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Preface 

Preface 

At the Delft University of Technology (DUT), faculty of Applied Mathematics, every 
student has to do a practical training of eight weeks (forty working days) during 
the study of five years. 

The essence of this practical training is that the students of mathematics become 
familiar wi th: 
1. A realistic working place for mathematicians. 
2. Working at a project in a surrounding of engineers (where mathematics is 

used, but it is not necessary that mathematics is the most important topic) 
and to actively participate in different, real-life projects. 

3. Working at another faculty or at a company near Delft. 

After finishing above described practical training my tasks are to: 
1. Write two reports, one for the resource team with whom I worked and 

another for the supervisor of the practical training. This report will be destined 
for the resource team I work with. 

2. Present my experiences at a public meeting at the DUT. 

My practical training takes place at one of the faculties of the DUT, Civil 
Engineering and Geosciences, Transportation Planning and Traffic Engineering 
section. I worked with the team of Prof. Dr. Ir. P.H.L. Bovy. My direct supervisor 
was Dr. M.C.J. Bliemer and I worked with two Ph.D. students Dusica Joksimovic 
and Dirk van Amelsfort. The department consists of forty-four persons. During my 
practical training I attended the staff meeting of the department (thirty-five 
persons were present) and I had a seminar on the paper 'A mathematical model 
and descent algorithm for bi-level traffic management' by Patriksson and 
Rockafeller (2002). 

I mainly worked at the project of Dynamic Traffic Assignment (DTA) model and 
'Road Pricing'. I fulfilled mathematical analyses on formulation in the existing 
models and I looked for improvements of the existing algorithms that are used 
for solving these models. For a wider dissemination of my results, the language 
used for the report is English. 

Some methods for solving NLP problems are discussed in this report. Three of 
them are already found in literature and the remaining methods are new. The 
methods are compared with each other and some recommendations for further 
research are given. 

I want to thank the resource team of Prof. Dr. Ir. P.H.L. Bovy for the pleasant 
collaboration. I want to thank Dr. M.C.J. Bliemer and Prof. Dr. Ir. P.H.L. Bovy for 
the warm welcome, the correction of the report and giving good comment for how 
to write a report. Further I want to thank Dr. M.C.J. Bliemer and Dirk van 
Amelsfort for the warm welcome and the explanation about the research. Finally, 
I want to thank Dusica Joksimovic for all the time she had for me (for the warm 
welcome, the explanation about the research, the correction of the report and 
giving good comment for how to write a report). During this practical training I 
learned much. Such like programming, the mathematics of iterate averaging 
methods and working with people of different countries. 

Delft, January 2003 

R.T.J. Hiele 
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Summary 

S u m m a r y 

Traffic congestion is an unresolved problem and it has effects not only to the 
transportation system, but also on other aspects of life (economic, spatial and 
social). The idea is that 'Road Pricing' can be used to solve this problem. There is 
a need for an appropriate tool for predicting the effects of 'Road Pricing'. Such a 
tool could be a traffic assignment model. Traffic is by nature dynamic and hence 
only dynamic models can describe traffic process adequately. I t appears, 
however, that iterate averaging methods have not yet been applied to 
transportation network problems. In this research iterate averaging methods are 
investigated and also the possibility of applying these methods in transportation 
network problems. 

Recently the Polyak method was introduced, which is supposed to have better 
convergence qualities than the method that is normally used, the Method of 
Successive Averages (MSA). 

The three topics of this research of iterate averaging methods are: 
• To find out how the Polyak method works, after which the Polyak method is 

implemented. 
• To find out if the Polyak method indeed converges faster than MSA. 
• To find out if there exist alternative methods that are faster in convergence 

than the Polyak method and MSA. 
To find answers on these three topics the literature was studied. By reading the 
nature of the Polyak method is found out. When the Polyak method is 
understood, the method is implemented (and also MSA is implemented). That was 
needed for analysing the convergence of the methods. After the Polyak method is 
implemented research for alternative methods is done. Finally, all the described 
methods are compared and illustrations are given. 

In order to satisfy the increasing demand for more accurate model outcomes and 
to be able to compute the effects of different traffic policies, new and improved 
traffic assignment models are needed. While Static Traffic Assignment models 
may provide basic insights, only dynamic assignment models are able capture the 
true dynamic nature of traffic and therefore provide the analyst with more 
accurate forecast. An iterative process is needed to solve the Dynamic Traffic 
Assignment (DTA) model. This is because network conditions may change after 
performing network loading. At all the iterations, the path flows are updated by 
combining the results from the current iteration with the previous iteration. 

The 'classical' (e.g., derivative-based) fixed-point solution methods are often 
inappropriate for some problems. In such cases, the fixed-points are usually 
computed using one of the iterate averaging methods introduced by Robbins and 
Monro [3.1] . MSA, introduced by Sheffi and Powell [3 .2 ] , is probably the best-
known and most widely-used instance of iterate averaging methods. In iterate 
averaging methods estimates for the fixed-point are found. These estimates are 
called design points. MSA computes each new design point by adding a part of the 
observation evaluated in the previous design point with a part of the previous 
design point. 

MSA has the advantages of avoiding (potentially expensive) step size calculations, 
working directly with map outputs without requiring derivative calculations or 
other transformations, and being able to handle 'noisy' map evaluations (where 
the evaluation returns a value affected by a zero-mean disturbance). Other 
advantages of MSA are that it is simple to understand and that it is simple to 
implement. In many cases, however, the method's empirically observed 
convergence properties are disappointing: while it exhibits generally effective 
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performance in the initial iterations, this is followed by a pronounced ' ta i l ' effect, 
resulting in overall slow convergence. 

Approximately ten years ago, B.T. Polyak and J.A. Bather proposed two relatively 
minor modifications of iterate averaging methods which were rigorously shown to 
produce fixed-point estimates with asymptotically optimal properties. 

The Polyak method is a two-pass method. The first pass resembles MSA 
except that the step sizes are larger; this allows the algorithm to explore the 
solution space more aggressively but leads to greater variability in the outputs. 
The second pass is carried out offline (i.e., without influencing the first pass); it 
calculates an average of iterates that are generated by the first pass. The 
average calculated by the second pass at termination is the fixed-point solution 
estimate. 

A somewhat different approach was proposed by J.A. Bather. Here, the 
design point is derived from a combination of the average of previous design 
points with the average of previous evaluation results. 

Apart from the Polyak method and the Bather method, alternative methods are 
proposed. In total eight methods are applied and presented in this report. They 
were all compared with different stop criterions. 

MSA and the Polyak method were compared. To compare these methods and to 
compare also other methods a traffic problem with three cities and two routes is 
considered. This traffic problem is solved by using a DTA algorithm. For stopping 
this DTA algorithm there are different stop criteria. 

The stop criterion that is a combination of the route costs and flows is the 
best stop criterion for stopping the DTA algorithm. This stop criterion is reached 
after 190 iterations of MSA and after 226 iterations of the Polyak method. The 
conclusion is that MSA is faster in convergence than the Polyak method for this 
stop criterion. 

The Bather method, the Bliemer method and the Bliemer Moving method 
were compared. After 118 iterations of the Bather method, after 112 iterations of 
the Bliemer method and after 40 iterations of the Bliemer Moving method the 
stop criterion is reached. I t can be concluded that the Bather method and the 
Bliemer method solve the problem in almost the same number of iterations. For 
different stop criterions the Bliemer Moving method much faster than is the four 
other methods. 

The Bliemer Moving method is the fastest method, but by combining two 
methods it's possible to get a method that is even faster in convergence than the 
methods shown before. Therefore, the MSA-Bliemer method, the MSA-Bather 
method and the Bliemer-Bather method are compared. The fastest method in 
convergence, for the stop criterion we chose, is the Bliemer-Bather method. 

The conclusion is that there are alternative methods that are much faster 
in convergence than the Method of Successive Averages and the Polyak method. 
The best alternative methods are the MSA-Bather method and the Bliemer-Bather 
method. 

The recommendation is to use the Bliemer-Bather method for solving Non-
Linear Programming (NLP) problems in transportation networks and to do further 
research how the values of the variables used in the Bliemer-Bather method have 
to be chosen. 
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I n t r o d u c t i o n Chap te r 1 

1. Introduction 

Traffic congestion is an unresolved problem and it has effects not only to the 
transportation system, but also on other aspects of life (economic, spatial and 
social). The idea is that 'Road Pricing' can be used to solve this problem. There is 
a need for an appropriate tool for predicting the effects of road pricing. Such a 
tool could be a traffic assignment model. Traffic is by its nature dynamic and 
hence only dynamic models can describe a traffic process in a realistic way. I t 
appears, however, that iterate averaging methods have not yet been applied to 
transportation network problems. In this research iterate averaging methods are 
investigated and also the possibility of applying these methods in transportation 
network problems. 

The Dynamic Traffic Assignment (DTA) model used in the Traffic 
department is a complex variational inequality problem [1.1] . The solution of a 
complex variational inequality problem can be found by solving iteratively a Non-
Linear Programming (NLP) problem. Solving a NLP problem is at this moment 
done by a steepest descent technique, where the step size is calculated very 
simply, using the Method of Successive Averages (MSA). The convergence of this 
algorithm is very slow. Recently the Polyak method was introduced, which is 
supposed to have better convergence qualities than MSA. With a small 
modification of MSA some researchers have gained an enormous improvement in 
velocity of calculation. For more detail about MSA and the Polyak method see 
[1.2] . 

The prototypical simple iterate averaging method is due to Robbins and 
Monro [3.1] . Let 9? be the field of reals, and TQ-.^R^^ be a map for which a 

root X* is to be found (so that r ( x * ) = x * ) . Suppose that we are free to select the 

points X* at which to evaluate TQ during the iterative search for the root -
these are called the design points. However, each such evaluation returns a result 
that is affected by noise: the result is T{X) = T{X)+ s, where s is a random zero-
mean noise vector. 

Robbins and Monro proposed the following iterative procedure for choosing 
the design points (x' ' ' " ): 

x*^' = x ' ' +a" -TIX'), with x° e and k=l ,2,3, . . . , (1.1) 

with the design point x * , the evaluation r ( x ' ' ) and where the sequence a* the 
step size is. 

I t is characteristic of iterate averaging methods such as MSA that the 
successive design points generated to explore the feasible space are also taken to 
be the successive estimates of the fixed-point equation solution. This was noted 
by Frees and Ruppert [5 .3 ] , who pointed out the potential advantages of using 
one method to select the design points, and a different method to estimate the 
solution. Use of a distinct method for each purpose could allow, on the one hand, 
a more aggressive exploration of the feasible space and, on the other, a more 
effective exploitation of the information generated during that exploration in 
order to estimate a solution. 

My tasks are the following: 
The DTA model that is used by the Traffic section solves a complex variational 
inequality problem. The solution of a complex variational inequality problem can 
be found by solving iteratively a Non Linear Programming (NLP) problem. Solving 
this NLP problem is at this moment done by a steepest descent technique, where 
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the step size is calculated very simply, using the Method of Successive Averages 
(MSA). This algorithm converges very slowly. Recently another technique was 
proposed. I t is called the Polyak method, which is supposed to have better 
convergence qualities than MSA. For the Polyak method just a little is modified in 
MSA that will lead to an enormous improvement in computation t ime. MSA and the 
Polyak method are implemented as well as improving of the convergence of the 
algorithm. 

The three topics of this research of iterate averaging methods are: 
• To find out how the Polyak method works and to implement the Polyak 

method. 
• To find out if the Polyak method convergences faster than the Method of 

Successive Averages. 
• To find out if there exist some alternative methods those are faster in 

convergence than the Polyak method and MSA. 
To find answers on these three topics the relevant literature is read, especially 
'Accelerated Averaging Methods for Fixed Point Problems in Transportation 
Analysis and Planning' by J. Bottom and I. Chabini. By reading these articles the 
nature of the Polyak method is found out. When the Polyak method is 
understood, the method is implemented (and also the Method of Successive 
Averages is implemented) in the software package 'Matlab version 6.0.0.88 
release 12'. That was needed for analysing the convergence of the methods. After 
the Polyak method is implemented, research for alternative methods is done, 
such as the Bather method, the Bliemer method, the Bliemer Moving method, and 
combinations of methods described in this report (the MSA-Bather method, the 
MSA-Bliemer method and the Bliemer-Bather method). Finally, all the previous 
described methods are compared and illustrations are given. 

The research is done in the following way: 
Given is the transport network problem. Of this problem is made a model (a DTA 
model). To solve this model methods are considered. I f a method is implemented 
an algorithm is vested. 

The structure of this report is as follows. In chapter 2 the DTA model is explained. 
In this model an iterative stochastic algorithm is used to solve the fixed-point 
problem. In chapter 3 the mathematical background of iterate averaging methods 
is discussed. The topics discussed in chapter 3 are: simple iterate averaging 
methods, convergence of iterate averaging methods, the stop criterion for DTA 
algorithms and the step size for iterate averaging algorithms. In chapter 4 the 
iterate averaging method of Robbins and Monro is shown and Sheffi and Powell's 
MSA is introduced. In chapter 5 the Polyak method and the Bather method are 
described and numerical examples for both are given. In chapter 6 a research on 
alternative methods is done and the Bliemer method, the Bliemer Moving 
method, the MSA-Bather method, the MSA-Bliemer method and the Bliemer-
Bather method are introduced. Numerical examples for these methods are also 
given in this chapter. In chapter 7 the methods are discussed and compared to 
each other mathematically and computationally. In chapter 8 the conclusion is 
drawn what the best iterate averaging method is for solving a transportation 
network problem and recommendations for further research are given. The 
implementation of the methods, as discussed in above-mentioned chapters, can 
be found in the appendices. 
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2 . Dynamic Traffic Assignment (DTA) model 

To be able to make forecasts about future traffic conditions on transport 
networks, to compare scenarios of different infrastructure investments, or to 
estimate effects of traffic management measures, policy analysts rely on tools 
such as a traffic assignment model. In order to satisfy the increasing demand for 
more accurate model outcomes and to be able to compute the effects of different 
traffic policies, new and improved traffic assignment models are needed. While 
static traffic assignment models may provide basic insights, only dynamic 
assignment models are able to capture the true dynamic nature of traffic and 
therefore provide the analyst more accurate forecast. In the recent studies 
Dynamic Traffic Assignment (DTA) models have gained increasing attention by 
many researchers. In this chapter one of the DTA models is explained. 

