Iterate averaging methods
for solving
non-linear programming
problems

Applied to a transportation network equilibrium problem

R.T.J. Hiele

Delft, 2003

Delft University of Technology

Department of Civil Engineering and Geosciences
Transportation Planning and Traffic Engineering section

Preface

Preface

At the Delft University of Technology (DUT), faculty of Applied Mathematics, every
student has to do a practical training of eight weeks (forty working days) during
the study of five years.

The essence of this practical training is that the students of mathematics become

familiar with:

1. A realistic working place for mathematicians.

2. Working at a project in a surrounding of engineers (where mathematics is
used, but it is not necessary that mathematics is the most important topic)
and to actively participate in different, real-life projects.

3. Working at another faculty or at a company near Delft.

After finishing above described practical training my tasks are to:

1. Write two reports, one for the resource team with whom I worked and
another for the supervisor of the practical training. This report will be destined
for the resource team I work with.

2. Present my experiences at a public meeting at the DUT.

My practical training takes place at one of the faculties of the DUT, Civil
Engineering and Geosciences, Transportation Planning and Traffic Engineering
section. I worked with the team of Prof. Dr. Ir. P.H.L. Bovy. My direct supervisor
was Dr. M.C.J. Bliemer and I worked with two Ph.D. students Dusica Joksimovic
and Dirk van Amelsfort. The department consists of forty-four persons. During my
practical training I attended the staff meeting of the department (thirty-five
persons were present) and I had a seminar on the paper ‘A mathematical model
and descent algorithm for bi-level traffic management’ by Patriksson and
Rockafeller (2002).

I mainly worked at the project of Dynamic Traffic Assignment (DTA) model and
‘Road Pricing’. I fulfilled mathematical analyses on formulation in the existing
models and I looked for improvements of the existing algorithms that are used
for solving these models. For a wider dissemination of my results, the language
used for the report is English.

Some methods for solving NLP problems are discussed in this report. Three of
them are already found in literature and the remaining methods are new. The
methods are compared with each other and some recommendations for further
research are given.

I want to thank the resource team of Prof. Dr. Ir. P.H.L. Bovy for the pleasant
collaboration. I want to thank Dr. M.C.]. Bliemer and Prof. Dr. Ir. P.H.L. Bovy for
the warm welcome, the correction of the report and giving good comment for how
to write a report. Further I want to thank Dr. M.C.J. Bliemer and Dirk van
Amelsfort for the warm welcome and the explanation about the research. Finally,
I want to thank Dusica Joksimovic for all the time she had for me (for the warm
welcome, the explanation about the research, the correction of the report and
giving good comment for how to write a report). During this practical training I
learned much. Such like programming, the mathematics of iterate averaging
methods and working with people of different countries.

Delft, January 2003

R.T.J. Hiele

III

Summary

Summary

Traffic congestion is an unresolved problem and it has effects not only to the
transportation system, but also on other aspects of life (economic, spatial and
social). The idea is that ‘Road Pricing’ can be used to solve this problem. There is
a need for an appropriate tool for predicting the effects of ‘Road Pricing’. Such a
tool could be a traffic assignment model. Traffic is by nature dynamic and hence
only dynamic models can describe traffic process adequately. It appears,
however, that iterate averaging methods have not yet been applied to
transportation network problems. In this research iterate averaging methods are
investigated and also the possibility of applying these methods in transportation
network problems.

Recently the Polyak method was introduced, which is supposed to have better
convergence qualities than the method that is normally used, the Method of
Successive Averages (MSA).

The three topics of this research of iterate averaging methods are:

e To find out how the Polyak method works, after which the Polyak method is
implemented.

e To find out if the Polyak method indeed converges faster than MSA.

e To find out if there exist alternative methods that are faster in convergence
than the Polyak method and MSA.

To find answers on these three topics the literature was studied. By reading the

nature of the Polyak method is found out. When the Polyak method is

understood, the method is implemented (and also MSA is implemented). That was

needed for analysing the convergence of the methods. After the Polyak method is

implemented research for alternative methods is done. Finally, all the described

methods are compared and illustrations are given.

In order to satisfy the increasing demand for more accurate model outcomes and
to be able to compute the effects of different traffic policies, new and improved
traffic assignment models are needed. While Static Traffic Assignment models
may provide basic insights, only dynamic assignment models are able capture the
true dynamic nature of traffic and therefore provide the analyst with more
accurate forecast. An iterative process is needed to solve the Dynamic Traffic
Assignment (DTA) model. This is because network conditions may change after
performing network loading. At all the iterations, the path flows are updated by
combining the results from the current iteration with the previous iteration.

The ‘classical’ (e.g., derivative-based) fixed-point solution methods are often
inappropriate for some problems. In such cases, the fixed-points are usually
computed using one of the iterate averaging methods introduced by Robbins and
Monro [3.1]. MSA, introduced by Sheffi and Powell [3.2], is probably the best-
known and most widely-used instance of iterate averaging methods. In iterate
averaging methods estimates for the fixed-point are found. These estimates are
called design points. MSA computes each new design point by adding a part of the
observation evaluated in the previous design point with a part of the previous
design point.

MSA has the advantages of avoiding (potentially expensive) step size calculations,
working directly with map outputs without requiring derivative calculations or
other transformations, and being able to handle ‘noisy’ map evaluations (where
the evaluation returns a value affected by a zero-mean disturbance). Other
advantages of MSA are that it is simple to understand and that it is simple to
implement. In many cases, however, the method’s empirically observed
convergence properties are disappointing: while it exhibits generally effective

Summary

performance in the initial iterations, this is followed by a pronounced ‘tail’ effect,
resulting in overall slow convergence.

Approximately ten years ago, B.T. Polyak and J.A. Bather proposed two relatively
minor modifications of iterate averaging methods which were rigorously shown to
produce fixed-point estimates with asymptotically optimal properties.

The Polyak method is a two-pass method. The first pass resembles MSA
except that the step sizes are larger; this allows the algorithm to explore the
solution space more aggressively but leads to greater variability in the outputs.
The second pass is carried out offline (i.e., without influencing the first pass); it
calculates an average of iterates that are generated by the first pass. The
average calculated by the second pass at termination is the fixed-point solution
estimate.

A somewhat different approach was proposed by].A. Bather. Here, the
design point is derived from a combination of the average of previous design
points with the average of previous evaluation results.

Apart from the Polyak method and the Bather method, alternative methods are
proposed. In total eight methods are applied and presented in this report. They
were all compared with different stop criterions.

MSA and the Polyak method were compared. To compare these methods and to
compare also other methods a traffic problem with three cities and two routes is
considered. This traffic problem is solved by using a DTA algorithm. For stopping
this DTA algorithm there are different stop criteria.

The stop criterion that is a combination of the route costs and flows is the
best stop criterion for stopping the DTA algorithm. This stop criterion is reached
after 190 iterations of MSA and after 226 iterations of the Polyak method. The
conclusion is that MSA is faster in convergence than the Polyak method for this
stop criterion.

The Bather method, the Bliemer method and the Bliemer Moving method
were compared. After 118 iterations of the Bather method, after 112 iterations of
the Bliemer method and after 40 iterations of the Bliemer Moving method the
stop criterion is reached. It can be concluded that the Bather method and the
Bliemer method solve the problem in almost the same number of iterations. For
different stop criterions the Bliemer Moving method much faster than is the four
other methods.

The Bliemer Moving method is the fastest method, but by combining two
methods it's possible to get a method that is even faster in convergence than the
methods shown before. Therefore, the MSA-Bliemer method, the MSA-Bather
method and the Bliemer-Bather method are compared. The fastest method in
convergence, for the stop criterion we chose, is the Bliemer-Bather method.

The conclusion is that there are alternative methods that are much faster
in convergence than the Method of Successive Averages and the Polyak method.
The best alternative methods are the MSA-Bather method and the Bliemer-Bather
method.

The recommendation is to use the Bliemer-Bather method for solving Non-
Linear Programming (NLP) problems in transportation networks and to do further
research how the values of the variables used in the Bliemer-Bather method have
to be chosen.

VI

Ll

Table of Contents

Table of Contents

PREFACE 11
SUMMARY \%
CHAPTER 1 Introduction p.01
CHAPTER 2 Dynamic Traffic Assignment (DTA) model p.03
2.1 A common structure of DTA models p.03
2.2 A framework of the DTA models p.04
2.3 Solution algorithm for the DTA models p.05
CHAPTER 3 Mathematical background of iterate averaging methods p.07
3.1 Simple iterate averaging methods p.07
3.2 Convergence of iterate averaging methods p.08
3.3 Stop criterion for DTA methods p.08
3.4 Step size for iterate averaging algorithms p.09
3.4.1 Step size illustration p.10
CHAPTER 4 Method of Successive Averages (MSA) p.12
4.1 The Method of Successive Averages p.12
4.1.1 A numerical example of MSA p.13
CHAPTER 5 Polyak and Bather methods p.16
5.1 Introduction to the Polyak and Bather method p.16
5.2 The Polyak method p.16
5.2.1 A numerical example of the Polyak method p.17
5.3 The Bather method p.19
5.3.1 A numerical example of the Bather method p.20
CHAPTER 6 Alternative methods p.23
6.1 The Bliemer method p.23
6.1.1 A numerical example of the Bliemer method p.24
6.2 The Bliemer Moving method p.26
6.2.1 A numerical example of the Bliemer Moving method p.27
6.3 The MSA-Bliemer method p.29
6.3.1 A numerical example of the MSA-Bliemer method p.29
6.4 The MSA-Bather method p.31
6.4.1 A numerical example of the MSA-Bather method p.32
6.5 The Bliemer-Bather method p.35
6.5.1 A numerical example of the Bliemer-Bather method p.35
CHAPTER 7 Comparison of developed methods p.37
7.1 Comparison of MSA and the Polyak method p.37
7.2 Comparison of the Polyak and Bather method p.38
7.3 Comparison of the Bather, Bliemer and Bliemer Moving
method p.40
7.4 Comparison of the combined methods p.41
7.5 Comparison of all previous described methods
(considering the stop criterion) p.43

VII

Table of Contents

CHAPTER 8 Conclusions and recommendations p.46
8.1 Summary of findings p.46
8.2 Conclusions p.47
8.3 Recommendations for further research p.48
REFERENCES p.50
APPENDIX 1 Implementation of the MSA algorithm p.51
1.1 Description of the MSA algorithm p.51
1.2 Formulation and solution algorithm of the MSA algorithm p.51
APPENDIX 2 Implementation of the Polyak algorithm p.52
2.1 Description of the Polyak algorithm p.52
2.2 Formulation and solution algorithm of the Polyak algorithm p.52
APPENDIX 3 Implementation of the Bather algorithm p.54
3.1 Description of the Bather algorithm p.54
3.2 Formulation and solution algorithm of the Bather algorithm p.54
APPENDIX 4 Implementation of the Bliemer algorithm p.56
4.1 Description of the Bliemer algorithm p.56
4.2 Formulation and solution algorithm of the Bliemer algorithm p.56
APPENDIX 5 Implementation of the Bliemer Moving algorithm p.58
5.1 Description of the Bliemer Moving algorithm p.58

5.2 Formulation and solution algorithm of the Bliemer Moving
algorithm p.58
APPENDIX 6 Implementation of combinations of algorithms p.60
6.1 The MSA-Bliemer algorithm p.60
6.2 The MSA-Bather algorithm p.60
6.3 The Bliemer-Bather algorithm p.60

VIII

Introduction Chapter 1

1. Introduction

Traffic congestion is an unresolved problem and it has effects not only to the
transportation system, but also on other aspects of life (economic, spatial and
social). The idea is that ‘Road Pricing’ can be used to solve this problem. There is
a need for an appropriate tool for predicting the effects of road pricing. Such a
tool could be a traffic assignment model. Traffic is by its nature dynamic and
hence only dynamic models can describe a traffic process in a realistic way. It
appears, however, that iterate averaging methods have not yet been applied to
transportation network problems. In this research iterate averaging methods are
investigated and also the possibility of applying these methods in transportation
network problems.

