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Interpretation of ultrafast pump-probe terahertz experiments
in the time domain: How to exploit two-dimensional correlations

Juleon M. Schins
Opto-Electronic Materials Section, Department of Chemical Engineering, Delft University of Technology,

Julianalaan 136, NL-2628 BL Delft, The Netherlands
(Received 2 June 2010; revised manuscript received 25 February 2011; published 17 May 2011)

Optical-pump-terahertz-probe spectroscopy has the potential to distinguish between several classes of carrier
motion, among others high-frequency oscillatory motion, free motion, and quasifree motion within bounded
domains. We present a simplified formalism, applicable to thin samples, which allows identification of these three
classes of photoexcited species on basis of the two-dimensional correlations in the time-domain experimental
data.
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I. INTRODUCTION

Time-resolved THz spectroscopy1–14 is rapidly imposing
as a technique to determine the mobility of optically excited
carriers in a wide variety of materials. Even though the
technique has ultrashort capability (100-fs pulsed lasers have
been commercially available for decades), it is mostly used as a
method to determine conductivities on the subnanosecond time
scale. In the few cases in which subpicosecond dynamics are
addressed, the theoretical framework is either too complex15

or insufficient [in the sense that the two-dimensional (2D)-
correlated data are described in terms of uncorrelated 1D
stacks8,9,16–24] to provide a satisfactory description of the
measured data. There is one notable exception: Beard and
Schmuttenmaer25 were able to give a beautiful simulation
of their measurements on a dye (tetra-butyl-naphtalocyanine,
also known as TBNC) in toluene, a simulation that was later
fine-tuned by Nemec and co-workers.26

It is remarkable that up to date hardly any 2D contour
plots have been published in the literature, and on those rare
occasions the meanders observed at (sub)picosecond pump-
probe delays are left without explanation.17,27 Numerical
simulations of the full Maxwell equations have the drawback
of being very time consuming, and they are useful only if one
knows the nature of the primary photoproducts beforehand.
Yet even for model systems like bulk GaAs, with enormous
signal levels, the primary photoproducts remain elusive: Beard
and co-workers write that they were not able to account for
differences between simulation and experiment in the first
picosecond after excitation.15

An important step forward was made by Nemec, Kadlec,
and Kuzel in 2002,28 who derived an analytical solution
in the perturbative limit. This solution has the advantage
of simplification without loss of applicability (in the large
majority of experiments one is specifically interested in
the perturbative regime), and calculations need much less
computing time.26,29 However, the major issue, that of the
immediate assessment of the primary photoproducts, remained
unsolved.

In this paper we elaborate on previous work30,31 by deriving
a simple expression in the thin-film limit. It shows that a dif-
ferential representation of the 2D time-domain data unveils the
nature of the primary photoproducts. This new representation
paves the way to exploiting the full time-resolving capability of

pump-probe terahertz spectroscopy, and effectively assessing
the nature of the primary photoproducts: specifically, we
address the differentiation between excitons, free charges in
unbounded media, and quasifree charges in bounded media
(like in polymers, nanorods, or crystalline islands).

II. THEORETICAL FRAMEWORK

In an optical-pump terahertz-probe experiment a single
laser beam is divided into three parts: (i) a pump beam,
used to photoexcite the sample; (ii) a generation beam, to
generate a THz pulse in either a nonlinear crystal32 or a
biased emitter;33 and (iii) a detection beam, to detect the
time-dependent waveform of the transmitted THz pulse by
electro-optical sampling32 or using a semiconductor antenna.33

These three beams can be delayed separately, though only two
of the three delays are independent as far as the experimental
results are concerned.

The main approximations we make in our analysis is
in assuming a perturbative response of the system to the
pump pulse (this corresponds to neglecting the interaction
between the pump-induced polarizabilities), and an ultrathin
sample, thereby disregarding the exponential decay of the
excitation density (Lambert-Beer) and corresponding diffusion
effects.34–37 Other assumptions made in the analysis are
that the medium is isotropic and homogeneous, with a
material response depending on frequency only. In a previous
publication it was shown that for the above assumptions the
differential electric field �E(t,τ ) relates to the driving field
E0(t) as follows:31

�E(t,τ ) = −β
q2ρ0

m
θ (τ )

∫ τ

0
dt ′E0(t − t ′)�Ġ(t ′)e−�(τ−t ′)

(1)

β ≡ d

2nε0c

with �G ≡ Ges − Ggs the difference between the excited and
ground-state Green functions; θ (τ ) the Heaviside function;
�,q,ρ0,m the carrier’s reciprocal lifetime, charge, mass, and
number density; d,ε0,c,n the sample thickness, the vacuum
permittivity, the speed of light, and the sample’s index of
refraction in the terahertz window, respectively. The two
temporal variables determine the relative delays for the
detection, pump, and generation paths, Ld,Lp,Lg respectively,
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according to t ≡ (Ld − Lg)/c and τ ≡ (Ld − Lp)/c.26,29,30 The
couple (t,τ ) is the natural choice for experiments, as it exploits
the fact that for negative τ the experimental data vanish.
From a theoretical point of view it is not the natural choice,
because the time-dependent solution to Maxwell’s equations
is obtained when varying the detection delay with fixed pump
and generation delays.