2.1 A common structure of DTA models 
Most existing DTA models share a common structure. In the literature, this 
common structure is often not explicitly stated in model formulation, but it can be 
extracted from those models. This common structure can be viewed as a high-
level abstraction of the proposed modelling framework found in the work of Y. He 
[2.1] or see M.C.J. Bliemer [1.1] . This common structure consists of the following 
components: 

1. a demand model 
2. a supply model 
3. a supply/demand interaction mechanism 

This structure is depicted in figure 2 .1 . 

Demand 
\ 

Supply/Demand Supply 
Model .-• Interaction Model 

Network 
.Conditions^ 

Figure 2.1: A common structure of DTA models 

The demand model component represents the demand for the transportation 
system. The demand is usually given by a set of time-dependent Origin-
Destination (OD) flows and path flows. The set of OD flows and path flows 
generated by the demand model often satisfy certain conditions such as system 
optimal and user optimal conditions. I t should be noted that these two optimal 
conditions do not generally coincide. To achieve a system opt imum, users must 
behave according to the system optimal conditions instead of following their own 
behaviours such as departure time choice, mode choice and route choice. On the 
other hand, if the demand model represents users' behaviours, a user optimum is 
attained. 

The supply model represents the network and the flow progression in the 
network. A network is described as a directed and connected graph consisting of 
links and nodes and travel costs are associated with each link. The supply model 
generates the network performance in response to a given demand. 
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The supply/demand interaction mechanism represents how the supply 
model and the demand model interact. The interaction produces certain network 
conditions such as link or path flows and link or path travel times. The network 
conditions must satisfy both the demand model and the supply model. 

2.2 A framework for the DTA model 
A modelling framework for the DTA problem by Y. He [2.1] or M.C.J. Bliemer 
[1.1] is shown in figure 2.2. The framework contains the following components: 

1. a users' behaviour model component 
2. a dynamic network loading model component 
3. a link performance model component 

Dynam;c A 

0-D Trips J 

Users' Bshavior Mcc'el 

path flows 

Netwcrx Loading Model;-
Link-Sassd 

Time-Dapendsnt 
Network Condition 

Link Porfonrance Model 

Figure 2.2: A Frameworl< for DTA models 

The users' behaviour model component takes as input the dynamic OD trips and a 
subset of paths between each OD pair. The dynamic OD trips are the time-
dependent traffic demand for each OD pair. In the continuous time horizon, the 
dynamic OD trips are given as departure flow rates at each origin and each time 
instant. In discrete time representation, they are given as number of trips during 
a t ime interval. These dynamic OD trips can be predicted and are treated in the 
DTA model as input. 

The subset of paths between each OD pair is assumed to be the set of 
routes, which the users choose when they depart from their origins. These 
subsets of paths can be dynamically augmented by using a path generation 
module based on certain criteria. The users' behaviour model component assigns 
the dynamic OD trips among the subset of paths according to the users' route 
choice behaviours. This results in a set of time-dependent path flows. 

The network loading model takes the path flows from the users' behaviour 
model as input and uses link performance models to generate the resulting link-
based network conditions such as time-dependent link volumes and link travel 
times. The link-based network conditions serve two purposes. Firstly, they are 
used to compute path travel times. The path travel times are then used by the 
users' behaviour model to assign OD trips. Secondly, the network conditions are 
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input to the path generation module to come up with a subset of new paths for 
each OD pair. 

The proposed framework has a modularised structure and the components 
interrelate through specified inputs and outputs. The framework provides 
flexibility in both model formulations and computer implementations because one 
model can be changed without affecting others. 

The users' behaviour model corresponds to the demand model in the 
common structure, the dynamic network loading model and link performance 
model together correspond to the supply model. The interaction between the 
three model components in the framework represents a supply/demand 
interaction mechanism. 

2.3 Solution algorithm for the DTA model 
An iterative process is needed to solve the DTA model. This is because network 
conditions may change after performing network loading. This results in a set of 
new path travel times and thus a set of new path flows. The set of new path flows 
is not necessarily equal to the set of path flows used in the previous network 
loading procedure. 

The idea of the solution algorithm is to find a solution to the DTA model by 
an iterative process on path flows/costs or on unit flows/times. At all the 
iterations, the path flows/costs or the unit flows/times are updated by combining 
the results from the current iteration with the previous iteration. The 'Method of 
Successive Averages' (see chapter 4) is used to update path flows/costs or unit 
flows/times. The DTA algorithm with MSA included is outlined by Y. He [2.1] or 
M.C.J. Bliemer [1.1] in figure 2.3. 

Step 0 (Initialisation): 
® K = maximum number of iterations, 

• Compute initial path üo'^^s ''(t^ from free-flow patin 

ti-avel times. 
. k = l , 

Step 1 (Pvlain loop): 
• Perform dynamic network loading procedure, 

• Compute auxiliary patin flows g"{t) by tine ro j te dndoe algcrithm, 

• Update path f laA 's : 

witi-i 

Step 2 (Stop critehon): 
If k = tinen stop, else k=k-i- l and go to step 1, 

Figure 2.3: Ttie DTA aigorithm with MSA included 
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Explanation of the variables and functions used in the DTA algorithm with MSA 
included (figure 2.3): 

• calculated path flow rate on path p from origin r toward 

Op 

destination s at time t in iteration k 
p{t): auxiliary path flow for path p from origin r toward destination s 

starting at time t 
• a ' * ^ adjustment parameter with value between zero and one in 

iteration k 

For the implementation and examination of the different iterative averaging 
methods the DTA model is used (see figure 2.3). The stop criterion in figure 2.3 is 
a simple to implement stop criterion. Different kinds of stop criterions are 
discussed in section 3.3 and one of them is chosen for implementation. 
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3 , Mathematical bacl<ground of iterate 
averaging mettiods 

Chapte r 3 

Many important problems in transportation analysis and planning can be formulated 
as fixed-point problems; the fixed-point property generally translates a consistency 
constraint on model solutions such as, for example, equilibrium between the supply 
and demand relationships. Because of the typically large size of problem instances in 
transportation applications, the frequent absence of analytical forms for some of the 
involved maps, and the prevalent use of probabilistic maps requiring stochastic 
sampling or simulation methods for evaluation, 'classical' (e.g., derivative-based) 
fixed-point solution methods are often inappropriate for these problems. In such 
cases, the fixed-points are usually computed using one of the iterate averaging 
methods introduced by Robbins and Monro [3.1] . The Method of Successive 
Averages (MSA) was introduced by Sheffi and Powell [3.2] is probably the best-
known and most widely-used instance in the transportation field (see also [3.3] ) . 

This chapter will be an introduction to iterate averaging methods and the 
mathematical background (like convergence, stop criterions and step sizes). 

3.1 Simple iterate averaging methods 
The prototypical simple iterate averaging method is due to Robbins and Monro [3.1] . 
Let be the field of reals, and r ( . ) : 9 ï ^ 9 ? be a map for which a root x* is to be 

found (so that r ( x * ) = x * ) . Suppose that we are free to select the successive points 

x'' at which to evaluate during the iterative search for the root - these are 
called the design points. However, each such evaluation returns a result that is 
affected by noise: the result is T{X) = T{X)-\- s, where s is a random zero-mean noise 
vector. 

Robbins and Monro proposed the following iterative procedure for choosing 
the design points (x*"" ): 

x * ^ ' = x * • r ( x ' ' ) , with x° e and k=l ,2,3, . . . , (3.1) 

with the design point x^', the evaluation T{X''^ and where the sequence a * is 
chosen so that the summability conditions are given in (3.2) and (3.3) : 

^ a ' ' d i v e r g e s , (3.2) 
k 

^ ( a * ) " converges. (3.3) 
k 

I t is proved that under mild conditions the sequence x* generated by this procedure 
converges in probability to a root x* of T. Blum [3.4] [3.5] extended this result under 
more stringent conditions to multidimensional maps. T Q : ? ? " ^ 9 ? " and almost sure 
(a.s.) convergence. Clearly, these methods can find the fixed-point of a noisy map 
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by applying them to solve for the root of the transformed map T - / ] ( . ) ; the 
procedure is then: 

x''^' = x * + a * • [ ^ ( ^ ' ' ) - ^ ' ' J ' with x° e9^" and k=l ,2,3, . . . . (3.4) 

I t is possible to write (3.4) in another way: 

X k + a * • r (x '^ ) , With x ^ e S ^ " and k=l ,2,3, . . . . (3.5) 

3.2 Convergence of iterate averaging methods 
Since the work of Robbins and Monro, much effort has been devoted to 

understanding and improving the convergence properties of iterate averaging 
methods. Because of the noise affecting the map evaluations, general discussion of 
the convergence behaviour of these algorithms is frequently expressed in terms of 
the statistical properties of the fixed-point estimate. The asymptotic distribution of 

- X was derived for certain classes of problems, and from this a formula for 
determining the optimal (i.e., asymptotic variance minimising) step size sequence a*̂  
was obtained; unfortunately, it depends on generally unknowable quantities such as 
the value of the fixed point x* itself. However, these results provide bounds against 
which the performance of other methods can be compared. The convergence of MSA, 
the Polyak method and the Bather method are discussed below. 

For MSA (section 4.1) the convergence properties are typically disappointing: 
while it exhibits generally effective performance in the initial iterations, this is 
followed by a pronounced ' tai l ' effect, resulting in overall slow convergence. 

For the Polyak method Polyak [3.6] and Polyak and Juditsky [3.7] showed 
that if a'' - > 0 more slowly than MSA rate (specially, i f) , then the resulting 

asymptotic distribution of A:-A/X* - X * attains the minimum possible variance. The 
larger step sizes tend to prevent the algorithm from getting stuck at an early stage, 
while the off-line averaging takes care of the increased noise that the larger step 

sizes produce. I t has been known for a long time that if a ' ' = o ( | / ) , then the 

asymptotic behaviour of mean is no better than the design points and can be worse 
in the sense of rate of convergence. Remarkably, therefore, this easy-to-implement 
procedure equals or surpasses the theoretical asymptotic performance of any 
possible iterate averaging method. 

Schwabe and Walk [3.8] have shown that the Bather method has the same 
asymptotically optimal convergence properties as the Polyak method (i.e., it 
converges to a solution with minimal asymptotic variance), but that it may be less 
sensitive to the choice of initial value; consequently, it may exhibit superior 
properties for small numbers of iterations. 

3.3 Stop criterion for DTA algorithms 
For stopping the DTA algorithm there are several possibilities. 
1. One of them is already shown in figure 2.3. After K iterations the DTA algorithm is 

stopped (3.6). 

If k = K then stop. (3.6) 
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2. The Equilibrium State is reached if the solution does not change anymore. A 
second possibility for a stop criterion is shown in (3.7). 

If l-s < — ^ <l + s \ft,r then stop, with s small enough. (3.7) 

3. We want to achieve an Equilibrium State, using the DTA algorithm. This 
Equilibrium State is reached if the costs of one route are the same as the costs of 
the other route (c,i = c ,̂ ) or if the route costs are not the same all the traffic 
should chose the cheapest route. 

I f gap = c,. - c „ . < £ Vt,r then stop, with s small enough. (3.8) 

4. Define the normalised duality gap (ng) as: 

22|min{:„.}-c,,|-x,, 
ng = (3.9) 

t r 

We stop is ng < s, with s small enough. This stop criterion is used for solving the 
small traffic problem, because this criterion explains the best the state we want 
to achieve (explained in more detail in subsection 4 .1 .1 , with four time periods 
and two routes). 

Explanation of the variables used in the stop criteria: 
c„.: the route cost c of route r in time period t 

x,^: the route flow x of route r in time period t 

3.4 Step size for iterate averaging algorithms 
The difficulty of selecting a good step size sequence { a ' ' } has been a serious 
handicap in applications. In a fundamental paper, Polyak and Juditsky [3.7] showed 

' A 1 
that if a' ' goes to zero slower than 0[y,j, the averaged sequence —•'^x' 

converges to its limit at an optimum rate. This result implies that we should use 
larger than usual gains and let the off-line averaging take care of the increased noise 
effects (due to the larger step size), with substantial overall improvement. The basic 
stochastic approximation algorithm tends to be more robust with a larger step size, 
therefore it is less likely to get stuck at an early stage and more likely to have a 
faster initial convergence. 

The usual idea is to select the step sizes in such a way that an appropriate 
measure of the rate of convergence is maximised. Typically, the step sizes are 
required to be chosen as 

a' ' = p-k~^, with 0 . 5 < p < l and p>0, (3.10) 
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SO that a'' is sufficiently small for 1<=1,2,3,...; this is sufficient to allow the algorithm 
to converge beginning in an arbitrary starting point, while ensuring that the variance 
of the successive iterates decreases to zero so that the sequence converges to a 
single value. 

3.4.1 Step size illustration 
The step size changes of MSA, the Polyak method and the Bather method are 
illustrated in figure 3 .1 . These step sizes are used when the numerical example in 
subsection 4.1 .1 . is solved. 

1 I ^ , ^ R 

0.9 • 

I I I I I I 
0 5 0 100 150 2 0 0 2 5 0 

number of iterations 

— MSA 
— Po lyak 

— B a t h e r 

Figure 3.1: Ttie step sizes of MSA, the Polyal< method and the Bather method at increasing 
number of iterations 

P 0 
MSA 1.00 1.00 
Polyak 1.00 0.70 
Bather 1.00 0.62 

Tabie 3.1: Parameters of the step sizes of MSA, the Polyal< method and the Bather method 
(see (3.10)). 
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In figure 3.1 it can be seen that the step sizes of the Bather method go slower to 
zero than the step sizes of the Polyak method. The step sizes of these two methods 
go both slower to zero than the step sizes of MSA. MSA has reached the stop criterion 
after 190 iterations, the Polyak method has reached the stop criterion after 226 
iterations and the Bather method has reached the stop criterion after 118 iterations. 

