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Currently, Offshore Wind Farms (OWFs) are designed to achieve high turbine density so as to reduce
costs. However, due to wake interferences, densely packing turbines reduces energy production. Having
insight into optimized trade-offs between energy production, capital investment and operational costs
would be valuable to OWFs designers. To obtain this insight, the design of OWFs should be formulated as
a multi-objective optimization problem. How to best solve a Multi-Objective Wind Farm Layout Opti-
mization Problem (MOWFLOP) is however still largely an open question. It is however known that
evolutionary algorithms (EAs) are among the state-of-the-art for solving multi-objective optimization
problems. This work studies the different features that an MO Evolutionary Algorithm (MOEA) should
have and which Constraint-Handling Techniques (CHTs) are suitable for solving MOWFLOP. We also
investigate the relation between problem dimensionality/complexity and the degrees of freedom offered
by different turbine-placement grid resolutions. Finally, the influence of problem size on algorithm
performance is studied. The performance of two variants of the recently introduced Multi-Objective
Gene-pool Optimal Mixing Evolutionary Algorithm (MOGOMEA) is compared with a traditional and a
novel version of the Nondominated Sorting Genetic Algorithm II (NSGA-II). Five CHTs were used to assess
which technique provides the best results. Results on a case study with different OWF areas demonstrate
that one variant of MOGOMEA outperforms the NSGA-II for all tested problem sizes and CHTs.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In 2007, the European Union (EU) targeted to generate 20% of
its energy consumption through renewable sources and to im-
prove the energy efficiency by 20% compared to 1990 levels, by
2020 [1]. Renewable energy sources are anticipated to help Europe
meet these challenging targets. Among other renewable sources,
such as hydro, solar and onshore wind, the northern European
countries have been investing in Offshore Wind Farms (OWFs) for
more than two decades due to higher and steadier mean wind
speeds offshore compared to onshore and lower visual impact
[2,3].

The EU and the European Wind Energy Association (EWEA)
estimated that the joint installed capacity of European OWFs will
be 40 GW by 2020 and 150 GW by 2030 [1,4,5]. These predictions
require a yearly increase rate of the offshore installed capacity of
29.6% and 19.1% to be satisfied, respectively [6]. Fig. 1 shows that
these predictions may represent plausible scenarios since the
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D turbine rotor Diameter
DCO Development Consent Order
EA Evolutionary Algorithm
EU European Union
EWEA European Wind Energy Association
FEED Front-End Engineering and Design
FI Forced Improvement
GA Genetic Algorithm
GOMEA Gene-pool Optimal Mixing
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LES Large Eddy Simulations
LT Linkage Tree
MR Multi-Resolution
MI Mutual Information
MO Multi Objective
NIS No Improvement Stretch
NSGA Nondominated Sorting Genetic Algorithm
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o-MOGOMEA offline MOGOMEA
OPEX Operational Expenditure
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OWF Offshore Wind Farm
SPEA Strength Pareto Evolutionary Algorithm
PSO Particle Swarm Optimization
UPGMA Unweighted Pair Grouping Method Arithmetic
WFLOP Wind Farm Layout Optimization Problem
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required growths are below the average European industry growth
(36.1%) since 2002, when the first large-scale OWF was built [7,8].

The European OWFs have become larger throughout the years,
with the average area reaching almost 60 km2 in 2012 (see Fig. 2a).
Similarly, also the number of turbines per OWF has been in-
creasing, as can be seen in Fig. 2b. Projects commissioned from
2002 until 2011 had on average 39 turbines, whereas between
2012 and 2015, that value increased to approximately 72 turbines.

Despite the important lessons learned by developers and
technological advances achieved in recent years, the cost of energy
generated offshore is not yet competitive. In fact, without en-
couragements and incentives from governments, the industry
would probably not consider offshore wind. Since 2012, OWFs
have been very capital intensive, costing on average EUR 1 billion.
The Gwynt y Môr project, with an installed capacity of 576 MW
and commissioned in 2015, is the second-largest OWF, costing EUR
2 billion (its layout is shown in Fig. 3). It is a complex project due
to the challenging seabed conditions and human-made constraints
(a pre-existing pipeline crosses the project area, separating it into
two zones). These high costs are mainly due to the larger seabed
areas, large distance to shore, large water depth and large number
of turbines [8,7,9].

One possible strategy to decrease the cost of energy of an OWF,
is to increase its energy yield [13]. OWFs are usually designed with
a high turbine density due to limitations on space and to reduce
Capital Expenditure (CAPEX) on, for example, cables to inter-
connect the turbines [14]. However, turbines induce wake inter-
ferences on other turbines. For example, the energy produced at
the Danish OWF, Horns Rev 1, is 89% of what the same turbines
together would produce if installed solitarily [15]. Therefore, wake
effects are considered to be the strongest economical driver and
designers create layouts that maximize the turbines' exposure to
the prevailing wind direction to increase energy production
[16,17].
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Designing the initial OWFs was simple because of the low
number of turbines and homogeneity of depth and seabed soil
properties. The layout was primarily defined by placing the tur-
bines in regular structures with greater distances in the prevailing
wind direction [18]. Optimizing the design of recent OWFs is a
much more challenging task because it requires the analysis of
sophisticated trade-offs between conflicting goals, most notably
Annual Energy Production (AEP), CAPEX and Operational Expenses
(OPEX). As previously noted, state-of-the-art OWFs are composed
of a larger number of turbines and have more challenging seabed
areas with water-depth and soil conditions that vary across the
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Fig. 3. Layout of the British Gwynt y Môr OWF. Reproduced from [12].
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site [16]. Approximately 4% of the CAPEX of an OWF is allocated to
the development phase. In this phase, in addition to the layout, all
the components and technologies to be used, have to be decided
[19]. For such vast projects, automated optimization tools are
crucial to ensure that optimized, i.e. efficient, layouts are designed
in this phase [20].

The Wind Farm Layout Optimization Problem (WFLOP) is a very
difficult problem to solve [21]. It is non-linear, multi-modal, non-
differentiable, non-convex, discontinuous and cannot be described
analytically (without making vast simplifying assumptions) [18].
Moreover, due to various characteristics of the WFLOP, calculus-
based approaches such as linear programming and gradient
methods are not suitable to solve the problem [18,22,23]. The
problem becomes even more complex if partial turbine wake
shadowing is considered [21]. Although different modeling tech-
niques have been introduced in the literature to reduce the com-
putational burden of the WFLOP [24–27], it remains a very com-
putationally demanding problem. Optimal solutions to the WFLOP
can be confirmed only for small instances [21].

A solution that is widely used in academia, is to the solve the
WFLOP with Evolutionary Algorithms (EAs), a type of optimization
algorithm that belongs to the class of metaheuristics [21]. EAs are
moreover among the most suitable methods to solve Multi-Ob-
jective (MO) problems [28]. Contrary to most (heuristic) optimi-
zation algorithms, these methods use a set of multiple solutions
(also called a population) during optimization. EAs are moreover
relatively simple to apply to solve optimization problems because
only require a way to evaluate the objective functions of interest
for them to work [28]. Several reviews of the different approaches
for solving the WFLOP have appeared in literature [21,29,18,30–
32]. The first work that used a metaheuristic, namely the classic
Genetic Algorithm (GA), to solve the WFLOP was carried out in
1994 [33]. Several metaheuristics have been applied to the WFLOP
and although EAs, like virtually all metaheuristics, do not guar-
antee to find the global optimum given a certain computational
budget, EAs remain the most used type of optimization algorithm
to solve the WFLOP [21].

The objective of this article is to address the following open
research questions:

1.1. What characteristics should an optimization algorithm have to
present optimized layouts?

Despite the fact that multiple studies on the (MO)WFLOP have
appeared in literature, no fair comparison of different algorithms
has been performed, i.e. employing the same settings for
computational budget and using the same problem formulations
and problem instances [21]. Rather, the different algorithms have
been used in different scenarios, using different constraints and
objectives. This limits the conclusions about the performance of
algorithms that can be drawn from previously published work
[21,31]. Furthermore, no analysis has been carried out to under-
stand what characteristics are required of an optimization algo-
rithm to efficiently solve the MOWFLOP. Lastly, to correctly assess
the optimization performance of EAs, multiple runs have to be
done as these algorithms are stochastic in their operation. None-
theless, statistics such as averages and variances over multiple
runs have not presented in previous literature [21].

1.2. What is the best constraint-handling technique to ensure feasi-
bility of the OWF layouts?

In WFLOP, if the formulation of the optimization problems al-
lows placement of turbines closer to each other than the minimum
distance required between turbines, the final design layouts may
be infeasible [34]. For real-world problems, constraints that
identify when a solution is feasible often have a key contribution
to a problem's difficulty. Being able to handle these constraints
efficiently and effectively to ensure that the final outcome of op-
timization is indeed a feasible solution, is therefore important. In
metaheuristic optimization, such techniques are called Constraint-
Handling Techniques (CHTs). It is known that different CHTs affect
the performance of a MOEA differently (see, e.g. [35]). Hence,
studying the performance under different CHTs is important and
should be considered as an intrinsic part of the EA. Although
several CHTs have been employed in the literature for solving the
(MO)WFLOP, their impact on the performance of (MO)EAs has not
yet been investigated [36].

