set of resampling
events. Almost surely this is a locally finite subset of Z9x ]0,00[. We denote
all resampling events up to time ¢ by N; := {(y,s) € N : s < t}.

To determine what influence a flip at site x has on the configuration at time
t we use the graphical construction, particularly the partial order introduced
in definition 4.4.1. Given the fixed realization N, the cone

Ct,ac = {(y,S) € Nt : (y,s) >N ($7O)}

contains all resampling events which depend on the value of the initial config-
uration at site x, see also figure 4.2. Motivated by (4.11) we also introduce the

x

Figure 4.2: The cone C; . containing all resampling events depending on (0, z).

same cone with another resampling event added at site = and time 0:

Ct,x = Ct@ U {1}70}

Given a realization of the independent uniform [0, 1] variables associated to the
resampling events, U : N — [0, 1], we extend the above sets to

Ny = {(4,5,T((4,5)) : (y,5) € Ni};
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4.5 Proofs of the results

O, = {(y.5,0((4,9))) : (,5) € Cr}.

In the case of the added resampling event at (z,0) we assume a given u € [0, 1]
to extend the event to (x,0,w). This leads to

N, = N U{(z,0,u)},
(NZ'?I = C’g U{(z,0,u)},

x

and, from n € Q,

7:=9(n,(z,0,u)).

Now we are ready to formulate the crucial idea. We want to compare the
evolution of two configurations 7}, n? under the graphical construction coupling
when started from two initial configurations n,77. By the graphical construction,
77t1 = \Il(nvﬁi])a
2 ~ U =U
N = \I/(n’Nt ) = qj(n’Nt )

By the reordering principle of the graphical construction in Lemma 4.4.3,
n=W(E CF), (4.12)
£=Win N \CT,).
Similarly,
=W C). (4.13)

So we can see ¢ as a common ancestor of n} and n? in terms of the graph-
ical construction (it is not an ancestor in time). This is very important, as
both configurations only differ from & by a finite number of resampling events,
namely those in ng or étﬁw respectively. The proof of Theorem 4.3.1 is based
on this observation, with Lemma 4.5.1 as a starting point.

To further facilitate the comparison of n}, n? with &, write C; . as the enumer-
ation {(zg,t,Uk), 1 < k < |Cyy |} with ¢, > tx—1 and (zg, to, Up) = (x,0,u).
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4 Variance Inequality for Glauber dynamics

With this,
i = V(-1 (T, th, Uk)), 1<k <|Crul, (4.14)
gO = 57
Ek = \Il(gkfla (xkvtkv Uk))» 1<k< |Ct,95 ‘ ) (415)

EO = V(¢ (z,0,u)).

By Proposition 4.4.4 &, §k are p-distributed since they are obtained via re-
sampling steps. So we can describe n} and 7? via finitely many flips from a
common ancestor &, and each step in between is u-distributed.

With the observations above we can rewrite part of (4.11) using the graphical
representation.

Lemma 4.5.2. Using above notation,

(Sef (@) — Sif(n))
<P ﬁ (i #n7) /dN2‘Ctx|+1/dU

| Ct 2 [Ct,o |
> (me G-1)) + D (Vauf(6-1)" + (Vo f ()
k=1 k=1

Proof. Start with

(5:3) = 5uf ) = (Ban(F011) = SO Lypinz)
< E (f(m) f(m)) Pﬁm(nt # 77t2)

Now let P be the graphical construction coupling, then, in the notation of
Section 4.4,

Brol00) ~ £ = [N [a0 |1 (v ¥0)) - 1 (win N?))r.
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4.5 Proofs of the results

Using (4.12) and (4.13),

[f (\If(ﬁ,N%) - f (@(n,Nf ))]2 = [7 (we.0m) - 1 (vie.cl)]

(4.16)

This can be rewritten using the telescopic sum over the individual resampling
steps (4.14),(4.15):

P (6C0)) = Fe) = 3 F(&) = (),

F(w(6C0)) — F&) = 3 (&)~ (E-):
k

Putting the telescopic sums into (4.16) and using the inequality (Y, a;)? <
ny i, a? leads to the upper bound

[Cta |

e+ | Y (FE) - FE)
k=1

[Cta |

3 (68~ J(E)) + 16 - @)

Notice that by construction, & and &._1 are identical except for a possible flip
at site z. Consequently, we can further estimate by

|Ct,m ‘

| Ct
2[Cra+1) | Y (Var (&) Z (Vo f (Ek-1))? + (Vo f(£))?

k=1
O

The next lemma deals with rearranging and separating integrals as well as
condensing the individual terms as much as possible, continuing where Lemma
4.5.2 left off.
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4 Variance Inequality for Glauber dynamics

Lemma 4.5.3. For 1 <p<g< ™ with%—k%: 1,

1
> / u(dn) / du (S, (U, (2,0,u))) — Suf(n)’

YA

<(/ C(Oan)9t(n)qu(dn)>é (felcal+vrar)

’ (Z || (fo)Q HLP(M)) )

YA

where

0,(1) = Pyo, (0} # ).

Proof. We start by using Lemma 4.5.2 to estimate the inner term of

S [ ntan) [ (S0, (2.0.0)) = 510)”

TEZ

Upon reordering some of the integrals and sums, we obtain

> [ve|cu 4

reZ4

| . .
|::2 /N(dn)/o du/dU (V:zkf(gkﬂ)) Pi, (nf #n7)  (4.17)

[Cta |

+ kz::l /M(dﬂ)/o dU/dU(mGf(gkil))zI@,TL77 (i £7)  (418)

+/pwméiw/mMVJ@W@m0ﬁ¢ﬁﬂ. (4.19)

Now we use Holder’s inequality with respect to the integration [ u(dn) fol du [ dU.
In all three cases this produces as second term

( [ wtan) [ " [0 B (a2 n§>q)é -
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4.5 Proofs of the results

Note that, depending on u, 7 is either n® or n, in which case @flﬂl(ntl #n?)=0.
Using this as well as translation invariance shows that the above term equals

1

(f cto.moro atam)”

The other term of Holder’s inequality varies slightly from line to line, but as it
is mostly the same we focus on line (4.17):

(/ M(dn)/ol du/dU (kaf(gk—l))2p>;

Here we can finally use the fact that the configurations fk,ék are u-distributed.
Because of this fact we have the following identity:

([ otan [\ [0 (5..)")
= ( / e <vm.,f<n)>2”); = [ (Va5 o -

Applying the same argument to (4.18) and (4.19),

> [ tan) [ (S, (2.0.)) = 505 0)?

TEZ

< ( / 6(0,77)9t(17)qu(d77)>é > [av e+

YA
‘ct,m |

2 22 1D gy + 11V | o
k=1

By translation invariance of the law of N,

|Ct,rl

3 / dN (2|Cow [+ 1) |2 D [ (Var D Ml oy + 1 (Ve oy

rcZ9 k=1
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4 Variance Inequality for Glauber dynamics

| Ctol
=Y [aveicl+y |2 2 M Farad vy + 1V g
r€Z4 =
- / dN (21 Cro |+ 17 30 (Ve [l o, -

€L

In order to proceed we need estimates on the size of C; . The following two
lemmas provides us with those.

