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Abstract
In recent years many automatic differentiable programming frameworks have been developed in which
numerical programs can be differentiated through automatic differentiation (AD). Examples of these
frameworks are Theano, TensorFlow and Pytorch. These frameworks are widely used in Machine
Learning. AD also finds applications in the field of computational fluid dynamics (CFD). It is used
to develop discrete adjoint CFD code for research concerning for instance sensitivity analysis, data
assimilation and design optimization. However, the use of the automatic differentiable programming
frameworks in the field of CFD is limited. One can find some examples in the literature on how to
find a numerical solution to an initial value problem using a differentiable programming framework.
In this work it will be clarified how one can implement an semi­implicit time integration scheme for a
staggered grid to simulate the propagation of long waves in water with a free surface in TensorFlow. A
main advantage of the automatic differentiable programming frameworks is the user friendly application
programming interface (API) for AD. No research has been conducted to use this API in the field of
CFD. In this work an example will be given how one can use TensorFlow for research concerning
sensitivity analysis. AD requires a significant allocation of memory on a CPU/GPU when working with
fine meshes and/or long simulations and since CPU/GPUmemory is finite, the method checkpointing is
proposed to make it feasible to perform sensitivity analysis when working with fine meshes and/or long
simulations. Another main advantage of the differentiable programming framework TensorFlow is the
use of compute unified device architecture (CUDA) of a NVIDIA GPU in order to perform computations
in parallel, which results in a significant reduction in computation time. A Benchmark will be given that
indicates the computational efficiency of TensorFlow compared to a loop over grid implementation in
NumPy and a Fortran CPU scalar implementation.
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List of Symbols

Δ𝑡 Timestep [𝑠].

Δ𝑥 Spacestep in x direction for central differences [𝑚].

Δ𝑦 Spacestep in y direction for central differences [𝑚].

𝜁(x, 𝑡) Water level, or the elevation of the free surface [𝑚].

𝑐 Longwave speed, equals √𝑔𝐻 [𝑚𝑠−1].

𝑐𝑓 Friction due to bottom roughness.

𝑑(x) Bottom level [𝑚].

𝑓 Coriolois coefficient, equals about 10−4 [𝑟𝑎𝑑𝑠−1].

𝑔 Gravitational acceleration, equals 9.81[𝑚𝑠−2].

𝐻 Mean Height of basin [𝑚].

ℎ(x) Water depth [𝑚].

𝐽(𝑥, 𝑝) Cost function

𝐿 Length of basin [𝑚].

𝐿(𝑥, 𝑝) Forward model

𝑀 Memory in [𝐵].

𝑀𝑡𝑒𝑛𝑠𝑜𝑟𝑖 Memory allocated to a tensor [𝐵].

𝑁𝑥 Number of gridpoint in the x­axis.

𝑁𝑦 Number of gridpoint in the y­axis.

𝑁𝑐 Number of checkpoints.

𝑁𝑠𝑡𝑒𝑝𝑠 Number of time steps.

𝑇 Time span of simulation [𝑠].

𝑢(x, 𝑡) The depth­averaged fluid velocity in the x direction, or zonal velocity [𝑚𝑠−1].

𝑣(x, 𝑡) The depth­averaged fluid velocity in the y direction, or meridional velocity [𝑚𝑠−1].

𝑊 Width of basin [𝑚].
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1
Introduction

In this chapter, the motivation for the application of the software library TensorFlow [10] to find solutions
to initial value problems and perform sensitivity analysis is given, the thesis statement is introduced and
the structure of this thesis is outlined.

1.1. Motivation
In recent years, many differentiable programming frameworks have been developed in which
numerical programs can be differentiated through automatic differentiation (AD). Examples of these
frameworks are TensorFlow, Theano and Pytorch [10][24][22]. These frameworks provide users an
accessible and readable syntax for machine learning purposes. Another advantage of these
differentiable programming frameworks is the use of Compute Unified Device Architecture (CUDA) of
NVIDIA GPUs allowing to perform computations in parallel, which results in a significant acceleration
of computing applications [21].

Automatic differentiation also finds applications in the field of computational fluid dynamics (CFD).
CFD uses numerical analysis to solve problems that involve fluid flow. These problems can be found
in fields of study like aerospace engineering, environmental engineering, weather simulation, etc.
Examples of such problems in the field of weather simulation and environmental engineering are the
modelling of water flow in rivers, channels and oceans or propagation of a tsunami or flood waves.
These flows can mathematically be represented by the shallow water equations (SWE).

In the field of computational fluid dynamics automatic differentiation is applied to develop discrete
adjoint CFD Code which is used in research concerning for instance sensitivity analysis, data
assimilation and design optimization. In 2009 Souhar and Faure used automatic differentiation in
order to asses uncertainties in flood modelling [23]. They used the AD engine TAPENADE that
produces discrete adjoint CFD Code, which returns the tangent and adjoint differentiated program of
an arbitrary Fortran77, Fotran95 or C code.

In order to use the application programming interface (API) GradientTape for AD in TensorFlow for
research purposes in the field of weather simulation and environmental engineering it is necessary to
develop a PDE solver in TensorFlow that can simulate water flow. Daoust, Lamberta and Abhinavsp
produced a small example of a PDE solver on Github in 2019, which simulated the falling of rain
droplets on a pond [6]. This shows the possibility to implement a PDE solver in TensorFlow for a CFD
model describing the flow below a pressure surface in a fluid.

The API for AD in TensorFlow has been designed for research concerning machine learning. Up to
this point no research has been conducted to use the API GradientTape for AD for research in the
field of CFD. Where developing adjoint code that is able to perform computations in parallel GPU can
become quite extensive process, the API GradientTape makes use of the full processing power of the
GPU when performing adjoint calculations without having to perform manual labour. As such this
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4 1. Introduction

paper will investigate if it is feasible to use the AD tool for sensitivity analysis.

1.2. Thesis statement
In this thesis, a partial differential equation solver is implemented for the shallow water equations,
which harnesses the power of the GPU. Moreover, tools from the TensorFlow library will be applied
to compute the sensitivity of the initial input parameters to final numerical solution.[10] This leads me
to my research question: Is it possible to obtain an efficient partial differential equation solver with the
help of the differentiable programming framework TensorFlow and can this software package be used
to perform sensitivity analysis to initial value problems?

1.3. Thesis outline
In chapter 2 the shallow water equations in the one­ and two dimensional case are introduced, as
well as their numerical discretization. Next to that, the linearization of these equations are given. In
addition, an initial value problem that represents a gaussian disturbance will be presented for both the
one­ and two dimensional case. At the end of this chapter, an analytical solution is derived for the
one dimensional initial value problem. In chapter 3, the focus lies on how one can obtain a partial
differential equation solver. First, a short introduction will be given on the concept of TensorFlow and
some key functions. Hereafter, it will be explained how one can apply the finite difference method in
TensorFlow through convolution. In addition, two methods on how to deal with boundary conditions are
described. Furthermore, it will be treated how one can implement a solver based upon a staggered
grid in TensorFlow. Finally two algorithms are given to solve the one­ and two dimensional initial value
problems. Chapter 4 explains how one can perform sensitivity analysis. A short introduction is given on
adjoint equations and on automatic differentiation. Additionally, a checkpointing method is described
to run adjoint simulations for larger grids. After all this, in chapter 5 the numerical results are presented
and a benchmark with solvers implemented in Fortran and NumPy is displayed. At last, in chapter 6,
the conclusions are made and recommendations for further studies are given in chapter 7.



2
Shallow water equations

In this chapter the one­ and two dimensional shallow water equations (SWE) are introduced.
Furthermore, to check the correctness of the numerical approximation, analytical solutions are
required. To obtain these analytical solutions the shallow water equations will be linearized. In
addition, an initial value problem is given for both the one­ and two dimensional case, for whom a
partial differential equations solver will be created in chapter 3. To obtain this, a discretization of the
linearized SWE will be derived. To conclude, an analytical solution is derived through d’Alamberts
solution.

2.1. Two Dimensional shallow water equations
The shallow water equations are a set of hyperbolic differential equations that describe the
propagation of long waves in water with a free surface. The shallow water equations are derived from
the Navier­Stokes Equations [25]. The Navier­Stokes equations are derived from mass and
momentum conservation and consist of the continuity equation and the momentum equation(s).
Since the oceans, lakes and rivers are in general much wider and longer than they are deep, one can
make the general assumption that water flow is essentially depth averaged. Under this assumption,
conservation of mass implies that the vertical fluid velocity is small. After depth integrating one can
remove the vertical velocity from the equation. In addition, from the momentum equation it can be
shown that the vertical acceleration is also small, which implies that the vertical pressure gradients
are nearly hydrostatic. This means the that pressure is proportional to the depth of the water. Thus
the shallow water equations are derived.

The depth averaged zonal­ and meridional flow velocities 𝑢(𝑥, 𝑦, 𝑡) and 𝑣(𝑥, 𝑦, 𝑡) and the water level
𝜁(𝑥, 𝑦, 𝑡) can be computed by solving the shallow water equations. For a two dimensional basin the
shallow water equations are denoted as follows [25]

𝜕𝜁
𝜕𝑡 +

𝜕ℎ𝑢
𝜕𝑥 + 𝜕ℎ𝑣𝜕𝑥 = 0, (2.1a)

𝜕𝑢
𝜕𝑡 + 𝑢

𝜕𝑢
𝜕𝑥 + 𝑣

𝜕𝑢
𝜕𝑦 − 𝑓𝑣 + 𝑔

𝜕ℎ
𝜕𝑥 + 𝑐𝑓

𝑢
ℎ
√𝑢2 + 𝑣2 = 0, (2.1b)

𝜕𝑣
𝜕𝑡 + 𝑢

𝜕𝑣
𝜕𝑥 + 𝑣

𝜕𝑣
𝜕𝑦 + 𝑓𝑢 + 𝑔

𝜕ℎ
𝜕𝑦 + 𝑐𝑓

𝑢
ℎ
√𝑢2 + 𝑣2 = 0. (2.1c)

Here equation 2.1a denotes the continuity equation, with the water depth ℎ(𝑥, 𝑦, 𝑡) as sum of the
water level and bottom level, ℎ(𝑥, 𝑦, 𝑡) = 𝜁(𝑥, 𝑦, 𝑡) + 𝑑(𝑥, 𝑦). Equations 2.1b and 2.1c represent
respectively the zonal­ and meridional momentum equation. Three constants are present in equation
2.1, the gravitational acceleration 𝑔 = 9.81𝑚𝑠−2, 𝑓 the Coriolis coefficient associated with the Coriolis
force and a dimensionless friction coefficient 𝑐𝑓 due to bottom roughness.
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6 2. Shallow water equations

2.1.1. Linearization of the two dimensional shallow water equations
In this work only linear equations will be treated, as such equation 2.1 must be linearized. In most
cases, the terms which represent bulk advection that are quadratic in u and v are small in comparison
to other terms. Since the friction term is still an approximation of the actual friction, the friction term
𝑐𝑓
𝑢
ℎ√𝑢

2 + 𝑣2 is replaced by 𝑐𝑓𝑢 and 𝑐𝑓
𝑢
ℎ√𝑢

2 + 𝑣2 is replaced by 𝑐𝑓𝑣. In addition, the Coriolis force is
neglected. Moreover, assuming that wave height is significantly smaller than the mean height of the
basin, the equations that are considered in this paper are obtained [25]

𝜕𝜁
𝜕𝑡 + 𝐻(

𝜕𝑢
𝜕𝑥 +

𝜕𝑣
𝜕𝑥 ) = 0, (2.2a)

𝜕𝑢
𝜕𝑡 + 𝑔

𝜕𝜁
𝜕𝑥 + 𝑐𝑓𝑢 = 0, (2.2b)

𝜕𝑣
𝜕𝑡 + 𝑔

𝜕𝜁
𝜕𝑦 + 𝑐𝑓𝑣 = 0. (2.2c)

2.2. One dimensional shallow water equations
The one dimensional shallow water equations were derived by Saint­Venant in 1871 and describe the
propagation of a long wave along a certain characteristic [7]. These equations are also referred to as
the one dimensional Saint­Venant equations and can be seen as a contraction of the two dimensional
shallow water equations 2.3. The derivation is analogous to the derivation of the two dimensional
shallow water equations. This paper focuses on a one dimensional channel of length 𝐿 in the x­space.
The depth averaged flow velocity 𝑢(𝑥, 𝑡) and the water level 𝜁(𝑥, 𝑡) in this channel can be computed
by solving the shallow water equations, also referred to as the Saint­Venant Equations [7]. The set of
partial differential equations is written in equation 2.3.

𝜕𝜁
𝜕𝑡 +

𝜕ℎ𝑢
𝜕𝑥 = 0, (2.3a)

𝜕𝑢
𝜕𝑡 + 𝑢

𝜕𝑢
𝜕𝑥 + 𝑔

𝜕𝜁
𝜕𝑥 + 𝑐𝑓

𝑢|𝑢|
ℎ = 0. (2.3b)

The shallow water equations consist of two partial differential equations, where equation 2.3a denotes
the continuity equation. The water depth ℎ(𝑥, 𝑡) is again the sum of the water level 𝜁(𝑥, 𝑡) and the
bottom level 𝑑(𝑥). Equation 2.3b denotes the momentum equation, where 𝑔 is again the gravitational
acceleration and equals 9.81𝑚𝑠−2 and 𝑐𝑓 is the dimensionless friction coefficient due to bottom
roughness.

2.2.1. Linearization of the one dimensional shallow water equations
In order to analyse the accuracy of the numerical results, the numerical results can be compared to the
analytical solution to the shallow water equations. The analytical solution can be obtained through the
linearized form of equation 2.3. To linearize equation 2.3, it is assumed that the fluid velocity 𝑢(𝑥, 𝑡)
is small. Furthermore, constant bottom level is assumed, 𝑑(𝑥) = 𝐻. Contrary to the two­dimensional
case, the assumption is made that the bottom is friction less, that is 𝑐𝑓

𝑢|𝑢|
ℎ = 0. This is done compare

the numerical solution to the analytical solution, which will be derived in section 2.5, without having
to take the effect of friction into account. Finally the product of two small variables is neglected. This
leads to the linearized shallow water equations

𝜕𝜁
𝜕𝑡 + 𝐻

𝜕𝑢
𝜕𝑥 = 0, (2.4a)

𝜕𝑢
𝜕𝑡 + 𝑔

𝜕𝜁
𝜕𝑥 = 0. (2.4b)
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2.3. Initial value problems
For both the one­ and two dimensional case a similar initial value problem (IVP) will be considered.
The IVPs will describe a gaussian disturbance on a free surface.

2.3.1. One dimensional case
A half­closed basin of length 𝐿 is considered over time 𝑇, where the water level is zero at 𝑥 = 0 and
there is zero flow at 𝑥 = 𝐿. In combination with the linearized shallow water equations 2.4, a problem
describing a gaussian disturbance on a free surface satisfies the following initial conditions

𝜁(𝑥, 0) = 𝑓(𝑥) = 5
√𝜋

exp(
(𝑥 − 𝐿

2)
2

150𝐿 ), 0 ≤ 𝑥 ≤ 𝐿, (2.5a)

𝑢(𝑥, 0) = 𝑔(𝑥) = 0, 0 ≤ 𝑥 ≤ 𝐿. (2.5b)

The boundary conditions are described as follows

𝜁(0, 𝑡) = 0, 0 ≤ 𝑡 ≤ 𝑇,
𝑢(𝐿, 𝑡) = 0, 0 ≤ 𝑡 ≤ 𝑇. (2.6)

2.3.2. Two dimensional case
For the two dimensional case the focus lies on a basin of length 𝐿 and width 𝑊, in the (𝑥, 𝑦)­space,
over time 𝑇. The initial value problem describing a gaussian disturbance on a surface satisfies the
shallow water equations described in equation 2.2 in combination with the following initial conditions

𝜁(𝑥, 𝑦, 0) = exp(
(𝑥 − 𝐿

2)
2

50𝐿 +
(𝑦 − 𝑊

2 )
2

50𝑊 ), 0 ≤ 𝑥 ≤ 𝐿, 0 ≤ 𝑦 ≤ 𝑊,

𝑣(𝑥, 𝑦, 0) = 0, 0 ≤ 𝑥 ≤ 𝐿, 0 ≤ 𝑦 ≤ 𝑊,
𝑢(𝑥, 𝑦, 0) = 0, 0 ≤ 𝑥 ≤ 𝐿, 0 ≤ 𝑦 ≤ 𝑊.