1.3. How does the problem complexity scale with the number of
design variables?

The performance of metaheuristics, typically measured in the
time required to reach an optimal solution or a solution of a
certain quality level relative to the optimum (e.g. 95% of the
optimum), is highly correlated with a problem's dimensionality
(that is, assuming the problem itself can be scaled to larger di-
mensionalities) [28,37]. Previous publications on (MO)WFLOP
have not discussed the impact of increasing the number of de-
sign variables (which depends on the number of turbines, the
number of grid positions, or both) on the performance of the EAs
used [18].

1.4. What is the relation between problem dimensionality/complex-
ity and the degrees of freedom offered by different turbine-placement
grid resolutions?

In general, two approaches can be identified to model the po-
sitioning of turbines. Either the coordinates of a fixed number of
turbines is given, or a grid is defined over the available area and
turbines may be placed at grid points. One advantage of the latter
approach is that it does not necessarily require specifying a prior
the number of turbines to be placed. Instead, this number can be
optimized together with the types of turbines to be placed and
where to place them on the grid by making each grid point a
decision variable. Because this flexibility on the number of tur-
bines is a desirable design property, we adhere to the latter choice
in this article. No work has however previously been published
that studies the trade-off between problem dimensionality and the
degrees of freedom offered by different grid resolutions according
to which turbines can be placed. The usual strategy is to keep the
number of optimization variables as low as possible in order to
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require less evaluations of the objective functions [38]. This would
imply using a coarse grid. On the other hand, using a fine grid for
the OWF area increases the design freedom since it is possible to
obtain a larger number of different OWF layouts [34]. Using a finer
grid however increases the complexity of the problem, even
though it is still covering the same area, because the resolution of
the grid is directly linked to the number of optimization variables.
This in turn affects the rate of convergence and optimization
performance of metaheuristic algorithms, especially when con-
sidering a fixed budget of computation time [18,26].

The remainder of this article is organized as follows: Section 2
introduces the MOWFLOP in more detail. Section 3 describes the
algorithms selected in this work as well as their main character-
istics. The performance of these algorithms combined with dif-
ferent CHTs is tested on OWFs with different dimensions and grid-
step sizes in Section 4. A discussion of the results is given in
Section 5, while final conclusions, recommendations and future
work are presented in Section 6.
2. Multi-objective wind farm layout optimization problem

The layout of an OWF is designed and optimized during the
Front End Engineering Design (FEED) phase of the project. The
FEED phase is performed after initial feasibility studies and before
investment decisions. The design options remain relatively flexible
during the FEED phase. For example the number, model and lo-
cation of the turbines is still not fixed [39,40]. Furthermore, wind
farm developers have to make a pre-selection of economically
viable design concepts and associated key components during the
FEED phase [13,19]. The number of turbines and their locations
have a strong impact on the overall efficiency of the project and
hence, they may be considered to be one of the most important
optimization variables in the WFLOP.

One of the most used objective functions used to formulate the
WFLOP is the Net Present Value (NPV) [21], which may be calcu-
lated as:

( )= · − − ( )NPV AED p OPEX a CAPEX 1kWh

where a is the annuity factor ( )( )( )= − + −a r r1 1 /n , r is the in-

terest rate, n is the project lifetime and pkWh is market energy price.
The NPV requires a priori economic values for the interest rate,

wind farm lifetime and market energy price. If these values are
changed, it is not guaranteed that the OWF layout that leads to the
minimum NPV remains the same. Thus, if the designers wish to
obtain a new layout for different economic parameters, another
optimization run has to be performed, which, depending on the
complexity of the models and the computational power available,
may require a considerable amount of time. Using functions that
depend on a priori determined economic values can be seen as
Table 1
Existing approaches for the MOWFLOP.

References Optimization variables Design objectives

Kusiak et al. [41] Turbine locations Energy generation, Problem
constraints

Zhang et al. [43,44] Turbine locations Energy generation, Noise leve
Veeramachaneni et al. [46] Turbine locations Energy generation, Cost

Tran et al. [48] Turbine locations Energy generation, Collection
system length, Wind farm are

Sisbot et al. [51] Turbine locations and
quantity

Energy generation, Cost
converting a problem that is actually inherently multi-objective to
a single-objective (SO) problem by the use of weighting factors. In
doing so, developers will gain only limited insight into the pro-
blem and options for designing layouts because they are only gi-
ven single layouts each time (one for every combination of eco-
nomic values) instead of immediately being informed of all solu-
tions that correspond to efficient trade-offs between the key as-
pects that are of importance, such as AEP, CAPEX and OPEX.

Although more than 150 publications may be found in litera-
ture that have dealt with the WFLOP [21], only a few studies have
investigated the trade-offs that emerge while designing a wind
farm using a multi-objective formulation of the problem [30].
Table 1 presents the characteristics of the MOWFLOP as considered
by relevant studies. The study carried out in [41] optimized the
AEP with the problem constraints being considered as a second
objective function. The AEP and the noise generated by the tur-
bines were optimized in [43,44]. Similarly, [46] optimized the AEP
as a first objective and the sum of the wind farm area and the
number of turbines as second objective. Three simultaneous op-
timization goals were used in [48]: AEP, area used and collection
system length.

The great majority of existing approaches, for both the WFLOP
and its MO variant, have assumed either a fixed or a maximum
number of turbines, despite the fact that the number of turbines is
an important real-world optimization objective during the FEED
phase [21]. An example of an exception to this is the work pre-
sented in [51], in which both the locations and number of turbines
were used as design parameters to optimize the AEP and the sum
of CAPEX and OPEX.

The energy production was used as an objective in all ap-
proaches that studied the MOWFLOP (see Table 1). In fact, the
energy production is the most common objective function used
both in academia and in commercial software [21]. In order to
realistically approximate the amount of energy produced by an
OWF it is necessary to consider wake effects due to the close
proximity of turbines. Next, an overview of wake losses modeling
is given and the model that we chose to employ, is described.

2.1. Wake losses

Currently, there is a wide variety of models to calculate, with
different accuracy levels, the wind deficits due to wake losses in
wind farms [52–56]. Examples of low-fidelity engineering models
to describe wake losses include the Katic-Jensen model [57,58],
the Eddy viscosity model [59], the Frandsen et al. model [60], the
deep-array wake model [61] and the Larsen model [62]. These
models, due to their simplified wake-speed deficit approach, can
be evaluated in only little computation time and can provide a
preliminary description of the far wake regime [63].

Other models were built to provide medium-fidelity results,
Wake
model

Constraint
handling

Variables
domain

MOEA

Katic/
Jensen

Extra Objective Continuous SPEA [42]

l Jensen – Continuous NSGA-II [45]
Katic/
Jensen

Repair Continuous MO-PSO [47]

a
Katic/
Jensen

– Continuous NSGA-II [45], SPEA2
[49], IBEA [50]

Katic/
Jensen

Repair/Penalty Discrete MOGA [28]
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such as the Dynamic Wake Meandering model [64] and several
other approaches based on the actuator disk model [65,66]. At the
high-fidelity end, Computational Fluid Dynamics (CFD) models are
found [54]. The highest of fidelity is obtained using models based
on Large Eddy Simulations (LES). Although of value in their own
right, one evaluation of such a model may take several weeks to
complete [67].

CFD and LES models may be used for detailed studies such as:
interactions between a turbulent flow and a rotor blade; the in-
teraction between multiple wakes; or validation and calibration of
simpler models [15,67]. However, for wind farm layout optimiza-
tion, the huge computational requirements of these models make
them prohibitive to use because during optimization many eva-
luations of these models are typically required, especially in case
of large OWFs [68].

For this reason, a commonly adopted design methodology (see,
e.g. [69,70,38]) is to tackle the WFLOP with simplified and com-
putationally light models. The solutions obtained by doing so
provide a first, and often already quite insightful, assessment of
the potential solutions to the problem and their quality because
although the simpler models may not be as accurate as the ones
with the highest fidelity, they do differentiate the performance of
one wind farm layout versus another. A designer may then choose
a few solutions from the optimized set and further evaluate them
with more detailed models to get more accurate figures for the
expected performance of these solutions. In this work, the Katic-
Jensen model was employed during the optimization experiments.
A description of the model is given next.

2.1.1. Katic-Jensen wake model
The Jensen model, originally proposed in 1983, is a simplified

and fast manner of calculating the wind speed inside the wake of a
turbine [57]. The model, further developed by Katic et al. [58], has
been widely adopted in wind farm modeling due to its ease of
implementation and low computational requirements
[29,21,18,71–73]. All the MO approaches presented in Table 1 used
the Katic-Jensen model (with the exception of [43,44] which used
the original Jensen model). According to the Katic-Jensen model,
the wind speed seen by the j-th turbine positioned in the wake of
one or more turbines, is given by:

( )= − ( )U U deficit1 2j 0

where U0 is the ambient wind speed and deficit is the velocity
decrease caused by shadowing effects.

The wake expansion is considered to be linear [57,58]:

α= + ( )R R d 3kw k kj

where Rkw is the wake front radius, Rk is the turbine rotor radius, α
is the momentum entrainment or wake decay coefficient and dkj is
the distance between the turbines (displayed in Fig. 4).

The value of α may be calculated according to [74]:
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A
h
z

log
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where A is a constant (0.5), hhub is the turbine hub height and z0 is
the surface roughness height, which, for offshore environments, is
usually considered to be 0.0005 [75].

The interference caused by an upstream k-th turbine to the j-th
turbine may be calculated as [58]:
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where CTk is the k-th turbine thrust coefficient at a given wind
speed, Aj is the j-th turbine rotor area and Akj is the j-th turbine
rotor area influenced by the upstream turbine k.