11 
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4 , Method of Successive Averages (MSA) 

The Method of Successive Averages (MSA) has the advantages of avoiding 
(potentially expensive) step size calculations, working directly with map outputs 
without requiring derivative calculations or other transformations, and being able 
to handle 'noisy' map evaluations (where the evaluation returns a value affected 
by a zero-mean disturbance). In many cases, however, the method's empirically 
observed convergence properties are disappointing: while it exhibits generally 
effective performance in the initial iterations, this is followed by a pronounced 
' tai l ' effect, resulting in overall slow convergence. 

In this chapter MSA is explained and an example of solving a 
transportation problem using MSA is given. 

4.1 The Method of Success ive Averages 
The classical application of iterate averaging to a transportation problem is 
introduced by Sheffi and Powell [3 .2 ] , who used it to minimise a twice 
continuously differentiable functional (the objective function of the unconstrained 
convex optimisation formulation of the Stochastic User Equilibrium problem). In 
their application, the function TQ provided a noisy descent direction while the 
stochastic potential function was provided by the objective function itself. 
Although any step size sequence a'' satisfying the summability conditions (3.2) 
and (3.3) (section 3.1) could be used in an iterate averaging method, a particular 

sequence a'" = j/^ (formule (3.10) with p==l and P = l ) was proposed by Sheffi 

and Powell [3.2] as the basis for their solution algorithm for the static stochastic 
user equilibrium problem. Because each successive design point generated by this 
method is the average of the preceding map evaluation results, they called this 
MSA (see (4.1)). 

x'^' =x'' +a' -^(x'^x^l, x° eW and k=l ,2,3, . . . . (4.1) 

cc'=}{, k=l ,2,3, . . . . (4.2) 

MSA is attractive because it inherits the robust convergence properties of iterate 
averaging methods while requiring only a trivial step size calculation. 

MSA has been applied to a wide variety of problems that arise in 
transportation analysis and planning. In some applications, it can be rigorously 
proven to converge to a fixed-point, whereas in others it is used as a heuristic 
that has been found to give good results in practice. I t avoids (potentially 
expensive) step size calculations, and it works directly with model outputs 
without requiring derivative calculations or other transformations. 

As an example, Cascetta and Postorino [4.2] observed that in MSA an 
iteration's estimate is affected by the results from all prior iterations, including 
those from early iterations that are presumably far from the solution. 
Furthermore, later iterations, which are presumably closer to the solution, receive 
smaller weights when computing a new estimate. 
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4.1.1 A numerical example of MSA 
To illustrate MSA, and also the next algorithms that are described in this report a 
small example is given. There are three cities and three links connecting these 
cities (see figure 4.1). Link 1 forms route 1 and link 2 and link 3 form together 
route 2. Travellers want to travel from A to B and want to take the cheapest 
route. Four time periods are considered. For each time period there is a demand 
c/(4.2). 

d = [l5 20 15 20] (4.3) 

The route costs of two routes are computed by the costs of the links. Each link 
has costs c: 

c = l + 0.01-w-+0.01-V' (4.4) 

Where u is the number of travellers entering the road and v is the density on the 
road. 

Figure 4.1: Tiie cities and routes of the small problem described 

The results of MSA after 100.000 iterations are shown in table 4 . 1 . In the first 
column the route costs and number of travellers in the attained Equilibrium State 
of route 1 are shown and in the second column the route costs and number of 
travellers in the attained Equilibrium State of route 2 are shown. 

MSA 
time periods route 1 route 2 

route costs 
1 2,2750 2,2750 
2 3,5915 3,5915 
3 6,2796 6,2795 
4 7,1277 7,5794 

route flows 
1 11,2917 3,7083 
2 11,4736 8,5264 
3 3,1140 11,8860 
4 19,9992 0,0008 

Table 4.1: Route costs and flows of the problem solved with MSA in the DTA algorithm. 

Now the stop criterion is set to 0.001 and MSA is taken to solve the previous 
described problem. The outcomes are given in figure 4.2 and table 4 . 1 . 

13 
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0.12 

0.1 h 

.y'V̂ .-̂ -\ 
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number of iterations 
140 160 180 

MSA 

Figure 4.2: Tlie normalised duality gap value with increasing number of iterations when 
the problem is solved with MSA in the DTA algorithm 

MSA 
t ime periods route 1 route 2 

route costs 
1 2,2745 2,2754 
2 3,5910 3,5916 
3 6,2813 6,2587 
4 6,9742 7,5529 

route flows 
1 11,2895 3,7105 
2 11,4737 8,5263 
3 3,1579 11,8421 
4 19,5789 0,4211 

Table 4.2: Route costs and flows of the problem solved with MSA in the DTA algorithm. The 
stop criterion is set to 0.001 (see figure 4.2). 

stop criterion | 0.001 
Tabel 4.3: If de ng is smaller than de stop criterion the algorithm is stopped. 
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The normalised gap value for every iteration step of the solution algorithm is 
shown in figure 4.2. The normalised gap goes to zero and when the normalised 
gap is smaller than the stop criterion the program stops. Î ISA requires 190 
iterations to reach the stop criterion. The values of the route costs and flows of 
the two routes are shown in table 4 . 1 . The first column shows the route costs and 
number of travellers in the Equilibrium State of route 1 while the second column 
shows the route costs and number of travellers in the Equilibrium State of route 
2. I t appears that the route costs of the first three time periods are almost 
identical. In the fourth time period the route costs differ substantially. This is 
caused by the fact that the value for the most expensive route in the last time 
period in the equilibrium goes to zero. 
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5 . Polyak and Bather methods 

5.1 Introduction to the Polyal< and Bather method 
Approximately ten years ago, Polyak [5.1] and Bather [5.2] proposed two 
relatively minor modifications of the iterate averaging method which were 
rigorously shown to produce fixed-point estimates with asymptotically optimal 
properties. These 'accelerated' methods have not been widely discussed in the 
transportation literature. However, in initial computational experiments where the 
Polyak method was applied to the DTA model and the anticipatory route guidance 
generation problems, the method often exhibited convergence rates four or more 
times faster than MSA [1.2]. In view of their attractive theoretical properties and 
these encouraging preliminary empirical results, the two methods would seem to 
merit serious consideration by the transportation community. 

I t is characteristic of iterate averaging that the design points generated by 
successive iterations of the algorithm are also taken to be the successive 
estimates of the equation solution. This was also noted by Frees and Ruppert 
[5 .3 ] , who pointed out the advantages of using one method to select the design 
points, and a different method to estimate the solution. Use of methods adapted 
to each purpose could allow, for example, a more aggressive exploration of the 
feasible space and a more effective exploitation of the results generated during 
that exploration to estimate a solution. One family of methods that exploits this 
idea is called iterate averaging. 

5.2 The Polyak method 
The Polyak method is a two-pass method. The first pass resembles MSA except 
that the step sizes are larger; this allows the algorithm to explore the solution 
space more aggressively but leads to greater variability in the outputs. The 
second pass is carried out offline (i.e., without influencing the first pass); it 
calculates an average of iterates that are generated by the first pass. The 
average calculated by the second pass at termination is the fixed-point solution 
estimate. 

One method that implements this idea is due to Polyak [5.1] . Let the 
equation 

x'*' =x' +a' •[T(X')-X'\, \Nith x° and k=l ,2,3, . . . . (5.1) 

be a simple averaging process and suppose that the process converges to a fixed-
point X * . In the Polyak method one also computes, 'in parallel' with and 
independently of the simple averaging process, a running average of the design 
points x* that is generated, say 

—/• 1 
x ' = - - ^ x ' , with x° e 5R" and k=l ,2,3, . . . . (5.2) 

-k , 

The sequence x also converges to the limit x . 
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5.2.1 A numerical example of the Polyak method 
The traffic problem with three cities and two routes described in subsection 4 .1 .1 . 
is considered. In the Polyak method the adjustment parameter a is computed as 
follows: 

a''=pk-\ (5.3) 

where k is the number of iterations, p can be chosen between values of 0.5 and 
1.0 and p>0. In the rest of this report p will be one. Figure 5.1 shows the number 
of iterations with which the problem is solved using the Polyak method for a given 
value of p. Therefore, the best value for p can be chosen for the calculation. 
According to figure 5.1 the best value for p is 0.70. 

700 I 1 1 1 1 1 1 1 r 

200 h 

100 h 

0.5 0.55 0.6 0.65 0.7 0.75 
beta 

0.8 0.85 0.9 0.95 

Pokv-ak 

Figure 5.1: Required number of iterations for ttie Poiyak method for given values of P 

stop criterion j 0.001 
Tabel 5.1: If de ng is smaller than de stop criterion the algorithm is stopped. 

To solve the given assignment problem using the Polyak method, the stop 
criterion is set to 0.001, p to 1 and P to 0.70. The outcomes are given in figure 
5.2 and table 5.2. 
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100 
number of iterations 

Pol yak 

Figure 5.2: The normalised duality gap value with increasing number of iterations when 
the problem is solved with the Polyak method in the DTA algorithm 

Polyak 
t ime periods route 1 route 2 

route costs 
1 2,2515 2,2908 
2 3,5795 3,5823 
3 6,2558 6,2553 
4 7,0240 7,5502 

route flows 
1 11,1871 3,8129 
2 11,5238 8,4762 
3 3,1291 11,8709 
4 19,6898 0,3102 

stop criterion 0.001 

3 0.70 
Tabel 5.3: Variables used for figure 5.2. 

Table 5.2: Route costs and flows of the problem solved with the Polyak method in the DTA 
algorithm (see figure 5.2). 

The normalised gap value for every iteration of the solution algorithm is shown in 
figure 5.2. The normalised gap goes to zero and when the normalised gap is 
smaller than the stop criterion the program stops. The Polyak method requires 
226 iterations to reach the stop criterion. The values of the route costs and flows 
of the two routes are shown in table 5 .1 . The first column shows the route costs 
and number of travellers in the Equilibrium State of route 1 while the second 
column the route costs and number of travellers in the Equilibrium State of route 
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2 shows. I t appears that the route costs of the first three time periods are almost 
identical. In the fourth time period the route costs differ. This is caused by the 
fact that the value for the most expensive route in the last t ime period in the 
equilibrium goes to zero. 

5.3 The Bather method 
A somewhat different approach was proposed by Bather [5 .2 ] . Here, the design 
point in each iteration is derived from a combination of the average of previous 
design points with the average of previous evaluation results: 

—k I - k \ 
x''^'=x -k-a''•IT''-X J, with x° e 5R" and I<=1,2,3,..., (5.4) 

a'' = p-k-\ with 0 . 5 < p < l and p>0, (5.5) 

- k ,. 

where x is as before, the running average of the design points ( x ' ) selected in 
previous iterations, while 

k , . 

T' = ^ ' t h x° edl" and k=l ,2,3, . . . , (5.6) 
(=1 

is the running average of the corresponding function evaluation results minus the 
running average of the design points. As in the Polyak method, the function 
evaluations are made at the design points ( x * ) while the fixed point is estimated 

— k 

by X . Since, 

(k + iy'"' =k-x' +x''\ (5.7) 

Bather's recursion can also be expressed as 

X**' = x ' ' + V^ î • ' with x° e 5H" and k=l ,2,3, . . . , (5.8) 

a * = p-k'f^, with 0 . 5 < p < l and p>0, (5.9) 

= j/f^Y^Tix'), with x° e 9^" and k=l ,2,3, . . . , (5.10) 
/=i 

thus it resembles the basic Robbins-IMonro procedure with the design points 
replaced by their averages. 
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5.3.1 A numerical example of the Bather method 
The traffic problem with three cities and two routes described in subsection 4 .1 .1 . 
is considered. In the Bather method the adjustment parameter a is computed as 
follows: 

a'=p-k-'^, (5.11) 

where k is the number of iterations and b can be chosen between values of 0.5 
and 1.0. Figure 5.3 shows the required number of iterations in which the problem 
is solved using the Bather method for given values of p (and p = l ) . Therefore, the 
best value for p can be chosen. According to figure 5.3 the best value for p is 
0.62. 

Bather 

Figure 5.3: Required number of iterations for ttie Battier mettiod forgiven values of P 

stop criterion | 0.001 
Tabei 5.4: If de ng is smaller than de stop criterion the algorithm is stopped. 

To solve the given assignment traffic problem using the Bather method, the stop 
criterion is set to 0.001, p to 1 and P to 0.62. The outcomes are given in figure 
5.4 and table 5.5. 

20 





Polyak and Bather methods Chapter 5 

40 60 
number of iterations 

100 

Bather 

Figure 5.4: Tfie normalised duality gap value with increasing number of iterations when 
the problem is solved with the Bather method in the DTA algorithm 

Bather 
time periods route 1 route 2 

route costs 
1 2,2710 2,2111 
2 3,5888 3,5908 
3 6,2752 6,2693 
4 6,9636 1,5611 

route flows 
1 11,2740 3,7260 
2 11,4794 8,5205 
3 3,1313 11,8687 
4 19,5674 0,4326 

stop criterion 0.001 

3 0.62 
Tabel 5.6: Variables used for figure 5.4. 