The Dynamic Traffic Assignment (DTA) model used in the Traffic
department is a complex variational inequality problem [1.1]. The solution of a
complex variational inequality problem can be found by solving iteratively a Non-
Linear Programming (NLP) problem. Solving a NLP problem is at this moment
done by a steepest descent technique, where the step size is calculated very
simply, using the Method of Successive Averages (MSA). The convergence of this
algorithm is very slow. Recently the Polyak method was introduced, which is
supposed to have better convergence qualities than MSA. With a small
modification of MSA some researchers have gained an enormous improvement in
velocity of calculation. For more detail about MSA and the Polyak method see
[1.2]-

The prototypical simple iterate averaging method is due to Robbins and
Monro [3.1]. Let R be the field of reals, and T(.):SR —> R be a map for which a

root x" is to be found (so that T(x*)= x"). Suppose that we are free to select the

points x* at which to evaluate T() during the iterative search for the root -
these are called the design points. However, each such evaluation returns a result
that is affected by noise: the result is T(x)=T(x)+8, where ¢ is a random zero-

mean noise vector.
Robbins and Monro proposed the following iterative procedure for choosing

the design points (x**"):
1 =x*+a* -T(x"'), with x° e R and k=1,2,3,..., (1.1)

with the design point x* , the evaluation T(x"') and where the sequence a® the

step size is.

It is characteristic of iterate averaging methods such as MSA that the
successive design points generated to explore the feasible space are also taken to
be the successive estimates of the fixed-point equation solution. This was noted
by Frees and Ruppert [5.3], who pointed out the potential advantages of using
one method to select the design points, and a different method to estimate the
solution. Use of a distinct method for each purpose could allow, on the one hand,
a more aggressive exploration of the feasible space and, on the other, a more
effective exploitation of the information generated during that exploration in
order to estimate a solution.

My tasks are the following:

The DTA model that is used by the Traffic section solves a complex variational
inequality problem. The solution of a complex variational inequality problem can
be found by solving iteratively a Non Linear Programming (NLP) problem. Solving
this NLP problem is at this moment done by a steepest descent technique, where

il

Introduction Chapter 1

the step size is calculated very simply, using the Method of Successive Averages
(MSA). This algorithm converges very slowly. Recently another technique was
proposed. It is called the Polyak method, which is supposed to have better
convergence qualities than MSA. For the Polyak method just a little is modified in
MSA that will lead to an enormous improvement in computation time. MSA and the
Polyak method are implemented as well as improving of the convergence of the
algorithm.

The three topics of this research of iterate averaging methods are:
e To find out how the Polyak method works and to implement the Polyak
method.
e To find out if the Polyak method convergences faster than the Method of
Successive Averages.
e To find out if there exist some alternative methods those are faster in
convergence than the Polyak method and MSA.
To find answers on these three topics the relevant literature is read, especially
‘Accelerated Averaging Methods for Fixed Point Problems in Transportation
Analysis and Planning’ by J. Bottom and I. Chabini. By reading these articles the
nature of the Polyak method is found out. When the Polyak method is
understood, the method is implemented (and also the Method of Successive
Averages is implemented) in the software package ‘Matlab version 6.0.0.88
release 12'. That was needed for analysing the convergence of the methods. After
the Polyak method is implemented, research for alternative methods is done,
such as the Bather method, the Bliemer method, the Bliemer Moving method, and
combinations of methods described in this report (the MSA-Bather method, the
MSA-Bliemer method and the Bliemer-Bather method). Finally, all the previous
described methods are compared and illustrations are given.
The research is done in the following way:
Given is the transport network prob/lem. Of this problem is made a mode/ (a DTA
model). To solve this model methods are considered. If a method is implemented
an algorithm is vested.

The structure of this report is as follows. In chapter 2 the DTA model is explained.
In this model an iterative stochastic algorithm is used to solve the fixed-point
problem. In chapter 3 the mathematical background of iterate averaging methods
is discussed. The topics discussed in chapter 3 are: simple iterate averaging
methods, convergence of iterate averaging methods, the stop criterion for DTA
algorithms and the step size for iterate averaging algorithms. In chapter 4 the
iterate averaging method of Robbins and Monro is shown and Sheffi and Powell’s
MSA is introduced. In chapter 5 the Polyak method and the Bather method are
described and numerical examples for both are given. In chapter 6 a research on
alternative methods is done and the Bliemer method, the Bliemer Moving
method, the MSA-Bather method, the MSA-Bliemer method and the Bliemer-
Bather method are introduced. Numerical examples for these methods are also
given in this chapter. In chapter 7 the methods are discussed and compared to
each other mathematically and computationally. In chapter 8 the conclusion is
drawn what the best iterate averaging method is for solving a transportation
network problem and recommendations for further research are given. The
implementation of the methods, as discussed in above-mentioned chapters, can
be found in the appendices.

Lt

Dynamic Traffic Assignment (DTA) model Chapter 2

2. Dynamic Traffic Assignment (DTA) model

To be able to make forecasts about future traffic conditions on transport
networks, to compare scenarios of different infrastructure investments, or to
estimate effects of traffic management measures, policy analysts rely on tools
such as a traffic assignment model. In order to satisfy the increasing demand for
more accurate model outcomes and to be able to compute the effects of different
traffic policies, new and improved traffic assignment models are needed. While
static traffic assignment models may provide basic insights, only dynamic
assignment models are able to capture the true dynamic nature of traffic and
therefore provide the analyst more accurate forecast. In the recent studies
Dynamic Traffic Assignment (DTA) models have gained increasing attention by
many researchers. In this chapter one of the DTA models is explained.

2.1 A common structure of DTA models
Most existing DTA models share a common structure. In the literature, this
common structure is often not explicitly stated in model formulation, but it can be
extracted from those models. This common structure can be viewed as a high-
level abstraction of the proposed modelling framework found in the work of Y. He
[2.1] or see M.C.]. Bliemer [1.1]. This common structure consists of the following
components:

1. a demand model

2. a supply model

3. a supply/demand interaction mechanism
This structure is depicted in figure 2.1.

Demand J Supply/Demand |, Supply
Model Interaction Maodel

Network
Conditions
Figure 2.1: A common structure of DTA models

The demand model component represents the demand for the transportation
system. The demand is usually given by a set of time-dependent Origin-
Destination (OD) flows and path flows. The set of OD flows and path flows
generated by the demand model often satisfy certain conditions such as system
optimal and user optimal conditions. It should be noted that these two optimal
conditions do not generally coincide. To achieve a system optimum, users must
behave according to the system optimal conditions instead of following their own
behaviours such as departure time choice, mode choice and route choice. On the
other hand, if the demand model represents users’ behaviours, a user optimum is
attained.

The supply model represents the network and the flow progression in the
network. A network is described as a directed and connected graph consisting of
links and nodes and travel costs are associated with each link. The supply model
generates the network performance in response to a given demand.

Dynamic Traffic Assignment (DTA) model Chapter 2

The supply/demand interaction mechanism represents how the supply
model and the demand model interact. The interaction produces certain network
conditions such as link or path flows and link or path travel times. The network
conditions must satisfy both the demand model and the supply model.

2.2 A framework for the DTA model
A modelling framework for the DTA problem by Y. He [2.1] or M.C.]. Bliemer
[1.1] is shown in figure 2.2. The framework contains the following components:

1. a users’ behaviour model component

2. a dynamic network loading model component

3. a link performance model component

"Z gt e,
il Uv;namir:\\l

:_0-D Trigs_/

N 4

Users' Bshaviar Model &

path gosts

N

path flows

€ ‘ Link-2azed
i |Network Loading odel Time-Degendent
i T : Network Condition

L
i
¥
:
1
b
1
i
i

£ Link Performanti MOe! Jewems s e smmsmmmene

Figure 2.2: A Framework for DTA models

The users’ behaviour model component takes as input the dynamic OD trips and a
subset of paths between each OD pair. The dynamic OD trips are the time-
dependent traffic demand for each OD pair. In the continuous time horizon, the
dynamic OD trips are given as departure flow rates at each origin and each time
instant. In discrete time representation, they are given as number of trips during
a time interval. These dynamic OD trips can be predicted and are treated in the
DTA model as input.

The subset of paths between each OD pair is assumed to be the set of
routes, which the users choose when they depart from their origins. These
subsets of paths can be dynamically augmented by using a path generation
module based on certain criteria. The users’ behaviour model component assigns
the dynamic OD trips among the subset of paths according to the users’ route
choice behaviours. This results in a set of time-dependent path flows.

The network loading model takes the path flows from the users’ behaviour
model as input and uses link performance models to generate the resulting link-
based network conditions such as time-dependent link volumes and link travel
times. The link-based network conditions serve two purposes. Firstly, they are
used to compute path travel times. The path travel times are then used by the
users’ behaviour model to assign OD trips. Secondly, the network conditions are

I

1l

Dynamic Traffic Assignment (DTA) model Chapter 2

input to the path generation module to come up with a subset of hew paths for
each OD pair.

The proposed framework has a modularised structure and the components
interrelate through specified inputs and outputs. The framework provides
flexibility in both model formulations and computer implementations because one
model can be changed without affecting others.

The users’ behaviour model corresponds to the demand model in the
common structure, the dynamic network loading model and link performance
model together correspond to the supply model. The interaction between the
three model components in the framework represents a supply/demand
interaction mechanism.

2.3 Solution algorithm for the DTA model

An iterative process is needed to solve the DTA model. This is because network
conditions may change after performing network loading. This results in a set of
new path travel times and thus a set of new path flows. The set of new path flows
is not necessarily equal to the set of path flows used in the previous network
loading procedure.

The idea of the solution algorithm is to find a solution to the DTA model by
an iterative process on path flows/costs or on unit flows/times. At all the
iterations, the path flows/costs or the unit flows/times are updated by combining
the results from the current iteration with the previous iteration. The ‘Method of
Successive Averages’ (see chapter 4) is used to update path flows/costs or unit
flows/times. The DTA algorithm with MSA included is outlined by Y. He [2.1] or
M.C.J. Bliemer [1.1] in figure 2.3.

Step O(Initiglisation):
o K = maximum number of iterations.

e Compute initial path flows {T;‘ m(r)} from free-flow path

travel times.
o k=1,

Step 1 (Main loop):
s Perfarm dynamic network loading procedure.

« Compute auxiliary path lows g;s (r) by the route choice algorithim.
s Update path flows:

T (=1 (04 o) [()77 (1) e

Step 2 (Stop criterion):
If k = K, then stop, else k=k+1 and go to step 1.

Figure 2.3: The DTA algorithm with MSA included

)

—

Dynamic Traffic Assignment (DTA) model Chapter 2

Explanation of the variables and functions used in the DTA algorithm with MSA
included (figure 2.3):

rs®) -
o Tp A (t): calculated path flow rate on path p from origin r toward
destination s at time ¢ in iteration k
e g, (t): auxiliary path flow for path p from origin r toward destination s
starting at time ¢

adjustment parameter with value between zero and one in
iteration k

AR

For the implementation and examination of the different iterative averaging
methods the DTA model is used (see figure 2.3). The stop criterion in figure 2.3 is
a simple to implement stop criterion. Different kinds of stop criterions are
discussed in section 3.3 and one of them is chosen for implementation.

s

Mathematical background of iterate averaging methods Chapter 3

3. Mathematical background of iterate
averaging methods

Many important problems in transportation analysis and planning can be formulated
as fixed-point problems; the fixed-point property generally translates a consistency
constraint on model solutions such as, for example, equilibrium between the supply
and demand relationships. Because of the typically large size of problem instances in
transportation applications, the frequent absence of analytical forms for some of the
involved maps, and the prevalent use of probabilistic maps requiring stochastic
sampling or simulation methods for evaluation, ‘classical’ (e.g., derivative-based)
fixed-point solution methods are often inappropriate for these problems. In such
cases, the fixed-points are usually computed using one of the iterate averaging
methods introduced by Robbins and Monro [3.1]. The Method of Successive
Averages (MSA) was introduced by Sheffi and Powell [3.2] is probably the best-
known and most widely-used instance in the transportation field (see also [3.3]).
This chapter will be an introduction to iterate averaging methods and the
mathematical background (like convergence, stop criterions and step sizes).