If the wake front affects entirely the j-th turbine, π=A Rkj j
2

whereas if the wake front does not impact the j-th turbine, =A 0kj .
If the wake wave affects partially the turbine rotor sweep area
(Fig. 4), Akj, is given by [24,25,76]:
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To account for multiple interferences from upstream turbines
(see Fig. 5), the deficit term is calculated as [58]:

∑=
( )=

deficit U
7k

n

kj
1

2

2.1.2. Assumptions
The Katic-Jensen wake model assumes, among other things

[21], that the wind speed inside the wake front is axisymmetric,
decreases linearly, and that the wake front starts to expand after
the turbine rotor.

The fact that the wake front is assumed to be axisymmetric and
that the wind speed reduction is assumed to be linear means that
different layouts will have similar performance according to the
model. For example, the turbines inside the wake front of Fig. 5
have the same energy production according to the Katic-Jensen
model (the ones at the same distance from the first turbine).

2.2. Constraint-handling

Similar to most real-world problems, the WFLOP has con-
straints. To obtain feasible wind farm layouts different constraints
have to be respected [18]:

� wind farm boundaries: the turbines have to be placed inside the
wind farm area [77];

� infeasible areas: there may be some areas that are not available
to install turbines due to human-imposed constraints (e.g. un-
exploded ordnances, pre-existing cables, shipwrecks) or nature-
imposed constraints (e.g., inappropriate type of soil material,
cliff areas, soil areas with insufficient bearing capacity, large
seabed gradients) [17];
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Fig. 5. Wake growth and wind speed decrease according to the Katic-Jensen model.
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� minimum clearing distance: a minimum distance between
neighboring turbines is required to guarantee proper function-
ing and to safeguard their structural integrity [73];

� number of turbines: the number of turbines that may be in-
stalled has to be within the range specified in the Development
Consent Order (DCO) [39].

In the following, several CHTs, that have previously been used
in literature for the WFLOP, are described.

2.2.1. No constraints
Various approaches avoid the use of CHTs:

� In the first work that used an EA for the wind farm layout de-
sign problem, the wind farm area was divided using a grid with
a step size large enough to allow turbines to be placed on grid
points without ever being able to violate proximity constraints
[33]. Similar approaches have been used in recent literature
[78,38,79,80]. This approach has a further benefit that the
search space of the problem is relatively small because of the
relatively large grid spacing, which may lead to faster conver-
gence speeds of optimization algorithms. A big drawback of the
approach however is that it oversimplifies the problem, prohi-
biting finding of better solutions that require more intricate
layouts;

� In [48,81] new variation operators were developed that guar-
antee that the new layouts remain feasible;

� The proximity constraints were not explicitly used in [43,44].
Instead, the authors expected the algorithm to converge to the
feasible space because of inherent characteristics of the pro-
blem, e.g. two turbines placed in close vicinity will generate less
energy. Although generally true, this does not guarantee that
the required minimum distance, which may differ from the
minimum efficient distance in terms of energy production, will
be respected.

2.2.2. Resample
In [68] the wind farm layout was replaced by an entirely new

feasible, but randomly generated, layout whenever a turbine vio-
lated the proximity constraint. This strategy has the drawback that
it disrupts the progressive evolution of knowledge acquired by the
optimization algorithm. Consequently, this may mislead algo-
rithms that employ variation operators that span multiple gen-
erations to learn about the problem structure and exploit this in-
formation [35,82]. Furthermore, this approach fails, or at least
takes a long time, when it is hard to obtain a feasible solution
through a random process [83].

2.2.3. Penalty term
The WFLOP has also been transformed into an unconstrained

problem by computing a measure of how badly constraints have
been violated, and by adding this measure to the objective func-
tion [51,84]. This method, known as the penalty-function method,
transforms the search space of the problem, which may increase
the roughness of the search space. This may lead the optimization
algorithm to local minima in the new search space [85], which
may still correspond to infeasible solutions. Furthermore, it is
difficult to create a generic penalty function that is optimal for all
problems and that does not over- nor under-penalize the in-
feasible solutions [85,83,86]. On the other hand, if the penalty
term is properly designed, the penalty-function method may work
quite well, allowing the optimization algorithm to also explore the
infeasible search space, which may act as a bridge between dif-
ferent feasible areas of the search space [85].

2.2.4. Constraint domination
In several publications, problem constraints have been tackled

by the use of the so-called constraint-domination technique
[24,25,87–89,38]. Similar to the penalty-function method, a mea-
sure of how badly constraints are violated, is computed. When
comparing wind farm layouts, the one with the lowest measure of
constraint violation is then always preferred. The main drawback
of this approach is that it may be difficult for an algorithm to
achieve layouts that are located close to infeasible areas of the
search space [83]. Furthermore the method negatively effects di-
versity in the population, which is important in EAs [86].

2.2.5. Repair mechanism
Repair mechanisms ensure that solutions are always in the

feasible space by repairing any solution that has been generated
and is infeasible [83]. In several studies of the WFLOP, turbine
removal has been used [51,90,14,91,26]. Two different approaches
were introduced in [46]: removal of the first turbine that is too
close to another turbine and removal of the turbine that has the
most conflicts with its neighbors. Although the second strategy
presented slightly better results, it did not outperform by far the
former approach [46].

2.2.6. Extra optimization goal
The sum over all constraints of the measure of constraint vio-

lation was considered as a separate minimization goal in [41].
Although effective, this approach increases the complexity of the
problem by adding another objective goal. Moreover, it does not
guarantee that the algorithm will return any feasible solution [83].

2.3. Domain of optimization variables

Different representations of solutions to the WFLOP problem
have been considered, including real-valued variables, discrete
variables and combinations of both. Next, each of these re-
presentations is described.

2.3.1. Real-coded
A real-valued, also referred to as continuous, representation of

wind farm layouts, encoding the coordinates of turbines, was
considered for the first time in [84]. Thereafter, many recent works
have considered a real-valued representation (see Table 1 for MO
examples). However, the wake models used actually do not offer
sufficient resolution for the high precision of a real-valued re-
presentation to be of added value (see Section 2.1). Moreover, as
stated previously, the number of turbines is an important opti-
mization parameter. However, it is difficult to simultaneously op-
timize the number of turbines with a real-coded optimization al-
gorithm since the turbine number is discrete. Furthermore, given
the same number of problem variables and the same inherent
underlying problem complexity, continuous optimization pro-
blems typically take longer to solve than discrete problems be-
cause of the larger variable-domain size of continuous variables.

2.3.2. Mixed-integer
A possible solution is to tackle the WFLOP as a mixed-integer

optimization problem, in which both discrete variables, e.g. the
number of turbines, and continuous variables, e.g. turbine posi-
tions, may be employed. However, tackling a mixed-integer
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problem is very hard, presenting many optimization challenges
which do not arise in purely real or discrete optimization problems
[92]. Moreover, straightforward encodings with many turbine lo-
cations and integer variables describing how many and/or which
of these turbines to actually use, are highly redundant, which have
a negative effect on optimization performance. Furthermore,
simple wake models would still be required for computational
efficiency reasons and hence the insufficient fidelity problem of
the wake model also arises with this approach. The WFLOP has
also previously been transformed into a mixed-integer linear op-
timization problem [93,94]. Differently from heuristic methods,
algorithms that solve optimization problems formulated as so-
called linear programs guarantee that the optimal solution will be
found [94]. However, the WFLOP needs to be linearized to this end,
which strongly diminishes the extent to which the problem, and
consequently its solutions, relate to the real-world scenario.

2.3.3. Discrete
Representations using discrete variables have also been con-

sidered. Typically, a grid is placed over the designated area and
grid points correspond to (variables encoding) potential locations
for turbines. This makes it straightforward to optimize both the
number and locations of turbines. All the constraints presented in
Section 2.2 may be automatically respected if the positions are
encoded as discrete variables [38]. Furthermore, the location of a
turbine may be described by a single parameter in a discrete ap-
proach, whereas two coordinates have to be used in a continuous
domain. It is furthermore known that if a hexagonal or a regularly
spaced packing is optimal, optimization based on a discrete grid
may yield a solution that is close to the continuous optimum for a
bounded area [95]. Finally, the general trend of the offshore wind
industry has been to place the turbines in regular structures, with
greater distance turbine separation in the prevailing wind direc-
tion. Even in current state-of-the-art OWPs, turbines were placed
in a grid-based layout (see Fig. 3). For this reason, it is likely that
the use of discrete turbine locations leads to layouts that may be
more easily accepted by the offshore wind industry. A potential
drawback is that a grid has to be defined a priori [21,96].
3. Optimization algorithms for the multi-objective wind farm
layout optimization problem

Although only few published works have dealt with the
MOWFLOP, different MOEAs have already been used in these
works (see Table 1). The Strength Pareto Evolutionary Algorithm
(SPEA) [42] was used in [41], whereas in [46] the Multi-Objective
version of the Particle Swarm Optimization (MO-PSO) algorithm
was employed [47]. The well-known Nondominated Sorting Ge-
netic Algorithm II (NSGA-II) algorithm has been used in several of
the existing works [43,44,48]. Finally, only [48] has performed a
basic comparison between three algorithms: NSGA-II, SPEA2 and
Indicator Based EA (IBEA). It was concluded that IBEA was the
most adequate algorithm for the MOWFLOP even though the
NSGA-II and SPEA2 found Pareto fronts with a greater spread [48].