(2.7)

Furthermore, for the boundary conditions zero flow is considered

𝑢(0, 𝑦, 𝑡) = 𝑢(𝐿, 𝑦, 𝑡) = 0, 0 ≤ 𝑦 ≤ 𝑊, 0 ≤ 𝑡 ≤ 𝑇,
𝑣(𝑥, 0, 𝑡) = 𝑣(𝑥,𝑊, 𝑡) = 0, 0 ≤ 𝑥 ≤ 𝐿, 0 ≤ 𝑡 ≤ 𝑇. (2.8)

2.4. Discretized shallow water equations
To implement the PDE solver, the discretized form of equations 2.2 and 2.4 must be obtained. In this
work the finite difference method is used for the spatial discretization and the semi­implicit Euler method
is considered as time integration scheme.

2.4.1. One dimensional Discretization
First, the spatial discretization of equation 2.4 is considered. Since the linear shallow water equations
are a coupled system of partial differential equations, one can run into the problem of odd­even
decoupling between the fluid velocity and height. This is a discretization error, which can lead to a
checkerboard pattern instead of the wave propagating evenly across the area, as mentioned by
Mesinger (1973) [20]. To overcome this problem a staggered grid can be used. Models for
oceanography and meteorology are frequently based on the staggered Arakawa C­grid [2].



8 2. Shallow water equations

The one dimensional Arakawa C­grid evaluates the fluid velocity and the water level at alternating grid
points. Divide the interval (0, 𝐿) into 𝑁𝑥 subintervals of length Δ𝑥 =

𝐿
𝑁𝑥+0.5

and one subinterval of length
Δ𝑥
2 . For the grid points the notation 𝑥𝑖 = 𝑖Δ𝑥 is used, where 𝑖 ∈ {0, 1, … , 𝑁𝑥 − 1}. At the grid points 𝑥𝑖
the water level is stored and denoted by 𝜁(𝑥𝑖) = 𝜁𝑖. The fluid velocity is stored at the grid points 𝑥𝑖+ 12

.
For the fluid velocity grid points the notation 𝑢(𝑥𝑖+ 12

) = 𝑢𝑖+ 12
is used. A visual representation of the one

dimensional Arakawa C­grid is given in figure 2.1.

Figure 2.1: Visual Representation of the one dimensional Arakawa C­grid

To obtain the discretization of the spatial derivatives in the linearized shallow water equations 2.4,
central finite difference is used [5]. The following semi­discretization is obtained

𝜕𝑢𝑖− 12
𝜕𝑡 = 𝑔𝜁𝑖+1 − 𝜁𝑖Δ𝑥 , (2.9a)

𝜕𝜁𝑖
𝜕𝑡 = 𝐻

𝑢𝑖+ 12
− 𝑢𝑖− 12
Δ𝑥 . (2.9b)

The next step is the time integration scheme. For this, the semi­implicit Euler method is used, as used
by E. Haier et al. (2003) [8]. This results in the following discretization

𝑢𝑛+1𝑖+ 12
− 𝑢𝑛𝑖+ 12
Δ𝑡 = 𝑔𝜁

𝑛
𝑖+1 − 𝜁𝑛𝑖
Δ𝑥 , (2.10a)

𝜁𝑛+1𝑖 − 𝜁𝑛𝑖
Δ𝑡 = 𝐻

𝑢𝑛+1𝑖+ 12
− 𝑢𝑛+1𝑖− 12
Δ𝑥 , (2.10b)

in which 𝜁𝑛+1𝑖 , 𝜁𝑛𝑖 , 𝑢𝑛+1𝑖+ 12
and 𝑢𝑛𝑖+ 12

represent the water level and fluid velocity at grid points 𝑥𝑖 and 𝑥𝑖+ 12
at time 𝑡𝑛+1 and 𝑡𝑛 respectively, with 𝑡𝑛 = 𝑛Δ𝑡. The number of time steps 𝑁𝑠𝑡𝑒𝑝𝑠 depends on the time
span 𝑇 of the simulation and equals 𝑇

Δ𝑡 , which is rounded upwards. The index is defined by 𝑛 and
𝑛 ∈ {0, 1, … , 𝑁𝑠𝑡𝑒𝑝𝑠 − 1}. To obtain the next iteration of the fluid velocity and water level grid points, the
discretization of the linearized shallow water equations 2.10 can be rewritten into

𝑢𝑛+1𝑖+ 12
= 𝑢𝑛𝑖+ 12

+ 𝑔Δ𝑡𝜁
𝑛
𝑖+1 − 𝜁𝑛𝑖
Δ𝑥 , (2.11a)

𝜁𝑛+1𝑖 = 𝜁𝑛𝑖 + 𝐻Δ𝑡
𝑢𝑛+1𝑖+ 12

− 𝑢𝑛+1𝑖− 12
Δ𝑥 . (2.11b)
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2.4.2. Two dimensional discretization
A similar approach as used for the one dimensional case is considered. Similar to the one dimensional
case the staggered Arakawa C­grid is used [2]. In the two dimensional rectangular basin of length
𝐿 and width 𝑊 set 𝑁𝑥 nodes to store 𝜁 in the 𝑥­space and 𝑁𝑦 nodes in the 𝑦­space. Then the grid
consist of (𝑁𝑥 × 𝑁𝑦) cells, which are of length Δ𝑥 = 𝐿

𝑁𝑥
and width Δ𝑦 = 𝑊

𝑁𝑦
. For the grid points the

notation 𝑥𝑖,𝑗 = (𝑖Δ𝑥, 𝑗Δ𝑦) is introduced, where 𝑖 ∈ {0, 1, … , 𝑁𝑥 − 1} and 𝑗 ∈ {0, 1, … , 𝑁𝑦 − 1}. The water
level is stored at the center of each cell and is denoted by 𝜁(𝑥𝑖 , 𝑦𝑗) = 𝜁𝑖,𝑗. The zonal fluid velocity
points are stored at the centers of the left/right faces of cell and are denoted by 𝑢(𝑥𝑖+ 12

, 𝑦𝑗) = 𝑢𝑖+ 12 ,𝑗
. In

addition, additional nodes are added to store the zonal fluid velocity along the left boundary, denoted
as 𝑢(𝑥𝑖− 12

, 𝑦𝑗) = 𝑢− 12 ,𝑗
, for 𝑗 ∈ {0, 1, … , 𝑁𝑦 −1}. The meridional fluid velocity points are at the centers of

the upper/lower faces of the grid cell, and are denoted by 𝑣(𝑥𝑖 , 𝑦𝑗+ 12
) = 𝑣𝑖,𝑗+ 12

. At the lower boundary
additional nodes are placed to store the meridional fluid velocity, denoted as 𝑣(𝑥𝑖 , 𝑦− 12

) = 𝑣𝑖,− 12
, where

𝑖 ∈ {0, 1,⋯ ,𝑁𝑥 − 1}. In figure 2.2 a part of the 2D Arakawa C­grid is displayed.

Figure 2.2: Visual representation of a part of the 2D Arakawa C­grid

As for the one dimensional case, the central finite difference method [5] is applied to discretize the
spatial derivatives. Applying this method results in the following semi­discretized equations

𝜕𝑢𝑖+ 12 ,𝑗
𝜕𝑡 = −𝑔

𝜁𝑖+1,𝑗 − 𝜁𝑖,𝑗
Δ𝑥 − 𝑏𝑢𝑖+ 12 ,𝑗

,
𝜕𝑣𝑖,𝑗+ 12
𝜕𝑡 = −𝑔

𝜁𝑖,𝑗+1 − 𝜁𝑖,𝑗
Δ𝑦 − 𝑏𝑣𝑖,𝑗+ 12

,

𝜕𝜁𝑖,𝑗
𝜕𝑡 = −𝐻(

𝑢𝑖+ 12 ,𝑗
− 𝑢𝑖− 12 ,𝑗
Δ𝑥 +

𝑣𝑖,𝑗+ 12
− 𝑣𝑖,𝑗− 12
Δ𝑦 ) .

(2.12)

Moving forward, the time integration scheme is looked at. An extension of the semi­implicit Euler
method is used [8]. Similar notation concerning the time discretization is used as for one­dimensional
discretization. This method gives the following results
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𝑢𝑛+1𝑖+ 12 ,𝑗
− 𝑢𝑛𝑖+ 12 ,𝑗
Δ𝑡 = −𝑔

𝜁𝑛𝑖+1,𝑗 − 𝜁𝑛𝑖,𝑗
Δ𝑥 − 𝑏𝑢𝑛𝑖+ 12 ,𝑗

,

𝑣𝑛+1𝑖,𝑗+ 12
− 𝑣𝑛𝑖,𝑗+ 12
Δ𝑡 = −𝑔

𝜁𝑛𝑖,𝑗+1 − 𝜁𝑛𝑖,𝑗
Δ𝑦 − 𝑏𝑣𝑛𝑖,𝑗+ 12

,

𝜁𝑛+1𝑖,𝑗 − 𝜁𝑛𝑖,𝑗
Δ𝑡 = −𝐻(

𝑢𝑛+1𝑖+ 12 ,𝑗
− 𝑢𝑛+1𝑖− 12 ,𝑗

Δ𝑥 +
𝑣𝑛+1𝑖,𝑗+ 12

− 𝑣𝑛+1𝑖,𝑗− 12
Δ𝑦 ) .

(2.13)

Rewriting the set of equations 2.13, one can obtain the value of the fluid velocity points and the water
level points at the next iteration in the following way

𝑢𝑛+1𝑖+ 12 ,𝑗
= (1 − Δ𝑡𝑏)𝑢𝑛𝑖+ 12 ,𝑗

− 𝑔Δ𝑡
𝜁𝑛𝑖+1,𝑗 − 𝜁𝑛𝑖,𝑗

Δ𝑥 , (2.14a)

𝑣𝑛+1𝑖,𝑗+ 12
= (1 − Δ𝑡𝑏)𝑣𝑛𝑖,𝑗+ 12

− 𝑔Δ𝑡
𝜁𝑛𝑖,𝑗+1 − 𝜁𝑛𝑖,𝑗

Δ𝑦 , (2.14b)

𝜁𝑛+1𝑖,𝑗 = 𝜁𝑛𝑖,𝑗 − 𝐻Δ𝑡 (
𝑢𝑛+1𝑖+ 12 ,𝑗

− 𝑢𝑛+1𝑖− 12 ,𝑗

Δ𝑥 +
𝑣𝑛+1𝑖,𝑗+ 12

− 𝑣𝑛+1𝑖,𝑗− 12
Δ𝑦 ) . (2.14c)

2.4.3. CFL­criterion
In general, the parameters of a numerical simulation cannot be chosen arbitrarily. Δ𝑥 (,Δ𝑦) and Δ𝑡
need to satisfy the CFL­criterion, see (Courant, R.; Friedrichs, K.; Lewy, H., 1928)[18]. This criterion
ensures that the numerical solution has access to all the point sources that physically influence this
solution. The condition is described by the following equation in a one dimensional grid

𝑐Δ𝑡
Δ𝑥 ≤ 1, (2.15)

where 𝑐 denotes the long wave speed. For a two dimensional grid, the CFL­criterion is defined as
follows

𝑐Δ𝑡
Δ𝑥 +

𝑐Δ𝑡
Δ𝑦 ≤ 1. (2.16)

2.5. Analytical Solution
The linearized shallow water equations 2.4 can be rewritten into a wave equation, of which the
general solution is known as d’Alembert’s solution [15]. D’Alembert’s solution consists of a right and
left traveling wave. For a general wave equation

𝜕2𝜔
𝜕𝑡2 = 𝑐

2 𝜕2𝜔
𝜕𝑥2 ,

subject to the initial conditions

𝜔(𝑥, 0) = 𝑘(𝑥),
𝜕𝜔(𝑥, 0)
𝜕𝑡 = 𝑙(𝑥),

where 𝑘(𝑥) and 𝑘(𝑥) are arbitrary functions, then d’Alemberts solution is

𝜔(𝑥, 𝑡) = 1
2(𝑘(𝑥 + 𝑐𝑡) + 𝑘(𝑥 − 𝑐𝑡)) +

1
2𝑐 ∫

𝑥+𝑐𝑡

𝑥−𝑐𝑡
𝑙(𝑠)𝑑𝑠. (2.17)
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To obtain a wave like equation of the linearized continuity equation 2.4a take the partial derivative with
respect to 𝑡, which results in

𝜕
𝜕𝑡 (

𝜕𝜁
𝜕𝑡 ) +

𝜕
𝜕𝑥 (𝐻

𝜕𝑢
𝜕𝑡 ) = 0. (2.18)

Rewrite the linearized momentum equation 2.4b to obtain the identity

𝜕𝑢
𝜕𝑡 = −𝑔

𝜕𝜁
𝜕𝑥 .

Consequently, substituting into equation 2.18 induces

𝜕2𝜁
𝜕𝑡2 − 𝑔𝐻

𝜕2𝜁
𝜕𝑥2 = 0. (2.19)

Equation 2.19 is indeed a wave equation and the long wave speed 𝑐 equals √𝑔𝐻. Since in the initial
conditions of the initial value problem 2.5 don’t describe an initial condition for the rate of change of
water level over time, we can find 𝜕𝜁

𝜕𝑡 (𝑥, 0) through the linearized continuity equation 2.4a. Rewriting
gives

𝜕𝜁
𝜕𝑡 = −𝐻

𝜕𝑢
𝜕𝑥 .

Differentiating the initial condition 2.5b with respect to 𝑥, gives

𝜕𝑢
𝜕𝑥 = 0,

so

𝜕𝜁
𝜕𝑡 = 0.

Using this result and initial condition 2.5a one finds that the solution for the water level, according to
d’Alembert’s solution, satisfies

𝜁(𝑥, 𝑡) = 1
2 [𝑓(𝑥 + 𝑐𝑡) + 𝑓(𝑥 − 𝑐𝑡)] (2.20)

Analogous to the analytical solution for 𝜁, the analytical solution for 𝑢 to the IVP can be found, only
take the time derivative of the linearized momentum equation 2.4b and rewrite the linearized
momentum equation 2.4b. For the initial conditions, use

𝜕𝑢
𝜕𝑡 = −𝑔

𝜕𝜁
𝜕𝑥 .

The partial derivative of 𝜁 with respect to 𝑥 can be found by taking the derivative of equation 2.20.
Combing the latter and the initial velocity condition 2.5b, inline with d’Alembert’s solution an analytical
solution for the fluid velocity is

𝑢(𝑥, 𝑡) = √𝑔
2√𝐻

[𝑓(𝑥 − 𝑐𝑡) − 𝑓(𝑥 + 𝑐𝑡)] . (2.21)





3
PDE simulation in TensorFlow

The aim of this chapter is to explain how one can implement an initial value problem solver in
TensorFlow. Since TensorFlow has been designed for machine learning, the concept of TensorFlow
and some key functions will be explained. Afterwards, a description will be given how these concepts
can be used to develop a PDE solver in the TensorFlow framework. Finally, an algorithm to
implement a PDE solver is produced for both the one dimensional and two dimensional case

3.1. TensorFlow
TensorFlow is an open­source library for machine learning developed by Google Brain, the deep
learning artificial intelligence research team at Google [10]. It has been designed to provide users
with an accessible and readable syntax for machine learning. It is based upon dataflow and
differentiable programming, the latter will be described in chapter 4. Dataflow programming allows
users to build computational graphs, that show how information moves through a directed graph,
which contains a set of nodes connected through edges. Each node represents a mathematical
operation and each edge carries a tensor, which is an multidimensional array, and represents the
data dependencies between the nodes. Some more information on tensors will be given in section
3.1.2. A relatively simple example of a computational graph is shown in figure 3.1, where arithmetic
operations are performed on three inputs X,Y and 10 and produces one output C.