Lemma 4.5.4. Denote by B, C Z% the set of sites which are represented in
C&o,ie”

By :={x cZ%3s€[0,t]:(x,5) € Cro}U{0}.

Then there exist dimension-dependent constants c1,co > 0 such that

a) [|B; > dN < ei(t+1)%;

b) Y seza ([ Luen, AN)? < ca(t+1)%

Proof. The proof rests on the observation that By is strongly related to first
passage percolation: Consider first passage percolation with iid. exponentially
distributed edge weights(see for example [33]). Let E be the edge set of Z,
and r.,e € F iid. the exponentially distributed edge weights. Then the first
passage percolation distance is T'(0,z) = inf{}>_ . re[v path from 0 to x}.
Now we compare the ball B, := {2 € Z : T(0,z) < t} of reachable sites within
distance t to B; in terms of growth. Denote the outer boundary of a finite
subset A of Z¢ by 0A = {x € Z\A|Jy € A: |z —y| = 1}. The rate at
which a site z € 8B, is encompassed by B, is given by the number of edges
connecting x to Et. On the other hand B; grows to contain a site z € 0By just
at rate 1. Therefore Et stochastically dominates By, and proving a) and b) for
fﬁ’t suffices.

From the theory of first passage percolation(see [33], Theorems 3.10, 3.11)
we use the following fact : There exist positive constants ki, ko, k3 (possibly
dimension-dependent) such that for all € Z¢ with |z | > k;t:

P(z € By) = P(T(0,z) < t) < koe !l (4.20)
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4.5 Proofs of the results

To prove b),
Y RaeB)ic Y 1+ Y ke lel
T €L z:| x |<kit z:| x| >kt
< (21 + D)% Y kpe kel
YA
< et +1)¢

>

for a suitable constant co. To prove a), fix an integer r > kit. Since ‘Et

(27 4+ 1)% implies that at least one site in B, lies outside a cube of size 2r + 1.
Hence

P (‘ B, ‘ > (2 + 1)) < kpe 0 HD2a(2r 4 3)1,

which proves exponentially decaying tails for the volume of Et. O

Utilizing Lemma 4.5.4 we now prove the second moment estimate of | Cy g |
needed for Lemma 4.5.3.

Lemma 4.5.5. There exists a dimension-dependent constant Cy > so that the
following estimate holds:

/(2 |Cuo |+ 1)2dN < Cylt + 1)242.

Proof. Let By be as in Lemma 4.5.4. Then for each x € B; we denote by t,
the time of first time of appearance of x in Cy g,

t, :=inf{s € [0,]| (z,s) € Cro}.
We have
Cuo = N0{(w,5) € Z'x[0,4] |2 € Bu,s > t.} € NN{(,5) € Zx[0,1] | @ € By}.

Conditioned on B; and t, the last set is Poisson distributed with the addition
of the points (x,t,),z € B;. Because of this, conditioned on By, |Cyo| — | Bt |
is stochastically dominated by a Poisson distributed with parameter ¢ | By |. As
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4 Variance Inequality for Glauber dynamics

a consequence,
/(2|Ct,0|+ 1)2dN < 4/(t+ 1)2(] B¢ | +1)?dN.

Finally the estimate from Lemma 4.5.4,a) completes the proof. O

With all ingredients present we can quickly prove the main result in form of
a slightly more general lemma.

Lemma 4.5.6. Let f:Q — R with ||| f||2 < o0 and 0 <T < S. Then
Var, (St f) — Var,(Ssf)

s 3
<o [ e ([ commmuan) de | Far? -

T z€eZ4
Cy is a constant depending just on the dimension.

Proof. Assume that f satisfies ||| f ||1 < oo. This then implies that S, f, (S:f)? €
dom(L) and by Lemma 4.5.1,

S
Var, (St f) — Var,(Ss ) = /T / [L(S,f — Sef()?] () ) .

By using the formulation of the generator using the graphical construction (see

(48)),
1

Lim =Y / £ (@, (2,0,0))) — £(n) du,
rEeZd 0

we apply Lemma 4.5.3 and obtain
Var, (St f) — Var,(Ssf)

S
< [ @Il VPR 10y 3 N (TeD? -

T€Z4

Finally Lemma 4.5.5 gives us the estimate on [(2|Cy0|+1)? dN to complete
the proof.
If f only satisfies ||| f |||l < co we then approximate f by local functions. [
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4.5 Proofs of the results

Proof of Theorem 4.3.1. A direct consequence of Lemma 4.5.6 with S = oo
1
and the estimate ([ ¢(0,1)0;(n)? u(dn))* < | 6 e (- O

We now prove Theorem 4.3.2, which is a modification of Theorem 4.3.1 for
attractive spin-systems.

Proof of Theorem 4.3.2. This result is also based on Lemma 4.5.6. To estimate
(f c(0,m)6¢(n)? u(dn)) * in terms of the auto-correlation, we start with the fact

that in the coupling the spread of discrepancies is limited to B;(as in Lemma
4.5.4):

b:(n) = Pno,n(ml # 77t SEp, Z ]1 i () #n? ()
r€B;

= Z Enonleen, Lot (a)#n?(2)-

T €L

Next, since 6; < 1,

/C(Om)&(n)qu(dn) < /0(07n)9t(n)u(dn)
Z/ no,n $€Bt (x)#n?(x)c(ovn) M(dﬂ)-

TE€ZA

We can now use Cauchy-Schwarz to obtain

2

2 (/ Leen, de ( / Enonlnie #n%(m)C(Oﬂ?)?M(dn)) : (4.21)

RIyAS

Since the model is attractive the coupling P preserves an initial ordering. Since
either n° < n or n < n°,

1~
En Lot @)#n2(z) = §En0,n | 77161(9”) - 77t2(x) | =

1
3 |]Eno17t(x) — E,m(x) ’ .

| By (0 (@) = m () |

N =
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4 Variance Inequality for Glauber dynamics

When we use the notation g.(n) := n(z) and m = u(go) = p(g.),

/ E 0 L3 ()52 (2)¢(0, ) pu(dy)

= %/\Stgx(no) — S192(n) | ¢(0,1)* u(dn)

%/\Stgx(no) —m|0(0,n)2u(dn)+%/\Stgx(77) —m|c(0,n) u(dn).

IN

Using ¢(0,7n) < 1, as well as

2

[ 18192t = i) < ([ Sigata) = m)?* utan)

= VarM(S’tgm)% = Var,(S:g0)

N

and
[ 1810:6) = ] 0 tn) = [ i000) | 0.0 T )
< [1819u0) = m] ndn) < Ve, (Sig0)

we estimate (4.21) and obtain

[ o mesutan) < 3 ( [ 1uen dN) Vay (Sugn)

TEZL

Furthermore Lemma 4.5.4 gives us an estimate for the sum, so that

(/ (0, n)et(n)qu(dn)f < e (t + 1)% Var,(Sug0) .