3.1 Simple iterate averaging methods
The prototypical simple iterate averaging method is due to Robbins and Monro [3.1].

Let R be the field of reals, and T(): R — R be a map for which a root x* is to be
found (so that T(x*)= x"). Suppose that we are free to select the successive points

x* at which to evaluate T() during the iterative search for the root - these are
called the design points. However, each such evaluation returns a result that is
affected by noise: the result is T(x)= T(x)+8, where ¢ is a random zero-mean noise

vector.
Robbins and Monro proposed the following iterative procedure for choosing

the design points (x**)

X = xk 4ot T(x*), with x° e R and k=1,2,3,... (3.1)

with the design point xk, the evaluation T(xk) and where the sequence at s
chosen so that the summability conditions are given in (3.2) and (3.3):

> a* diverges, (3.2)
k

Z(ak)2 converges. (3.3)

k

It is proved that under mild conditions the sequence x* generated by this procedure
converges in probability to a root x” of T. Blum [3.4][3.5] extended this result under
more stringent conditions to multidimensional maps. T():R" — R" and almost sure
(a.s.) convergence. Clearly, these methods can find the fixed-point of a noisy map

il

Mathematical background of iterate averaging methods Chapter 3

by applying them to solve for the root of the transformed map [T—[](.); the
procedure is then:

2 =x% 4 ¥ -[T(x")—x"J, with x° e R" and k=1,2,3,.... (3.4)
It is possible to write (3.4) in another way:

x* = (l—ak)-xk +af -T(xk), with x° e R" and k=1,2,3,.... (3.5)

3.2 Convergence of iterate averaging methods

Since the work of Robbins and Monro, much effort has been devoted to
understanding and improving the convergence properties of iterate averaging
methods. Because of the noise affecting the map evaluations, general discussion of
the convergence behaviour of these algorithms is frequently expressed in terms of
the statistical properties of the fixed-point estimate. The asymptotic distribution of

k-x* —x* was derived for certain classes of problems, and from this a formula for

determining the optimal (i.e., asymptotic variance minimising) step size sequence o*
was obtained; unfortunately, it depends on generally unknowable quantities such as

the value of the fixed point x" itself. However, these results provide bounds against
which the performance of other methods can be compared. The convergence of MSA,
the Polyak method and the Bather method are discussed below.

For MSA (section 4.1) the convergence properties are typically disappointing:
while it exhibits generally effective performance in the initial iterations, this is
followed by a pronounced ‘tail’ effect, resulting in overall slow convergence.

For the Polyak method Polyak [3.6] and Polyak and Juditsky [3.7] showed

that if ¢ =0 more slowly than MSA rate (specially, if), then the resulting

asymptotic distribution of k-+/x* —x* attains the minimum possible variance. The

larger step sizes tend to prevent the algorithm from getting stuck at an early stage,
while the off-line averaging takes care of the increased noise that the larger step

k)’ then the

asymptotic behaviour of mean is no better than the design points and can be worse
in the sense of rate of convergence. Remarkably, therefore, this easy-to-implement
procedure equals or surpasses the theoretical asymptotic performance of any
possible iterate averaging method.

Schwabe and Walk [3.8] have shown that the Bather method has the same
asymptotically optimal convergence properties as the Polyak method (i.e., it
converges to a solution with minimal asymptotic variance), but that it may be less
sensitive to the choice of initial value; consequently, it may exhibit superior
properties for small numbers of iterations.

sizes produce. It has been known for a long time that if a* :O(1

3.3 Stop criterion for DTA algorithms

For stopping the DTA algorithm there are several possibilities.

1. One of them is already shown in figure 2.3. After K iterations the DTA algorithm is
stopped (3.6).

If k = K then stop. (3.6)

Al

Mathematical background of iterate averaging methods Chapter 3

2. The Equilibrium State is reached if the solution does not change anymore. A
second possibility for a stop criterion is shown in (3.7).

ot .
If 1-¢ <—"—<1+¢ Vi,r then stop, with € small enough. (3.7)
ir
3. We want to achieve an Equilibrium State, using the DTA algorithm. This
Equilibrium State is reached if the costs of one route are the same as the costs of

the other route (¢, =c,, Vt) or if the route costs are not the same all the traffic
should chose the cheapest route.

< & Yt,r then stop, with € small enough. (3.8)

If gap = ‘c,,_ =

4. Define the normalised duality gap (ng) as:

) Z Z |min {c,,. }— &,

We stop is ng < g, with € small enough. This stop criterion is used for solving the
small traffic problem, because this criterion explains the best the state we want
to achieve (explained in more detail in subsection 4.1.1, with four time periods
and two routes).

' xtr

ng (3.9)

Explanation of the variables used in the stop criteria:
c,: the route cost c of route rin time period ¢t

"

x_: the route flow x of route r in time period ¢

tr

3.4 Step size for iterate averaging algorithms

The difficulty of selecting a good step size sequence {ak} has been a serious
handicap in applications. In a fundamental paper, Polyak and Juditsky [3.7] showed

i 1 k)
that if o goes to zero slower than O(%), the averaged sequence ;-Zx’
i=1

converges to its limit at an optimum rate. This result implies that we should use
larger than usual gains and let the off-line averaging take care of the increased noise
effects (due to the larger step size), with substantial overall improvement. The basic
stochastic approximation algorithm tends to be more robust with a larger step size,
therefore it is less likely to get stuck at an early stage and more likely to have a
faster initial convergence.

The usual idea is to select the step sizes in such a way that an appropriate
measure of the rate of convergence is maximised. Typically, the step sizes are
required to be chosen as

a* =p-k™”, with 0.5<B<1 and p>0, (3.10)

J0

1

Mathematical background of iterate averaging methods Chapter 3

so that a* is sufficiently small for k=1,2,3,...; this is sufficient to allow the algorithm
to converge beginning in an arbitrary starting point, while ensuring that the variance
of the successive iterates decreases to zero so that the sequence converges to a
single value.

3.4.1 Step size illustration

The step size changes of MSA, the Polyak method and the Bather method are
illustrated in figure 3.1. These step sizes are used when the numerical example in
subsection 4.1.1. is solved.

09 :

0.8 .

step size
0 2 8 o o
(%) E=N n m =~
1 1 1 1

o
[N

0.1

150 200 250
number of iterations

= M4

= Polyak

= Bather

Figure 3.1: The step sizes of MSA, the Polyak method and the Bather method at increasing
number of iterations

p B
MSA 1.00 1.00

Polyak [1.00 0.70

Bather | 1.00 0.62
Table 3.1: Parameters of the step sizes of MSA, the Polyak method and the Bather method
(see (3.10)).

10

o | S B o =1 =3 — 1 — 1 | | o B I

Mathematical background of iterate averaging methods Chapter 3

In figure 3.1 it can be seen that the step sizes of the Bather method go slower to
zero than the step sizes of the Polyak method. The step sizes of these two methods
go both slower to zero than the step sizes of MSA. MSA has reached the stop criterion
after 190 iterations, the Polyak method has reached the stop criterion after 226
iterations and the Bather method has reached the stop criterion after 118 iterations.

11

Al

Method of Successive Averages (MSA) Chapter 4

4. Method of Successive Averages (MSA)

The Method of Successive Averages (MSA) has the advantages of avoiding
(potentially expensive) step size calculations, working directly with map outputs
without requiring derivative calculations or other transformations, and being able
to handle ‘noisy’ map evaluations (where the evaluation returns a value affected
by a zero-mean disturbance). In many cases, however, the method’s empirically
observed convergence properties are disappointing: while it exhibits generally
effective performance in the initial iterations, this is followed by a pronounced
‘tail’ effect, resulting in overall slow convergence.

In this chapter MSA is explained and an example of solving a
transportation problem using MSA is given.

4.1 The Method of Successive Averages

The classical application of iterate averaging to a transportation problem is
introduced by Sheffi and Powell [3.2], who used it to minimise a twice
continuously differentiable functional (the objective function of the unconstrained
convex optimisation formulation of the Stochastic User Equilibrium problem). In

their application, the function T() provided a noisy descent direction while the
stochastic potential function was provided by the objective function itself.

Although any step size sequence o satisfying the summability conditions (3.2)
and (3.3) (section 3.1) could be used in an iterate averaging method, a particular

sequence ak :%c (formule (3.10) with p=1 and B=1) was proposed by Sheffi

and Powell [3.2] as the basis for their solution algorithm for the static stochastic
user equilibrium problem. Because each successive design point generated by this
method is the average of the preceding map evaluation results, they called this
MSA (see (4.1)).

™ =x" +a* -[T(x")—xkj, x’ e R” and k=1,2,3,.... (4.1)

ot :y, k=1,2,3, 0 (4.2)

MSA is attractive because it inherits the robust convergence properties of iterate
averaging methods while requiring only a trivial step size calculation.

MSA has been applied to a wide variety of problems that arise in
transportation analysis and planning. In some applications, it can be rigorously
proven to converge to a fixed-point, whereas in others it is used as a heuristic
that has been found to give good results in practice. It avoids (potentially
expensive) step size calculations, and it works directly with model outputs
without requiring derivative calculations or other transformations.

As an example, Cascetta and Postorino [4.2] observed that in MSA an
iteration’s estimate is affected by the results from all prior iterations, including
those from early iterations that are presumably far from the solution.
Furthermore, later iterations, which are presumably closer to the solution, receive
smaller weights when computing a new estimate.

12

| - ! I | TS TS [

Method of Successive Averages (MSA) Chapter 4

4.1.1 A numerical example of MSA

To illustrate MSA, and also the next algorithms that are described in this report a
small example is given. There are three cities and three links connecting these
cities (see figure 4.1). Link 1 forms route 1 and link 2 and link 3 form together
route 2. Travellers want to travel from A to B and want to take the cheapest
route. Four time periods are considered. For each time period there is a demand
d (4.2).

d=[15 20 15 20] (4.3)

The route costs of two routes are computed by the costs of the links. Each link
has costs c:

¢c=1+0.01-u>+0.01-v* (4.4)

Where u is the number of travellers entering the road and v is the density on the
road.

& B

[

Figure 4.1: The cities and routes of the small problem described

The results of MSA after 100.000 iterations are shown in table 4.1. In the first
column the route costs and number of travellers in the attained Equilibrium State
of route 1 are shown and in the second column the route costs and number of
travellers in the attained Equilibrium State of route 2 are shown.

MSA
time periods | route 1 | route 2
route costs
1 2,2750 2,2750
2 3,5915 | 3,5915
3 6,2796 | 6,2795
s 7;1277 7,5794
route flows
1 11,2917 | 3,7083
2 11,4736 8,5264
3 3,1140 | 11,8860
4 19,9992 | 0,0008

Table 4.1: Route costs and flows of the problem solved with MSA in the DTA algorithm.

Now the stop criterion is set to 0.001 and MSA is taken to solve the previous
described problem. The outcomes are given in figure 4.2 and table 4.1.

13

Method of Successive Averages (MSA) Chapter 4

0.2] ; : . — . ; . ;
018k J
016}]
0.14F -

012 r &

norm gap

0.08 (

0.06 | -1

- V',\j‘ ||\)

0.02 L-”-f"-, i _
G l"\,xﬁhll“.\‘.-""l’;.._,:\ i h
1

SANY AN AR A
A ", -
" | . { ‘4——#"\/\1[,—:\4 \u'\,—.l\/"_,M/\.’_’\.-"._T_—_-’.",“‘.H‘,w%-/\\._,'\,"\-w"'\a\-f—/'v\/\

0 20 40 60 a0 100 120 140 160 180
number of iterations

= ME4

Figure 4.2: The normalised duality gap value with increasing number of iterations when
the problem is solved with MSA in the DTA algorithm

MSA
time periods | route 1 | route 2
route costs
-1 2,2745 2,2754
2 3,5910 3,5916
3 6,2813 6,2587
4 6,9742 | 7,5529
route flows
1 11,2895 3,7105
2 11,4737 8,5263
3 3,1579] 11,8421
4 19,5789 | 0,4211

Table 4.2: Route costs and flows of the problem solved with MSA in the DTA algorithm. The
stop criterion is set to 0.001 (see figure 4.2).

| stop criterion | 0.001]
Tabel 4.3: If de ng is smaller than de stop criterion the algorithm is stopped.