Figure 3.1: A simple implementation and the dataflow representation. Source Johnston et al. 2004, fig 1. [17]

13
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In figure 3.1 only arithmetic operations are considered at the nodes inside the computational graph.
However, these arithmetic operations don’t suffice to implement complicated machine learning
models. To implement machine learning models one might need several functions e.g. convolution
functions and activation functions. TensorFlow allows the users to call the required functions for
implementing machine learning models. As a consequence, the user can focus on the overall logic of
the model instead of focusing on the details implementing the model. An example of this is given in
listings 3.1 and 3.2, where one convolution operation requires a for loop in listing 3.1, TensorFlow in
listing 3.2 requires just one function call.

1 x = np.ones(N_x)
2 y = np.zeros(N_x­2)
3 k = np.array([1.,2.,3.])
4 for i in range(1,len(x)­2):
5 y[i] = np.dot([x[i­1],x[i],x[i

+1]],k)
6

Listing 3.1: Convolution NumPy

1 x = tf.ones([1,N_x,1])
2 k = tf.Variable([[[1.],[2.],[3.]]])
3 y = tf.nn.conv1d(x,k,stride = 1,

padding = ”VALID”)
4

5

6

Listing 3.2: Convolution TensorFlow

A huge upside of TensorFlow is that TensorFlow provides a user­friendly front­end application
programming interface (API) through Python for building these computational graphs, while executing
the mathematical operations at the nodes inside the computational graph in highly­optimized C++
code [10]. In addition to performing these mathematical operations in C++, the mathematical
operations also make use of the compute unified architecture (CUDA) of a NVIDIA graphics
processing unit (GPU) without having to perform manual labour in order to run processes in parallel,
which will be explained in the next section, in order to speed up computations.

3.1.1. Parallel computing
One of the advantages of the implementation of a PDE solver in TensorFlow [10] is the ability to run
computations in parallel on the GPU without having to manually activate the GPU by adapting the code.
Parallel computing breaks up a particular computation into much smaller independent computations,
which can be processed simultaneously, speeding up computations. The resulting computations are
then recombined in an overall output. Where a central processing unit (CPU) consists of few strong
processing cores clocked at 2 to 3 GHz, a GPU is built up of up to potentially thousands of weak
processing cores with a much lower clock speed [9][19]. Due to the strong processing cores a CPU is
ideal for performing tasks sequentially[19]. Having said that, being a multiple processing core system,
a GPU is ideal to run large scale computations in parallel.[9]

3.1.2. Tensors
As mentioned before, at each edge inside the graph a tensor is stored. A tensor is a multidimensional
array. An important property of tensors is that they lack set­index operators, as a consequence of the
dataflow programming structure. The structure of a tensor can be explained on the basis of a few
definitions. The rank of a tensor defines the number of dimensions. An array in a certain rank, is
commonly defined as axis. The number of indices that are present in an axis, is defined as the length
of the axis. Combining all the previous, this leads to the shape of a tensor. The shape of a tensor
defines the length of each axis [12]. For example, let 𝑦𝑦𝑦 be the tensor that contains the grid points. In
the one dimensional case 𝑦𝑦𝑦 is a vector and a tensor of rank 1 and of shape (𝑁𝑥). In the two
dimensional case 𝑦𝑦𝑦 is a (𝑁𝑥 × 𝑁𝑦) matrix and a tensor of rank 2 and of shape (𝑁𝑥 , 𝑁𝑦).

The shape of a tensor is of great importance in TensorFlow, since functions in TensorFlow require
input with specific shapes. If a tensor is used as argument in a function with an unsupported shape,
an invalid argument error will arise. An invalid argument error can be avoided by reshaping the input
tensors. Reshaping alters the shape of the tensors, without modifying the order of the indices.
TensorFlow offers the function tf.reshape(), which takes as input the tensor to be reshaped and the
desired shaped.
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3.1.3. Convolution
Convolution lays at the foundation of convolutional neural networks in machine learning.
Mathematically, convolution is defined as the operation on two functions resulting in a third function.
In terms of machine learning convolution is widely used to extract information from an image. The
pixel values of an image are stored in a tensor. Then the tensor is modified by a filter, also referred to
as kernel. This filter slides to every position of the tensor and computes the dot product of the filter
and the indices it floats over, resulting in a new tensor [10]. In TensorFlow one can perform
convolution through the function tf.nn.conv1d() in the one dimensional case and tf.nn.conv2d() in the
two dimensional case. The process of convolution is visualized in figure 3.2.

Figure 3.2: Example of convolution. The blue two dimensional plane denotes the input, and the shaded part on top of the blue
represents a 3x3 convolution filter. The green two dimensional plane is the output channel. Source: Deeplizard [1] .

Note, in figure 3.2 it can be seen that the convolution operation is an independent operation.
Consequently, all these computations can be performed in parallel and an overall output channel can
be produced on a GPU. This results in an acceleration of computation speed. Furthermore, one can
see that the filter moves a single index forward in figure 3.2. The number of indices the filters moves
is defined by the argument strides. Next to strides, one can see a column and a row are added to the
sides. This is known as padding, which will be explained in the following section.

3.1.4. Padding
Padding is a synonym for appending and prepending your input tensor with some value. This can be
achieved in TensorFlow with the function tf.pad(). The convolution functions have a padding argument,
which can either be set to ”VALID” or ”SAME”. ”VALID” means no padding and ”SAME” will append
zeros to either end of the tensor prior to performing convolution, in order to return a tensor that is of
similar shape. A user can manually append values with the help of the function tf.pad(). This function
hasmultiple modes, however only themode ”CONSTANT” is used. With this mode the user can append
one or multiple arbitrary value(s) to either end of a tensor.
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3.2. Finite difference method
To obtain the value of the grid point at the next time step in a time integration scheme, the spatial
derivative needs to be computed, this can be done through the finite difference method. To fit this
into the TensorFlow framework, one can use convolution in order to evaluate derivatives. Instead of
using tensors to store images, tensors are used to store the initial values of the grid points. In order
to evaluate the derivative through convolution, a convolution filter that represents the finite difference
method must be defined. For first order derivatives the finite differences operators are [16]

• Forward difference : 𝑑𝑦/𝑑𝑥 ≈ 𝑦(𝑥+Δ𝑥)−𝑦(𝑥)
Δ𝑥 .

• Backward difference : 𝑑𝑦/𝑑𝑥 ≈ 𝑦(𝑥)−𝑦(𝑥−Δ𝑥)
Δ𝑥 .

• Central difference : 𝑑𝑦/𝑑𝑥 ≈ 𝑦(𝑥+Δ𝑥)−𝑦(𝑥−Δ𝑥)
2Δ𝑥 .

Storing the values in a tensor 𝑦(𝑖Δ𝑥), where 𝑖 ∈ {0, 1, ..., 𝑁𝑥 − 1}, then the finite differences are written
as:

• Forward difference : 𝑑𝑦𝑑𝑥[𝑖] ≈ 𝑦[𝑖+1]−𝑦[𝑖]
Δ𝑥 .

• Backward difference : 𝑑𝑦𝑑𝑥[𝑖] ≈ 𝑦[𝑖]−𝑦[𝑖−1]
Δ𝑥 .

• Central difference : 𝑑𝑦𝑑𝑥[𝑖] ≈ 𝑦[𝑖+1]−𝑦[𝑖−1]
2Δ𝑥 .

This can be written as a convolution operation with the following convolution filters:

• Forward difference : [0 −1
Δ𝑥

1
Δ𝑥 ].

• Backward difference : [−1Δ𝑥
1
Δ𝑥 0].

• Central difference : [ −12Δ𝑥 0 1
2Δ𝑥 ].

Suppose we want to compute the backward difference using the mentioned filter of the tensor 𝑦𝑦𝑦 with
shape (𝑁𝑥). A visual representation of this convolution is given in figure 3.3. Note, in figure 3.3 there
are two zeros appended to the tensor 𝑦𝑦𝑦. This is a result of the argument padding in the convolution
function being set to ”SAME”, as mentioned in section 3.1.4. Next to padding, it can be observed that
the filter moves a single grid point forward in figure 3.3. In case of finite differences, we choose a stride
of 1. Furthermore, note that it’s not possible to calculate the backward difference of the first grid point,
since the cell left of 𝑦(0) doesn’t exist. This is similar for the forward case, only then for the last grid
point. If the central difference is contemplated, it’s not feasible to obtain the central differences of both
boundary values. The next section explains how the boundary indices can be set correct.

Figure 3.3: Convolution to obtain finite differences
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3.3. Boundary conditions
Since tensors lack set­index operators, the command 𝑦[𝑖] = 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑣𝑎𝑙𝑢𝑒 will raise an error in
TensorFlow. To overcome this issue, one can use two methods to assign boundary values: Padding
and Masks. First, Padding is considered.

3.3.1. Padding
One can use padding in various ways to implement boundary conditions. This work only describes an
approach based upon the mode ”CONSTANT”, since it has less restrictions for implementing
boundary conditions compared to the mode ”SYMMETRIC” or ”REFLECT”. If one chooses to use
padding to implement boundary conditions, the argument padding in the convolution function must be
set to ”VALID”. After performing a convolution operation with a convolution filter that represents the
finite differences, a tensor is returned that is ”stripped” of the boundary indices. Through the function
tf.pad() with mode ”CONSTANT” one can add the boundary values as defined by the initial value
problem. Note, if the case of unequal boundary values it is necessary to pad each edge with the
corresponding boundary value.

For instance, consider the same example as given in section 3.2. Suppose, at both boundaries
Dirichlet boundary conditions are imposed, 𝑦(0) = 𝛼 and 𝑦(6) = 𝛽. After performing the same
convolution operation, with padding equal to ”VALID”, padding twice, one value to each
corresponding boundary, will result in the correct tensor. This process is depicted in figure 3.4.

Figure 3.4: Padding, after performing convolution, with two constants to either end

3.3.2. Masks
The use of padding has a major disadvantage, padding only works on rectangular domains. So
complex shapes, like rivers, are impossible to simulate with padding. If masks are used, two tensors
need to be defined, 𝑦𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 and 𝑦𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦. 𝑦𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 is a tensor with equal shape to the input tensor,
where all indices equal 1, except for the boundary indices. 𝑦𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 is a tensor with equivalent
shape to the input tensor, where all indices equal 0, only the boundary indices are nonzero as
specified by the initial value problem. Note, if homogeneous Dirichlet boundary conditions are
considered, then the boundary index of the mask is either equal to zero or does not need to be
defined. When performing convolution, the argument padding in the convolution function should be
set to ”SAME”, in order to maintain all grid points. After convolution has been performed and the next
iteration 𝑦𝑦𝑦𝑛+1 has been computed, one should multiply the tensor 𝑦𝑦𝑦𝑛+1 with the mask 𝑦𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 and
consequently add the mask 𝑦𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦.
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For example, suppose the left Dirichlet boundary condition is imposed, 𝑦(0) = 𝛼, where 𝛼 is an
arbitrary constant. Define two masks, 𝑦𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 and 𝑦𝑏𝑜𝑢𝑛𝑑, as tensors of length 𝑁𝑥, with the following
values

𝑦𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 = [0 1 ⋯ 1] , 𝑦𝑏𝑜𝑢𝑛𝑑 = [𝛼 0 ⋯ 0] .

Then, it’s possible to assign the boundary value according to

𝑦𝑦𝑦 = 𝑦𝑦𝑦 ∗ 𝑦𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 + 𝑦𝑏𝑜𝑢𝑛𝑑
= 𝑦𝑦𝑦 ∗ [0 1 ⋯ 1] + [𝛼 0 ⋯ 0] .

3.4. Shape
As mentioned before, the shape of a tensor is of great importance in TensorFlow, since certain
functions in TensorFlow require input with specific shapes. For instance, using a tensor of shape
(𝑁𝑥 , 𝑁𝑦) to store a two dimensional grid as input in the convolution function will raise an invalid
argument error. The same error will occur if the convolution filter is defined with an unsupported
shape. In order to prevent this error the tensors need to be reshaped.

For the implementation of a PDE solver, only the convolution function demands tensors to be of
specific shapes. For the one dimensional case, the tensor containing the grid points ,𝑦𝑦𝑦, is of rank 1
and of shape (𝑁𝑥) and the convolution filters are tensors of rank 1 and shape (3). The convolution
function tf.nn.conv1d() requires an input tensor, as well as a convolution filter of at least rank 3. To
meet this condition, reshape the tensor 𝑦𝑦𝑦 to become a tensor of rank 3 with shape (1, 𝑁𝑥 , 1) and
reshape the convolution filters to tensors of rank 3 and shape (3, 1, 1). Note, this only has to be done
once before the simulation is run.

When the two dimensional case is looked upon, both the input tensor 𝑦𝑦𝑦 and the convolution filters
must be tensors of rank 4 or higher in the convolution function tf.nn.conv2d(). To fulfil the
requirement, the tensor 𝑦𝑦𝑦 should be reshaped to a tensor of rank 4 and of shape (1, 𝑁𝑥 , 𝑁𝑦 , 1). The
convolution filter representing the spatial derivative with respect to x should be reshaped into a tensor
of shape (1, 3, 1, 1) and the convolution filter for representing the spatial derivative with respect to y
should be reshaped into a tensor of shape (3, 1, 1, 1).

Note, since the shape of the tensor 𝑦𝑦𝑦 has been altered, an issue arises when padding or masks are
used to implement the boundary conditions. Since TensorFlow isn’t able to perform arithmetic
operations between tensors with different shapes, the masks 𝑦𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 and 𝑦𝑏𝑜𝑢𝑛𝑑 should be reshaped
to be of similar shape as 𝑦𝑦𝑦. Note, scalar multiplication will remain possible independent of the shape
of the tensor. If the boundary conditions are implemented through padding, one should pay close
attention to appending the boundary values to the correct axis in the tensor containing the spatial
derivatives. To every other axis in the tensor no values should be appended, but this must be
specified by the user. For example, after performing convolution the tensor containing the spatial
derivatives 𝑑𝑦𝑑𝑥 is of shape (1, 𝑁𝑥 − 2, 1), then a zero should be appended to either end of the
second axis and no values should be append to the first and third axis. As input for the function
tf.pad(), the argument paddings should be set to [[0, 0], [1, 1], [0, 0]].

3.5. Staggered Grids
Two problems arise when a PDE solver based upon a staggered grid is implemented. The discretized
water level equations 2.11b and 2.14c and the discretized fluid velocity equations 2.11a, 2.14a and
2.14b have different scalars for the central differences. Since it is not possible to alternate between
convolution filters, it is necessary to define two (three) separate tensors, 𝜁𝜁𝜁, 𝑢𝑢𝑢, (𝑣𝑣𝑣,) with each a separate
convolution filter.
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This leads to the next issue for the two dimensional case. Since the shapes of the tensors 𝜁𝜁𝜁,𝑢𝑢𝑢 and 𝑣𝑣𝑣
are different, namely (𝑁𝑥 , 𝑁𝑦), (𝑁𝑥 , 𝑁𝑦 +1) and (𝑁𝑥 +1,𝑁𝑦), adding them will raise an invalid argument
error. Note there are other approaches to tackle this problem, however the proposed approach will use
padding. After performing convolution with a filter containing two entries and padding equal ”VALID” to
obtain the spatial derivatives of 𝜁𝜁𝜁 with respect to 𝑥, a tensor of shape (𝑁𝑥 , 𝑁𝑦 − 1) is produced. After
this, appending a single column of zeros to both the right and left of the convolution output if derivative
to 𝑥 is considered, a tensor of shape (𝑁𝑥 , 𝑁𝑦+1) is obtained, which is equivalent to the shape of tensor
𝑢𝑢𝑢. Since the first and last column of the finite difference tensor are equal to zero, the boundary values of
the tensor 𝑢𝑢𝑢 remain constant. Analogous to the spatial derivative with respect to 𝑥, only for the spatial
derivative with respect to 𝑦 of 𝜁𝜁𝜁 the output of the convolution is a tensor of shape (𝑁𝑥 −1,𝑁𝑦). So, it is
necessary to append a row of zeros to the top and bottom of the output tensor.