Table 5.5: Route costs and flows of the problem solved with the Bather method in the DTA 
algorithm (see figure 5.4). 
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The normalised gap value for every iteration of the solution algorithm is shown in 
figure 5.4. The normalised gap goes to zero. When the normalised gap is smaller 
than the stop criterion the program is stopped. The Bather method requires 112 
iterations to reach the stop criterion. The values of the route costs and flows of 
the two routes are shown in table 5.5. The first column shows the route costs and 
number of travellers in the Equilibrium State of route 1 while the second column 
shows the route costs and number of travellers in the Equilibrium State of route 
2. I t appears that the route costs of the first three time periods are almost 
identical. In the fourth time period the route costs differ. This is caused by the 
fact that the value for the most expensive route in the last time period in the 
equilibrium goes to zero. 
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6 - Alternative methods 

Chapter 6 

In this chapter two new methods are introduced. The Bliemer method is proposed 
by Dr. l^i.C.J. Bliemer and after that the Bliemer Moving method is proposed by 
R.T.J. Hiele. The other alternative methods introduced in this chapter are 
combinations of earlier introduced methods. 

6.1 The Bliemer method 
Let 

=x' +a" •[T(X')-X'\, with x" edl" and k=l ,2,3, . . . . (6.1) 

be a simple averaging process and suppose that the process converges to a fixed 
point X * . In the Polyak method one also computes, 'in parallel' with and 
independently of the simple averaging process, a running average of the design 
points (x*^ ) that is generated, say 

— k 1 
X =--J^x' , with x° and k=l ,2,3, . . . . (6.2) 

k i=i 

The Bliemer method is almost the same as the Polyak method, with the difference 
that the observations {T{)) are evaluated in the average of the previous design 

- k . 

points ( X ) and not at the previous design point( x ): 

x^^' =x'+a' 
- k 

T\X J - X ' ' J , with X " e 9^" and k=l ,2,3, . . . . (6.3) 

a * = p-k'B with p>0, 0.5<p<1.0 and k=l ,2,3, . . . . (6.4) 
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6.1.1 A numerical example of the Bliemer method 
The traffic problem with three cities and two routes described in subsection 4 .1 .1 . 
is considered. In figure 6.1 the number of iterations in which the problem is 
solved using the Bliemer method is expanded against p. In this way, the best p 
for the calculation can be found. According to figure 6.1 the best value for p is 
0.54. 
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0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 
beta 

Bliemer 

Figure 6.1: Required number of iterations for the Bliemer method for given values of P 

stop criterion 10.001 
Tabel 6.1: If de ng is smaller than de stop criterion the algorithm is stopped. 

To solve the given traffic problem using the Bliemer method the stop criterion is 
set to 0.001, p to 1 and p to 0.54. The outcomes are given in figure 6.2 and table 
6.2. 
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40 60 
number of iterations 
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Figure 6.2: Ttie normalised gap value with increasing number of iterations when the 
problem is solved with the Bliemer method in the DTA algorithm 

Bliemer 
t ime periods route 1 route 2 

route costs 
1 2,2748 2,2752 
2 3,5917 3,5910 
3 6,2803 6,2760 
4 6,9426 7,5769 

route flows 
1 11,2909 3,7091 
2 11,4753 8,5247 
3 3,1203 11,8797 
4 19,5251 0,4749 

stop criterion 0.001 

3 0.54 
Tabel 6.3: 
figure 6.2 

Values of the variables used for 

Table 6.2: Route costs and flows of the problem solved with the Bliemer method in the DTA 
algorithm (see figure 6.2). 

The normalised gap value for every iteration of the solution algorithm is shown in 
figure 6.2. The normalised gap goes to zero and when the normalised gap is 
smaller than the stop criterion the program is stopped. Using the Bliemer method 
there are 118 iterations needed to reach the stop criterion. The values of the 
route costs and the values of the equilibrium of the two routes are shown in table 
6 .1 . In the first column the route costs and number of travellers in the 
Equilibrium State of route 1 are shown and in the second column the route costs 
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and number of travellers in the Equilibrium State of route 2 are shown. I t appears 
that the route costs of the first three time periods are almost identical. In the 
fourth time period the route costs differ. This is caused by the fact that the value 
for the most expensive route in the last time period in the equilibrium goes to 
zero. 

6.2 The Bliemer Moving method 
The Bliemer Moving method is almost the same as the Bliemer method (section 
6.1). The Bliemer Moving method is the Bliemer method with a moving average: 

X k+\ 9^" and k=l ,2,3, . . . , (6.5) 

(6.6) 
( = < : - M + l 

a'' = p-k~^ , with p>0, 0.5<p<1.0 and k=l ,2,3, . . . . (6.7) 

where M is a fixed constant. 
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6.2.1 A numerical example of the Bliemer Moving method 
The traffic problem with three cities and two routes described in subsection 4 .1 .1 . 
is considered. In figure 5.3 the number of iterations in which the problem is 
solved using the Bliemer IMoving method with moving equal to 30 is expanded 
against p. M is the number of design points taken for the moving average. 
Therefore, the best value for p can be chosen for the calculation. According to 
figure 6.3 the best value for p is 0.54 (or 0.55 or 0.56). 
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Figure 6.3: Required number of iterations for the Bliemer l^oving method for given values 
ofP 

stop criterion 0.001 
moving 30 

Tabel 6.4: Values of the variables used for figure 6.3. 

To solve the given traffic problem using the Bliemer Moving method the stop 
criterion is set to 0.001, p to 1 and p to 0.54. The outcomes are given in figure 
6.4 and table 6.5. 
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40 
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Figure 6.4: Tlie normalised gap value with increasing number of iterations when the 
problem is solved with the Bliemer Moving method in the DTA algorithm 

Bliemer Moving 
t ime periods route 1 route 2 

route costs 
1 2,2740 2,2757 
2 3,5943 3,5861 
3 6,2871 6,2594 
4 7,1123 7,5530 

route flows 
1 11,2872 3,7128 
2 11,4905 8,5095 
3 3,1443 11,8557 
4 19,9261 0,0739 

Stop criterion 0.001 
0.54 

moving 30 
Tabel 6.6: 
figure 6.4. 

Values of the variables used for 

Table 6.5: Route costs and flows of the problem solved with the Bliemer /Moving method in 
the DTA algorithm (see figure 6.4). 

The normalised gap for every iteration of the solution algorithm is shown in figure 
6.4. The normalised gap goes to zero and when the normalised gap is smaller 
than the stop criterion the program is stopped. Using the Bliemer Moving method 
there are 40 iterations needed to reach the stop criterion. The values of the route 
costs and flows of the two routes are shown in table 6.5. In the first column the 
route costs and number of travellers in the Equilibrium State of route 1 are shown 
and in the second column the route costs and number of travellers in the 
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Equilibrium State of route 2 are shown. I t appears that the route costs of the first 
three time periods are almost identical. In the fourth time period the route costs 
differ. This is caused by the fact that the value for the most expensive route in 
the last time period in the equilibrium goes to zero. Observe that the flow on 
route 2 in the last t ime period is much closer to zero when the Bliemer Moving 
method is used. The Bliemer Moving algorithm makes sure that bad design points 
are omitted. 

6.3 The MSA-Bliemer method 
This method first starts with î SA (see section 4.1) and after a certain number of 
iterations there is a switch to the Bliemer method (see section 6.1). This method 
is derived from Kushner's proposal. For more detail see [6 .1 ] . 

6.3.1 A numerical example of the MSA-Bliemer method 
The traffic problem with three cities and two routes described in subsection 4 .1 .1 . 
is considered. In the MSA-Bliemer method the adjustment parameter a is 
computed as follows: 

ö r = p • k' (6.8) 

where k is the number of iterations and |3 can be chosen between values of 0.5 
and 1.0. In figure 6.5 the number of iterations in which the problem is solved 
using the MSA-Bliemer method with n-switch equal to 33 is expanded against p. 
Therefore, the best value for p can be chosen for the calculation. According to 
figure 6.5 the best value for p is 0.54. 
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100 

50 

0 
0.5 0.55 0.6 0.65 0.7 0.75 

beta 
0.8 0.85 0.9 0.95 

Figure 6.5: Required number of iterations for the i^SA-Bliemer method for given values of 
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Stop criterion 0.001 
n-switcin 33 

Tabel 6.7: Values of the variables used for figure 6.5. 

To solve the given traffic problem using the MSA-Bliemer method the stop 
criterion is set to 0.001, p to 1 and P to 0.54. The outcomes are given in figure 
6.6 and table 6.8. 

3D 40 
number of iterations 

Figure 6.6: The normalised gap value with increasing the number of iterations when the 
problem is solved with the MSA-Bliemer method in the DTA algorithm 

MSA- Bliemer 
t ime periods route 1 route 2 

route costs 
1 2,2738 2,2758 
2 3,5909 3,5910 
3 6,2790 6,2739 
4 6,9825 7,5734 

route flows 
1 11,2863 3,7137 
2 11,4764 8,5236 
3 3,1238 11,8762 
4 19,6236 0,3764 

Stop criterion 0.001 
0.54 

n-switch 33 
Tabel 6.9: 
figure 6.6. 

Values of the variables used for 

Table 6.8: Route costs and flows of the problem solved with the l^SA-Bliemer method in 
the DTA algorithm (see figure 6.6). 
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The nornnalised gap value for every iteration of the solution algorithm is shown in 
figure 6.6. The normalised gap goes to zero and when the normalised gap is 
smaller than the stop criterion the program is stopped. Using the MSA-Bliemer 
method there are 73 iterations needed to reach the stop criterion. The values of 
the route costs and the values of the equilibrium of the two routes are shown in 
table 6.8. In the first column the route costs and number of travellers in the 
Equilibrium State of route 1 are shown and in the second column the route costs 
and number of travellers in the Equilibrium State of route 2 are shown. I t appears 
that the route costs of the first three time periods are almost identical. In the 
fourth time period the route costs differ. This is caused by the fact that the value 
for the most expensive route in the last time period in the equilibrium goes to 
zero. 

6.4 The MSA-Bather method 
This method first starts with MSA (see section 4.1) and after a certain number of 
iterations there is a switch to the Bather method (see section 5.3). 
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6.4.1 A numerical example of the MSA-Bather method 
The traffic problem with three cities and two routes described in subsection 4 .1 .1 . 
is considered. In the MSA-Bather method the adjustment parameter a is 
computed as follows: 

a''=p-k-\ (6.9) 

where k is the number of iterations and (3 can be chosen between values of 0.5 
and 1.0. In figure 6.7 the number of iterations in which the problem is solved 
using the MSA-Bather method with n-switch equal to 10 is expanded against p. 
Therefore, the best value for p can be chosen for the calculation. According to 
figure 6.7 the best value for p is 0.67. 

5DD I 1 1 1 1 1 1 1 1 1 

450 -

400 h 

0.5 0..55 0.6 0.65 0.7 0.75 O.B D.85 iD.9 0.95 1 
beta 

- MSA-Bather 

Figure: 6.7: Required number of iterations for tiie l^SA-Bathier mettiod for given values of 

stop criterion 0.001 
n-switch 10 

Tabel 6.10: Values of tiie variables used for figure 6.7. 

To solve the given traffic problem using the MSA-Bather method the stop criterion 
is set to 0.001, p to 1 and p to 0.67. The outcomes are given in figure 6.8 and 
table 6.11. 
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15 20 25 
number of iterations 

40 

MSA-Bather 

Figure 6.8: Tiie normalised gap value with increasing number of iterations when the 
problem is solved with the MSA-Bather method in the DTA algorithm 

MSA- Bather 
t ime periods route 1 route 2 

route costs 
1 2,2758 2,2745 
2 3,5901 3,5944 
3 6,2827 6,2383 
4 7,0594 7,5234 

route flows 
1 11,2950 3,7050 
2 11,4643 8,5357 
3 3,2077 11,7923 
4 19,7654 0,2346 

stop criterion 0.001 
0.67 

n-switch 10 
Tabel 6.12: 
figure 6.8. 

Values of the variables used for 

Table 6.11: Route costs and flows of the problem solved with the MSA-Bather method in 
the DTA algorithm (see figure 6.8). 

The normalised gap value for every iteration of the solution algorithm is shown in 
figure 6.8. The normalised gap goes to zero and when the normalised gap is 
smaller than the stop criterion the program is stopped. Using the MSA-Bather 
method there are 40 iterations needed to reach the stop criterion. The values of 
the route costs and flows of the two routes are shown in table 6.4. In the first 
column the route costs and number of travellers in the Equilibrium State of route 
1 are shown and in the second column the route costs and number of travellers in 
the Equilibrium State of route 2 are shown. I t appears that the route costs of the 
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first tl iree time periods are almost identical. In the fourth time period the route 
costs differ. This is caused by the fact that the value for the most expensive route 
in the last time period in the equilibrium goes to zero. 

6.5 The Bl iemer-Bather method 
This method first starts with the Bliemer method (see section 6.1) and after a 
certain number of iterations there is a switch to the Bather method (see section 
5.3). 

6.5.1 A numerical example of the Bl iemer-Bather method 
The traffic problem with three cities and two routes described in subsection 4 .1 .1 . 
is considered. In the Bliemer-Bather method the adjustment parameter a is 
computed as follows: 

a ' ^ p k - " , (6.10) 

where k is the number of iterations and p can be chosen between values of 0.5 
and 1.0. In figure 6.9 the number of iterations in which the problem is solved 
using the Bliemer-Bather method with n-switch equal to 13 is expanded against 
p. Therefore, the best value for p can be chosen for the calculation. According to 
figure 6.9 the best value for p is 0.61. 

400 I ^ ^ r 

g I I I I I I I 1 I 1 1 
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 

beta 

— Bliemer-Bather 

Figure 6.9: Required number of iterations for the Bliemer-Bather method forgiven values 
ofjS 

stop criterion 0.001 
n-switch 13 

Tabel 6.13: Values of the variables used for figure 6.9. 

34 





Alternative methods Chapter 6 

To solve the given traffic problem using the Bliemer-Bather method the stop 
criterion is set to 0 .001, p to 1 and |3 to 0.61. The outcome can be found in figure 
6.10 and table 6.14. 

