<]
TUDelft

Delft University of Technology

Enforcing symmetry in tensor network MIMO Volterra identification

Batselier, Kim

DOI
10.1016/j.ifacol.2021.08.404

Publication date
2021

Document Version
Final published version

Published in
IFAC-PapersOnline

Citation (APA)
Batselier, K. (2021). Enforcing symmetry in tensor network MIMO Volterra identification. IFAC-
PapersOnline, 54(7), 469-474. https://doi.org/10.1016/j.ifacol.2021.08.404

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1016/j.ifacol.2021.08.404
https://doi.org/10.1016/j.ifacol.2021.08.404

ScienceDirect

Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

IFAC PapersOnLine 54-7 (2021) 469474

Enforcing symmetry in tensor network
MIMO Volterra identification

Kim Batselier *

* Delft Center for Systems and Control, Delft University of
Technology, Delft, The Netherlands.

Abstract: The estimation of an exponential number of model parameters in a truncated
Volterra model can be circumvented by using a low-rank tensor decomposition approach. This
low-rank property of the tensor decomposition can be interpreted as the assumption that all
Volterra parameters are structured. In this article, we investigate whether it is possible to
explicitly enforce symmetry of the Volterra kernels to the low-rank tensor decomposition. We
show that low-rank symmetric Volterra identification is an ill-conditioned problem as the low-
rank property of the exact symmetric kernels cannot be upheld in the presence of measurement
noise. Furthermore, an algorithm is derived to compute the symmetric Volterra kernels directly

in tensor network form.

Copyright © 2021 The Authors. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0)
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1. INTRODUCTION

The identification of truncated Volterra series suffers from
the curse of dimensionality. The total number of parame-
ters to be identified grows exponentially with the order of
the model, limiting the application of standard identifica-
tion methods to weakly-nonlinear systems.

One way to lift this curse of dimensionality is by imposing
additional structure onto the Volterra kernels. For exam-
ple, Volterra kernels are generalizations of finite impulse
responses to higher orders and are therefore expected
to be smoothly decaying. Recent research enforces these
constraints explicitly through regularization Birpoutsoukis
et al. (2017, 2018), but these methods are unfortunately
limited to third order kernels. Another way of adding
structure to the kernels is by expanding them in terms
of orthonormal basis functions Campello et al. (2004);
Diouf et al. (2012). Tensor decompositions are also suitable
candidates for adding structure through a low-rank con-
straint Shi and Townsend (2021). In Favier et al. (2012)
both the canonical polyadic Harshman (1970); Carroll and
Chang (1970) and Tucker tensor decompositions Tucker
(1966) were used. The canonical polyadic decomposition,
however, can suffer from numerical instability due to the
ill-posedness of the problem of finding a best rank-r ap-
proximation de Silva and Lim (2008), and the determi-
nation of its rank is known to be an NP-hard prob-
lem Hastad (1990). The main disadvantage of the Tucker
decomposition is that it still suffers from an exponential
complexity. These issues were resolved in Batselier et al.
(2017a,b) via low-rank tensor networks. Low-rank tensor
networks also have the advantage that the complexity of
estimating the model parameters scales linearly with the
order of the truncated Volterra series. This linear scaling
of the complexity opens up the possibility of identifying
systems that are highly nonlinear and hence require high-
order approximations. So far it remains an open question
whether it is possible to enforce symmetry to the estimated

Volterra kernel coefficients in tensor network form. The
contribution of this article is to address this open problem
by

e developing an algorithm that is guaranteed to result
in the unique symmetric Volterra kernels of all orders,

e showing that the identification of low-rank symmet-
ric Volterra kernels is an ill-conditioned problem as
measurement noise completely destroys the low-rank
property of the solution.

Numerical experiments demonstrate the effectiveness of
the proposed algorithm and also illustrate the influence
of measurement noise on the rank of the estimate. In the
experiments it is also shown that the iterative identifica-
tion algorithm described in Batselier et al. (2017a) requires
a full-rank initialization in order to be able to find the low-
rank symmetric solution. The reason for this behavior is
not yet understood.