3.6. Implementation one dimensional PDE solver
The scheme of the linearized SWE in equation 2.11 can be implemented in order to find a solution to the
initial value problem with homogeneous boundary conditions. The simulation is run over an arbitrary
time span 𝑇, which is split into 𝑁𝑠𝑡𝑒𝑝𝑠 time steps. Two separate tensors are defined, 𝜁𝜁𝜁0 and 𝑢𝑢𝑢0, each
of length 𝑁𝑥, in which the initial water­ and fluid velocity grid points are stored, as defined in the initial
conditions 2.5. Furthermore, the convolution filters to compute the spatial differences of 𝜁𝜁𝜁 and 𝑢𝑢𝑢 are
respectively the forward and backward difference filter, denoted as 𝑑𝑖𝑓𝑓𝑓 and 𝑑𝑖𝑓𝑓𝑏. To implement the
boundary conditions masks are used. Since the IVP in section 2.3.1 is a homogeneous problem, only
two masks concerning the interior points should be defined. These are 𝜁𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 and 𝑢𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟, both of
length 𝑁𝑥. All these tensors should be reshaped to obtain the desired shape as mentioned in section
3.4. To sum up, the PDE solver is given in algorithm 1. For the implementation see Appendix A.

Algorithm 1: Pseudo Algorithm for a PDE solver with masks
Data: 𝜁𝜁𝜁0, 𝑢𝑢𝑢0, 𝜁(0) = 0, 𝑢(𝐿) = 0, 𝜁𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 , 𝑢𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 , 𝑑𝑖𝑓𝑓𝑓 , 𝑑𝑖𝑓𝑓𝑏
Result: Numerical solution of 𝜁𝜁𝜁 and 𝑢𝑢𝑢 at time 𝑇
Reshape 𝜁𝜁𝜁0, 𝑢𝑢𝑢0, 𝜁𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 and 𝑢𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 s.t. they are of shape (1, 𝑁𝑥 , 1);
Reshape 𝑑𝑖𝑓𝑓𝑓 and 𝑑𝑖𝑓𝑓𝑏 s.t. they are of shape (3, 1, 1).
for n = 0,⋯ ,𝑁𝑠𝑡𝑒𝑝𝑠 − 1 do

𝜁𝜁𝜁𝑛 = 𝜁𝜁𝜁𝑛 ∗ 𝜁𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟;
𝑑ℎ𝑑𝑥 = convolution of 𝜁𝜁𝜁𝑛 with 𝑑𝑖𝑓𝑓𝑓;
𝑢𝑢𝑢𝑛+1 = 𝑢𝑛𝑢𝑛𝑢𝑛 + 𝑔Δ𝑡 ∗ 𝑑𝜁𝑑𝑥;
𝑢𝑢𝑢𝑛+1 = 𝑢𝑢𝑢𝑛+1 ∗ 𝑢𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟;
𝑑𝑢𝑑𝑥 = convolution of 𝑢𝑢𝑢𝑛+1 with 𝑑𝑖𝑓𝑓𝑏;
𝜁𝜁𝜁𝑛+1 = 𝜁𝜁𝜁𝑛 + 𝐻Δ𝑡 ∗ 𝑑𝑢𝑑𝑥.

Reshape 𝜁𝜁𝜁𝑁−1 and 𝑢𝑢𝑢𝑁−1 s.t. they are of their original shape.
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3.7. Implementation two dimensional PDE solver
Similar to the one dimensional case, three separate tensors are defined satisfying the initial
conditions 2.7, these are: 𝜁𝜁𝜁0, a tensor of shape (𝑁𝑥 , 𝑁𝑦), 𝑢𝑢𝑢0, a tensor of shape (𝑁𝑥 , 𝑁𝑦 + 1) and 𝑣𝑣𝑣0, a
tensor of shape (𝑁𝑥 , 𝑁𝑦 + 1). The simulation is run over a time span 𝑇 and split up into 𝑁𝑠𝑡𝑒𝑝𝑠 =

𝑇
Δ𝑡

time steps. Padding is used to implement the boundary conditions. Define two convolution filters. For
the spatial derivatives of the water level with respect to 𝑥 and 𝑦, as well as for the zonal­ and
meridional fluid velocity derivatives, the filters are

𝑑𝑖𝑓𝑓𝑥 = [−
1
Δ𝑥

1
Δ𝑥 ]

and

𝑑𝑖𝑓𝑓𝑦 = [
1
Δ𝑦 − 1

Δ𝑦 ]
𝑇
.

After performing the convolution to 𝜁𝜁𝜁𝑖, appending zeros to the corresponding edges will ensure that
the boundary values remain constant. The tensors 𝜁𝜁𝜁0, 𝑢𝑢𝑢0, 𝑣𝑣𝑣0, 𝑑𝑖𝑓𝑓𝑥 and 𝑑𝑖𝑓𝑓𝑦 should be reshaped to
be of the mandatory shapes as stated in section 3.4. Algorithm 2 encapsulates the previous. Turn to
appendix B for the implementation.

Algorithm 2: Pseudo Algorithm for a PDE solver with padding
Data: 𝜁𝜁𝜁0, 𝑢𝑢𝑢0, 𝑣𝑣𝑣0, 𝑢(0, 𝑦) = 𝛼, 𝑢(𝐿, 𝑦) = 𝛽, 𝑣(𝑥, 0) = 𝛾, 𝑣(𝑥, 𝐻) = 𝛿, 𝑑𝑖𝑓𝑓𝑥 , 𝑑𝑖𝑓𝑓𝑦 , 𝑐𝑓
Result: Numerical solution of 𝜁𝜁𝜁,𝑢𝑢𝑢 and 𝑣𝑣𝑣 at time 𝑇
Reshape 𝜁𝜁𝜁0, 𝑢𝑢𝑢0 and 𝑣𝑣𝑣0 s.t. they are of shape (1, 𝑁𝑥 , 𝑁𝑦 , 1),(1, 𝑁𝑥 , 𝑁𝑦 + 1, 1),(1, 𝑁𝑥 + 1,𝑁𝑦 , 1)
respectively;
Reshape 𝑑𝑖𝑓𝑓𝑥 and 𝑑𝑖𝑓𝑓𝑦 s.t. they are of shape (1, 2, 1, 1) and (2, 1, 1, 1).
for n = 0,⋯ ,𝑁𝑠𝑡𝑒𝑝𝑠 − 1 do

𝑑𝜁𝑑𝑥 = convolution of 𝜁𝜁𝜁𝑛 with 𝑑𝑖𝑓𝑓𝑥;
Append a single column of zeros to both the right and left of 𝑑𝜁𝑑𝑥;
𝑢𝑢𝑢𝑛+1 = (1 − 𝑐𝑓Δ𝑡) ∗ 𝑢𝑢𝑢𝑛 − 𝑔Δ𝑡 ∗ 𝑑𝜁𝑑𝑥;
𝑑ℎ𝑑𝑦 = convolution of 𝜁𝜁𝜁𝑛 with 𝑑𝑖𝑓𝑓𝑦;
Append a single column of zeros to both the top and bottom of 𝑑𝜁𝑑𝑦;
𝑣𝑣𝑣𝑛+1 = (1 − 𝑐𝑓Δ𝑡) ∗ 𝑣𝑣𝑣𝑛 − 𝑔Δ𝑡 ∗ 𝑑𝜁𝑑𝑦;
𝑑𝑢𝑑𝑥 = convolution of 𝑢𝑢𝑢𝑛+1 with 𝑑𝑖𝑓𝑓𝑥;
𝑑𝑣𝑑𝑦 = convolution of 𝑣𝑣𝑣𝑛+1 with 𝑑𝑖𝑓𝑓𝑦;
𝜁𝜁𝜁𝑛+1 = 𝜁𝜁𝜁𝑖 − 𝐻Δ𝑡 ∗ (𝑑𝑢𝑑𝑥 + 𝑑𝑣𝑑𝑦);

Reshape 𝜁𝜁𝜁𝑁−1, 𝑢𝑢𝑢𝑁−1 and 𝑣𝑣𝑣𝑁−1 s.t. they are of their original shape.
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Automatic Differentiation

An outline to the mathematics behind adjoint sensitivity is given in this chapter. Moreover, it will be
explained how this adjoint is calculated using Automatic Differentiation (AD). Since calculating the
adjoint requires GPU memory, ’checkpointing’ will be introduced to make it feasible to run larger
adjoint simulations when working with fine meshes. Finally, two algorithms will be proposed to run
adjoint equations, of which one implements the checkpointing method.

4.1. Adjoint Sensitivity
In the previous chapter a model was created in order to solve the forward problem. This PDE solver
can be denoted by the equation 𝐿(𝑥, 𝑝) = 0, where the algorithms 1 and 2 given input variables 𝑝
computes the output variables 𝑥, which are 𝑢(, 𝑣) and 𝜁. For AD it is necessary that the partial
derivative 𝜕𝐿

𝜕𝑥 is non­singular for all 𝑥 in the domain.

Then one defines some cost function 𝐽(𝑥, 𝑝), which produces a scalar output. In sensitivity analysis
one wants to compute the differential 𝑑𝐽𝑑𝑝 .

𝑑𝐽
𝑑𝑝 can be used in many ways, for instance: The sensitivity

of the cost function with respect to the input parameters or to find a solution to an gradient based
optimization problem 𝑚𝑖𝑛𝑝𝐽 [4]. In this paper the focus lies on computing the sensitivities with respect
to the input parameters.

The computation of 𝑑𝐽
𝑑𝑝 is analogous to the derivation by Bradley in ”PDE­constrained optimization

and the adjoint method” (2010) [4]. It holds that

𝑑𝐽
𝑑𝑝 =

𝜕𝐽
𝜕𝑥
𝜕𝑥
𝜕𝑝 +

𝜕𝐽
𝜕𝑝 . (4.1)

In addition, since 𝐿(𝑥, 𝑝) = 0,

𝑑𝐿
𝑑𝑝 =

𝜕𝐿
𝜕𝑥
𝜕𝑥
𝜕𝑝 +

𝜕𝐿
𝜕𝑝 = 0

This can be rewritten into,

𝜕𝑥
𝜕𝑝 = −

𝜕𝐿
𝜕𝑥

−1 𝜕𝐿
𝜕𝑝 .

Substituting into equation 4.1, gives

𝑑𝐽
𝑑𝑝 = −

𝜕𝐽
𝜕𝑥
𝜕𝐿
𝜕𝑥

−1 𝜕𝐿
𝜕𝑝 +

𝜕𝐽
𝜕𝑝
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The term 𝜕𝐿
𝜕𝑥

−1 𝜕𝐿
𝜕𝑝 can be seen as,

𝜕𝐿
𝜕𝑥

𝑇
𝜆 = − 𝜕𝐽𝜕𝑥

𝑇
, (4.2)

where T is the transpose, 𝜆 is the so­called vector of adjoint variables and equation 4.3 is called the
adjoint equation. Then finally in terms of 𝜆 one finds the equation in order to determine 𝑑𝐽

𝑑𝑝 ,

𝑑𝐽
𝑑𝑝 = 𝜆

𝑇 𝜕𝐿
𝜕𝑝 +

𝜕𝐽
𝜕𝑝 . (4.3)

Note, if the cost function is independent of the input parameters, the last term in equation 4.3 reduces
to zero.

4.2. Automatic Differentiation
Evaluating the term 𝜕𝐿

𝜕𝑝 in equation 4.3 is complex. To determine the value of this term AD can be
applied. AD is a technique which allows a user to calculate partial derivatives of a numerical function
implemented in a computer program. All numerical operations defined in a numerical function can be
viewed as a sequence of elementary assignments, such as binary arithmetic and transcendental
functions, of which the derivatives are known [3]. Through storage of the operations in this sequence,
it is possible to differentiate this sequence by repeated application of the chain rule to obtain the
derivative of the output with respect to the input. Since the partial derivatives are found ”analytically”,
AD leads to exact numerical derivatives, with the exception of rounding errors [3]. There are two main
modes of AD: Forward and Reverse accumulation mode, also referred to as tangent linear and adjoint
mode. Since the aim is to develop adjoint CFD code, the reader is referred to the article ”Automatic
Differentiation in Machine Learning: a Survey”(2017) by Baydin et al. for the tangent linear mode [3].

The evaluation of a numerical function can be stored in a Wenger List, also mentioned as evaluation
trace [26]. The notation follows the notation used by Griewank and Walter in their book ”Evaluating
Derivatives: Principles and Techniques of Algorithmic Differentiation” (2008) in order to evaluate a
numerical function[14]:

• Input variables 𝑣𝑖−𝑛 = 𝑥𝑖 for 𝑖 = 0, ..., 𝑛.

• Intermediate/working variables 𝑣𝑖 for 𝑖 = 1, ..., 𝑙

• Output variables 𝑣𝑚−𝑖 = 𝑦𝑚−𝑖 for 𝑖 = 𝑚 − 1, ..., 0

A Wengert list represents the data structure of the intermediate variables 𝑣𝑖 as well as the elementary
assignments that were performed to obtain these intermediate variables. An example of a Wengert
list can be seen in table 4.2. To visualize a Wengert list, a computational graph can also be produced,
see figure 4.1.

Adjoint mode AD is a two stage method. In the first stage, the simulation is run forward and the
Wengert list is stored in the GPU/CPU memory. In the second stage, a partial derivative of an output
variable 𝑦𝑖 with respect to the input variable 𝑥𝑖 is calculated through repetitive application of the chain
rule

𝜕𝑦𝑚
𝜕𝑥𝑖

= 𝜕𝑦𝑚
𝜕𝑣𝑖

𝜕𝑣𝑖
𝜕𝑥 =

𝜕𝑦𝑚
𝜕𝑣𝑖+1

𝜕𝑣𝑖+1
𝜕𝑣𝑖

𝜕𝑣𝑖
𝜕𝑥𝑖

= …

The derivative of an output variable with respect to a certain intermediate/input variable is also
referred to as the adjoint and is commonly denoted as

𝑣𝑖 =
𝜕𝑦𝑖
𝜕𝑣𝑖

.
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In order to get an idea of AD, lets apply it to equation 2.11a. A wengert list can be visualized in a
computational graph, see figure 4.1. In order to get the value of 𝜁𝜁𝜁𝑛+1, the input variables that are
needed are: 𝑢𝑢𝑢𝑛+1, 𝐻, Δ𝑡, Δ𝑥,𝜁𝜁𝜁𝑛. These input variables are respectively denoted as: 𝑣−4, 𝑣−3, ..., 𝑣0. Since
the masks are not used as input variables, they aren’t watched and thus the computational graph
uses less memory. Then at each working variable an elementary assignment is performed and stored.
There are a total of 6 working variables. Finally one output variable is produced, 𝑣7 = 𝑦 = 𝜁𝜁𝜁𝑛+1. The
evaluation trace, which contains the corresponding working variables, is shown in table 4.2.

Figure 4.1: Computational graph of numerical equation 2.11a

In the second stage, the reverse adjoint trace is computed, as shown on the right side of table 4.2. For
the adjoint of the output it holds that 𝑦 = 1. Then by propagating backward though the derivatives, one
can obtain the sensitivities with respect to the initial variables.