Omitting the g-th root where convenient and with a constant C/, = Cy(1V c2)

=1 we obtain the result

as well as writing % =

D,(T) < C) / (t+ 1)%42 (Var, (Sigo)) ™ dt. O
T

Proof of Proposition 4.3.4. Let f : Q — R be a local function with u(f) = 0.
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4.5 Proofs of the results

By Theorem 4.3.1, for any 0 < \ < A,

| St f ||iz(#) < const-e N,

and for any 0 < a < X

[e.e]
a 2
/£ e || Sef (|72, dt < oo (4.22)

Let E; ¢ be the associated measure wrt. to the spectral decomposition of —L.
Then

| Stf||2L2(H) :/0 672%Ef,f(d7)-

By (4.22),

/ / e TNE ¢(dy) dt < oo
o Jo

Therefore Ey £(]0,A/2[) = 0.

Let now f € L%(u) and approximate it by local functions f,,. Assuming
that (f), f have norm 1 makes Ey, , , E¢ ¢ probability measures and Ey, f,
weakly converges to Ey ;. By the Portmanteau theorem Ej ;(]0,A\/2[) = 0,
which completes the proof. O

Proof of Proposition 4.3.5. By the Poincaré inequality, the auto-correlation of
the spin at the origin, p(t) = Var,(S:g), 9(n) = n(0), decays exponentially fast.

1

The proof of Theorem 4.3.2 contains the estimate of ([ ¢(n,0)0;(n)? u(dn))* in
terms of . O

Proof of Proposition 4.3.6. We have

/OOLStfdtH <sup [ 319,501,

T neQ zeQ

1S —u() =\

Write 8,(f) := || Vo f || - Then

STIVLSF) <D B | F0)) — f() |

z€eZ4 zeZ4
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4 Variance Inequality for Glauber dynamics

<D Epw | D L) =B S Lz Il £l

zeZ? yezd y€zZd

< Enoﬂl | CIZO | ]ln,}yénf I” f |H1

By the Cauchy-Schwarz inequality and Lemma 4.5.5,

1
= 5 L/ 2\ 2
Byoon |Cuo | Lyp g < Bo ot # 12)% (B | Cuo )

< |6 c: (t+1)d+1

e
Therefore
“ ot d+1 g 13
157 =pN)lla < [ CHE+ D100 el 1 - 0
Proof of Proposition 4.3.7. Fix R > 0. Then, by Lemma 4.5.6,
Var, (Scf) < CaD1(0. R) Y | (VaSif)? || 1, + Varu(SrS.f)
€L

< Cg6 D1 (0, R)E(Syf, St f) + Var, (Srf)
< Cy67'D1(0, R)E(S, f) + Dp(R)PR(f).

The estimate ®r(S;f) < Cad ., cpa H (VSif)? HLP(M) is a direct consequence
of Theorem 4.3.1. O
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5 Random Walks in Dynamic Random
Environments: A transference
principle!

5.0 Abstract

We study a general class of random walks driven by a uniquely ergodic Marko-
vian environment. Under a coupling condition on the environment we obtain
strong ergodicity properties for the environment as seen from the position of
the walker, i.e., the environment process. We can transfer the rate of mixing
in time of the environment to the rate of mixing of the environment process
with a loss of at most polynomial order. Therefore the method is applicable
to environments with sufficiently fast polynomial mixing. We obtain unique
ergodicity of the environment process. Moreover, the unique invariant mea-
sure of the environment process depends continuously on the jump rates of the
walker.

As a consequence we obtain the law of large numbers and a central limit
theorem with non-degenerate variance for the position of the walk.

5.1 Introduction

In recent days random walks in dynamic random environment have been stud-
ied by several authors. Motivation comes among others from non-equilibrium
statistical mechanics -derivation of Fourier law- [21] and large deviation theory
[45]. In principle random walk in dynamic random environment contains as a
particular case random walk in static random environment. However, mostly, in

Irevised version of “Limit theorems for random walks in dynamic random environment”

Frank Redig, Florian Vdllering
http://arxiv.org/abs/1106.4181
submitted
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5 RWDRE: A transference principle

turning to dynamic environments, authors concentrate more on environments
with sufficient mixing properties. In that case the fact that the environment is
dynamic helps to obtain self-averaging properties that ensure standard limiting
behaviour of the walk, i.e., law of large numbers and central limit theorem.

In the study of the limiting behaviour of the walker, the environment process,
i.e., the environment as seen from the position of the walker plays a crucial role.
See also [32], [44] for the use of the environment process in related context. In
a translation invariant setting the environment process is a Markov process
and its ergodic properties fully determine corresponding ergodic properties of
the walk, since the position of the walker equals an additive function of the
environment process plus a controllable martingale.

The main theme of this chapter is the following natural question: if the
environment is uniquely ergodic, with a sufficient speed of mixing, then the
environment process shares similar properties. In several works ([11], [9], [12],
[6]) this transfer of “good properties of the environment” to “similar properties
of the environment process” is made via a perturbative argument, and therefore
holds only in a regime where the environment and the walker are weakly cou-
pled. Some non-perturbative results also exist, but those require strong mixing
properties of the environment in space and time ([23], [22], [13]).

In this chapter we consider the context of general Markovian uniquely er-
godic environments, which are such that the semigroup contracts at a minimal
speed in a norm of variation type. Examples of such environments include
interacting particle systems in “the M < e regime” [37] and weakly interacting
diffusion processes on a compact manifold. Our conditions on the environment
are formulated in the language of coupling. More precisely, we impose that
for the environment there exists a coupling such that the distance between
every pair of initial configurations in this coupling decays fast enough so that
multiplied with t? it is still integrable in time. As a result we then obtain
that for the environment process there exists a coupling such that the distance
between every pair of initial configurations in this coupling decays at a speed
which is at least integrable in time. In fact we show more, namely in going
from the environment to the environment process we essentially loose a factor
t? in the rate of decay to equilibrium. E.g., if for the environment there is a
coupling where the distance decays exponentially, then the same holds for the
environment process (with possibly another rate).

Once we have controllable coupling properties of the environment process,
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we can draw strong conclusions for the position of the walker. For example a
law of large numbers with an asymptotic speed that depends continuously on
the rates, and a central limit theorem. We also prove recurrence in d = 1 under
condition of zero speed.

This chapter is organized as follows. The model and necessary notation
are introduced in Section 5.2. Section 5.3 is dedicated to lift properties of the
environment to the environment process. The focus is on Theorem 5.3.1 and its
refinements. Based on these results consequences for the walker are summarized
in 5.3.5. In Section 5.4 we give examples for environments to which the results
are applicable and present one example which has polynomial mixing in space
and time. Section 5.5 is devoted to proofs.

5.2 The model

5.2.1 Environment

A random walk in dynamic random environment is a process (X;);>o on the
lattice Z?¢ which is driven by a second process (1;);>0 on EZ"| the (dynamic)
environment. This is interpreted as a random walk moving through the envi-
ronment, with time-dependent transition rates being determined by the local
environment around the random walk.