14

Method of Successive Averages (MSA) Chapter 4

The normalised gap value for every iteration step of the solution algorithm is
shown in figure 4.2. The normalised gap goes to zero and when the normalised
gap is smaller than the stop criterion the program stops. MSA requires 190
iterations to reach the stop criterion. The values of the route costs and flows of
the two routes are shown in table 4.1. The first column shows the route costs and
number of travellers in the Equilibrium State of route 1 while the second column
shows the route costs and number of travellers in the Equilibrium State of route
2. It appears that the route costs of the first three time periods are almost
identical. In the fourth time period the route costs differ substantially. This is
caused by the fact that the value for the most expensive route in the last time
period in the equilibrium goes to zero.

15

Polyak and Bather methods Chapter 5

5. Polyak and Bather methods

5.1 Introduction to the Polyak and Bather method

Approximately ten years ago, Polyak [5.1] and Bather [5.2] proposed two
relatively minor modifications of the iterate averaging method which were
rigorously shown to produce fixed-point estimates with asymptotically optimal
properties. These ‘accelerated’ methods have not been widely discussed in the
transportation literature. However, in initial computational experiments where the
Polyak method was applied to the DTA model and the anticipatory route guidance
generation problems, the method often exhibited convergence rates four or more
times faster than MSA [1.2]. In view of their attractive theoretical properties and
these encouraging preliminary empirical results, the two methods would seem to
merit serious consideration by the transportation community.

It is characteristic of iterate averaging that the design points generated by
successive iterations of the algorithm are also taken to be the successive
estimates of the equation solution. This was also noted by Frees and Ruppert
[5.3], who pointed out the advantages of using one method to select the design
points, and a different method to estimate the solution. Use of methods adapted
to each purpose could allow, for example, a more aggressive exploration of the
feasible space and a more effective exploitation of the results generated during
that exploration to estimate a solution. One family of methods that exploits this
idea is called iterate averaging.

5.2 The Polyak method
The Polyak method is a two-pass method. The first pass resembles MSA except
that the step sizes are larger; this allows the algorithm to explore the solution
space more aggressively but leads to greater variability in the outputs. The
second pass is carried out offline (i.e., without influencing the first pass); it
calculates an average of iterates that are generated by the first pass. The
average calculated by the second pass at termination is the fixed-point solution
estimate.

One method that implements this idea is due to Polyak [5.1]. Let the
equation

¥ = 2% 4 " ~lT(x")—ka, with x° e R" and k=1,2,3,.... (5.1)

be a simple averaging process and suppose that the process converges to a fixed-

point x". In the Polyak method one also computes, ‘in parallel’ with and
independently of the simple averaging process, a running average of the design

points x* thatis generated, say

_/L

, with x* e R"” and k=1,2,3,.... (5.2)

M»

l
k

=k
The sequence x also converges to the limit x".

16

Il

Polyak and Bather methods Chapter 5

5.2.1 A numerical example of the Polyak method

The traffic problem with three cities and two routes described in subsection 4.1.1.
is considered. In the Polyak method the adjustment parameter & is computed as
follows:

a*=p k7, (5.3)

where k is the number of iterations, p can be chosen between values of 0.5 and
1.0 and p>0. In the rest of this report p will be one. Figure 5.1 shows the number
of iterations with which the problem is solved using the Polyak method for a given
value of B. Therefore, the best value for B can be chosen for the calculation.
According to figure 5.1 the best value for B is 0.70.

?DD T T T T T T T T T

600

e
Qo
o
T
\
1

W8]
o
(=]
T
\I
I|
3
|

number of iterations
\,

200 .

100 -

D 1 1 1 1 1 1 1
05 0.55 0B 0.65 0.7 0.75 na 0.85 09 0.95 1
beta

Figure 5.1: Required number of iterations for the Polyak method for given values of

| stop criterion | 0.001 |
Tabel 5.1: If de ng is smaller than de stop criterion the algorithm is stopped.

To solve the given assignment problem using the Polyak method, the stop
criterion is set to 0.001, p to 1 and B to 0.70. The outcomes are given in figure
5.2 and table 5.2.

17

B

Al

-

Polyak and Bather methods

Chapter 5

0.2

0.18 H

0.16 1

0.14

0.12

01,

norm gap

008 H |

sl |
ooal |

0.02

; SN - -

Falwak

100
number of iterations

150 200

Figure 5.2: The normalised duality gap value with increasing number of iterations when
the problem is solved with the Polyak method in the DTA algorithm

Polyak

time periods

route 1 | route 2

stop criterion

0.001

route costs

p

0.70

1 2,2515 | 2,2908
2 3,5795| 3,5823
3 6,2558 | 6,2553
4 7,0240 | 7,5502
route flows
1 11,1871 | 3,8129
2 11,5238 | 8,4762
3 3,1291 | 11,8709
4 19,6898 | 0,3102

Tabel 5.3: Variables used for figure 5.2.

Table 5.2: Route costs and flows of the problem solved with the Polyak method in the DTA
algorithm (see figure 5.2).

The normalised gap value for every iteration of the solution algorithm is shown in
figure 5.2. The normalised gap goes to zero and when the normalised gap is
smaller than the stop criterion the program stops. The Polyak method requires
226 iterations to reach the stop criterion. The values of the route costs and flows
of the two routes are shown in table 5.1. The first column shows the route costs
and number of travellers in the Equilibrium State of route 1 while the second
column the route costs and number of travellers in the Equilibrium State of route

18

ALl

Polyak and Bather methods Chapter 5

2 shows. It appears that the route costs of the first three time periods are almost
identical. In the fourth time period the route costs differ. This is caused by the
fact that the value for the most expensive route in the last time period in the
equilibrium goes to zero.

5.3 The Bather method

A somewhat different approach was proposed by Bather [5.2]. Here, the design
point in each iteration is derived from a combination of the average of previous
design points with the average of previous evaluation results:

3 =~k . =k
M =x —k-af '(Tk -x), with x° e R" and k=1,2,3,..., (5.4)

a* = p-k™”, with 0.5<B<1 and p>0, (5.5)

=k
where x is as before, the running average of the design points (x") selected in
previous iterations, while

k
F= 157G), with x° e R" and k=1,2,3,..., 5.6
T %; (x) with x° e an . (5.6)

is the running average of the corresponding function evaluation results minus the
running average of the design points. As in the Polyak method, the function

evaluations are made at the design points (xk) while the fixed point is estimated

—ik
by x . Since,

(k+1)>_clc+1 —k-x +xH, (5.7)

Bather’s recursion can also be expressed as

—k+ ~k . =

x : =X +kk_'_1-05’c ~(r" -X), with x° e R" and k=1,2,3;...y (5.8)

a’ =p-k™, with 0.5<p<1 and p>0, (5.9)
k

= %ZT()C’), with x° e R" and k=1,2,3,..., (5.10)

thus it resembles the basic Robbins-Monro procedure with the design points
replaced by their averages.

19

Polyak and Bather methods Chapter 5

5.3.1 A numerical example of the Bather method
The traffic problem with three cities and two routes described in subsection 4.1.1.
is considered. In the Bather method the adjustment parameter ¢ is computed as

follows:
a’k=p~k-ﬂ, (5.11)

where k is the number of iterations and b can be chosen between values of 0.5
and 1.0. Figure 5.3 shows the required number of iterations in which the problem
is solved using the Bather method for given values of B (and p=1). Therefore, the
best value for pcan be chosen. According to figure 5.3 the best value for Bis
0.62.

BDD T T T T T T T I T

600 - [

500

a0t 1

number of iterations

(4]
()
o
T
-,
1

200 , .

100 =

| | 1 1

U 1 1 1 1 1
0.5 0.55 0.6 0.65 0.7 0.75 08 0.85 0.3 0.95 1
beta

= Bather

Figure 5.3: Required number of iterations for the Bather method for given values of 3

| stop criterion | 0.001 |
Tabel 5.4: If de ng is smaller than de stop criterion the algorithm is stopped.

To solve the given assignment traffic problem using the Bather method, the stop
criterion is set to 0.001, p to 1 and B to 0.62. The outcomes are given in figure
5.4 and table 5.5.

20

Polyak and Bather methods

Chapter 5

01k

narm gap

0.08 -

0.06

0.04

0.02

(!
|‘|

N,

—)z

 —

= Bather

60

number of iterations

Figure 5.4: The normalised duality gap value with increasing number of iterations when

Bather

time periods

route 1 Lroute 2

route costs

1 2,2710 | 2,2777
2 3,5888 | 3,5908
3 6,2752 | 6,2693
4 6,9636 | 7,5677
route flows
1 11,2740 | 3,7260
2 11,4794 | 8,5205
3 3,1313 | 11,8687
4 19,5674 0,4326

the problem is solved with the Bather method in the DTA algorithm

stop criterion

0.001

B

0.62

Tabel 5.6: Variables used for figure 5.4.

Table 5.5: Route costs and flows of the problem solved with the Bather method in the DTA
algorithm (see figure 5.4).

21

dul

Ll

Polyak and Bather methods Chapter 5

The normalised gap value for every iteration of the solution algorithm is shown in
figure 5.4. The normalised gap goes to zero. When the normalised gap is smaller
than the stop criterion the program is stopped. The Bather method requires 112
iterations to reach the stop criterion. The values of the route costs and flows of
the two routes are shown in table 5.5. The first column shows the route costs and
number of travellers in the Equilibrium State of route 1 while the second column
shows the route costs and number of travellers in the Equilibrium State of route
2. It appears that the route costs of the first three time periods are almost
identical. In the fourth time period the route costs differ. This is caused by the
fact that the value for the most expensive route in the last time period in the
equilibrium goes to zero.

22

AL

Alternative methods Chapter 6

6. Alternative methods

In this chapter two new methods are introduced. The Bliemer method is proposed
by Dr. M.C.]. Bliemer and after that the Bliemer Moving method is proposed by
R.T.]J. Hiele. The other alternative methods introduced in this chapter are
combinations of earlier introduced methods.

6.1 The Bliemer method
Let

= x* 4 ot -[T(x")—x"J, with x° € R" and k=1,2,3,.... (6.1)

be a simple averaging process and suppose that the process converges to a fixed

point x". In the Polyak method one also computes, ‘in parallel’ with and
independently of the simple averaging process, a running average of the design
points (xk) that is generated, say

—k

k
x =—->» x', with x* e R" and k=1,2,3,.... (6.2)

3
k i=1

The Bliemer method is almost the same as the Polyak method, with the difference
that the observations (T(.)) are evaluated in the average of the previous design

—k
points (x) and not at the previous design point(xk):
2 2 —k 1
' =x* + ot -lT(x)—x"J, with x° e R" and k=1,2,3,.... (6.3)

a* =p-k™?, with p>0, 0.5<p<1.0 and k=1,2,3,.... (6.4)

23

-

Alternative methods Chapter 6

6.1.1 A numerical example of the Bliemer method

The traffic problem with three cities and two routes described in subsection 4.1.1.
is considered. In figure 6.1 the number of iterations in which the problem is
solved using the Bliemer method is expanded against B. In this way, the best
for the calculation can be found. According to figure 6.1 the best value for B is
0.54.

700

L o n o
o] o [o
c o = o
T T T T
1 1 1 1

nurber of iterations

A

-]

=]
T

1

D 1 1 1 1
05 058 06 0B 07 075 08 08 09 09 1
beta

- Bligmer

Figure 6.1: Required number of iterations for the Bliemer method for given values of ,B

| stop criterion [0.001 |
Tabel 6.1: If de ng is smaller than de stop criterion the algorithm is stopped.

To solve the given traffic problem using the Bliemer method the stop criterion is
set to 0.001, p to 1 and B to 0.54. The outcomes are given in figure 6.2 and table
6.2.