2. TENSOR BASICS

A tensor A € RI*12xxIb ig 5 D_dimensional array of
numbers. Each entry of a tensor A is determined by D
indices i1, 72, . ..,ip. Commonly used tensors in control are
scalars (D = 0), vectors (D = 1) and matrices (D = 2).
A D-dimensional tensor A € RIXIX*I g per defini-
tion symmetric when the tensor entry A(ii,is,...,ip)
remains invariant under any permutation of the indices
i1,19,...,ip. Following the convention used in Matlab,
all indices are 1-based and hence start counting from 1
rather than from 0. Indices are always denoted by lower-
case letters and their corresponding capital letters denote
their respective upper bounds. For example, an entry of
an M x N matrix A is denoted A(m,n). Indices can also
be combined into a single multi-index. The conversion of
D separate indices 1, 9, . . ., ©p into one single multi-index
[i1ig - - -ip] follows the definition
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Fig. 1. Tensor diagrams of a scalar a, vector a, matrix A
and 3-way tensor A. Each edge represents a dimension
of the tensor.

D d—1
i= iy --ip) =i+ Y (ia—1) [[ I (1)
d=2 =1

From (1) it follows that I = I1I--- Ip. The vectorization
vec(A) of a tensor A is obtained by combining all indices
of A into one single index. Equation (1) also applies when a
single index ¢ = [i142 - - - i p] is split into D separate indices.

In this article, matrices with exponentially large dimen-
sions are used. It is possible to lower the storage complex-
ity of such matrices by representing them in a tensor train
matrix form (Oseledets, 2010).

Definition 1. Let A € RI”*J” with entries
A([iviz---ip], [j1j2 - - Jp]- (2)
This implies that
I =51, Ip,
JP =Ty Jy- - Jp.

The tensor train matrix of A consists of D 4-dimensional
tensors A@ ¢ RRaxlaxJaxRat1 gquch that each matrix
entry (2) is equal to

Ro Rp
Z Z A(l)(l,’il,j17T2)A(2)(7’2,i2,j27r3)"'

1”2:1

A(D)(rDleiju ]-) (3)

’I”DZI

Each tensor A (d = 1,..., D) is called a core tensor. The
dimensions Rj, Ro,...,Rp41 are called the tensor train
matrix-ranks and per definition Ry = Rp4+1 = 1. A more
convenient representation of a tensor train matrix is via a
tensor diagram. Each node in a tensor diagram represents
a tensor and each each edge represents a particular index
or dimension. Figure 1 shows the diagram of a scalar, vec-
tor, matrix and 3-dimensional tensor. Index summations
as in (3) are represented in a tensor diagram as an edge
that connects two nodes. The diagram representation of a
tensor train matrix is shown in Figure 2. Note that the one-
dimensional edges for Ry = Rp41 are not drawn in the di-
agram. Assuming uniform ranks Ry = --- = Rp = R and
likewise for the dimensions I, J, then the storage cost of a
tensor train matrix is O(DIJR?), compared to O(IPJP)
for the original matrix. The exponential dependency on
the order D of the storage cost for the matrix is hence
reduced to a linear dependency. The smaller the ranks R,
the larger the gain in storage efficiency.

3. MIMO VOLTERRA SYSTEMS

In this section a brief overview of the MIMO Volterra
identification problem as described in Batselier et al.
(2017a) is given. A truncated Volterra model extends the
linear finite impulse response (FIR) model

I I Ip

Fig. 2. Tensor diagram of a tensor train matrix that
represents a matrix A € Rtz IoxJiJz+Jp Al row
indices point downward and all column indices point
upward.

M
y(n) =ho+ Y hi(mi)u(n—my) (4)
m1:0
to higher orders of nonlinearity by adding homogeneous
polynomials in the lagged input u(n) to (4). Suppose there
are L outputs and P inputs, which implies that

y(n) = (n(n) ga2(n) - yr(n))" € R,
u(n) = (u1(n) uz(n) --- up(n))’ € RP.