To become more precise, the environment (1;);>0 we assume to be a Feller
Process on the state space €2 := EZd, where (E, p) is a compact metric space
(examples in mind are E = {0,1} or E = [0,1]). We assume (without loss of
generality) that the distance p on E is bounded from above by 1. The generator
of the Markov process (1;):>0 is denoted by L¥ and its semigroup by SF, both
considered on the space of continuous functions C(2;R). We assume that the
environment is translation invariant, i.e.,

Py (0o € ) =Py (e € )

with 6, denoting the shift operator 8,7(y) = n(y — =) and PnE the path space
measure of the process (1;);>0 starting from 7.
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5.2.2 Lipschitz functions
Denote, for z € Z¢,
(2xQ); = {(n,€) € Q* : n(x) # &(2) and n(y) = E(y) Vy € Z\{a}}, =€ Z

Definition 5.2.1. For any f : Q@ — R, we denote by d¢(x) the Lipschitz-
constant of f w.r.t. the variable n(x),

f(n) = f(§)

of(x) == (1775)21(1&9)1, p(n(x),&(x))’
We write
1= D" b (). o

Py

Note that ||| f]|| < oo implies that f is bounded, continuous and the value
of f is uniformly weakly dependent on sites far away. A weaker semi-norm we
also use is the oscillation (semi)-norm

1 f llose == sup (f(n) = f(£))-

1,§EQ

From telescoping over single site changes one sees || f || .. < ||| f Il

5.2.3 The random walker and assumption on rates

The random walk X, is a process on Z¢, whose transition rates depend on
the state of the environment as seen from the walker. More precisely, the rate
to jump from site x to site x + z given that the environment is in state n
is a(f_zn,z). We make two assumptions on these jump rates «. First, we
guarantee that the position of the walker X; has a first moment by assuming

lelly == llzllsup|a(y,2)| < oc. (5.2)
2€74 neQ

More generally, as sometimes higher moments are necessary, we write

[allp:= " [=|"sup|a(n,2)|, p>1.
2€74 nes
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Second, we limit the sensitivity of the rates to small changes in the environment
by assuming that

lall:= " llat,2) [l < c. (5.3)

Finally, sometimes we will have to assume the stronger estimate

lall=">" =1l a(,2) I < cc. (5.4)

z€74

5.2.4 Environment process

While the random walker X, itself is not a Markov process due to the depen-
dence on the environment, the pair (1;, X;) is a Markov process with generator

Lf(na) = LEf(a)m) + Y al0-am, 2) [f(n, @+ 2) = f(n,2)],

z€Z4

corresponding semigroup S; (considered on the space of functions continuous
in n € Q and Lipschitz continuous in = € Z%) and path space measure Py .

The environment as seen from the walker is of crucial importance to under-
stand the asymptotic behaviour of the walker itself. This process, (0_x,n:)t>0,
is called the environment process (not to be confused with the environment ;).
It is a Markov process with generator

LEPf() = LEf(n) + > aln,2) [f(0-.n) — f)],

2€74

corresponding semigroup SF¥ (on C(2)) and path space measure P;F. Notice
that this process is meaningful only in the translation invariant context.

5.2.5 Coupling of the environment

In the remainder of this chapter we will need a coupling @f /S Q, of
the environment. For 7,¢ the coupled pair (n},n?)i>0 consists of two copies
of the environment, started in 7 and . By definition of a coupling, it has the
marginals @ﬁg(nl €:)=Py(n €) and I@T’ig(nz €:)=Pe(n € ). Let (F)i>o0
be the canonical filtration in the path space of coupled processes. We say such
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a coupling satisfies the marginal Markov property if, for any f: Q — R,
Eye [f() [ Fo] =S, f(S), i=121>5>0. (5.5)

We say it satisfies the strong marginal Markov property if, for any f: Q — R
and any stopping time 7,

BZ (Lo fOn}) | Fr] = Lisr SE f(02), i=1,2. (5.6)

Note that the (strong) Markov property for the coupling implies the (strong)
marginal Markov property.

5.3 Ergodicity of the environment process

5.3.1 Assumptions on the environment

In order to conclude results for the random walk we need to have sufficient
control on the environment. To this end we assume there exists a translation
invariant coupling @f ¢ of the environment, which satisfies the strong marginal
Markov property (5.6). In this coupling we look at Ef’ép(ntl,n%, measuring
the distance of the states at the origin. If this decays sufficiently fast we will
be able to obtain ergodicity properties of the environment.

Assumption la. The coupling P satisfies

|t sup BEcotnt(0)52(0)) dt < .
0 n,§€N

This assumption is already sufficient to obtain the law of large numbers for
the position of the walker and unique ergodicity of the environment process,
but it does not give quite enough control on local fluctuations. The following
stronger assumption remedies that.

Assumption 1b. The coupling pE satisfies

[ e sw Bt n@)de < o,
0 T (mOE@x),
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5.3 Ergodicity of the environment process

Remark Typically, a coupling which satisfies Assumption 1b) also satisfies
Assumption la) It is however not automatic. But given a translation invari-
ant couphng PP which satisfies 1b) it is p0551b1e to construct from PZ a new
coupling PF via a telescoping argument so that P satisfies both 1b) and 1a).

In Section 5.4 we will discuss some examples which satisfy those assumptions.
Beside natural examples where En (1t (0),77(0)) decays exponentially fast we
give an example where other decay rates like polynomial decay are obtained.

5.3.2 Statement of the main theorem

The main result of this section is the following theorem, which tells us how the
coupling property of the environment lifts to the environment process.

Theorem 5.3.1. Let f: Q — R with ||| f| < co.

a) Under Assumption 1a, there exists a constant C, > 0 so that

sup / | SEP f() — SEPF(€) | dt < Ca | £ 11

n,£€QJ0

b) Under Assumption 1b, there exists a constant Cp > 0 so that

> | 1sEm ) = sEr @ [a< eyl 1.

T (1 OE@XQ).

This theorem is the key to understand the limiting behaviour of the random
walk, i.e., law of large numbers as well as for the central limit theorem. Section
5.5 is devoted the proof of Theorem 5.3.1. In Section 5.3.4 we generalize this
result to give more information about decay in time. Here we continue with
results we can obtain using Theorem 5.3.1. Most results about the environment
process just use part a) of the theorem, part b) shows how more sophisticated
properties lift from the environment to the environment process as well. Those
can be necessary to obtain more precise results on the walker, like how likely
atypical excursions from the expected trajectory are.

It is possible to lift other properties from the environment to the environment
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process as well. For example if Assumption 1b is modified to state

td sup E AN/ TN T/ dt < 0,
/0 xgd (m,€)€(2x Qo p(n(O), £(0))
then that implies for the environment process
< | SEPf(n) = SEP ()]
sub dt<Cylll £l
/ p(n(2), €(2)) v Il

zezd (MEEQ@XN),

This kind of condition can be relevant in the context of diffusive environments
to show that small changes in the environment are causing only small changes
in the environment process.

5.3.3 Existence of a unique ergodic measure and continuity
in the rates

First of, the environment process, i.e., the environment as seen from the walker,
is ergodic.

Lemma 5.3.2. Under Assumption la the environment process has a unique
ergodic probability measure pu=°r

Proof. As FE is compact, so is €2, and therefore the space of stationary measures
is non-empty. So we must just prove uniqueness.

Assume p, v are both stationary measures. Choose an arbitrary f: Q — R
with ||| f |l < co. By Theorem 5.3.1a), for any T > 0,

T
T u(f) - v(f)| < / / /0 | SEP f(n) — SEP £(€) | dt p(dn) v(de)
< sup [ |SEP ) - SETFE) |t < .