0.18 
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0.14 
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0.08 h 
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number of iterations 

— el iemsr-Bather 

Figure 6.10: Tlie normalised gap value with increasing number of iterations when the 
problem is solved with the Bliemer-Bather method in the DTA algorithm 

Bliemer- Bather 
t ime periods route 1 route 2 

route costs 
1 2,2730 2,2763 
2 3,5911 3,5897 
3 6,2794 6,2728 
4 7,0052 7,5717 

route flows 
1 11,2829 3,7171 
2 11,4808 8,5192 
3 3,1230 11,8770 
4 19,6787 0,3213 

stop criterion 0.001 

P 0.61 
n-switch 13 

Tabel 6.15: Values of the variables used for 
figure 6.10. 

Table 6.14: Route costs and flows of the problem solved with the Bliemer-Bather method 
in the DTA algorithm (see figure 6.10). 
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The normalised gap value for every iteration of the solution algorithm is shown in 
figure 6.10. The normalised gap goes to zero and when the normalised gap is 
smaller than the stop criterion the program is stopped. Using the Bliemer-Bather 
method there are 31 iterations needed to reach the stop criterion. The values of 
the route costs and flows of the two routes are shown in table 6.5. In the first 
column the route costs and number of travellers in the Equilibrium State of route 
1 are shown and in the second column the route costs and number of travellers in 
the Equilibrium State of route 2 are shown. I t appears that the route costs of the 
first three time periods are almost identical. In the fourth time period the route 
costs differ. This is caused by the fact that the value for the most expensive route 
in the last time period in the equilibrium goes to zero. 
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7 . Comparison of developed methods 

Chapter 7 

In this chapter the various methods presented before (MSA, Polyalc, Bather, Bliemer, 
Bliemer Moving, MSA-Bliemer, MSA-Bather and Bliemer-Bather method) are 
compared. First MSA will be compared with the Polyak method (section 7.1). In 
section 7.2 the Polyak method will be compared with the Bather method. In section 
7.3 the Bather method is compared with the Bliemer method and the Bliemer Moving 
method. In chapter 6 combinations of method are made, such as the MSA-Bliemer 
method (section 6.3), the MSA-Bather method (section 6.4) and the Bliemer-Bather 
method (section 6.5). These methods will be compared in section 7.4. In section 7.5 
all the methods are shown at decreasing values of the stop criterion. 

7.1 Comparison of MSA and the Polyak method 
The traffic problem with three cities and two routes described in subsection 4.1.1 is 
also considered for comparison of the methods described in this report. To compare 
MSA and the Polyak method the stop criterion is set to 0.001, p to 1 and the value of 
p for the Polyak method is set to 0.70. The outcome can be found in figure 7.1 and 
table 7 .1 . 

0.2 

0 
0 50 100 

number of iterations 
150 200 

— Polyal< 

Figure 7.1: Comparison of tfie convergence of MSA and ttie Poiyal< mettiod 
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MSA Polyak 
t ime periods route 1 route 2 route 1 route 2 

route costs route costs 
1 2,2745 ^ 2 7 5 4 2,2515 2,2908 
2 3,5910 3,5916 3,5795 3,5823 
3 6,2813 6,2587 6,2558 6,2553 
4 6,9742 7,5529 7,024 7,5502 

route flows route flows 
1 11,2895 3,7105 11,1871 3,8129 
2 11,4737 8,5263 11,5238 8,4762 
3 3,1579 11,8421 3,1291 11,8709 
4 19,5789 0,4211 19,6898 0,3102 

Table 7.1: Route costs and flows of the problem solved with MSA and the Polyak method in the 
DTA algorithm (see figure 7.1). 

stop criterion 0.001 

P 0.70 
Tabel 7.2: Variables used for figure 7.1. 

After 190 iterations of MSA and after 226 iterations of tine Polyal< method the stop 
criterion is reached. The values of the route costs and the values of the route flows 
of the two routes for MSA and the Polyak method are shown in table 7 .1 . From table 
7.1 one can see that the results are almost identical. In this case the Polyak method 
is not faster than MSA. 

7.2 Comparison of the Polyak and Bather method 
The traffic problem with three cities and two routes described in subsection 4.1.1 is 
also considered for the comparison of the methods described in this report. To 
compare the Polyak method and the Bather method the stop criterion is set to 0.001, 
p to 1, the value of p for the Polyak method is set to 0.70 and the value of p for the 
Bather method is set to 0.62. The outcome can be found in figure 7.2 and table 7.3. 
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100 
number of iterations 

150 200 

— Polyal< 
— Bather 

Figure 7.2: Comparison of tfie convergence of tfie Polyafc method and the Bather method 

Polyak Bather 
time periods route 1 route 2 route 1 route 2 

route costs route costs 
1 2,2515 2,2908 2,2710 2,2777 
2 3,5795 3,5823 3,5888 3,5908 
3 6,2558 6,2553 6,2752 6,2693 
4 7,0240 7,5502 6,9636 7,5677 

route flows route flows 
1 11,1871 3,8129 11,2740 3,7260 
2 11,5238 8,4762 11,4794 8,5205 
3 3,1291 11,8709 3,1313 11,8687 
4 19,6898 0,3102 19,5674 0,4326 

Table 7.3: Route costs and flows of the problem solved with the Polyak method and the Bather 
method in the DTA algorithm (see figure 7.2). 

stop criterion 0.001 
3 (polyal<) 0.70 
P (bather) 0.62 

Tabel 7.4: Variables used for figure 7.2. 
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A f t e r 2 2 6 i t e r a t i o n s o f t h e P o l y a k m e t h o d a n d a f t e r 118 i t e r a t i o n s o f t h e B a t h e r 
m e t h o d t h e s t o p c r i t e r i o n is r e a c h e d . T h e v a l u e s o f t h e r o u t e cos t s a n d t h e v a l u e s o f 
t h e r o u t e f l o w s o f t h e t w o r o u t e s f o r t h e P o l y a k m e t h o d a n d t h e B a t h e r m e t h o d a r e 
s h o w n in t a b l e 7 . 3 . F r o m t a b l e 7 .3 o n e can see t h a t t h e r e s u l t s a r e a l m o s t i d e n t i c a l . 

7 . 3 C o m p a r i s o n o f t h e B a t h e r , B l i e m e r a n d B l i e m e r M o v i n g m e t h o d 
T h e t r a f f i c p r o b l e m w i t h t h r e e c i t i es a n d t w o r o u t e s d e s c r i b e d in s u b s e c t i o n 4 . 1 . 1 is 
a l so c o n s i d e r e d f o r t h e c o m p a r i s o n o f t h e m e t h o d s d e s c r i b e d in t h i s r e p o r t . To 
c o m p a r e t h e B a t h e r m e t h o d , t h e B l i e m e r m e t h o d a n d t h e B l i e m e r M o v i n g m e t h o d 
t h e s t o p c r i t e r i o n is s e t t o 0 . 0 0 1 , p t o 1 , t h e v a l u e o f P o f t h e B a t h e r m e t h o d is s e t t o 
0 . 6 2 , t h e v a l u e o f p o f t h e B l i e m e r ( M o v i n g ) m e t h o d is se t t o 0 . 5 4 a n d M is se t t o 3 0 . 
T h e o u t c o m e can be f o u n d in f i g u r e 7 .3 a n d t a b l e 7 . 5 . 

number of iterations 

— B a t h e r 
^ _ P, 11 i i ' Pr t I'y r" 

Ö 1 1 fe-111 r 

— B l i e m e r " lov ing 

Figure 7.3: Comparison of ttie Bather method, the Bliemer method and the Bliemer leaving 
method 
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B l i e m e r B l i e m e r M o v i n g 
t i m e p e r i o d s route 1 route 2 route 1 route 2 

route costs route costs 
1 2 , 2 7 4 8 2 , 2 7 5 2 2 , 2 7 4 0 2 , 2 7 5 7 
2 3 , 5 9 1 7 3 , 5 9 1 0 3 , 5 9 4 3 3 , 5 8 6 1 
3 6 , 2 8 0 3 6 , 2 7 6 0 6 , 2 8 7 1 6 , 2 5 9 4 
4 6 , 9 4 2 6 7 , 5 7 6 9 7 , 1 1 2 3 7 , 5 5 3 0 

route flows route flows 
1 1 1 , 2 9 0 9 3 , 7 0 9 1 1 1 , 2 8 7 2 3 , 7 1 2 8 
2 1 1 , 4 7 5 3 8 , 5 2 4 7 1 1 , 4 9 0 5 8 , 5 0 9 5 
3 3 , 1 2 0 3 1 1 , 8 7 9 7 3 , 1 4 4 3 1 1 , 8 5 5 7 
4 1 9 , 5 2 5 1 0 , 4 7 4 9 1 9 , 9 2 6 1 0 , 0 7 3 9 

Table 7.5: Route costs and flows of the problem solved with the Bliemer method and the 
Bliemer leaving method in the DTA algorithm (see figure 7.3). 

s t o p c r i t e r i o n 0 . 0 0 1 

P ( b a t h e r ) 0 . 6 2 

P ( b l i emer ( m o v i n g ) ) 0 . 5 4 
m o v i n g 3 0 

Tabel 7.6: Variables used for figure 7.3. 

A f t e r 1 1 8 i t e r a t i o n s o f t h e B a t h e r m e t h o d , a f t e r 1 1 2 i t e r a t i o n s o f t h e B l i e m e r m e t h o d 
a n d a f t e r 4 0 i t e r a t i o n s o f t h e B l i e m e r M o v i n g m e t h o d t h e s t o p c r i t e r i o n is r e a c h e d . 
T h e v a l u e s o f t h e r o u t e c o s t s a n d t h e v a l u e s o f t h e r o u t e f l o w s o f t h e t w o r o u t e s f o r 
t h e B a t h e r m e t h o d a r e s h o w n in t a b l e 7 . 3 a n d t h e v a l u e s f o r t h e B l i e m e r m e t h o d a n d 
t h e B l i e m e r M o v i n g m e t h o d a r e s h o w n in t a b l e 7 . 5 . F r o m t a b l e 7 . 3 a n d t a b l e 7 . 5 o n e 
c a n s e e t h a t t h e r e s u l t s a r e a l m o s t i d e n t i c a l . 

7 . 4 C o m p a r i s o n o f c o m b i n e d m e t h o d s 
T h e t r a f f i c p r o b l e m w i t h t h r e e c i t i e s a n d t w o r o u t e s d e s c r i b e d in s u b s e c t i o n 4 . 1 . 1 is 
a l so c o n s i d e r e d f o r t h e c o m p a r i s o n o f t h e m e t h o d s d e s c r i b e d in t h i s r e p o r t . T o 
c o m p a r e t h e M S A - B l i e m e r m e t h o d , t h e M S A - B a t h e r m e t h o d a n d t h e B l i e m e r - B a t h e r 
m e t h o d t h e s t o p c r i t e r i o n is s e t t o 0 . 0 0 1 , p t o 1 , t h e v a l u e o f p o f t h e M S A - B l i e m e r 
m e t h o d is s e t t o 0 . 5 4 , t h e v a l u e o f p o f t h e M S A - B a t h e r m e t h o d is s e t t o 0 . 6 7 a n d 
t h e v a l u e o f P o f t h e B l i e m e r - B a t h e r m e t h o d is s e t t o 0 . 6 1 . I n t h e s e t h r e e m e t h o d s 
t h e r e is a n o t h e r v a r i a b l e c a l l e d n - s w i t c h . A v a l u e f o r n - s w i t c h o f M S A - B l i e m e r ( 3 3 ) , a 
v a l u e f o r n - s w i t c h o f M S A - B a t h e r ( 1 0 ) a n d a v a l u e f o r n - s w i t c h o f B l i e m e r - B a t h e r 
( 1 3 ) a r e a l s o t a k e n . T h e o u t c o m e c a n be f o u n d in f i g u r e 7 . 4 a n d t a b l e 7 . 7 . 
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— B l i e n n e r - B a t h e r 

Figure 7.4: Comparison of the MSA-Bliemer method, the MSA-Bather method and the Bliemer-
Bather method 

M S A - B l i e m e r M S A - B a t h e r B l i e m e r - B a t h e r 
t i m e p e r i o d s r o u t e 1 route 2 route 1 route 2 route 1 route 2 

route costs route costs route costs 

1 2 , 2 7 3 8 2 , 2 7 5 8 2 , 2 7 5 8 2 , 2 7 4 5 2 , 2 7 3 0 2 , 2 7 6 3 
2 3 , 5 9 0 9 3 , 5 9 1 0 3 , 5 9 0 1 3 , 5 9 4 4 3 , 5 9 1 1 3 , 5 8 9 7 

3 6 , 2 7 9 0 6 , 2 7 3 9 6 , 2 8 2 7 6 , 2 3 8 3 6 , 2 7 9 4 6 , 2 7 2 8 

4 6 , 9 8 2 5 7 , 5 7 3 4 7 , 0 5 9 4 7 , 5 2 3 4 7 , 0 0 5 2 7 , 5 7 1 7 

route flows route flows route flows 

1 1 1 , 2 8 6 3 3 , 7 1 3 7 1 1 , 2 9 5 0 3 , 7 0 5 0 1 1 , 2 8 2 9 3 , 7 1 7 1 

2 1 1 , 4 7 6 4 8 , 5 2 3 6 1 1 , 4 6 4 3 8 , 5 3 5 7 1 1 , 4 8 0 8 8 , 5 1 9 2 

3 3 , 1 2 3 8 1 1 , 8 7 6 2 3 , 2 0 7 7 1 1 , 7 9 2 3 3 , 1 2 3 0 1 1 , 8 7 7 0 
4 1 9 , 6 2 3 6 0 , 3 7 6 4 1 9 , 7 6 5 4 0 , 2 3 4 6 1 9 , 6 7 8 7 0 , 3 2 1 3 

Table 7.7: Route costs and flows of the problem solved with the MSA-Bliemer method, the 
MSA-Bather method and the Bliemer-Bather method in the DTA algorithm (see figure 7.4). 
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Stop c r i t e r i o n 0 . 0 0 1 

[3 (msa-b l iemer ) 0 . 5 4 

P (msa-ba ther ) 0 . 6 7 

P (b l iemer -ba ther ) 0 . 6 1 
n - s w i t c h (msa-b l iemer ) 3 3 
n - s w i t c h (msa-ba the r ) 10 
n - s w i t c h (b l iemer -ba ther ) 13 

Tabel 7.8: Variables used for figure 7.4. 