3.1. Definitions for MO optimization

We assume to have m objective functions ( )xfi , ∈ { … }i m1, 2, ,
that, without loss of generality, all need to be minimized. A solu-
tion x1 is said to (Pareto) dominate a solution x2 (denoted ≻x x1 2) if
and only if ( ) ≤ ( )x xf fi i

1 2 holds for all ∈ { … }i m1, 2, , and
( ) < ( )x xf fi i

1 2 holds for at least one ∈ { … }i m1, 2, , . A Pareto set of
size n is a set of solutions x j, ∈ { … }j n1, 2, , for which no solution
dominates any other solution, i.e. there are no ∈ { … }j k n, 1, 2, ,
such that ≻x xj k holds. A Pareto front corresponding to a Pareto set
is the set of all m-dimensional objective function values corre-
sponding to the solutions, i.e. the set of all ( )f x j , ∈ { … }j n1, 2, , . A
solution x1 is Pareto optimal if and only if there exists no other x2

such that ≻x x2 1 holds. Further, the optimal Pareto set is the set of all
optimal Pareto solutions and the Optimal Pareto Front (OPF) is the
Pareto front that corresponds to the optimal Pareto set.

3.2. Characteristics

In the following we will describe key features that a MOEA
should have to adequately solve the MOWFLOP.

3.2.1. Clustering
Standard MOEAs steer the population towards the OPF while

trying to preserve diversity in the population through different
mechanisms, e.g. use of the crowding distance in NSGA-II [45], use
of the environmental selection in SPEA2 [49] or use of the hy-
pervolume in MO-CMA [82]. However, it has been shown that
these mechanisms are insufficient to achieve good scalability [97].
Furthermore, selection based on the domination criterion tries to
exploit all objectives simultaneously, thus reducing the pressure in
the direction of the OPF [97]. For this reason, handling different
parts of the objective space differently is of major importance.
Furthermore solutions along the OPF are typically very different,
especially for the extreme regions of the front. The use of clusters
to divide the objective space into smaller areas allows the MOEA to
specialize variation to meet the specific requirements to find
improvements in narrower areas of the search space, leading
to better results, for both continuous and discrete problems
[97,37,35].

3.2.2. Single-objective optimization
Having a mechanism that puts extra pressure on exploiting

individual objectives can be highly beneficial because non-
dominated selection may not provide enough pressure to find the
extreme solutions (i.e. solutions that optimize a single objective)
[97]. This is of special importance if one of the optimization goals
is much harder to solve than the others since the algorithm may
converge prematurely and discover only a small subset of the OPF
[35]. Moreover, in some problems the number of available solu-
tions in the extreme regions can be much smaller than in the
middle regions of the front [98]. The benefit of adding SO opti-
mizers to specifically obtain solutions in extreme regions of the
front has been shown to improve the performance of MOEAs
[99,35,37].

3.2.3. Problem structure exploitation
A key property of EAs is their ability to juxtapose partial so-

lutions or substructures from different solutions to create im-
proved solutions. This mixing is only efficient when key sub-
structures are not disrupted too often by the variation operators
[100]. In GAs, subsets of variables of two solutions are exchanged.
However, it has been shown that without detecting and exploiting
the dependencies between problem variables, EAs cannot solve
some decomposable problems efficiently [37]. When enough
knowledge of the problem is available, mixing can be made effi-
cient by designing the variation operation in an appropriate way.
However, for black-box optimization problems nothing is known
of the problem structure a prior. For such problems, this knowl-
edge has to be inferred from the population of solutions by
identifying groups of variables that together make an important
contribution to the quality of a solution [100]. Such information is
commonly referred to as linkage information.

A general linkage model that can be used to capture the in-
teractions between the l optimization variables is, called the Fa-
mily Of Subset (FOS) [100]. A FOS consists of subsets that
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contain identifiers of decision variables, i.e. = { … }| |−F F F, , ,0 1 1

where ⊆ { … − }F l0, 1, , 1i , ∈ { … − }i 0, 1, , 1 . Every subset F i is
called a linkage subset and represents a group of decision variables
which exhibit some degree of joint dependency and hence should
be copied together during variation.

In this article, two algorithms are used: the well-known NSGA-
II [45] and a variant of the recently introduced Multi-Objective
Gene-pool Optimal Mixing Evolutionary Algorithm (MOGOMEA)
[37], which was designed by combining the Gene-pool Optimal
Mixing Evolutionary Algorithm (GOMEA) [100] with a MO fra-
mework [99]. Both algorithms as well as two slightly modified
variants are presented in the following subsections.

3.3. MOGOMEA

A flowchart of our variant of the MOGOMEA is shown in Fig. 6
and a description of each step of the algorithm is given next.

3.3.1. Population initialization
The ni initial wind farm layouts are created with a nearest

neighbor heuristic to selects turbine locations from the available
locations that are spread as well as possible. Specifically, first, the
initial number of turbines, m, is randomly generated between one
and the maximum number of turbines that may be installed for
the given area. The location of the initial turbine is randomly
chosen from all the possible locations. The distance of the re-
maining locations is computed to the first turbine and the most
distant one is chosen for the second turbine. The distances for the
remaining locations are updated by checking whether the distance
to the new turbine is smaller than the currently stored distance
(the shorter distance is kept). The procedure is repeated m times
or until a turbine violates the proximity constraint. In this way, it is
guaranteed that feasible wind farm layouts are generated, simi-
larly to several previous works [68,81,90].

3.3.2. k-leaders
The same nearest-neighbor heuristic as in the previous step is

used to select k solutions, also called cluster leaders, from the
nondominated solutions of the population that are spread as well
as possible. This is done to bias the leaders towards the best so-
lutions of the population. Differently from the previous step, a
solution with a minimum value for a randomly chosen objective is
chosen to be the first leader to increase the probability of having
leaders at the extremes of the Pareto front. The distances are
measured in the objective space. The heuristic is then repeated
until all the necessary cluster leaders are selected (see Fig. 7).

3.3.3. Clustering
Next, the c closest solutions (including the leader solutions

themselves) to each leader are clustered together. Because the
assignment is done independently for each cluster, some solutions
may be assigned to multiple clusters while other solutions may
not be clustered. To reduce the probability of this happening we
increased the probability of clusters overlap by setting τ= ⌊ ⌋c k n2/
as proposed in [101]. This increases the probability of finding a
good, uniform spread of solutions with a multi-objective EA faster
[101]. The clustering is performed on normalized objective values
to remove the influence of differently scaled objectives.

3.3.4. Linkage learning
A linkage model j is learned for each cluster j to distinguish

different regions along the Pareto Front and allow a different,
objective-space region-specific, exploitation bias to be formed for
each of them. Although different FOS structures may be used
[102,103], the Linkage Tree (LT) structure is used here since it has
been demonstrated to result in the best and most reliable
performance of the GOMEA framework on several benchmark
functions [100,102,104].

An LT captures all decision variables as being fully independent
in singleton (leaf nodes) subsets ( = { } ∈ { … − })F i i l, 0, 1, , 1i .
Furthermore, it organizes combinations of variables in a tree-like
fashion. A branch node of the LT is a multivariate subset F i, which
is the combination of two subsets F j and Fk such that

∩ = ∅ | | < | | | | < | |F F F F F F, ,j k j i k i and ∪ =F F Fj k i. The LT FOS has
−2 l 2 linkage subsets because the root node is discarded since it

contains all the variable indices and hence it does not generate a
different offspring solution. Note that a variable can be part of
multiple subsets of the LT. Therefore, any two variables may be
dependent according to some subsets, but independent according
to others [105].

The LT is constructed using a pairwise measure of distance
between sets of variables known as the Unweighted Pair Grouping
Method with Arithmetic-mean (UPGMA [106]). Constructing an LT
can be conceptually considered to start from the leaf nodes and
creating branch nodes by consecutively combining two closest
groups until the root node is obtained. An efficient implementa-
tion that takes a slightly different approach, but results in the
same LT, has a computational complexity of only ( )cl2 [106]
where c is the cluster size. To compute similarity between two
variables as a foundation for the UPGMA method, various mea-
sures may be used. In this article, we use Mutual Information (MI),
since it has demonstrated to lead to the most efficient perfor-
mance on several benchmark problems [107]. MI is a dimension-
less quantity and can be thought of as the reduction in uncertainty
about one random variable given knowledge of another. A high MI
value represents a large reduction in uncertainty, a lower value
constitutes a low reduction of uncertainty and a null MI value
means that the two variables are independent.

To illustrate the notion of a linkage tree, Fig. 8a shows the LT
that resulted from clustering the turbine positions of the wind
farm area shown in Fig. 12b. The clusters of turbine positions,
which show that neighboring positions are clustered together first,
are also indicated in Fig. 8b.

