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A B S T R A C T   

Driver anticipation plays a crucial role in crashes along horizontal curves. Anticipation is related to road pre-
dictability and can be influenced by roadway geometric design. Therefore, it is essential to understand which 
geometric design elements can influence anticipation and cause the road to be (un)predictable. This exercise, 
however, is not straightforward because anticipation is individual-specific whereas road geometric design is 
location-specific; anticipation is latent and measuring it may not be trivial; anticipation may have several stages 
from the preceding tangent until the midst of the curve; and not all drivers anticipate in the same way and thus 
there may well be unobserved heterogeneity in the effect of anticipation on crash risk. 

Despite methodological advancements in crash risk modelling, there is no econometric model that can 
adequately explain the above complexities. This study aims to fill this gap by developing an econometric model 
with a new latent variable, named ‘predictability’ that is measured by individual-specific driving behaviour 
indicators and predicted by location-specific road geometric factors. The model is specified with random pa-
rameters to account for unobserved heterogeneity and is empirically tested by a unique dataset including 
detailed geometric design and driver behaviour data obtained for 156 curves in the Netherlands. Results indicate 
that higher exposure and uphill vertical grade are associated with increased likelihood of vehicle crashes along 
horizontal curves, whereas adequate superelevation and higher predictability are associated with decreased 
likelihood of those crashes. Pavement friction influences this likelihood too but it has varied effects. Road 
predictability is influenced by the differences in angle of horizontal curves, vertical grades, and width of 
consecutive road segments.   

1. Background 

Horizontal curves are among the roadway locations with high 
prevalence of vehicle crashes across the world. In the Netherlands, 4 out 
of 62 fatal crashes that were recorded on national roads in 2019 were 
directly related to sharp curves (Davidse et al., 2020). A detailed 
investigation of those crashes revealed that the road infrastructure at the 
crash locations was not predictable and so the drivers involved in those 
crashes did not expect the upcoming sharp curves (Davidse et al., 2020). 
Such lack of ‘predictability’ caused two of the drivers running off the 
road and falling into an adjacent ditch while the other two drivers hit a 
tree with deadly consequences. Similar findings have been reported 

elsewhere in the world. Findings from the 100-Car Naturalistic Driving 
Study in the United States showed that 30% of vehicle crashes and near- 
misses occurred along curves (McLaughlin et al., 2009) and 6% of fatal 
crashes were directly related to sharp curves. These statistics raise the 
flag for horizontal curves as locations with potential high risk of vehicle 
crashes that need to be treated by highway engineers and road safety 
experts. It is, therefore, essential to understand what factors contribute 
to these crashes along horizontal curves. 

Previous studies have shown that factors contributing to vehicle 
crashes may arise from distinct sources of risk, such as human factors or 
driver behaviour, road geometry and spatial features of the roadside 
environment (Afghari et al., 2018; Shaon et al., 2019). One of the most 
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common human factors contributing to crashes is situation awareness 
which is defined by Endsley (2017) as “the perception of elements in the 
environment within a volume of time and space, the comprehension of 
their meaning, and the projection of their status in the near future”. The 
ability to project the status of different elements in the environment 
(level 3 in Endsley model), is also known as anticipation. Anticipation is 
a key element in driving along curves; it guides drivers to adjust their 
speed and lane position to accommodate the severity of the curve 
(Reymond et al., 2001). Several studies provide an important insight 
about driver’s anticipation along horizontal curves: it is entangled with 
roadway geometric design. This entanglement has been referred to as 
self-explaining road design (Theeuwes, 2021; Theeuwes & Godthelp, 
1995; Walker et al., 2013) or geometric design consistency (D. Llopis- 
Castelló et al., 2018). A self-explaining/consistent road induces driver 
expectations and elicits appropriate driving behaviour automatically 
(Kuiken et al., 2012). Therefore, it is very important to understand 
which geometric design elements may influence anticipation and cause 
the roadway to be (un)predictable. 

One way of answering the above question is by developing an 
econometric model of crashes and including there-in an independent 
variable capturing the interaction of anticipation and roadway geo-
metric design. However, this exercise is not straightforward due to the 
following challenges: (i) anticipation is related to drivers and is 
individual-specific whereas geometric design is related to roads and is 
location-specific; (ii) anticipation is usually not observed but latent 
among drivers and therefore, measuring it may not be straightforward; 
(iii) drivers’ anticipation along horizontal curves may have several 
stages starting from the preceding tangent but lasting until the midst of 
the curve itself; and (iv) not all drivers anticipate in the same way and 
thus there may well be unobserved heterogeneity in the effects of antici-
pation on crash risk. 

Despite methodological advancements in crash risk modelling, there 
is no econometric model that can adequately explain the interaction 
between driver anticipation and roadway geometry and quantify its 
effect on crash risk along horizontal curves. The objective of this 
research is to fill this gap by developing a new econometric model that 
can adequately explain the interaction between driver anticipation and 
roadway geometry and quantify its effect on crash risk along horizontal 
curves, while at the same time addressing the above conceptual and 
methodological challenges: latent nature of anticipation and unobserved 
heterogeneity. The proposed econometric model includes a new latent 
variable that is measured by individual-specific driving behaviour in-
dicators and predicted by location-specific road geometric factors. The 
model is specified with random parameters to account for unobserved 
heterogeneity. 

The remainder of this paper is organised as follows: Section 2 pre-
sents a brief review of the state-of-the-art on the impact of road geo-
metric design features and anticipation on crashes, with a focus on the 
existing modelling techniques. Section 3 presents the proposed meth-
odological approach and model formulation in this study, and Section 4 
presents the description of the dataset. Section 5 presents the modelling 
results and provides further discussion about those results. Section 6 
gives the conclusions of this paper. 