As T is arbitrary, pu(f) = v(f). As functions f with ||| ||| < co are dense in
C(Q), there is at most one stationary probability measure. O

It is of interest not only to know that the environment process has a unique
ergodic measure %, but also to know how this measure depends on the rates
a.
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5.3 Ergodicity of the environment process

Theorem 5.3.3. Under Assumption 1a, the unique ergodic measure pZt de-
pends continuously on the rates «. For two transition rate functions a, o', we
have the following estimate:

EP EP Cla) /
[pa (F) = (f) ] < mﬂa—a llo Il £l
i.e.,
(, f) = 1" (F)
is continuous in || - || x ||| - [|[. The functions C(c), p(c) satisfy C(a) > 0,p(ar) €

10,1[. In the case that the rates o do not depend on the environment, i.e.,
a(n, z) = a(z), they are given by p(a) =1,

Cla) = / sup B p(n}(0), 72 (0)) dt.
0 n,6eQ

As the proof is a variation of the proof of Theorem 5.3.1, it is delayed to the
end of Section 5.5.

5.3.4 Speed of convergence to equilibrium in the
environment process

We already know that under Assumption la the environment process has a
unique ergodic distribution. However, we do not know at what speed this
process converges to its unique stationary measure. Given the speed of con-
vergence for the environment it is natural to believe that the environment
process inherits that speed with some form of slowdown due to the additional
self-interaction which is induced from the random walk. For example, if the
original speed of convergence were exponential, then the environment process
would also converge exponentially fast. This is indeed the case.

Theorem 5.3.4. Let ¢ : [0,00[ — R be a monotone increasing and continuous
function satisfying ©(0) =1 and o(s +1t) < o(s)p(t).

a) Suppose the coupling pPE satisfies

/ o(t)t? sypﬂﬁﬁgp(ml(())m?(o))dt < o0.
0 7,§€
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Then there exists a constant Ko > 0 and a decreasing function C, :
|Ko,00[ — [0,00] so that for any K > Ky and any f : Q — R with
1S Il < oo,

* o[t EP _ GEP
s [T (5 ) 187 ) = SE O e < L) 1 1 1

b) Suppose the coupling PE satisfies

/ pE S sup  BEp(nd (@), nP (@) dt < oo.
0 o nOE@x9)0

Then there exists a constant Ky > 0 and a decreasing function Cy :
|Ko,00[ — [0,00[ so that for any K > Ko and any f : Q — R with
IFF Il < o0,

s [T (%) 1SET 1)~ SE7H |t < ) £

wezd MEEQXD).

Canonical choices for ¢ are ¢(t) = exp(8t®),0 < a < 1, or p(t) = (1 + 1),
B > 0. This leads to the following transfer of convergence speed to equilibrium
from the environment to the environment process:

A
. _ At
e exponential decay: e M — e~ Fote',

o D S 1o
e stretched exponential decay: e~ ™" — ¢~ Tara= "
e polynomial decay: ¢t~ — t~(A=d=9)

with € > 0 arbitrary, and, in the case of polynomial decay, A > d + 1.

5.3.5 Consequences for the walker

The strong convergence of the environment process to its stationary measure
obtained in Theorem 5.3.1 implies various facts for the random walker. The
most basic fact is that the random walker has a limiting speed, i.e., IP;-a.s.

X
vi= lim =% = / Z za(n, 2) PP (dn), uniformly in 7.

2€7Z2
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5.3 Ergodicity of the environment process

The convergence is a direct consequence of ergodicity.

In the following theorem we prove the functional central limit theorem for the
position of the walker. The convergence to Brownian motion via martingales is
a rather straightforward consequence of the ergodicity given by Theorem 5.3.1.
The issue of non-degeneracy of the variance is less standard and hence we give
a proof.

Theorem 5.3.5. Assume Assumption la), |||, < oo, ||al]i < co. Then
the scaling limit of the random walk is a Brownian motion with drift v, i.e.,

X —otT
2T Wp(t),
VT T—o0

where Wp is a Brownian motion with covariance matriz D.
Let e € R? be a unit vector. Assume that either

a) there exists a z € 79, {(e,z) # 0, so that for all t > 0 and n € Q the
probability Py (a(n:, z) > 0) is positive;

b) nFP(a(-,2)) >0 for z € Z with (e, z) arbitrary large.

Then limp_, o 7 Var((Xr,e)) > 0. In particular, if i) or ii) is satisfied for all
e then the covariance matriz D is non-degenerate.

Proof. Notice that 3, ;4 za(-, z) — v is in the domain of (L¥7)~! because of
Theorem 5.3.1. Decompose

¢
X, —ot = Xt—/ Zza(e_xsns,z)ds
0

2€7Z2

+ /0 > zlal0-xn:2) — B (ol 2))] ds

z€Z4

The first term on the right hand side is a martingale and the second one is one
as well up to a uniformly bounded error. Both converge to Brownian motion
with finite variance by standard arguments when || a ||, < co. However, as the
two terms are not independent, an argument is needed to prove that they do
not annihilate. To prove that we show that = Var((Xr,e)) is bounded away
from 0 under the assumed conditions. Assume 7' > 0 integer and let (F;)i>o0
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be the canonical filtration. Introduce the discrete-time martingale

MI =E[(X7,e)|Fn] — E[( X1, e)|Fo]l = Xn + Yr_n(0—x, 1) — ¥i(n0),

S S
= z,e)a(0_x,n,z)dt = EP ;
Us(n) := Eo,, / Z§d<,><9 xo, 2) di / SEP () di
o) = > (ze)al,2).
zeZ4d

With this, by stationarity of the environment process started from =%,

Var,er (X7, €)) > E,er (Xr,e) — E[(X7, )| Fo])”

T
= Euer (My — My_1)?

n=1
T
= Euer((Xn,e) — (Xn_1,€) + Ur_pn(0_x,7m)
n=1

2
~ U (1) (0-x, 1 Mn-1))
T

= Z ]EMEP (<X1, 6> + \IIT,n(G,le) — \I}T—(n—l)(UO))2 .

n=1

What has to be shown is that the above term is not 0. By Theorem 5.3.1 and
16l < el < oo,

sup sup | ¥r (&) — Upryi(n)| = C < 0.
7,£€QT>0

Therefore, using |a +b| > ||a|] — |b] |,
Var,ee((X7,€)) > TE,er 1| x, o >c (| (X1,e) | = C)%.

What remains to show is that P,zr (| (X1,e) | > C) > 0. If ii) is satisfied this is
immediate. Ifi) is satisfied then there is a positive probability that X; performs
sufficiently many jumps of size z (and no other jumps) up to time 1. O

Remark The convergence to Brownian motion with a non-degenerate variance
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also provides information about the recurrence behaviour of the walker. If
v = 0, supposing d = 1 (in higher dimensions, project onto a line), the limiting
Brownian motion is centred. Hence there exists an infinite sequence t; < to <

. of times with X;, < 0 and Xy,,,, > 0, n € N. Supposing the walker
has only jumps of size 1, it will traverse the origin between t,,%,41 for any
n € N, i.e., it is recurrent. (If the walker also has larger jumps, then one
needs an argument to actually hit the origin with some positive probability
in [tn,tnt1].) Particularly, the recurrence implies that there exists no regime
where the random walk is transient but with 0 speed.