3.3.5. MO Gene-pool Optimal Mixing
The main operator of variation in MOGOMEA is called Gene-

pool Optimal Mixing (GOM). GOM is applied to every solution in
the population. For this reason, it is necessary to determine which



Fig. 8. Figure (a) shows the LT learned offline based on the distances between the possible locations for a 8D grid step size. The turbines are numbered from left to right and
from bottom to top (see Fig. 12b). Figure (b) shows the respective clustering of the positions in the wind farm.
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cluster a solution belongs to since a separate LT is learned for each
cluster. Solutions that have not been assigned to a cluster by the
clustering algorithm are now assigned to the cluster with the
nearest mean value (see Fig. 7). In case of multiple cluster as-
signments, ties are broken randomly. Thereafter, every solution x,
also called the parent solutions, is incrementally changed into an
offspring solution. Firstly, the offspring solution o and a backup b
are created by cloning x. The linkage groups in FOS j are then
enumerated in a random order. For every ∈F i

j, a donor solution
d is randomly chosen from the same cluster Cj. The optimization
variables whose indices are indicated by the linkage group i are
copied from the donor d to o. Recent literature has demonstrated
the need for mutation to reliably solve certain types of problems
[37]. Therefore, in our version of MOGOMEA we use a simple bit-
flipping mutation with probability l1/ . Hence, when the copy oc-
curs, the variables may be altered via mutation. If the copy gen-
erated a new offspring solution, the objective values of o are
evaluated and compared with the backed-up solution b. The
changes are accepted and b is updated if: o dominates ( ≻ )b o b ; is
equally good ( ( ) = ( ))f o f b ; is a side step, i.e. o does not dominate b
but it is also not dominated by any elitist solution ⊁o (see Sec-
tion 3.3.7). Otherwise, the changes are rejected and o is reverted to
the backed-up state b. Pseudo-code is given in Fig. 9.

The number of consecutive generations that the elitist archive
(see Section 3.3.7) has remained unaltered is called the No-Im-
provement Stretch (NIS). A routine called Forced Improvement
(FI), which was introduced in previous literature [37,102], is trig-
gered when the NIS exceeds a threshold of + ⌊ ( )⌋n1 log10 . FI is a
second round of OM in which the donor solutions are randomly
chosen from the elitist archive. Furthermore, in the FI phase, a
mixing step is only accepted if the offspring dominates its parent
(i.e. ≻o b) or if it is a new nondominated solution
( ⊁ ∧ ( ) ∉ ( ))o f o ft t . FI for a solution is stopped with the first
accepted change [102]. If o is still unchanged after FI, it is replaced
by a random solution from the elitist archive.

Lastly, in every generation, in the cluster that has the largest
mean value in objective i, the original SO version of GOM is used to
perform variation [103]. Ties in terms of multiple cluster assign-
ment being randomly broken (see Fig. 7).

3.3.6. Survivor selection and automated population sizing
At the end of each generation, a selection procedure is used to

create the next population. If the current elitist archive (in-
troduced in the next step) is larger than the population size, n
leaders are chosen from the archive. If the elitist archive is smaller
than required, the solutions from the population and archive are
combined, with duplicated solutions being discarded. If the size of
this new combined population is still smaller than the population
size, the remaining spots are filled with new randomly-generated
solutions (see step one). If the size is larger than required, solu-
tions from the best nondominated fronts are chosen. With this
strategy one avoids the inherent problem of MOGOMEA that the
new population may actually not be well spread over the currently
known Pareto front since the OM procedure only keeps the last
modified version of a solution in the population, whereas all the
solutions that were allowed into the elitist archive do not ne-
cessarily remain in the population.

In every generation, the population is increased by its initial
size, ni, by adding new randomly-generated solutions (see step
one) to the population.

3.3.7. Elitist archive
The algorithm is equipped with a secondary population, called

the elitist archive, for storing the nondominated solutions found
during the search [108]. The use of such an archive is extremely
useful since the primary population may be smaller than the
number of Pareto front solutions and therefore nondominated
solutions may be rejected during the selection procedure [109].
Every new and feasible solution, which dominates or is non-
dominated compared to its parent, is checked to see if it can be
added into the archive. If the new solution is dominated by any
archive member, it is discarded. If it is a new nondominated so-
lution, it is added to the archive and the archive members that are
dominated by it are removed. In the case that there exists an ar-
chive member with the same objective values, the previously ar-
chived solution is replaced by the new one if such replacement
results in a diversity improvement for the archive in the decision-
variable space. The solution which has a greater Hamming dis-
tance to its nearest archive neighbor is chosen [37].

3.3.7.1. New aspects. The MOGOMEA used in this article is based on
previous work [37]. However a few alterations were implemented:

� The k-means algorithm is not used because the clusters means
tend to drift “inwards”, leading to reduced search effort in the
vicinity of the Pareto extremes. Instead, the clusters are grown
directly around the leaders chosen from the selection set [35].

� Previously, the LTs were learned on selection sets that were
obtained using tournament selection with tournament size 2. In
the new approach, the LTs are learned with all the solutions
from the clusters, which is expected to increase the gene



Fig. 9. Pseudo code for MO Gene-pool Optimal Mixing [37].
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diversity and decrease the fitness bias.
� The population size is a very important internal parameter of

EAs that should be adjusted according to the instance of the
WFLOP being solved [18,26]. If the population size is too small,
there may not be enough genetic variation available to reach
parts of the OPF [37]. In this article, a new population-growing
scheme is introduced (Section 3.3.6). This makes the algorithm
more robust because if a larger population size is needed than
what is used initially, the algorithm will eventually reach this
population size.
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Fig. 10. Flowchart of the NSGA-II.
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3.4. o-MOGOMEA

In each generation and for every cluster, a linkage model is
learned in MOGOMEA by building a hierarchical cluster tree [104].
This is a key feature of the algorithm that makes it especially ef-
ficient for problems which have an exploitable linkage structure
[37].

The MOWFLOP however is not a fully black-box optimization
problem since it is known that turbines influence the energy
production of neighboring turbines and that this influence might
be considered negligible for turbines situated far enough apart
[25,26]. This knowledge about the underlying problem structure
suggests that a slightly different variant of the MOGOMEA may be
designed that does not require structure learning. Although
learning a linkage tree is relatively efficient compared to various
alternative models in literature, especially for large problems this
is still a potentially time-consuming part of the algorithm. For this
reason, we consider a version of MOGOMEA in which the linkage
tree is predetermined and kept fixed. To build this linkage tree, the
geographical distance between the potential turbine positions is
used as a distance metric. The underlying problem structure is
thus learned offline. Hence, we refer to it as offline MOGOMEA (o-
MOGOMEA).
3.5. NSGA-II

A flowchart of the NSGA-II is shown in Fig. 10 and a description
of the algorithm is given next.

3.5.1. Population initialization
The population initialization scheme used for the MOGOMEA is

also employed in the NSGA-II (see Section 3.3.1).

3.5.2. Ranking and crowding
Initially, the solutions of the population are ranked. Rank one is

assigned to all solutions that are not dominated by any other so-
lution. Rank two is given to the solutions which are only domi-
nated by rank one solutions. The procedure is then repeated until
all solutions are ranked.

The crowding distance is used to compare solutions in the
same rank (see Fig. 11) and acts as a diversity operator. It measures
the cuboid size defined by the locations of the closest neighbors
(from the same rank) of a solution in the objective space, as shown
in Fig. 11. Larger values for the cuboid are preferred as this in-
dicates that the solutions are located in areas of the search space
that are not crowded.

3.5.3. Parents selection
Two solutions are randomly chosen from the population and

compared. The one with the lowest rank is selected. If they have
the same rank, the one with the largest cuboid is chosen. The
procedure is repeated until n parents are chosen.

3.5.4. Sampling
In this step, an offspring population is created. To do so, two

parents are taken from the parent population, mixed via a classic
crossover operator and mutated to generate two new solutions.
The procedure is then repeated until all offspring are created.

3.5.5. Ranking and crowding
The same procedure is used as in step two. However, this is

now performed in a set composed of the parent and offspring
solutions.



Table 2
Characteristics of the MOEAs under study.

Algorithm Clustering SO optimizers Problem structure

NSGA-II No No No
c-NSGA-II Yes No No
o-MOGOMEA Yes Yes Offline
MOGOMEA Yes Yes Online

Table 3
Turbine power and thrust values.

Wind speed [m/s] Power production [kW] Thrust value

4 100 0.700000000
5 570 0.722386304
6 1103 0.773588333
7 1835 0.773285946
8 2858 0.767899317
9 4089 0.732727569
10 5571 0.688896343
11 7105 0.623028669
12 7873 0.500046699
13 7986 0.373661747
14 8008 0.293230676
15 8008 0.238407400
16 8008 0.196441644
17 8008 0.163774674
18 8008 0.137967245
19 8008 0.117309371
20 8008 0.100578122
21 8008 0.086883163
22 8008 0.075565832
23 8008 0.066131748
24 8008 0.058204932
25 8008 0.051495998

Table 4
Wind resource: average speed and annual frequency of occurrence.

Direction [deg.] Mean wind speed [m/s] Frequency [%]
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3.5.6. Selection
The selection procedure of the MOGOMEA is used to create the

new population (see Section 3.3.6). However, for the sake of
making a fair comparison, the population size was not increased at
the end of all generations because MOGOMEA uses far more fit-
ness evaluations per generation than the NSGA-II (see Section
3.3.5). Hence, the population size of the NSGA-II-based algorithms
was only increased after a number of generations that corresponds
to an equivalent number of evaluations as would have been per-
formed in MOGOMEA after one generation.

3.5.7. Elitist archive
Although the original NSGA-II did not make use of an elitist

archive [45], it has been shown that its performance is enhanced if
it is equipped with one [110,111,37]. Therefore, in this work the
NSGA-II uses a similar elitist archive as the one used in
MOGOMEA.

3.6. c-NSGA-II

In the default version of the NSGA-II the solutions selected for
mating are randomly chosen from the entire population. To test
the influence of using the clustering strategy for the MOWFLOP,
we designed a new variant of NSGA-II: clustering NSGA-II (c-
NSGA-II). The same principle as used in MOGOMEA is employed:
solutions are recombined solely if they are in the same cluster. The
remainder of the algorithm is the same as the standard NSGA-II.