A f t e r 7 3 i t e r a t i o n s o f t h e M S A - B l i e m e r m e t h o d , a f t e r 4 0 i t e r a t i o n s o f t h e M S A - B a t h e r 
m e t h o d a n d a f t e r 3 1 i t e r a t i o n s o f t h e B l i e m e r - B a t h e r m e t h o d t h e s t o p c r i t e r i o n is 
r e a c h e d . T h e v a l u e s o f t h e r o u t e c o s t s a n d t h e v a l u e s o f t h e e q u i l i b r i u m o f t h e t w o 
r o u t e s f o r t h e M S A - B l i e m e r m e t h o d , t h e M S A - B a t h e r m e t h o d a n d t h e B l i e m e r - B a t h e r 
m e t h o d a r e s h o w n in t a b l e 7 . 7 . F r o m t a b l e 7 . 7 o n e can see t h a t t h e r e s u l t s a r e 
a l m o s t i d e n t i c a l . 

7 . 5 C o m p a r i s o n o f a l l p r e v i o u s d e s c r i b e d m e t h o d s ( c o n s i d e r i n g t h e s t o p 
c r i t e r i o n ) 

T h e t r a f f i c p r o b l e m w i t h t h r e e c i t i es a n d t w o r o u t e s d e s c r i b e d in s u b s e c t i o n 4 . 1 . 1 is 
a l so c o n s i d e r e d f o r t h e c o m p a r i s o n o f t h e m e t h o d s d e s c r i b e d in t h i s r e p o r t w i t h a 
d i f f e r e n t s t o p c r i t e r i o n . T h e s t o p c r i t e r i o n s t a k e n a r e 0 . 0 5 , 0 . 0 1 , 0 . 0 0 1 a n d 0 . 0 0 0 5 . 
For t h e o u t c o m e see f i g u r e 7 . 5 a n d t a b l e 7 . 9 . 

•MSA 

•Po l y ak 
• B a t h e r 
B l i e m e r Mov ing 

• M S A - B l i e m e r 
• M S A - B a t h e r 
• B l i e m e r - B a t h e r 

0 .05 0 .01 0 . 0 0 1 

s t o p c r i t e r i o n 

0 .0005 

Figure 7.5: All methods (MSA, Polyalc, Bather, Bliemer, Bliemer [Roving, MSA-Bliemer, MSA-
Bather and Bliemer-Bather method) at decreasing values of the stop criterion 
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M e t h o d / S C SC = 0.05 SC = 0.01 SC = 0.001 SC = 0.0005 

M S A 7 3 8 1 9 0 3 5 9 
P o l y a k 1 2 3 3 2 2 6 5 0 3 
B a t h e r 6 2 5 1 1 2 1 8 4 

B l i e m e r 1 0 2 7 1 1 8 2 1 2 
B l i e m e r M o v i n g 5 1 8 4 0 7 3 

M S A - B l i e m e r 6 2 5 7 3 1 0 1 
M S A - B a t h e r 6 1 2 4 0 4 3 

B l i e m e r - B a t h e r 5 1 2 3 1 5 0 
Table 7.9: Number of iterations in which the problem is solved for different methods and 
different stop criterions (SC) (see figure 7.5). 

A c c o r d i n g t o f i g u r e 7 . 5 i t s e e m s t h a t t h e r e is n o b i g d i f f e r e n c e in t h e n u m b e r o f 
i t e r a t i o n s o f t h e d i f f e r e n t m e t h o d s c o n s i d e r i n g a s t o p c r i t e r i o n o f 0 . 0 5 . B u t i t ' s b e t t e r 
n o t t o u s e t h e P o l y a k m e t h o d o r t h e B l i e m e r m e t h o d , b e c a u s e t h e y c o n v e r g e s l o w l y . 
T h e n u m b e r o f i t e r a t i o n s o f t h e s e m e t h o d s a r e r e s p e c t i v e l y 1 2 a n d 1 0 a n d f o r t h e 
o t h e r m e t h o d s t h e n u m b e r o f i t e r a t i o n s is 5 , 6 o r 7 . Fo r t h e s t o p c r i t e r i o n o f 0 . 0 1 t h e 
t w o m e t h o d s w h i c h c o n v e r g e as f a s t e s t a r e t h e M S A - B a t h e r m e t h o d ( 1 2 i t e r a t i o n s ) 
a n d t h e B l i e m e r - B a t h e r m e t h o d ( 1 2 i t e r a t i o n s ) . T h e B l i e m e r M o v i n g m e t h o d h a s a l so 
g o o d p e r f o r m a n c e f o r a s t o p c r i t e r i o n o f 0 . 0 1 , b u t MSA c o n v e r g e s v e r y s l o w l y . For 
t h e s t o p c r i t e r i o n o f 0 . 0 0 1 t h e m e t h o d w h i c h c o n v e r g e s a s f a s t s is t h e B l i e m e r -
B a t h e r m e t h o d ( 3 1 i t e r a t i o n s ) . T h e B l i e m e r M o v i n g m e t h o d ( 4 0 i t e r a t i o n s ) a n d t h e 
M S A - B a t h e r m e t h o d ( 4 0 i t e r a t i o n s ) a l s o h a v e g o o d p e r f o r m a n c e s . T h e m e t h o d w h i c h 
n e e d s t h e g r e a t e s t n u m b e r o f i t e r a t i o n s is a g a i n t h e P o l y a k M e t h o d ( 2 2 6 i t e r a t i o n s ) . 
T h e m e t h o d w h i c h c o n v e r g e s as f a s t s f o r t h e s m a l l e s t s t o p c r i t e r i o n ( 0 . 0 0 0 5 ) is t h e 
M S A - B a t h e r m e t h o d ( 4 3 i t e r a t i o n s ) a n d t h e m e t h o d w i t h t h e w o r s t p e r f o r m a n c e is 
t h e P o l y a k m e t h o d ( 5 0 3 i t e r a t i o n s ) . T h e B l i e m e r - B a t h e r m e t h o d ( 5 0 i t e r a t i o n s ) has 
g o o d p e r f o r m a n c e . 

T h e c o n c l u s i o n is t h a t t h e b e s t m e t h o d s a r e : t h e B l i e m e r M o v i n g m e t h o d , t h e 
M S A - B l i e m e r m e t h o d , t h e M S A - B a t h e r m e t h o d a n d t h e B l i e m e r - B a t h e r m e t h o d . T h e s e 
m e t h o d s a r e s h o w n a g a i n in f i g u r e 7 . 6 . 
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1 0 0 

c 
o 

0) 

0 1 

E 
D 

B l i e m e r M o v i n g 

• M S A - B l i e m e r 

• M S A - B a t h e r 

• B l i e m e r - B a t h e r 

0 . 0 5 0 . 0 1 0 . 0 0 1 

s t o p c r i t e r i o n 

0 . 0 0 0 5 

Figure 7.6: Ttie best methods shown of figure 7.5 (Bliemer Moving, MSA-Bliemer, MSA-Bather 
and Bliemer-Bather method) at decreasing value of the stop criterion 

A c c o r d i n g t o f i g u r e 7 . 6 o n e c o n c l u s i o n c a n be d e r i v e d . T h e m e t h o d s w i t h t h e b e s t 
p e r f o r m a n c e a r e : t h e M S A - B a t h e r m e t h o d a n d t h e B l i e m e r - B a t h e r m e t h o d . B u t , 
t h e s e m e t h o d s a r e t e s t e d on a v e r y s i m p l e t r a f f i c p r o b l e m a n d f o r p r o v i n g w h i c h 
m e t h o d is t h e b e s t , m o r e e x t e n d e d r e s e a r c h is n e e d e d u s i n g rea l i s t i c n e t w o r k s o f 
l a r g e r s i ze . 

A f t e r m o r e i n s i g h t in t h e a l g o r i t h m s o f t h e m e t h o d s t h e B l i e m e r - B a t h e r 
m e t h o d w i l l a l so be a g o o d c a n d i d a t e t o d o f u r t h e r r e s e a r c h w i t h . T h a t ' s b e c a u s e o f 
t h e v a r i a b l e s u s e d in t h e B l i e m e r - B a t h e r m e t h o d . T h e v a r i a b l e s can be m o r e 
d i v e r s i f i e d . By d i v e r s i f y i n g t h e v a r i a b l e s t h e B l i e m e r - B a t h e r m e t h o d c a n b e c o m e 
f a s t e r in c o n v e r g e n c e . 

A f t e r f u r t h e r r e s e a r c h o n t h e v a l u e s o f t h e v a r i a b l e s u s e d in t h e B l i e m e r -
B a t h e r m e t h o d is d o n e , t h e r e c o m m e n d a t i o n m a y be c h a n g e d t o u s i n g t h e B l i e m e r -
B a t h e r m e t h o d f o r s o l v i n g NLP p r o b l e m s . 
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S . Conclusion and recommendations 

8 . 1 S u m m a r y o f f i n d i n g s 
M e t h o d s f o r i t e r a t i v e l y s o l v i n g N o n L i n e a r P r o g r a m m i n g (NLP) p r o b l e m s w i t h d e s c e n t 
a p p r o a c h e s a r e p r e s e n t e d in t h i s r e p o r t . T h e m e t h o d s a r e : t h e M e t h o d o f S u c c e s s i v e 
A v e r a g e s ( M S A ) , t h e P o l y a k m e t h o d , t h e B a t h e r m e t h o d , t h e B l i e m e r m e t h o d , t h e 
B l i e m e r M o v i n g m e t h o d , t h e M S A - B l i e m e r m e t h o d , t h e M S A - B a t h e r m e t h o d a n d t h e 
B l i e m e r - B a t h e r m e t h o d . 

T h e ' c l a s s i c a l ' f i x e d - p o i n t s o l u t i o n m e t h o d s a r e o f t e n i n a p p r o p r i a t e f o r s o m e 
p r o b l e m s . I n s u c h c a s e s , t h e f i x e d - p o i n t s a r e u s u a l l y c o m p u t e d u s i n g o n e o f t h e 
i t e r a t e a v e r a g i n g m e t h o d s i n t r o d u c e d b y R o b b i n s a n d M o n r o [ 3 . 1 ] . MSA, i n t r o d u c e d 
b y S h e f f i a n d P o w e l l [ 3 . 2 ] is p r o b a b l y t h e b e s t - k n o w n a n d m o s t w i d e l y - u s e d 
i n s t a n c e . MSA c o m p u t e s e a c h n e w d e s i g n p o i n t b y a d d i n g a p a r t o f t h e o b s e r v a t i o n 
e v a l u a t e d in t h e p r e v i o u s d e s i g n p o i n t w i t h a p a r t o f t h e p r e v i o u s d e s i g n p o i n t . 

B.T. P o l y a k a n d J .A. B a t h e r p r o p o s e d t w o r e l a t i v e l y m i n o r m o d i f i c a t i o n s o f t h e 
i t e r a t e a v e r a g i n g m e t h o d w h i c h w e r e r i g o r o u s l y s h o w n t o p r o d u c e f i x e d - p o i n t 
e s t i m a t e s w i t h a s y m p t o t i c a l l y o p t i m a l p r o p e r t i e s . 

T h e P o l y a k m e t h o d is a t w o - p a s s m e t h o d . T h e f i r s t p a s s r e s e m b l e s MSA 
e x c e p t t h a t t h e s t e p s i z e s a r e l a r g e r ; t h i s a l l o w s t h e a l g o r i t h m t o e x p l o r e t h e s o l u t i o n 
s p a c e m o r e a g g r e s s i v e l y b u t l e a d s t o g r e a t e r v a r i a b i l i t y in t h e o u t p u t s . T h e s e c o n d 
p a s s is c a r r i e d o u t o f f l i n e ( i . e . , w i t h o u t i n f l u e n c i n g t h e f i r s t p a s s ) ; i t c a l c u l a t e s a n 
a v e r a g e o f t h e i t e r a t e s t h a t a r e g e n e r a t e d b y t h e f i r s t p a s s . T h e a v e r a g e c a l c u l a t e d 
b y t h e s e c o n d p a s s a t t e r m i n a t i o n is t h e f i x e d - p o i n t s o l u t i o n e s t i m a t e . 

A s o m e w h a t d i f f e r e n t a p p r o a c h w a s p r o p o s e d b y B a t h e r [ 5 . 2 ] . B a t h e r d e r i v e s 
t h e n e w d e s i g n p o i n t f r o m a c o m b i n a t i o n o f t h e a v e r a g e o f p r e v i o u s d e s i g n p o i n t s 
a n d t h e a v e r a g e o f p r e v i o u s e v a l u a t i o n r e s u l t s . 

T o c o m p a r e t h e p e r f o r m a n c e o f t h e v a r i o u s m e t h o d s a t r a f f i c a s s i g n m e n t 
p r o b l e m w i t h t h r e e c i t i e s a n d t w o r o u t e s is c o n s i d e r e d . T h e c o n c l u s i o n is t h a t MSA is 
f a s t e r in c o n v e r g e n c e t h a n t h e P o l y a k m e t h o d f o r t h e r e l a t i v e g a p s t o p c r i t e r i o n . 

T h e o t h e r f i v e i t e r a t e a v e r a g i n g m e t h o d s a r e n e w a l t e r n a t i v e m e t h o d s . O n e o f t h o s e 
is p r o p o s e d b y D r . M .C .J . B l i e m e r . T h e B l i e m e r m e t h o d is a l m o s t s i m i l a r t o t h e 
P o l y a k m e t h o d , w i t h t h e d i f f e r e n c e t h a t t h e o b s e r v a t i o n s a r e e v a l u a t e d in t h e 
a v e r a g e o f t h e p r e v i o u s d e s i g n p o i n t s a n d n o t a t t h e p r e v i o u s d e s i g n p o i n t as in t h e 
P o l y a k m e t h o d . T h e B l i e m e r M o v i n g m e t h o d is t h e B l i e m e r m e t h o d w i t h a m o v i n g 
a v e r a g e . 