5.4 Examples: Layered Environments

There are many examples of environments which satisfy both Assumption la
and Assumption 1b. Naturally, exponential convergence to the ergodic mea-
sure is sufficient independent of the dimension d. Therefore interacting particle
systems in the so-called M < eregime or weakly interacting diffusions on a
compact manifold belong to the environments to which this method is applica-
ble.

To exploit the fact that only sufficient polynomial decay of correlations is
required we will construct a class of environments which we call layered envi-
ronments. One can think of layered environments as a weighted superposition
of a sequence of independent environments. Those kind of environments are
fairly natural objects to study. Suppose the random walk moves only on a
single layer but switches layers at a very high rate. Then in the limit of the
speed of layer jumping going to infinity one obtains a random walk which sees
a superposition of the layers weighted according to the frequency of visits. A
second scenario where layered environments are relevant is when there is a
natural reduction of influence, say by increasing distance of the layers to the
walker.

Here we focus on layers which still have exponential decay of correlations,
but each layer does converge to its stationary measure at a layer specific rate
Qn, with n being the index of the layer. When «,, tends to 0 as n — oo this in-
troduces some form of arbitrary slow decay of correlations. We counterbalance
this by weighting the superposition in such a way that the individual influence
of a layer goes to 0 as well. Note that such a counterbalancing is only possible
because of the Lipschitz nature of the assumptions. A uniform decay estimate
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does not hold because of the arbitrary slow decay in deep layers.

More formally, for each n € N let (n™);>0 be a Markov process on €y :=
{0, l}Zd, the environment on layer n. This process should have a coupling P}
with

sup EP ¢ |0t (0) — 02 (0) | < 2¢77t, @y, > 0. (5.7)
n,£€Q0

The layered environment (1n:):>0 then consists of the stack of independent layers
(n")i>0. The single site state space is E = {0, 1} and space of all configura-
tions Q = EZ°.

The superposition of the environments is weighted by the distance p on FE,
which we choose in the following way. Fix a sequence 71 > 9 > ... > 0 with
Y nen In = L. For (an)nen, (bn)nen € E the distance is

p((an), (bn)) = Z Yo | @ — by | (5.8)

neN

The coupling PE of the layered environments is simply the independent coupling
of the individual layer couplings P". The layer decay (5.7) and the choice of
distance (5.8) then provide the following decay of coupling distance for the
layered environment:

sup EF:p(nf (0),77(0)) <2 yne . (5.9)
7,6€EQ neN

The sum on the right hand side of (5.9) can have arbitrary slow decay depending
on ay,,v,. For example, if one fixes o, = n~ !, then v, = n~7~! leads to decay
of order ¢7.

We did not specify the exact nature of the individual layers, as those did
not matter for the construction. A natural example is when individual layers
consist of Ising model Glauber dynamics at inverse temperature (5, < (., and
Bn — Be as n — oo.

5.5 Proofs

In this section we always assume that Assumption 1la holds.
We start with an outline of the idea of the proofs. We have a coupling
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of the environments (n},n?), which we extend to include two random walkers
(X}, X?2), driven by their corresponding environment. We maximize the prob-
ability of both walkers performing the same jumps. Then Assumption la is
sufficient to obtain a positive probability of both walkers staying together for-
ever. If the walkers stay together, one just has to account for the difference in
environments, but not the walkers as well. When the walkers split, the trans-
lation invariance allows for everything to shifted that both walkers are back at
the origin, and one can try again. After a geometric number of trials it is then
guaranteed that the walkers stay together.

Proposition 5.5.1 (Coupling construction). Given the coupling I@ff of the en-

vironments, we extend it to a coupling ]IADW,I;E’y. This coupling has the following
properties:

a) (Marginals) The coupling supports two environments and corresponding
random walkers:

a) Pnym;i,y((mlath) € ) = Pn,ﬂﬂ((ntht) € ');
b) Ppacy((n7, X2) € ) = Pey((m, Xo) € )5

b) (Extension of @fg) The environments behave as under PE:

~

Proaey((i,ng) € ) =Pl ((n,m}) € -);

¢) (Coupling of the walkers) X} and X}? perform identical jumps as much
as possible, the rate of performing a different jump is

Z ‘ a(e—thntla Z) - a(e—ant27 Z) ;
2€7Z4

d) (Minimal and maximal walkers) In addition to the environments n; and
n? and random walkers X} and X2, the coupling supports minimal and
mazimal walkers Y7, Y;” as well. These two walkers have the following
properties:

~

a) Y7 < X} —2, X} —y <Y," P,.e, — as. (in dimension d > 1,
this is to be interpreted coordinate-wise);

b) Y7, Y, are independent of n},n?;
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¢) EpueyVy™ =t7" for some v € RY;
d) En,w;g,ngf =ty~ for some v~ € R

Proof. The construction of this coupling I?P,,mg’y is done in the following way:
We extend the original coupling I@f ¢ to contain an independent sequence of
Poisson processes N?, z € Z4, with rates \, := sup,, a(n, z), as well as sufficient
supply of independent uniform [0, 1] variables. The walkers X!, X2 then start
from z resp. y and exclusively (but not necessarily) jump when one of the
Poisson clocks N rings. When the clock N7 rings the walkers jumps from X}
to X} + z only if a uniform [0, 1] variable U satisfies U < a(é),X}ntl,z)/)\z,
i =1,2. Note that both walkers share the same U, but Us for different rings
of the Poisson clocks are independent.

The upper and lower walkers Y;", Y, are constructed from the same Poisson
clocks N#. They always jump on these clocks, however they jump by max(z,0)
or min(z,0) respectively.

The properties of the coupling arise directly from the construction plus the
fact that || a||; < o0. O

To ease notation we will call P, ¢ ¢ simply P, ¢ and the law of Y;*,Y;” P
whenever there is no fear of confusion.

Now we show how suitable estimates on the coupling speed of the environ-
ment translate to properties of the extended coupling.

Lemma 5.5.2.

Epwieyp(nf (XD, nf (X)) < (|7 =77 || t+ 1) SEEQEﬁgP(mI(O),n?(O))-
",
Proof. Denote with R; C Z? the set of sites z € Z¢ with ¥;” < z < Y;©
(coordinate-wise). Then

Sgup En,m;é,yp(ntl (th)v nt2 (th))
,6:2,Y

< sup Eyaey > pnf (x4 2),m7 (x + 2))
18T,y Z€R,

> 1] sup EZ, p(n} (2), n2(2))

2€R, 7,6,2

<=1l t+ 1) sglpﬂlEﬁgp(ml(O),n?(O))- O
n, e

<E
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Lemma 5.5.3. Denote by 7 := inf{t > 0 : X} # X?} the first time the two
walkers are not at the same position. Under Assumption 1a,

Jnf (7 = 00) >0,

i.e., the walkers X' and X? never decouple with strictly positive probability.

Proof. Both walkers start in the origin, therefore 7 > 0. The probability that
a Poisson clock with time dependent rate \; is has not yet rung by time T is
exp(— fOT A¢ dt). As the rate of decoupling is given by Proposition 5.5.1,c), we
obtain

T
Py e(r>T) =E,¢exp —/ Z ‘O{(G_thntl,z) - a(H_thntQ,z) ‘ dt
0 ez
(5.10)

T
> exp —E,,)g/o Z ‘a(@_xtﬂ]tl,z) - Oé(e_thnt27Z) ‘ dt
z€Z?