3.7. Overview of the algorithms

Table 2 provides a comparison of the characteristics of the al-
gorithms under study. The original implementation of NSGA-II
does not have any of the characteristics that are being in-
vestigated, whereas the c-NSGA-II, due to clustering, differentiates
variation along the Pareto front. The o-MOGOMEA includes in-
herent SO optimization in its extreme clusters and uses informa-
tion of the WFLOP to learn the FOS offline. Finally, the MOGOMEA
has all the characteristics and also learns the FOS structure
throughout the optimization run.
0 9.77 6.3
30 8.34 5.9
60 7.93 5.5
90 10.18 7.8
120 8.14 8.3
150 8.24 6.5
180 9.05 11.4
210 11.59 14.6
240 12.11 12.1
270 11.90 8.5
300 10.38 6.4
330 8.14 6.7
4. Case study

This section provides the details of a case study. Specifically, the
turbine and wind resource, wind farms, optimization goals, algo-
rithm parameter settings, CHTs and performance indicators used
are described in the following.

4.1. Turbine and wind resource

The selected wind turbine was the Vestas 8 MW [112] whose
power and thrust curves are given in Table 3. The turbine has an
164 m rotor Diameter (D) and a hug height of 107 m. The power
and thrust curves were linearly interpolated and all turbines were
considered to be similar.

The wind resource used (displayed in Table 4) is based on
measurement data collected in the North Sea [113]. The wind
behavior may be characterized by a Weibull distribution [18,41].
Nonetheless, a discrete distribution was used during the optimi-
zation routine, in a similar fashion to other literature
[87,38,33,78,84,90,91]. In this way, the computational cost to
evaluate the energy production is low and, furthermore, the wake
loss model used does not provide high-fidelity results, as stated
previously (see Section 2.1). The wind resource was linearly in-
terpolated and used at the turbine hub height.
4.2. Wind farms

We designed four different areas (see Fig. 12a). All wind farms
have a square area which is suitable for locations in which there is a
predominant wind direction [34]. For each wind farm, three grid step
sizes (2, 4 and 8D) were used to define possible turbine locations.
The characteristics of the different wind farm areas are listed in Ta-
ble 5. Note: the number of possible layouts include infeasible layouts.

The maximum number of wind turbines, nmax
pack, is the number of

turbine positions available using an 8D grid step size. It should be
noted that in our setup, the hexagonal packaging, the densest
circle packing in a plane [114], is not possible. In fact, a grid step
size of eight, or multiples of eight, times smaller than the mini-
mum separation distance is recommended to allow a hexagonal
packaging [95].



Table 5
Characteristics of the wind farm areas under study.

Wind
farm

Area
(km2)

Maximum
packing

Step
size
(D)

Number of
variables

Number of
possible
layouts

A 15.49 16 8 16 ( )42 65,536

4 ( )49 72 ×5.6 1014

2 ( )169 132 ×7.5 1050

B 61.97 49 8 ( )49 72 ×5.6 1014

4 ( )169 132 ×7.5 1050

2 ( )625 252 ×1.4 10188

C 139.43 100 8 ( )100 102 ×1.3 1030

4 ( )361 192 ×4.7 10108

2 ( )1369 372 ×1.3 10412

D 247.89 169 8 ( )169 132 ×7.5 1050

4 ( )625 252 ×1.4 10188

2 ( )2401 492 ×5.9 10722
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4.3. Optimization goals

The two design objectives chosen for our case study, namely
AEP and efficiency, are important design goals for wind farm de-
signers. The optimization goals are described and the motivation
for selecting them, is provided in the following.

4.3.1. Energy production
Energy production is one of the most commonly used optimi-

zation goals both in academia (all previous MO approaches for the
WFLOP used energy production as the first optimization goal (see
Table 1)) and in commercial software [21]. It is described by:

( )
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∑ · · ( )
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= =

=

E
P wind f

n P wind f
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i j
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j i i
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ideal

i i

1 1

1

where fi is the wind frequency of occurrence for direction i, wind is
mean wind speed for the i-th direction, ( )P windj i is the power

production of the j-th turbine for the wind speed windi, npack
max is the

maximum packing of turbines for the wind farm area, 8760 is the
number of hours in one year and Pturb

ideal is the energy production
of a turbine without wake losses.

4.3.2. Efficiency
Efficiency is targeted at the maximization of the usage of the

installed turbines. A common measure for this is the coefficient of
utilization, which is the fraction of the year required for the wind
farm to produce its annual production if it produced energy at its
full power all the time. This measure is also captured by the
maximization of the wind farm efficiency [88,24,25,73]. The ideal
wind farm production is the power production of a single wind
turbine (without wake losses) multiplied by the number of tur-
bines in the wind farm. The wind farm efficiency is calculated by:

( )
η =

∑ ∑ ·

· ( )
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wf
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j i i

turbs
wf
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1 1

where ηwf is the wind farm efficiency and nwf
turbs is the total number

of turbines in the wind farm.
Wind farm energy production and efficiency are conflicting design

goals. Thewind farm energy production is maximized by placingmore
Fig. 12. Figure (a) shows the dimensions of the wind farm areas considered in the case st
steps: 2D spacing - all locations; 4D - red and yellow (every second location); 8D - yello
legend, the reader is referred to the web version of this article).
turbines in the wind farm area. However, both the energy production
and wake effects increase with the number of turbines. Only for very
large wind farms it could happen that the energy generated by an
extra turbine would not be enough to compensate for the additional
wake losses. The second design goal is maximized by reducing the
wake effects between the turbines. However since the wake effects
increase with the turbine number, this objective is maximized for
layouts with only a few turbines that are placed far apart.

4.3.2.1. Motivation. The selected optimization goals solely depend
on the energy production and wake losses. A more detailed
WFLOP would need to use nested algorithms, e.g. an heuristic to
design the collection system [115–118]. Although this is of im-
portance to the final application, the use of nested algorithms also
substantially increases runtime while it does not provide addi-
tional insight into the topics under study in this article. Therefore,
this is omitted here.

4.4. Constraint-handling approaches

We use a minimum separation of 8D between neighboring
wind turbines [48,89]. Hence, the algorithms are required to
udy. Figure (b) shows the turbine locations for wind farm A and three different grid
w (every forth location). (For interpretation of the references to color in this figure
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handle this proximity constraint for layouts with 2D and 4D grid
step sizes. All CHTs used (except for the extra optimization goal
strategy) were implemented to assess their impact on the per-
formance of the algorithms under study.

4.4.1. No constraints
The grid step size was selected as the minimum separation

required for the turbines (8D). In this way, the algorithms may
place turbines in any of the locations while guaranteeing that the
wind farm layout remains feasible.

4.4.2. Constraint domination
The constraint violation value is the sum of the number of pairs

of turbines which are placed closer than the minimum distance.
During variation in MOGOMEA, a newly generated solution is di-
rectly compared with its parent (see Fig. 9). Therefore, if a solution
violates constraints, it is discarded before its fitness is evaluated.
Since the initial population is guaranteed to be feasible (see Sec-
tion 3.3.1), MOGOMEA does not cross into the infeasible part of the
search space. In a similar fashion, the NSGA-II does not evaluate
newly generated infeasible layouts and they are not present in the
offspring population.

4.4.3. Penalty term
A penalty term was constructed as follows: for each pair of

turbines that violate the proximity constraint, the energy pro-
duction was reduced by what one turbine would produce if it were
installed alone (Pidealturb ). In this way, it is guaranteed that the solu-
tions are not under-penalized since a turbine installed alone
would not have any wake losses. This approach is called minimum
penalty rule since the penalty is just above the limit where in-
feasible solutions are preferred [86]. The penalization weight in-
creases with the number of turbine pairs that violate the proxi-
mity constraint because the penalization grows linearly, whereas
the energy generation does not grow proportionally due to the
increase of wake losses. Hence, the penalty term behaves dyna-
mically and is not only based on the number of proximity con-
straints which are violated, which has demonstrated to provide
better results for benchmark functions [119]. Using a penalty term,
all algorithms evaluate infeasible layouts. Although this might not
be possible for some optimization problems, the wake losses
model used is able to provide output. Nonetheless, these evalua-
tions are not accurate since the Katic-Jensen model is a far-wake
model [63].

4.4.4. Repair mechanism
To repair infeasible solutions, a turbine is randomly chosen to

be removed from a pair of turbines that are too close. This strategy
is expected to remove, half of the time, the turbine which most
degraded the performance of the wind farm. The procedure is
repeated until the layout becomes feasible.

4.4.5. Resample
With this approach, new layouts are resampled until a feasible

one is created. For NSGA-II variants, the parent solutions are di-
rectly carried to the next population if the newly generated layouts
are still infeasible after 100 trials. For MOGOMEA variants, a new
donor is randomly chosen every time an infeasible solution is
generated. If no feasible layout is created after 100 trials, the so-
lution remains unaltered and the algorithm moves on to the next
FOS subset.

4.5. MOEAs

4.5.1. MOGOMEA and o-MOGOMEA
Following recommendations from recent literature, we used
five clusters [37]. Hence, two clusters are used to extend the Pareto
front towards the two individual optimization goals while the
remaining three clusters are responsible for finding good solutions
in the center part of the OPF.