2. Literature review 

According the American Association of State Highway and Trans-
portation Officials, there are four key features in designing horizontal 
curves: radius, design/operating speed, side friction factor, and super-
elevation (AASHTO, 2001). It has been well established by meta-analysis 
that low curve radius, especially lower than 200 m, is associated with 
increased crash risk (Elvik, 2013). The negative effect of low curve 
radius is deteriorated when horizontal curves overlap with sharp verti-
cal grades (crest or sag) (Bauer & Harwood, 2013), where often 
adequate sight distance is not available (Papadimitriou et al., 2018). 
Poor pavement conditions or rainy weather may increase crash risk on 

horizontal curves too (Donnell et al., 2016). Moreover, the absence of 
transition curves (clothoids) is associated with negative safety outcomes 
(Martensen et al., 2019). 

In addition to the above design features, human factors related to 
drivers perceptions and expectations, as well as comprehension, deci-
sion and task execution capabilities are important parameters to be 
taken into account in curve design (Campbell et al., 2008). Especially 
with respect to the anticipation (as defined in the previous section), 
design consistency has been found to have a positive safety effect e.g. 
Montella and Imbriani (2015); for instance, in terms of road bendiness 
(i.e. number of consequent curves per road length), drivers may have 
better anticipation and thus better speeding behaviour over subsequent 
curves rather than in isolated ones (Van Petegem & Schermers, 2016). 
Anticipation precedes curve entry by about 4 s (Campbell, 2012) and is 
mostly based on a top-down process, i.e., schema where drivers’ ex-
pectations depend on their past experiences (Borsos et al., 2015). Within 
this schema, however, the perceptual cues in the environment trigger 
the activation of a certain behaviour (in this case the desired speed) 
(Charlton & Starkey, 2017). Findings from previous studies (Charlton, 
2007; Lewis-Evans & Charlton, 2006) support this notion and suggest 
while advance warning signs (even with advisory speed signs) are not an 
effective measure to make drivers slow down, chevrons or curve warn-
ings that highlight or delineate the sharpness of the curve are effective in 
substantially reducing drivers’ speed along curves. These curve warn-
ings provide perceptual cues that can be processed “bottom-up”. Nama 
et al. (2020) found that curve radius and the length of the preceding 
tangent are the most influential factors affecting driver behaviour while 
approaching a curve. Finally, Lehtonen et al. (2012) observed that 
drivers anticipate open curves by switching their visual attention be-
tween the road and the occlusion point. 

Alternative methodologies exist in the transport safety literature to 
create an econometric model for the inter-relationship between road 
geometry, driver anticipation and crashes on curves. The most 
straightforward approach is to include a control variable in the econo-
metric model to directly measure the interaction between anticipation 
and road geometry. Azmeri Khan et al. (2023) developed a negative 
binomial Lindley model for run-off road crashes and included geometric 
design consistency as the control variable. They found that any sudden 
change in roadway geometry (the control variable) increases the risk of 
run-off road crashes. To capture the unobserved heterogeneity in the 
data (Mannering et al., 2016), they specified their model with random 
parameters. Afghari et al. (2018) proposed an instrumental variable 
model of crashes in a joint econometric framework to account for the 
inter-relationship between risk factors and empirically showed that the 
proposed approach provides more insight into those interactions. A few 
other studies used instrumental variable modelling as well to investigate 
the inter-relationship between sleepiness and headway (Afghari et al., 
2022), speed enforcement and safety (Yasmin et al., 2022). They used a 
random parameters specification too for addressing unobserved het-
erogeneity. However, neither of the two approaches are able to address 
the latent nature of anticipation and its several stages along curves. 
More specifically, the unobserved part of the interaction between 
anticipation and road geometry (due to measurement error or lack of 
data) may not be captured via the direct control variable or the instru-
mental variable. Therefore, any inference that is made about such 
interaction using either of the two approaches, may not be totally 
accurate. 

An alternative approach to address this issue is by creating a latent 
variable for such an interaction in a structural equation modelling (SEM) 
framework and including it, as well as its error component, into the 
overall econometric model. SEM is an umbrella for a wide range of 
methods, from simple confirmatory factor analysis (Brown & Moore, 
2012) to complex likelihood-based latent variable models (Afghari et al., 
2019; Paschalidis et al., 2019), with the latter providing unique capa-
bilities for addressing unobserved heterogeneity. However, the potential 
benefit of latent variable modelling for capturing the interaction 
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between drivers’ anticipation and road geometry has been unexplored. 

3. Methods 

To overcome the primary challenge in modelling anticipation and 
roadway geometric design (their individual- versus location-specific 
nature), it is hypothesized that these two factors are linked via a new 
latent variable which is labelled as ‘predictability’ in this manuscript. 
This latent variable is measured by individual-specific driving behaviour 
indicators (e.g. drivers’ speed and acceleration) and predicted by 
location-specific geometric factors (e.g. difference in radii of horizontal 
curves). Prior to developing a model for such a latent variable, a theo-
retical construct should be established for the relationships between all 
variables (observed and latent). This theoretical construct is usually 
illustrated by path diagrams in which latent variables are shown by el-
lipses, observed variables by rectangles, unobserved error terms by 
small circles, and the relationships between variables by directional 
arrows (Hox & Bechger, 1998). 

3.1. Theoretical construct and path diagram 

The path diagram corresponding with the theoretical construct in 
this study is shown in Fig. 1 below. It is hypothesised that the number of 
vehicle crashes along curves (Yi) is an observed indicator of crash risk, 
and the factors contributing to this indicator arise from observed curve- 
specific characteristics (Xi) and a latent variable labelled as predictability 
(Zi). Moreover, the latent predictability can be influenced by roadway 
geometric factors (Mi) preceding the curve as well as along the curve. 
Finally, it is assumed that the latent predictability can be measured by 
several indicators of driving behaviour (Sij) such as speed, deceleration, 
and the distance at which drivers start to change their behaviour prior to 
the curve. This overall hypothesis will be tested using an advanced latent 
variable econometric model (discussed later) estimated against empir-
ical data. 