Using the same notation as in Batselier et al. (2017a), for
a given memory M the vector u,, is defined as

w, = (1 um)” - u(n— M)T)T c RA+(M+1)P)
Please not that the subscript n in w,, does not denote the
nth entry of the vector w. For notational convenience let
I=(1+4(M+1)P) and define the vector

D times
uf::un®un®~~®unER1D. (5)
where ® denotes the matrix Kronecker product and D is
the order of the Volterra system. The vector ul contains
all monomials in the lagged inputs from degree 0 up
to D and can always be reshaped into a D-dimensional
symmetric tensor UT’?.

Ezample 1. For D =2, P =1 and M = 1 we have that
u? = (1 u(n) u(n — 1))T ® (1 u(n) u(n — 1))T € R?

n

2

contains 9 monomials. Since D = 2, we can reshape u;

into a 3 X 3 symmetric matrix
1 up(n) up(n —1)
ui(n) u3(n) up(n)ui(n—1)
ur(n —1) uy(n)uz(n —1)  ud(n—1)

The output of a MIMO Volterra system can then be
written as

)= (wP) H, (6)

y(n

where column [ of the matrix H € contains
all Volterra kernel coefficients from order 0 up to D
responsible for output I. Writing out (6) for times n =
1,..., N results in a set of linear equations

Y = U H . (7)

~ ~ =~

NxL NxIP IPxL
The system identification problem is then: given a fi-
nite sequence of measured {(u(n),y(n)})_,, order D and
memory M, solve (7) for the unknown H matrix.

RIDXL

Example 1 illustrates that each row of the U matrix con-
tains repeated entries due to the symmetry. This symmetry
limits the rank of the U matrix.
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Theorem 1. (Lemma 4.1 (Batselier et al., 2017a, p. 30))
For the matrix U in (7) it holds that
D+TI-1
rank(U) < R = ( 11 )
The M input signals are then per definition persistently
exciting of order D and memory M if the upper bound
R of the rank is attained. A consequence of this rank-
deficiency is that (7) has an infinite number of solutions.
It was proven in Proposition 4.2 of (Batselier et al., 2017a,
p. 30) that each column of the unique minimum-norm
solution for H is the vectorization of a D-dimensional
symmetric tensor. Enforcing symmetry to the Volterra
kernels is therefore equivalent with finding the minimum-
norm solution of (7).

4. PSEUDOINVERSE IN TENSOR TRAIN MATRIX
FORM

One way of finding the minimum-norm solution is via the
Moore-Penrose pseudoinverse. Assume N > R and let

v-@ @ (70) (Vr)

=SV (8)
be the singular value decomposition (SVD) of U, where

Q € RVNXN v ¢ RI”*I” are orthogonal matrices and
S € REXE ig a diagonal matrix. The symmetric Volterra
kernel coefficients can then be retrieved as

Hsymm =V S_l Q’{ Y. (9)

4.1 Tensor train matriz identification

The exponential number of columns of U make the SVD
computationally inefficient even for moderate values of I
and D. Fortunately, this curse of dimensionality can be
lifted by rewriting the linear problem in terms of tensor
train matrices. Figure 4 shows the tensor diagram of (7)
where both U and H are represented by tensor train
matrices. These tensor train matrices are defined such that
u(l) c RIXNXIXRQ’

H(l) e RlXIXLXR2.

The second index of the remaining UD tensors is always
one-dimensional, and likewise for the third index of the
remaining HD tensors. Summing over all indices that cor-
respond with connected edges in the diagram results in the
N x L matrix Y. The symmetry that is present in the U
also results in upper bounds for the corresponding tensor
train matrix-ranks. These upper bounds were proven for a
slightly different matrix but with similar structure.