24

Alternative methods

Chapter 6

02

0.18

0.16

0.14

0.12

0.1

norm gap

0.08

0.06

0.04

0.02

T

T

number of iterations

- Bliemer

Figure 6.2: The normalised gap value with increasing number of iterations when the

problem is solved with the Bliemer method in the DTA algorithm

Bliemer
time periods | route 1 | route 2 | |stop criterion | 0.001
route costs B 0.54
1 2,2748 | 2,2752 | Tabel 6.3: Values of the variables used for
2 3,5917 | 3,5910 | flgure 6.2
3 6,2803 | 6,2760
4 6,9426 | 7,5769
“route flows
1 11,2909 | 3,7091
2 11,4753 | 88,5247
3 3,1203 | 11,8797
4 19,5251 | 0,4749

Table 6.2: Route costs and flows of the problem solved with the Bliemer method in the DTA

algorithm (see figure 6.2).

The normalised gap value for every iteration of the solution algorithm is shown in
figure 6.2. The normalised gap goes to zero and when the normalised gap is
smaller than the stop criterion the program is stopped. Using the Bliemer method
there are 118 iterations needed to reach the stop criterion. The values of the
route costs and the values of the equilibrium of the two routes are shown in table

6. 1.

In the first column the route costs and number of travellers in the

Equilibrium State of route 1 are shown and in the second column the route costs

25

Alternative methods Chapter 6

and number of travellers in the Equilibrium State of route 2 are shown. It appears
that the route costs of the first three time periods are almost identical. In the
fourth time period the route costs differ. This is caused by the fact that the value
for the most expensive route in the last time period in the equilibrium goes to
zero.

6.2 The Bliemer Moving method
The Bliemer Moving method is almost the same as the Bliemer method (section
6.1). The Bliemer Moving method is the Bliemer method with a moving average:

2 ey e -[T(fck>—x’“J, with x° € R" and k=1,2,3,..., (6.5)
S J i : 0 n

% =Ali=k_zMic] , with x” e R" and k=1,2,3,..,, (6.6)
a* = p-k™, with p>0, 0.5<B<1.0 and k=1,2,3,.... (6.7)

where M is a fixed constant.

26

Alternative methods Chapter 6

6.2.1 A numerical example of the Bliemer Moving method

The traffic problem with three cities and two routes described in subsection 4.1.1.
is considered. In figure 6.3 the number of iterations in which the problem is
solved using the Bliemer Moving method with moving equal to 30 is expanded
against B. M is the number of design points taken for the moving average.
Therefore, the best value for B can be chosen for the calculation. According to
figure 6.3 the best value for B is 0.54 (or 0.55 or 0.56).

1 D[:":I ‘ T ‘ T T T T T T T T

300

~]

[}

O
T

ny]
[
o
T
1

500 - .

400

number of iterations

300 .

200 .

100
L]
1 1 1

1 1
5 068 0B 0B 07 075 08 08 05 085 1
heta

o2

- Bliemer Mowing

Figure 6.3: Required number of iterations for the Bliemer Moving method for given values

of

stop criterion | 0.001

moving 30
Tabel 6.4: Values of the variables used for figure 6.3.

To solve the given traffic problem using the Bliemer Moving method the stop
criterion is set to 0.001, p to 1 and B to 0.54. The outcomes are given in figure
6.4 and table 6.5.

27

Alternative methods

Chapter 6

0.2

0.18

0.16

0.14

0.12

0.1

narm gap

0.08

0.06

0.04 -

002

1
20
number of iterations

Bliemer Mowing

Figure 6.4: The normalised gap value with increasing number of iterations when the

problem is solved with the Bliemer Moving method in the DTA algorithm

Bliemer Moving |
time periods | route 1 | route 2 | |stop criterion | 0.001
route costs B 0.54
1 2,2740 | 2,2757 | | moving 30
2 3,5943 | 3,5861 | Tabel 6.6: Values of the variables used for
3 6,2871 | 6,2594 | figure 6.4.
4 7,1123 | 7,5530
route flows
1 11,2872 | 3,7128
2 11,4905 | 8,5095
3 3,1443 | 11,8557
4 19,9261 | 0,0739

Table 6.5: Route costs and flows of the problem solved with the Bliemer Moving method in

the DTA algorithm (see figure

6.4).

The normalised gap for every iteration of the solution algorithm is shown in figure
6.4. The normalised gap goes to zero and when the normalised gap is smaller
than the stop criterion the program is stopped. Using the Bliemer Moving method
there are 40 iterations needed to reach the stop criterion. The values of the route
costs and flows of the two routes are shown in table 6.5. In the first column the
route costs and number of travellers in the Equilibrium State of route 1 are shown
and in the second column the route costs and number of travellers in the

28

Alternative methods Chapter 6

Equilibrium State of route 2 are shown. It appears that the route costs of the first
three time periods are almost identical. In the fourth time period the route costs
differ. This is caused by the fact that the value for the most expensive route in
the last time period in the equilibrium goes to zero. Observe that the flow on
route 2 in the last time period is much closer to zero when the Bliemer Moving
method is used. The Bliemer Moving algorithm makes sure that bad design points
are omitted.

6.3 The MSA-Bliemer method

This method first starts with MSA (see section 4.1) and after a certain number of
iterations there is a switch to the Bliemer method (see section 6.1). This method
is derived from Kushner’s proposal. For more detail see [6.1].

6.3.1 A numerical example of the MSA-Bliemer method

The traffic problem with three cities and two routes described in subsection 4.1.1.
is considered. In the MSA-Bliemer method the adjustment parameter o is
computed as follows:

a*=p-k”, (6.8)

where k is the number of iterations and f can be chosen between values of 0.5
and 1.0. In figure 6.5 the number of iterations in which the problem is solved
using the MSA-Bliemer method with n-switch equal to 33 is expanded against .
Therefore, the best value for B can be chosen for the calculation. According to
figure 6.5 the best value for B is 0.54.

SUD T T T 1 T T T T T

450

400

350

300

250

200

number of iterations

150

100

50

1 | I 1 1 1

D 1 1 1 1
05 0B OB 05 07 075 08 08B 08 09 1
beta

Figure 6.5: Required Hl;mber of itefations for the MSA-Bliemer method for given values of

B

29

Alternative methods

Chapter 6

stop criterion

0.001

n-switch

33

Tabel 6.7: Values of the variables used for figure 6.5.

To solve the given traffic problem using the MSA-Bliemer method the stop
. criterion is set to 0.001, p to 1 and B to 0.54. The outcomes are given in figure

6.6 and table 6.8.

0.2

018

0.16

T

0.14

012

narm gap
o
T

0.08

0.06

0.04

0.02

1
30

1
40

number of iterations

70

Figure 6.6: The normalised gap value with increasing the number of iterations when the
problem is solved with the MSA-Bliemer method in the DTA algorithm

Table 6.8: Route costs and flows of the problem solved with the MSA-Bliemer method in

the DTA algorithm (see figure 6.6).

Tabel 6.9: Values of the variables used for

30

MSA- Bliemer
time periods | route 1 | route 2 stop criterion | 0.001
route costs B 0.54
1 2,2738 2,2758 | | n-switch 33
2 3,5909 3,5910
3 6,2790 | 6,2739 | flgure 6.6.
4 6,9825 7,5734
route flows
1 11,2863 3,7137
2 11,4764 | 8,5236
3 3,1238 | 11,8762
4 19,6236 0,3764

L

Alternative methods Chapter 6

The normalised gap value for every iteration of the solution algorithm is shown in
figure 6.6. The normalised gap goes to zero and when the normalised gap is
smaller than the stop criterion the program is stopped. Using the MSA-Bliemer
method there are 73 iterations needed to reach the stop criterion. The values of
the route costs and the values of the equilibrium of the two routes are shown in
table 6.8. In the first column the route costs and number of travellers in the
Equilibrium State of route 1 are shown and in the second column the route costs
and number of travellers in the Equilibrium State of route 2 are shown. It appears
that the route costs of the first three time periods are almost identical. In the
fourth time period the route costs differ. This is caused by the fact that the value

for the most expensive route in the last time period in the equilibrium goes to
zero.

6.4 The MSA-Bather method
This method first starts with MSA (see section 4.1) and after a certain humber of
iterations there is a switch to the Bather method (see section 5.3).

31

Alternative methods Chapter 6

6.4.1 A numerical example of the MSA-Bather method

The traffic problem with three cities and two routes described in subsection 4.1.1.
is considered. In the MSA-Bather method the adjustment parameter o is
computed as follows:

at=p-k7”*, (6.9)

where k is the number of iterations and 3 can be chosen between values of 0.5
and 1.0. In figure 6.7 the number of iterations in which the problem is solved
using the MSA-Bather method with n-switch equal to 10 is expanded against 3.
Therefore, the best value for B can be chosen for the calculation. According to
figure 6.7 the best value for is 0.67.

SDD T T T T T T T T T

450

T
(

400

350

T
—_—
|

300

280 -

nurmber of iterations

100 /\/‘/\/ -
50 F .
D 1 1 1 1 1 | 1 1 1
pDsE 055 0B 0B 07 075 08B 08B 09 055 1

beta

- [MSH-Bather

Figure: 6.7: Required number of iterations for the MSA-Bather method for given values of

B

stop criterion 0.001
n-switch 10
Tabel 6.10: Values of the variables used for figure 6.7.

To solve the given traffic problem using the MSA-Bather method the stop criterion
is set to 0.001, p to 1 and B to 0.67. The outcomes are given in figure 6.8 and
table 6.11.

32

i

Alternative methods Chapter 6

02 T T T T T T T

018 - -

0.16

0.14

0.12

norm gap
o}
T

0.08 -

0.06

0.04

0.02 -

] 5 10 15 20 25 30 35 40
number of iterations

- MS4-Bather

Figure 6.8: The normalised gap value with increasing number of iterations when the
problem is solved with the MSA-Bather method in the DTA algorithm

MSA- Bather
time periods | route 1 | route 2 | |stop criterion | 0.001
route costs B 0.67
1 2,2758 | 2,2745 | | n-switch 10
2 3,5901 | 3,5944 | Tabel 6.12: Values of the variables used for
3 6,2827 | 6,2383 | flgure 6.8.
4 7,0594 | 7,5234
route flows
1 11,2950 | 3,7050
2 11,4643 | 8,5357
3 3,2077 1 11,7923
4 19,7654 | 0,2346

Table 6.11: Route costs and flows of the problem solved with the MSA-Bather method in
the DTA algorithm (see figure 6.8).

The normalised gap value for every iteration of the solution algorithm is shown in
figure 6.8. The normalised gap goes to zero and when the normalised gap is
smaller than the stop criterion the program is stopped. Using the MSA-Bather
method there are 40 iterations needed to reach the stop criterion. The values of
the route costs and flows of the two routes are shown in table 6.4. In the first
column the route costs and number of travellers in the Equilibrium State of route
1 are shown and in the second column the route costs and number of travellers in
the Equilibrium State of route 2 are shown. It appears that the route costs of the

33

Alternative methods Chapter 6

first three time periods are almost identical. In the fourth time period the route
costs differ. This is caused by the fact that the value for the most expenswe route
in the last time period in the equilibrium goes to zero.

6.5 The Bliemer-Bather method

This method first starts with the Bliemer method (see section 6.1) and after a
certain number of iterations there is a switch to the Bather method (see section
5.3).

6.5.1 A numerical example of the Bliemer-Bather method

The traffic problem with three cities and two routes described in subsection 4.1.1.
is considered. In the Bliemer-Bather method the adjustment parameter o is
computed as follows:

at=p-k*, (6.10)

where k is the number of iterations and B can be chosen between values of 0.5
and 1.0. In figure 6.9 the number of iterations in which the problem is solved
using the Bliemer-Bather method with n-switch equal to 13 is expanded against
B. Therefore, the best value for B can be chosen for the calculation. According to
figure 6.9 the best value for B is 0.61.

ADD T T T T T T 1 T T

350

T
1

300 ¢ |

numbher of iterations

J M
= (0]
[mm} [}
T T
=

————
! T

-~
n
(=]
T
. —
—_—
|
1

—
o
o]
T
—_—
.\'\-
—
5
E
1

.