3.2. Principal component analysis 

It is hypothesized that anticipation has several stages starting prior to 
and lasting until the midst of the curve, and thus predictability as a 
latent variable may need to be measured through several driving 
behaviour indicators at different stages too, each of which may capture 
certain stage of predictability. For example, driving speed prior to the 

curve may capture the first stages of predictability whereas speed os-
cillations along the curve may capture later stages of predictability. 
However, driver behaviour underlies all of these indicators and thus 
they may have high autocorrelation with one another (bi-directional 
arrows in the above path diagram) as previously shown in the statistical 
analysis of behavioural data (Huitema & McKean, 1991). Principal 
Component Analysis (PCA) is a common approach used in the statistical 
(Tipping & Bishop, 1999) and transport (Afghari et al., 2021a, Afghari 
et al., 2021b) literature to summarize data when there are too many 
variables interacting with one another in the analysis. Hence, it is used 
in this study too with the purpose of including as many indicators as 
possible for predictability while minimizing the autocorrelations be-
tween those indicators. 

The PCA creates a set of new variables, referred to as principal 
components (PC), which are orthogonal to one another, and each 
component is a linear combination of the original set of variables. The 
principal components can be obtained by applying the orthogonal 
transformation and finding the Eigenvectors and Eigenvalues of the 
Spearman correlation matrix of the original set of explanatory variables. 
The principal components are then ranked based on their decreasing 
contribution to the total variance of the original set of explanatory 
variables: the first principal component explains the highest variability 
in the explanatory variables; the second one explains the second highest 
variability and so forth (the cumulative contribution of all principal 
components is equal to 1). These principal components can then be used 
in the analysis as representatives of the original set of variables. The 
number of components to be used in the model depends on the specific 
research objective, though the optimum number of components is the 
number of components with Eigenvalues greater than one (Tipping & 
Bishop, 1999). In the context of this study, the first principal component 
is selected as the most appropriate representative of all indicators for 
road’s predictability. 

3.3. Latent variable random parameters negative binomial model 

The hypothesized path diagram is now quantified using an advanced 
econometric model. Let Yi represent the number of crashes along the ith 

curve in a road network. Vehicle crashes are the outcomes of a Poisson 
process (Lord et al., 2005) and so Yi follows a Poisson distribution with 
mean μi: 

Yi Poisson(μi) (1) 

Xi
Yi

e2i

ZiMi

S1i

e1i

S2i Sji

Fig. 1. Path diagram corresponding with the theoretical construct behind the relationship between predictability, road geometric factors and crash risk.  
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Assuming an exponential function for the mean of the Poisson dis-
tribution, the expected number of crashes (μi) along the ith curve can be 
expressed as a function of explanatory variables (Afghari et al., 2018): 

μi = exp(βiXi)exp(εi) (2) 

Where βi are estimable parameters (including the intercept), Xi are 
explanatory variables, and exp(εi) is a random error term following a 
Gamma distribution with mean 1 and variance 1/φ. To account for 
unobserved heterogeneity in the data, model parameters (βi) are allowed 
to vary across curves. Such a model specification is referred to as random 
parameters negative binomial model (Anastasopoulos & Mannering, 2009) 
in which the parameters are assumed to follow probabilistic distribu-
tions (e.g. normal, uniform, triangular, etc.) across observations. The 
probability density function of this model can be obtained by: 

P(Yi = yi|βi,φ ) =

∫
Γ(φ + yi)

Γ(φ)yi!

(
φ

φ + μi

)φ( μi

φ + μi

)yi

f (βi)dβi (3)  

where Γ(⋅) is the gamma function and f(βi) is the density of the model 
parameters. Predictability is now incorporated into the model as a latent 
variable. More specifically, we define a new latent variable (Zi) repre-
senting the predictability, and insert it with a parameter (αi) into the 
mean function of the random parameters negative binomial model: 

μi = exp(βiXi +αiZi)exp(εi) (4) 

It is hypothesized that this latent variable can be measured by a 
linear combination of driving behaviour indicators obtained from the 
principal component analysis. As such, a measurement equation is 
defined for this latent variable as: 

PC1 = h(γZi)andPC1 =
∑J

j=1
wjSji (5)  

where PC1 is the first principal component of driving behaviour in-
dicators (Sji), wj are factor loadings of the driving behaviour indicators 
within the first principal component, h(.) is the standard normal distri-
bution probability density function, Zi is the latent variable, and γ is an 
estimable parameter. Meanwhile, a separate structural equation is also 
defined for the latent variable to correlate it with a number of exogenous 
explanatory variables: 

Zi = λmi + ξi (6)  

where λ are estimable parameters, mi are exogenous explanatory vari-
ables, and ξi is a normally distributed error term with mean 0 and 
variance σ2. The probability density function of the overall model can 
then be obtained by: 

P(Yi = yi|βi,φ, α, γ, λ, σ )

=

∫∫
Γ(φ + yi)

Γ(φ)yi!

(
φ

φ + μi

)φ( μi

φ + μi

)yi

f (βi)g(Zi)h(γZi)dβidZi (7)  

where g(Zi) is the density of the latent variable (Equation (6) and the rest 
of notations are as previously stated. The likelihood function (L) of the 
overall model can be obtained by the product of the above density 
function over the entire observations: 

L =
∏N

i=1
P(Yi = yi|βi,φ, α, γ, λ, σ) (8) 

This elaborate model is referred to as latent variable random param-
eters negative binomial (LV-RPNB) in this manuscript and does not have a 
closed form to be estimated using regular maximum likelihood estima-
tion technique. Therefore, maximum simulated likelihood estimation is 
used where quasi random draws from Halton sequences are employed to 
simulate the densities of the random parameters and the latent variable 
(Bhat, 2001). It has been shown that this simulated maximum likelihood 
estimator is unbiased and consistent for a large number of draws 
(Munkin & Trivedi, 1999). 