By telescoping over single site changes,

Epe Y- a0 xint2) = a0yt )|

z€Z4
<Ene Y. ) pnf (X} +2), i (X} +2))0a(.2 (@)
z2€Z4 xeZd
< Su% Enep(nt (X} +2),mi (X +2) ||| ol
Te

<llall (|7 =" |l t+1)? SggﬂEﬁgp(ni(O),nf(O)),
5

where the last line follows from Lemma 5.5.2. With this estimate and Assump-
tion la we obtain

Pre(r = 00)
o0
> exp (— Il o IH/ ([7F =77 [ t+1)? sup Eﬁgp(ni(o)mf(O))dt)
0 7,§€EQN
>0 uniformly in 7, ¢. O
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Proof of Theorem 5.3.1, part a). The idea of the proof is to use the coupling
of Proposition 5.5.1: We wait until the walkers X} and X?, which are initially
at the same position, decouple, and then restart everything and try again. By
Lemma 5.5.3 there is a positive probability of never decoupling, so this scheme
is successful. Using the time of decoupling 7 (as in Lemma 5.5.3) and the

strong marginal Markov property (5.6),

T
/0 ‘En,o;g,o]ltzr (f(a—xgml) - f(e—xfnf)> ‘ dt

T,
— /O ‘]Eno;g,o]ltzr]E |:f(97Xt177t1) - f(9,Xg77t2) ‘ ST}

T
< [ Buocolis. | SELF(6-xnd) — SPRF(0-xan?) | di
0

=N (T—7)VvOo
= ]En,O;E,O/ |StEPf(0—X.}n71-) - Sfpf(a—Xﬁnz) | dt
0

T
< B, 0ie.0(r < 00) sup / | SEP f(n) — SEF f(€) | dt.
n,6€QJ0

And therefore
T
JRER RS GIE

T ~

= [ |Baero xand) - 0oty |
0
TA

S/ En,§]]-t<7'
0

T
+ By e(r < 00) sup / | SEF () — SEPf(€)| dt
n,6€QJ0

< /O En,g\f(ﬁ_xgni)—f@—xwf)) dt

FO_xnb) = [O0_xynf) | dt

T
1+ B, e(r < 00) sup / | SEP f(n) — SEFf(€)| dt.
7,£€QJ0
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which gives us the upper bound

sup / | SEP f() — SEP £(¢) | dt

n,£€EQJ0

1 00
< ([t Poctr=00))  swn "By £0xu0t) - 10w

1n,£€Q 7,6€Q.J0
(5.15)

To show that the last integral is finite, we telescope over single site changes,
and get

| Bae| 16 - 100yt | a

< / Be S o0 (@+ X0),n2 @+ X0)6p () dt

Py/A

<11 I sup / By ep(nt(x + X0)n(z + X1)) dt,
’f], ,I

which is finite by Lemma 5.5.2 and Assumption 1a). Choosing
—1 0o
Co= (nt Brctr=o0)) s [ Byeptullo XD o XD
n,EEN n,&,x2J0
(5.16)

completes the proof. O

To prove part b) of the theorem, we need the following analogue to Lemma
5.5.3 using Assumption 1b.

Lemma 5.5.4. Under Assumption 1b, for every site-weight function w : Z¢ —
[0, o] with ||w |, := Z (z) < oo, we have

sup / > wW)Byeplnt (y+X1), 17 (y+X1)) dt < const-|w |, .
zEZd (m,8)EQXQ) yEeZd

Proof. Denote with R, C Z% the set of sites whose jth coordinate lies between
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Y/ and Y{"*. Then,

> wy)Epepnt (y + X1).n?(y + X))
yeZ4

= > Epewly — X))t (v).n?(y))

yeZ?

<> Ene > wly —2)p(nt (v),nt(y))
yeZ4 zER,

=SB | wiy - 2)| EEcp(nt (). 0P ()
yeZd 2ER,

by independence of R, and (n},7n?). Therewith,

sup / > wy)Epepnt (y + X1),n?(y + X)) dt
reZ’i (77 f)e QXQ EZd
/ > E [ )| > sup ENp(nf(y).ni(y))dt.
yezd  LzeR, zeza (MEEOX Vs

Note that by translation invariance the right part is equal to

sup  EZ p(nf (x), 17 (2)).
S moe@xa,

By construction of R, and Proposition 5.5.1.d ,

d
SEIY w(y—z>] =E [Z 1] lwll, = [[(7Ft=~""t+1) w],

y€ezZd 2€R, 2ERy j=1
d
ct®+ 1) [[wl,
for some suitable ¢ > 0. Therefore Assumption 1b completes the proof. O

Proof of Theorem 5.3.1, part b). Let 7 := inf{t > 0 : X} # X?}. Then we
split the integration at 7:

sup / | SEP f() — SEF £(¢) | dt
)

zeZd (m,£)€(2xQ)z /O
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< sup [ Buetnd (10 xnt) = £6xy2)) | at

i (nE@XQ).

o0
+3swp [ Bpetea (F0 ) - 10 o)) | de
S moe@xa), Jo

We estimate the first term by moving the expectation out of the absolute value
and forgetting the restriction to 7 > ¢:

swp [ S B eplui v+ X2, a2+ X)) o
zeza (MEEQxQ) Jo yezd

By Lemma 5.5.4 with w = dy, this is bounded by some constant times ||| f |||
For the second term we start by using the strong marginal Markov property
(5.6):

/0 ‘En,g]]-‘rgt (f(gfx,}??tl) - f(97x§77t2)) ’ dt
:/ ’En,g]]--rgt (SEZF(O_x1mk) — SPE F(0_x2m?)) ’ dt
0
<Byelicn [ [(SELAOonl) = SELFO_xand) | de (517

< By (r < c0) sup / | SE £(n) — SEP £(€) | dt. (5.18)
n,£€Q J0

By part a) of Theorem 5.3.1 the integral part is uniformly bounded by C, ||| f |||
So what remains to complete the proof is to show that

~

sup P (7 < 00) < 0. (5.19)
S moe@x),

To do so we first use the same idea as in the proof of Lemma 5.5.3 to obtain

@7775(7- < o0)

oo
=1—exp —/ E,¢ Z ‘a(ﬁ_xgng,z)—a(e_xtlnf,z) dt
0 zeZ?
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< [ B X [0 st ) a0 yitz) | ar
0

z€7Z4

oo
S/ > waW)Byeplng (v + X1, 7 (y + X)) dt
0
yeZa

wa() = sup > la(n,z) —alé2)]
(M€ EQXQ) s 274

and Y ;4 wa(x) < 00. So we get

~

sup P,y (1 < 00)
2 moe@xa),

o0
<. sw / > waW)Enep(nt (v + X1 iy + X1)) dt,
zezd (MOEOXD JO  27q

and Lemma 5.5.4 completes the proof, where C} is the combination of the
various factors in front of ||| f |- O

Proof of Theorem 5.3.3. Let a,a’ be two different transition rates. The goal
is to show that

e (F) = me” (O] < Cll £

for all f:Q — R with || f|| < oco.