T h e o t h e r t h r e e m e t h o d s a r e c o m b i n a t i o n s o f MSA, t h e B a t h e r m e t h o d a n d t h e 
B l i e m e r m e t h o d . T h e f i r s t c o m b i n a t i o n is t h e M S A - B l i e m e r m e t h o d , w h i c h f i r s t s t a r t s 
w i t h MSA a n d a f t e r a c e r t a i n n u m b e r o f i t e r a t i o n s s w i t c h e s t o t h e B l i e m e r m e t h o d . 
T h e s e c o n d m e t h o d is t h e M S A - B a t h e r m e t h o d , w h i c h f i r s t s t a r t s w i t h MSA a n d a f t e r a 
c e r t a i n n u m b e r o f i t e r a t i o n s s w i t c h e s t o t h e B a t h e r m e t h o d . T h e B l i e m e r - B a t h e r 
m e t h o d f i r s t s t a r t s w i t h t h e B l i e m e r m e t h o d a n d a f t e r a c e r t a i n n u m b e r o f i t e r a t i o n s 
s w i t c h e s t o t h e B a t h e r m e t h o d . 

T h e B a t h e r m e t h o d , t h e B l i e m e r m e t h o d a n d t h e B l i e m e r M o v i n g m e t h o d a r e 
c o m p a r e d . I t a p p e a r s t h a t t h e B a t h e r m e t h o d a n d t h e B l i e m e r m e t h o d s o l v e t h e 
p r o b l e m in a l m o s t t h e s a m e n u m b e r o f i t e r a t i o n s . 

F i g u r e 8 . 1 s h o w s in h o w m a n y i t e r a t i o n s a l l t h e e i g h t m e t h o d s a r e s o l v e d a t 
d e c r e a s i n g v a l u e s o f t h e s t o p c r i t e r i o n . 
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8 . 2 C o n c l u s i o n s 
On t h e w h o l e , a l so f o r d i f f e r e n t v a l u e s o f s t o p c r i t e r i a , t h e B a t h e r nne thod is f a s t e r in 
c o n v e r g e n c e t h a n t h e B l i e m e r m e t h o d . H o w e v e r t h e B l i e m e r M o v i n g m e t h o d is m u c h 
f a s t e r t h a n t h e f o u r m e t h o d s p r e s e n t e d b e f o r e . 

By c o m p o s i n g t w o m e t h o d s i t a p p e a r s p o s s i b l e t o g e t an e v e n f a s t e r 
c o n v e r g e n c e . T h e f a s t e s t m e t h o d s in c o n v e r g e n c e , f o r t h e s t o p c r i t e r i o n w e c h o s e , 
a r e t h e B l i e m e r - B a t h e r c o m b i n e d m e t h o d a n d t h e M S A - B a t h e r c o m b i n e d m e t h o d . 

T h e c o n c l u s i o n is t h a t t h e r e a r e a l t e r n a t i v e m e t h o d s t h a t a r e m u c h f a s t e r in 
c o n v e r g e n c e t h a n MSA a n d t h e P o l y a k m e t h o d . T h e b e s t a l t e r n a t i v e m e t h o d s a r e t h e 
M S A - B a t h e r m e t h o d a n d t h e B l i e m e r - B a t h e r c o m b i n e d m e t h o d ( s e e f i g u r e 8 . 2 ) . T h i s 
c o n c l u s i o n has t o be v e r i f i e d f o r m u l t i p l e r e a l i s t i c - s i z e t r a n s p o r t n e t w o r k s . 
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100 

SE 

E 

B l i e m e r Mov ing 

• M S A - B l l e m e r 
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S topc r i t e r i on 
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Figure 8.2: Tiie best methods shown of figure 8.1 (Bliemer Moving, MSA-Bliemer, MSA-Bather 
and Bliemer-Bather method) at decreasing value of the stop criterion 

8 . 3 R e c o m m e n d a t i o n s f o r f u r t h e r r e s e a r c h 
A t t h i s p o i n t t h e M S A - B a t h e r m e t h o d a n d 
r e c o m m e n d e d f o r s o l v i n g NLP p r o b l e m s . 

t h e B l i e m e r - B a t h e r m e t h o d a r e 

F u r t h e r r e s e a r c h is n e c e s s a r y t o t e s t t h e s e p r o c e d u r e s o n a m o r e v a r i e d s e t o f r e a l -
s i zed t r a n s p o r t n e t w o r k s . T h e f o l l o w i n g q u e s t i o n s e m e r g e f o r f u r t h e r r e s e a r c h : 

• D o t h e d e m a n d a n d r o u t e c o s t s h a v e i n f l u e n c e on t h e n u m b e r o f i t e r a t i o n s ? 
• T h e p r o g r a m s h a v e t o be r u n a g a i n , b u t t h e n w i t h a d i f f e r e n t d e m a n d o r 

d i f f e r e n t c o s t f u n c t i o n s . A s p r o p o s i t i o n f o r t h e d e m a n d a n d c o s t f u n c t i o n s see 
( 8 . 1 ) a n d ( 8 . 2 ) . 

d = [ 2 5 19 2 5 5 ] ( 8 . 1 ) 
c = H - 0 . 0 3 * u + 0 . 1 * v ( 8 . 2 ) 

H o w t o c h o o s e t h e s t o p c r i t e r i o n ? M a k e i t d e p e n d e n t o f t h e d e m a n d o r 
n u m b e r o f t i m e p e r i o d s . 
W h y a r e t h e a l t e r n a t i v e m e t h o d s t h a t a r e f a s t e r t h a n MSA? 
H o w t o c h o o s e P? W h a t is t h e b e s t s t e p s ize? 
H o w t o c h o o s e t h e n - s w i t c h ? 

H o w t o c h o o s e t h e n u m b e r o f i t e r a t i o n s u s e d in t h e m o v i n g a v e r a g e ? 
W h a t is t h e b e s t s t a r t i n g p o i n t f o r t h e a l g o r i t h m s ? 
I s i t g o o d t o c h o o s e a l w a y s a n 'A l l O r N o t h i n g ' (AON) a s s i g n m e n t ? M a y b e s t a r t 
w i t h t h e LOGIT a s s i g n m e n t . T h e LOGIT a s s i g n m e n t is d e f i n e d in ( 8 . 3 ) . 

LOGIT ( x ) = l n [ x / ( 1 - x ) ] ( 8 . 3 ) 
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• I t ' s a l s o p o s s i b l e t o u s e t h e F r a n k - W o l f e a s s i g n m e n t ( s e e f i g u r e 8 . 3 ) [ 8 . 1 ] . 

Step 1 (Initialization): 
• Take k = l , and perform an AON assignment based on 

1^=ta(0). This yields flow vector q'̂ '̂ â 

Step 2 (Update link travel times): 
• Compute t^=t^q'^''^a) Va. 

Step 3(Determine desoent direction); 
• Perform an AON assignment based on ta. 

This yields the auxiliarY flovv vector w'̂ '̂ '̂ a. 

Step 4(Determine step size): 
• Find â '̂ -' that sdves: 

,A simpler approach to this step is choosing a'- - = 1/k. 
This approach is called MSA, 

Step 5 (Move): 
. Se tq f^^Vq^ '^a + o^C^̂ \vvt̂ -̂qf̂ ^a;)Va, 

Step 6 (Convergence test): 
• I f a certain predetermined convergence cntenon is met, 

then stop, Otherwse, setk=k-h l and return to step 2, 

• T h e i t e r a t e a v e r a g i n g m e t h o d s c a n a l so be t e s t e d o n a s t a t i c t r a n s p o r t a t i o n 
n e t w o r k p r o b l e m . 

• T a k e f o r a l l t h e m e t h o d s t h e s a m e s t e p s i z e s a n d s e e w h a t t h e b e s t m e t h o d 

(8,4) 
a 0 

Figure 8.3: Tiie Franl<-Wolfe assignment 

I S . 
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I m p l e m e n t a t i o n of t h e MSA a l g o r i t h m Append i x 1 

Al. Implementation of the MSA algorithm 

1.1 D e s c r i p t i o n o f t l i e M S A a l g o r i t h m 

MSA c o m p u t e s t h e n e w d e s i g n p o i n t ( x ' ' " ^ ' ) b y a d d i n g a p a r t o f t h e p r e v i o u s d e s i g n 

p o i n t ( x ' ' ) w i t h a p a r t o f t h e o b s e r v a t i o n e v a l u a t e d in t h e p r e v i o u s d e s i g n p o i n t 

( r ( x " ) ) . 

1 . 2 F o r m u l a t i o n a n d s o l u t i o n a l g o r i t h m o f t h e M S A a l g o r i t h m 
T o f o r m u l a t e t h e M S A a l g o r i t h m t h e f o l l o w i n g v a r i a b l e s a n d f u n c t i o n a r e u s e d : 

a t h e s t e p s i ze ( 0 < a < l ) 
A O N t h e ' A l l O r N o t h i n g ' a s s i g n m e n t 
c t h e r o u t e c o s t s 
d t h e d e m a n d 
k t h e i t e r a t i o n n u m b e r 
ng t h e n o r m a l i s e d d u a l i t y g a p 
s t h e s t o p c r i t e r i o n 
t t h e n u m b e r o f t i m e p e r i o d s 
T t h e o b s e r v a t i o n 
X t h e r o u t e f l o w s ( l i n k t r a v e r s a l t i m e t r a j e c t o r i e s ) 

The mathematical formulation of MSA is: 

x ' ^ ' = x * • [ ^ ( ^ ^ ' ) - ^ ' ' J ' v v i t h X ° G 5 R " a n d k = l , 2 , 3 , . . . , ( A l . l ) 

a'' = p-k~^, w i t h 0 . 5 < p < l a n d p > 0 , ( A 1 . 2 ) 

The DTA algorithm with the MSA algorithm is described as follows (see figure A l . l ) : 

s t e p 0 ( I n i t i a l i s a t i o n ) ; 
I n i t i a l i s a t i o n of t h e v a r i a b l e s ; c, d j k, t a n d x . 

S tep 1 (Ma in l o o p ) ; 
k = k + 1 
T = A O N ( C j d , t ) 
a. = 1 / k 

= ; j * + a * • [ r ( j * ) - ; r * 

c ( . * * ) 

S t e p 2 ( S t o p c r i t e r i o n ) ; 

r r 

I f ng < s, t h e n s t o p , e lse go t o s tep 1 , 

Figure Al.l: The DTA algorithm with the MSA algorithm included 
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I m p l e m e n t a t i o n of t he Polvak a l g o r i t h m Append i x 2 

A2. Implementation of the Polyak algorithm 

2 . 1 D e s c r i p t i o n o f t h e P o l y a k a l g o r i t h m 

T h e P o l y a k m e t h o d c o m p u t e s t h e n e w d e s i g n p o i n t ( x ' " ^ ' ) b y a d d i n g a p a r t o f t h e 

p r e v i o u s d e s i g n p o i n t ( x * ) w i t h a p a r t o f t h e o b s e r v a t i o n e v a l u a t e d in t h e p r e v i o u s 

d e s i g n p o i n t ( r ( x ^ ' ) ) j u s t l i ke MSA. B u t t h e P o l y a k m e t h o d a l s o c o m p u t e s Mn p a r a l l e l ' 

w i t h a n d i n d e p e n d e n t l y o f t h e i t e r a t e a v e r a g i n g p r o c e s s t h e a v e r a g e o f t h e d e s i g n 

p o i n t s , s a y x = — -y^'._x' . H e r e is m e a n t t h a t t h e c o m p u t e d s o l u t i o n e s t i m a t e s d o 

n o t i n f l u e n c e t h e d e t e r m i n a t i o n o f t h e d e s i g n p o i n t s . T h e s e q u e n c e x a l so 

c o n v e r g e s t o t h e l i m i t x * . S o t h i s a v e r a g e is y o u r e s t i m a t e o f t h e f i x e d - p o i n t 
s o l u t i o n . 

2 . 2 F o r m u l a t i o n a n d s o l u t i o n a l g o r i t h m o f t h e P o l y a k a l g o r i t h m 
T o f o r m u l a t e t h e P o l y a k a l g o r i t h m t h e f o l l o w i n g v a r i a b l e s a n d f u n c t i o n a r e u s e d : 

a t h e s t e p s i ze ( 0 < a < l ) 
A O N t h e 'A l l O r N o t h i n g ' a s s i g n m e n t 
c t h e r o u t e c o s t s 
d t h e d e m a n d 

P t h e e x p o n e n t (0 .5<P<.1) 
k t h e i t e r a t i o n n u m b e r 
ng t h e n o r m a l i s e d d u a l i t y g a p 
s t h e s t o p c r i t e r i o n 
t t h e n u m b e r o f t i m e p e r i o d s 
T t h e o b s e r v a t i o n 
X t h e r o u t e f l o w s ( l i n k t r a v e r s a l t i m e t r a j e c t o r i e s ) 

X t h e a v e r a g e o v e r a l l t h e p r e v i o u s r o u t e f l o w s 

The mathematical formulation of the Polyak method is: 

—k 

X 
k+) 

= X +a'' • ^ [ x ' ' ) - x ' ' \ , w t h x ° e 9 i " a n d k = l , 2 , 3 , . . . . ( A 2 . 1 ) 

-k 1 
ï l " a n d k = l , 2 , 3 , . . . . ( A 2 . 2 ) 

a'' ^ p-k , w i t h 0 . 5 < p < l a n d p > 0 . ( A 2 . 3 ) 
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I m p l e m e n t a t i o n of t h e Polvak a l g o r i t h m Append ix 2 

The DTA algorithm with the Polyal< algorithm is described as follows (see figure 

A2.1): 

Step 0 ( I n i t i a l i s a t i o n ) ; 
I n i t i a l i s a t i o n o f t h e v a r i a b l e s ; d , k., t , x a n d X, 

S tep 1 (Ma in l o o p ) ; 
k = k + 1 
T = A O N ( c , d , t ) 
0 . = 

- * 
X = X 

c ( ^ ' ^ ) 

c ( ^ ) 

s t e p 2 ( S t o p c r i t e r i o n ) ; 

ng = = r=— f - i -H '^ -i-H 

r f 

If ng < Sj t h e n s t o p , e lse go t o step 1 . 