Forward evaluation trace Reverse adjoint trace
𝑣−4 = 𝑢𝑛+1 𝑣−4 = 𝑣1

𝜕𝑣1
𝜕𝑣−4

= −𝐻Δ𝑡Δ𝑥 × 𝑢𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟
𝑣−3 = 𝐻 𝑣−3 = 𝑣4

𝜕𝑣4
𝜕𝑣−3

= 1
Δ𝑥−2

= Δ𝑡
Δ𝑥

𝑣−2 = Δ𝑡 𝑣−2 = 𝑣4
𝜕𝑣4
𝜕𝑣−2

= 1
Δ𝑥 × 𝑣−3 = 𝐻

Δ𝑥
𝑣−1 = Δ𝑥 𝑣−1 = 𝑣5

𝜕𝑣6
𝜕𝑣−1

= = −𝑣3 ×
−14
𝑣21

= −𝑣3
𝐻Δ𝑡
Δ𝑥2

𝑣0 = 𝜁𝑛 𝑣0 = 𝑣7
𝜕𝑣7
𝑣0

= 1 × 1 = 1
𝑣1 = 𝑣−4 × 𝑢𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑣1 = 𝑣2

𝜕𝑣2
𝜕𝑣1

= 𝑣2 × 1 = −𝐻Δ𝑡Δ𝑥
𝑣2 = 𝑣−4 × 𝑢𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑣2 = 𝑣3

𝜕𝑣3
𝜕𝑣2

= −𝑑𝑡𝐻𝑑𝑥 × 1 = −𝐻Δ𝑡Δ𝑥
𝑣3 = 𝑐𝑜𝑛𝑣(𝑣3) 𝑣3 = 𝑣6

𝜕𝑣6
𝜕𝑣3

= −1 × 𝑣5 = −𝐻Δ𝑡Δ𝑥
𝑣4 = 𝑣−3 × 𝑣−2 𝑣4 = 𝑣5

𝜕𝑣5
𝑣4

= 1 × 1
𝑣−1

= = 1
Δ𝑥

𝑣5 = 𝑣4
𝑣−1

𝑣5 = 𝑣6 ×
𝜕𝑣6
𝑣5

= −1 × 𝑣3 = −𝑣3
𝑣6 = 𝑣3 × 𝑣5 𝑣6 = 𝑣7

𝜕𝑣7
𝜕𝑣6

= 1 × −1 = −1
𝑣7 = 𝑣0 − 𝑣6 𝑣7 = 1

Table 4.1: Adjoint AD, where 𝜁𝜁𝜁𝑛+1 is evaluated. After running the forward sequence, which is presented on the left, the adjoint
operations are run in order to determine the sensitivity with respect to input variables in a reverse pass, starting at 𝑣7 .
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Note, it is sometimes unnecessary and/or undesirable to derive the sensitivity of the output variables
with respect to some initial variables. For instance, it is of no interest to compute the sensitivity of
the cost function with respect to the gravitational acceleration, since it is relatively constant around the
earth. Because watching all variables requires lots of memory from the GPU/CPU, which unfortunately
is scarce, TensorFlow can be given the assignment of which variables a computational graph should
be build. This reduces the memory usage to store the dependencies between the variables, resulting
in the possibility to run a longer simulation or/with a finer mesh.

4.2.1. Memory allocation
As mentioned, the memory of a GPU/CPU is finite. It is possible to estimate the amount of memory
required to store the Wengert list. We denote the memory used by the variable 𝑀 in bytes. At each
working variable in a Wengert list, a tensor is stored. The memory that is allocated to store this tensor
depends on two factors, the shape and the data type of the tensor. A definition of the shape of a tensor
has already been given in section 3.1.2. The data type explains how the bytes in memory should be
interpreted that are allocated to a tensor item. It describes the Type of the data, e.g. integer, float,
complex. In addition, the Size of the data explains how much bytes are allocated to store the object. In
TensorFlow either 16, 32 or 64 bits are allocated to store an integer or floating point. In this research a
size of 32 bits was used. 32 bits is equivalent to 4𝐵. Note, it is possible to use 64 bits to store an integer
or floating point, this will come at the cost of higher memory use. On the contrary, it is not desirable
to use 16 bits since this will significantly reduce the precision of the model. So, denote the memory
allocated to a tensor at an input variable 𝑥𝑖 or working variable 𝑣𝑖 by 𝑀𝑡𝑒𝑛𝑠𝑜𝑟𝑖 in 𝐵. For 𝑀𝑡𝑒𝑛𝑠𝑜𝑟𝑖 it
holds that the memory allocated is equal to the product of the length of the axis times the Size of the
data type as stated in equation 4.4

𝑀𝑡𝑒𝑛𝑠𝑜𝑟𝑖 = 4 ∗ 𝑠ℎ𝑎𝑝𝑒. (4.4)

The amount of tensors that need to be stored depend on three things. The amount of input variables,
denotes this number by 𝑛, the amount of working variables created at a single time step denoted this
number by 𝑙 and the amount of time steps 𝑁𝑠𝑡𝑒𝑝𝑠 the computation is split. As such, an estimation for
the amount of memory used to store the tape is given by

𝑀 =
𝑛

∑
𝑖=1
𝑀𝑡𝑒𝑛𝑠𝑜𝑟𝑖 + 𝑁𝑠𝑡𝑒𝑝𝑠

𝑙

∑
𝑖=1
𝑀𝑡𝑒𝑛𝑠𝑜𝑟𝑖 . (4.5)

4.3. Checkpointing
Tracking fewer parameters will still be insufficient when running computations with a large number of
time steps or using a high number of grid points or cells. To combat the issue of having an inadequate
amount of CPU/GPU memory, it is possible to break up the evaluation trace through ”Checkpointing”,
as proposed by Griewank and Walther[13]. Note, Griewank and Walther proposed a sophisticated
algorithm ”Revolve”, where an optimal trade­off between memory allocation and computation time is
achieved. However, in this work only a basic strategy will be implemented to make it feasible to run
larger adjoint numerical simulations.

Instead of running the forward model while storing the Wengert list and computing the adjoint instantly
with respect to the initial variables, the computation is split in several parts. First, the forward model is
run without storing a Wengert list. Along the way 𝑁𝑐 checkpoints are set, where the state of the
variables 𝑢𝑢𝑢𝑘 (,𝑣𝑣𝑣𝑘 included if the 2D case is considered) and 𝜁𝜁𝜁𝑘 are stored on a stack at time 𝑡𝑘, where
𝑡𝑘 = 𝑘Δ𝑡𝑁𝑠𝑡𝑒𝑝𝑠𝑁𝑐

and 𝑘 ∈ (0, 1, ..., 𝑁𝑐 − 1). After the simulation has completed, the last state of variables
taken at time 𝑡𝑁𝑐−1 are released from the stack. Then the numerical simulation is run from 𝑡𝑁𝑐−1 to 𝑇,
while recording the elementary assignments of the PDE solver. Hereafter, the adjoint is computed
from 𝑇 to 𝑡𝑁𝑐−1. This adjoint is then used, as initial condition for the adjoint solver at 𝑡𝑁𝑐−1, when the
procedure is repeated in the interval (𝑡𝑁𝑐−2, 𝑡𝑁𝑐−1). This procedure is repeated for all intervals
(𝑡𝑘 , 𝑡𝑘+1), where 𝑘 ∈ (𝑁𝑐 − 2,𝑁𝑐 − 3,… , 0). A sketch of this process when the number of checkpoints
𝑁𝑐 = 4 is given in figure 4.2.
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Figure 4.2: Sketch of checkpointing algorithm for 100 time steps, and 4 checkpoints. The black line represent the numerical
simulation, on which the dots are the state of the variables stored on a stack. The blue lines, are the forward simulations where
the numerical dependencies are stored. On the red lines the adjoint mode is run.

4.3.1. Memory allocation
Since the aim of checkpointing is to reduce memory usage, we can estimate howmuch is required. The
amount of memory allocated to a tensor at each working variable is equivalent as stated in equation 4.4.
The memory usage varies on only two points. First, the amount of iterations where the assignments
are being recorded is reduced to 𝑁𝑠𝑡𝑒𝑝𝑠

𝑁𝑐
, which is rounded upwards. Second, storing the state of the

variables 𝑢𝑢𝑢𝑘, (𝑣𝑣𝑣𝑘 included if the 2D case is considered) and 𝜁𝜁𝜁𝑘 at 𝑁𝑐 checkpoints on a stack requires
additional memory. Let 𝑐 denote the number of state variables, that is 𝑐 = 2 in the one dimensional
case and 𝑐 = 3 in the three dimensional case. To summarize, an estimation for the memory use is
given by equation 4.6.

𝑀 =
𝑛

∑
𝑖=1
𝑀𝑡𝑒𝑛𝑠𝑜𝑟𝑖 +

𝑁𝑠𝑡𝑒𝑝𝑠
𝑁𝑐

𝑙

∑
𝑖=1
𝑀𝑡𝑒𝑛𝑠𝑜𝑟𝑖 + 𝑁𝑐

𝑐

∑
𝑖=1
𝑀𝑡𝑒𝑛𝑠𝑜𝑟𝑖 (4.6)

4.4. API Automatic Differentiation TensorFlow
In TensorFlow, the API for AD can be accessed through tf.GradientTape() [11]. Within the context of
tf.GradientTape() the evaluation trace(s) of the initial parameter(s) 𝑝 in function 𝐿(𝑥, 𝑝) = 0 is (are)
stored in the GPU/CPU memory. TensorFlow must be given the command GradientTape.watch() in
order to store the Wengert list of each specified parameter, which is given as argument. Then with
the function GradientTape.gradient(), one can compute the differential of the target function, the cost
function 𝐽(𝑥, 𝑝), with respect to a source that is being ”watched”, an initial parameter 𝑝. Note, if the
user wants to compute multiple differentials in a single evaluation, one must create a persistent tape
through the argument persistent=True. Otherwise, after a single call on the tape the Wengert list will
be discarded and an additional call on the tape will raise an error.
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4.5. Implementation single backward pass
In sections 3.6 and 3.7 algorithms 1 and 2 were provided to evaluate 𝑢 (, 𝑣) and 𝜁. In order to perform
sensitivity analysis, perform the forward simulation within the context of the GradientTape. If it is
desired to asses the sensitivity with respect to multiple inputs it’s necessary to create a persistent
tape. Before performing the forward simulation, specify which initial parameters 𝑝 need to be
watched. Hereafter, run the forward simulation as stated in algorithms 1 and 2. After the forward
simulation is completed, define the cost function 𝐽(𝑥, 𝑝). Note, this still has to be done inside the
context of the GradientTape. Subsequently, leave the context of GradientTape and compute the
differential(s) 𝑑𝐽

𝑑𝑝 in order to evaluate the sensitivity. Algorithm 3 summarises all this for the one
dimensional case. In appendix A the implementation is given. An algorithm for a two dimensional
sensitivity analysis is identical, only the forward simulation as stated in algorithm 2 is used.

Algorithm 3: Pseudo Algorithm for a evaluation of sensitivity of cost function
Data: 𝜁𝜁𝜁0, 𝑢𝑢𝑢0, 𝜁(0) = 𝛼, 𝑢(𝐿) = 𝛽, ℎ𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 , 𝑢𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 , 𝑑𝑖𝑓𝑓𝑓 , 𝑑𝑖𝑓𝑓𝑏
Result: Evaluation of cost function 𝐽(𝑥, 𝑝), with
Reshape 𝜁𝜁𝜁0, 𝑢𝑢𝑢0, ℎ𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 and 𝑢𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 s.t. they are of shape (1, 𝑁𝑥 , 1);
Reshape 𝑑𝑖𝑓𝑓𝑓 and 𝑑𝑖𝑓𝑓𝑏 s.t. they are of shape (3, 1, 1);
Initialize a tape, persistent tape if necessary;
Specify which parameters 𝑝 that need to be watched.
for i = 0,⋯ ,𝑁𝑠𝑡𝑒𝑝𝑠 − 1 do

Compute 𝑢𝑢𝑢𝑖+1 and 𝜁𝜁𝜁𝑖+1 as stated in algorithm 1
Define the cost function 𝐽(𝑥, 𝑝);
Compute the adjoints(s) 𝑑𝐽(𝑥,𝑝)𝑑𝑝 ;

4.6. Implementation checkpointing
As stated in section 4.3 for fine meshes CPU/GPU memory might be insufficient, when performing
sensitivity analysis. The implementation of the checkpointing method is similar to that of a single
backward pass, but the difference lies in the definition of the cost function 𝐽(𝑥, 𝑝) in the backwards
pass. Where in the single backward pass it was possible to differentiate the cost function 𝐽(𝑥, 𝑝) with
respect to the initial parameter(s) directly, in the case of checkpointing the user has to redefine the
cost function at the end of the simulation. First, evaluate 𝑢 (,𝑣) and 𝜁 as proposed in algorithm 1 (2),
while setting 𝑁𝑐 checkpoints at timestep 𝑡𝑘 = 𝑘Δ𝑡

𝑁𝑠𝑡𝑒𝑝𝑠
𝑁𝑐

, where 𝑘 ∈ {0, 1, … , 𝑁𝑐 − 1}. After the forward
simulation has run, release the last state of the variables taken at time 𝑡𝑁𝑐−1 from the stack and define
the cost function 𝐽𝑁𝑠𝑡𝑒𝑝𝑠−1(𝑥𝑥𝑥𝑁𝑠𝑡𝑒𝑝𝑠−1) at the end of the simulation, where 𝑥𝑥𝑥𝑁𝑠𝑡𝑒𝑝𝑠−1 is the tensor that
contains the state of the variables 𝑢𝑢𝑢𝑁𝑠𝑡𝑒𝑝𝑠−1 (,𝑣𝑣𝑣𝑁𝑠𝑡𝑒𝑝𝑠−1) and 𝜁𝜁𝜁𝑁𝑠𝑡𝑒𝑝𝑠−1. For simplicity the cost function is
defined independent of the input parameters 𝑝𝑝𝑝𝑁𝑐−1, which is the tensor containing the state of the
variables 𝑢𝑢𝑢𝑁𝑐−1 (,𝑣𝑣𝑣𝑁𝑐−1) and 𝜁𝜁𝜁𝑁𝑐−1. Then compute the adjoint

𝑝𝑝𝑝𝑁𝑐−1 = 𝑑𝐽𝑁𝑠𝑡𝑒𝑝𝑠−1
𝑑𝑝𝑝𝑝𝑁𝑐−1 . (4.7)

Note, it is important to delete the created Wengert list from the memory, otherwise the out of memory
will still occur.

Hereafter, for 𝑘 ∈ {𝑁𝑐 − 2,… , 0} again release 𝑢𝑢𝑢𝑘 (,𝑣𝑣𝑣𝑘) and 𝜁𝜁𝜁𝑘 from the stack and initiate the
GradientTape. Note, a new cost function 𝐽𝑘+1(𝑥𝑥𝑥𝑘+1) has to be defined at the end of the intermediate
simulation 𝑡𝑘+1. Define the cost function as stated in equation 4.8.

𝐽𝑘+1(𝑥𝑥𝑥𝑘+1) = 𝑥𝑥𝑥𝑘+1 ⋅ 𝑝𝑝𝑝𝑘+1. (4.8)
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Next, outside of the context of the GradientTape compute the adjoint

𝑝𝑝𝑝𝑘 = 𝑑𝐽𝑘+1
𝑑𝑝𝑝𝑝𝑘 . (4.9)

.
Again, delete the Wengert list from the GPU/CPU memory. Algorithm 4 encapsulates all the previous
for the one dimensional case. For the one dimensional and two dimensional implementation look at
Appendix A and B respectively.