3.4. Model selection 

To test the performance of the LV-RPNB model, its statistical fit to 
empirical data is evaluated and compared with that of the regular RPNB 
model without latent predictability. While Akaike Information Criterion 
and Bayesian Information Criterion are widely employed to compare the 
statistical fit of models that have the same likelihood structure, these 
measures of fit are not comparable between the models that have 
different likelihood structures (with versus without latent variable). As 
such, Mean Absolute Deviance (MAD) and Mean Squared Predictive 
Error (MSPE) are used to compare the performance of the models in this 
study. Suppose Yi and Ŷi are the observed and the predicted values, 
respectively, of the dependent variable for curve i. The MAD and MSPE 
are calculated as (Washington et al., 2020): 

MAD =
1
N

∑N

i=1
|Yi − Ŷi | (9)  

Table 1 
Summary statistics of road geometric characteristics and driving behaviour in-
dicators for the road network in this study.  

Variable Minimum Maximum Mean SD 

Curve characteristics 
Number of crashes 0 27 1.82 4.05 
Length [m] 31 1018 298 210 
AADT [vehicles] 800 64,100 18,274 13,312 
Horizontal Radius [m] 60 801 297 270 
Deflection angle [grad.] 5.55 283.74 85.38 68.3 
Vertical grade [%] − 3 +3 0 1 
Number of lanes 1 4 1.64 0.76 
Road width [m] 5.02 22.18 10.9 3.66 
Superelevation [%] 1 6 4 1 
Speed limit [km/h] 50 100 95 12 
Minimum measured friction 
coefficient 

0.38 0.79 0.58 0.08 

Stopping sight distance at 
curve start [m] 

106 971 385 127  

Characteristics of the preceding road segment 
Horizontal Radius [m] 128 ∞* 669,736 470,808 
Deflection angle [grad.] 0 183 5 23 
Vertical grade [%] − 2 3 0 1 
Number of lanes 1 6 2.46 1.08 
Road width [m] 6.84 43.55 14.36 5.46 
Superelevation [%] 0 6 3 1 
Stopping sight distance 100 m 
before curve [m] 

66 1181 310 161  

Driving behaviour indicators 
85th percentile speed at curve 
start [km/h] 

64 138 103 18 

85th percentile speed at end of 
deceleration [km/h] 

60 137 101 20 

Standard deviation of 
deceleration at maximum [m/ 
s2] deceleration point 

0.19 1.84 0.48 0.19 

Median distance between start 
point of deceleration and 
curve start [m] 

15 531 192 132 

Median distance between 
maximum deceleration point 
and curve start [m] 

0 278 33 37 

Median distance between 
curve start and end of 
Deceleration [m] 

14 412 95 73 

*indicating a straight segment. 
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MSPE =
1

N − P

∑N

i=1
(Yi − Ŷi )

2 (10)  

where N is the sample size and P is the number of estimated parameters. 
The model with smaller MAD and MSPE is usually preferred over the 
other model. 

The above measures of fit are based on model predictions and thus 
may not properly reflect the complexity of the models. As such, statis-
tical fit of the models is also assessed using McFadden pseudo-rho 
squared – adjusted (ρ2

adj): 

ρ2
adj = 1 −

[
LLFull − P

LL0

]

(11)  

where LLFull and LL0 are the log-likelihoods of the full and the null 
models, respectively and the rest of notations are as previously stated. 
ρ2

adj is analogous to adjusted R2
adj in linear models and so a higher ρ2

adj 

indicates improved statistical fit. 

4. Empirical data 

Empirical data for this study were extracted from a larger dataset 
used by Vos et al. (2021b), which contained detailed road geometric 
information for 156 horizontal curves in the Netherlands. Of these 
curves, 99 are first curves (preceded by a tangent and are therefore not 
influenced by a preceding curve), 47 are isolated curves (preceded and 
followed by a tangent), and 41 are reverse curves (followed immediately 
by a curve in the opposite direction). The geometric data include length 
of curves, horizontal radius, deflection angle, number of lanes, road 
width, distances from the edge marking to the barrier on the left and 
right side, presence of emergency lane, width of emergency lane, sight 
distance, super elevation, vertical grade, speed limit, and stated advisory 
speed. The data were further enriched by adding road friction and traffic 
volume obtained from Rijkswaterstaat –the Ministry of Infrastructure 
and Water Management in the Netherlands. Friction data were collected 
in 2020 and consisted of skid resistance at each hectometre, reported as 
a friction coefficient ranging from 0 to 1 (Vos et al., 2017). These 
measurements were added to the dataset in this study as the minimum, 
maximum and average friction per curve. Traffic data were collected in 
2019 and consisted of Annual Average Daily Traffic (AADT) per curve. 
In addition, three years of vehicle crashes (from 2018 to 2020) were 
obtained from the VIA Traffic Solutions Software (VIA, 2020) and were 
assigned to the curves in this study based on their geographic co-
ordinates (latitude and longitude). The summary statistics of the road 
geometric characteristics of the curves is shown in Table 1. 

4.1. Driving behaviour indicators 

In addition to the road geometric data, 996,375 individual free-flow 
speed profiles were also collected along the curves and were added to 
the data in this study. The speed characteristics for each curve were 
determined using High Frequency Floating Car Data (HF FCD) with the 
data collection frequency of 1 Hz along the selected freeway sections. 
The data were extracted from “Flitsmeister” mobile phone application 
which is used by approximately 1.6 million users in the Netherlands 
–roughly 15% of all driver-licence holders. During the months of March, 
April and September of 2020, over 12 million unique speed profiles were 
obtained. The data were cleaned out of the periods where road works 
were present, and the periods in which more than 5 vehicles per lane per 
minute were present, in order to obtain free-flow speed profiles only. 

For each individual speed profile, a deceleration profile was derived. 
Both profiles were related to the position of the start of the curve, as is 
shown in Fig. 2. The following variables were derived per profile: (i) 
distance from start of deceleration to curve start, and speed before 
deceleration; (ii) distance to curve start where maximum deceleration 
was reached, including the amount of maximum deceleration reached; 
(iii) speed at curve start; and (iv) distance from curve start and end of 
deceleration, and the speed at that position. For each curve, the median 
position of start of deceleration, maximum deceleration and end of 
deceleration were calculated. Furthermore, for each curve the 85th 
percentile of speed before the curve, maximum deceleration, speed at 
curve start and speed in the curve were calculated. 