Equation (1) applies for a single carrier species, created
instantaneously, and decaying exponentially in time. It can
be generalized to include several carrier species, with an
arbitrary temporal evolution of the population, by introducing
the two-dimensional conductive response function �σ (t,τ )
and its Fourier transform �σ (ω,ζ ):

�E(t,τ ) = −β

∫ ∞

−∞
dt ′E0(t − t ′)�σ (t ′,τ − t ′),

(2)
�E(ω,ζ ) = −βE0(ω)�σ (ω + ζ,ζ ).

This generalization presents the differential field as a
convolution in the time domain. Equation (2) reduces to Eq. (1)
whenever the two-dimensional response assumes the special
form

�σ (t,τ ) = q2ρ0

m
θ (τ )�Ġ(t)e−�τ . (3)

The generalized conductivity describes both Ohmian con-
duction (real part of the frequency-dependent conductivity)
and dielectric effects (imaginary part), which have their origin
in the current and polarization terms of the Maxwell equations.

The Fourier transforms of the measured differential and
driving fields, �F (ω,ζ ) and F0(ω), can be obtained from the
differential and driving fields in the sample by multiplication
with the envelope functions of the pump (ξp) and detection (ξd)
pulses, as follows:

�F (ω,ζ ) = �E(ω,ζ )ξd(ω + ζ )ξp(ζ )
(4)

F0(ω) = E0(ω)ξd(ω).

Note that for the measured differential field �F (ω,ζ )
the argument of the detection envelope in frequency domain
is not simply ω but ω + ζ , because of the fact that in
time domain the detection convolution occurs along the
diagonal, for which τ − t is constant (i.e., the generation
delay line Lg is constant).26,29,30 Equation (4) can further be
generalized to include effects of detection efficiency38 and
beam propagation39,40 by straightforward multiplication.

For a single excited species, decaying exponentially with
rate �, the two-dimensional conductivity �σ (ω,ζ ) can be writ-
ten in terms of the one-dimensional steady-state conductivity
�σst (ω). Indeed, from Eq. (3) one obtains the identity

(�−iζ )�σ (ω,ζ ) = �σst (ω) ≡ −iω
q2ρ0

m
�G(ω). (5)

Note that the dimensions of the two conductivities �σ (ω,ς )
and �σst (ω) differ; in time domain, however, the two conduc-
tivities have the same dimension (�−1 m−1 s−1 in SI units).
Using Eqs. (4) and (5), a single species with infinite lifetime
produces a differential field of the form

−iζ lim
�→0

�F (ω,ζ )

ξp(ζ )
= −βE0(ω)�σ̄st (ω + ζ ),

(6)
�σ̄st (ω) ≡ �σst (ω)ξd(ω),

The bar over the steady-state conductivity stands for multi-
plication with the detection pulse in frequency domain, or
equivalently, for convolution in the time domain. The above
expression suggests that the experimental data be displayed,
in time domain, as a temporal derivative along the vertical
axis (pump delay). Moreover, Eq. (6) nicely illustrates that
pump-probe terahertz spectroscopy is able to retrieve from
the experimental data only the convolution (in time domain)
of conductivity and detection envelope. Also note that the
right-hand side of Eq. (6) contains the actual driving field
E0(ω) rather than the measured driving field F0(ω). This
implies that, for a single species of infinite lifetime, the
time-derived experimental data, after deconvolution with the
pump pulse, can be written as a simple product of the driving
field and the convoluted steady-state response:

lim
�→0

∂�F (t,τ )

∂τ
÷ ξp(τ ) = −βE0(t − τ )�σ̄st (τ ). (7)

The symbol ⊗ denotes a convolution, and ÷ denotes a
deconvolution. According to Eq. (7), in the special case of a
single species with infinite lifetime and in the case of negligible
pump duration, the time-shifted driving field E0(t) is displayed
along any horizontal line (τ const), and the convoluted steady-
state conductivity along any diagonal (t − τ const).