Algorithm 4: Pseudo Algorithm for a evaluation of sensitivity of cost function through
checkpointing
Data: 𝜁𝜁𝜁0, 𝑢0𝑢0𝑢0, 𝜁(0) = 𝛼, 𝑢(𝐿) = 𝛽, 𝜁𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 , 𝑢𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 , 𝑑𝑖𝑓𝑓𝑓 , 𝑑𝑖𝑓𝑓𝑏
Result: Evaluation of cost function 𝐽(𝑥, 𝑝)
Reshape 𝜁𝜁𝜁0, 𝑢0𝑢0𝑢0, 𝜁𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 and 𝑢𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 s.t. they are of shape (1, 𝑁𝑥 , 1);
Reshape 𝑑𝑖𝑓𝑓𝑓 and 𝑑𝑖𝑓𝑓𝑏 s.t. they are of shape (3, 1, 1);
Initialize a persistent tape;
Specify which parameters 𝑝𝑝𝑝 that need to be watched;
for 𝑛 = 0,… ,𝑁𝑠𝑡𝑒𝑝𝑠 − 1 do

Compute 𝑢𝑢𝑢𝑛+1 and 𝜁𝜁𝜁𝑛+1 as stated in algorithm 1;
if 𝑛 𝑚𝑜𝑑(𝑁𝑐) = 0 then

save 𝑢𝑢𝑢𝑛 and 𝜁𝜁𝜁𝑛 on a stack;

for 𝑘 ∈ (𝑁𝑐 − 1,… , 0) do
Restore 𝑢𝑢𝑢𝑘 and 𝜁𝜁𝜁𝑘 from the stack;
Initiate persistent tape and specify initial parameters 𝑝𝑝𝑝 that need to be stored;
for 𝑛 = 𝑘𝑁𝑠𝑡𝑒𝑝𝑠𝑁𝑐

, … , (𝑘 + 1)𝑁𝑠𝑡𝑒𝑝𝑠𝑁𝑐
do

Compute 𝑢𝑢𝑢𝑛+1 and 𝜁𝜁𝜁𝑛+1 as stated in algorithm 1;
if 𝑘 ∈ (𝑁𝑐 − 2,… , 0) then

Define the cost function 𝐽𝑘+1(𝑥𝑥𝑥𝑘+1) as 𝑥𝑥𝑥𝑘+1 ⋅ 𝑝𝑝𝑝𝑘+1;
Compute the adjoints 𝑝𝑝𝑝𝑘;
Discard the Wengert list;

else
Define the cost function 𝐽𝑁𝑠𝑡𝑒𝑝𝑠−1(𝑥𝑥𝑥𝑁𝑠𝑡𝑒𝑝𝑠−1);
Compute the adjoint 𝑝𝑝𝑝𝑁𝑐−1;
Discard the Wengert list;

Forward evaluation trace Reverse adjoint trace
𝑣−2 = 𝑍 𝑣−2 = 𝑣1

𝜕𝑣1
𝜕𝑣−2

𝑣−1 = 𝑌 𝑣−1 = 𝑣2
𝜕𝑣2
𝜕𝑣−1

𝑣0 = 𝑋 𝑣0 = 𝑣2
𝜕𝑣2
𝑣0

𝑣1 = 𝑒𝑥𝑝(𝑣−2) 𝑣1 = 𝑣3
𝜕𝑣3
𝜕𝑣1

𝑣2 = 𝑣−1 + 𝑣0 𝑣2 = 𝑣3
𝜕𝑣3
𝜕𝑣2

𝑣3 = 𝑣1/𝑣2 𝑣3 = 1

Table 4.2: Adjoint AD, where 𝜁𝜁𝜁𝑛+1 is evaluated. After running the forward sequence, which is presented on the left, the adjoint
operations are run in order to determine the sensitivity with respect to input variables in a reverse pass, starting at 𝑣7 .
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Numerical Results

The numerical results are produced in this chapter. The results of the forward simulation through the
use of algorithms 1 and 2 of a gaussian disturbance in the one­ and two­dimensional basins as staded
in section 2.3. Furthermore, an example will be given on sensitivity analysis and a small remark on
checkpointing is made. Ultimately, a benchmark is produced in order to check the efficiency of the
forward solver.

5.1. Numerical solutions
The solution to the IVPs stated in section 2.3 will be presented with the use of the algorithms 1 and 2.

5.1.1. One dimensional case
With the help of the PDE solver, see appendix A for the implementation, a numerical solution is
produced to the initial value problem described in section 2.3.1 over a time span of 𝑇 = 3000𝑠 and a
basin of length 𝐿 = 100𝑘𝑚. Take as time step Δ𝑡 = 6.00𝑠 and the number of grid points 𝑁𝑥 = 1000,
resulting the spatial step Δ𝑥 = 99.95𝑚 and as a consequence the CFL­criterion 2.15 is satisfied. In
order to check the accuracy of the numerical results, a comparision will be drawn to the analytical
solutions for the water level in equation 2.20 and fluid velocity in equation 2.21. In figures 5.1 and 5.2
the initial conditions are displayed, where figure 5.1 shows the initial gaussian disturbance in the
water level and it is visible in figure 5.2 that the initial fluid velocity equals zero in the entire domain.

Figure 5.1: Initial Water level Figure 5.2: Initial fluid velocity

The numerical solutions, as well as their analytical counterpart are shown both halfway and at the end
of the simulation. Figures 5.3 and 5.4 give the water level and fluid velocity after 25 minutes and the
water level and fluid velocity after 50 minutes are shown in figures 5.5 and 5.6.

29
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Figure 5.3: Water level after 25 minutes Figure 5.4: Fluid velocity after 25 minutes

Figure 5.5: Water level after 50 minutes Figure 5.6: Fluid velocity after 50 minutes

In figures 5.3, 5.4, 5.5, 5.6 it can been seen that from the initial gaussian disturbance portrayed in
figure 5.1 two waves propagate away from the initial position in the basin. At first glance, the numerical
solution seems to propagate evenly with the analytical solution, but if a closer look is taken in figures 5.7
and 5.8, it appears that the numerical solution seems to propagates slower than the analytical solution.
This can be attributed to phenomenon of numerical dissipation [16].

Figure 5.7: Right travelling wave from figure 5.5
enlarged

Figure 5.8: Fluid velocity right travelling wave from
figure 5.6 enlarged
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5.1.2. Two dimensional case
The numerical solution to the IVP in section 2.3.2 is calculated by the PDE solver for the two
dimensional case, see Appendix B for the implementation, over a time span of 𝑇 = 3000𝑠 and a basin
of length 𝐿 = 10.00𝑘𝑚 and width 𝑊 = 10.00𝑘𝑚. The domain is divided into 1.e4 grid cells, so
𝑁𝑥 = 𝑁𝑦 = 100, resulting in a spatial step of Δ𝑥 = Δ𝑦 = 100.00𝑚 and the time step is set to
Δ𝑡 = 0.60𝑠. As a consequence, the CFL­criterion as stated in equation 2.16 is met. The friction
coefficient due to bottom roughness 𝑐𝑓 equals 1.93e.−4. First both the initial condition and end of
simulation of the water level are represented. After that, the numerical solutions to the zonal­ and
meridional fluid velocity are produced.

The initial water level and the water level after 5 and 50 minutes are displayed in figures 5.9, 5.10 and
5.11.

Figure 5.9: Initial Water level Figure 5.10: Water level after 5 minutes

Figure 5.11: Water level after 50 minutes

Looking at figures 5.9, 5.10 and 5.11, two things stand out. First, the droplet propagates evenly
across the surface. Second, due to the friction term present in the zonal­ and meridional momentum
equations 2.1b and 2.1c, the droplet loses height over time.

Advancing to the fluid velocity, a quiver plot is produced in order to asses the propagation speed of
the droplet in the basin. Two quiver plots are produced, figure 5.12 gives the quiver plot after five
minutes and figure 5.13 after fifty minutes.
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Figure 5.12: Quiver plot after 5 minutes Figure 5.13: Quiver plot after 50 minutes

Figure 5.12 shows that the droplet is propagating in two ways. Towards the inside and towards the
outside. Where the speed towards the outside is greater than towards the outside.

5.2. Sensitivity Analysis
As stated in section 2.5, the general solution to a wave­like equation is the sum of a right­ and left
travelling wave. As such, a perfect way to give an example of sensitivity analysis is a reverse
experiment of the initial value problem in section 2.3.1. Instead of looking how a gaussian disturbance
propagates in a basin over time, it is possible to look how a gaussian disturbance at the end of a
simulation is the sum of two waves at an earlier stage. If the same gaussian disturbance is used, as
in equation 2.5a, the sensitivity should be a reflection of the forward simulation, as portrayed in
figures 5.5 and 5.6.

The same Boundary conditions as in equation 2.6 are used, only the initial conditions are set equal to
zero. The time of the simulation is 50 minutes, with Δ𝑡 = 0.06𝑠 and Δ𝑥 = 99.95𝑚. Define the cost
function, 𝐽, as the dot product of the final water level ℎ𝑁+1 and the droplet as stated in the initial
conditions in equation 2.5a, so

𝐽 = 𝜁𝜁𝜁𝑁−1 ⋅ 𝑓(𝑥).
Then we want to compute the adjoint with respect to both the initial water level and the initial fluid
velocity, so

𝜕𝐽
𝜕𝜁𝜁𝜁0 ,

𝜕𝐽
𝜕𝑢𝑢𝑢0 .

The sensitivity with respect to the initial water level and the initial are presented in respectively in
figure 5.14 and 5.15. For the implementation, see appendix A.

Figure 5.14: Sensitivity with respect to initial water
level

Figure 5.15: Sensitivity with respect to initial fluid
velocity
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In figure 5.15 it can be observed, that the left swell in figure 5.14 has a positive velocity, which means
it’s travelling towards to center. The right swell in figure 5.15 on the other hand has a negative
velocity, which means it moves in opposite direction and thus towards to center. It was stated in
section 2.5 that the solution to wave like equation exists of a left and right travelling wave. Since the
swells are moving towards each other, this is in agreement with d’Alembert’s solution.

Note, in figures 5.14 and 5.15, it can be noticed that there is a small spike at the bottom of each tail at
the center and that the adjoint has some noise between the spikes. As stated in section 4.2, AD is
able to produce exact numerical derivatives, which results in this noise.

5.2.1. Checkpointing
Equation 4.5 gave an estimate of how much memory was required to store an evaluation trace. The
simulation is run on the NVIDIA Quadro M1200 GPU, of which 3030 MB of memory is allocated within
the context tf.GradientTape. The amount of input variables is two, these are both of shape (1, 𝑁𝑥 , 1).
Hence the amount of memory allocated two these two tensors is
𝑀𝑡𝑒𝑛𝑠𝑜𝑟𝑖 = 1 ∗ 𝑁𝑥 ∗ 1 ∗ 4 = 4𝑁𝑥 .e­6 𝑀𝐵. The amount of working variables produced for a part of a
timestep can be observed from figure 4.1. Note, in the computational graph 𝑑𝑡, 𝑑𝑥 and 𝐻 are also
input variables, this is no longer case in our implementation. As such, the working variable 𝑣4 and 𝑣5
are no longer part of the computational graph for this example. Looking at figure 4.1 it can be seen
that 5 working variables are created in order to determine 𝜁𝜁𝜁1. These working variables all store a
tensor of shape (1, 𝑁𝑥 , 1). So, the amount of memory allocated at each working variable is again
𝑀𝑡𝑒𝑛𝑠𝑜𝑟𝑖 = 1 ∗ 𝑁𝑥 ∗ 1 ∗ 4 = 4𝑁𝑥 .e­6 𝑀𝐵. Note, in order to determine 𝑢𝑢𝑢1 similar reasoning applies to
see that 5 working variables are created, where at each working variable a tensor of memory size
𝑀𝑡𝑒𝑛𝑠𝑜𝑟𝑖 = 4𝑁𝑥 .e­6 𝑀𝐵 is stored. If one wants to perform sensitivity in the same basin and over an
equal time span, only with 𝑁𝑥 = 1.𝑒5 grid points, the spatial step will satisfy Δ𝑥 = 1.00𝑚 and the time
step must be set to Δ𝑡 = 0.06𝑠 in order to meet the CFL­criterion 2.15. Combing the previous,
according to the equation 4.5 the total amount of memory needed is 1.𝑒6 MB.

Since the memory required exceeds the amount of memory available on the GPU, an out of memory
error will be produced. With the help of equation 4.6, we can determine a minimum number of
checkpoints in order to run for a grid with 𝑁𝑥 = 1.𝑒5 grid points. Solving equation 4.6 for 𝑁𝑐, it is found
that a minimum of 𝑁𝑐 = 68 checkpoints must be set.

Having said that, TensorFlow will still produce an out of memory error. After performing the simulation
for a variety of integers, it was found that a minimum of 𝑁𝑐 = 89 checkpoints must be set to prevent
the out of memory error. When 𝑁𝑐 ∈ {68,… , 88} the out of memory error no longer occurs in the
forward pass where the elementary operations are stored in memory, but in the calculation of the
adjoint.

5.3. Computational time
Since our PDE solver is able to use GPU in parallel in order to accelerate computations, there is
possibility that it is faster than implementations of PDE solvers in common programms that run
sequentially on the CPU. A dominant programming language in the field of large scale numerical
simulation, is a ”modern version” of Fortran (90/95/03/08). Fortran is well suited to run numerical
simulations fast on a CPU, and is able to run processes in parallel. However, as mentioned before
parallelizing requires more manual labour.

A benchmark is produced, where the PDE solver for the two dimensional IVP implemented in
TensorFlow is compared for both the CPU and GPU in parallel, to a Fortran CPU scalar
implementation written by Martin Verlaan in Fortran90, see appendix D, which runs on a single CPU
core. In addition, the benchmark also includes an non­vectorized loop over grid implementation of a
PDE solver in NumPy, see appendix C. The goal of this benchmark is to give a reference on how fast
or slow TensorFlow is compared to other programming languages. As compiler, Intel(R) Fortran
Compiler is used, which is part of the software development product Intel(R) Parallel Studio XE. The
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benchmark is run on the 4 core CPU Intel(R) Core(TM) i7­7700HQ CPU clocked at 2.80GHz and on
the NVIDIA Quadro M1200 GPU. A basin of Length 𝐿 = 10𝑘𝑚 and Width𝑊 = 10𝑘𝑚 is considered for
the simulation, which will be run over time span of 50 minutes, with Δ𝑡 = 0.06𝑠 to ensure that the
CFL­criterion, as stated in equation 2.16, is matched at all times. The number of grid cells are powers
of 10, and the largest number of grid cells equals 1.e7. Note, for the TensorFlow­CPU and NumPy,
the largest number amount of grid cells are 1.e7 and 5.e3 respectively. The Benchmark is depicted in
figure 5.16.

Figure 5.16: Benchmark for 50000 timesteps

Looking at the results of the benchmark in figure 5.16 a few things stand out. First, where the Fortran
implementation has a very small startup time, the CPU implementation takes about 15 seconds and
both GPU implementations take roughly 30 seconds to perform a computation, but then remains
constant for the CPU when the number of grid cells is smaller than 100, and the number of grid cells
is smaller than 1.e4 for the GPU. This can be attributed to the overhead of TensorFlow. When the
mesh is fine the implementation makes full use of the processing power of both the CPU and GPU.

Second, it’s clearly visible that the TensorFlow implementation that runs on the CPU is not an efficient
process, on one hand because of the significantly longer duration relative to Fortran, independent of
the number of grid cells. On the other hand, because of the significantly longer duration for a large
number of grid cells, (𝑁𝑥 × 𝑁𝑦) ≥ 1.e4, in comparision with both TensorFlow­GPU implementations.
As mentioned in section 3.2, the convolution operation is a small operation, which can be performed
in parallel, as such for large tensors performing convolution on the GPU is more efficient as compared
to the CPU.

Third, figure 5.16 shows that implementing boundary conditions with padding requires less
computation time, as compared to masks. This comes to no surprise, since four additional
computations need to be performed each iteration, of which two are large scale matrix multiplication.

Finally, the numerical simulation in Fortran is constantly quicker, independent of the amount of grid
cells. In addition, the NumPy implementation is dreadfully slow. Note, the NumPy implementation
loops through a grid, which generally requires an significant amount of computation time. For a fine
mesh, (𝑁𝑥 × 𝑁𝑦) ≥ 1.e5, the Fortran implementation requires roughly five times less time to finish a
simulation relative to both TensorFlow­GPU implementations. It is important to keep in mind that all
these implementations can be optimized further. Careful optimization in Fortran with MPI and/or GPU
is likely to give the fastest code, but this will come at the larger of effort to code these optimizations
and implement the adjoint computations. The same can be said for the Numpy implementation, where
the loop over grid implementation can be replaced by a function from for example the SciPy library.



6
Conclusion

A main goal of this work was to answer the question whether it was possible to obtain an efficient
PDE solver implemented in TensorFlow. Efficient can be interpreted in two ways. On one hand, can
one a implement an PDE solver with a low level of complexity, but on the other hand is the PDE
solver computationally efficient. As shown in chapter 3 with relative ease one can implement a PDE
solver in TensorFlow. There were only two key problems that needed to be resolved. The first issue
was how the spatial derivatives could be computed with the finite difference method. This could easily
be done through convolution. The second problem concerned how the boundary conditions could be
implemented. Two methods were presented, masks and padding. Regarding the accuracy of the
PDE solver, in figures 5.5 and 5.6 it was shown that the PDE solver was able to produce numerical
results that closely approximated their analytical counterpart.

However, regarding the second perspective it can be concluded that although TensorFlow is able to
perform computations in parallel through to use of the CUDA of a NVIDIA GPU, other software
programs, like the Intel Fortran Compiler, are able to produce results faster while performing
computational tasks sequentially on a single CPU core. The Fortran code can be adapted manually
with e.g. OpenMP or MPI to run in parallel and reduce the computation time. This step will require
manual effort. Nevertheless, the implementation in TensorFlow still requires less running time
compared to a straight forward implementation in NumPy.