5. Results and discussion 

The RPNB and LV-RPNB models were estimated against the above 
empirical data and their performances were compared to assess the 
suitability of the latent variable modelling approach. In both of the 
models, explanatory variables were selected using a stepwise variable 
selection criterion. Explanatory variables were tested for multi-
collinearity by computing the Pearson or Spearman correlation co-
efficients, and the variables with unacceptably high (>0.7) correlation 
coefficients were not simultaneously introduced into the model. In 
addition, the principal component analysis was applied on several 
driving behaviour indicators within the LV-RPNB model. The parame-
ters of all variables were tested for random parameters specification and 
normal distribution was used as the distribution for all of the random 
parameters. The parameters were considered random only if their 
standard deviations are statistically significant. The models were esti-
mated using the maximum simulated likelihood approach with 2000 
Halton draws. The required number of Halton draws was selected so that 
further increasing the number of draws does not change the estimates 

Fig. 2. Theoretical speed and acceleration (deceleration) profiles for the curve approach.  
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significantly. While estimating the LV-RPNB model, the dispersion 
parameter of the negative binomial distribution was fixed for the pur-
pose of identification. 

5.1. Indicators of predictability 

Prior to estimating the models, several driving behaviour variables 
were selected as observed indicators of predictability. These variables 
and the rationale behind selecting them are discussed in the following: 
(a) The median distance between the starting point of deceleration and 
the start of the curve: this variable was selected to represent early stages 
of predictability at which drivers first notice the changes in driving task 
demand and start reacting to such changes. A such, higher distance 
between these two points may indicate higher predictability; (b) The 
median distance between the maximum deceleration point and the start 
of the curve: this variable was selected to represent middle stages of 
predictability at which drivers apply maximum deceleration and pre-
pare for entering the curve; as such, higher distance between these two 
points may indicate higher predictability too; (c) The standard deviation 
of deceleration at the maximum deceleration point prior to the curve: 
this variable was selected to represent middle stages of predictability too 
but also to reflect the variance of predictability among drivers. Higher 
standard deviations of deceleration at this point may indicate lower 
predictability of the road among drivers; (d) The difference between 
85th percentile of speed at the start of the curve and at the point where 
speed is constant (end of deceleration) along the curve: this variable was 
selected to represent late stages of predictability at which drivers are still 
adapting to a comfortable speed along the curve. As such, higher dif-
ferences in the speeds may indicate lower predictability of the road; and 
(e) The median distance between the start of the curve and the point 
where speed is constant along the curve: this variable was selected to 
represent late stages of predictability as well. Higher median distance 
between these two points may indicate higher predictability. 

The above variables were summarized into five orthogonal principal 

components which if combined explain the full observed variability in 
predictability. The results of the principal component analysis, the ei-
genvalues and the proportion of explained variability are shown in 
Table 2. The factor loadings of variables within the first principal 
component (showing the direction of their association with this 
component) are in line with the abovementioned rationale for the 
selected variables. As such, the first principal component may be used as 
an indicator of predictability in the measurement equation of the LV- 
RPNB model. 

5.2. Model estimation results 

Estimation results of the regular RPNB model presented in Table 3 
show that of all variables, AADT, deflection angle of horizontal curves, 
adequate superelevation, positive vertical grade, and minimum friction 
are statistically significant with 5% significance level. 

The positive parameter of AADT (1.661) indicates that higher 
exposure is associated with increased likelihood of vehicle crashes along 
curves, which is according to expectations and previous literature 
(AASHTO, 2001). Similarly, the positive parameter of deflection angle 
of horizontal curves (0.008) indicates that larger angles (sharper cur-
vature) are associated with increased likelihood of crashes. Similar 
findings have been reported in the literature (Ma et al., 2020; Schneider 
et al., 2010; Xin et al., 2019) implying adverse effects of horizontal 
curves on crash risk. On the contrary, the negative parameter of cate-
gorical superelevation (-1.559) indicates that a superelevation higher 
than 2% decreases the likelihood of crashes along curves. This finding is 
in line with the previous findings about the effects of adequate super-
elevation on crashes (Papadimitriou et al., 2019; Peng et al., 2021). The 
parameter of positive vertical grade (0.560) indicates that crashes are 
more likely on uphill curves, in comparison with downhill curves or 
curves without a vertical grade. This finding might reflect the lack of 
sufficient sight distance when horizontal curves are combined with 
upward vertical grades. Chang (2005) found that sections with severe 
uphill/downhill grade (3% or more) have higher likelihood of crash 
occurrence compared to level sections. In this study, however, the effect 
of downhill curve on crash risk was not found to be statistically signif-
icant. This finding might be due to very low ranges of the downhill grade 
(not exceeding − 3%) in the study area. In other words, the downhill 
grade in our dataset is relatively mild and does not significantly impact 
the driving speed. The literature with respect to the 3D alignment pa-
rameters, including the combinations of the horizontal and vertical 
grade in relation to crash risk is relatively limited too (Wang et al., 
2022). The negative parameter of minimum friction (-3.461) indicates 
that higher minimum friction along the curves decreases the likelihood 
of crashes (Geedipally et al., 2019). However, the standard deviation of 
this parameter (1.938) indicates that minimum friction has an 

Table 2 
Results of principal component analysis (PCA) of driving behaviour indicators.   