In practice the conditions for Eq. (7) are not realized, as
the photoexcited species have finite lifetimes and, possibly,
a finite rate of ingrowth. Yet one may still obtain a good
impression of the steady-state conductivity by observing the
τ derivative of the two-dimensional experimental data along
the 45◦ diagonal. In the case of finite population lifetimes and
multiple species the generalized two-dimensional conductivity
must be retrieved from the data upon using Eqs. (2) and (4),
instead of Eq. (7). Due to the intrinsic limitation of the laser
pulse duration, the retrieved experimental quantity is not the
conductivity itself, but rather its convolution with the laser
pulse:

�σ̄st (t) ≡ �σst (t) ⊗ ξd(t),
(8)

�σ̄ (t,τ ) ≡ �σ (t,τ ) ⊗ ⊗ξd(t)ξp(τ ).

The one-dimensional convoluted conductivity �σ̄st (t) is
derived from Eq. (7), and the two-dimensional convoluted
conductivity �σ̄ (t,τ ) follows upon Fourier back-transforming
the field ratio �F (ω − ζ,ζ )/E0(ω − ζ ) [cf. Eqs. (2) and (4)].

III. ESTIMATION AND RETRIEVAL OF THE
CONVOLUTED CONDUCTIVITY

Equations (5) and (8) determine the relation between the
electronic response and the convoluted conductivity. For the
three basic types of response considered in this paper (Drudean
free motion, oscillatory motion of a polarizable exciton, and
quasifree motion on a bounded domain), the Green functions
have the following form:

GDrude(t) = 1 − e−γ t

γ
θ (t),

Gexciton(t) = sin(�t)

�
e−γ t/2θ (t), (9)

Gdomain(t) = 8
mD

kBT

∞∑
k=0

c−2
k e−(ck/a)2

Dtθ (t).
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FIG. 1. (Color online) Convoluted stead-state conductivity
�σ̄st (t) for three different species: free charges, tightly bound
excitons, and quasifree charges on a bounded domain. Although the
amplitudes of the three traces are chosen arbitrarily, the temporal
succession of the peaks is fully determined by the Green functions.
The excitonic curve is the derivative of the laser pulse (assumed
Gaussian). For the scattering rate of the free charge γ = 2 ps−1 was
taken; D/a2 = 0.2 ps−1 for the quasifree charge.

Here, γ represents the scattering rate; � = √
ω2

res − (γ /2)2

is the underdamped excitonic oscillation frequency; kBT is
the product of Boltzmann constant and temperature; a is the
linear size of the bounded domain; ck ≡ (2k + 1)π ; and D

is the diffusion coefficient in an unbounded medium. The
Green function for free motion on a bounded domain was
derived assuming equal probability of excitation throughout
the domain, by applying Kubo’s formalism to classical
diffusive motion (see the Appendix). In the high-frequency
limit the pump-induced field is proportional to the derivative
of the driving field, as can be appreciated in measurements
of exciton polarizability.41 This behavior corresponds with the
theoretical fact that, for ωres → ∞ and finite scattering rate γ ,
the excitonic Green function approaches a δ function in time
(see the Appendix).

In Fig. 1 the one-dimensional convoluted conductivity
�σ̄st (t) is shown corresponding to the electronic response for
three different species: a free (Drude) electron, a polarizable
exciton, and a free charge on a bounded domain. The
conductivities were calculated combining Eqs. (5), (8), and
(9). For excitons and quasifree charges on a bounded domain
the integral over the full curve vanishes, implying no net
displacement of the charge after passage of the THz driving
field.

The signatures presented in Fig. 1 allow for straightforward
identification of a large majority of the observed photoexcited
species. As an example we show a theoretical prediction of
the measured differential field �F (t,τ ) for a purely excitonic
signal, as would be measured typically for photoexcited
nanocrystals of CdSe.41 Note that the signatures associated
with the exciton and the quasifree charge are both single cycle,
differing only by the relative amplitude of the two extrema
(symmetric for the exciton, asymmetric for the quasifree
charge). A more reliable criterion for distinguishing between
the two species might therefore be found in the fact that the
excitonic signature vanishes at zero time delay, while
the quasifree signature is close to peaking. Furthermore, it
is important to realize that any frequency dependence in
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FIG. 2. (Color online) Theoretical prediction of the convoluted
differential field �F (t,τ ) (upper panel) and its vertical temporal
derivative ∂�F (t,τ )/∂τ (lower panel) for the case of a purely
excitonic response. In both figures, detection time t runs along the
horizontal axis, and pump time τ runs along the vertical axis.

beam propagation39,40 or detection efficiency38 distorts the
signatures shown; specifically, in a standard experimental
configuration one may expect low frequencies to be filtered
out.