0 L I
D5 0485 D0E6 DBs 07 075 08 085 09 085 1
beta

— Bliemer-Bather

Figure 6.9: Required number of iterations for the Bliemer-Bather method for given values

of

stop criterion 0.001

n-switch 13
Tabel 6.13: Values of the variables used for figure 6.9.

34

Alternative methods Chapter 6

To solve the given traffic problem using the Bliemer-Bather method the stop
criterion is set to 0.001, p to 1 and B to 0.61. The outcome can be found in figure
6.10 and table 6.14.

018 | -

0.16

014 ‘ i

012} & .
|‘)., .'I'
Y

norm gap
a
T
|

008+ -

0.06 L

T
g
|

0.04 Y .

002 N 4

0 5 10 15 20 25 30
number of iterations

= Bliemer-Bather

Figure 6.10: The normalised gap value with increasing number of iterations when the
problem is solved with the Bliemer-Bather method in the DTA algorithm

Bliemer- Bather
time periods | route 1 | route 2 | |stop criterion | 0.001
route costs B 0.61
1 2,2730 2,2763 | | n-switch 13
2 3,5911 3,5897 | Tabel 6.15: Values of the variables used for
3 6,2794 | 6,2728 | flgure 6.10.
4 7,0052 | 7,5717
route flows
i 11,2829 3,7171
2 11,4808 | 8,5192
3 3,1230 | 11,8770
4 19,6787 | 0,3213

Table 6.14: Route costs and flows of the problem solved with the Bliemer-Bather method
in the DTA algorithm (see figure 6.10).

35

T

Alternative methods Chapter 6

The normalised gap value for every iteration of the solution algorithm is shown in
figure 6.10. The normalised gap goes to zero and when the normalised gap is
smaller than the stop criterion the program is stopped. Using the Bliemer-Bather
method there are 31 iterations needed to reach the stop criterion. The values of
the route costs and flows of the two routes are shown in table 6.5. In the first
column the route costs and number of travellers in the Equilibrium State of route
1 are shown and in the second column the route costs and number of travellers in
the Equilibrium State of route 2 are shown. It appears that the route costs of the
first three time periods are almost identical. In the fourth time period the route
costs differ. This is caused by the fact that the value for the most expensive route
in the last time period in the equilibrium goes to zero.

36

Comparison of the previous described methods Chapter 7

7. Comparison of developed methods

In this chapter the various methods presented before (MSA, Polyak, Bather, Bliemer,
Bliemer Moving, MSA-Bliemer, MSA-Bather and Bliemer-Bather method) are
compared. First MSA will be compared with the Polyak method (section 7.1). In
section 7.2 the Polyak method will be compared with the Bather method. In section
7.3 the Bather method is compared with the Bliemer method and the Bliemer Moving
method. In chapter 6 combinations of method are made, such as the MSA-Bliemer
method (section 6.3), the MSA-Bather method (section 6.4) and the Bliemer-Bather
method (section 6.5). These methods will be compared in section 7.4. In section 7.5
all the methods are shown at decreasing values of the stop criterion.

7.1 Comparison of MSA and the Polyak method

The traffic problem with three cities and two routes described in subsection 4.1.1 is
also considered for comparison of the methods described in this report. To compare
MSA and the Polyak method the stop criterion is set to 0.001, p to 1 and the value of
B for the Polyak method is set to 0.70. The outcome can be found in figure 7.1 and
table 7.1.

0.2 T T T T

0.18 H -
0.16 .

0.14

012+ =

0.1

norm gap

0.08

T

 ————
———

| |

0.06 F '& L
N

0.04 -

0.02+ Sy
LAY
L:"}ﬂflbil‘l}'\ A

0 ‘]_‘_'— —h“‘mi"‘d'ﬁi\aﬂ—.a:m}»-m i VS S S P S "
0 50 100 150 200
number of iterations

o h;\

Figure 7.1: Comparison of the convergence of MSA and the Polyak method

37

il

Comparison of the previous described methods

Chapter 7

MSA Polyak
time periods route 1 | route 2 route 1 | route 2
route costs route costs
1 2,2745 2,2754 2,2515 2,2908
2 3,5910 3,5916 3,5795 3,5823
3 6,2813 6,2587 6,2558 6,2553
4 6,9742 | 7,5529 7,024 7,5502
route flows route flows
1 11,2895 | 3,7105 11,1871 | 3,8129
2 11,4737 | 8,5263 11,5238 | 8,4762
3 58,1579 11,8421 3,1291 11,8709
4 19,5789 | 0,4211 19,6898 | 0,3102

Table 7.1: Route costs and flows of the problem solved with MSA and the Polyak method in the
DTA algorithm (see figure 7.1).

stop criterion 0.001

B 0.70
Tabel 7.2: Variables used for figure 7.1.

After 190 iterations of MSA and after 226 iterations of the Polyak method the stop
criterion is reached. The values of the route costs and the values of the route flows
of the two routes for MSA and the Polyak method are shown in table 7.1. From table
7.1 one can see that the results are almost identical. In this case the Polyak method
is not faster than MSA.

7.2 Comparison of the Polyak and Bather method

The traffic problem with three cities and two routes described in subsection 4.1.1 is
also considered for the comparison of the methods described in this report. To
compare the Polyak method and the Bather method the stop criterion is set to 0.001,
p to 1, the value of 3 for the Polyak method is set to 0.70 and the value of 8 for the
Bather method is set to 0.62. The outcome can be found in figure 7.2 and table 7.3.

38

Lt .k

Jl

il

Comparison of the previous described methods Chapter 7

02 T T T T

0.18 H -

0.16

0.14 H E

012 H -

0.1+ -

norm gap

0.08 - | -

0.06

0.04

0.02

hlh N,
N

e W~ a
—~— O
0 T e ——

0 50 100 150 200
number of iterations

= Paolyak

- Bather

Figure 7.2: Comparison of the convergence of the Polyak method and the Bather method

Polyak Bather
time periods | route 1 | route 2 route 1 | route 2
route costs route costs
1 2,2515 | 2,2908 2,2710 | 2,2777
2 3,5795| 3,5823 3,5888 | 3,5908
3 6,2558 | 6,2553 6,2752 | 6,2693
4 7,0240 | 7,5502 6,9636 | 7,5677
route flows route flows
1 11,1871 | 3,8129 11,2740 | 3,7260
2 11,5238 | 8,4762 11,4794 | 8,5205
3 3,1291 | 11,8709 3,1313 | 11,8687
4 19,6898 | 0,3102 19,5674 | 0,4326

Table 7.3: Route costs and flows of the problem solved with the Polyak method and the Bather
method in the DTA algorithm (see figure 7.2).

stop criterion | 0.001
B (polyak) 0.70
B (bather) 0.62

Tabel 7.4: Variables used for figure 7.2.

39

Comparison of the previous described methods Chapter 7

After 226 iterations of the Polyak method and after 118 iterations of the Bather
method the stop criterion is reached. The values of the route costs and the values of
the route flows of the two routes for the Polyak method and the Bather method are
shown in table 7.3. From table 7.3 one can see that the results are almost identical.

7.3 Comparison of the Bather, Bliemer and Bliemer Moving method

The traffic problem with three cities and two routes described in subsection 4.1.1 is
also considered for the comparison of the methods described in this report. To
compare the Bather method, the Bliemer method and the Bliemer Moving method
the stop criterion is set to 0.001, p to 1, the value of B of the Bather method is set to
0.62, the value of B of the Bliemer (Moving) method is set to 0.54 and M is set to 30.
The outcome can be found in figure 7.3 and table 7.5.

0.2 T T T

018 .

016 -

0.14 =

012+ I .

norm gap
0
1

008 | 5

0.06F Lll'l, 4

T

004t |

T
!

\

0.02 4 i]
e, I
il %

\-:t’l’v“\ o

i
S Al i aes — -
0 I A e o

0 20 40 60 80 100
number of iterations

== Bather
— Bligmer

= Bligmer Moving

Figure 7.3: Comparison of the Bather method, the Bliemer method and the Bliemer Moving
method

40

Comparison of the previous described methods

Chapter 7

Bliemer Bliemer Moving |
time periods | route 1 | route 2 route 1 | route 2
route costs route costs
1 2,2748 | 2,2752 2,2740 | 2,2757
2 3,5917 | 3,5910 3,5943 | 3,5861
3 6,2803 | 6,2760 6,2871 | 6,2594
4 6,9426 | 7,5769 7,1123 | 7,5530
route flows route flows
1 11,2909 | 3,7091 11,2872 | 3,7128
2 11,4753 | 8,5247 11,4905 | 8,5095
3 3,1203 | 11,8797 3,1443 | 11,8557
4 19,5251 | 0,4749 19,9261 | 0,0739

Table 7.5: Route costs and flows of the problem solved with the Bliemer method and the
Bliemer Moving method in the DTA algorithm (see figure 7.3).

stop criterion 0.001

(bather) 0.62
B (bliemer (moving)) 0.54
moving 30

Tabel 7.6: Variables used for figure 7.3.

After 118 iterations of the Bather method, after 112 iterations of the Bliemer method
and after 40 iterations of the Bliemer Moving method the stop criterion is reached.
The values of the route costs and the values of the route flows of the two routes for
the Bather method are shown in table 7.3 and the values for the Bliemer method and
the Bliemer Moving method are shown in table 7.5. From table 7.3 and table 7.5 one
can see that the results are almost identical.

7.4 Comparison of combined methods

The traffic problem with three cities and two routes described in subsection 4.1.1 is
also considered for the comparison of the methods described in this report. To
compare the MSA-Bliemer method, the MSA-Bather method and the Bliemer-Bather
method the stop criterion is set to 0.001, p to 1, the value of 3 of the MSA-Bliemer
method is set to 0.54, the value of B of the MSA-Bather method is set to 0.67 and
the value of 3 of the Bliemer-Bather method is set to 0.61. In these three methods
there is another variable called n-switch. A value for n-switch of MSA-Bliemer (33), a
value for n-switch of MSA-Bather (10) and a value for n-switch of Bliemer-Bather
(13) are also taken. The outcome can be found in figure 7.4 and table 7.7.

41

Comparison of the previous described methods

Chapter 7

0.2

018 F

016

0.14

0.12

0.1

T
—

norm gap

0.08

0.06

0.04

0.02

- M384-Bather

-
30 40 50

number of iterations

60 70

= Bliermer-Bather

Figure 7.4: Comparison of the MSA-Bliemer method, the MSA-Bather method and the Bliemer-

Bather method
MSA- Bliemer MSA- Bather Bliemer- Bather
time periods | route 1 | route 2 route 1 | route 2 route 1 | route 2

route costs

route costs

route costs

1 2,2738 2,2758 2,2758 | 2,2745 2,2730 | 2,2763
2 3,5909 3,5910 3,5901 | 3,5944 3,5911 | 3,5897
3 6,2790 6,2739 6,2827 | 6,2383 6,2794 | 6,2728
4 6,9825 7,5734 7,0594 | 7,5234 7,0052 | 7,5717
route flows route flows route flows
1 11,2863 3,7137 11,2950 | 3,7050 11,2829 | 3,7171
2 11,4764 8,5236 11,4643 | 8,5357 11,4808 | 8,5192
3 3,1238 | 11,8762 3,2077 | 11,7923 3,1230 | 11,8770
4 19,6236 0,3764 19,7654 | 0,2346 19,6787 | 0,3213

Table 7.7: Route costs and flows of the problem solved with the MSA-Bliemer method, the
MSA-Bather method and the Bliemer-Bather method in the DTA algorithm (see figure 7.4).

42

Comparison of the previous described methods Chapter 7

stop criterion 0.001
B (msa-bliemer) 0.54
B (msa-bather) 0.67
B (bliemer-bather) 0.61
n-switch (msa-bliemer) 33
n-switch (msa-bather) 10
n-switch (bliemer-bather) 13

Tabel 7.8: Variables used for figure 7.4.

After 73 iterations of the MSA-Bliemer method, after 40 iterations of the MSA-Bather
method and after 31 iterations of the Bliemer-Bather method the stop criterion is
reached. The values of the route costs and the values of the equilibrium of the two
routes for the MSA-Bliemer method, the MSA-Bather method and the Bliemer-Bather
method are shown in table 7.7. From table 7.7 one can see that the results are
almost identical.