Theorem 2. (Theorem 4.1 (Batselier et al., 2018, p. 191))
The tensor train matrix-ranks of the matrix U in (7)

satisfy
D—-d+1-1
Ry < . 10
o= (PT (10)
Theorem 2 allows for an alternative definition of persis-
tently exciting input signals as inputs for which these
upper bounds are all attained. The tensor train matrix

Fig. 3. Tensor diagram of (7).Both the matrices U and H
are represented by tensor train matrices. Row indices
point to the left and column indices point to the right.

for U can be constructed one core at a time. Defining the
N x I matrix

then we have that
D times

U=UocUG6---0U, (11)
where the ® operator take the row-wise Kronecker product
of two matrices. Algorithm 1 is a modified version of
Algorithm 2 in (Batselier et al., 2018, p. 191), where a
matrix U with identical structure appears in the context
of polynomial state space models. The assumption is made
that the input signals are persistently exciting such that
the tensor train matrix-ranks are given by (10). If the
inputs are not persistently exciting, then a numerical rank
needs to be determined. Once the tensor train matrix of

Algorithm 1 Construct tensor train matrix of re-
peated row-wise Kronecker product of matrices. (Algo-
rithm 2 (Batselier et al., 2018, p. 191))

Input: N x I matrix U, factor D
Output: tensor train matrix U, . ..
1 UP) reshape(U, [1,N,1,1])

2: ford=D:-1:2do

3 T« reshape(bl(d), [N,1R4+1])
T+« ToU
T <« reshape(T,[NI,IRg441])
[Q,S,V]+ SVD(T)
Truncate Q, S,V to arank R; = (d_}f{_l)
U« reshape(V7, [Ry, 1,1, Ray1])

9. Ul reshape(U S, [1, N, I, Ry])
10: end for

UP) of U in (11)

% Rp41 =1

U is obtained through Algorithm 1, then its pseudoinverse
can also be readily computed. The thin SVD as in (8)
is obtained through one SVD computation of the first
tensor train matrix core tensor. This core tensor U™ is
first reshaped into an N x IRy matrix U; and then its
SVD is computed. If the input signals are persistently
exciting, then the rank of U; is guaranteed to be R =
(D;'fl_l). The first core of the tensor train matrix of V;
is obtained through reshaping the orthogonal V' matrix
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Fig. 4. Tensor diagram of (9). The pseudoinverse of U is
computed in tensor train matrix form and applied to
the matrix Y, resulting in a tensor train matrix for
H. Row indices point to the left and column indices
point to the right.

from the SVD and retaining all other tensor train matrix
cores from U. The thin SVD computation from (8) is
summarized in pseudocode in Algorithm 2. The symmetric
minimum-norm solution Hyy,, is obtained through the
diagram shown in Figure 4. The matrices S~1, QT and

Y are all “absorbed” by VI The difference between

Algorithm 2 Thin SVD of U in tensor train matrix form

Input: tensor train matrix of U from Algorithm 1
Output:matrices Q1, S and tensor train matrix V; in (8)
. Uy « reshapeV [N, IRy))

: [Ql; S,V] — SVD(Ul)

: Truncate @1, S,V to arank R = (D}'fl_l)

: YW reshape(V, [1, R, I, Ry))

VD Yy D (d=2,...,D)

U W N

the tensor train matrix for Hgyym and Vi therefore lies
only in the first core. The resulting tensor train matrix-
ranks of Hgymm will therefore be identical to the ranks
of V1. However, the column dimension has been reduced
from R to L, which implies that lower ranks are likely
to exist. The ranks can be truncated to smaller values,
without loss of accuracy, through a a sequence of SVD
computations (Oseledets, 2011, p. 2305). Upper bounds for
the resulting ranks can be deduced by taking the symmetry
of Hyynm into account.

Theorem 3. The tensor train matrix representation of the
matrix Hgymm has tensor train matrix-ranks R; that
satisfy

d+1-1 D—-d+I1-1
Ry < mi L . 12
oz (o) (7)o
Proof. Define the matrix H, € RE"™ <177 quch that
H;([liy---ig—1]; [ididgs1 - - ip]) = Heymm([i192 - - -ip],1).
The tensor train matrix-rank Ry is then per definition

rank (Hy) .

The symmetry of Hgymm implies that any entry remains

invariant under any permutation of the ¢1,...,7p indices.
As a consequence, H; has at most L(d}'i Il) linearly inde-

D—d+I-1

Jah ) linearly independent

pendent rows and at most (
columns.

Volterra kernels that are decaying and/or sparse will lead
to ranks that are smaller than the upper bounds of (12).