Figure 2 shows both the measured differential field and
its derivative to time. In the latter representation, the driving
field shows up along the horizontal axis. The convoluted
conductivity must be read off along the diagonal, as the
driving field does not vary for constant t − τ [cf. Eq. (7)]. For
arbitrary forms of the two-dimensional conductivity �σ̄ (t,τ )
the vertical derivative of the differential field ∂�F (t,τ )/∂τ

still is useful for estimating the nature and population dynamics
of the photoexcited species.

In this paper we have presented a theoretical framework for
optical-pump terahertz-probe spectroscopy on thin samples.
From the relation of the measured differential field to the
generalized conductivity it was deduced that the character of
the observed species (free charge, tightly bound exciton, and
quasifree charge on a bounded domain) is readily appreciated
from the experimental data when displayed as a temporal
derivative to the pump-probe delay time. The signatures
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of these three species are distinct enough to grant their
identification on the basis of the experimental data.

APPENDIX: GREEN FUNCTION FOR MOTION ON A
BOUNDED DOMAIN

The mean-square displacement of a carrier, initially local-
ized with equal probability at an arbitrary point on a linear
chain of length a, has the following time dependence:42,43

〈�x2(t)〉 = a2θ (t)

{
1

6
− 16

∞∑
k=0

c−4
k e−(ck/a)2

Dt

}
,

(A1)
ck = (2k + 1)π,

where D stands for the diffusion constant in a polymer of
infinite length; it is related to the dc-mobility by the Einstein
relation μdc = eD/kBT . The Kubo formalism, valid in the
perturbative regime (i.e., for low driving fields), relates the
mobility to the Fourier transform of the velocity autocorrela-
tion function,44,45 which may be expressed as the second time
derivative of the average displacement:46,47

μ(ω) = − q

2kBT

∫ ∞

0
dteiωt d2

dt2
〈�x2(t)〉 (A2)

with e,kB,T the elementary charge, Boltzmann’s con-
stant, and temperature, respectively. In Eq. (A2) the high-
temperature limit was used for the universal prefactor;44,45

care should be taken, however, as the usual approximation
1
2 h̄ω coth( 1

2 h̄ω/kBT ) ≈ kBT is on the verge of its validity,
since for 1 THz and room temperature kBT ≈ 6h̄ω.

On the other hand, from Eq. (5), the mobility is proportional
to the Green function in frequency domain:

μst (ω) = σst (ω)

qρ0
= −iω

q

m
G(ω). (A3)

From Eqs. (A1)–(A3) it follows that the Green function for
diffusive motion along a linear chain is proportional to the

temporal derivative of the mean-square displacement:

Gdiffusion(t) = m

2kBT

∂

∂t

〈
�x2(t)

〉

= 8
mD

kBT
θ (t)

∞∑
k=0

c−2
k e−(ck/a)2

Dt . (A4)

Although this Green function implies an infinite accel-
eration at time t = 0, it is in most cases appropriate for
our goal, due to the fact that the physically impossible
discontinuity in the particle’s position at zero time is smeared
out (and thereby rendered continuous) by the convolution
with the detection pulse. The diffusive Green function of
Eq. (A4) explains why the pump-induced field leads with
respect to the Terahertz waveform for experiments performed
on semiconductor polymers,11,17,48 the lead angle increasing
with D/a2. However, it fails to reproduce, in the limit of
infinite chain length a → ∞, the Drude Green function for a
free charge [Eq. (9)]; this is due to the fact that the diffusion
equation allows for infinitely fast mass displacements, faster
than the natural limit established by the electron’s inertia.
A primitive but effective way to correct for the unphysical
acceleration implied in the diffusive response is to limit the
latter as follows:

Gdomain(t) ≡ min

[
1 − e−γDt

γD

,Gdiffusion(t)

]
, (A5)

where “min” selects the smallest of the two arguments. Due to

this limitation the Green function for diffusion on a bounded
domain Gdomain(t) starts out like a Drude response with
scattering rate γD = kBT /mD, until at some critical time
(when the Drude response equals the diffusive response),
the diffusive response Gdiffusion(t) takes over. Equation (A5)
displays the correct limits for both infinitely long and infinitely
short chain lengths:

lim
a→∞ Gdomain(t) = GDrude(t),

(A6)
12γDD lim

a→0

Gdomain(t)

a2
= γ lim

ωres→∞ ωresGexciton(t) = δ(t).
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