Another main goal of this paper was the use of the Automatic Differentiation API in TensorFlow in
order to perform sensitivity analysis. Again in chapter 4 it was shown that with one can compute
differentials of an cost function with respect to certain input parameters with only a few extension to
the code in TensorFlow. Not only is it possible to perform sensitivity computations with very little
manual labour, TensorFlow also automatically harnesses the power of the CUDA of a NVIDIA GPU.
This can be seen as a great advantage over software programs like Fortran or NumPy, where the
creation of adjoint code that is able to perform parallel computations on the GPU requires manual
effort. There do exist compilers that produce adjoint code such as TAPENADE.

All in all, TensorFlow can be considered as an useful tool in the field of CFD, because of the relative
ease of programming and the availability of an API for Automatic Differentiation. However, it is a bit
cumbersome to rewrite everything in terms of TensorFlow. Since only a relatively simple test­case
was considered, in further research it must be tested whether TensorFlow can be used in complex
studies concerning sensitivity analysis or data assimilation.
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7
Discussion

Similar to the example given by Daoust et al., in this work only a PDE solver for linear partial
differential equations was derived, whereas the shallow water equations 2.1 and 2.3 are mostly made
up of nonlinear terms. It might be interesting to implement a solver for non­linear partial differential
equations. Contrary to Daoust et al. this PDE solver was based upon a staggered grid. Where
Daoust et al. didn’t gave a clear explanation on how to implement boundary conditions, this paper
has clarified this issue to a greater extent. Nonetheless, only Dirichlet boundary conditions were
considered. In the future, a method to implement Neumann and Robin boundary conditions can be
derived. Moreover, Daoust et al. had defined functions to perform convolution that reshaped the
tensor in every iteration. In order to improve the computational efficiency, the tensors were only
reshaped at the start and at the end of the simulation.

In this work only rectangular domains were treated. For further research it is advised to explore the
possibility to implement complex domains, such as rivers, estuaries or coastal domains. It is expected
that this can be performed with the help of a mask. One can define an interior mask of where the
indices are zeros on the indices where the domain is not defined. Furthermore, the PDE solver was
based upon a semi­implicit scheme, further research is needed to see whether implicit schemes are
also possible.

Another main part of this research was dedicated to the application of Automatic Differentiation. Only
a theoretical simulation was performed to show to ability to perform sensitivity analysis. Further
research can be done for more physically relevant sensitivity analysis, such as friction. In addition it
could be useful to use the API GrandientTape for a real data­assimilation case study. No serious
issues are foreseen, it is advised to define the cost function as mentioned in the 4D­Var data
assimilation system by EMWCF. In addition, AD also finds a wide range of application across different
field of studies as mentioned in the introduction. Again, it might be useful to explore the use of
TensorFlow in these fields.

Also, the checkpointing strategy outlined in this paper is a pretty basic one. In further research, it is
recommended to implement a strategy, where an optimal trade off is made between memory
allocation and computation time, such as the Revolve algorithm by Griewank and Walther [13]. In
addition, it might be interesting to use for instance Hybrid Checkpointing or writing all state variables
to Disk in order to run adjoint simulations for grids that contain more than 1.𝑒5 grid points or grid cells.

Finally, next to TensorFlow, other differentiable programming frameworks, like Theano or Pytorch,
could be used in theory for the same purpose. In further research a comparison can be made
between these differentiable prorgramming frameworks in the ease of use and computational
efficiency of an implementation of a PDE solver and/or adjoint code.
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A
Implementation 1D

1 def Gaus_Dist(N_x):
2 gaus_x = np.linspace(­1, 1,int(N_x/10)+1, endpoint=True, dtype=np.float32)
3 a = 0.2
4 gaus_smooth = 1/(a*np.sqrt(np.pi)) * np.exp(­(1/2)*(gaus_x*gaus_x)/(a**2)) # Density

function of Normal distribution with mean zero and variance a
5 gaus_dist = np.zeros(N_x,dtype=np.float32)
6 for i in range(int((N_x/10)+1)):
7 gaus_dist[int((N_x/2) ­ (N_x/20))+i]= gaus_smooth[i]
8 t_gaus_dist = tf.reshape(tf.Variable(gaus_dist),(1,N_x,1))
9 return t_gaus_dist
10

11 def Initial_Tensors(N_x):
12 h_0 = tf.Variable(tf.zeros([1,N_x,1],dtype=tf.float32))
13 u_0 = tf.Variable(tf.zeros([1,N_x,1],dtype=tf.float32))
14 return h_0,u_0
15

16 def Boundary_Masks(N_x,r_val,l_val):
17 int_r = np.ones(N_x,dtype=np.float32); int_r[­1]=0;int_r = tf.reshape(tf.constant(int_r)

,(1,N_x,1)) #Interior Mask left
18 bnd_r = np.zeros(N_x,dtype=np.float32); bnd_r[­1]= r_val;bnd_r = tf.reshape(tf.constant(

bnd_r),(1,N_x,1)) #Boundary Mask left
19 int_l = np.ones(N_x,dtype=np.float32); int_l[0]=0; int_l = tf.reshape(tf.constant(int_l)

,(1,N_x,1)) #Interior Mask right
20 bnd_l = np.zeros(N_x,dtype=np.float32); bnd_l[0]= l_val; bnd_l = tf.reshape(tf.constant(

bnd_l),(1,N_x,1)) #Boundary Mask right
21 return int_r,bnd_r,int_l,bnd_l
22

23 def Convolution_Filters():
24 diff_b = tf.reshape(tf.constant([­1.,1.,0.]),[3,1,1])

#Backward Difference Filter
25 diff_f = tf.reshape(tf.constant([0.,­1.,1.]),[3,1,1])

#Forward Difference Filter
26 return diff_b,diff_f
27

28 def PDE_Solver(h_0,u_0,T,dt,N_x,L,H,l_val,r_val):
29 dx = tf.constant(L/(N_x+0.5))
30 T = 60.*T
31 timesteps = tf.math.round((T/dt))
32 g = 9.81
33 h = h_0; u = u_0
34 int_r,bnd_r,int_l,bnd_l = Boundary_Masks(N_x,r_val,l_val)
35 diff_b,diff_f = Convolution_Filters()
36 for i in range(int(timesteps)):
37 h = h*int_l + bnd_l #

Setting Boundary value
38 dhdx = tf.nn.conv1d(h, diff_f, stride=1,padding =”SAME”) #

Spatial derivative of h
39 u = (1.­dt*f)*u ­ (g*dt)/(dx) * dhdx #

Next iteration of u
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40 u = u*int_r + bnd_r #
Setting Boundary value

41 dudx = tf.nn.conv1d(u, diff_b, stride=1,padding =”SAME”) #
Spatial derivative u

42 h = h ­ (H*dt/dx) * dudx #
Next iteration of h

43 return h,u
44

45 def Checkpoints(timesteps,N_c):
46 check_h = {}
47 check_u = {}
48 check_list = []
49 interval_r = int(timesteps/N_c)
50 if timesteps % N_c == 0:
51 interval_ir = interval_r
52 else:
53 interval_ir = timesteps ­ N_c*interval_r
54 for i in range(0,timesteps,interval_r):
55 check_list.append(i)
56 check_u[’u_’+str(i)]= 0
57 check_h[’h_’+str(i)]= 0
58 return interval_r, interval_ir,check_h,check_u,check_list
59

60 def Checkpoint_Simulation_Forward(h_0,u_0,T,dt,N_x,L,H,l_val,r_val,N_c):
61 dx = tf.constant(L/(N_x+0.5))
62 T = 60.*T
63 timesteps = int(tf.math.round((T/dt)))
64 g = 9.81
65 h = h_0; u = u_0
66 int_r,bnd_r,int_l,bnd_l = Boundary_Masks(N_x,r_val,l_val)
67 diff_b,diff_f = Convolution_Filters()
68 interval_r, interval_ir,check_h,check_u,check_list = Checkpoints(timesteps,N_c)
69 for i in range(timesteps):
70 if i in check_list:
71 check_h[’h_’+str(i)] = h
72 check_u[’u_’+str(i)] = u
73 h = h*int_l + bnd_l #

Setting Boundary value
74 u = (1.­dt*0)*u ­ (g*dt)/(dx) * tf.nn.conv1d(h, diff_f, stride=1,padding =”SAME”) #

Next iteration of u
75 u = u*int_r + bnd_r #

Setting Boundary value
76 h = h ­ (H*dt/dx) * tf.nn.conv1d(u, diff_b, stride=1,padding =”SAME”) #

Next iteration of h
77 return h, u,check_u, check_h,interval_r,interval_ir,check_list,int_r,bnd_r,int_l,bnd_l,

diff_b,diff_f
78

79 def Checkpoint_Simulation_init(h_k,u_k,dt,dx,g,H,f,interval_ir,int_r,bnd_r,int_l,bnd_l,diff_b
,diff_f):

80 t_gaus_dist = Gaus_Dist(N_x)
81 with tf.GradientTape(persistent=True) as tape:
82 h=h_k
83 u=u_k
84 tape.watch(h_k)
85 tape.watch(u_k)
86 for i in range(interval_ir):
87 h = h*int_l + bnd_l

#Setting Boundary value
88 dh_dx = tf.nn.conv1d(h, diff_f, stride=1,padding =”SAME”)
89 u = (1.­dt*f)*u ­ (g*dt)/(dx) * dh_dx#tf.nn.conv1d(h, diff_f, stride=1,padding =”

SAME”) #Next iteration of u
90 u = u*int_r + bnd_r

#Setting Boundary value
91 du_dx = tf.nn.conv1d(u, diff_b, stride=1,padding =”SAME”)
92 h = h ­ (H*dt/dx) * du_dx #tf.nn.conv1d(u, diff_b, stride=1,padding =”SAME”)

#Next iteration of h
93 cost = tf.tensordot(t_gaus_dist,h,axes=3)
94 dJ_dh = tape.gradient(cost,h_k)
95 dJ_du = tape.gradient(cost,u_k)
96 del tape
97 return dJ_dh,dJ_du
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98

99 def Checkpoint_Simulation(h_k,u_k,dt,dx,g,H,f,interval_r,dJ_dh,dJ_du,int_r,bnd_r,int_l,bnd_l,
diff_b,diff_f):

100 with tf.GradientTape(persistent=True) as tape:
101 h=h_k u=u_k
102 tape.watch(h_k)
103 tape.watch(u_k)
104 for i in range(interval_r):
105 h = h*int_l + bnd_l

#Setting Boundary value
106 u = (1.­dt*f)*u ­ (g*dt)/(dx) * tf.nn.conv1d(h, diff_f, stride=1,padding =”SAME”)

#Next iteration of u
107 u = u*int_r + bnd_r

#Setting Boundary value
108 h = h ­ (H*dt/dx) * tf.nn.conv1d(u, diff_b, stride=1,padding =”SAME”)

#Next iteration of h
109 cost = tf.tensordot(dJ_dh,h,axes = 3) + tf.tensordot(dJ_du,u,axes=3)
110 dJ_dh = tape.gradient(cost,h_k)
111 dJ_du = tape.gradient(cost,u_k)
112 del tape
113 return dJ_dh,dJ_du
114

115 def Sensitivity_Analysis_Checkpoint(h_0,u_0,dt,T,L,H,N_x,l_val,r_val,N_c):
116 h_k,u_k,check_u,check_h,interval_r,interval_ir,check_list,int_r,bnd_r,int_l,bnd_l,diff_b,

diff_f = Checkpoint_Simulation_Forward(h_0,u_0,T,dt,N_x,L,H,l_val,r_val,N_c)
117 k = check_list[­1]
118 h_k = check_h[’h_’+str(k)]; u_k = check_u[’u_’+str(k)]
119 dJ_dh,dJ_du = Checkpoint_Simulation_init(h_k,u_k,dt,dx,g,H,f,interval_ir,int_r,bnd_r,

int_l,bnd_l,diff_b,diff_f)
120 for k in check_list[­2::­1]:
121 dJ_dh,dJ_du = Checkpoint_Simulation(check_h[’h_’+str(k)],check_u[’u_’+str(k)],dt,dx,g

,H,f,interval_r,dJ_dh,dJ_du,int_r,bnd_r,int_l,bnd_l,diff_b,diff_f)
122 return dJ_dh,dJ_du
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Implementation 2D

1 #Solver Functions
2 def Initial_Tensors(N_x,N_y):
3 h_0 = tf.Variable(tf.zeros([1,N_x,N_y,1], dtype= tf.float32))
4 u_0 = tf.Variable(tf.zeros([1,N_x,N_y+1,1], dtype= tf.float32))
5 v_0 = tf.Variable(tf.zeros([1,N_x+1,N_y,1], dtype= tf.float32))
6 return h_0, u_0, v_0
7

8 def Convolution_Filters():
9 diff_x = tf.reshape(tf.constant(np.asarray([[­1.,1.]]),dtype=1),[1,2]+[1,1])
10 diff_y = tf.reshape(tf.constant(np.asarray([[1.],[­1.]]),dtype=1),[2,1]+[1,1])
11 return diff_x, diff_y
12

13 def Pads():
14 h_x_pad = tf.constant([[0,0],[0,0],[1,1],[0,0]])
15 h_y_pad = tf.constant([[0,0],[1,1],[0,0],[0,0]])
16 return h_x_pad, h_y_pad
17

18 def Masks(N_x,N_y,alpha,beta,eta,zeta):
19 int_h = np.zeros((N_x,N_y),dtype=np.float32);int_h[1:­1,] = 1;int_h = tf.reshape(tf.

constant(int_h),(1,N_x,N_y,1))
20 int_u = np.zeros((N_x,N_y+1),dtype=np.float32);int_u[:,1:­1] = 1;int_u = tf.reshape(tf.

constant(int_u),(1,N_x,N_y+1,1))
21 int_v = np.zeros((N_x+1,N_y),dtype=np.float32);int_v[1:­1,] = 1;int_v = tf.reshape(tf.

constant(int_v),(1,N_x+1,N_y,1))
22 bnd_h = np.zeros((N_x,N_y),dtype=np.float32);bnd_h[0,] = 1;bnd_h[­1,] = 1;bnd_h = tf.

reshape(tf.constant(bnd_h),(1,N_x,N_y,1))
23 bnd_u = np.zeros((N_x,N_y+1),dtype=np.float32);bnd_u[:,0] = alpha;bnd_u[:,­1] = beta;

bnd_u = tf.reshape(tf.constant(bnd_u),(1,N_x,N_y+1,1))
24 bnd_v = np.zeros((N_x+1,N_y),dtype=np.float32);bnd_v[0,] = eta;bnd_v[­1,] = zeta;bnd_v =

tf.reshape(tf.constant(bnd_v),(1,N_y+1,N_y,1))
25 return int_h, int_u, int_v, bnd_h, bnd_u, bnd_v
26

27 def PDE_Solver_Padding(h_0,u_0,v_0,N_x,N_y,T,dt,H,W):
28 h = h_0; u = u_0; v = v_0
29 dx = tf.constant(L/(N_x), dtype = tf.float32) ; dy = tf.constant(W/(N_y), dtype = tf.

float32)
30 diff_x, diff_y = Convolution_Filters()
31 h_x_pad, h_y_pad = Pads()
32 T = 60. * T
33 timesteps = int(tf.math.round(T/dt))
34 g = tf.constant(9.81,dtype=tf.float32)
35 f = tf.constant(1/(0.06*24*3600),dtype=tf.float32)
36 for i in range(timesteps):
37 # Calculating u at next timestep
38 dh_dx = tf.nn.conv2d(h, diff_x, strides = 1, padding = ”VALID”) #computes spatial

derivative h w.r.t. x
39 dh_dx = tf.pad(dh_dx, h_x_pad, mode = ”CONSTANT”,constant_values=0) #pad spatial

derivative h
40 u = u ­ (g*dt/dx) * dh_dx
41 # Calculating v at next time step
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42 dh_dy = tf.nn.conv2d(h, diff_y, strides = 1, padding = ”VALID”) #computes spatial
derivative h w.r.t. y

43 dh_dy = tf.pad(dh_dy, h_y_pad, mode = ”CONSTANT”,constant_values=0) #pad spatial
derivative h