4.2 Influence of measurement noise

Noise on the output measurements will affect the identified
model in the sense that the solution of the perturbed
system

Y+E=UH (13)
is found. The matrix E contains the measurement noise

and does not affect the U matrix. The minimum-norm
solution of (13)
Hsymm = Hsymm +W S71 Q? E,

therefore consists of Hgymm upon which a symmetric
perturbation V; S~ QT E is applied. If we assume that
FE consists of mutually uncorrelated noise samples, then
it follows from Theorem 3 that all tensor train matrix-
ranks of this symmetric perturbation term will attain their
upper bounds. As a result, the tensor train matrix-ranks of
ﬁsymm will also attain these upper bounds, thus destroy-
ing any inherent low-rank structure in Hgymm. Low-rank
symmetric Volterra kernel identification is therefore an ill-
conditioned problem, as any level of measurement noise
completely destroys the low-rank property.

5. ALTERNATING LINEAR SCHEME
IDENTIFICATION

An alternative method for solving (7) is the alternating
linear scheme (ALS, also called alternating least squares),
which is fully described in Batselier et al. (2017a). The
main idea of the ALS algorithm is to initialize a tensor
train matrix for H with desired tensor train matrix-ranks
and then update each core tensor HD in an iterative
manner while keeping the other cores fixed. The tensor
train matrix-ranks for each core need to be chosen in
advance and in order to ensure symmetry Theorem 3 must
be kept in mind. Defining

U_y= (H(l) Xo Up) - - (rH(d—l) Xo Up) € REXRa,
Usq = (%(d+1) Xo un) . (%(D) X9 un) c RRd+1X1,
where H x5 denotes the summation over the second index

of H, then the d-th tensor train matrix core HD can be
updated by solving the following linear system

y(1) u§d®u§®U<d
y(2) ul  oul @ Uy

) - >d _2 < Vec(’H(d)). (14)
y(N) ul,@ul @ Uy

The matrix in (14) has dimensions N x RgIR441, which
means that the ranks R4, R441 should be chosen such that
Ry I Rgy1 < N. The rank-deficiency of (6) also results in
a rank-deficiency at cores 2 and D — 1. In these cases the
minimum-norm solution of (14) can be computed through
the pseudoinverse.

6. EXPERIMENTS

In this section we demonstrate both Algorithm 2 and
the ALS algorithm of Batselier et al. (2017a) in order to
retrieve low-rank symmetric Volterra kernels. The effect
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raining error

Symmetry coefficient T

Iteration

Fig. 5. ALS identification of a low-rank Volterra system
without measurement noise. Both the relative training
error and symmetry coeflicient are shown for 30 itera-
tions. The relative training error becomes numerically
zero at iteration 4, while the symmetric solution is
found at iteration 11.

of measurement noise to the results is also demonstrated.
All experiments were run on a laptop running an Intel
i7 processor at 1.90 GHz and 8 GB RAM. A Matlab
implementation to reproduce these experiments can be
freely downloaded from https://github.com/kbatseli/
SymmetricVolterra.

6.1 Low-rank Volterra system

For both experiments a single-input-single-output system
with low-rank symmetric Volterra kernels was generated.
The order and memory are set to D = 7 and M = 3,
respectively such that H contains 47 = 16384 kernel
coefficients of which only R = ("1*7") = 120 are unique.
The kernel coefficients were constructed by first initializing
a 4 x 100 matrix A where each column i consists of a

sampled decaying exponential function

A(:,1) = |ay] exp(=p5; [1: 1))
where «; is sampled from a standard normal distribution
and f; is an integer sampled uniformly from the range
[1,10]. Taking D — 1 = 6 column-wise Kronecker products
of A with itself and summing over the columns then results
in the desired H vector. The resulting tensor train matrix-

ranks of H were uniformly 3 with a relative approximation
error of 1.2 x 10713,

The input signal was chosen to be standard normal Gaus-
sian white noise and is therefore persistently exciting of
any order. The measurement noise is also Gaussian white
noise with a variance chosen such that a signal-to-noise
ratio (SNR) of 20 dB was obtained. A total of 1300 sam-
ples were generated for which the first 1000 samples were
used for identification and the remaining 300 samples for
validation. The relative training error is defined as

Y ~UH]||r
1Yl[r
where || - || denotes the Frobenius norm.