For cluster sizing, we initially set each cluster size to four,
which is the minimal size with which MOGOMEA robustly solves
the one-max zero-max problem [37]. This leads to an initial po-
pulation of size 20, regardless of the dimensionality of the pro-
blem. This is however compensated by the population-increment
mechanism which increases the population size at the end of each
generation (see Section 3.3.6).

4.5.2. NSGA-II and c-NSGA-II
For variation, two-point crossover was used with probability

0.9 [37] and bit-flipping mutation with probability l1/ , as originally
proposed [45]. Five clusters were used in the c-NSGA-II in a similar
fashion to the MOGOMEA variants.

4.6. Measuring performance

As previously noted, optimal solutions for the WFLOP can only
be obtained for wind farms with a low number of potential turbine
locations, given a limited budget of evaluations. Therefore, com-
parisons between EAs, for larger scenarios, may only be done on a
relative basis [21]. We consider the elitist archive upon termina-
tion to be the approximation set (Figs. 6 and 10). The elitist archive
size was set large enough to accept all nondominated layouts for
all cases, preventing oscillatory convergence of the archive [120].

To compare approximation sets, the hypervolume indicator was
chosen since it is a commonly adopted useful indicator for eval-
uating the performance of algorithms on problems for which the
OPF is unknown [121]. This performance indicator computes the
search space covered by an approximation set (using a reference
point). A higher hypervolume value is indicative of better perfor-
mance. The hypervolume indicator captures both the diversity
(even if all solutions are on the OPF, the indicator is not maximized
unless the solutions are also spread out) and the proximity of the
approximation set to the OPF.

The algorithms were given one million function evaluations
(per objective) for all case study instances. However, if the hy-
pervolume did not improve by at least 10�5 after 2�NIS gen-
erations, the algorithms were stopped. This means that further
improvements might have been found if the algorithms were run
longer but the convergence was deemed to be too slow [96]. Both
optimization goals were normalized and the point ( )0, 0 was used
as reference point for computing hypervolume. As a result, the
maximum hypervolume value is one. Note that this value cannot
be achieved since it requires a layout with the maximum turbine
packing and no wake losses.
5. Results

The experiments were run using Python implementations of
the algorithms on a server computer with 32 cores (Intel Xeon ES-
2690@2.9 GHz) running the 64-bit version of Ubuntu 12.04. The
results were averaged over 10 independent runs. Next, we will
address the open research questions presented in the introduction
of the article.

5.1. What characteristics should an optimization algorithm have to
present optimized layouts?

Although it is very hard to identify which feature has led to an
improvement of the results, we try to breakdown and analyze each
one of the characteristics under study.



Fig. 13. Averaged hypervolume obtained with the different algorithms, CHTs and grid step sizes. The x-axis shows the number of fitness valuations and the y-axis displays
the hypervolume. MOGOMEA - red; o-MOGOMEA - green; NSGA-II - black; c-NSGA-II - blue. 8D grid spacing - dash-dotted lines; 4D - solid lines; 2D - dotted lines. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 14. Aggregated Pareto fronts obtained with the different algorithms and CHTs. The x- and y-axes show the optimization goals, respectively. MOGOMEA - red; o-MO-
GOMEA - green; NSGA-II - black; c-NSGA-II - blue. 8D grid spacing - dash-dotted lines; 4D - solid lines; 2D - dotted lines. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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5.1.1. Clustering
The results shown in Fig. 13 demonstrate that the clustering

scheme did not always improve the performance of the NSGA-II.
Overall, both variants of the NSGA-II had similar average
performance.

5.1.2. SO Optimization
Fig. 14 shows that, in general, NSGA-II variants did not extend the

front as much as MOGOMEA variants did towards the highest energy
production goal. A reason for this is that NSGA-II variants did not
have any mechanism that puts extra pressure on individual objec-
tives. As previously noted, thesemechanisms can be highly beneficial
if one of the goals is much harder to solve. In fact, finding the layout
with the highest density pack of turbines in a pre-determined area is
equivalent to the circle packing problem, which is a NP-complete
problem [122,123]. Furthermore, the number of available layouts in
this extreme region of the OPF is much lower than in the middle
section due to the lower number of available positions.

5.1.3. Problem internal structure
Using information on problem structure demonstrated to be

beneficial since the MOGOMEA variants, on average, perform
better than the NSGA-II variants as shown in Fig. 13.

In previous literature, it was shown that an online approach to
learning linkage outperforms the offline approach for problems
with an intricate interaction structure (and conversely in case of a
straightforward structure) [104]. On the problems tested here, the
a priori fixed model used in the o-MOGOMEA resulted in improved
performance over MOGOMEA. It is important to point out that the
same maximum number of fitness evaluations (one million, for
each objective) was used for all wind farm areas and that the
number of fitness evaluations, per solution, during the OM pro-
cedure has a ceiling of −2 l 2. For this reason, less generations
were available to the MOGOMEA to learn linkage information
online. A further reason for the improved performance of the
offline learning variant is that the linkage structure in the MOW-
FLOP is largely dominated by the physical locations of the turbines,
suggesting that the linkage structure of the MOWFLOP is not
highly intricate and thus can well be exploited using an offline-
learned structure.

5.2. What is the best constraint-handling technique to ensure feasi-
bility of the OWF layouts?

The MOGOMEA presented, on average, higher hypervolumes
when equipped with the repair mechanism, especially in case of a
grid resolution of 4D. The o-MOGOMEA exhibited superior per-
formance when equipped with the resample approach. Both var-
iants of NSGA-II showed the best average performances when
using the constraint domination technique. Overall, no CHT has
demonstrated to lead to superior performance in all problem
instances.

5.3. How does the problem complexity scale with the number of
design variables?

We note that in this article we do not adhere to the common
definition of scalability in experimental algorithmic design (i.e.
how an algorithms' requirements such as memory, computing
time or number of evaluations to reach the optimum increase as
the problem size increases), but rather the impact of increasing the
size of the problem on the performance of an algorithm under a
predefined fixed budget of evaluations. As a final remark, although
we are assessing the impact of the number of variables of the
MOWFLOP on the computational time, the design phase of a wind
farm is a process that takes several months [124] and hence, it is
an optimization problem that is not highly time-bounded in reality
[96]. Therefore, the results obtained in this article should be
mostly used as a guideline for the expected run times of the al-
gorithms when equipped with different CHTs and applied to the
MOWFLOP with different number of variables and wind farm si-
zes. Fig. 15 shows the average run times of the algorithms.

First, it should be noted that algorithms may have been stopped
before reaching the maximum number of evaluations. Second, there
are multiple sources of influence on the time requirements. As a
problem gets bigger (smaller grid spacing), the time requirements
for model building (MOGOMEA) increase. However, for an algo-
rithm to reach solutions of a similar quality on a larger problem, a
higher number of evaluations is typically required. Since we have
fixed the budget of function evaluations, final results are expected
to be of lower quality for larger problems. Because evaluating the
objectives involves simulating wind farms, these evaluations are
thus less costly for the larger problems, within our budget of eva-
luations. Because the evaluation time is substantial for our appli-
cation, the observed time requirement does not always increase,
especially for the biggest problem, wind farm D. Consequently, we
can safely say that wind farm D was too big for interesting results to
be expected within our allowed time budget.

The results further show that the model building of the MO-
GOMEA is not a major extra computational burden. In fact, the
offline learned linkage tree allowed o-MOGOMEA to find better
results, i.e. more densely packed wind farm layouts, which almost
always leads to requiring more computation time than does the
fact that MOGOMEA has to learn a linkage tree online every gen-
eration. Only for the biggest problem, Case D, requiring almost
2500 variables for a 2D grid resolution, a clear increase in required
computation time for MOGOMEA versus o-MOGOMEA can be
seen. On the other hand, it is important to realize that with longer
runs, more densely packed wind farms would be found, ultimately
increasing again the time spent performing function evaluations,
potentially surpassing the time spent building linkage models.

Differently from the MOGOMEA, the run-time requirement of
all remaining algorithms does not increase substantially with the
number of optimization variables. This can be easily seen for the
run times of case D. All the algorithms presented shorter average
runs when a 2D step size was employed. Once again, this is ex-
plained by the fact that the most packed wind farms were not
achieved.

Regarding the impact of the CHTs, the use of the penalty term
resulted in longer running times, for 4D and 2D grid resolutions,
since infeasible layouts were evaluated that were packed with
more turbines.

Consequently, the main influence on the running time, if run-
ning the algorithms sufficiently long (as would typically be the
case in a real-world scenario), the main influence on computation
time is the evaluation of the problem, which becomes especially
expensive if the layouts become dense. Ultimately, given a fixed
time-budget rather than a number-of-evaluations budget (as
would be likely in a real-world scenario), a big advantage could be
the use of CHTs that do not allow evaluating infeasible layouts
because the number of evaluations per second would thereby in-
crease, thus allowing the optimization algorithms to progress
further.

5.4. What is the relation between problem dimensionality/com-
plexity and the degrees of freedom offered by different turbine-pla-
cement grid resolutions?

All algorithms were able to find similar Pareto fronts for all
wind farm areas and CHTs when the 8D grid step size was used.
The MOWFLOP with such a coarse grid becomes much easier to
solve since it becomes an unconstrained problem with only few



Fig. 15. Time needed by each optimization algorithm to converge for the different constraint handling techniques. The x-axis shows the number of variables and the y-axis
displays the average time, in hours, needed for termination. MOGOMEA - red; o-MOGOMEA - green; NSGA-II - black; c-NSGA-II - blue. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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variables. All algorithms converged before one million evaluations
for all instances of the 8D step size. Although relatively fast to
compute, the real-world applicability is low because of the limited
design freedom.