Figure A2.1: The DTA aigorithm with the Poiyai< algorithm included 
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Append i x 3 I m p l e m e n t a t i o n of t l i e Ba the r a l q o r i t l i m 

A3. Implementation of the Bather algorithm 

3 . 1 D e s c r i p t i o n o f t l i e B a t h e r a l g o r i t h m 

T h e d e s i g n p o i n t ( x ^ " ^ ' ) is a p a r t o f t h e a v e r a g e o f p r e v i o u s d e s i g n p o i n t s ( x ) m i n u s 

a p a r t o f t h e a v e r a g e o f p r e v i o u s o b s e r v a t i o n s ( r * ) . T h e f u n c t i o n e v a l u a t i o n s a r e 
k ~* 

m a d e a t t h e d e s i g n p o i n t s ( x ) w h i l e t h e f i x e d - p o i n t is e s t i m a t e d b y x . 

3 . 2 F o r m u l a t i o n a n d s o l u t i o n a l g o r i t h m o f t h e B a t h e r a l g o r i t h m 
T o f o r m u l a t e t h e B a t h e r a l g o r i t h m t h e f o l l o w i n g v a r i a b l e s a n d f u n c t i o n a r e u s e d : 

a t h e s t e p s i ze ( 0 < a < l ) 
A O N t h e 'A l l O r N o t h i n g ' a s s i g n m e n t 
c t h e r o u t e c o s t s 
d t h e d e m a n d 

P t h e e x p o n e n t (0 .5<P<.1 ) 
k t h e i t e r a t i o n n u m b e r 
n g t h e n o r m a l i s e d d u a l i t y g a p 
s t h e s t o p c r i t e r i o n 
X t h e a v e r a g e o f t h e p r e v i o u s o b s e r v a t i o n s 
t t h e n u m b e r o f t i m e p e r i o d s 
T t h e o b s e r v a t i o n 
X t h e r o u t e f l o w s ( l i n k t r a v e r s a l t i m e t r a j e c t o r i e s ) 

X t h e a v e r a g e o v e r a l l t h e p r e v i o u s r o u t e f l o w s 

The mathematical formulation of the Bather method is: 

x''^' =x'' - k-a-\r'' - x j , v j \ t h x ° e 5R" a n d k = 1 ,2 ,3 , . . . , ( A 3 . 1 ) 

- / I * 
x ' = - - 2 x ' , w i t h x ° e 9 ^ " a n d k = l , 2 , 3 , . . . , ( A 3 . 2 ) 

= i . ^ r ^ ' ) w i t h x ° e 9 ^ " a n d k = l , 2 , 3 , . . . , ( A 3 . 3 ) 
k ,=1 

a'' =p-k-^, w i t h 0 . 5 < p < l a n d p > 0 , ( A 3 . 4 ) 
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I m p l e m e n t a t i o n of t h e Ba the r a l g o r i t h m Append i x 3 

k + l)-x =k-x +x 

+ % + - ( r " -x" j, w i t h x" eVi" a n d I < = 1 , 2 , 3 , . . . , 
-k + i -k 7 , 

X = X "-^ 

-k 1 
a n d X = - - Y j ^ ' ' ^'^^^ ^° ^ ^ " I < = 1 , 2 , 3 , . . . , 

( A 3 . 5 ) 

( A 3 . 6 ) 

a n d r^' ^ - ' X ^ ^ ' ) w i t h x " e 9^" a n d 1<=1,2 ,3 , . . . , 

a'' ^ p-k , w i t h 0 . 5 < p < l a n d p > 0 , 

( A 3 . 7 ) 

( A 3 . 8 ) 

r/?e DTA algorithm with the Bather algorithm is described as follows (see figure 
A3.1): 

s t e p 0 ( I n i t i a l i s a t i o n ) ; 

I n i t i a l i sa t i on o f t h e v a r i a b l e s ; c, d , T,t and X , 

S tep 1 (Ma in l o o p ) ; 
k = k + 1 
T = A O N ( c , d , t ) 

a = k"P 

c ( r ) 

S t e p 2 ( S t o p c r i t e r i o n ) ; 

E E 
ng = _ — _ 

z -X 

'min \c. V !min \c'. ^x, !j' 
— +. 

• X, 

c I j i-;r E E 
If ng < Sj t h e n s t o p , e lse go t o s tep 1 

Figure A3.1: The DTA aigorithm with the Bather aigorithm included 
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I m p l e m e n t a t i o n of t h e B l iemer a l g o r i t h m Append ix 4 

A4, Implementation of the Bliemer algorithm 

4 . 1 D e s c r i p t i o n o f t h e B l i e m e r a l g o r i t h m 

T h e B l i e m e r m e t h o d c o m p u t e s t h e n e w d e s i g n p o i n t ( x ^ ^ ' ) b y a d d i n g a p a r t o f t h e 

p r e v i o u s d e s i g n p o i n t ( x * ) w i t h a p a r t o f t h e o b s e r v a t i o n e v a l u a t e d in t h e a v e r a g e o f 
-k 

t h e p r e v i o u s d e s i g n p o i n t s ( T l x ) ) . S o t h e f u n c t i o n e v a l u a t i o n s a r e m a d e a t t h e 
-k -k 

a v e r a g e o f t h e d e s i g n p o i n t s ( x ) a n d t h e f i x e d - p o i n t is e s t i m a t e d b y x . 

4 . 2 F o r m u l a t i o n a n d s o l u t i o n a l g o r i t h m o f t h e B l i e m e r a l g o r i t h m 
T o f o r m u l a t e t h e B l i e m e r a l g o r i t h m t h e f o l l o w i n g v a r i a b l e s a n d f u n c t i o n a r e u s e d : 

a t h e s t e p s i ze ( 0 < a < l ) 
A O N t h e ' A l l O r N o t h i n g ' a s s i g n m e n t 
c t h e r o u t e c o s t s 
d t h e d e m a n d 
P t h e e x p o n e n t ( 0 . 5 < p < l ) 
k t h e i t e r a t i o n n u m b e r 
ng t h e n o r m a l i s e d d u a l i t y g a p 
s t h e s t o p c r i t e r i o n 
t t h e n u m b e r o f t i m e p e r i o d s 
T t h e o b s e r v a t i o n 

X t h e r o u t e f l o w s ( l i n k t r a v e r s a l t i m e t r a j e c t o r i e s ) 

X t h e a v e r a g e o v e r a l l t h e p r e v i o u s r o u t e f l o w s x 

The mathematical formulation of the Bliemer method is: 

T\x j-x , w i t h x ° e $R" a n d k = l , 2 , 3 , . . . , ( A 4 . 1 ) 

— k 1 * 

a n d X = - - 2 x ' ' , w i t h x ° e 9 ? " a n d k = l , 2 , 3 , . . . , ( A 4 . 2 ) 

a * = p-k''^, w i t h 0 . 5 < p < l a n d p > 0 , ( A 4 . 3 ) 
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I m p l e m e n t a t i o n of t h e B l iemer a l g o r i t h m Append ix 4 

The DTA algorithm with the Bliemer algorithm is described as follows (see figure 

A4.1): 

s t e p 0 ( I n i t i a l i s a t i o n ) : 

I n i t i a l i sa t i on o f t h e v a r i a b l e s ; c , d, /3, k, t , x a n d x 

S t e p 1 (Ma in l o o p ) ; 
k = k + 1 
T = A O N ( C j d j t ) 
G = kP 

X ' +0C P x \-x-

- , - 1 1 

X = X 

- +1 
C {X ) 

s t e p 2 ( S t o p c r i t e r i o n ) 

E E 
ng 

'min c; [x,^ •(• 'min ic.'. ^Xr j|' 
—: +. 

• X 

E E c 'X. ' .J r . 

I f ng < s, t h e n s t o p , else go t o s tep 1 , 

Figure A4.1: The DTA algorithm with the Bliemer algorithm included 
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Append i x 5 I m p l e m e n t a t i o n of t l i e B l iemer Moving a l g o r i t h m 

AS. Implementation of the Bliemer Moving 
algorithm 

5 . 1 D e s c r i p t i o n o f t h e B l i e m e r M o v i n g a l g o r i t h m 

T h e B l i e m e r l^ lov ing m e t h o d c o m p u t e s t h e n e w d e s i g n p o i n t ( x ' ' ^ ' ) b y a d d i n g a p a r t 

o f t h e p r e v i o u s d e s i g n p o i n t ( x * ) w i t h a p a r t o f t h e o b s e r v a t i o n e v a l u a t e d in t h e 

m o v i n g a v e r a g e o f t h e p r e v i o u s d e s i g n p o i n t s ( r ( x * ) ) . S o t h e f u n c t i o n e v a l u a t i o n s 

a r e e v a l u a t e d in t h e m o v i n g a v e r a g e o f t h e d e s i g n p o i n t s ( x * ) a n d t h e f i x e d - p o i n t is 

e s t i m a t e d b y x * . 

5 . 2 F o r m u l a t i o n a n d s o l u t i o n a l g o r i t h m o f t h e B l i e m e r M o v i n g a l g o r i t h m 
T o f o r m u l a t e t h e B l i e m e r M o v i n g a l g o r i t h m t h e f o l l o w i n g v a r i a b l e s a n d f u n c t i o n a r e 
u s e d : 

a t h e s t e p s i ze ( 0 < a < l ) 
A O N t h e 'A l l O r N o t h i n g ' a s s i g n m e n t 
c t h e r o u t e c o s t s 
d t h e d e m a n d 

P t h e e x p o n e n t (0 .5<P<.1 ) 
k t h e i t e r a t i o n n u m b e r 
M t h e n u m b e r o f d e s i g n p o i n t s t a k e n f o r t h e m o v i n g a v e r a g e 
n g t h e n o r m a l i s e d d u a l i t y g a p 
s t h e s t o p c r i t e r i o n 
t t h e n u m b e r o f t i m e p e r i o d s 
T t h e o b s e r v a t i o n 
X t h e r o u t e f l o w s ( l i n k t r a v e r s a l t i m e t r a j e c t o r i e s ) 

X t h e m o v i n g a v e r a g e o v e r M o f t h e p r e v i o u s r o u t e f l o w s 

The mathematical formulation of the Bliemer Moving method is: 

x * ^ ' = x * - [ ^ ( ^ O - ^ ^ ' J ' w ' t h x° e^" a n d k = l , 2 , 3 , . . . , ( A 5 . 1 ) 

x ' ' ^ ' = J - . y ' ' x' , w i t h x° G 5 R " , k = l , 2 , 3 , . . . a n d M = l , 2 , 3 , . . . , ( A 5 . 2 ) 

a'' = p - k ' \ w i t h 0 . 5 < p < l a n d p > 0 , ( A 5 . 3 ) 
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The DTA algorithm with the Bliemer Moving algorithm is described as follows (see 
figure A5.1): 

s t e p 0 ( I n i t i a l i s a t i o n ) : 

I n i t i a l i s a t i o n o f jS, k, M, x and X , 

S tep 1 (Ma in l o o p ) : 
k = k + 1 
T = A O N ( c , d , t ) 

= x + a • J i x i - x 

I f ng < s, t h e n s t o p , e lse go t o s tep 1 . 

Figure A5.1: The DTA algorithm with the Bliemer Moving algorithm included 

c ( x ) 

Step 2 ( S t o p c r i t e r i o n ) ; 

ng = 

Z Z ^ '^."'-^" 

5 9 
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A6. Implementation of combinations of 
algorithms 

6 . 1 T h e M S A - B l i e m e r a l g o r i t h m 
I f k < k s , t h e n t h e MSA a l g o r i t h m ( a p p e n d i x 1 ) is u s e d in t h e DTA a l g o r i t h m , e l se t h e 
B l i e m e r a l g o r i t h m ( a p p e n d i x 4 ) is u s e d . 

T o f o r m u l a t e t h e M S A - B l i e m e r a l g o r i t h m t h e f o l l o w i n g v a r i a b l e is u s e d : 
• ks t h e i t e r a t i o n s t e p a f t e r w h i c h t h e MSA a l g o r i t h m is r e p l a c e d b y t h e 

B l i e m e r a l g o r i t h m 

6 . 2 T h e M S A - B a t h e r a l g o r i t h m 
I f k < k s , t h e n t h e MSA a l g o r i t h m ( a p p e n d i x 1 ) is u s e d in t h e DTA a l g o r i t h m , e l se t h e 
B a t h e r a l g o r i t h m ( a p p e n d i x 3 ) 

T o f o r m u l a t e t h e M S A - B a t h e r a l g o r i t h m t h e f o l l o w i n g v a r i a b l e is u s e d : 
• ks t h e i t e r a t i o n s t e p a f t e r w h i c h t h e MSA a l g o r i t h m is r e p l a c e d b y t h e 

B a t h e r a l g o r i t h m 

6 . 3 T h e B l i e m e r - B a t h e r a l g o r i t h m 
I f k < k s , t h e n t h e B l i e m e r a l g o r i t h m ( a p p e n d i x 4 ) is u s e d in t h e DTA a l g o r i t h m , e l se 
t h e B a t h e r a l g o r i t h m ( a p p e n d i x 3 ) 

T o f o r m u l a t e t h e B l i e m e r - B a t h e r a l g o r i t h m t h e f o l l o w i n g v a r i a b l e is u s e d : 
• ks t h e i t e r a t i o n s t e p a f t e r w h i c h t h e B l i e m e r a l g o r i t h m is r e p l a c e d b y t h e 

B a t h e r a l g o r i t h m 
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