1st Principal 
component 

2nd Principal 
component 

3rd Principal 
component 

4th Principal 
component 

5th Principal 
component 

Factor 
loadings 

Median distance between start point of 
deceleration and curve start  

0.683  0.188  − 0.060  − 0.300  − 0.636 

Median distance between maximum deceleration 
point and curve start  

0.044  − 0.741  − 0.160  0.513  − 0.400 

Standard deviation of deceleration at maximum 
deceleration point  

− 0.355  − 0.198  − 0.712  − 0.562  − 0.107 

Difference between 85th percentile speed at curve 
start and constant speed point  

− 0.164  − 0.468  0.663  − 0.548  − 0.119 

Median distance between curve start and constant 
speed point  

0.616  − 0.395  − 0.156  − 0.174  0.640  

Eigenvalues 1.816  1.438  1.020  0.620  0.106 
Proportion of variance explained by the principal component 0.363  0.288  0.204  0.124  0.021 
Cumulative proportion of variance explained by the principal 

component 
0.363  0.651  0.855  0.979  1.000  

Table 3 
Regression results of random parameters negative binomial (RPNB) model.   

Estimate SE t p value 

Constant  − 14.103  2.806  − 5.027  <0.001 
Log(AADT)  1.661  0.163  10.194  <0.001 
Standard deviation Log(AADT)  0.001  0.306  0.004  0.997 
Deflection angle of horizontal curve  0.008  0.002  3.821  <0.001 
Superelevation >2%  − 1.559  0.490  − 3.181  0.001 
Positive vertical grade  0.560  0.288  1.949  0.051 
Minimum friction  − 3.461  1.799  − 1.924  0.054 
Standard deviation of minimum friction  1.938  0.244  7.929  <0.001 
Dispersion parameter  28.365  3.099  9.136  <0.001  
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increasing effect on crashes on 3.7% of the curves. The dispersion 
parameter of the negative binomial model (28.365) is also statistically 
significant indicating that the data are over-dispersed. 

Estimation results of the LV-RPNB model (Table 4) show that most of 
the above independent variables (with almost the same parameters) are 
statistically significant in this complex model too. However, incorpo-
ration of the latent variable representing predictability into this model 
results in the lack of statistical significance of the parameter for the 
deflection angle of horizontal curves. The negative parameter of latent 
variable (− 0.549) indicates that higher predictability reduces the like-
lihood of vehicle crashes along the curves. This finding is consistent with 
the principles of sustainable safety vision and self-explaining roads 
(Theeuwes, 2021; Wegman et al., 2008) suggesting that cognitive ca-
pabilities of drivers in predicting the road environment contributes to 
road safety. It is also in line with the past research into design consis-
tency (Dhahir & Hassan, 2019; Lamm et al., 1988) suggesting that 
abrupt changes in road geometric design contributes to crashes along 
horizontal curves (David Llopis-Castelló et al., 2018; Mattar-Habib et al., 
2008). 

The parameter estimates within the structural equation of the latent 
predictability show that the absolute difference in the deflection angle of 
horizontal curves has a decreasing effect on predictability. This finding 
implies that while the deflection angle of horizontal curves may not have 
a direct statistically significant effect on crashes, larger differences in 
such deflection angles are associated with lower predictability that, in 
turn, increases the likelihood of crashes. This finding is in-line with the 
finding by (Sil et al., 2022) who found that differences in radius and 
deflection angle between consecutive curves are more likely to influence 
drivers’ ability to distinguish preceding and upcoming curves compared 
to only the radius and deflection angle of the reference curve. Similarly, 
the negative parameters of curve preceded by a straight segment, ab-
solute difference in vertical grades, and absolute difference in road 
width indicate that predictability decreases if there is a significant 
change in road geometry. Finally, the positive parameter of sight dis-
tance indicates that a larger sight distance increases predictability which 
is in line with the previous findings (Vos et al., 2021a). Research has 
shown that drivers may perform visual scanning of the environment as a 
risk-compensating behaviour (Oviedo-Trespalacios et al., 2020), hence 
larger sight distances increase their predictability and decreases the risk. 
However, the standard error of this parameter (4.766) indicates that the 
effect of this variable is not statistically significant for the sample in this 

study. 
During the estimation of the above latent variable model, numerous 

alternative specifications were investigated too, including a latent var-
iable model specification with the driving behaviour indicators directly 
and without applying PCA. The results of these models are presented in 
the appendix and show that none of them provides a statistically sig-
nificant parameter for the latent variable in the overall Negative Bino-
mial model. This finding implies that each indicator of latent 
predictability may not be sufficient by and of itself and instead a com-
posite indicator consisting of all indicators obtained via PCA provides a 
statistically significant parameter for the predictability. It confirms our 
initial hypothesis that predictability may indeed have several stages and 
is more complex than can be measured by only one indicator. 

5.3. Goodness of statistical fit 

Results of global measures of statistical fit for both models are pre-
sented in Table 5. The models have very close MAD and MSPE, although 
the latent variable model has marginally improved measures of statis-
tical fit (about 1% improvement in MAD and about 4% improvement in 
MSE). These findings indicate that the predictive performance of the two 
models are comparable. The likelihood-based measure of fit (McFadden 
pseudo-rho squared) paints a similar picture too (ρ2

adj = 0.123 for the 
latent variable model and ρ2

adj = 0.120 for the regular model. 
Overall, the findings suggest that incorporating a latent variable into 

the model does not substantially improve its statistical fit. Nonetheless, 
the latent variable model provides additional insight about the mecha-
nism of the effect of predictability on crash risk. After all, statistical fit 
should never be used as the only criterion for model selection. While it 
may not be obvious to choose one model over the other, both models can 
be used together to obtain a better understanding of risk factors and 
their contribution to crashes along horizontal curves. 

6. Conclusions 

The ability to predict the road plays a crucial role in vehicle crashes 
along horizontal curves. This predictability can be influenced by 
roadway geometric design and so it is essential to understand which 
geometric design elements may cause the road to be (un)predictable. 
However, predictability may be the result of driver’s anticipation and 
changes in road’s geometric design. Driver’s anticipation is latent and 
measuring it may not be trivial. It may also have several stages from the 
preceding tangent until the midst of the curve. On the top of that, not all 
drivers anticipate in the same way and thus there may be unobserved 
heterogeneity in the effect of anticipation on predictability and ulti-
mately on crash risk. Despite methodological advancements in crash risk 
modelling, there is no econometric model that can adequately explain 
these complexities. This study aimed to fill this gap by developing an 
econometric model with a new latent variable that is measured by 
individual-specific driving behaviour indicators and predicted by 
location-specific geometric factors. 