44 v = v ­ (g*dt/dy) * dh_dy
45 # Calculating h at next time step
46 du_dx = tf.nn.conv2d(u, diff_x, strides = 1, padding = ”VALID”) #computes spatial

derivative u w.r.t. x
47 dv_dy = tf.nn.conv2d(v, diff_y, strides = 1, padding = ”VALID”) #computes spatial

derivative v w.r.t. y
48 h = h ­ H*dt*(du_dx/dx + dv_dy/dy)
49 return h,u,v
50

51 def PDE_Solver_Masks(h_0,u_0,v_0,N_x,N_y,T,dt,H,W, alpha, beta, eta, zeta):
52 h = h_0; u = u_0; v = v_0
53 dx = tf.constant(L/(N_x), dtype = tf.float32) ; dy = tf.constant(W/(N_y), dtype = tf.

float32)
54 diff_x, diff_y = Convolution_Filters()
55 h_x_pad, h_y_pad = Pads()
56 int_h, int_u, int_v, bnd_h, bnd_u, bnd_v = Masks(N_x,N_y, alpha, beta, eta, zeta)
57 T = 60. * T
58 timesteps = int(tf.math.round(T/dt))
59 g = tf.constant(9.81,dtype=tf.float32)
60 f = tf.constant(1/(0.06*24*3600),dtype=tf.float32)
61 for i in range(timesteps):
62 # Calculating u at next timestep
63 dh_dx = tf.nn.conv2d(h, diff_x, strides = 1, padding = ”VALID”) #computes spatial

derivative h w.r.t. x
64 dh_dx = tf.pad(dh_dx, h_x_pad, mode = ”CONSTANT”,constant_values=0) #pad spatial

derivative h
65 u = int_u * (u ­ (g*dt/dx) * dh_dx)
66 # Calculating v at next time step
67 dh_dy = tf.nn.conv2d(h, diff_y, strides = 1, padding = ”VALID”) #computes spatial

derivative h w.r.t. y
68 dh_dy = tf.pad(dh_dy, h_y_pad, mode = ”CONSTANT”,constant_values=0) #pad spatial

derivative h
69 v = v ­ (g*dt/dy) * dh_dy
70 # Calculating h at next time step
71 du_dx = tf.nn.conv2d(u, diff_x, strides = 1, padding = ”VALID”) #computes spatial

derivative u w.r.t. x
72 dv_dy = tf.nn.conv2d(v, diff_y, strides = 1, padding = ”VALID”) #computes spatial

derivative v w.r.t. y
73 h = h ­ H*dt*(du_dx/dx + dv_dy/dy)
74 return h,u,v
75

76 def Checkpoints(timesteps,N_c):
77 check_h = {}
78 check_u = {}
79 check_v = {}
80 check_list = []
81 interval_r = int(timesteps/N_c)
82 if timesteps % N_c == 0:
83 interval_ir = interval_r
84 else:
85 interval_ir = timesteps ­ N_c*interval_r
86 for i in range(0,timesteps,interval_r):
87 check_list.append(i)
88 check_v[’v_’+str(i)]= 0
89 check_u[’u_’+str(i)]= 0
90 check_h[’h_’+str(i)]= 0
91 return interval_r, interval_ir,check_h,check_u,check_v,check_list
92

93 def Checkpoint_Simulation_Forward(h_0,u_0,v_0,N_x,N_y,T,dt,H,W,N_c):
94 h = h_0; u = u_0; v= v_0
95 dx = tf.constant(L/(N_x­1), dtype = tf.float32) ; dy = tf.constant(W/(N_y­1), dtype = tf.

float32)
96 diff_x, diff_y = Convolution_Filters()
97 h_x_pad, h_y_pad = Pads()
98 T = 60. * T
99 timesteps = int(tf.math.round(T/dt))
100 g = tf.constant(9.81,dtype=tf.float32)
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101 interval_r, interval_ir,check_h,check_u,check_v,check_list = Checkpoints(timesteps,N_c)
102 for i in range(timesteps):
103 if i in check_list:
104 check_h[’h_’+str(i)] = h
105 check_u[’u_’+str(i)] = u
106 check_v[’v_’+str(i)] = v
107 # Calculating u at next timestep
108 dh_dx = tf.nn.conv2d(h, diff_x, strides = 1, padding = ”VALID”) #computes spatial

derivative h w.r.t. x
109 dh_dx = tf.pad(dh_dx, h_x_pad, mode = ”CONSTANT”,constant_values=0) #pad spatial

derivative h
110 u = u ­ (g*dt/dx) * dh_dx
111 # Calculating v at next time step
112 dh_dy = tf.nn.conv2d(h, diff_y, strides = 1, padding = ”VALID”) #computes spatial

derivative h w.r.t. y
113 dh_dy = tf.pad(dh_dy, h_y_pad, mode = ”CONSTANT”,constant_values=0) #pad spatial

derivative h
114 v = v ­ (g*dt/dy) * dh_dy
115 # Calculating h at next time step
116 du_dx = tf.nn.conv2d(u, diff_x, strides = 1, padding = ”VALID”) #computes spatial

derivative u w.r.t. x
117 dv_dy = tf.nn.conv2d(v, diff_y, strides = 1, padding = ”VALID”) #computes spatial

derivative v w.r.t. y
118 h = h ­ H*dt*(du_dx/dx + dv_dy/dy)
119 return h,u,v,check_u, check_v,check_h,interval_r,interval_ir,check_list,diff_x, diff_y,

h_x_pad, h_y_pad
120

121 def Checkpoint_Simulation_init(h_k,u_k,v_k,dt,dx,g,H,interval_ir,diff_x,diff_y,h_x_pad,
h_y_pad):

122 t_gaus_dist = tf.reshape(np.exp(­((x_grid_h­L/2)**2/(2*(0.05E+4)**2) + (y_grid_h­W/2)
**2/(2*(0.05E+4)**2))),[1,N_x,N_y,1])

123 with tf.GradientTape(persistent=True) as tape:
124 h=h_k
125 u=u_k
126 v=v_k
127 tape.watch(h_k)
128 tape.watch(u_k)
129 tape.watch(v_k)
130 for i in range(interval_ir):
131 dh_dx = tf.nn.conv2d(h, diff_x, strides = 1, padding = ”VALID”) #computes

spatial derivative h w.r.t. x
132 dh_dx = tf.pad(dh_dx, h_x_pad, mode = ”CONSTANT”,constant_values=0) #pad spatial

derivative h
133 u = u ­ (g*dt/dx) * dh_dx
134 # Calculating v at next time step
135 dh_dy = tf.nn.conv2d(h, diff_y, strides = 1, padding = ”VALID”) #computes

spatial derivative h w.r.t. y
136 dh_dy = tf.pad(dh_dy, h_y_pad, mode = ”CONSTANT”,constant_values=0) #pad spatial

derivative h
137 v = v ­ (g*dt/dy) * dh_dy
138 # Calculating h at next time step
139 du_dx = tf.nn.conv2d(u, diff_x, strides = 1, padding = ”VALID”) #computes

spatial derivative u w.r.t. x
140 dv_dy = tf.nn.conv2d(v, diff_y, strides = 1, padding = ”VALID”) #computes

spatial derivative v w.r.t. y
141 h = h ­ H*dt*(du_dx/dx + dv_dy/dy)
142 cost = tf.tensordot(t_gaus_dist,h,axes=3)
143 dJ_dh = tape.gradient(cost,h_k)
144 dJ_du = tape.gradient(cost,u_k)
145 dJ_dv = tape.gradient(cost,v_k)
146 del tape
147 return dJ_dh,dJ_du,dJ_dv
148

149 def Checkpoint_Simulation (h_k,u_k,v_k,dt,dx,g,H,interval_r,dJ_dh,dJ_du,dJ_dv,diff_b,diff_f,
h_x_pad, h_y_pad):

150 with tf.GradientTape(persistent=True) as tape:
151 h=h_k
152 u=u_k
153 v=v_k
154 tape.watch(h_k)
155 tape.watch(u_k)
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156 tape.watch(v_k)
157 for i in range(interval_ir):
158 dh_dx = tf.nn.conv2d(h, diff_x, strides = 1, padding = ”VALID”) #computes

spatial derivative h w.r.t. x
159 dh_dx = tf.pad(dh_dx, h_x_pad, mode = ”CONSTANT”,constant_values=0) #pad spatial

derivative h
160 u = u ­ (g*dt/dx) * dh_dx
161 # Calculating v at next time step
162 dh_dy = tf.nn.conv2d(h, diff_y, strides = 1, padding = ”VALID”) #computes

spatial derivative h w.r.t. y
163 dh_dy = tf.pad(dh_dy, h_y_pad, mode = ”CONSTANT”,constant_values=0) #pad spatial

derivative h
164 v = v ­ (g*dt/dy) * dh_dy
165 # Calculating h at next time step
166 du_dx = tf.nn.conv2d(u, diff_x, strides = 1, padding = ”VALID”) #computes

spatial derivative u w.r.t. x
167 dv_dy = tf.nn.conv2d(v, diff_y, strides = 1, padding = ”VALID”) #computes

spatial derivative v w.r.t. y
168 h = h ­ H*dt*(du_dx/dx + dv_dy/dy)
169 cost = tf.tensordot(dJ_dh,h,axes = 3) + tf.tensordot(dJ_du,u,axes=3) + tf.tensordot(

dJ_dv,v,axes = 3)
170 dJ_dh = tape.gradient(cost,h_k)
171 dJ_du = tape.gradient(cost,u_k)
172 dJ_dv = tape.gradient(cost,v_k)
173 del tape
174 return dJ_dh,dJ_du,dJ_dv
175

176 def Sensitivity_Analysis(h_0,u_0,dt,T,L,H,N_x,N_y,N_c):
177 h,u,v,check_u, check_v,check_h,interval_r,interval_ir,check_list,diff_x, diff_y,h_x_pad,

h_y_pad = Checkpoint_Simulation_Forward(h_0,u_0,v_0,N_x,N_y,T,dt,H,W,N_c)
178 k = check_list[­1]
179 h_k = check_h[’h_’+str(k)]; u_k = check_u[’u_’+str(k)]; v_k = check_v[’v_’+str(k)]
180 dJ_dh,dJ_du,dJ_dv = Checkpoint_Simulation_init(h_k,u_k,v_k,dt,dx,g,H,interval_ir,diff_x,

diff_y,h_x_pad, h_y_pad)
181 for k in check_list[­2::­1]:
182 dJ_dh,dJ_du,dJ_dv = Checkpoint_Simulation (h_k,u_k,v_k,dt,dx,g,H,interval_r,dJ_dh,

dJ_du,dJ_dv,diff_b,diff_f,h_x_pad, h_y_pad)
183 print(k)
184 return dJ_dh,dJ_du,dJ_dv
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Implementation NumPy

1 import numpy as np
2 from timeit import default_timer as timer
3

4 minutes_to_seconds=60.0
5 hours_to_seconds=60.0*minutes_to_seconds
6 days_to_seconds=24.0*hours_to_seconds
7

8 #constants
9 g = 9.81 #gravity [m s­2]
10 f=1.0/(0.06*days_to_seconds) #damping time­scale [s­1]
11 d=10.0 #depth below z=0 reference [m]
12

13 #geometry
14 n_max=101;m_max= 101 #number of nodes i.e. one more than the number of cells
15 x_length=10000.0; y_length=10000.0
16 dx=x_length/(m_max­1.0)
17 dy=y_length/(n_max­1.0)
18

19 #Time
20 t_stop=50.0*minutes_to_seconds
21 dt=0.001*minutes_to_seconds
22

23 #Grid
24 u = np.zeros((n_max,m_max),dtype=np.float32)
25 v = np.zeros((n_max,m_max),dtype=np.float32)
26 h = np.zeros((n_max,m_max),dtype=np.float32)
27

28 #Initial Conditions
29 h[int(n_max/2),int(m_max/2)] = 1.0
30

31 print(”CFL =”, np.sqrt(g*d)*dt/dx + np.sqrt(g*d)*dt/dy)
32

33 #Forward Simulation
34 t= 0
35 istep = 0
36

37 while t < t_stop:
38 for i in range(0,n_max­1):
39 for j in range(1,m_max­1):
40 u[i,j] = u[i,j] + dt * (­g *(h[i,j]­h[i­1,j])/dx ­ f*u[i,j])
41 for i in range(1,n_max­1):
42 for j in range(0,m_max­1):
43 v[i,j] = v[i,j] + dt * (­g *(h[i,j]­h[i,j­1])/dy ­ f*v[i,j])
44 for i in range(1,n_max­1):
45 for j in range(1,m_max­1):
46 h[i,j] = h[i,j] + dt * (0.5 *­ 0.5*(u[i+1,j]*d/dx) + 0.5*(u[i,j]*d/dx) ­ 0.5*(v[

i,j+1]*d/dy) + 0.5*(v[i,j]*d/dy))
47 t = t +dt

47
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Implementation Fortran90

1 program wave_xy
2 ! Simulate f ree sur face wave in x−y−domain
3 i m p l i c i t none
4

5 ! convers ion
6 rea l , parameter : : minutes_to_seconds=60.0
7 rea l , parameter : : hours_to_seconds =60.0*minutes_to_seconds
8 rea l , parameter : : days_to_seconds=24.0* hours_to_seconds
9 ! constants
10 rea l , parameter : : g=9.81 ! g r a v i t y [m s−2]
11 rea l , parameter : : f =1 .0 / (0 .06* days_to_seconds ) ! damping time −scale [ s −1]
12 rea l , parameter : : d=10.0 ! depth below z=0 re ference [m]
13 ! geometry
14 i n teger , parameter : : n_max=11 , m_max= 101 ! number o f nodes + , i . e . one more than the number o f c e l l s o
15 rea l , parameter : : x_ length =10000.0 , y_ length =10000.0
16 r ea l : : dx=x_ length / (m_max−1.0)
17 r ea l : : dy=y_ length / ( n_max−1.0)
18 ! t ime
19 r ea l : : t _ s t a r t =0.0
20 r ea l : : t_s top =50.0*minutes_to_seconds
21 r ea l : : d t =0.1*minutes_to_seconds ! d t =0.1*minutes_to_seconds
22 ! i n i t i a l s t a t e
23 rea l , dimension (m_max, n_max) : : u=0.0 , v =0.0 ,h=0.0
24

25 ! temporary va r i ab l es
26 i n t ege r : : i s t ep
27 r ea l : : t
28

29 ! temporary
30 i n t ege r : : m, n
31

32 ! i n i t i a l i z a t i o n
33 do m=1 ,m_max
34 do n=1 ,n_max
35 h (m, n ) = exp ( −(m*dx−x_length / 2 . ) * *2 . / ( 1 0 00 . * *2 . ) − ( n*dy−y_length / 2 . ) * * 2 . / ( 1 0 0 0 . * * 2 . ) )
36 end do
37 end do
38

39 ! t ime loop
40 t = t _ s t a r t
41 i s t ep =0
42 do whi le ( t < t_s top )
43 ! i f (mod( i s tep ,10)==0) then
44 ! p r i n t * , ” t = ” , t
45 ! p r i n t * , ” h=” , h
46 ! end i f
47 ! u
48 do n=1 ,(n_max−1)
49 do m=2 ,(m_max−1)
50 ! i f ( ( n==5) . and . (m==5)) then

49



50 D. Implementation Fortran90

51 ! p r i n t * , ” s t a r t debugging here ”
52 ! end i f
53 u (m, n ) = u (m, n ) &
54 +dt * ( &
55 −g * ( h (m, n)−h (m−1 ,n ) ) / dx &
56 − f *u (m, n ) &
57 )
58 enddo
59 enddo
60 ! v
61 do n=2 ,(n_max−1)
62 do m=1 ,(m_max−1)
63 v (m, n ) = v (m, n ) &
64 +dt * ( &
65 −g * ( h (m, n)−h (m, n −1 ) ) / dy &
66 − f *v (m, n ) &
67 )
68 enddo
69 enddo
70 ! h
71 do n=1 ,(n_max−1)
72 do m=1 ,(m_max−1)
73 h (m, n ) = h (m, n ) &
74 +dt * ( &
75 − 0 .5* ( u (m+1 ,n )*d / dx ) &
76 + 0 .5* ( u (m ,n )*d / dx ) &
77 − 0 .5* ( v (m, n+1)*d / dy ) &
78 + 0 .5* ( v (m, n )*d / dy ) &
79 )
80 enddo
81 enddo
82 ! update vars
83 t = t +d t
84 enddo
85 end program
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