7.5 Comparison of all previous described methods (considering the stop
criterion)

The traffic problem with three cities and two routes described in subsection 4.1.1 is

also considered for the comparison of the methods described in this report with a

different stop criterion. The stop criterions taken are 0.05, 0.01, 0.001 and 0.0005.

For the outcome see figure 7.5 and table 7.9.

500

400
2 ——MSA
2 — Polyak
S — —— Bather
“ Bliemer Moving
e —— MSA-Bliemer
a - ——MSA-Bather
% —— Bliemer-Bather

100

0 : :
0.05 0.01 0.001 0.0005
stopcriterion

Figure 7.5: All methods (MSA, Polyak, Bather, Bliemer, Bliemer Moving, MSA-Bliemer, MSA-
Bather and Bliemer-Bather method) at decreasing values of the stop criterion

43

Comparison of the previous described methods Chapter 7

Method / SC SC=0.05|SC=0.01|5C=0.001 |SC=0.0005
MSA 7 38 190 359
Polyak 12 33 226 503
Bather 6 25 112 184
Bliemer 10 27 118 212
Bliemer Moving 5 18 40 73
MSA-Bliemer 6 25 73 101
MSA-Bather 6 12 40 43
Bliemer-Bather 5 12 31 50

Table 7.9: Number of iterations in which the problem is solved for different methods and
different stop criterions (SC) (see figure 7.5).

According to figure 7.5 it seems that there is no big difference in the number of
iterations of the different methods considering a stop criterion of 0.05. But it's better
not to use the Polyak method or the Bliemer method, because they converge slowly.
The number of iterations of these methods are respectively 12 and 10 and for the
other methods the number of iterations is 5, 6 or 7. For the stop criterion of 0.01 the
two methods which converge as fastest are the MSA-Bather method (12 iterations)
and the Bliemer-Bather method (12 iterations). The Bliemer Moving method has also
good performance for a stop criterion of 0.01, but MSA converges very slowly. For
the stop criterion of 0.001 the method which converges as fasts is the Bliemer-
Bather method (31 iterations). The Bliemer Moving method (40 iterations) and the
MSA-Bather method (40 iterations) also have good performances. The method which
needs the greatest number of iterations is again the Polyak Method (226 iterations).
The method which converges as fasts for the smallest stop criterion (0.0005) is the
MSA-Bather method (43 iterations) and the method with the worst performance is
the Polyak method (503 iterations). The Bliemer-Bather method (50 iterations) has
good performance.

The conclusion is that the best methods are: the Bliemer Moving method, the
MSA-Bliemer method, the MSA-Bather method and the Bliemer-Bather method. These
methods are shown again in figure 7.6.

44

JE)

il

Comparison of the previous described methods Chapter 7

100 2

80
7))
[=
9o
© 60 Bliemer Moving
2 —— MSA-Bliemer
‘G —— MSA-Bather
g —— Bliemer-Bather
E 40
=
c

20

0 K : ;
0.05 0.01 0.001 0.0005
stopcriterion

Figure 7.6: The best methods shown of figure 7.5 (Bliemer Moving, MSA-Bliemer, MSA-Bather
and Bliemer-Bather method) at decreasing value of the stop criterion

According to figure 7.6 one conclusion can be derived. The methods with the best
performance are: the MSA-Bather method and the Bliemer-Bather method. But,
these methods are tested on a very simple traffic problem and for proving which
method is the best, more extended research is needed using realistic networks of
larger size.

After more insight in the algorithms of the methods the Bliemer-Bather
method will also be a good candidate to do further research with. That’s because of
the variables used in the Bliemer-Bather method. The variables can be more
diversified. By diversifying the variables the Bliemer-Bather method can become
faster in convergence.

After further research on the values of the variables used in the Bliemer-
Bather method is done, the recommendation may be changed to using the Bliemer-
Bather method for solving NLP problems.

45

il

Concluding remarks Chapter 8

8. Conclusion and recommendations

8.1 Summary of findings

Methods for iteratively solving Non Linear Programming (NLP) problems with descent
approaches are presented in this report. The methods are: the Method of Successive
Averages (MSA), the Polyak method, the Bather method, the Bliemer method, the
Bliemer Moving method, the MSA-Bliemer method, the MSA-Bather method and the
Bliemer-Bather method.

The ‘classical’ fixed-point solution methods are often inappropriate for some
problems. In such cases, the fixed-points are usually computed using one of the
iterate averaging methods introduced by Robbins and Monro [3.1]. MSA, introduced
by Sheffi and Powell [3.2] is probably the best-known and most widely-used
instance. MSA computes each new design point by adding a part of the observation
evaluated in the previous design point with a part of the previous design point.

B.T. Polyak and J.A. Bather proposed two relatively minor modifications of the
iterate averaging method which were rigorously shown to produce fixed-point
estimates with asymptotically optimal properties.

The Polyak method is a two-pass method. The first pass resembles MSA
except that the step sizes are larger; this allows the algorithm to explore the solution
space more aggressively but leads to greater variability in the outputs. The second
pass is carried out offline (i.e., without influencing the first pass); it calculates an
average of the iterates that are generated by the first pass. The average calculated
by the second pass at termination is the fixed-point solution estimate.

A somewhat different approach was proposed by Bather [5.2]. Bather derives
the new design point from a combination of the average of previous design points
and the average of previous evaluation results.

To compare the performance of the various methods a traffic assignment
problem with three cities and two routes is considered. The conclusion is that MSA is
faster in convergence than the Polyak method for the relative gap stop criterion.

The other five iterate averaging methods are new alternative methods. One of those
is proposed by Dr. M.C.]J. Bliemer. The Bliemer method is almost similar to the
Polyak method, with the difference that the observations are evaluated in the
average of the previous design points and not at the previous design point as in the
Polyak method. The Bliemer Moving method is the Bliemer method with a moving
average.

The other three methods are combinations of MSA, the Bather method and the
Bliemer method. The first combination is the MSA-Bliemer method, which first starts
with MSA and after a certain number of iterations switches to the Bliemer method.
The second method is the MSA-Bather method, which first starts with MSA and after a
certain number of iterations switches to the Bather method. The Bliemer-Bather
method first starts with the Bliemer method and after a certain number of iterations
switches to the Bather method.

The Bather method, the Bliemer method and the Bliemer Moving method are
compared. It appears that the Bather method and the Bliemer method solve the
problem in almost the same number of iterations.

Figure 8.1 shows in how many iterations all the eight methods are solved at
decreasing values of the stop criterion.

46

Concluding remarks Chapter 8

500

400
= ——MSA
2 ——Polyak
© 300
§ ——Bather
o Bliemer Moving
ac_: ——MSA-Bliemer
.E 200 —M;A—Bather
3 —— Bliemer-Bather

100

0 r : :
0.05 0.01 0.001 0.0005
stopcriterion

Figure 8.1: All methods (MSA, Polyak, Bather, Bliemer, Bliemer Moving, MSA-Bliemer, MSA-
Bather and Bliemer-Bather method) at decreasing values of the stop criterion

8.2 Conclusions

On the whole, also for different values of stop criteria, the Bather method is faster in
convergence than the Bliemer method. However the Bliemer Moving method is much
faster than the four methods presented before.

By composing two methods it appears possible to get an even faster
convergence. The fastest methods in convergence, for the stop criterion we chose,
are the Bliemer-Bather combined method and the MSA-Bather combined method.

The conclusion is that there are alternative methods that are much faster in
convergence than MSA and the Polyak method. The best alternative methods are the
MSA-Bather method and the Bliemer-Bather combined method (see figure 8.2). This
conclusion has to be verified for multiple realistic-size transport networks.

a7

1

Concluding remarks Chapter 8

100 ~

80

60 Bliemer Moving
——MSA-Bliemer

—— MSA-Bather
/—; —— Bliemer-Bather
40
) /

0.05 0.01 0.001 0.0005
stopcriterion

number of iterations

Figure 8.2: The best methods shown of figure 8.1 (Bliemer Moving, MSA-Bliemer, MSA-Bather
and Bliemer-Bather method) at decreasing value of the stop criterion

8.3 Recommendations for further research
At this point the MSA-Bather method and the Bliemer-Bather method are
recommended for solving NLP problems.

Further research is necessary to test these procedures on a more varied set of real-
sized transport networks. The following questions emerge for further research:
e Do the demand and route costs have influence on the number of iterations?
e The programs have to be run again, but then with a different demand or
different cost functions. As proposition for the demand and cost functions see
(8.1) and (8.2).
d =[2519 25 5] (8.1)
c=1+ 0.03*%u + 0.1*v (8.2)
e How to choose the stop criterion? Make it dependent of the demand or
number of time periods.
Why are the alternative methods that are faster than MSA?
How to choose B? What is the best step size?
How to choose the n-switch?
How to choose the number of iterations used in the moving average?
What is the best starting point for the algorithms?
Is it good to choose always an ‘All Or Nothing” (AON) assignment? Maybe start
with the LOGIT assignment. The LOGIT assignment is defined in (8.3).

LOGIT (x) = In[x / (1-x)] (8.3)

48

Concluding remarks Chapter 8

e It's also possible to use the Frank-Wolfe assignment (see figure 8.3) [8.1].

Step 1 (Initialization):
s Take k=1, and perfarm an ACN assignment based on
t.=t{ 0). This vields flow vector g™,

Step 2 (Update link travel times):
e Compute t,=tJ{q™),) va.

Step 3 (Determine descent direction):
s Perform an AON assignment based on t.
This vields the auxiliary flow vector w®,,

Step 4(Determine step size):
« Find o that sclves:

7+ (-al)
min z jza (x)dx (8.4)
a I

A simpler approach to this step is choosing a¥ = 1/k,
This approach is called M3A,

Step 5 (Move):
s Set g =g, + o®wH-g,) wa.

Step 6 (Convergence test):
e Ifacertain predetermined convergence criterion is met,
then stop. Otherwise, set k=k+1 and return to step 2.

Figure 8.3: The Frank-Wolfe assignment

e The iterate averaging methods can also be tested on a static transportation
network problem.

e Take for all the methods the same step sizes and see what the best method
is.

49

bl

References

[5.2]

[1.1]

[3.4]
[3.5]

[3.3]

[1.2]

[8.1]

[4.2]

[5.3]

[2.1]

[6.1]

[3.6]

[3.7]

[3.1]
[3.8]

[3.2]

References

Bather, J.A., Stochastic approximation: A generalisation of the Robbins-
Monro procedure. In P. Mandl and M. Huskova, editors, Proceedings of the
Fourth Prague Symposium on Asymptotic Statistics, pages: 13-27. Charles
University, 1989.

Bliemer, M.C.]., Analytical dynamic traffic assignment with interacting
user-classes: Theoretical Advances and Applications using a Variational
inequality Approach, T2001/1, January 2001, TRAIL Thesis Series, Delft
University Press, The Netherlands.

Blum, J.R., Approximation methods which converge which probability one.
Annals of Mathematical Statistics, 25(2): 382-386, June 1954a.

Blum, J.R., Multidimensional stochastic approximation methods. Annals of
Mathematical Statistics, 25(4): 737-744, December 1954b.

Bottom, J., Consistent anticipatory route guidance. PhD Thesis,
Department of Civil and Environmental Engineering, Massachusettes
Institute of Technology, Cambridge MA, USA, 2000.

Bottom, J., and I. Chabini, Extended abstract: Accelerated averaging
methods for fixed-point problems in transportation analysis and planning.
USA.

Bovy, P.H.L., and M.C.]. Bliemer. Transportation Modelling, Lecture Notes,
Faculty of Civil Engineering and Geosciences, Transportation Planning and
Traffic Engineering Section, Delft University of Technology, August 2002.
Cascetta, E. and M.N. Postorino. Fixed-point models for the estimation of
OD matrices using traffic counts on congested networks. Submitted to
Transportation Science, 1998.

Frees, E.W., and David Ruppert. Estimation following a sequentially
designed experiment. Journal of the American Statistical Association,
85(412): 1123-1129, December 1990.