Results of the proposed econometric model indicated that higher 
exposure to crashes (in terms of average annual daily traffic) and up-
ward vertical grade were associated with increased likelihood of crashes 

Table 4 
Regression results of latent variable random parameters negative binomial (LV- 
RPNB) model.   

Estimate SE t p value 

Constant  − 12.653 2.845  − 4.448  <0.001 
log(AADT)  1.626 0.219  7.437  <0.001 
Standard deviation of log(AADT)  0.031 0.033  0.960  0.337 
Minimum friction  − 4.394 2.086  − 2.106  0.035 
Standard deviation Minimum 

friction  
1.654 0.313  5.275  <0.001 

Super elevation >2%  − 1.327 0.508  − 2.614  0.009 
Positive vertical grade  0.535 0.276  1.935  0.053 
Latent variable representing 

predictability  
− 0.549 0.137  − 3.992  <0.001 

Structural component:     
Absolute difference in deflection 
angle  

− 220.070 4.200  − 52.397  <0.001 

Curve preceded by straight 
segment  

− 30.936 1.458  − 21.221  <0.001 

Absolute difference in vertical 
grade  

− 2.518 1.103  − 2.282  0.022 

Absolute difference in road width  − 2.811 1.262  − 2.227  0.026 
Sight distance  6.068 4.766  1.273  0.203 
σ  0.620 0.181  3.422  0.001 
Measurement component:     
a  0.759 0.088  8.657  <0.001 

Dispersion parameter  30.000 (fixed for identification)  

Table 5 
Comparison of statistical fit between model candidates.   

RPNB LV-RPNB 

N (sample size) 157 157 
P (number of parameters) 9 15 
LL0 (null log-likelihood) − 259.484 − 538.890 
LL (log-likelihood at convergence) − 219.35 − 457.74 
ρ2

adj(McFadden pseudo-rho squared – adjusted) 0.120 0.123 
MAD (mean absolute deviance) 1.390 1.370 
MSPE (mean squared predictive error) 11.630 11.130 

*Likelihood of the count model component. 
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along horizontal curves. On the contrary, adequate superelevation 
(more than 2%) decreased the likelihood of these crashes. Similarly, 
higher pavement friction decreased the likelihood of crashes for most of 
the curves, but increased this likelihood for a few curves. More impor-
tantly, the model showed that the more predictable a curve is, the lower 
the likelihood of vehicle crashes is along that curve. Although many 
studies emphasized on this issue in the past, our study provided 
empirical evidence for the effect of predictability on crash risk. In 
addition, the results showed that road’s predictability is influenced by 
the differences in the deflection angle of horizontal curves, vertical 
grades of consecutive road segments, and width of road segments. The 
findings from the sample in this study showed that larger differences in 
these factors decrease predictability. As such, providing visual cues for 
changes in engineering design of the curves may be crucial for the 
drivers. Finally, the comparison of statistical fit between models with 
and without latent predictability showed a very small improvement in 
model performance, implying that the effects of predictability may be 
accurately estimated using simple observable variables. However, this 
may also be due to other limitations in our study (further described in 
the following). Nonetheless, we argue that statistical fit should not be 
the only criterion to select a model, and that the proposed “model” for 
predictability corresponding with the hypothesized path diagram pre-
sents a closer “picture of reality”. 

Overall, the results of our analysis can be useful for practitioners and 
policy makers, as they consolidate the relationship between geometric 
design features and their contribution to design consistency and even-
tually predictability. Our findings suggest that roadway engineering 
design elements are strongly correlated with the unobserved ‘predict-
ability’ of the road, also taking into account drivers’ heterogeneity. At 
the same time, they indicate the importance of systematically moni-
toring and accounting for human factors in design policy and practice. In 
this research, predictability was found to be intuitively related to curve 
features, but there are a number of human factors that affect the driver 
interaction with critical road design elements, for which evidence of a 
clear causal relationships are insufficient, e.g. perception of stopping 
sight distance in 3D road alignments (Papadimitriou et al, 2018), 
comprehension of weaving areas (Kusuma et al., 2015), complexity of 
interchanges (Farah et al., 2017). The latent variable modelling 
approach in this paper could be used in such questions to provide policy 
makers with a more complete understanding of human factors in road 
design. 

This study is not without limitations. In measuring latent predict-
ability, we combined the different stages of drivers anticipation in one 
latent construct and studied the collective effects of those stages on crash 
risk. Future research should investigate the inter-relationship between 
those stages prior and during horizontal curves. In addition and for 
simplicity, we only used the first principal component of driving 
behaviour indicators for measuring predictability. The marginal 
improvement in statistical fit in this study may have been due to not 
considering the other (contributing) components too. Additional driving 
behaviour data should be collected in future research to present a more 
complete picture of predictability via all principal components that can 
add substantially to the explained variance in the data. It should also 
investigate the effects of using all principal components on models’ 
statistical fit. Some of the explanatory variables (such as sight distance) 
that were expected to influence road predictability were not statistically 
significant in the structural equation of the latent variable. Future 
research should investigate the reasons underlying this lack of statistical 
significance. 

Moreover and due to lack of data availability, we did not evaluate the 
effects of weather conditions or emerging in-vehicle technologies (e.g. 
advanced driver assistance systems) on road’s predictability and crash 
risk. Future research should investigate how these factors and these 
technologies can influence drivers to predict the road and reduce crash 
risk. Finally, temporal variations were not considered in the effects of 
explanatory variables on crashes in this study due to lack of proper data. 

Table A1 
Regression results of latent variable random parameters negative binomial (LV- 
RPNB) model (without PCA, indicator of predictability = difference between 
85th percentile speed at curve start and constant speed point).   