6.2 No measurement noise

Algorithms 1 and 2 required 30.4 seconds to compute
the minimum-norm solution. The resulting tensor train
matrix-ranks are equal to the upper bounds in (10). Trun-
cating these ranks via a sequence of SVD computations

0
510
@
o>
£
<
[
=101 o
0 5 10 15 20 25 30
o )
s Iteration
S
=
(9
o
o
e
S
[7}
£
S 5 10 15 20 25 30
) Iteration

Fig. 6. ALS identification of a low-rank Volterra system
with measurement noise. Both the relative training
error and symmetry coefficient are shown for 30
iterations. The relative training error stabilizes at
iteration 4, while the symmetric solution is found at
iteration 11.

such that the relative error is smaller than 1072 result
in tensor train matrix-ranks that are uniformly 3. The
relative error between the computed kernel coefficients
H,scnd0 and the ground truth H is then

||Hpseud0 - H||2
|| H ]2

The symmetry of the obtained solution can be verified by
computing the symmetry coefficient, which is defined as

s =Y |[#H — permute(H,p)||r,
P

where the tensor H is obtained by reshaping H into a D-
dimensional tensor. The symmetry coefficient s compares
‘H to all possible index permutations p and is therefore
exactly zero when H is symmetric. The symmetry coef-
ficient for the result Hpseudo from Algorithms 1 and 2 is
s=6.15x 10713,

=92.75 x 10713,

Unexpectedly, the ALS algorithm is not able to retrieve the
desired symmetric low-rank solution when the ranks are
chosen to be uniformly 3. After 100 iterations the relative
training error is 3.5x 1073, the symmetry coefficient equals
8.8 and does not decrease anymore with further iterations.
If the ALS algorithm is applied with ranks equal to the
upper bounds (12) then the desired solution is found after
11 iterations. Both the relative training error and sym-
metry coeflicient for 30 iterations are shown in Figure 5.
Each iteration took 0.34 seconds. The relative training
error is seen to drop to numerical zero (= 1071%) after 4
iterations. The obtained solution is however not symmetric
as the symmetry coefficient at that point is s = 19.1. At
iteration 11 the symmetry coefficient also suddenly drops
down to numerical zero and at that point the desired
symmetric minimum-norm solution is obtained. All ranks
of the resulting tensor train matrix can be truncated to 3
with a relative approximation error of 10~!!, which shows
that the desired symmetric solution has been found. The
reason why the ALS is not able to retrieve the true low-
rank symmetric solution when initialized with the correct
ranks is not understood and requires future research.

6.3 With measurement noise

As expected, the measurement noise destroys the inherent
low-rank structure of Hgymp,. Algorithms 1 and 2 retrieve
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a tensor train matrix with ranks that are equal to their
upper bounds (12). Further truncation of the ranks is not
possible without destroying the symmetry of the solution.
The symmetry coefficient is s = 9.5x 10713 and the relative
validation error is 0.0432. A similar observation is made
when using the ALS algorithm, as shown in Figure 6. The
measurement noise prevents the training error to drop
below a value of 107!, while the symmetric solution is
found again after 11 iterations. The ranks, once again, need
to be set to their upper bounds.

7. CONCLUSIONS

The proposed algorithm was shown to being able to
identify the exact symmetric Volterra kernels. The exact
reason why the iterative ALS algorithm requires a full-
rank initialization to retrieve the true underlying low-
rank solution is not understood and requires further re-
search. Another interesting avenue of research is to find
a low-rank symmetric approximation of ﬁsymm in (13),

rather than fIsymm itself. In addition, alternative tensor
decompositions could be considered, such as the canonical
polyadic decomposition as used in Boussé et al. (2018). An
alternative structure that can be imposed on the Volterra
kernels is the triangular structure Rugh (1981). Whether
this structure can also be imposed in tensor network form
remains to be investigated.
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