Smaller grid step sizes allow to find better wind farm layouts in
the middle section of the Pareto front for problem instances A and
B. However, for larger areas (C and D) the advantage of using the
finest step size (2D) decreased within our limited budget of eva-
luations, since the problem complexity is highly increased (see
Table 5), which is in line with previous literature [34].

Therefore, if wind farm developers aim at highly dense wind
farms they should either use large grid spacings, manually create
initial layouts to help the algorithms find good solutions in that
area of the search space, let the algorithms run longer or start with
a larger initial population size. The results obtained also indicate
that it could be beneficial to use a Multi-Resolution (MR) scheme
in which a large grid step is employed in the first optimization
iteration to allow the algorithms to find densely packed wind
farms with more ease [38]. Thereafter, these solutions would serve
as an initial population for a second round of optimization in
which a smaller grid step is used. In order to validate this as-
sumption, we implemented an MR approach, which is introduced
next.

5.5. Multi-resolution

The algorithms start optimization with the 8D grid step and
advance to the next smaller step size if the hypervolume did not
increase at least 10�5 after NIS generations. The elitist archive is
then mapped onto the finer grid and the new population is created
through the same procedure used at the end of each optimization
run (see Section 3.3.6). When the algorithms advance to a finer
grid resolution, all the new variables are set to zero since they
were not mapped before. However, all algorithms create new
offspring by exchanging subsets of variables between solutions. In
this way, the only sources of new genetic material are the random
solutions added at the end of each run and the mutation operator.
To increase the impact of the latter, the mutation probability for
the 8D step was kept constant, meaning that the rate is higher
than previously for the 4D and 2D step sizes.

Fig. 17 shows the results for the hypervolume and aggregated
Pareto fronts for wind farm area B. The left plot shows the hy-
pervolume of the MR approach for 4D and 8D step sizes. It can be
seen that initially all the algorithms present similar hypervolume
values since the same 8D step size is being used. Once the algo-
rithms converge, they advance to the next grid resolution. This is
accompanied with a higher design freedom and hence, better
layouts are found. Both MOGOMEAs presented higher average
hypervolumes with the MR scheme.

The right plot of Fig. 17 shows the aggregated best Pareto fronts
for all step sizes and the aggregated Pareto front found with the
MR scheme. The MR approach allowed the algorithms to find
Pareto fronts which cover the entire spectrum of wind farm den-
sities. Both variants of MOGOMEA outperformed the NSGA-II im-
plementations. Nonetheless, some parts of the new fronts are
dominated by solutions found with the previous fixed grid
schemes. The fact that the shown fronts are aggregated over
multiple runs may explain this result.

5.6. Wind farm layouts

The Pareto front obtained for wind farm D with an 8D step
size in the grid has a peculiarity: in the middle section there are
several wind farm layouts with similar efficiency but with dif-
ferent energy production. If the number of turbines was fixed
before optimization, wind farm designers would not find out that
there are wind farm layouts with more turbines, and hence, more
energy production, and similar wake losses. This demonstrates
the advantage of using multi-objective optimization for the de-
sign of wind farms.

The results also show that the heuristic used for the initial
populations (see Section 3.3.1) did not create solutions re-
presenting highly-packed layouts for the larger wind farm areas
when the 4D and 2D grid spacings were used. Therefore, the op-
timization algorithms are required to find the more packed wind
farm layouts, differently from previous literature in which a fea-
sible solution with the maximum number of turbines was used as
an initial layout [96]. Nonetheless, the heuristic had some effect in
the performance of the algorithms. Similar to what was found in
previous works [96], if the heuristic was able to find a layout with
a high turbine density this could help the algorithms to extend the
Pareto front in the first optimization goal.

Fig. 13 shows that the hypervolume was lower for problem
instances with larger wind farm areas. Such areas allowed layouts
with more wind turbines and, hence, lower efficiencies. Further-
more, the impact of extending the front is much larger in the
hypervolume indicator than improving the solutions in the middle
of the front. This explains why the layouts with an 8D grid step
size had, in general, a larger hypervolume indicator, despite their
lower design freedom.

Fig. 16 compares several wind farm layouts, composed of the
same number of turbines, obtained with the o-MOGOMEA with a
grid resolution of 8D and with the MR scheme. The algorithm,
with an 8D step, optimized the layouts by placing more turbines at
the edges of the farm and leaving wider spaces in the middle re-
gion. In this way, there is more free space for wake recovery and
therefore, turbines in the wake of other turbines will receive
higher mean wind speeds. On the other hand, with the MR scheme
the free areas are evenly distributed throughout the area and
spread the turbines in the area while preventing rows or columns
from being formed. In fact, alignment of turbines only happened
once it could not be avoided due to space limitations (see last plot
of Fig. 16). The wind farm layouts obtained with the MR scheme go
against what has been done for most of the existing wind farms, in
which the turbines were installed in grid-based layouts Fig. 17.
6. Conclusions

The main objective in this article was to address several im-
portant open questions in solving the WFLOP and more specifi-
cally, in its MO variant, which is arguably more relevant to real-
world applications. The NSGA-II, the MOGOMEA and two variants
of these algorithms were applied to solve the MOWFLOP, while
considering different CHTs. Wind farms with different areas, dis-
cretized using three grid step sizes to identify potential turbine
locations, were used to assess the performance of the MOEAs.

The two variants of the MOGOMEA obtained, on average, better
wind farm layouts as well as areas with higher density of turbines
and hence higher energy production. This result indicates that
algorithmic characteristics specific to the MOGOMEA are im-
portant factors to obtain good trade-off solutions. The MOGOMEA
combines wind farm layouts that are roughly similar (in objective
space) to create new layouts. The MOGOMEA also actively searches
for wind farm layouts that represent extreme trade-offs, i.e., that
optimize only a SO. Finally, the MOGOMEA tries to identify and
exploit the underlying variable-dependency structure of the
problem.

No specific CHT demonstrated to have clear a advantage over
the others for all algorithms. The resample approach was the best
CHT for the o-MOGOMEA, whereas the repair mechanism was the
most suited for the MOGOMEA. Finally, the constraint domination



Fig. 16. Layouts obtained with the o-MOGOMEA for an 8D step size and using the multi-resolution scheme. The turbines are located at the center of the circles, which
present the minimum separation between neighboring turbines.
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Fig. 17. The left plot shows the average hypervolume obtained with the different
algorithms with 8D (dash-dotted), 4D (dotted) and with the multi-step (solid)
approach for wind farm area B. The x-axis shows the number of fitness valuations
and the y-axis displays the hypervolume. The right plot shows the aggregated
Pareto fronts between all the different step sizes (dotted) and the aggregated Pareto
fronts obtained with the multi-resolution scheme (solid). The x- and y-axes show
the optimization goals, respectively. For both plots: MOGOMEA - red; o-MOGOMEA
- green; NSGA-II - black; c-NSGA-II - blue. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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technique presented better results for both variants of the NSGA-II.
When used for real-world planning however, CHTs that first check
constraints and prevent infeasible solutions from being evaluated,
may present a potential advantage because they effectively in-
crease the number of evaluations that can be performed
per second.

Regarding the trade-off between problem dimensionality/
complexity and design freedom, the results showed that, for all
algorithms and small wind farm areas, finer grid step sizes allowed
to find better wind farm layouts in the middle section of the Pareto
front due to the larger degree of freedom in designing layouts. On
the other hand, for larger areas, the advantage of using fine step
sizes was reduced within the time we allowed the algorithms to
run, due to increase of the problem complexity.

The results demonstrated that there is a trade-off between the
computational time required for model building of the MOGOMEA
and the evaluation time required to calculate the power produc-
tion of the wind farm. The increase of the number of variables
leads to higher computational requirements for model building.
For very fine grid resolutions the time to build and exploit linkage
models may overtake the time to evaluate the efficiency of wind
farm layouts. However, for a problem such as MOWFLOP, we de-
monstrated that very good results can be obtained by fixing the
linkage model to one that is learned a priori, i.e., offline, based on
potential turbine locations since these locations are expected to
have the most impact on the dependencies between problem
variables in the MOWFLOP. This fully removes the potentially
time-consuming overhead of model building as the problem size
increases due to the use of finer grid resolutions.

Finally, designing wind farm layouts based on a multi-resolu-
tion approach whereby wind farms are first designed using a
coarse grid, and over time are adjusted using finer grids, demon-
strated to offer the best results when considering the same budget
of function evaluations. The reason for this is that a wide trade-off
is fairly easily obtained using a coarse grid resolution, which is
then further improved along the entire front of trade-offs using
finer grid resolutions.

For future work it would be interesting to assess the influence of
smaller grid steps and wind farms with larger areas. It would also
be interesting to test instances of the MOWFLOP with more than
two optimization goals. Recent works introduced strategies to filter
hierarchical linkage relations from the LT that may be superfluous
leading to more concise linkage models without negatively effecting
the performance [103]. Hence, it could be interesting to evaluate
these filtering strategies in the MOWFLOP. The proposed popula-
tion-sizing-free scheme has its drawbacks and other approaches
may still work better, which is interesting to study further. Fur-
thermore, the multi-step approach demonstrated to provide good
results and hence, an in-depth study into the competences and a
true (experimental) scalability of this approach that designates the
required resources such as runtime are required to reach the opti-
mal Pareto front, should be carried out in future work.
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