Estimate SE t p value 

Constant  − 9.842 2.863  − 3.438  0.001 
log(AADT)  1.445 0.236  6.115  0.000 
Standard deviation of log(AADT)  0.021 0.054  0.389  0.697 
Minimum friction  − 5.350 2.014  − 2.657  0.008 
Standard deviation Minimum friction  2.100 0.317  6.629  0.000 
Super elevation >2%  − 1.979 0.508  − 3.895  0.000 
Positive vertical grade  0.574 0.285  2.015  0.044 
Latent variable representing 

predictability  
− 0.076 0.095  − 0.795  0.427 

Structural component:     
Absolute difference in deflection 
angle  

− 76.324 2.121  − 35.991  0.000 

Curve preceded by straight segment  − 16.590 4.195  − 3.954  0.000 
Absolute difference in vertical grade  − 2.323 1.025  − 2.266  0.023 
Absolute difference in road width  2.808 4.351  0.645  0.519 
Sight distance  142.349 4.327  32.895  0.000 
σ  − 0.045 0.755  − 0.060  0.952 
Measurement component:     
a  − 0.322 0.080  − 4.034  0.000 

Dispersion parameter  30.000 (fixed for identification)  

Table A2 
Regression results of latent variable random parameters negative binomial (LV- 
RPNB) model (without PCA, indicator of predictability = Standard deviation of 
deceleration at maximum deceleration point).   

Estimate SE t p value 

Constant  − 10.007 2.774  − 3.607  0.000 
log(AADT)  1.427 0.209  6.838  0.000 
Standard deviation of log(AADT)  − 0.043 0.030  − 1.457  0.145 
Minimum friction  − 4.825 2.256  − 2.138  0.032 
Standard deviation Minimum friction  1.950 0.252  7.753  0.000 
Super elevation >2%  − 1.933 0.465  − 4.157  0.000 
Positive vertical grade  0.589 0.310  1.901  0.057 
Latent variable representing 

predictability  
0.101 0.157  0.641  0.522 

Structural component:     
Absolute difference in deflection 
angle  

− 0.172 2.535  − 0.068  0.946 

Sight distance  − 8.711 6.404  − 1.360  0.175 
σ  − 0.412 1.455  − 0.284  0.777 
Measurement component:     
a  0.279 0.083  3.364  0.001 

Dispersion parameter  30.000 (fixed for identification)  

Table A3 
Regression results of latent variable random parameters negative binomial (LV- 
RPNB) model (without PCA, indicator of predictability = Median distance be-
tween start point of deceleration and curve start).   

Estimate SE t p value 

Constant  − 10.036 2.544  − 3.945  0.000 
log(AADT)  1.434 0.212  6.756  0.000 
Standard deviation of log(AADT)  − 0.041 0.026  − 1.568  0.117 
Minimum friction  − 5.007 1.954  − 2.562  0.010 
Standard deviation Minimum friction  1.950 0.234  8.327  0.000 
Super elevation >2%  − 1.861 0.491  − 3.789  0.000 
Positive vertical grade  0.607 0.299  2.028  0.043 
Latent variable representing 

predictability  
0.077 0.176  0.439  0.661 

Structural component:     
Curve preceded by straight segment  3.767 2.460  1.531  0.128 
Absolute difference in road width  0.864 0.432  1.998  0.046 
σ     
Measurement component:     
a  − 0.166 1.426  − 0.117  0.907 

Dispersion parameter  30.000 (fixed for identification)  

A.P. Afghari et al.                                                                                                                                                                                                                              



Accident Analysis and Prevention 187 (2023) 107075

9

However, such temporal instability may exist as a result of external 
factors such as COVID-19 and the corresponding measures which may 
alter the effects of the aforementioned explanatory variables. 
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Table A4 
Regression results of latent variable random parameters negative binomial (LV- 
RPNB) model (without PCA, indicator of predictability = Median distance be-
tween curve start and constant speed point).   

Estimate SE t p value 

Constant  − 10.437 1.584  − 6.590  0.000 
log(AADT)  1.435 0.023  61.663  0.000 
Standard deviation of log(AADT)  − 0.080 0.018  − 4.516  0.000 
Minimum friction  − 4.356 2.433  − 1.791  0.073 
Standard deviation Minimum friction  1.477 0.341  4.338  0.000 
Super elevation >2%  − 1.862 0.559  − 3.332  0.001 
Positive vertical grade  0.645 0.278  2.318  0.020 
Latent variable representing 

predictability  
− 0.028 0.020  − 1.374  0.170 

Structural component:     
Absolute difference in deflection 
angle  

2.692 1.580  1.704  0.089 

Curve preceded by straight segment  − 3.355 2.635  − 1.273  0.203 
Absolute difference in vertical grade  − 15.567 1.778  − 8.753  0.000 
Absolute difference in road width  1.165 0.027  43.173  0.000 
Sight distance  3.150 1.608  1.959  0.050 
σ  14.080 7.104  1.982  0.047 
Measurement component:     
a  0.016 0.015  1.061  0.289 

Dispersion parameter  30.000 (fixed for identification)  

Table A5 
Regression results of latent variable random parameters negative binomial (LV- 
RPNB) model (without PCA, indicator of predictability = Median distance be-
tween maximum deceleration point and curve start).   

Estimate SE t p value 

Constant  − 13.321 1.998  − 6.667  0.000 
Standard deviation constant  0.931 0.158  5.901  0.000 
log(AADT)  1.443 0.196  7.361  0.000 
Standard deviation of log(AADT)  − 0.071 0.015  − 4.838  0.000 
Super elevation >2%  − 1.439 0.408  − 3.524  0.000 
Positive vertical grade  0.542 0.281  1.925  0.054 
Latent variable representing 

predictability  
0.113 0.086  1.317  0.188 

Structural component:     
Absolute difference in vertical grade  4.656 4.390  1.061  0.289 
Absolute difference in road width  4.915 6.166  0.797  0.425 
σ  1.500 1.028  1.460  0.144 
Measurement component:     
a  − 0.197 0.083  − 2.373  0.018 

Dispersion parameter  30.000 (fixed for identification)  
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