The idea is now to use a coupling P similar to the one in Proposition 5.5.1.
The coupling contains as objects two copies of the environment, n' and 7?2,
and three random walks, X', X'? and X2. The random walk X' moves on the
environment n' with rates «, and correspondingly the random walk X2 moves
on 7% with rates o/. The mixed walker X'? moves on the environment 7? as
well, but according to the rates . The walkers X', X2 will perform the same
jumps as X'? with maximal probability. This can be achieved with the same
construction as in Proposition 5.5.1, but with Poisson clocks N? which have
rates \, = sup,cq a(n,z) V a/(1, 2).

We only consider the case where all three walkers start at the origin. We
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denote by SEP ! SEP2 the sermgroups of the environment process which cor-

respond to the rates aand . Let 7 :=inf{t > 0: X} # X}? or X}? # X?}.

SEPLFm) = SETRf(E)
=8, (f(e,Xgntl) - f(07X3n3)>
= Byelose (FO_xn) — FO_x;7))
+ Byclose (FO-xind) = F(O_x2m?))
= Byelae (10l — FO_xy))

+Epelo< (S X)) - Sﬁé%@—xzﬁi)) :

Therefore,

’

U(T):= sup sup / SEPLf(y) — SEP2f(¢) dt

0<T'<T n,£€QJ0

T/
< swp s [ Bl (70 ) - 50 xi?))

0<T'<T nge2 Jo

+Ereloce sup (7714 - SPR2H(9) dt
UEISY

< sup sup (En,g / f(eXgntl)—f(aX;n3>dt+nT<foP<T’—T>)
0§T'ST7],§€Q 0 )

< sup B¢ ( / f(e_xgntl)—f(e_xgn§>dt+nf<Tw<T—r>).
17,£€Q 0

(5.20)

We will now exploit this recursive bound on V.

Lemma 5.5.5. Let 7 := inf{t > 0: X}! # X2} and 7 := inf{t > 0: X2 #
X?}. Set

Bi=> sup |a(n,z)—a'(n,2)],

2€74 nezs
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= inf P =
pla) = inf Pye(m = o00),

Cla) = / T @) =y @)t + 1) sup EEcp(nl (0).7(0) .

where v (a),v~ () are as in Proposition 5.5.1 for the rates c.

Let Y € {0,1} be Bernoulli with parameter p(«) and Y’ exponentially dis-
tributed with parameter 3. Let Y1,Ya, ... be iid. copies of Y - Y’ and N(T) :=
inf{N >0:>"_V,>T}. Then

U(T) < Cla) | f IIEEN(T)

Proof. By construction of the coupling, 72 stochastically dominates Y'. As we
have 7 = 71 A 75 it follows that 7 > Y;. Using this fact together with the
monotonicity of ¥ in (5.20),

U(T) < S?Pﬂ( ns/ f0_xin}) f(e—ngif)dt+]lr<T‘I’(T—T)>
n, €

< sup By / FO_xmt) — FO_xyn?) dt + E Ly, < W(T — V).
0

As p(a) > 0 by Lemma 5.5.3 we can iterate this estimate until it terminates
after N(T') steps. Therefore we obtain

¥(T) SEN(T) sup B / FO_xinb) — FO_xim?) dt.
n,§€

The integral is estimated by telescoping over single site changes and Lemma
5.5.2 in the usual way, yielding

W(T) < C0) || £ | EN(D). 0
To finally come back to the original question of continuity,

|uEP ) = et (f)]
/ SEPL () — SET2 F(€) dt " (dn) B (de)
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1 1
< ZU(T) < ZEN(T)C(@) || £
= s C@Il I
C(a)

=== " sup |a(n,z) —a'(2) |l fI-

p(a) Lz nezd

By sending o’ to «, the right hand side tends to 0 so that the ergodic measure of

the environment process is indeed continuous in the rates a. It is also interest-

ing to note that both p(«) and C(«) are rather explicit given the original cou-

pling of the environment. Notably when a(n, z) = a(z), i.e., the rates do not de-

pend on the environment, p(a) = 1 and C(a) = [;° s;lepQ Iﬁﬁgp(ntl (0),12(0)) dt.
n,

O

Proof of Theorem 5.3.4. The proof of this theorem is mostly identical to the

proof of Theorem 5.3.1. Hence instead of copying the proof, we just state where
details differ.

A first fact is that the conditions for a) and b) imply Assumptions 1a) and

b). In the adaptation of the proof for part a), in most lines it suffices to add a
¢ (£) to the integrals. However, in line (5.11), we use

t t—T1 T
< — .
<p(f{)“”(f()“”([{) (5.21)
to obtain the estimate

~ T (T=m)vo t EP 1 EP 2
Brew () [ 0 (50 ) ISEPS0unt) - SEPS0n®) | at
0

K

instead. Thereby in lines (5.12), (5.13) and (5.14) we have to change @,775(7' <
00) t0 E; ¢ (&) Lr<oo. This change then leads to the replacement of

inf @,775(7' = 00)

17,§€EQ

by the term

=~ T
1— sup E (—) 1,
o £C0 n,£P K <o
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in the lines (5.15) and (5.16) (where naturally C, becomes C,(K)). So all we
have to prove that for sufficiently big K

=~ T
sup E, ¢ (?) lrcoo < 1.
1,£€Q

In a first step, we show that

sup Ey, ¢p(7)1rco0 < 00.
UESSY

As we already saw in the proof of Lemma 5.5.3, we can view the event of
decoupling as the first jump of a Poisson process with time-dependent and
random rates (equation (5.10)). Hence we have

By eo(7) Lrcoo = / o(t) B e (r > 1)
0

=/0 P()Ene ‘a(9_xgm1,Z) - a(9_xgm2,2)'

2€74

¢
- exp —/ Z |a(9_X;n;,z)fa(9_Xslnf,z)| ds | dt
0 Zz€Z2

< [ ey 3 [at0-xgnt.2) = a0yt )| ar

2€7Z4

By telescoping over single site discrepancies and using Lemma 5.5.2, this is less
than

/O GO+ =7 [+ 1" sup BEcotot(0),(0)) e < o0
7,

by assumption. Since ¢(t/K) decreases to 1 as K — oo, monotone convergence
implies

N T =

lim E,cq (?) Lrcoo = Bpellrco < 1

K—oo

by Lemma 5.5.3. Consequently, there exists a Ky > 0 such that for all K > K|

~ T
E,cq (?) 1eoo < 1.
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This completes the adaptation of part a).

The adaptation of the proof of part b) follows the same scheme, where we
add the term ¢ (%) to all integrals. Note that this gives a version of Lemma
5.5.4 as well. Then, in line (5.17) we use (5.21) again and then have to replace
B,e(1 < 00) by B¢ (£) Lr<oo in lines (5.18) and (5.19). To estimate (5.19),
we use

~ T
En,ﬂp (?) 1rcoo

S/0 < ) nEZ’ _xim2) —alf_x;n7, 2) | dt

z€Z4

oo t e
S/ w<K> > walyep(ni (y+ X1),m7 (y + X)) dt
0

yeZ4
with w, as in the original proof. Therefore

~ T
sup E, e (?) 1 coo
wezd (MEEQXQ),

> t
< sup / © ()
mgz:d (n,£)€(Q%xQ) JO K

> wa)Enep(nt (v + X)), n7(y + X1)) dt,
yeZa

which is finite by Lemma 5.5.4. O
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