He, Y., A flow-based approach to the dynamic traffic assignment problem:
Formulations, algorithms and computer implementations. PhD thesis for
the degree of Master of Science in Transportation, Massachusetts Institute
of Technology, MIT Press, 1997.

Kushner, H.J., and G.G. Yin. Stochastic approximation algorithms and
applications. Number 35 in Applications of Mathematics - Stochastic
Modelling and Applied Probability. Springer-Verlag, 1997.

Polyak, B.T., New method of stochastic approximation type. Automation
and Remote Control, 51(7): 937-946, July 1990.

Polyak, B.T., and A.B. Juditsky. Acceleration of stochastic approximation
by averaging. SIAM Journal of Control and Optimisation, 30(4): 838-855,
July 1992,

Robbins, H., and S. Monro. A stochastic approximation method. Annals of
mathematical statistics, 22(3): 400-407, 1951.

Schwabe, R., and Harro Walk. On a stochastic approximation procedure
based on averaging. Metrika, 44(2): 165-180, 1996.

Sheffi, Y. and W.B. Powell. An algorithm for the equilibrium assignment
problem with random link times. Networks, 12:191-207, 1982.

50

| A S

s

Implementation of the MSA algorithm Appendix 1

Al. Implementation of the MSA algorithm

1.1 Description of the MSA algorithm
MSA computes the new design point (xk“) by adding a part of the previous design
point (x“) with a part of the observation evaluated in the previous design point

(T(x*)).

1.2 Formulation and solution algorithm of the MSA algorithm
To formulate the MSA algorithm the following variables and function are used:

e Q the step size (O<a<1)

e AON the‘All Or Nothing’ assignment

e C the route costs

e d the demand

e k the iteration number

e ng the normalised duality gap

e S the stop criterion

o the number of time periods

e T the observation

e X the route flows (link traversal time trajectories)

The mathematical formulation of MSA is:
¥ = x® o g -[T(x")— ka, with x° e R" and k=1,2,3,..., (A1.1)
a* = p-k™”, with 0.5<p<1 and p>0, (Al.2)

The DTA algorithm with the MSA algorithm is described as follows (see figure A1.1):

Step 0 (Initialisation):

Initialisation of the variables: c, d, k, t and x.
Step 1 (Main loop):

k=k+1

T= A0N{c,d,t)

w=1/k

xR o= xt e gt T(r*)— x*]

Cl:.rH'l)

Step 2 (Stop criterion):
>3 i o (2D e e (e -, e)
N 2 2B aif g

If ng < s, then stop, else go tostep 1.

ng

Figure A1.1: The DTA algorithm with the MSA algorithm included

51

. I

A

Implementation of the Polyak algorithm Appendix 2

A2. Implementation of the Polyak algorithm

2.1 Description of the Polyak algorithm

The Polyak method computes the new design point (x"7) by adding a part of the
previous design point (xk) with a part of the observation evaluated in the previous
design point (T(xk)) just like MSA. But the Polyak method also computes ‘in parallel’

with and independently of the iterate averaging process the average of the design

-« 1 ko
points, say xc =l—- i_lx’ . Here is meant that the computed solution estimates do
” X
L

not influence the determination of the design points. The sequence x also

converges to the limit x . So this average is your estimate of the fixed-point
solution.

fe+1

2.2 Formulation and solution algorithm of the Polyak algorithm
To formulate the Polyak algorithm the following variables and function are used:

e the step size (O<a<1)

e AON the‘All Or Nothing’ assignment

e C the route costs

e d the demand

e B the exponent (0.5<p<1)

e k the iteration number

e ng the normalised duality gap

e S the stop criterion

e t the number of time periods

e T the observation

e X the route flows (link traversal time trajectories)
e X the average over all the previous route flows

The mathematical formulation of the Polyak method is:

= xk ot [T (6t) x|, with x° € R” and k=1,2,3,.., (A2.1)

o 1 - i - 0 n

X =—-Zx , with x” e R” and k=1,2,3,..., (A2.2)
i=1

a* =p-k™, with 0.5<p<1 and p>0, (A2.3)

52

Implementation of the Polyak algorithm

Appendix 2

The DTA algorithm with the Polyak algorithm is described as follows (see figure

A2.1):

Step D (Initialisation):

Step 1 {Main loop):

k=k+1
T = A0M{c,d,t)
o= kP

Step 2 (Stop criterion):

ng

L .[T(Xk)_ x*]

;Hl B ;* _[k—l%.'_ XH-IAC/

33 [l br bl bl -l

Initialisation of the variables: c, d, B, k, t, x and X,

—i-+H
Ko

—iH) —iH
PIPRNEYES
r T

If ng < s, then stop, else go to step 1.

Figure A2.1: The DTA algorithm with the Polyak algorithm included

53

AL

Implementation of the Bather algorithm Appendix 3

A3. Implementation of the Bather algorithm

3.1 Description of the Bather algorithm
: —k
The design point (xk+1) is a part of the average of previous design points (x) minus
a part of the average of previous observations (z""). The function evaluations are
A =k
made at the design points (xA) while the fixed-point is estimated by x .
3.2 Formulation and solution algorithm of the Bather algorithm

To formulate the Bather algorithm the following variables and function are used:
e o the step size (O<a<1)

e AON the ‘All Or Nothing’ assignment
e C the route costs

e d the demand

e B the exponent (0.5<B<1)

e k the iteration number

e ng the normalised duality gap

o the stop criterion

s

T the average of the previous observations
t the number of time periods

T the observation
x
b

the route flows (link traversal time trajectories)
the average over all the previous route flows

The mathematical formulation of the Bather method is:

= —k'a-(r" —;k), with x° € R" and k=1,2,3,..., (A3.1)

- 1 & . g

x =Z-Zx’ , with x° € R" and k=1,2,3,..., (A3.2)
i=1

.] o= ;

.t =Z-ZT@) with x° € R" and k=1,2,3,..., (A3.3)
i=1

a* = p-k™*, with 0.5<p<1 and p>0, (A3.4)

54

J SH 1 1

Al

Implementation of the Bather algorithm

Appendix 3
i —k+1 =k k1
Or, with (k+1)~x =k-x +x"7:
kel —k ¢ | g =% . 5 "
x =x 40 oo -x) with x” e R" and k=1,2,3,..., (A3.5)
— 1 & . "
and x :;- x', with x” e R" and k=1,2,3,..., (A3.6)
i=1
. 1 & ;
and z* =;-ZTG’), with x° € R" and k=1,2,3,..., (A3.7)
i=1
a* = p-k™”, with 0.5<p<1 and p>0, (A3.8)

The DTA algorithm with the Bather algorithm is described as follows (see figure

A3.1):

Step 0 (Initialisation):
Initialisation of the variables: ¢, d, 8, k 7,t and x.
Step 1 (Main loop):

k=k+1
T = AQN(c,d,t)

‘g _(k—l%+f‘%

kP

Step 2 (Stop crterion):
[el £ 1 ot g

ng

- X

+

TR, R R

If ng < s, then stop, else go to step 1.

Figure A3.1: The DTA algorithm with the Bather algorithm included

55

L0 M

Implementation of the Bliemer algorithm Appendix 4

A4. Implementation of the Bliemer algorithm

4.1 Description of the Bliemer algorithm

The Bliemer method computes the new design point (x

k+1

) by adding a part of the

previous design point (xk) with a part of the observation evaluated in the average of

—k
the previous design points (T(x). So the function evaluations are made at the

—if —k
average of the design points (x) and the fixed-point is estimated by x .

4.2 Formulation and solution algorithm of the Bliemer algorithm
To formulate the Bliemer algorithm the following variables and function are used:

o the step size (O<a<1)

AON the ‘All Or Nothing” assignment

C the route costs

d the demand

B the exponent (0.5<p<1)

k the iteration number

ng the normalised duality gap

S the stop criterion

t the number of time periods

T the observation

X the route flows (link traversal time trajectories)
X the average over all the previous route flows x

The mathematical formulation of the Bliemer method is:

. —k
=t L g” [T(x)~x"J, with x° e R" and k=1,2,3,..., (A4.1)
— 1 & .
and x :;-Zx' , with x° € R” and k=1,2,3,..., (A4.2)
i=1
a* = p-k™”, with 0.5<B<1 and p>0, (A4.3)

56

L LR

Implementation of the Bliemer algorithm

Appendix 4

The DTA algorithm with the Bliemer algorithm is described as follows (see figure

A4.1):

Step 0 (Initialisation):

Initialisation of the varables: ¢, d, 8, k, t, x and x.

Step 1 {Main loop):

k=k+1

T = AoN(c,dit)

a=kF

2=t -[T'E I—x]

Step 2 (Stop crterion):
S O SO | B (N PO | »
ZZ‘['mm e lx A min T :l—c. '_x.+
ng =

— i+

ZZC T

If ng < 5, then stop, else go to step 1.

57

Figure A4.1: The DTA algorithm with the Bliemer algorithm included

|

Implementation of the Bliemer Moving algorithm Appendix 5

A5. Implementation of the Bliemer Moving
algorithm

5.1 Description of the Bliemer Moving algorithm

The Bliemer Moving method computes the new design point (x"‘“I

) by adding a part
of the previous design point (x*) with a part of the observation evaluated in the
moving average of the previous design points (T(fc")). So the function evaluations

are evaluated in the moving average of the design points (fck) and the fixed-point is

~k

estimated by x".

5.2 Formulation and solution algorithm of the Bliemer Moving algorithm

To formulate the Bliemer Moving algorithm the following variables and function are

used:
o the step size (0O<a<1)

the ‘All Or Nothing’ assignment

the route costs

the demand

the exponent (0.5<p<1)

the iteration number

the number of design points taken for the moving average

the normalised duality gap

the stop criterion

the number of time periods

the observation

the route flows (link traversal time trajectories)

the moving average over M of the previous route flows

@ © ¢ o o o o o o o o
S ~ [alNe]
o w = @z"@)SQ
=

The mathematical formulation of the Bliemer Moving method is:

M =2 4 ot -lT(J%k)—ka, with x* e R" and k=1,2,3,..., (A5.1)
. 1 k 1

Akl i . 0 n - =

4 —“M'Zi=k—M+1x , with x° e R", k=1,2,3,... and M=1,2,3,..., (A5.2)

a® = p-k™*, with 0.5<p<1 and p>0, (A5.3)

58

Implementation of the Bliemer Moving algorithm

Appendix 5

The DTA algorithm with the Bliemer Moving algorithm is described as follows (see

figure A5.1):

Step 0 (Initialisation):
Initialisation of ¢, 8, k, M, x and X.

Step 1 (Main loop):

k=k+1

T = A0ON(c,d,t)
o =kP

1 = ~[T

2 -y]
IFk <M, then £®*=3%".
cfx)

Step 2 (Stop criterion):

Yy l'mm e EF N i T]—c ey .
> c. o i :

ng =

=X [‘k_1%+x'ﬂ//, else X

R mTIEY

If ng < s, then stop, else go to step 1.

Figure A5.1: The DTA algorithm with the Bliemer Moving algorithm included

59

JUl

I

Implementation of combinations of algorithms Appendix 6

A6. Implementation of combinations of
algorithms

6.1 The MSA-Bliemer algorithm
If k < ks, then the MSA algorithm (appendix 1) is used in the DTA algorithm, else the
Bliemer algorithm (appendix 4) is used.

To formulate the MSA-Bliemer algorithm the following variable is used:
e ks the iteration step after which the MSA algorithm is replaced by the
Bliemer algorithm

6.2 The MSA-Bather algorithm
If k < ks, then the MSA algorithm (appendix 1) is used in the DTA algorithm, else the
Bather algorithm (appendix 3)

To formulate the MSA-Bather algorithm the following variable is used:
e ks the iteration step after which the MSA algorithm is replaced by the
Bather algorithm

6.3 The Bliemer-Bather algorithm
If k < ks, then the Bliemer algorithm (appendix 4) is used in the DTA algorithm, else
the Bather algorithm (appendix 3)

To formulate the Bliemer-Bather algorithm the following variable is used:

e ks the iteration step after which the Bliemer algorithm is replaced by the
Bather algorithm

60

	1.pdf
	2
	3

